Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
223
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237};
238
239/* for encoding cft->private value on file */
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246};
247
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250#define MEMFILE_ATTR(val) ((val) & 0xffff)
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
253
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
272#ifndef CONFIG_SLOB
273/*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
286
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324#endif /* !CONFIG_SLOB */
325
326static struct mem_cgroup_per_zone *
327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328{
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333}
334
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356}
357
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
386static struct mem_cgroup_per_zone *
387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388{
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393}
394
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453{
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459}
460
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558}
559
560/*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583{
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597}
598
599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608}
609
610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613{
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640}
641
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238{
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331{
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1395 /*
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1400 */
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1403
1404 memcg->last_scanned_node = node;
1405 return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410 return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1418{
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1427 };
1428
1429 excess = soft_limit_excess(root_memcg);
1430
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!total)
1442 break;
1443 /*
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1448 */
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1452 }
1453 continue;
1454 }
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1460 }
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479 struct mem_cgroup *iter, *failed = NULL;
1480
1481 spin_lock(&memcg_oom_lock);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1485 /*
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1488 */
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1494 }
1495
1496 if (failed) {
1497 /*
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1500 */
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1505 }
1506 iter->oom_lock = false;
1507 }
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511 spin_unlock(&memcg_oom_lock);
1512
1513 return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518 struct mem_cgroup *iter;
1519
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529 struct mem_cgroup *iter;
1530
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539 struct mem_cgroup *iter;
1540
1541 /*
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 */
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1561{
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1565
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1568
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577 /*
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1584 */
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591 if (!current->memcg_may_oom)
1592 return;
1593 /*
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1597 *
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1601 *
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1606 */
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1635
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1639
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1642
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1651
1652 locked = mem_cgroup_oom_trylock(memcg);
1653
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1656
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1666 }
1667
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1670 /*
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1674 */
1675 memcg_oom_recover(memcg);
1676 }
1677cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1694
1695 /*
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1699 */
1700 rcu_read_lock();
1701
1702 if (mem_cgroup_disabled())
1703 return;
1704again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1708
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1711
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1716 }
1717
1718 /*
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1722 */
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1725
1726 return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1740
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1743
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 }
1746
1747 rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH 32U
1756struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE 0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1781
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1784
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1789 }
1790 put_cpu_var(memcg_stock);
1791 return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799 struct mem_cgroup *old = stock->cached;
1800
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1807 }
1808 stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1833 }
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844 int cpu, curcpu;
1845
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1855
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1866 }
1867 }
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1879
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1882
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1885
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1894{
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905 struct mem_cgroup *memcg;
1906
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1919
1920 if (likely(!nr_pages))
1921 return;
1922
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1931{
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1939
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1945
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1956 }
1957
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1961 }
1962
1963 /*
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1968 */
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1973
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1976
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1979
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1984
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1987
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1992 }
1993
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1996 /*
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2000 *
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2004 */
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2007 /*
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2010 */
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2013
2014 if (nr_retries--)
2015 goto retry;
2016
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2019
2020 if (fatal_signal_pending(current))
2021 goto force;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030force:
2031 /*
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2035 */
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2040
2041 return 0;
2042
2043done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047
2048 /*
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2056 */
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2063 }
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2067 }
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070 return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2077
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082 css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087 struct zone *zone = page_zone(page);
2088
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2092
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 if (isolated) {
2106 struct lruvec *lruvec;
2107
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2112 }
2113 spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2118{
2119 int isolated;
2120
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123 /*
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2126 */
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2129
2130 /*
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2133 *
2134 * - the page is uncharged
2135 *
2136 * - the page is off-LRU
2137 *
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2140 *
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2143 */
2144 page->mem_cgroup = memcg;
2145
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153 int id, size;
2154 int err;
2155
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2160
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2163
2164 /*
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2167 */
2168 down_write(&memcg_cache_ids_sem);
2169
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2175
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2181
2182 up_write(&memcg_cache_ids_sem);
2183
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2187 }
2188 return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193 ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2208
2209 memcg_create_kmem_cache(memcg, cachep);
2210
2211 css_put(&memcg->css);
2212 kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2220{
2221 struct memcg_kmem_cache_create_work *cw;
2222
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2226
2227 css_get(&memcg->css);
2228
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233 schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2238{
2239 /*
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2243 *
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2249 */
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2273
2274 VM_BUG_ON(!is_root_cache(cachep));
2275
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2278
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2281
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2284
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2289
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2293
2294 /*
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2299 *
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2305 */
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308 css_put(&memcg->css);
2309 return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320{
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2356
2357 if (!memcg)
2358 return;
2359
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382 int i;
2383
2384 if (mem_cgroup_disabled())
2385 return;
2386
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2389
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2398{
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436 return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444{
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499{
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673{
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683{
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689{
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766}
2767
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778{
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919{
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969{
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010{
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047{
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054{
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195#ifdef CONFIG_DEBUG_VM
3196 {
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218#endif
3219
3220 return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225{
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233{
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294unlock:
3295 rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428{
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434{
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519{
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525{
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531{
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553{
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579{
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597 return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607 wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646{
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665}
3666
3667#else /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671 return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727{
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760{
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778{
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893out_put_css:
3894 css_put(css);
3895out_put_cfile:
3896 fdput(cfile);
3897out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900 fdput(efile);
3901out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974#ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979#endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003#ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011#endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4043 /*
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4046 *
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4050 */
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4056
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4063 }
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070 kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075 int node;
4076
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4089
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4096
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4100
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4104
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4107
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123 return memcg;
4124fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4135
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4139
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4145 }
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4159 /*
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4163 */
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4166 }
4167
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4172 }
4173
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4177
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181 return &memcg->css;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4192
4193 return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4200
4201 /*
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4205 */
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4210 }
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221 invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314};
4315
4316enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324{
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365 return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397#else
4398 page = find_get_page(mapping, pgoff);
4399#endif
4400 return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419{
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493out_unlock:
4494 unlock_page(page);
4495out:
4496 return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568 return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575{
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671 struct mm_struct *mm = mc.mm;
4672
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4684
4685 mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4697
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4701
4702 /*
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4707 */
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4713 }
4714 if (!p)
4715 return 0;
4716
4717 /*
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4721 */
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4725
4726 from = mem_cgroup_from_task(p);
4727
4728 VM_BUG_ON(from == memcg);
4729
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4740
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4748
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4754 }
4755 return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4767{
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4775
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4781 }
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4790 }
4791 putback_lru_page(page);
4792 }
4793 put_page(page);
4794 }
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4806
4807 if (!mc.precharge)
4808 break;
4809
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4813 /*
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4818 */
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4828 }
4829 putback_lru_page(page);
4830put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4839 }
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4847
4848 if (addr != end) {
4849 /*
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4854 */
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4858 }
4859
4860 return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4868 };
4869
4870 lru_add_drain_all();
4871 /*
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4875 */
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 /*
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4886 */
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4890 }
4891 /*
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4894 */
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4905 }
4906}
4907#else /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910 return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940{
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961{
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5008
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5039
5040 xchg(&memcg->memory.limit, max);
5041
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045 if (nr_pages <= max)
5046 break;
5047
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5051 }
5052
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5057 }
5058
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5064 }
5065
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5069 }
5070
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084 return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5093
5094 /*
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5097 *
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 *
5102 * Current memory state:
5103 */
5104
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5107
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5130
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 }
5136
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142 /* Accumulated memory events */
5143
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149 return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153 {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5157 },
5158 {
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5163 },
5164 {
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5169 },
5170 {
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5175 },
5176 {
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5181 },
5182 {
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5186 },
5187 { } /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5263{
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5267
5268 if (mem_cgroup_disabled())
5269 goto out;
5270
5271 if (PageSwapCache(page)) {
5272 /*
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5278 */
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5282
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5292 }
5293 }
5294
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5297
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300 css_put(&memcg->css);
5301out:
5302 *memcgp = memcg;
5303 return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5324{
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330 if (mem_cgroup_disabled())
5331 return;
5332 /*
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5336 */
5337 if (!memcg)
5338 return;
5339
5340 commit_charge(page, memcg, lrucare);
5341
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5346
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5349 /*
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5353 */
5354 mem_cgroup_uncharge_swap(entry);
5355 }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5367{
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370 if (mem_cgroup_disabled())
5371 return;
5372 /*
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5376 */
5377 if (!memcg)
5378 return;
5379
5380 cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5386{
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5389
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5395 }
5396
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5405
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5419
5420 /*
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5423 */
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5427
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5430
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434 if (!page->mem_cgroup)
5435 continue;
5436
5437 /*
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5441 */
5442
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 }
5449 memcg = page->mem_cgroup;
5450 }
5451
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5456 }
5457
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5462
5463 page->mem_cgroup = NULL;
5464
5465 pgpgout++;
5466 } while (next != page_list);
5467
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482 if (mem_cgroup_disabled())
5483 return;
5484
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5488
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5524
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5530
5531 if (mem_cgroup_disabled())
5532 return;
5533
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5537
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5542
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5551
5552 commit_charge(newpage, memcg, false);
5553
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589out:
5590 rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610 gfp_t gfp_mask = GFP_KERNEL;
5611
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5614
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5618 }
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5622 }
5623
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5627
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5632
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5647 }
5648
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657 char *token;
5658
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5666 }
5667 return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681 int cpu, node;
5682
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5688
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5692
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5695
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5698
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5702 }
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 }
5705
5706 return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5722
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5725
5726 if (!do_memsw_account())
5727 return;
5728
5729 memcg = page->mem_cgroup;
5730
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5734
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5738
5739 page->mem_cgroup = NULL;
5740
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5743
5744 /*
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5749 */
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5769
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5772
5773 memcg = page->mem_cgroup;
5774
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5778
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5782
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5786
5787 css_get(&memcg->css);
5788 return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5801
5802 if (!do_swap_account)
5803 return;
5804
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5814 }
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5817 }
5818 rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823 long nr_swap_pages = get_nr_swap_pages();
5824
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836 struct mem_cgroup *memcg;
5837
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5844
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5848
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5852
5853 return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891 return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5896{
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5900
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5905
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5911
5912 return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916 {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5920 },
5921 {
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5926 },
5927 { } /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931 {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5935 },
5936 {
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5941 },
5942 {
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5947 },
5948 {
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5953 },
5954 { }, /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5965 }
5966 return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25#include <linux/page_counter.h>
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
28#include <linux/pagewalk.h>
29#include <linux/sched/mm.h>
30#include <linux/shmem_fs.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vm_event_item.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include <linux/tracehook.h>
60#include <linux/psi.h>
61#include <linux/seq_buf.h>
62#include "internal.h"
63#include <net/sock.h>
64#include <net/ip.h>
65#include "slab.h"
66
67#include <linux/uaccess.h>
68
69#include <trace/events/vmscan.h>
70
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
73
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76#define MEM_CGROUP_RECLAIM_RETRIES 5
77
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
84/* Whether the swap controller is active */
85#ifdef CONFIG_MEMCG_SWAP
86int do_swap_account __read_mostly;
87#else
88#define do_swap_account 0
89#endif
90
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char *const mem_cgroup_lru_names[] = {
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107};
108
109#define THRESHOLDS_EVENTS_TARGET 128
110#define SOFTLIMIT_EVENTS_TARGET 1024
111#define NUMAINFO_EVENTS_TARGET 1024
112
113/*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
118struct mem_cgroup_tree_per_node {
119 struct rb_root rb_root;
120 struct rb_node *rb_rightmost;
121 spinlock_t lock;
122};
123
124struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126};
127
128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
130/* for OOM */
131struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134};
135
136/*
137 * cgroup_event represents events which userspace want to receive.
138 */
139struct mem_cgroup_event {
140 /*
141 * memcg which the event belongs to.
142 */
143 struct mem_cgroup *memcg;
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
157 int (*register_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd, const char *args);
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
164 void (*unregister_event)(struct mem_cgroup *memcg,
165 struct eventfd_ctx *eventfd);
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
172 wait_queue_entry_t wait;
173 struct work_struct remove;
174};
175
176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178
179/* Stuffs for move charges at task migration. */
180/*
181 * Types of charges to be moved.
182 */
183#define MOVE_ANON 0x1U
184#define MOVE_FILE 0x2U
185#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
186
187/* "mc" and its members are protected by cgroup_mutex */
188static struct move_charge_struct {
189 spinlock_t lock; /* for from, to */
190 struct mm_struct *mm;
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
193 unsigned long flags;
194 unsigned long precharge;
195 unsigned long moved_charge;
196 unsigned long moved_swap;
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199} mc = {
200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202};
203
204/*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
208#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
209#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
210
211enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213 MEM_CGROUP_CHARGE_TYPE_ANON,
214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
216 NR_CHARGE_TYPE,
217};
218
219/* for encoding cft->private value on file */
220enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
224 _KMEM,
225 _TCP,
226};
227
228#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
230#define MEMFILE_ATTR(val) ((val) & 0xffff)
231/* Used for OOM nofiier */
232#define OOM_CONTROL (0)
233
234/*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239#define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244#define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
249static inline bool should_force_charge(void)
250{
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253}
254
255/* Some nice accessors for the vmpressure. */
256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257{
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261}
262
263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264{
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266}
267
268#ifdef CONFIG_MEMCG_KMEM
269/*
270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
276 *
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
279 */
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
282
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318EXPORT_SYMBOL(memcg_kmem_enabled_key);
319
320struct workqueue_struct *memcg_kmem_cache_wq;
321#endif
322
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret)
422 goto unlock;
423 }
424unlock:
425 if (!ret)
426 memcg_shrinker_map_size = size;
427 mutex_unlock(&memcg_shrinker_map_mutex);
428 return ret;
429}
430
431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432{
433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 struct memcg_shrinker_map *map;
435
436 rcu_read_lock();
437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
438 /* Pairs with smp mb in shrink_slab() */
439 smp_mb__before_atomic();
440 set_bit(shrinker_id, map->map);
441 rcu_read_unlock();
442 }
443}
444
445/**
446 * mem_cgroup_css_from_page - css of the memcg associated with a page
447 * @page: page of interest
448 *
449 * If memcg is bound to the default hierarchy, css of the memcg associated
450 * with @page is returned. The returned css remains associated with @page
451 * until it is released.
452 *
453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454 * is returned.
455 */
456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457{
458 struct mem_cgroup *memcg;
459
460 memcg = page->mem_cgroup;
461
462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
463 memcg = root_mem_cgroup;
464
465 return &memcg->css;
466}
467
468/**
469 * page_cgroup_ino - return inode number of the memcg a page is charged to
470 * @page: the page
471 *
472 * Look up the closest online ancestor of the memory cgroup @page is charged to
473 * and return its inode number or 0 if @page is not charged to any cgroup. It
474 * is safe to call this function without holding a reference to @page.
475 *
476 * Note, this function is inherently racy, because there is nothing to prevent
477 * the cgroup inode from getting torn down and potentially reallocated a moment
478 * after page_cgroup_ino() returns, so it only should be used by callers that
479 * do not care (such as procfs interfaces).
480 */
481ino_t page_cgroup_ino(struct page *page)
482{
483 struct mem_cgroup *memcg;
484 unsigned long ino = 0;
485
486 rcu_read_lock();
487 if (PageSlab(page) && !PageTail(page))
488 memcg = memcg_from_slab_page(page);
489 else
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501{
502 int nid = page_to_nid(page);
503
504 return memcg->nodeinfo[nid];
505}
506
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
509{
510 return soft_limit_tree.rb_tree_per_node[nid];
511}
512
513static struct mem_cgroup_tree_per_node *
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
517
518 return soft_limit_tree.rb_tree_per_node[nid];
519}
520
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
523 unsigned long new_usage_in_excess)
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
527 struct mem_cgroup_per_node *mz_node;
528 bool rightmost = true;
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 p = &(*p)->rb_left;
542 rightmost = false;
543 }
544
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
563{
564 if (!mz->on_tree)
565 return;
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
576{
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 spin_unlock_irqrestore(&mctz->lock, flags);
582}
583
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
598 unsigned long excess;
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
601
602 mctz = soft_limit_tree_from_page(page);
603 if (!mctz)
604 return;
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 mz = mem_cgroup_page_nodeinfo(memcg, page);
611 excess = soft_limit_excess(memcg);
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
620 /* if on-tree, remove it */
621 if (mz->on_tree)
622 __mem_cgroup_remove_exceeded(mz, mctz);
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
628 spin_unlock_irqrestore(&mctz->lock, flags);
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
638
639 for_each_node(nid) {
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
644 }
645}
646
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649{
650 struct mem_cgroup_per_node *mz;
651
652retry:
653 mz = NULL;
654 if (!mctz->rb_rightmost)
655 goto done; /* Nothing to reclaim from */
656
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 if (!soft_limit_excess(mz->memcg) ||
666 !css_tryget_online(&mz->memcg->css))
667 goto retry;
668done:
669 return mz;
670}
671
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674{
675 struct mem_cgroup_per_node *mz;
676
677 spin_lock_irq(&mctz->lock);
678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 spin_unlock_irq(&mctz->lock);
680 return mz;
681}
682
683/**
684 * __mod_memcg_state - update cgroup memory statistics
685 * @memcg: the memory cgroup
686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687 * @val: delta to add to the counter, can be negative
688 */
689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690{
691 long x;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 struct mem_cgroup *mi;
699
700 /*
701 * Batch local counters to keep them in sync with
702 * the hierarchical ones.
703 */
704 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 atomic_long_add(x, &mi->vmstats[idx]);
707 x = 0;
708 }
709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710}
711
712static struct mem_cgroup_per_node *
713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714{
715 struct mem_cgroup *parent;
716
717 parent = parent_mem_cgroup(pn->memcg);
718 if (!parent)
719 return NULL;
720 return mem_cgroup_nodeinfo(parent, nid);
721}
722
723/**
724 * __mod_lruvec_state - update lruvec memory statistics
725 * @lruvec: the lruvec
726 * @idx: the stat item
727 * @val: delta to add to the counter, can be negative
728 *
729 * The lruvec is the intersection of the NUMA node and a cgroup. This
730 * function updates the all three counters that are affected by a
731 * change of state at this level: per-node, per-cgroup, per-lruvec.
732 */
733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 int val)
735{
736 pg_data_t *pgdat = lruvec_pgdat(lruvec);
737 struct mem_cgroup_per_node *pn;
738 struct mem_cgroup *memcg;
739 long x;
740
741 /* Update node */
742 __mod_node_page_state(pgdat, idx, val);
743
744 if (mem_cgroup_disabled())
745 return;
746
747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
748 memcg = pn->memcg;
749
750 /* Update memcg */
751 __mod_memcg_state(memcg, idx, val);
752
753 /* Update lruvec */
754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755
756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
758 struct mem_cgroup_per_node *pi;
759
760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 atomic_long_add(x, &pi->lruvec_stat[idx]);
762 x = 0;
763 }
764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765}
766
767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768{
769 struct page *page = virt_to_head_page(p);
770 pg_data_t *pgdat = page_pgdat(page);
771 struct mem_cgroup *memcg;
772 struct lruvec *lruvec;
773
774 rcu_read_lock();
775 memcg = memcg_from_slab_page(page);
776
777 /* Untracked pages have no memcg, no lruvec. Update only the node */
778 if (!memcg || memcg == root_mem_cgroup) {
779 __mod_node_page_state(pgdat, idx, val);
780 } else {
781 lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 __mod_lruvec_state(lruvec, idx, val);
783 }
784 rcu_read_unlock();
785}
786
787/**
788 * __count_memcg_events - account VM events in a cgroup
789 * @memcg: the memory cgroup
790 * @idx: the event item
791 * @count: the number of events that occured
792 */
793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 unsigned long count)
795{
796 unsigned long x;
797
798 if (mem_cgroup_disabled())
799 return;
800
801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
803 struct mem_cgroup *mi;
804
805 /*
806 * Batch local counters to keep them in sync with
807 * the hierarchical ones.
808 */
809 __this_cpu_add(memcg->vmstats_local->events[idx], x);
810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 atomic_long_add(x, &mi->vmevents[idx]);
812 x = 0;
813 }
814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815}
816
817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
818{
819 return atomic_long_read(&memcg->vmevents[event]);
820}
821
822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823{
824 long x = 0;
825 int cpu;
826
827 for_each_possible_cpu(cpu)
828 x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 return x;
830}
831
832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
833 struct page *page,
834 bool compound, int nr_pages)
835{
836 /*
837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 * counted as CACHE even if it's on ANON LRU.
839 */
840 if (PageAnon(page))
841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
842 else {
843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
844 if (PageSwapBacked(page))
845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
846 }
847
848 if (compound) {
849 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
851 }
852
853 /* pagein of a big page is an event. So, ignore page size */
854 if (nr_pages > 0)
855 __count_memcg_events(memcg, PGPGIN, 1);
856 else {
857 __count_memcg_events(memcg, PGPGOUT, 1);
858 nr_pages = -nr_pages; /* for event */
859 }
860
861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
862}
863
864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_target target)
866{
867 unsigned long val, next;
868
869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
871 /* from time_after() in jiffies.h */
872 if ((long)(next - val) < 0) {
873 switch (target) {
874 case MEM_CGROUP_TARGET_THRESH:
875 next = val + THRESHOLDS_EVENTS_TARGET;
876 break;
877 case MEM_CGROUP_TARGET_SOFTLIMIT:
878 next = val + SOFTLIMIT_EVENTS_TARGET;
879 break;
880 case MEM_CGROUP_TARGET_NUMAINFO:
881 next = val + NUMAINFO_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 return true;
888 }
889 return false;
890}
891
892/*
893 * Check events in order.
894 *
895 */
896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897{
898 /* threshold event is triggered in finer grain than soft limit */
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
901 bool do_softlimit;
902 bool do_numainfo __maybe_unused;
903
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
906#if MAX_NUMNODES > 1
907 do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 MEM_CGROUP_TARGET_NUMAINFO);
909#endif
910 mem_cgroup_threshold(memcg);
911 if (unlikely(do_softlimit))
912 mem_cgroup_update_tree(memcg, page);
913#if MAX_NUMNODES > 1
914 if (unlikely(do_numainfo))
915 atomic_inc(&memcg->numainfo_events);
916#endif
917 }
918}
919
920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
921{
922 /*
923 * mm_update_next_owner() may clear mm->owner to NULL
924 * if it races with swapoff, page migration, etc.
925 * So this can be called with p == NULL.
926 */
927 if (unlikely(!p))
928 return NULL;
929
930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
931}
932EXPORT_SYMBOL(mem_cgroup_from_task);
933
934/**
935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936 * @mm: mm from which memcg should be extracted. It can be NULL.
937 *
938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940 * returned.
941 */
942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
943{
944 struct mem_cgroup *memcg;
945
946 if (mem_cgroup_disabled())
947 return NULL;
948
949 rcu_read_lock();
950 do {
951 /*
952 * Page cache insertions can happen withou an
953 * actual mm context, e.g. during disk probing
954 * on boot, loopback IO, acct() writes etc.
955 */
956 if (unlikely(!mm))
957 memcg = root_mem_cgroup;
958 else {
959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 if (unlikely(!memcg))
961 memcg = root_mem_cgroup;
962 }
963 } while (!css_tryget(&memcg->css));
964 rcu_read_unlock();
965 return memcg;
966}
967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
969/**
970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971 * @page: page from which memcg should be extracted.
972 *
973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
974 * root_mem_cgroup is returned.
975 */
976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977{
978 struct mem_cgroup *memcg = page->mem_cgroup;
979
980 if (mem_cgroup_disabled())
981 return NULL;
982
983 rcu_read_lock();
984 if (!memcg || !css_tryget_online(&memcg->css))
985 memcg = root_mem_cgroup;
986 rcu_read_unlock();
987 return memcg;
988}
989EXPORT_SYMBOL(get_mem_cgroup_from_page);
990
991/**
992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993 */
994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995{
996 if (unlikely(current->active_memcg)) {
997 struct mem_cgroup *memcg = root_mem_cgroup;
998
999 rcu_read_lock();
1000 if (css_tryget_online(¤t->active_memcg->css))
1001 memcg = current->active_memcg;
1002 rcu_read_unlock();
1003 return memcg;
1004 }
1005 return get_mem_cgroup_from_mm(current->mm);
1006}
1007
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
1021 * Reclaimers can specify a node and a priority level in @reclaim to
1022 * divide up the memcgs in the hierarchy among all concurrent
1023 * reclaimers operating on the same node and priority.
1024 */
1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1026 struct mem_cgroup *prev,
1027 struct mem_cgroup_reclaim_cookie *reclaim)
1028{
1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030 struct cgroup_subsys_state *css = NULL;
1031 struct mem_cgroup *memcg = NULL;
1032 struct mem_cgroup *pos = NULL;
1033
1034 if (mem_cgroup_disabled())
1035 return NULL;
1036
1037 if (!root)
1038 root = root_mem_cgroup;
1039
1040 if (prev && !reclaim)
1041 pos = prev;
1042
1043 if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 if (prev)
1045 goto out;
1046 return root;
1047 }
1048
1049 rcu_read_lock();
1050
1051 if (reclaim) {
1052 struct mem_cgroup_per_node *mz;
1053
1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1055 iter = &mz->iter[reclaim->priority];
1056
1057 if (prev && reclaim->generation != iter->generation)
1058 goto out_unlock;
1059
1060 while (1) {
1061 pos = READ_ONCE(iter->position);
1062 if (!pos || css_tryget(&pos->css))
1063 break;
1064 /*
1065 * css reference reached zero, so iter->position will
1066 * be cleared by ->css_released. However, we should not
1067 * rely on this happening soon, because ->css_released
1068 * is called from a work queue, and by busy-waiting we
1069 * might block it. So we clear iter->position right
1070 * away.
1071 */
1072 (void)cmpxchg(&iter->position, pos, NULL);
1073 }
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
1091 }
1092
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
1099
1100 if (css == &root->css)
1101 break;
1102
1103 if (css_tryget(css))
1104 break;
1105
1106 memcg = NULL;
1107 }
1108
1109 if (reclaim) {
1110 /*
1111 * The position could have already been updated by a competing
1112 * thread, so check that the value hasn't changed since we read
1113 * it to avoid reclaiming from the same cgroup twice.
1114 */
1115 (void)cmpxchg(&iter->position, pos, memcg);
1116
1117 if (pos)
1118 css_put(&pos->css);
1119
1120 if (!memcg)
1121 iter->generation++;
1122 else if (!prev)
1123 reclaim->generation = iter->generation;
1124 }
1125
1126out_unlock:
1127 rcu_read_unlock();
1128out:
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131
1132 return memcg;
1133}
1134
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 struct mem_cgroup *prev)
1142{
1143 if (!root)
1144 root = root_mem_cgroup;
1145 if (prev && prev != root)
1146 css_put(&prev->css);
1147}
1148
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 struct mem_cgroup *dead_memcg)
1151{
1152 struct mem_cgroup_reclaim_iter *iter;
1153 struct mem_cgroup_per_node *mz;
1154 int nid;
1155 int i;
1156
1157 for_each_node(nid) {
1158 mz = mem_cgroup_nodeinfo(from, nid);
1159 for (i = 0; i <= DEF_PRIORITY; i++) {
1160 iter = &mz->iter[i];
1161 cmpxchg(&iter->position,
1162 dead_memcg, NULL);
1163 }
1164 }
1165}
1166
1167static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168{
1169 struct mem_cgroup *memcg = dead_memcg;
1170 struct mem_cgroup *last;
1171
1172 do {
1173 __invalidate_reclaim_iterators(memcg, dead_memcg);
1174 last = memcg;
1175 } while ((memcg = parent_mem_cgroup(memcg)));
1176
1177 /*
1178 * When cgruop1 non-hierarchy mode is used,
1179 * parent_mem_cgroup() does not walk all the way up to the
1180 * cgroup root (root_mem_cgroup). So we have to handle
1181 * dead_memcg from cgroup root separately.
1182 */
1183 if (last != root_mem_cgroup)
1184 __invalidate_reclaim_iterators(root_mem_cgroup,
1185 dead_memcg);
1186}
1187
1188/**
1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190 * @memcg: hierarchy root
1191 * @fn: function to call for each task
1192 * @arg: argument passed to @fn
1193 *
1194 * This function iterates over tasks attached to @memcg or to any of its
1195 * descendants and calls @fn for each task. If @fn returns a non-zero
1196 * value, the function breaks the iteration loop and returns the value.
1197 * Otherwise, it will iterate over all tasks and return 0.
1198 *
1199 * This function must not be called for the root memory cgroup.
1200 */
1201int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202 int (*fn)(struct task_struct *, void *), void *arg)
1203{
1204 struct mem_cgroup *iter;
1205 int ret = 0;
1206
1207 BUG_ON(memcg == root_mem_cgroup);
1208
1209 for_each_mem_cgroup_tree(iter, memcg) {
1210 struct css_task_iter it;
1211 struct task_struct *task;
1212
1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1214 while (!ret && (task = css_task_iter_next(&it)))
1215 ret = fn(task, arg);
1216 css_task_iter_end(&it);
1217 if (ret) {
1218 mem_cgroup_iter_break(memcg, iter);
1219 break;
1220 }
1221 }
1222 return ret;
1223}
1224
1225/**
1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227 * @page: the page
1228 * @pgdat: pgdat of the page
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
1233 */
1234struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1235{
1236 struct mem_cgroup_per_node *mz;
1237 struct mem_cgroup *memcg;
1238 struct lruvec *lruvec;
1239
1240 if (mem_cgroup_disabled()) {
1241 lruvec = &pgdat->lruvec;
1242 goto out;
1243 }
1244
1245 memcg = page->mem_cgroup;
1246 /*
1247 * Swapcache readahead pages are added to the LRU - and
1248 * possibly migrated - before they are charged.
1249 */
1250 if (!memcg)
1251 memcg = root_mem_cgroup;
1252
1253 mz = mem_cgroup_page_nodeinfo(memcg, page);
1254 lruvec = &mz->lruvec;
1255out:
1256 /*
1257 * Since a node can be onlined after the mem_cgroup was created,
1258 * we have to be prepared to initialize lruvec->zone here;
1259 * and if offlined then reonlined, we need to reinitialize it.
1260 */
1261 if (unlikely(lruvec->pgdat != pgdat))
1262 lruvec->pgdat = pgdat;
1263 return lruvec;
1264}
1265
1266/**
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
1270 * @zid: zone id of the accounted pages
1271 * @nr_pages: positive when adding or negative when removing
1272 *
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list (that ordering being
1275 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1276 */
1277void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278 int zid, int nr_pages)
1279{
1280 struct mem_cgroup_per_node *mz;
1281 unsigned long *lru_size;
1282 long size;
1283
1284 if (mem_cgroup_disabled())
1285 return;
1286
1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288 lru_size = &mz->lru_zone_size[zid][lru];
1289
1290 if (nr_pages < 0)
1291 *lru_size += nr_pages;
1292
1293 size = *lru_size;
1294 if (WARN_ONCE(size < 0,
1295 "%s(%p, %d, %d): lru_size %ld\n",
1296 __func__, lruvec, lru, nr_pages, size)) {
1297 VM_BUG_ON(1);
1298 *lru_size = 0;
1299 }
1300
1301 if (nr_pages > 0)
1302 *lru_size += nr_pages;
1303}
1304
1305/**
1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1307 * @memcg: the memory cgroup
1308 *
1309 * Returns the maximum amount of memory @mem can be charged with, in
1310 * pages.
1311 */
1312static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1313{
1314 unsigned long margin = 0;
1315 unsigned long count;
1316 unsigned long limit;
1317
1318 count = page_counter_read(&memcg->memory);
1319 limit = READ_ONCE(memcg->memory.max);
1320 if (count < limit)
1321 margin = limit - count;
1322
1323 if (do_memsw_account()) {
1324 count = page_counter_read(&memcg->memsw);
1325 limit = READ_ONCE(memcg->memsw.max);
1326 if (count <= limit)
1327 margin = min(margin, limit - count);
1328 else
1329 margin = 0;
1330 }
1331
1332 return margin;
1333}
1334
1335/*
1336 * A routine for checking "mem" is under move_account() or not.
1337 *
1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339 * moving cgroups. This is for waiting at high-memory pressure
1340 * caused by "move".
1341 */
1342static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1343{
1344 struct mem_cgroup *from;
1345 struct mem_cgroup *to;
1346 bool ret = false;
1347 /*
1348 * Unlike task_move routines, we access mc.to, mc.from not under
1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 */
1351 spin_lock(&mc.lock);
1352 from = mc.from;
1353 to = mc.to;
1354 if (!from)
1355 goto unlock;
1356
1357 ret = mem_cgroup_is_descendant(from, memcg) ||
1358 mem_cgroup_is_descendant(to, memcg);
1359unlock:
1360 spin_unlock(&mc.lock);
1361 return ret;
1362}
1363
1364static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365{
1366 if (mc.moving_task && current != mc.moving_task) {
1367 if (mem_cgroup_under_move(memcg)) {
1368 DEFINE_WAIT(wait);
1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 /* moving charge context might have finished. */
1371 if (mc.moving_task)
1372 schedule();
1373 finish_wait(&mc.waitq, &wait);
1374 return true;
1375 }
1376 }
1377 return false;
1378}
1379
1380static char *memory_stat_format(struct mem_cgroup *memcg)
1381{
1382 struct seq_buf s;
1383 int i;
1384
1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386 if (!s.buffer)
1387 return NULL;
1388
1389 /*
1390 * Provide statistics on the state of the memory subsystem as
1391 * well as cumulative event counters that show past behavior.
1392 *
1393 * This list is ordered following a combination of these gradients:
1394 * 1) generic big picture -> specifics and details
1395 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396 *
1397 * Current memory state:
1398 */
1399
1400 seq_buf_printf(&s, "anon %llu\n",
1401 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file %llu\n",
1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405 PAGE_SIZE);
1406 seq_buf_printf(&s, "kernel_stack %llu\n",
1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408 1024);
1409 seq_buf_printf(&s, "slab %llu\n",
1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "sock %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415 PAGE_SIZE);
1416
1417 seq_buf_printf(&s, "shmem %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SHMEM) *
1419 PAGE_SIZE);
1420 seq_buf_printf(&s, "file_mapped %llu\n",
1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "file_dirty %llu\n",
1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425 PAGE_SIZE);
1426 seq_buf_printf(&s, "file_writeback %llu\n",
1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428 PAGE_SIZE);
1429
1430 /*
1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433 * arse because it requires migrating the work out of rmap to a place
1434 * where the page->mem_cgroup is set up and stable.
1435 */
1436 seq_buf_printf(&s, "anon_thp %llu\n",
1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438 PAGE_SIZE);
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443 PAGE_SIZE);
1444
1445 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447 PAGE_SIZE);
1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450 PAGE_SIZE);
1451
1452 /* Accumulated memory events */
1453
1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456
1457 seq_buf_printf(&s, "workingset_refault %lu\n",
1458 memcg_page_state(memcg, WORKINGSET_REFAULT));
1459 seq_buf_printf(&s, "workingset_activate %lu\n",
1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463
1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465 seq_buf_printf(&s, "pgscan %lu\n",
1466 memcg_events(memcg, PGSCAN_KSWAPD) +
1467 memcg_events(memcg, PGSCAN_DIRECT));
1468 seq_buf_printf(&s, "pgsteal %lu\n",
1469 memcg_events(memcg, PGSTEAL_KSWAPD) +
1470 memcg_events(memcg, PGSTEAL_DIRECT));
1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478 memcg_events(memcg, THP_FAULT_ALLOC));
1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486 return s.buffer;
1487}
1488
1489#define K(x) ((x) << (PAGE_SHIFT-10))
1490/**
1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500{
1501 rcu_read_lock();
1502
1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
1508 if (p) {
1509 pr_cont(",task_memcg=");
1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511 }
1512 rcu_read_unlock();
1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
1522 char *buf;
1523
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
1526 K((u64)memcg->memory.max), memcg->memory.failcnt);
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
1530 K((u64)memcg->swap.max), memcg->swap.failcnt);
1531 else {
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538 }
1539
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1542 pr_cont(":");
1543 buf = memory_stat_format(memcg);
1544 if (!buf)
1545 return;
1546 pr_info("%s", buf);
1547 kfree(buf);
1548}
1549
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554{
1555 unsigned long max;
1556
1557 max = memcg->memory.max;
1558 if (mem_cgroup_swappiness(memcg)) {
1559 unsigned long memsw_max;
1560 unsigned long swap_max;
1561
1562 memsw_max = memcg->memsw.max;
1563 swap_max = memcg->swap.max;
1564 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 max = min(max + swap_max, memsw_max);
1566 }
1567 return max;
1568}
1569
1570unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1571{
1572 return page_counter_read(&memcg->memory);
1573}
1574
1575static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1576 int order)
1577{
1578 struct oom_control oc = {
1579 .zonelist = NULL,
1580 .nodemask = NULL,
1581 .memcg = memcg,
1582 .gfp_mask = gfp_mask,
1583 .order = order,
1584 };
1585 bool ret;
1586
1587 if (mutex_lock_killable(&oom_lock))
1588 return true;
1589 /*
1590 * A few threads which were not waiting at mutex_lock_killable() can
1591 * fail to bail out. Therefore, check again after holding oom_lock.
1592 */
1593 ret = should_force_charge() || out_of_memory(&oc);
1594 mutex_unlock(&oom_lock);
1595 return ret;
1596}
1597
1598#if MAX_NUMNODES > 1
1599
1600/**
1601 * test_mem_cgroup_node_reclaimable
1602 * @memcg: the target memcg
1603 * @nid: the node ID to be checked.
1604 * @noswap : specify true here if the user wants flle only information.
1605 *
1606 * This function returns whether the specified memcg contains any
1607 * reclaimable pages on a node. Returns true if there are any reclaimable
1608 * pages in the node.
1609 */
1610static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1611 int nid, bool noswap)
1612{
1613 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1614
1615 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1616 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1617 return true;
1618 if (noswap || !total_swap_pages)
1619 return false;
1620 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1621 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1622 return true;
1623 return false;
1624
1625}
1626
1627/*
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631 *
1632 */
1633static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634{
1635 int nid;
1636 /*
1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 * pagein/pageout changes since the last update.
1639 */
1640 if (!atomic_read(&memcg->numainfo_events))
1641 return;
1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643 return;
1644
1645 /* make a nodemask where this memcg uses memory from */
1646 memcg->scan_nodes = node_states[N_MEMORY];
1647
1648 for_each_node_mask(nid, node_states[N_MEMORY]) {
1649
1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 node_clear(nid, memcg->scan_nodes);
1652 }
1653
1654 atomic_set(&memcg->numainfo_events, 0);
1655 atomic_set(&memcg->numainfo_updating, 0);
1656}
1657
1658/*
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1662 *
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1667 *
1668 * Now, we use round-robin. Better algorithm is welcomed.
1669 */
1670int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671{
1672 int node;
1673
1674 mem_cgroup_may_update_nodemask(memcg);
1675 node = memcg->last_scanned_node;
1676
1677 node = next_node_in(node, memcg->scan_nodes);
1678 /*
1679 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1680 * last time it really checked all the LRUs due to rate limiting.
1681 * Fallback to the current node in that case for simplicity.
1682 */
1683 if (unlikely(node == MAX_NUMNODES))
1684 node = numa_node_id();
1685
1686 memcg->last_scanned_node = node;
1687 return node;
1688}
1689#else
1690int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691{
1692 return 0;
1693}
1694#endif
1695
1696static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1697 pg_data_t *pgdat,
1698 gfp_t gfp_mask,
1699 unsigned long *total_scanned)
1700{
1701 struct mem_cgroup *victim = NULL;
1702 int total = 0;
1703 int loop = 0;
1704 unsigned long excess;
1705 unsigned long nr_scanned;
1706 struct mem_cgroup_reclaim_cookie reclaim = {
1707 .pgdat = pgdat,
1708 .priority = 0,
1709 };
1710
1711 excess = soft_limit_excess(root_memcg);
1712
1713 while (1) {
1714 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1715 if (!victim) {
1716 loop++;
1717 if (loop >= 2) {
1718 /*
1719 * If we have not been able to reclaim
1720 * anything, it might because there are
1721 * no reclaimable pages under this hierarchy
1722 */
1723 if (!total)
1724 break;
1725 /*
1726 * We want to do more targeted reclaim.
1727 * excess >> 2 is not to excessive so as to
1728 * reclaim too much, nor too less that we keep
1729 * coming back to reclaim from this cgroup
1730 */
1731 if (total >= (excess >> 2) ||
1732 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1733 break;
1734 }
1735 continue;
1736 }
1737 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1738 pgdat, &nr_scanned);
1739 *total_scanned += nr_scanned;
1740 if (!soft_limit_excess(root_memcg))
1741 break;
1742 }
1743 mem_cgroup_iter_break(root_memcg, victim);
1744 return total;
1745}
1746
1747#ifdef CONFIG_LOCKDEP
1748static struct lockdep_map memcg_oom_lock_dep_map = {
1749 .name = "memcg_oom_lock",
1750};
1751#endif
1752
1753static DEFINE_SPINLOCK(memcg_oom_lock);
1754
1755/*
1756 * Check OOM-Killer is already running under our hierarchy.
1757 * If someone is running, return false.
1758 */
1759static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1760{
1761 struct mem_cgroup *iter, *failed = NULL;
1762
1763 spin_lock(&memcg_oom_lock);
1764
1765 for_each_mem_cgroup_tree(iter, memcg) {
1766 if (iter->oom_lock) {
1767 /*
1768 * this subtree of our hierarchy is already locked
1769 * so we cannot give a lock.
1770 */
1771 failed = iter;
1772 mem_cgroup_iter_break(memcg, iter);
1773 break;
1774 } else
1775 iter->oom_lock = true;
1776 }
1777
1778 if (failed) {
1779 /*
1780 * OK, we failed to lock the whole subtree so we have
1781 * to clean up what we set up to the failing subtree
1782 */
1783 for_each_mem_cgroup_tree(iter, memcg) {
1784 if (iter == failed) {
1785 mem_cgroup_iter_break(memcg, iter);
1786 break;
1787 }
1788 iter->oom_lock = false;
1789 }
1790 } else
1791 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1792
1793 spin_unlock(&memcg_oom_lock);
1794
1795 return !failed;
1796}
1797
1798static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1799{
1800 struct mem_cgroup *iter;
1801
1802 spin_lock(&memcg_oom_lock);
1803 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1804 for_each_mem_cgroup_tree(iter, memcg)
1805 iter->oom_lock = false;
1806 spin_unlock(&memcg_oom_lock);
1807}
1808
1809static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1810{
1811 struct mem_cgroup *iter;
1812
1813 spin_lock(&memcg_oom_lock);
1814 for_each_mem_cgroup_tree(iter, memcg)
1815 iter->under_oom++;
1816 spin_unlock(&memcg_oom_lock);
1817}
1818
1819static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1820{
1821 struct mem_cgroup *iter;
1822
1823 /*
1824 * When a new child is created while the hierarchy is under oom,
1825 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1826 */
1827 spin_lock(&memcg_oom_lock);
1828 for_each_mem_cgroup_tree(iter, memcg)
1829 if (iter->under_oom > 0)
1830 iter->under_oom--;
1831 spin_unlock(&memcg_oom_lock);
1832}
1833
1834static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835
1836struct oom_wait_info {
1837 struct mem_cgroup *memcg;
1838 wait_queue_entry_t wait;
1839};
1840
1841static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1842 unsigned mode, int sync, void *arg)
1843{
1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845 struct mem_cgroup *oom_wait_memcg;
1846 struct oom_wait_info *oom_wait_info;
1847
1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1849 oom_wait_memcg = oom_wait_info->memcg;
1850
1851 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1852 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1853 return 0;
1854 return autoremove_wake_function(wait, mode, sync, arg);
1855}
1856
1857static void memcg_oom_recover(struct mem_cgroup *memcg)
1858{
1859 /*
1860 * For the following lockless ->under_oom test, the only required
1861 * guarantee is that it must see the state asserted by an OOM when
1862 * this function is called as a result of userland actions
1863 * triggered by the notification of the OOM. This is trivially
1864 * achieved by invoking mem_cgroup_mark_under_oom() before
1865 * triggering notification.
1866 */
1867 if (memcg && memcg->under_oom)
1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1869}
1870
1871enum oom_status {
1872 OOM_SUCCESS,
1873 OOM_FAILED,
1874 OOM_ASYNC,
1875 OOM_SKIPPED
1876};
1877
1878static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1879{
1880 enum oom_status ret;
1881 bool locked;
1882
1883 if (order > PAGE_ALLOC_COSTLY_ORDER)
1884 return OOM_SKIPPED;
1885
1886 memcg_memory_event(memcg, MEMCG_OOM);
1887
1888 /*
1889 * We are in the middle of the charge context here, so we
1890 * don't want to block when potentially sitting on a callstack
1891 * that holds all kinds of filesystem and mm locks.
1892 *
1893 * cgroup1 allows disabling the OOM killer and waiting for outside
1894 * handling until the charge can succeed; remember the context and put
1895 * the task to sleep at the end of the page fault when all locks are
1896 * released.
1897 *
1898 * On the other hand, in-kernel OOM killer allows for an async victim
1899 * memory reclaim (oom_reaper) and that means that we are not solely
1900 * relying on the oom victim to make a forward progress and we can
1901 * invoke the oom killer here.
1902 *
1903 * Please note that mem_cgroup_out_of_memory might fail to find a
1904 * victim and then we have to bail out from the charge path.
1905 */
1906 if (memcg->oom_kill_disable) {
1907 if (!current->in_user_fault)
1908 return OOM_SKIPPED;
1909 css_get(&memcg->css);
1910 current->memcg_in_oom = memcg;
1911 current->memcg_oom_gfp_mask = mask;
1912 current->memcg_oom_order = order;
1913
1914 return OOM_ASYNC;
1915 }
1916
1917 mem_cgroup_mark_under_oom(memcg);
1918
1919 locked = mem_cgroup_oom_trylock(memcg);
1920
1921 if (locked)
1922 mem_cgroup_oom_notify(memcg);
1923
1924 mem_cgroup_unmark_under_oom(memcg);
1925 if (mem_cgroup_out_of_memory(memcg, mask, order))
1926 ret = OOM_SUCCESS;
1927 else
1928 ret = OOM_FAILED;
1929
1930 if (locked)
1931 mem_cgroup_oom_unlock(memcg);
1932
1933 return ret;
1934}
1935
1936/**
1937 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1938 * @handle: actually kill/wait or just clean up the OOM state
1939 *
1940 * This has to be called at the end of a page fault if the memcg OOM
1941 * handler was enabled.
1942 *
1943 * Memcg supports userspace OOM handling where failed allocations must
1944 * sleep on a waitqueue until the userspace task resolves the
1945 * situation. Sleeping directly in the charge context with all kinds
1946 * of locks held is not a good idea, instead we remember an OOM state
1947 * in the task and mem_cgroup_oom_synchronize() has to be called at
1948 * the end of the page fault to complete the OOM handling.
1949 *
1950 * Returns %true if an ongoing memcg OOM situation was detected and
1951 * completed, %false otherwise.
1952 */
1953bool mem_cgroup_oom_synchronize(bool handle)
1954{
1955 struct mem_cgroup *memcg = current->memcg_in_oom;
1956 struct oom_wait_info owait;
1957 bool locked;
1958
1959 /* OOM is global, do not handle */
1960 if (!memcg)
1961 return false;
1962
1963 if (!handle)
1964 goto cleanup;
1965
1966 owait.memcg = memcg;
1967 owait.wait.flags = 0;
1968 owait.wait.func = memcg_oom_wake_function;
1969 owait.wait.private = current;
1970 INIT_LIST_HEAD(&owait.wait.entry);
1971
1972 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1973 mem_cgroup_mark_under_oom(memcg);
1974
1975 locked = mem_cgroup_oom_trylock(memcg);
1976
1977 if (locked)
1978 mem_cgroup_oom_notify(memcg);
1979
1980 if (locked && !memcg->oom_kill_disable) {
1981 mem_cgroup_unmark_under_oom(memcg);
1982 finish_wait(&memcg_oom_waitq, &owait.wait);
1983 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1984 current->memcg_oom_order);
1985 } else {
1986 schedule();
1987 mem_cgroup_unmark_under_oom(memcg);
1988 finish_wait(&memcg_oom_waitq, &owait.wait);
1989 }
1990
1991 if (locked) {
1992 mem_cgroup_oom_unlock(memcg);
1993 /*
1994 * There is no guarantee that an OOM-lock contender
1995 * sees the wakeups triggered by the OOM kill
1996 * uncharges. Wake any sleepers explicitely.
1997 */
1998 memcg_oom_recover(memcg);
1999 }
2000cleanup:
2001 current->memcg_in_oom = NULL;
2002 css_put(&memcg->css);
2003 return true;
2004}
2005
2006/**
2007 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2008 * @victim: task to be killed by the OOM killer
2009 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2010 *
2011 * Returns a pointer to a memory cgroup, which has to be cleaned up
2012 * by killing all belonging OOM-killable tasks.
2013 *
2014 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2015 */
2016struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2017 struct mem_cgroup *oom_domain)
2018{
2019 struct mem_cgroup *oom_group = NULL;
2020 struct mem_cgroup *memcg;
2021
2022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2023 return NULL;
2024
2025 if (!oom_domain)
2026 oom_domain = root_mem_cgroup;
2027
2028 rcu_read_lock();
2029
2030 memcg = mem_cgroup_from_task(victim);
2031 if (memcg == root_mem_cgroup)
2032 goto out;
2033
2034 /*
2035 * Traverse the memory cgroup hierarchy from the victim task's
2036 * cgroup up to the OOMing cgroup (or root) to find the
2037 * highest-level memory cgroup with oom.group set.
2038 */
2039 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2040 if (memcg->oom_group)
2041 oom_group = memcg;
2042
2043 if (memcg == oom_domain)
2044 break;
2045 }
2046
2047 if (oom_group)
2048 css_get(&oom_group->css);
2049out:
2050 rcu_read_unlock();
2051
2052 return oom_group;
2053}
2054
2055void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2056{
2057 pr_info("Tasks in ");
2058 pr_cont_cgroup_path(memcg->css.cgroup);
2059 pr_cont(" are going to be killed due to memory.oom.group set\n");
2060}
2061
2062/**
2063 * lock_page_memcg - lock a page->mem_cgroup binding
2064 * @page: the page
2065 *
2066 * This function protects unlocked LRU pages from being moved to
2067 * another cgroup.
2068 *
2069 * It ensures lifetime of the returned memcg. Caller is responsible
2070 * for the lifetime of the page; __unlock_page_memcg() is available
2071 * when @page might get freed inside the locked section.
2072 */
2073struct mem_cgroup *lock_page_memcg(struct page *page)
2074{
2075 struct mem_cgroup *memcg;
2076 unsigned long flags;
2077
2078 /*
2079 * The RCU lock is held throughout the transaction. The fast
2080 * path can get away without acquiring the memcg->move_lock
2081 * because page moving starts with an RCU grace period.
2082 *
2083 * The RCU lock also protects the memcg from being freed when
2084 * the page state that is going to change is the only thing
2085 * preventing the page itself from being freed. E.g. writeback
2086 * doesn't hold a page reference and relies on PG_writeback to
2087 * keep off truncation, migration and so forth.
2088 */
2089 rcu_read_lock();
2090
2091 if (mem_cgroup_disabled())
2092 return NULL;
2093again:
2094 memcg = page->mem_cgroup;
2095 if (unlikely(!memcg))
2096 return NULL;
2097
2098 if (atomic_read(&memcg->moving_account) <= 0)
2099 return memcg;
2100
2101 spin_lock_irqsave(&memcg->move_lock, flags);
2102 if (memcg != page->mem_cgroup) {
2103 spin_unlock_irqrestore(&memcg->move_lock, flags);
2104 goto again;
2105 }
2106
2107 /*
2108 * When charge migration first begins, we can have locked and
2109 * unlocked page stat updates happening concurrently. Track
2110 * the task who has the lock for unlock_page_memcg().
2111 */
2112 memcg->move_lock_task = current;
2113 memcg->move_lock_flags = flags;
2114
2115 return memcg;
2116}
2117EXPORT_SYMBOL(lock_page_memcg);
2118
2119/**
2120 * __unlock_page_memcg - unlock and unpin a memcg
2121 * @memcg: the memcg
2122 *
2123 * Unlock and unpin a memcg returned by lock_page_memcg().
2124 */
2125void __unlock_page_memcg(struct mem_cgroup *memcg)
2126{
2127 if (memcg && memcg->move_lock_task == current) {
2128 unsigned long flags = memcg->move_lock_flags;
2129
2130 memcg->move_lock_task = NULL;
2131 memcg->move_lock_flags = 0;
2132
2133 spin_unlock_irqrestore(&memcg->move_lock, flags);
2134 }
2135
2136 rcu_read_unlock();
2137}
2138
2139/**
2140 * unlock_page_memcg - unlock a page->mem_cgroup binding
2141 * @page: the page
2142 */
2143void unlock_page_memcg(struct page *page)
2144{
2145 __unlock_page_memcg(page->mem_cgroup);
2146}
2147EXPORT_SYMBOL(unlock_page_memcg);
2148
2149struct memcg_stock_pcp {
2150 struct mem_cgroup *cached; /* this never be root cgroup */
2151 unsigned int nr_pages;
2152 struct work_struct work;
2153 unsigned long flags;
2154#define FLUSHING_CACHED_CHARGE 0
2155};
2156static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2157static DEFINE_MUTEX(percpu_charge_mutex);
2158
2159/**
2160 * consume_stock: Try to consume stocked charge on this cpu.
2161 * @memcg: memcg to consume from.
2162 * @nr_pages: how many pages to charge.
2163 *
2164 * The charges will only happen if @memcg matches the current cpu's memcg
2165 * stock, and at least @nr_pages are available in that stock. Failure to
2166 * service an allocation will refill the stock.
2167 *
2168 * returns true if successful, false otherwise.
2169 */
2170static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2171{
2172 struct memcg_stock_pcp *stock;
2173 unsigned long flags;
2174 bool ret = false;
2175
2176 if (nr_pages > MEMCG_CHARGE_BATCH)
2177 return ret;
2178
2179 local_irq_save(flags);
2180
2181 stock = this_cpu_ptr(&memcg_stock);
2182 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2183 stock->nr_pages -= nr_pages;
2184 ret = true;
2185 }
2186
2187 local_irq_restore(flags);
2188
2189 return ret;
2190}
2191
2192/*
2193 * Returns stocks cached in percpu and reset cached information.
2194 */
2195static void drain_stock(struct memcg_stock_pcp *stock)
2196{
2197 struct mem_cgroup *old = stock->cached;
2198
2199 if (stock->nr_pages) {
2200 page_counter_uncharge(&old->memory, stock->nr_pages);
2201 if (do_memsw_account())
2202 page_counter_uncharge(&old->memsw, stock->nr_pages);
2203 css_put_many(&old->css, stock->nr_pages);
2204 stock->nr_pages = 0;
2205 }
2206 stock->cached = NULL;
2207}
2208
2209static void drain_local_stock(struct work_struct *dummy)
2210{
2211 struct memcg_stock_pcp *stock;
2212 unsigned long flags;
2213
2214 /*
2215 * The only protection from memory hotplug vs. drain_stock races is
2216 * that we always operate on local CPU stock here with IRQ disabled
2217 */
2218 local_irq_save(flags);
2219
2220 stock = this_cpu_ptr(&memcg_stock);
2221 drain_stock(stock);
2222 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2223
2224 local_irq_restore(flags);
2225}
2226
2227/*
2228 * Cache charges(val) to local per_cpu area.
2229 * This will be consumed by consume_stock() function, later.
2230 */
2231static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2232{
2233 struct memcg_stock_pcp *stock;
2234 unsigned long flags;
2235
2236 local_irq_save(flags);
2237
2238 stock = this_cpu_ptr(&memcg_stock);
2239 if (stock->cached != memcg) { /* reset if necessary */
2240 drain_stock(stock);
2241 stock->cached = memcg;
2242 }
2243 stock->nr_pages += nr_pages;
2244
2245 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2246 drain_stock(stock);
2247
2248 local_irq_restore(flags);
2249}
2250
2251/*
2252 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2253 * of the hierarchy under it.
2254 */
2255static void drain_all_stock(struct mem_cgroup *root_memcg)
2256{
2257 int cpu, curcpu;
2258
2259 /* If someone's already draining, avoid adding running more workers. */
2260 if (!mutex_trylock(&percpu_charge_mutex))
2261 return;
2262 /*
2263 * Notify other cpus that system-wide "drain" is running
2264 * We do not care about races with the cpu hotplug because cpu down
2265 * as well as workers from this path always operate on the local
2266 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2267 */
2268 curcpu = get_cpu();
2269 for_each_online_cpu(cpu) {
2270 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2271 struct mem_cgroup *memcg;
2272 bool flush = false;
2273
2274 rcu_read_lock();
2275 memcg = stock->cached;
2276 if (memcg && stock->nr_pages &&
2277 mem_cgroup_is_descendant(memcg, root_memcg))
2278 flush = true;
2279 rcu_read_unlock();
2280
2281 if (flush &&
2282 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2283 if (cpu == curcpu)
2284 drain_local_stock(&stock->work);
2285 else
2286 schedule_work_on(cpu, &stock->work);
2287 }
2288 }
2289 put_cpu();
2290 mutex_unlock(&percpu_charge_mutex);
2291}
2292
2293static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294{
2295 struct memcg_stock_pcp *stock;
2296 struct mem_cgroup *memcg, *mi;
2297
2298 stock = &per_cpu(memcg_stock, cpu);
2299 drain_stock(stock);
2300
2301 for_each_mem_cgroup(memcg) {
2302 int i;
2303
2304 for (i = 0; i < MEMCG_NR_STAT; i++) {
2305 int nid;
2306 long x;
2307
2308 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2309 if (x)
2310 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311 atomic_long_add(x, &memcg->vmstats[i]);
2312
2313 if (i >= NR_VM_NODE_STAT_ITEMS)
2314 continue;
2315
2316 for_each_node(nid) {
2317 struct mem_cgroup_per_node *pn;
2318
2319 pn = mem_cgroup_nodeinfo(memcg, nid);
2320 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2321 if (x)
2322 do {
2323 atomic_long_add(x, &pn->lruvec_stat[i]);
2324 } while ((pn = parent_nodeinfo(pn, nid)));
2325 }
2326 }
2327
2328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2329 long x;
2330
2331 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2332 if (x)
2333 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334 atomic_long_add(x, &memcg->vmevents[i]);
2335 }
2336 }
2337
2338 return 0;
2339}
2340
2341static void reclaim_high(struct mem_cgroup *memcg,
2342 unsigned int nr_pages,
2343 gfp_t gfp_mask)
2344{
2345 do {
2346 if (page_counter_read(&memcg->memory) <= memcg->high)
2347 continue;
2348 memcg_memory_event(memcg, MEMCG_HIGH);
2349 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350 } while ((memcg = parent_mem_cgroup(memcg)));
2351}
2352
2353static void high_work_func(struct work_struct *work)
2354{
2355 struct mem_cgroup *memcg;
2356
2357 memcg = container_of(work, struct mem_cgroup, high_work);
2358 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2359}
2360
2361/*
2362 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2363 * enough to still cause a significant slowdown in most cases, while still
2364 * allowing diagnostics and tracing to proceed without becoming stuck.
2365 */
2366#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2367
2368/*
2369 * When calculating the delay, we use these either side of the exponentiation to
2370 * maintain precision and scale to a reasonable number of jiffies (see the table
2371 * below.
2372 *
2373 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2374 * overage ratio to a delay.
2375 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2376 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2377 * to produce a reasonable delay curve.
2378 *
2379 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2380 * reasonable delay curve compared to precision-adjusted overage, not
2381 * penalising heavily at first, but still making sure that growth beyond the
2382 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2383 * example, with a high of 100 megabytes:
2384 *
2385 * +-------+------------------------+
2386 * | usage | time to allocate in ms |
2387 * +-------+------------------------+
2388 * | 100M | 0 |
2389 * | 101M | 6 |
2390 * | 102M | 25 |
2391 * | 103M | 57 |
2392 * | 104M | 102 |
2393 * | 105M | 159 |
2394 * | 106M | 230 |
2395 * | 107M | 313 |
2396 * | 108M | 409 |
2397 * | 109M | 518 |
2398 * | 110M | 639 |
2399 * | 111M | 774 |
2400 * | 112M | 921 |
2401 * | 113M | 1081 |
2402 * | 114M | 1254 |
2403 * | 115M | 1439 |
2404 * | 116M | 1638 |
2405 * | 117M | 1849 |
2406 * | 118M | 2000 |
2407 * | 119M | 2000 |
2408 * | 120M | 2000 |
2409 * +-------+------------------------+
2410 */
2411 #define MEMCG_DELAY_PRECISION_SHIFT 20
2412 #define MEMCG_DELAY_SCALING_SHIFT 14
2413
2414/*
2415 * Scheduled by try_charge() to be executed from the userland return path
2416 * and reclaims memory over the high limit.
2417 */
2418void mem_cgroup_handle_over_high(void)
2419{
2420 unsigned long usage, high, clamped_high;
2421 unsigned long pflags;
2422 unsigned long penalty_jiffies, overage;
2423 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2424 struct mem_cgroup *memcg;
2425
2426 if (likely(!nr_pages))
2427 return;
2428
2429 memcg = get_mem_cgroup_from_mm(current->mm);
2430 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2431 current->memcg_nr_pages_over_high = 0;
2432
2433 /*
2434 * memory.high is breached and reclaim is unable to keep up. Throttle
2435 * allocators proactively to slow down excessive growth.
2436 *
2437 * We use overage compared to memory.high to calculate the number of
2438 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2439 * fairly lenient on small overages, and increasingly harsh when the
2440 * memcg in question makes it clear that it has no intention of stopping
2441 * its crazy behaviour, so we exponentially increase the delay based on
2442 * overage amount.
2443 */
2444
2445 usage = page_counter_read(&memcg->memory);
2446 high = READ_ONCE(memcg->high);
2447
2448 if (usage <= high)
2449 goto out;
2450
2451 /*
2452 * Prevent division by 0 in overage calculation by acting as if it was a
2453 * threshold of 1 page
2454 */
2455 clamped_high = max(high, 1UL);
2456
2457 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2458 clamped_high);
2459
2460 penalty_jiffies = ((u64)overage * overage * HZ)
2461 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2462
2463 /*
2464 * Factor in the task's own contribution to the overage, such that four
2465 * N-sized allocations are throttled approximately the same as one
2466 * 4N-sized allocation.
2467 *
2468 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2469 * larger the current charge patch is than that.
2470 */
2471 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2472
2473 /*
2474 * Clamp the max delay per usermode return so as to still keep the
2475 * application moving forwards and also permit diagnostics, albeit
2476 * extremely slowly.
2477 */
2478 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2479
2480 /*
2481 * Don't sleep if the amount of jiffies this memcg owes us is so low
2482 * that it's not even worth doing, in an attempt to be nice to those who
2483 * go only a small amount over their memory.high value and maybe haven't
2484 * been aggressively reclaimed enough yet.
2485 */
2486 if (penalty_jiffies <= HZ / 100)
2487 goto out;
2488
2489 /*
2490 * If we exit early, we're guaranteed to die (since
2491 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2492 * need to account for any ill-begotten jiffies to pay them off later.
2493 */
2494 psi_memstall_enter(&pflags);
2495 schedule_timeout_killable(penalty_jiffies);
2496 psi_memstall_leave(&pflags);
2497
2498out:
2499 css_put(&memcg->css);
2500}
2501
2502static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2503 unsigned int nr_pages)
2504{
2505 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2506 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2507 struct mem_cgroup *mem_over_limit;
2508 struct page_counter *counter;
2509 unsigned long nr_reclaimed;
2510 bool may_swap = true;
2511 bool drained = false;
2512 enum oom_status oom_status;
2513
2514 if (mem_cgroup_is_root(memcg))
2515 return 0;
2516retry:
2517 if (consume_stock(memcg, nr_pages))
2518 return 0;
2519
2520 if (!do_memsw_account() ||
2521 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2522 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2523 goto done_restock;
2524 if (do_memsw_account())
2525 page_counter_uncharge(&memcg->memsw, batch);
2526 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2527 } else {
2528 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2529 may_swap = false;
2530 }
2531
2532 if (batch > nr_pages) {
2533 batch = nr_pages;
2534 goto retry;
2535 }
2536
2537 /*
2538 * Memcg doesn't have a dedicated reserve for atomic
2539 * allocations. But like the global atomic pool, we need to
2540 * put the burden of reclaim on regular allocation requests
2541 * and let these go through as privileged allocations.
2542 */
2543 if (gfp_mask & __GFP_ATOMIC)
2544 goto force;
2545
2546 /*
2547 * Unlike in global OOM situations, memcg is not in a physical
2548 * memory shortage. Allow dying and OOM-killed tasks to
2549 * bypass the last charges so that they can exit quickly and
2550 * free their memory.
2551 */
2552 if (unlikely(should_force_charge()))
2553 goto force;
2554
2555 /*
2556 * Prevent unbounded recursion when reclaim operations need to
2557 * allocate memory. This might exceed the limits temporarily,
2558 * but we prefer facilitating memory reclaim and getting back
2559 * under the limit over triggering OOM kills in these cases.
2560 */
2561 if (unlikely(current->flags & PF_MEMALLOC))
2562 goto force;
2563
2564 if (unlikely(task_in_memcg_oom(current)))
2565 goto nomem;
2566
2567 if (!gfpflags_allow_blocking(gfp_mask))
2568 goto nomem;
2569
2570 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2571
2572 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2573 gfp_mask, may_swap);
2574
2575 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2576 goto retry;
2577
2578 if (!drained) {
2579 drain_all_stock(mem_over_limit);
2580 drained = true;
2581 goto retry;
2582 }
2583
2584 if (gfp_mask & __GFP_NORETRY)
2585 goto nomem;
2586 /*
2587 * Even though the limit is exceeded at this point, reclaim
2588 * may have been able to free some pages. Retry the charge
2589 * before killing the task.
2590 *
2591 * Only for regular pages, though: huge pages are rather
2592 * unlikely to succeed so close to the limit, and we fall back
2593 * to regular pages anyway in case of failure.
2594 */
2595 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2596 goto retry;
2597 /*
2598 * At task move, charge accounts can be doubly counted. So, it's
2599 * better to wait until the end of task_move if something is going on.
2600 */
2601 if (mem_cgroup_wait_acct_move(mem_over_limit))
2602 goto retry;
2603
2604 if (nr_retries--)
2605 goto retry;
2606
2607 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2608 goto nomem;
2609
2610 if (gfp_mask & __GFP_NOFAIL)
2611 goto force;
2612
2613 if (fatal_signal_pending(current))
2614 goto force;
2615
2616 /*
2617 * keep retrying as long as the memcg oom killer is able to make
2618 * a forward progress or bypass the charge if the oom killer
2619 * couldn't make any progress.
2620 */
2621 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2622 get_order(nr_pages * PAGE_SIZE));
2623 switch (oom_status) {
2624 case OOM_SUCCESS:
2625 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2626 goto retry;
2627 case OOM_FAILED:
2628 goto force;
2629 default:
2630 goto nomem;
2631 }
2632nomem:
2633 if (!(gfp_mask & __GFP_NOFAIL))
2634 return -ENOMEM;
2635force:
2636 /*
2637 * The allocation either can't fail or will lead to more memory
2638 * being freed very soon. Allow memory usage go over the limit
2639 * temporarily by force charging it.
2640 */
2641 page_counter_charge(&memcg->memory, nr_pages);
2642 if (do_memsw_account())
2643 page_counter_charge(&memcg->memsw, nr_pages);
2644 css_get_many(&memcg->css, nr_pages);
2645
2646 return 0;
2647
2648done_restock:
2649 css_get_many(&memcg->css, batch);
2650 if (batch > nr_pages)
2651 refill_stock(memcg, batch - nr_pages);
2652
2653 /*
2654 * If the hierarchy is above the normal consumption range, schedule
2655 * reclaim on returning to userland. We can perform reclaim here
2656 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2657 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2658 * not recorded as it most likely matches current's and won't
2659 * change in the meantime. As high limit is checked again before
2660 * reclaim, the cost of mismatch is negligible.
2661 */
2662 do {
2663 if (page_counter_read(&memcg->memory) > memcg->high) {
2664 /* Don't bother a random interrupted task */
2665 if (in_interrupt()) {
2666 schedule_work(&memcg->high_work);
2667 break;
2668 }
2669 current->memcg_nr_pages_over_high += batch;
2670 set_notify_resume(current);
2671 break;
2672 }
2673 } while ((memcg = parent_mem_cgroup(memcg)));
2674
2675 return 0;
2676}
2677
2678static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2679{
2680 if (mem_cgroup_is_root(memcg))
2681 return;
2682
2683 page_counter_uncharge(&memcg->memory, nr_pages);
2684 if (do_memsw_account())
2685 page_counter_uncharge(&memcg->memsw, nr_pages);
2686
2687 css_put_many(&memcg->css, nr_pages);
2688}
2689
2690static void lock_page_lru(struct page *page, int *isolated)
2691{
2692 pg_data_t *pgdat = page_pgdat(page);
2693
2694 spin_lock_irq(&pgdat->lru_lock);
2695 if (PageLRU(page)) {
2696 struct lruvec *lruvec;
2697
2698 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2699 ClearPageLRU(page);
2700 del_page_from_lru_list(page, lruvec, page_lru(page));
2701 *isolated = 1;
2702 } else
2703 *isolated = 0;
2704}
2705
2706static void unlock_page_lru(struct page *page, int isolated)
2707{
2708 pg_data_t *pgdat = page_pgdat(page);
2709
2710 if (isolated) {
2711 struct lruvec *lruvec;
2712
2713 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2714 VM_BUG_ON_PAGE(PageLRU(page), page);
2715 SetPageLRU(page);
2716 add_page_to_lru_list(page, lruvec, page_lru(page));
2717 }
2718 spin_unlock_irq(&pgdat->lru_lock);
2719}
2720
2721static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2722 bool lrucare)
2723{
2724 int isolated;
2725
2726 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2727
2728 /*
2729 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2730 * may already be on some other mem_cgroup's LRU. Take care of it.
2731 */
2732 if (lrucare)
2733 lock_page_lru(page, &isolated);
2734
2735 /*
2736 * Nobody should be changing or seriously looking at
2737 * page->mem_cgroup at this point:
2738 *
2739 * - the page is uncharged
2740 *
2741 * - the page is off-LRU
2742 *
2743 * - an anonymous fault has exclusive page access, except for
2744 * a locked page table
2745 *
2746 * - a page cache insertion, a swapin fault, or a migration
2747 * have the page locked
2748 */
2749 page->mem_cgroup = memcg;
2750
2751 if (lrucare)
2752 unlock_page_lru(page, isolated);
2753}
2754
2755#ifdef CONFIG_MEMCG_KMEM
2756static int memcg_alloc_cache_id(void)
2757{
2758 int id, size;
2759 int err;
2760
2761 id = ida_simple_get(&memcg_cache_ida,
2762 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2763 if (id < 0)
2764 return id;
2765
2766 if (id < memcg_nr_cache_ids)
2767 return id;
2768
2769 /*
2770 * There's no space for the new id in memcg_caches arrays,
2771 * so we have to grow them.
2772 */
2773 down_write(&memcg_cache_ids_sem);
2774
2775 size = 2 * (id + 1);
2776 if (size < MEMCG_CACHES_MIN_SIZE)
2777 size = MEMCG_CACHES_MIN_SIZE;
2778 else if (size > MEMCG_CACHES_MAX_SIZE)
2779 size = MEMCG_CACHES_MAX_SIZE;
2780
2781 err = memcg_update_all_caches(size);
2782 if (!err)
2783 err = memcg_update_all_list_lrus(size);
2784 if (!err)
2785 memcg_nr_cache_ids = size;
2786
2787 up_write(&memcg_cache_ids_sem);
2788
2789 if (err) {
2790 ida_simple_remove(&memcg_cache_ida, id);
2791 return err;
2792 }
2793 return id;
2794}
2795
2796static void memcg_free_cache_id(int id)
2797{
2798 ida_simple_remove(&memcg_cache_ida, id);
2799}
2800
2801struct memcg_kmem_cache_create_work {
2802 struct mem_cgroup *memcg;
2803 struct kmem_cache *cachep;
2804 struct work_struct work;
2805};
2806
2807static void memcg_kmem_cache_create_func(struct work_struct *w)
2808{
2809 struct memcg_kmem_cache_create_work *cw =
2810 container_of(w, struct memcg_kmem_cache_create_work, work);
2811 struct mem_cgroup *memcg = cw->memcg;
2812 struct kmem_cache *cachep = cw->cachep;
2813
2814 memcg_create_kmem_cache(memcg, cachep);
2815
2816 css_put(&memcg->css);
2817 kfree(cw);
2818}
2819
2820/*
2821 * Enqueue the creation of a per-memcg kmem_cache.
2822 */
2823static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2824 struct kmem_cache *cachep)
2825{
2826 struct memcg_kmem_cache_create_work *cw;
2827
2828 if (!css_tryget_online(&memcg->css))
2829 return;
2830
2831 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2832 if (!cw)
2833 return;
2834
2835 cw->memcg = memcg;
2836 cw->cachep = cachep;
2837 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2838
2839 queue_work(memcg_kmem_cache_wq, &cw->work);
2840}
2841
2842static inline bool memcg_kmem_bypass(void)
2843{
2844 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2845 return true;
2846 return false;
2847}
2848
2849/**
2850 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2851 * @cachep: the original global kmem cache
2852 *
2853 * Return the kmem_cache we're supposed to use for a slab allocation.
2854 * We try to use the current memcg's version of the cache.
2855 *
2856 * If the cache does not exist yet, if we are the first user of it, we
2857 * create it asynchronously in a workqueue and let the current allocation
2858 * go through with the original cache.
2859 *
2860 * This function takes a reference to the cache it returns to assure it
2861 * won't get destroyed while we are working with it. Once the caller is
2862 * done with it, memcg_kmem_put_cache() must be called to release the
2863 * reference.
2864 */
2865struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2866{
2867 struct mem_cgroup *memcg;
2868 struct kmem_cache *memcg_cachep;
2869 struct memcg_cache_array *arr;
2870 int kmemcg_id;
2871
2872 VM_BUG_ON(!is_root_cache(cachep));
2873
2874 if (memcg_kmem_bypass())
2875 return cachep;
2876
2877 rcu_read_lock();
2878
2879 if (unlikely(current->active_memcg))
2880 memcg = current->active_memcg;
2881 else
2882 memcg = mem_cgroup_from_task(current);
2883
2884 if (!memcg || memcg == root_mem_cgroup)
2885 goto out_unlock;
2886
2887 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2888 if (kmemcg_id < 0)
2889 goto out_unlock;
2890
2891 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2892
2893 /*
2894 * Make sure we will access the up-to-date value. The code updating
2895 * memcg_caches issues a write barrier to match the data dependency
2896 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2897 */
2898 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2899
2900 /*
2901 * If we are in a safe context (can wait, and not in interrupt
2902 * context), we could be be predictable and return right away.
2903 * This would guarantee that the allocation being performed
2904 * already belongs in the new cache.
2905 *
2906 * However, there are some clashes that can arrive from locking.
2907 * For instance, because we acquire the slab_mutex while doing
2908 * memcg_create_kmem_cache, this means no further allocation
2909 * could happen with the slab_mutex held. So it's better to
2910 * defer everything.
2911 *
2912 * If the memcg is dying or memcg_cache is about to be released,
2913 * don't bother creating new kmem_caches. Because memcg_cachep
2914 * is ZEROed as the fist step of kmem offlining, we don't need
2915 * percpu_ref_tryget_live() here. css_tryget_online() check in
2916 * memcg_schedule_kmem_cache_create() will prevent us from
2917 * creation of a new kmem_cache.
2918 */
2919 if (unlikely(!memcg_cachep))
2920 memcg_schedule_kmem_cache_create(memcg, cachep);
2921 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2922 cachep = memcg_cachep;
2923out_unlock:
2924 rcu_read_unlock();
2925 return cachep;
2926}
2927
2928/**
2929 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2930 * @cachep: the cache returned by memcg_kmem_get_cache
2931 */
2932void memcg_kmem_put_cache(struct kmem_cache *cachep)
2933{
2934 if (!is_root_cache(cachep))
2935 percpu_ref_put(&cachep->memcg_params.refcnt);
2936}
2937
2938/**
2939 * __memcg_kmem_charge_memcg: charge a kmem page
2940 * @page: page to charge
2941 * @gfp: reclaim mode
2942 * @order: allocation order
2943 * @memcg: memory cgroup to charge
2944 *
2945 * Returns 0 on success, an error code on failure.
2946 */
2947int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2948 struct mem_cgroup *memcg)
2949{
2950 unsigned int nr_pages = 1 << order;
2951 struct page_counter *counter;
2952 int ret;
2953
2954 ret = try_charge(memcg, gfp, nr_pages);
2955 if (ret)
2956 return ret;
2957
2958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2959 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2960
2961 /*
2962 * Enforce __GFP_NOFAIL allocation because callers are not
2963 * prepared to see failures and likely do not have any failure
2964 * handling code.
2965 */
2966 if (gfp & __GFP_NOFAIL) {
2967 page_counter_charge(&memcg->kmem, nr_pages);
2968 return 0;
2969 }
2970 cancel_charge(memcg, nr_pages);
2971 return -ENOMEM;
2972 }
2973 return 0;
2974}
2975
2976/**
2977 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2978 * @page: page to charge
2979 * @gfp: reclaim mode
2980 * @order: allocation order
2981 *
2982 * Returns 0 on success, an error code on failure.
2983 */
2984int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2985{
2986 struct mem_cgroup *memcg;
2987 int ret = 0;
2988
2989 if (memcg_kmem_bypass())
2990 return 0;
2991
2992 memcg = get_mem_cgroup_from_current();
2993 if (!mem_cgroup_is_root(memcg)) {
2994 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2995 if (!ret) {
2996 page->mem_cgroup = memcg;
2997 __SetPageKmemcg(page);
2998 }
2999 }
3000 css_put(&memcg->css);
3001 return ret;
3002}
3003
3004/**
3005 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3006 * @memcg: memcg to uncharge
3007 * @nr_pages: number of pages to uncharge
3008 */
3009void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3010 unsigned int nr_pages)
3011{
3012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3013 page_counter_uncharge(&memcg->kmem, nr_pages);
3014
3015 page_counter_uncharge(&memcg->memory, nr_pages);
3016 if (do_memsw_account())
3017 page_counter_uncharge(&memcg->memsw, nr_pages);
3018}
3019/**
3020 * __memcg_kmem_uncharge: uncharge a kmem page
3021 * @page: page to uncharge
3022 * @order: allocation order
3023 */
3024void __memcg_kmem_uncharge(struct page *page, int order)
3025{
3026 struct mem_cgroup *memcg = page->mem_cgroup;
3027 unsigned int nr_pages = 1 << order;
3028
3029 if (!memcg)
3030 return;
3031
3032 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3033 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
3034 page->mem_cgroup = NULL;
3035
3036 /* slab pages do not have PageKmemcg flag set */
3037 if (PageKmemcg(page))
3038 __ClearPageKmemcg(page);
3039
3040 css_put_many(&memcg->css, nr_pages);
3041}
3042#endif /* CONFIG_MEMCG_KMEM */
3043
3044#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3045
3046/*
3047 * Because tail pages are not marked as "used", set it. We're under
3048 * pgdat->lru_lock and migration entries setup in all page mappings.
3049 */
3050void mem_cgroup_split_huge_fixup(struct page *head)
3051{
3052 int i;
3053
3054 if (mem_cgroup_disabled())
3055 return;
3056
3057 for (i = 1; i < HPAGE_PMD_NR; i++)
3058 head[i].mem_cgroup = head->mem_cgroup;
3059
3060 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3061}
3062#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3063
3064#ifdef CONFIG_MEMCG_SWAP
3065/**
3066 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3067 * @entry: swap entry to be moved
3068 * @from: mem_cgroup which the entry is moved from
3069 * @to: mem_cgroup which the entry is moved to
3070 *
3071 * It succeeds only when the swap_cgroup's record for this entry is the same
3072 * as the mem_cgroup's id of @from.
3073 *
3074 * Returns 0 on success, -EINVAL on failure.
3075 *
3076 * The caller must have charged to @to, IOW, called page_counter_charge() about
3077 * both res and memsw, and called css_get().
3078 */
3079static int mem_cgroup_move_swap_account(swp_entry_t entry,
3080 struct mem_cgroup *from, struct mem_cgroup *to)
3081{
3082 unsigned short old_id, new_id;
3083
3084 old_id = mem_cgroup_id(from);
3085 new_id = mem_cgroup_id(to);
3086
3087 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3088 mod_memcg_state(from, MEMCG_SWAP, -1);
3089 mod_memcg_state(to, MEMCG_SWAP, 1);
3090 return 0;
3091 }
3092 return -EINVAL;
3093}
3094#else
3095static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3096 struct mem_cgroup *from, struct mem_cgroup *to)
3097{
3098 return -EINVAL;
3099}
3100#endif
3101
3102static DEFINE_MUTEX(memcg_max_mutex);
3103
3104static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3105 unsigned long max, bool memsw)
3106{
3107 bool enlarge = false;
3108 bool drained = false;
3109 int ret;
3110 bool limits_invariant;
3111 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3112
3113 do {
3114 if (signal_pending(current)) {
3115 ret = -EINTR;
3116 break;
3117 }
3118
3119 mutex_lock(&memcg_max_mutex);
3120 /*
3121 * Make sure that the new limit (memsw or memory limit) doesn't
3122 * break our basic invariant rule memory.max <= memsw.max.
3123 */
3124 limits_invariant = memsw ? max >= memcg->memory.max :
3125 max <= memcg->memsw.max;
3126 if (!limits_invariant) {
3127 mutex_unlock(&memcg_max_mutex);
3128 ret = -EINVAL;
3129 break;
3130 }
3131 if (max > counter->max)
3132 enlarge = true;
3133 ret = page_counter_set_max(counter, max);
3134 mutex_unlock(&memcg_max_mutex);
3135
3136 if (!ret)
3137 break;
3138
3139 if (!drained) {
3140 drain_all_stock(memcg);
3141 drained = true;
3142 continue;
3143 }
3144
3145 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3146 GFP_KERNEL, !memsw)) {
3147 ret = -EBUSY;
3148 break;
3149 }
3150 } while (true);
3151
3152 if (!ret && enlarge)
3153 memcg_oom_recover(memcg);
3154
3155 return ret;
3156}
3157
3158unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3159 gfp_t gfp_mask,
3160 unsigned long *total_scanned)
3161{
3162 unsigned long nr_reclaimed = 0;
3163 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3164 unsigned long reclaimed;
3165 int loop = 0;
3166 struct mem_cgroup_tree_per_node *mctz;
3167 unsigned long excess;
3168 unsigned long nr_scanned;
3169
3170 if (order > 0)
3171 return 0;
3172
3173 mctz = soft_limit_tree_node(pgdat->node_id);
3174
3175 /*
3176 * Do not even bother to check the largest node if the root
3177 * is empty. Do it lockless to prevent lock bouncing. Races
3178 * are acceptable as soft limit is best effort anyway.
3179 */
3180 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3181 return 0;
3182
3183 /*
3184 * This loop can run a while, specially if mem_cgroup's continuously
3185 * keep exceeding their soft limit and putting the system under
3186 * pressure
3187 */
3188 do {
3189 if (next_mz)
3190 mz = next_mz;
3191 else
3192 mz = mem_cgroup_largest_soft_limit_node(mctz);
3193 if (!mz)
3194 break;
3195
3196 nr_scanned = 0;
3197 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3198 gfp_mask, &nr_scanned);
3199 nr_reclaimed += reclaimed;
3200 *total_scanned += nr_scanned;
3201 spin_lock_irq(&mctz->lock);
3202 __mem_cgroup_remove_exceeded(mz, mctz);
3203
3204 /*
3205 * If we failed to reclaim anything from this memory cgroup
3206 * it is time to move on to the next cgroup
3207 */
3208 next_mz = NULL;
3209 if (!reclaimed)
3210 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3211
3212 excess = soft_limit_excess(mz->memcg);
3213 /*
3214 * One school of thought says that we should not add
3215 * back the node to the tree if reclaim returns 0.
3216 * But our reclaim could return 0, simply because due
3217 * to priority we are exposing a smaller subset of
3218 * memory to reclaim from. Consider this as a longer
3219 * term TODO.
3220 */
3221 /* If excess == 0, no tree ops */
3222 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3223 spin_unlock_irq(&mctz->lock);
3224 css_put(&mz->memcg->css);
3225 loop++;
3226 /*
3227 * Could not reclaim anything and there are no more
3228 * mem cgroups to try or we seem to be looping without
3229 * reclaiming anything.
3230 */
3231 if (!nr_reclaimed &&
3232 (next_mz == NULL ||
3233 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3234 break;
3235 } while (!nr_reclaimed);
3236 if (next_mz)
3237 css_put(&next_mz->memcg->css);
3238 return nr_reclaimed;
3239}
3240
3241/*
3242 * Test whether @memcg has children, dead or alive. Note that this
3243 * function doesn't care whether @memcg has use_hierarchy enabled and
3244 * returns %true if there are child csses according to the cgroup
3245 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3246 */
3247static inline bool memcg_has_children(struct mem_cgroup *memcg)
3248{
3249 bool ret;
3250
3251 rcu_read_lock();
3252 ret = css_next_child(NULL, &memcg->css);
3253 rcu_read_unlock();
3254 return ret;
3255}
3256
3257/*
3258 * Reclaims as many pages from the given memcg as possible.
3259 *
3260 * Caller is responsible for holding css reference for memcg.
3261 */
3262static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3263{
3264 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3265
3266 /* we call try-to-free pages for make this cgroup empty */
3267 lru_add_drain_all();
3268
3269 drain_all_stock(memcg);
3270
3271 /* try to free all pages in this cgroup */
3272 while (nr_retries && page_counter_read(&memcg->memory)) {
3273 int progress;
3274
3275 if (signal_pending(current))
3276 return -EINTR;
3277
3278 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3279 GFP_KERNEL, true);
3280 if (!progress) {
3281 nr_retries--;
3282 /* maybe some writeback is necessary */
3283 congestion_wait(BLK_RW_ASYNC, HZ/10);
3284 }
3285
3286 }
3287
3288 return 0;
3289}
3290
3291static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3292 char *buf, size_t nbytes,
3293 loff_t off)
3294{
3295 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3296
3297 if (mem_cgroup_is_root(memcg))
3298 return -EINVAL;
3299 return mem_cgroup_force_empty(memcg) ?: nbytes;
3300}
3301
3302static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3303 struct cftype *cft)
3304{
3305 return mem_cgroup_from_css(css)->use_hierarchy;
3306}
3307
3308static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3309 struct cftype *cft, u64 val)
3310{
3311 int retval = 0;
3312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3313 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3314
3315 if (memcg->use_hierarchy == val)
3316 return 0;
3317
3318 /*
3319 * If parent's use_hierarchy is set, we can't make any modifications
3320 * in the child subtrees. If it is unset, then the change can
3321 * occur, provided the current cgroup has no children.
3322 *
3323 * For the root cgroup, parent_mem is NULL, we allow value to be
3324 * set if there are no children.
3325 */
3326 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3327 (val == 1 || val == 0)) {
3328 if (!memcg_has_children(memcg))
3329 memcg->use_hierarchy = val;
3330 else
3331 retval = -EBUSY;
3332 } else
3333 retval = -EINVAL;
3334
3335 return retval;
3336}
3337
3338static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3339{
3340 unsigned long val;
3341
3342 if (mem_cgroup_is_root(memcg)) {
3343 val = memcg_page_state(memcg, MEMCG_CACHE) +
3344 memcg_page_state(memcg, MEMCG_RSS);
3345 if (swap)
3346 val += memcg_page_state(memcg, MEMCG_SWAP);
3347 } else {
3348 if (!swap)
3349 val = page_counter_read(&memcg->memory);
3350 else
3351 val = page_counter_read(&memcg->memsw);
3352 }
3353 return val;
3354}
3355
3356enum {
3357 RES_USAGE,
3358 RES_LIMIT,
3359 RES_MAX_USAGE,
3360 RES_FAILCNT,
3361 RES_SOFT_LIMIT,
3362};
3363
3364static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3365 struct cftype *cft)
3366{
3367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3368 struct page_counter *counter;
3369
3370 switch (MEMFILE_TYPE(cft->private)) {
3371 case _MEM:
3372 counter = &memcg->memory;
3373 break;
3374 case _MEMSWAP:
3375 counter = &memcg->memsw;
3376 break;
3377 case _KMEM:
3378 counter = &memcg->kmem;
3379 break;
3380 case _TCP:
3381 counter = &memcg->tcpmem;
3382 break;
3383 default:
3384 BUG();
3385 }
3386
3387 switch (MEMFILE_ATTR(cft->private)) {
3388 case RES_USAGE:
3389 if (counter == &memcg->memory)
3390 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3391 if (counter == &memcg->memsw)
3392 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3393 return (u64)page_counter_read(counter) * PAGE_SIZE;
3394 case RES_LIMIT:
3395 return (u64)counter->max * PAGE_SIZE;
3396 case RES_MAX_USAGE:
3397 return (u64)counter->watermark * PAGE_SIZE;
3398 case RES_FAILCNT:
3399 return counter->failcnt;
3400 case RES_SOFT_LIMIT:
3401 return (u64)memcg->soft_limit * PAGE_SIZE;
3402 default:
3403 BUG();
3404 }
3405}
3406
3407static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3408{
3409 unsigned long stat[MEMCG_NR_STAT];
3410 struct mem_cgroup *mi;
3411 int node, cpu, i;
3412 int min_idx, max_idx;
3413
3414 if (slab_only) {
3415 min_idx = NR_SLAB_RECLAIMABLE;
3416 max_idx = NR_SLAB_UNRECLAIMABLE;
3417 } else {
3418 min_idx = 0;
3419 max_idx = MEMCG_NR_STAT;
3420 }
3421
3422 for (i = min_idx; i < max_idx; i++)
3423 stat[i] = 0;
3424
3425 for_each_online_cpu(cpu)
3426 for (i = min_idx; i < max_idx; i++)
3427 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3428
3429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3430 for (i = min_idx; i < max_idx; i++)
3431 atomic_long_add(stat[i], &mi->vmstats[i]);
3432
3433 if (!slab_only)
3434 max_idx = NR_VM_NODE_STAT_ITEMS;
3435
3436 for_each_node(node) {
3437 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3438 struct mem_cgroup_per_node *pi;
3439
3440 for (i = min_idx; i < max_idx; i++)
3441 stat[i] = 0;
3442
3443 for_each_online_cpu(cpu)
3444 for (i = min_idx; i < max_idx; i++)
3445 stat[i] += per_cpu(
3446 pn->lruvec_stat_cpu->count[i], cpu);
3447
3448 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3449 for (i = min_idx; i < max_idx; i++)
3450 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3451 }
3452}
3453
3454static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3455{
3456 unsigned long events[NR_VM_EVENT_ITEMS];
3457 struct mem_cgroup *mi;
3458 int cpu, i;
3459
3460 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3461 events[i] = 0;
3462
3463 for_each_online_cpu(cpu)
3464 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3465 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3466 cpu);
3467
3468 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3469 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3470 atomic_long_add(events[i], &mi->vmevents[i]);
3471}
3472
3473#ifdef CONFIG_MEMCG_KMEM
3474static int memcg_online_kmem(struct mem_cgroup *memcg)
3475{
3476 int memcg_id;
3477
3478 if (cgroup_memory_nokmem)
3479 return 0;
3480
3481 BUG_ON(memcg->kmemcg_id >= 0);
3482 BUG_ON(memcg->kmem_state);
3483
3484 memcg_id = memcg_alloc_cache_id();
3485 if (memcg_id < 0)
3486 return memcg_id;
3487
3488 static_branch_inc(&memcg_kmem_enabled_key);
3489 /*
3490 * A memory cgroup is considered kmem-online as soon as it gets
3491 * kmemcg_id. Setting the id after enabling static branching will
3492 * guarantee no one starts accounting before all call sites are
3493 * patched.
3494 */
3495 memcg->kmemcg_id = memcg_id;
3496 memcg->kmem_state = KMEM_ONLINE;
3497 INIT_LIST_HEAD(&memcg->kmem_caches);
3498
3499 return 0;
3500}
3501
3502static void memcg_offline_kmem(struct mem_cgroup *memcg)
3503{
3504 struct cgroup_subsys_state *css;
3505 struct mem_cgroup *parent, *child;
3506 int kmemcg_id;
3507
3508 if (memcg->kmem_state != KMEM_ONLINE)
3509 return;
3510 /*
3511 * Clear the online state before clearing memcg_caches array
3512 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3513 * guarantees that no cache will be created for this cgroup
3514 * after we are done (see memcg_create_kmem_cache()).
3515 */
3516 memcg->kmem_state = KMEM_ALLOCATED;
3517
3518 parent = parent_mem_cgroup(memcg);
3519 if (!parent)
3520 parent = root_mem_cgroup;
3521
3522 /*
3523 * Deactivate and reparent kmem_caches. Then flush percpu
3524 * slab statistics to have precise values at the parent and
3525 * all ancestor levels. It's required to keep slab stats
3526 * accurate after the reparenting of kmem_caches.
3527 */
3528 memcg_deactivate_kmem_caches(memcg, parent);
3529 memcg_flush_percpu_vmstats(memcg, true);
3530
3531 kmemcg_id = memcg->kmemcg_id;
3532 BUG_ON(kmemcg_id < 0);
3533
3534 /*
3535 * Change kmemcg_id of this cgroup and all its descendants to the
3536 * parent's id, and then move all entries from this cgroup's list_lrus
3537 * to ones of the parent. After we have finished, all list_lrus
3538 * corresponding to this cgroup are guaranteed to remain empty. The
3539 * ordering is imposed by list_lru_node->lock taken by
3540 * memcg_drain_all_list_lrus().
3541 */
3542 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3543 css_for_each_descendant_pre(css, &memcg->css) {
3544 child = mem_cgroup_from_css(css);
3545 BUG_ON(child->kmemcg_id != kmemcg_id);
3546 child->kmemcg_id = parent->kmemcg_id;
3547 if (!memcg->use_hierarchy)
3548 break;
3549 }
3550 rcu_read_unlock();
3551
3552 memcg_drain_all_list_lrus(kmemcg_id, parent);
3553
3554 memcg_free_cache_id(kmemcg_id);
3555}
3556
3557static void memcg_free_kmem(struct mem_cgroup *memcg)
3558{
3559 /* css_alloc() failed, offlining didn't happen */
3560 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3561 memcg_offline_kmem(memcg);
3562
3563 if (memcg->kmem_state == KMEM_ALLOCATED) {
3564 WARN_ON(!list_empty(&memcg->kmem_caches));
3565 static_branch_dec(&memcg_kmem_enabled_key);
3566 }
3567}
3568#else
3569static int memcg_online_kmem(struct mem_cgroup *memcg)
3570{
3571 return 0;
3572}
3573static void memcg_offline_kmem(struct mem_cgroup *memcg)
3574{
3575}
3576static void memcg_free_kmem(struct mem_cgroup *memcg)
3577{
3578}
3579#endif /* CONFIG_MEMCG_KMEM */
3580
3581static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3582 unsigned long max)
3583{
3584 int ret;
3585
3586 mutex_lock(&memcg_max_mutex);
3587 ret = page_counter_set_max(&memcg->kmem, max);
3588 mutex_unlock(&memcg_max_mutex);
3589 return ret;
3590}
3591
3592static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3593{
3594 int ret;
3595
3596 mutex_lock(&memcg_max_mutex);
3597
3598 ret = page_counter_set_max(&memcg->tcpmem, max);
3599 if (ret)
3600 goto out;
3601
3602 if (!memcg->tcpmem_active) {
3603 /*
3604 * The active flag needs to be written after the static_key
3605 * update. This is what guarantees that the socket activation
3606 * function is the last one to run. See mem_cgroup_sk_alloc()
3607 * for details, and note that we don't mark any socket as
3608 * belonging to this memcg until that flag is up.
3609 *
3610 * We need to do this, because static_keys will span multiple
3611 * sites, but we can't control their order. If we mark a socket
3612 * as accounted, but the accounting functions are not patched in
3613 * yet, we'll lose accounting.
3614 *
3615 * We never race with the readers in mem_cgroup_sk_alloc(),
3616 * because when this value change, the code to process it is not
3617 * patched in yet.
3618 */
3619 static_branch_inc(&memcg_sockets_enabled_key);
3620 memcg->tcpmem_active = true;
3621 }
3622out:
3623 mutex_unlock(&memcg_max_mutex);
3624 return ret;
3625}
3626
3627/*
3628 * The user of this function is...
3629 * RES_LIMIT.
3630 */
3631static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3632 char *buf, size_t nbytes, loff_t off)
3633{
3634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3635 unsigned long nr_pages;
3636 int ret;
3637
3638 buf = strstrip(buf);
3639 ret = page_counter_memparse(buf, "-1", &nr_pages);
3640 if (ret)
3641 return ret;
3642
3643 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3644 case RES_LIMIT:
3645 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3646 ret = -EINVAL;
3647 break;
3648 }
3649 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3650 case _MEM:
3651 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3652 break;
3653 case _MEMSWAP:
3654 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3655 break;
3656 case _KMEM:
3657 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3658 "Please report your usecase to linux-mm@kvack.org if you "
3659 "depend on this functionality.\n");
3660 ret = memcg_update_kmem_max(memcg, nr_pages);
3661 break;
3662 case _TCP:
3663 ret = memcg_update_tcp_max(memcg, nr_pages);
3664 break;
3665 }
3666 break;
3667 case RES_SOFT_LIMIT:
3668 memcg->soft_limit = nr_pages;
3669 ret = 0;
3670 break;
3671 }
3672 return ret ?: nbytes;
3673}
3674
3675static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3676 size_t nbytes, loff_t off)
3677{
3678 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3679 struct page_counter *counter;
3680
3681 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3682 case _MEM:
3683 counter = &memcg->memory;
3684 break;
3685 case _MEMSWAP:
3686 counter = &memcg->memsw;
3687 break;
3688 case _KMEM:
3689 counter = &memcg->kmem;
3690 break;
3691 case _TCP:
3692 counter = &memcg->tcpmem;
3693 break;
3694 default:
3695 BUG();
3696 }
3697
3698 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3699 case RES_MAX_USAGE:
3700 page_counter_reset_watermark(counter);
3701 break;
3702 case RES_FAILCNT:
3703 counter->failcnt = 0;
3704 break;
3705 default:
3706 BUG();
3707 }
3708
3709 return nbytes;
3710}
3711
3712static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3713 struct cftype *cft)
3714{
3715 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3716}
3717
3718#ifdef CONFIG_MMU
3719static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3720 struct cftype *cft, u64 val)
3721{
3722 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3723
3724 if (val & ~MOVE_MASK)
3725 return -EINVAL;
3726
3727 /*
3728 * No kind of locking is needed in here, because ->can_attach() will
3729 * check this value once in the beginning of the process, and then carry
3730 * on with stale data. This means that changes to this value will only
3731 * affect task migrations starting after the change.
3732 */
3733 memcg->move_charge_at_immigrate = val;
3734 return 0;
3735}
3736#else
3737static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3738 struct cftype *cft, u64 val)
3739{
3740 return -ENOSYS;
3741}
3742#endif
3743
3744#ifdef CONFIG_NUMA
3745
3746#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3747#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3748#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3749
3750static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3751 int nid, unsigned int lru_mask)
3752{
3753 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3754 unsigned long nr = 0;
3755 enum lru_list lru;
3756
3757 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3758
3759 for_each_lru(lru) {
3760 if (!(BIT(lru) & lru_mask))
3761 continue;
3762 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3763 }
3764 return nr;
3765}
3766
3767static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3768 unsigned int lru_mask)
3769{
3770 unsigned long nr = 0;
3771 enum lru_list lru;
3772
3773 for_each_lru(lru) {
3774 if (!(BIT(lru) & lru_mask))
3775 continue;
3776 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3777 }
3778 return nr;
3779}
3780
3781static int memcg_numa_stat_show(struct seq_file *m, void *v)
3782{
3783 struct numa_stat {
3784 const char *name;
3785 unsigned int lru_mask;
3786 };
3787
3788 static const struct numa_stat stats[] = {
3789 { "total", LRU_ALL },
3790 { "file", LRU_ALL_FILE },
3791 { "anon", LRU_ALL_ANON },
3792 { "unevictable", BIT(LRU_UNEVICTABLE) },
3793 };
3794 const struct numa_stat *stat;
3795 int nid;
3796 unsigned long nr;
3797 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3798
3799 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3800 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3801 seq_printf(m, "%s=%lu", stat->name, nr);
3802 for_each_node_state(nid, N_MEMORY) {
3803 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3804 stat->lru_mask);
3805 seq_printf(m, " N%d=%lu", nid, nr);
3806 }
3807 seq_putc(m, '\n');
3808 }
3809
3810 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3811 struct mem_cgroup *iter;
3812
3813 nr = 0;
3814 for_each_mem_cgroup_tree(iter, memcg)
3815 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3816 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3817 for_each_node_state(nid, N_MEMORY) {
3818 nr = 0;
3819 for_each_mem_cgroup_tree(iter, memcg)
3820 nr += mem_cgroup_node_nr_lru_pages(
3821 iter, nid, stat->lru_mask);
3822 seq_printf(m, " N%d=%lu", nid, nr);
3823 }
3824 seq_putc(m, '\n');
3825 }
3826
3827 return 0;
3828}
3829#endif /* CONFIG_NUMA */
3830
3831static const unsigned int memcg1_stats[] = {
3832 MEMCG_CACHE,
3833 MEMCG_RSS,
3834 MEMCG_RSS_HUGE,
3835 NR_SHMEM,
3836 NR_FILE_MAPPED,
3837 NR_FILE_DIRTY,
3838 NR_WRITEBACK,
3839 MEMCG_SWAP,
3840};
3841
3842static const char *const memcg1_stat_names[] = {
3843 "cache",
3844 "rss",
3845 "rss_huge",
3846 "shmem",
3847 "mapped_file",
3848 "dirty",
3849 "writeback",
3850 "swap",
3851};
3852
3853/* Universal VM events cgroup1 shows, original sort order */
3854static const unsigned int memcg1_events[] = {
3855 PGPGIN,
3856 PGPGOUT,
3857 PGFAULT,
3858 PGMAJFAULT,
3859};
3860
3861static const char *const memcg1_event_names[] = {
3862 "pgpgin",
3863 "pgpgout",
3864 "pgfault",
3865 "pgmajfault",
3866};
3867
3868static int memcg_stat_show(struct seq_file *m, void *v)
3869{
3870 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3871 unsigned long memory, memsw;
3872 struct mem_cgroup *mi;
3873 unsigned int i;
3874
3875 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3876 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3877
3878 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3879 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3880 continue;
3881 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3882 memcg_page_state_local(memcg, memcg1_stats[i]) *
3883 PAGE_SIZE);
3884 }
3885
3886 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3887 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3888 memcg_events_local(memcg, memcg1_events[i]));
3889
3890 for (i = 0; i < NR_LRU_LISTS; i++)
3891 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3892 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3893 PAGE_SIZE);
3894
3895 /* Hierarchical information */
3896 memory = memsw = PAGE_COUNTER_MAX;
3897 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3898 memory = min(memory, mi->memory.max);
3899 memsw = min(memsw, mi->memsw.max);
3900 }
3901 seq_printf(m, "hierarchical_memory_limit %llu\n",
3902 (u64)memory * PAGE_SIZE);
3903 if (do_memsw_account())
3904 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3905 (u64)memsw * PAGE_SIZE);
3906
3907 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3908 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3909 continue;
3910 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3911 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3912 PAGE_SIZE);
3913 }
3914
3915 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3916 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3917 (u64)memcg_events(memcg, memcg1_events[i]));
3918
3919 for (i = 0; i < NR_LRU_LISTS; i++)
3920 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3921 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3922 PAGE_SIZE);
3923
3924#ifdef CONFIG_DEBUG_VM
3925 {
3926 pg_data_t *pgdat;
3927 struct mem_cgroup_per_node *mz;
3928 struct zone_reclaim_stat *rstat;
3929 unsigned long recent_rotated[2] = {0, 0};
3930 unsigned long recent_scanned[2] = {0, 0};
3931
3932 for_each_online_pgdat(pgdat) {
3933 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3934 rstat = &mz->lruvec.reclaim_stat;
3935
3936 recent_rotated[0] += rstat->recent_rotated[0];
3937 recent_rotated[1] += rstat->recent_rotated[1];
3938 recent_scanned[0] += rstat->recent_scanned[0];
3939 recent_scanned[1] += rstat->recent_scanned[1];
3940 }
3941 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3942 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3943 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3944 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3945 }
3946#endif
3947
3948 return 0;
3949}
3950
3951static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3952 struct cftype *cft)
3953{
3954 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3955
3956 return mem_cgroup_swappiness(memcg);
3957}
3958
3959static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3960 struct cftype *cft, u64 val)
3961{
3962 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3963
3964 if (val > 100)
3965 return -EINVAL;
3966
3967 if (css->parent)
3968 memcg->swappiness = val;
3969 else
3970 vm_swappiness = val;
3971
3972 return 0;
3973}
3974
3975static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3976{
3977 struct mem_cgroup_threshold_ary *t;
3978 unsigned long usage;
3979 int i;
3980
3981 rcu_read_lock();
3982 if (!swap)
3983 t = rcu_dereference(memcg->thresholds.primary);
3984 else
3985 t = rcu_dereference(memcg->memsw_thresholds.primary);
3986
3987 if (!t)
3988 goto unlock;
3989
3990 usage = mem_cgroup_usage(memcg, swap);
3991
3992 /*
3993 * current_threshold points to threshold just below or equal to usage.
3994 * If it's not true, a threshold was crossed after last
3995 * call of __mem_cgroup_threshold().
3996 */
3997 i = t->current_threshold;
3998
3999 /*
4000 * Iterate backward over array of thresholds starting from
4001 * current_threshold and check if a threshold is crossed.
4002 * If none of thresholds below usage is crossed, we read
4003 * only one element of the array here.
4004 */
4005 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4006 eventfd_signal(t->entries[i].eventfd, 1);
4007
4008 /* i = current_threshold + 1 */
4009 i++;
4010
4011 /*
4012 * Iterate forward over array of thresholds starting from
4013 * current_threshold+1 and check if a threshold is crossed.
4014 * If none of thresholds above usage is crossed, we read
4015 * only one element of the array here.
4016 */
4017 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4018 eventfd_signal(t->entries[i].eventfd, 1);
4019
4020 /* Update current_threshold */
4021 t->current_threshold = i - 1;
4022unlock:
4023 rcu_read_unlock();
4024}
4025
4026static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4027{
4028 while (memcg) {
4029 __mem_cgroup_threshold(memcg, false);
4030 if (do_memsw_account())
4031 __mem_cgroup_threshold(memcg, true);
4032
4033 memcg = parent_mem_cgroup(memcg);
4034 }
4035}
4036
4037static int compare_thresholds(const void *a, const void *b)
4038{
4039 const struct mem_cgroup_threshold *_a = a;
4040 const struct mem_cgroup_threshold *_b = b;
4041
4042 if (_a->threshold > _b->threshold)
4043 return 1;
4044
4045 if (_a->threshold < _b->threshold)
4046 return -1;
4047
4048 return 0;
4049}
4050
4051static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4052{
4053 struct mem_cgroup_eventfd_list *ev;
4054
4055 spin_lock(&memcg_oom_lock);
4056
4057 list_for_each_entry(ev, &memcg->oom_notify, list)
4058 eventfd_signal(ev->eventfd, 1);
4059
4060 spin_unlock(&memcg_oom_lock);
4061 return 0;
4062}
4063
4064static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4065{
4066 struct mem_cgroup *iter;
4067
4068 for_each_mem_cgroup_tree(iter, memcg)
4069 mem_cgroup_oom_notify_cb(iter);
4070}
4071
4072static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4073 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4074{
4075 struct mem_cgroup_thresholds *thresholds;
4076 struct mem_cgroup_threshold_ary *new;
4077 unsigned long threshold;
4078 unsigned long usage;
4079 int i, size, ret;
4080
4081 ret = page_counter_memparse(args, "-1", &threshold);
4082 if (ret)
4083 return ret;
4084
4085 mutex_lock(&memcg->thresholds_lock);
4086
4087 if (type == _MEM) {
4088 thresholds = &memcg->thresholds;
4089 usage = mem_cgroup_usage(memcg, false);
4090 } else if (type == _MEMSWAP) {
4091 thresholds = &memcg->memsw_thresholds;
4092 usage = mem_cgroup_usage(memcg, true);
4093 } else
4094 BUG();
4095
4096 /* Check if a threshold crossed before adding a new one */
4097 if (thresholds->primary)
4098 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4099
4100 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4101
4102 /* Allocate memory for new array of thresholds */
4103 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4104 if (!new) {
4105 ret = -ENOMEM;
4106 goto unlock;
4107 }
4108 new->size = size;
4109
4110 /* Copy thresholds (if any) to new array */
4111 if (thresholds->primary) {
4112 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4113 sizeof(struct mem_cgroup_threshold));
4114 }
4115
4116 /* Add new threshold */
4117 new->entries[size - 1].eventfd = eventfd;
4118 new->entries[size - 1].threshold = threshold;
4119
4120 /* Sort thresholds. Registering of new threshold isn't time-critical */
4121 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4122 compare_thresholds, NULL);
4123
4124 /* Find current threshold */
4125 new->current_threshold = -1;
4126 for (i = 0; i < size; i++) {
4127 if (new->entries[i].threshold <= usage) {
4128 /*
4129 * new->current_threshold will not be used until
4130 * rcu_assign_pointer(), so it's safe to increment
4131 * it here.
4132 */
4133 ++new->current_threshold;
4134 } else
4135 break;
4136 }
4137
4138 /* Free old spare buffer and save old primary buffer as spare */
4139 kfree(thresholds->spare);
4140 thresholds->spare = thresholds->primary;
4141
4142 rcu_assign_pointer(thresholds->primary, new);
4143
4144 /* To be sure that nobody uses thresholds */
4145 synchronize_rcu();
4146
4147unlock:
4148 mutex_unlock(&memcg->thresholds_lock);
4149
4150 return ret;
4151}
4152
4153static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4154 struct eventfd_ctx *eventfd, const char *args)
4155{
4156 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4157}
4158
4159static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4160 struct eventfd_ctx *eventfd, const char *args)
4161{
4162 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4163}
4164
4165static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4166 struct eventfd_ctx *eventfd, enum res_type type)
4167{
4168 struct mem_cgroup_thresholds *thresholds;
4169 struct mem_cgroup_threshold_ary *new;
4170 unsigned long usage;
4171 int i, j, size;
4172
4173 mutex_lock(&memcg->thresholds_lock);
4174
4175 if (type == _MEM) {
4176 thresholds = &memcg->thresholds;
4177 usage = mem_cgroup_usage(memcg, false);
4178 } else if (type == _MEMSWAP) {
4179 thresholds = &memcg->memsw_thresholds;
4180 usage = mem_cgroup_usage(memcg, true);
4181 } else
4182 BUG();
4183
4184 if (!thresholds->primary)
4185 goto unlock;
4186
4187 /* Check if a threshold crossed before removing */
4188 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4189
4190 /* Calculate new number of threshold */
4191 size = 0;
4192 for (i = 0; i < thresholds->primary->size; i++) {
4193 if (thresholds->primary->entries[i].eventfd != eventfd)
4194 size++;
4195 }
4196
4197 new = thresholds->spare;
4198
4199 /* Set thresholds array to NULL if we don't have thresholds */
4200 if (!size) {
4201 kfree(new);
4202 new = NULL;
4203 goto swap_buffers;
4204 }
4205
4206 new->size = size;
4207
4208 /* Copy thresholds and find current threshold */
4209 new->current_threshold = -1;
4210 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4211 if (thresholds->primary->entries[i].eventfd == eventfd)
4212 continue;
4213
4214 new->entries[j] = thresholds->primary->entries[i];
4215 if (new->entries[j].threshold <= usage) {
4216 /*
4217 * new->current_threshold will not be used
4218 * until rcu_assign_pointer(), so it's safe to increment
4219 * it here.
4220 */
4221 ++new->current_threshold;
4222 }
4223 j++;
4224 }
4225
4226swap_buffers:
4227 /* Swap primary and spare array */
4228 thresholds->spare = thresholds->primary;
4229
4230 rcu_assign_pointer(thresholds->primary, new);
4231
4232 /* To be sure that nobody uses thresholds */
4233 synchronize_rcu();
4234
4235 /* If all events are unregistered, free the spare array */
4236 if (!new) {
4237 kfree(thresholds->spare);
4238 thresholds->spare = NULL;
4239 }
4240unlock:
4241 mutex_unlock(&memcg->thresholds_lock);
4242}
4243
4244static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4245 struct eventfd_ctx *eventfd)
4246{
4247 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4248}
4249
4250static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4251 struct eventfd_ctx *eventfd)
4252{
4253 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4254}
4255
4256static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4257 struct eventfd_ctx *eventfd, const char *args)
4258{
4259 struct mem_cgroup_eventfd_list *event;
4260
4261 event = kmalloc(sizeof(*event), GFP_KERNEL);
4262 if (!event)
4263 return -ENOMEM;
4264
4265 spin_lock(&memcg_oom_lock);
4266
4267 event->eventfd = eventfd;
4268 list_add(&event->list, &memcg->oom_notify);
4269
4270 /* already in OOM ? */
4271 if (memcg->under_oom)
4272 eventfd_signal(eventfd, 1);
4273 spin_unlock(&memcg_oom_lock);
4274
4275 return 0;
4276}
4277
4278static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4279 struct eventfd_ctx *eventfd)
4280{
4281 struct mem_cgroup_eventfd_list *ev, *tmp;
4282
4283 spin_lock(&memcg_oom_lock);
4284
4285 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4286 if (ev->eventfd == eventfd) {
4287 list_del(&ev->list);
4288 kfree(ev);
4289 }
4290 }
4291
4292 spin_unlock(&memcg_oom_lock);
4293}
4294
4295static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4296{
4297 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4298
4299 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4300 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4301 seq_printf(sf, "oom_kill %lu\n",
4302 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4303 return 0;
4304}
4305
4306static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4307 struct cftype *cft, u64 val)
4308{
4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311 /* cannot set to root cgroup and only 0 and 1 are allowed */
4312 if (!css->parent || !((val == 0) || (val == 1)))
4313 return -EINVAL;
4314
4315 memcg->oom_kill_disable = val;
4316 if (!val)
4317 memcg_oom_recover(memcg);
4318
4319 return 0;
4320}
4321
4322#ifdef CONFIG_CGROUP_WRITEBACK
4323
4324#include <trace/events/writeback.h>
4325
4326static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4327{
4328 return wb_domain_init(&memcg->cgwb_domain, gfp);
4329}
4330
4331static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4332{
4333 wb_domain_exit(&memcg->cgwb_domain);
4334}
4335
4336static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4337{
4338 wb_domain_size_changed(&memcg->cgwb_domain);
4339}
4340
4341struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4342{
4343 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4344
4345 if (!memcg->css.parent)
4346 return NULL;
4347
4348 return &memcg->cgwb_domain;
4349}
4350
4351/*
4352 * idx can be of type enum memcg_stat_item or node_stat_item.
4353 * Keep in sync with memcg_exact_page().
4354 */
4355static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4356{
4357 long x = atomic_long_read(&memcg->vmstats[idx]);
4358 int cpu;
4359
4360 for_each_online_cpu(cpu)
4361 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4362 if (x < 0)
4363 x = 0;
4364 return x;
4365}
4366
4367/**
4368 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4369 * @wb: bdi_writeback in question
4370 * @pfilepages: out parameter for number of file pages
4371 * @pheadroom: out parameter for number of allocatable pages according to memcg
4372 * @pdirty: out parameter for number of dirty pages
4373 * @pwriteback: out parameter for number of pages under writeback
4374 *
4375 * Determine the numbers of file, headroom, dirty, and writeback pages in
4376 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4377 * is a bit more involved.
4378 *
4379 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4380 * headroom is calculated as the lowest headroom of itself and the
4381 * ancestors. Note that this doesn't consider the actual amount of
4382 * available memory in the system. The caller should further cap
4383 * *@pheadroom accordingly.
4384 */
4385void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4386 unsigned long *pheadroom, unsigned long *pdirty,
4387 unsigned long *pwriteback)
4388{
4389 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4390 struct mem_cgroup *parent;
4391
4392 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4393
4394 /* this should eventually include NR_UNSTABLE_NFS */
4395 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4396 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4397 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4398 *pheadroom = PAGE_COUNTER_MAX;
4399
4400 while ((parent = parent_mem_cgroup(memcg))) {
4401 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4402 unsigned long used = page_counter_read(&memcg->memory);
4403
4404 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4405 memcg = parent;
4406 }
4407}
4408
4409/*
4410 * Foreign dirty flushing
4411 *
4412 * There's an inherent mismatch between memcg and writeback. The former
4413 * trackes ownership per-page while the latter per-inode. This was a
4414 * deliberate design decision because honoring per-page ownership in the
4415 * writeback path is complicated, may lead to higher CPU and IO overheads
4416 * and deemed unnecessary given that write-sharing an inode across
4417 * different cgroups isn't a common use-case.
4418 *
4419 * Combined with inode majority-writer ownership switching, this works well
4420 * enough in most cases but there are some pathological cases. For
4421 * example, let's say there are two cgroups A and B which keep writing to
4422 * different but confined parts of the same inode. B owns the inode and
4423 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4424 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4425 * triggering background writeback. A will be slowed down without a way to
4426 * make writeback of the dirty pages happen.
4427 *
4428 * Conditions like the above can lead to a cgroup getting repatedly and
4429 * severely throttled after making some progress after each
4430 * dirty_expire_interval while the underyling IO device is almost
4431 * completely idle.
4432 *
4433 * Solving this problem completely requires matching the ownership tracking
4434 * granularities between memcg and writeback in either direction. However,
4435 * the more egregious behaviors can be avoided by simply remembering the
4436 * most recent foreign dirtying events and initiating remote flushes on
4437 * them when local writeback isn't enough to keep the memory clean enough.
4438 *
4439 * The following two functions implement such mechanism. When a foreign
4440 * page - a page whose memcg and writeback ownerships don't match - is
4441 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4442 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4443 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4444 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4445 * foreign bdi_writebacks which haven't expired. Both the numbers of
4446 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4447 * limited to MEMCG_CGWB_FRN_CNT.
4448 *
4449 * The mechanism only remembers IDs and doesn't hold any object references.
4450 * As being wrong occasionally doesn't matter, updates and accesses to the
4451 * records are lockless and racy.
4452 */
4453void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4454 struct bdi_writeback *wb)
4455{
4456 struct mem_cgroup *memcg = page->mem_cgroup;
4457 struct memcg_cgwb_frn *frn;
4458 u64 now = get_jiffies_64();
4459 u64 oldest_at = now;
4460 int oldest = -1;
4461 int i;
4462
4463 trace_track_foreign_dirty(page, wb);
4464
4465 /*
4466 * Pick the slot to use. If there is already a slot for @wb, keep
4467 * using it. If not replace the oldest one which isn't being
4468 * written out.
4469 */
4470 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4471 frn = &memcg->cgwb_frn[i];
4472 if (frn->bdi_id == wb->bdi->id &&
4473 frn->memcg_id == wb->memcg_css->id)
4474 break;
4475 if (time_before64(frn->at, oldest_at) &&
4476 atomic_read(&frn->done.cnt) == 1) {
4477 oldest = i;
4478 oldest_at = frn->at;
4479 }
4480 }
4481
4482 if (i < MEMCG_CGWB_FRN_CNT) {
4483 /*
4484 * Re-using an existing one. Update timestamp lazily to
4485 * avoid making the cacheline hot. We want them to be
4486 * reasonably up-to-date and significantly shorter than
4487 * dirty_expire_interval as that's what expires the record.
4488 * Use the shorter of 1s and dirty_expire_interval / 8.
4489 */
4490 unsigned long update_intv =
4491 min_t(unsigned long, HZ,
4492 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4493
4494 if (time_before64(frn->at, now - update_intv))
4495 frn->at = now;
4496 } else if (oldest >= 0) {
4497 /* replace the oldest free one */
4498 frn = &memcg->cgwb_frn[oldest];
4499 frn->bdi_id = wb->bdi->id;
4500 frn->memcg_id = wb->memcg_css->id;
4501 frn->at = now;
4502 }
4503}
4504
4505/* issue foreign writeback flushes for recorded foreign dirtying events */
4506void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4507{
4508 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4509 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4510 u64 now = jiffies_64;
4511 int i;
4512
4513 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4514 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4515
4516 /*
4517 * If the record is older than dirty_expire_interval,
4518 * writeback on it has already started. No need to kick it
4519 * off again. Also, don't start a new one if there's
4520 * already one in flight.
4521 */
4522 if (time_after64(frn->at, now - intv) &&
4523 atomic_read(&frn->done.cnt) == 1) {
4524 frn->at = 0;
4525 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4526 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4527 WB_REASON_FOREIGN_FLUSH,
4528 &frn->done);
4529 }
4530 }
4531}
4532
4533#else /* CONFIG_CGROUP_WRITEBACK */
4534
4535static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4536{
4537 return 0;
4538}
4539
4540static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4541{
4542}
4543
4544static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4545{
4546}
4547
4548#endif /* CONFIG_CGROUP_WRITEBACK */
4549
4550/*
4551 * DO NOT USE IN NEW FILES.
4552 *
4553 * "cgroup.event_control" implementation.
4554 *
4555 * This is way over-engineered. It tries to support fully configurable
4556 * events for each user. Such level of flexibility is completely
4557 * unnecessary especially in the light of the planned unified hierarchy.
4558 *
4559 * Please deprecate this and replace with something simpler if at all
4560 * possible.
4561 */
4562
4563/*
4564 * Unregister event and free resources.
4565 *
4566 * Gets called from workqueue.
4567 */
4568static void memcg_event_remove(struct work_struct *work)
4569{
4570 struct mem_cgroup_event *event =
4571 container_of(work, struct mem_cgroup_event, remove);
4572 struct mem_cgroup *memcg = event->memcg;
4573
4574 remove_wait_queue(event->wqh, &event->wait);
4575
4576 event->unregister_event(memcg, event->eventfd);
4577
4578 /* Notify userspace the event is going away. */
4579 eventfd_signal(event->eventfd, 1);
4580
4581 eventfd_ctx_put(event->eventfd);
4582 kfree(event);
4583 css_put(&memcg->css);
4584}
4585
4586/*
4587 * Gets called on EPOLLHUP on eventfd when user closes it.
4588 *
4589 * Called with wqh->lock held and interrupts disabled.
4590 */
4591static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4592 int sync, void *key)
4593{
4594 struct mem_cgroup_event *event =
4595 container_of(wait, struct mem_cgroup_event, wait);
4596 struct mem_cgroup *memcg = event->memcg;
4597 __poll_t flags = key_to_poll(key);
4598
4599 if (flags & EPOLLHUP) {
4600 /*
4601 * If the event has been detached at cgroup removal, we
4602 * can simply return knowing the other side will cleanup
4603 * for us.
4604 *
4605 * We can't race against event freeing since the other
4606 * side will require wqh->lock via remove_wait_queue(),
4607 * which we hold.
4608 */
4609 spin_lock(&memcg->event_list_lock);
4610 if (!list_empty(&event->list)) {
4611 list_del_init(&event->list);
4612 /*
4613 * We are in atomic context, but cgroup_event_remove()
4614 * may sleep, so we have to call it in workqueue.
4615 */
4616 schedule_work(&event->remove);
4617 }
4618 spin_unlock(&memcg->event_list_lock);
4619 }
4620
4621 return 0;
4622}
4623
4624static void memcg_event_ptable_queue_proc(struct file *file,
4625 wait_queue_head_t *wqh, poll_table *pt)
4626{
4627 struct mem_cgroup_event *event =
4628 container_of(pt, struct mem_cgroup_event, pt);
4629
4630 event->wqh = wqh;
4631 add_wait_queue(wqh, &event->wait);
4632}
4633
4634/*
4635 * DO NOT USE IN NEW FILES.
4636 *
4637 * Parse input and register new cgroup event handler.
4638 *
4639 * Input must be in format '<event_fd> <control_fd> <args>'.
4640 * Interpretation of args is defined by control file implementation.
4641 */
4642static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4643 char *buf, size_t nbytes, loff_t off)
4644{
4645 struct cgroup_subsys_state *css = of_css(of);
4646 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4647 struct mem_cgroup_event *event;
4648 struct cgroup_subsys_state *cfile_css;
4649 unsigned int efd, cfd;
4650 struct fd efile;
4651 struct fd cfile;
4652 const char *name;
4653 char *endp;
4654 int ret;
4655
4656 buf = strstrip(buf);
4657
4658 efd = simple_strtoul(buf, &endp, 10);
4659 if (*endp != ' ')
4660 return -EINVAL;
4661 buf = endp + 1;
4662
4663 cfd = simple_strtoul(buf, &endp, 10);
4664 if ((*endp != ' ') && (*endp != '\0'))
4665 return -EINVAL;
4666 buf = endp + 1;
4667
4668 event = kzalloc(sizeof(*event), GFP_KERNEL);
4669 if (!event)
4670 return -ENOMEM;
4671
4672 event->memcg = memcg;
4673 INIT_LIST_HEAD(&event->list);
4674 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4675 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4676 INIT_WORK(&event->remove, memcg_event_remove);
4677
4678 efile = fdget(efd);
4679 if (!efile.file) {
4680 ret = -EBADF;
4681 goto out_kfree;
4682 }
4683
4684 event->eventfd = eventfd_ctx_fileget(efile.file);
4685 if (IS_ERR(event->eventfd)) {
4686 ret = PTR_ERR(event->eventfd);
4687 goto out_put_efile;
4688 }
4689
4690 cfile = fdget(cfd);
4691 if (!cfile.file) {
4692 ret = -EBADF;
4693 goto out_put_eventfd;
4694 }
4695
4696 /* the process need read permission on control file */
4697 /* AV: shouldn't we check that it's been opened for read instead? */
4698 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4699 if (ret < 0)
4700 goto out_put_cfile;
4701
4702 /*
4703 * Determine the event callbacks and set them in @event. This used
4704 * to be done via struct cftype but cgroup core no longer knows
4705 * about these events. The following is crude but the whole thing
4706 * is for compatibility anyway.
4707 *
4708 * DO NOT ADD NEW FILES.
4709 */
4710 name = cfile.file->f_path.dentry->d_name.name;
4711
4712 if (!strcmp(name, "memory.usage_in_bytes")) {
4713 event->register_event = mem_cgroup_usage_register_event;
4714 event->unregister_event = mem_cgroup_usage_unregister_event;
4715 } else if (!strcmp(name, "memory.oom_control")) {
4716 event->register_event = mem_cgroup_oom_register_event;
4717 event->unregister_event = mem_cgroup_oom_unregister_event;
4718 } else if (!strcmp(name, "memory.pressure_level")) {
4719 event->register_event = vmpressure_register_event;
4720 event->unregister_event = vmpressure_unregister_event;
4721 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4722 event->register_event = memsw_cgroup_usage_register_event;
4723 event->unregister_event = memsw_cgroup_usage_unregister_event;
4724 } else {
4725 ret = -EINVAL;
4726 goto out_put_cfile;
4727 }
4728
4729 /*
4730 * Verify @cfile should belong to @css. Also, remaining events are
4731 * automatically removed on cgroup destruction but the removal is
4732 * asynchronous, so take an extra ref on @css.
4733 */
4734 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4735 &memory_cgrp_subsys);
4736 ret = -EINVAL;
4737 if (IS_ERR(cfile_css))
4738 goto out_put_cfile;
4739 if (cfile_css != css) {
4740 css_put(cfile_css);
4741 goto out_put_cfile;
4742 }
4743
4744 ret = event->register_event(memcg, event->eventfd, buf);
4745 if (ret)
4746 goto out_put_css;
4747
4748 vfs_poll(efile.file, &event->pt);
4749
4750 spin_lock(&memcg->event_list_lock);
4751 list_add(&event->list, &memcg->event_list);
4752 spin_unlock(&memcg->event_list_lock);
4753
4754 fdput(cfile);
4755 fdput(efile);
4756
4757 return nbytes;
4758
4759out_put_css:
4760 css_put(css);
4761out_put_cfile:
4762 fdput(cfile);
4763out_put_eventfd:
4764 eventfd_ctx_put(event->eventfd);
4765out_put_efile:
4766 fdput(efile);
4767out_kfree:
4768 kfree(event);
4769
4770 return ret;
4771}
4772
4773static struct cftype mem_cgroup_legacy_files[] = {
4774 {
4775 .name = "usage_in_bytes",
4776 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4777 .read_u64 = mem_cgroup_read_u64,
4778 },
4779 {
4780 .name = "max_usage_in_bytes",
4781 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4782 .write = mem_cgroup_reset,
4783 .read_u64 = mem_cgroup_read_u64,
4784 },
4785 {
4786 .name = "limit_in_bytes",
4787 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4788 .write = mem_cgroup_write,
4789 .read_u64 = mem_cgroup_read_u64,
4790 },
4791 {
4792 .name = "soft_limit_in_bytes",
4793 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4794 .write = mem_cgroup_write,
4795 .read_u64 = mem_cgroup_read_u64,
4796 },
4797 {
4798 .name = "failcnt",
4799 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4800 .write = mem_cgroup_reset,
4801 .read_u64 = mem_cgroup_read_u64,
4802 },
4803 {
4804 .name = "stat",
4805 .seq_show = memcg_stat_show,
4806 },
4807 {
4808 .name = "force_empty",
4809 .write = mem_cgroup_force_empty_write,
4810 },
4811 {
4812 .name = "use_hierarchy",
4813 .write_u64 = mem_cgroup_hierarchy_write,
4814 .read_u64 = mem_cgroup_hierarchy_read,
4815 },
4816 {
4817 .name = "cgroup.event_control", /* XXX: for compat */
4818 .write = memcg_write_event_control,
4819 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4820 },
4821 {
4822 .name = "swappiness",
4823 .read_u64 = mem_cgroup_swappiness_read,
4824 .write_u64 = mem_cgroup_swappiness_write,
4825 },
4826 {
4827 .name = "move_charge_at_immigrate",
4828 .read_u64 = mem_cgroup_move_charge_read,
4829 .write_u64 = mem_cgroup_move_charge_write,
4830 },
4831 {
4832 .name = "oom_control",
4833 .seq_show = mem_cgroup_oom_control_read,
4834 .write_u64 = mem_cgroup_oom_control_write,
4835 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4836 },
4837 {
4838 .name = "pressure_level",
4839 },
4840#ifdef CONFIG_NUMA
4841 {
4842 .name = "numa_stat",
4843 .seq_show = memcg_numa_stat_show,
4844 },
4845#endif
4846 {
4847 .name = "kmem.limit_in_bytes",
4848 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4849 .write = mem_cgroup_write,
4850 .read_u64 = mem_cgroup_read_u64,
4851 },
4852 {
4853 .name = "kmem.usage_in_bytes",
4854 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4855 .read_u64 = mem_cgroup_read_u64,
4856 },
4857 {
4858 .name = "kmem.failcnt",
4859 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4860 .write = mem_cgroup_reset,
4861 .read_u64 = mem_cgroup_read_u64,
4862 },
4863 {
4864 .name = "kmem.max_usage_in_bytes",
4865 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4866 .write = mem_cgroup_reset,
4867 .read_u64 = mem_cgroup_read_u64,
4868 },
4869#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4870 {
4871 .name = "kmem.slabinfo",
4872 .seq_start = memcg_slab_start,
4873 .seq_next = memcg_slab_next,
4874 .seq_stop = memcg_slab_stop,
4875 .seq_show = memcg_slab_show,
4876 },
4877#endif
4878 {
4879 .name = "kmem.tcp.limit_in_bytes",
4880 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4881 .write = mem_cgroup_write,
4882 .read_u64 = mem_cgroup_read_u64,
4883 },
4884 {
4885 .name = "kmem.tcp.usage_in_bytes",
4886 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4887 .read_u64 = mem_cgroup_read_u64,
4888 },
4889 {
4890 .name = "kmem.tcp.failcnt",
4891 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4892 .write = mem_cgroup_reset,
4893 .read_u64 = mem_cgroup_read_u64,
4894 },
4895 {
4896 .name = "kmem.tcp.max_usage_in_bytes",
4897 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4898 .write = mem_cgroup_reset,
4899 .read_u64 = mem_cgroup_read_u64,
4900 },
4901 { }, /* terminate */
4902};
4903
4904/*
4905 * Private memory cgroup IDR
4906 *
4907 * Swap-out records and page cache shadow entries need to store memcg
4908 * references in constrained space, so we maintain an ID space that is
4909 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4910 * memory-controlled cgroups to 64k.
4911 *
4912 * However, there usually are many references to the oflline CSS after
4913 * the cgroup has been destroyed, such as page cache or reclaimable
4914 * slab objects, that don't need to hang on to the ID. We want to keep
4915 * those dead CSS from occupying IDs, or we might quickly exhaust the
4916 * relatively small ID space and prevent the creation of new cgroups
4917 * even when there are much fewer than 64k cgroups - possibly none.
4918 *
4919 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4920 * be freed and recycled when it's no longer needed, which is usually
4921 * when the CSS is offlined.
4922 *
4923 * The only exception to that are records of swapped out tmpfs/shmem
4924 * pages that need to be attributed to live ancestors on swapin. But
4925 * those references are manageable from userspace.
4926 */
4927
4928static DEFINE_IDR(mem_cgroup_idr);
4929
4930static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4931{
4932 if (memcg->id.id > 0) {
4933 idr_remove(&mem_cgroup_idr, memcg->id.id);
4934 memcg->id.id = 0;
4935 }
4936}
4937
4938static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4939{
4940 refcount_add(n, &memcg->id.ref);
4941}
4942
4943static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4944{
4945 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4946 mem_cgroup_id_remove(memcg);
4947
4948 /* Memcg ID pins CSS */
4949 css_put(&memcg->css);
4950 }
4951}
4952
4953static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4954{
4955 mem_cgroup_id_put_many(memcg, 1);
4956}
4957
4958/**
4959 * mem_cgroup_from_id - look up a memcg from a memcg id
4960 * @id: the memcg id to look up
4961 *
4962 * Caller must hold rcu_read_lock().
4963 */
4964struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4965{
4966 WARN_ON_ONCE(!rcu_read_lock_held());
4967 return idr_find(&mem_cgroup_idr, id);
4968}
4969
4970static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4971{
4972 struct mem_cgroup_per_node *pn;
4973 int tmp = node;
4974 /*
4975 * This routine is called against possible nodes.
4976 * But it's BUG to call kmalloc() against offline node.
4977 *
4978 * TODO: this routine can waste much memory for nodes which will
4979 * never be onlined. It's better to use memory hotplug callback
4980 * function.
4981 */
4982 if (!node_state(node, N_NORMAL_MEMORY))
4983 tmp = -1;
4984 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4985 if (!pn)
4986 return 1;
4987
4988 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4989 if (!pn->lruvec_stat_local) {
4990 kfree(pn);
4991 return 1;
4992 }
4993
4994 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4995 if (!pn->lruvec_stat_cpu) {
4996 free_percpu(pn->lruvec_stat_local);
4997 kfree(pn);
4998 return 1;
4999 }
5000
5001 lruvec_init(&pn->lruvec);
5002 pn->usage_in_excess = 0;
5003 pn->on_tree = false;
5004 pn->memcg = memcg;
5005
5006 memcg->nodeinfo[node] = pn;
5007 return 0;
5008}
5009
5010static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5011{
5012 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5013
5014 if (!pn)
5015 return;
5016
5017 free_percpu(pn->lruvec_stat_cpu);
5018 free_percpu(pn->lruvec_stat_local);
5019 kfree(pn);
5020}
5021
5022static void __mem_cgroup_free(struct mem_cgroup *memcg)
5023{
5024 int node;
5025
5026 for_each_node(node)
5027 free_mem_cgroup_per_node_info(memcg, node);
5028 free_percpu(memcg->vmstats_percpu);
5029 free_percpu(memcg->vmstats_local);
5030 kfree(memcg);
5031}
5032
5033static void mem_cgroup_free(struct mem_cgroup *memcg)
5034{
5035 memcg_wb_domain_exit(memcg);
5036 /*
5037 * Flush percpu vmstats and vmevents to guarantee the value correctness
5038 * on parent's and all ancestor levels.
5039 */
5040 memcg_flush_percpu_vmstats(memcg, false);
5041 memcg_flush_percpu_vmevents(memcg);
5042 __mem_cgroup_free(memcg);
5043}
5044
5045static struct mem_cgroup *mem_cgroup_alloc(void)
5046{
5047 struct mem_cgroup *memcg;
5048 unsigned int size;
5049 int node;
5050 int __maybe_unused i;
5051
5052 size = sizeof(struct mem_cgroup);
5053 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5054
5055 memcg = kzalloc(size, GFP_KERNEL);
5056 if (!memcg)
5057 return NULL;
5058
5059 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5060 1, MEM_CGROUP_ID_MAX,
5061 GFP_KERNEL);
5062 if (memcg->id.id < 0)
5063 goto fail;
5064
5065 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5066 if (!memcg->vmstats_local)
5067 goto fail;
5068
5069 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5070 if (!memcg->vmstats_percpu)
5071 goto fail;
5072
5073 for_each_node(node)
5074 if (alloc_mem_cgroup_per_node_info(memcg, node))
5075 goto fail;
5076
5077 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5078 goto fail;
5079
5080 INIT_WORK(&memcg->high_work, high_work_func);
5081 memcg->last_scanned_node = MAX_NUMNODES;
5082 INIT_LIST_HEAD(&memcg->oom_notify);
5083 mutex_init(&memcg->thresholds_lock);
5084 spin_lock_init(&memcg->move_lock);
5085 vmpressure_init(&memcg->vmpressure);
5086 INIT_LIST_HEAD(&memcg->event_list);
5087 spin_lock_init(&memcg->event_list_lock);
5088 memcg->socket_pressure = jiffies;
5089#ifdef CONFIG_MEMCG_KMEM
5090 memcg->kmemcg_id = -1;
5091#endif
5092#ifdef CONFIG_CGROUP_WRITEBACK
5093 INIT_LIST_HEAD(&memcg->cgwb_list);
5094 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5095 memcg->cgwb_frn[i].done =
5096 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5097#endif
5098#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5099 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5100 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5101 memcg->deferred_split_queue.split_queue_len = 0;
5102#endif
5103 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5104 return memcg;
5105fail:
5106 mem_cgroup_id_remove(memcg);
5107 __mem_cgroup_free(memcg);
5108 return NULL;
5109}
5110
5111static struct cgroup_subsys_state * __ref
5112mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5113{
5114 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5115 struct mem_cgroup *memcg;
5116 long error = -ENOMEM;
5117
5118 memcg = mem_cgroup_alloc();
5119 if (!memcg)
5120 return ERR_PTR(error);
5121
5122 memcg->high = PAGE_COUNTER_MAX;
5123 memcg->soft_limit = PAGE_COUNTER_MAX;
5124 if (parent) {
5125 memcg->swappiness = mem_cgroup_swappiness(parent);
5126 memcg->oom_kill_disable = parent->oom_kill_disable;
5127 }
5128 if (parent && parent->use_hierarchy) {
5129 memcg->use_hierarchy = true;
5130 page_counter_init(&memcg->memory, &parent->memory);
5131 page_counter_init(&memcg->swap, &parent->swap);
5132 page_counter_init(&memcg->memsw, &parent->memsw);
5133 page_counter_init(&memcg->kmem, &parent->kmem);
5134 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5135 } else {
5136 page_counter_init(&memcg->memory, NULL);
5137 page_counter_init(&memcg->swap, NULL);
5138 page_counter_init(&memcg->memsw, NULL);
5139 page_counter_init(&memcg->kmem, NULL);
5140 page_counter_init(&memcg->tcpmem, NULL);
5141 /*
5142 * Deeper hierachy with use_hierarchy == false doesn't make
5143 * much sense so let cgroup subsystem know about this
5144 * unfortunate state in our controller.
5145 */
5146 if (parent != root_mem_cgroup)
5147 memory_cgrp_subsys.broken_hierarchy = true;
5148 }
5149
5150 /* The following stuff does not apply to the root */
5151 if (!parent) {
5152#ifdef CONFIG_MEMCG_KMEM
5153 INIT_LIST_HEAD(&memcg->kmem_caches);
5154#endif
5155 root_mem_cgroup = memcg;
5156 return &memcg->css;
5157 }
5158
5159 error = memcg_online_kmem(memcg);
5160 if (error)
5161 goto fail;
5162
5163 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164 static_branch_inc(&memcg_sockets_enabled_key);
5165
5166 return &memcg->css;
5167fail:
5168 mem_cgroup_id_remove(memcg);
5169 mem_cgroup_free(memcg);
5170 return ERR_PTR(-ENOMEM);
5171}
5172
5173static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5174{
5175 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5176
5177 /*
5178 * A memcg must be visible for memcg_expand_shrinker_maps()
5179 * by the time the maps are allocated. So, we allocate maps
5180 * here, when for_each_mem_cgroup() can't skip it.
5181 */
5182 if (memcg_alloc_shrinker_maps(memcg)) {
5183 mem_cgroup_id_remove(memcg);
5184 return -ENOMEM;
5185 }
5186
5187 /* Online state pins memcg ID, memcg ID pins CSS */
5188 refcount_set(&memcg->id.ref, 1);
5189 css_get(css);
5190 return 0;
5191}
5192
5193static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5194{
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196 struct mem_cgroup_event *event, *tmp;
5197
5198 /*
5199 * Unregister events and notify userspace.
5200 * Notify userspace about cgroup removing only after rmdir of cgroup
5201 * directory to avoid race between userspace and kernelspace.
5202 */
5203 spin_lock(&memcg->event_list_lock);
5204 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5205 list_del_init(&event->list);
5206 schedule_work(&event->remove);
5207 }
5208 spin_unlock(&memcg->event_list_lock);
5209
5210 page_counter_set_min(&memcg->memory, 0);
5211 page_counter_set_low(&memcg->memory, 0);
5212
5213 memcg_offline_kmem(memcg);
5214 wb_memcg_offline(memcg);
5215
5216 drain_all_stock(memcg);
5217
5218 mem_cgroup_id_put(memcg);
5219}
5220
5221static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5222{
5223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5224
5225 invalidate_reclaim_iterators(memcg);
5226}
5227
5228static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5229{
5230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231 int __maybe_unused i;
5232
5233#ifdef CONFIG_CGROUP_WRITEBACK
5234 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5235 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5236#endif
5237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5238 static_branch_dec(&memcg_sockets_enabled_key);
5239
5240 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5241 static_branch_dec(&memcg_sockets_enabled_key);
5242
5243 vmpressure_cleanup(&memcg->vmpressure);
5244 cancel_work_sync(&memcg->high_work);
5245 mem_cgroup_remove_from_trees(memcg);
5246 memcg_free_shrinker_maps(memcg);
5247 memcg_free_kmem(memcg);
5248 mem_cgroup_free(memcg);
5249}
5250
5251/**
5252 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5253 * @css: the target css
5254 *
5255 * Reset the states of the mem_cgroup associated with @css. This is
5256 * invoked when the userland requests disabling on the default hierarchy
5257 * but the memcg is pinned through dependency. The memcg should stop
5258 * applying policies and should revert to the vanilla state as it may be
5259 * made visible again.
5260 *
5261 * The current implementation only resets the essential configurations.
5262 * This needs to be expanded to cover all the visible parts.
5263 */
5264static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5265{
5266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5267
5268 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5269 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5270 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5271 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5272 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5273 page_counter_set_min(&memcg->memory, 0);
5274 page_counter_set_low(&memcg->memory, 0);
5275 memcg->high = PAGE_COUNTER_MAX;
5276 memcg->soft_limit = PAGE_COUNTER_MAX;
5277 memcg_wb_domain_size_changed(memcg);
5278}
5279
5280#ifdef CONFIG_MMU
5281/* Handlers for move charge at task migration. */
5282static int mem_cgroup_do_precharge(unsigned long count)
5283{
5284 int ret;
5285
5286 /* Try a single bulk charge without reclaim first, kswapd may wake */
5287 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5288 if (!ret) {
5289 mc.precharge += count;
5290 return ret;
5291 }
5292
5293 /* Try charges one by one with reclaim, but do not retry */
5294 while (count--) {
5295 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5296 if (ret)
5297 return ret;
5298 mc.precharge++;
5299 cond_resched();
5300 }
5301 return 0;
5302}
5303
5304union mc_target {
5305 struct page *page;
5306 swp_entry_t ent;
5307};
5308
5309enum mc_target_type {
5310 MC_TARGET_NONE = 0,
5311 MC_TARGET_PAGE,
5312 MC_TARGET_SWAP,
5313 MC_TARGET_DEVICE,
5314};
5315
5316static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5317 unsigned long addr, pte_t ptent)
5318{
5319 struct page *page = vm_normal_page(vma, addr, ptent);
5320
5321 if (!page || !page_mapped(page))
5322 return NULL;
5323 if (PageAnon(page)) {
5324 if (!(mc.flags & MOVE_ANON))
5325 return NULL;
5326 } else {
5327 if (!(mc.flags & MOVE_FILE))
5328 return NULL;
5329 }
5330 if (!get_page_unless_zero(page))
5331 return NULL;
5332
5333 return page;
5334}
5335
5336#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5337static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5338 pte_t ptent, swp_entry_t *entry)
5339{
5340 struct page *page = NULL;
5341 swp_entry_t ent = pte_to_swp_entry(ptent);
5342
5343 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5344 return NULL;
5345
5346 /*
5347 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5348 * a device and because they are not accessible by CPU they are store
5349 * as special swap entry in the CPU page table.
5350 */
5351 if (is_device_private_entry(ent)) {
5352 page = device_private_entry_to_page(ent);
5353 /*
5354 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5355 * a refcount of 1 when free (unlike normal page)
5356 */
5357 if (!page_ref_add_unless(page, 1, 1))
5358 return NULL;
5359 return page;
5360 }
5361
5362 /*
5363 * Because lookup_swap_cache() updates some statistics counter,
5364 * we call find_get_page() with swapper_space directly.
5365 */
5366 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5367 if (do_memsw_account())
5368 entry->val = ent.val;
5369
5370 return page;
5371}
5372#else
5373static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5374 pte_t ptent, swp_entry_t *entry)
5375{
5376 return NULL;
5377}
5378#endif
5379
5380static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5381 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5382{
5383 struct page *page = NULL;
5384 struct address_space *mapping;
5385 pgoff_t pgoff;
5386
5387 if (!vma->vm_file) /* anonymous vma */
5388 return NULL;
5389 if (!(mc.flags & MOVE_FILE))
5390 return NULL;
5391
5392 mapping = vma->vm_file->f_mapping;
5393 pgoff = linear_page_index(vma, addr);
5394
5395 /* page is moved even if it's not RSS of this task(page-faulted). */
5396#ifdef CONFIG_SWAP
5397 /* shmem/tmpfs may report page out on swap: account for that too. */
5398 if (shmem_mapping(mapping)) {
5399 page = find_get_entry(mapping, pgoff);
5400 if (xa_is_value(page)) {
5401 swp_entry_t swp = radix_to_swp_entry(page);
5402 if (do_memsw_account())
5403 *entry = swp;
5404 page = find_get_page(swap_address_space(swp),
5405 swp_offset(swp));
5406 }
5407 } else
5408 page = find_get_page(mapping, pgoff);
5409#else
5410 page = find_get_page(mapping, pgoff);
5411#endif
5412 return page;
5413}
5414
5415/**
5416 * mem_cgroup_move_account - move account of the page
5417 * @page: the page
5418 * @compound: charge the page as compound or small page
5419 * @from: mem_cgroup which the page is moved from.
5420 * @to: mem_cgroup which the page is moved to. @from != @to.
5421 *
5422 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5423 *
5424 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5425 * from old cgroup.
5426 */
5427static int mem_cgroup_move_account(struct page *page,
5428 bool compound,
5429 struct mem_cgroup *from,
5430 struct mem_cgroup *to)
5431{
5432 struct lruvec *from_vec, *to_vec;
5433 struct pglist_data *pgdat;
5434 unsigned long flags;
5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436 int ret;
5437 bool anon;
5438
5439 VM_BUG_ON(from == to);
5440 VM_BUG_ON_PAGE(PageLRU(page), page);
5441 VM_BUG_ON(compound && !PageTransHuge(page));
5442
5443 /*
5444 * Prevent mem_cgroup_migrate() from looking at
5445 * page->mem_cgroup of its source page while we change it.
5446 */
5447 ret = -EBUSY;
5448 if (!trylock_page(page))
5449 goto out;
5450
5451 ret = -EINVAL;
5452 if (page->mem_cgroup != from)
5453 goto out_unlock;
5454
5455 anon = PageAnon(page);
5456
5457 pgdat = page_pgdat(page);
5458 from_vec = mem_cgroup_lruvec(pgdat, from);
5459 to_vec = mem_cgroup_lruvec(pgdat, to);
5460
5461 spin_lock_irqsave(&from->move_lock, flags);
5462
5463 if (!anon && page_mapped(page)) {
5464 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5465 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5466 }
5467
5468 /*
5469 * move_lock grabbed above and caller set from->moving_account, so
5470 * mod_memcg_page_state will serialize updates to PageDirty.
5471 * So mapping should be stable for dirty pages.
5472 */
5473 if (!anon && PageDirty(page)) {
5474 struct address_space *mapping = page_mapping(page);
5475
5476 if (mapping_cap_account_dirty(mapping)) {
5477 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5478 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5479 }
5480 }
5481
5482 if (PageWriteback(page)) {
5483 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5484 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5485 }
5486
5487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5488 if (compound && !list_empty(page_deferred_list(page))) {
5489 spin_lock(&from->deferred_split_queue.split_queue_lock);
5490 list_del_init(page_deferred_list(page));
5491 from->deferred_split_queue.split_queue_len--;
5492 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5493 }
5494#endif
5495 /*
5496 * It is safe to change page->mem_cgroup here because the page
5497 * is referenced, charged, and isolated - we can't race with
5498 * uncharging, charging, migration, or LRU putback.
5499 */
5500
5501 /* caller should have done css_get */
5502 page->mem_cgroup = to;
5503
5504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5505 if (compound && list_empty(page_deferred_list(page))) {
5506 spin_lock(&to->deferred_split_queue.split_queue_lock);
5507 list_add_tail(page_deferred_list(page),
5508 &to->deferred_split_queue.split_queue);
5509 to->deferred_split_queue.split_queue_len++;
5510 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5511 }
5512#endif
5513
5514 spin_unlock_irqrestore(&from->move_lock, flags);
5515
5516 ret = 0;
5517
5518 local_irq_disable();
5519 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5520 memcg_check_events(to, page);
5521 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5522 memcg_check_events(from, page);
5523 local_irq_enable();
5524out_unlock:
5525 unlock_page(page);
5526out:
5527 return ret;
5528}
5529
5530/**
5531 * get_mctgt_type - get target type of moving charge
5532 * @vma: the vma the pte to be checked belongs
5533 * @addr: the address corresponding to the pte to be checked
5534 * @ptent: the pte to be checked
5535 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5536 *
5537 * Returns
5538 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5539 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5540 * move charge. if @target is not NULL, the page is stored in target->page
5541 * with extra refcnt got(Callers should handle it).
5542 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5543 * target for charge migration. if @target is not NULL, the entry is stored
5544 * in target->ent.
5545 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5546 * (so ZONE_DEVICE page and thus not on the lru).
5547 * For now we such page is charge like a regular page would be as for all
5548 * intent and purposes it is just special memory taking the place of a
5549 * regular page.
5550 *
5551 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5552 *
5553 * Called with pte lock held.
5554 */
5555
5556static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5557 unsigned long addr, pte_t ptent, union mc_target *target)
5558{
5559 struct page *page = NULL;
5560 enum mc_target_type ret = MC_TARGET_NONE;
5561 swp_entry_t ent = { .val = 0 };
5562
5563 if (pte_present(ptent))
5564 page = mc_handle_present_pte(vma, addr, ptent);
5565 else if (is_swap_pte(ptent))
5566 page = mc_handle_swap_pte(vma, ptent, &ent);
5567 else if (pte_none(ptent))
5568 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5569
5570 if (!page && !ent.val)
5571 return ret;
5572 if (page) {
5573 /*
5574 * Do only loose check w/o serialization.
5575 * mem_cgroup_move_account() checks the page is valid or
5576 * not under LRU exclusion.
5577 */
5578 if (page->mem_cgroup == mc.from) {
5579 ret = MC_TARGET_PAGE;
5580 if (is_device_private_page(page))
5581 ret = MC_TARGET_DEVICE;
5582 if (target)
5583 target->page = page;
5584 }
5585 if (!ret || !target)
5586 put_page(page);
5587 }
5588 /*
5589 * There is a swap entry and a page doesn't exist or isn't charged.
5590 * But we cannot move a tail-page in a THP.
5591 */
5592 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5593 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5594 ret = MC_TARGET_SWAP;
5595 if (target)
5596 target->ent = ent;
5597 }
5598 return ret;
5599}
5600
5601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5602/*
5603 * We don't consider PMD mapped swapping or file mapped pages because THP does
5604 * not support them for now.
5605 * Caller should make sure that pmd_trans_huge(pmd) is true.
5606 */
5607static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5608 unsigned long addr, pmd_t pmd, union mc_target *target)
5609{
5610 struct page *page = NULL;
5611 enum mc_target_type ret = MC_TARGET_NONE;
5612
5613 if (unlikely(is_swap_pmd(pmd))) {
5614 VM_BUG_ON(thp_migration_supported() &&
5615 !is_pmd_migration_entry(pmd));
5616 return ret;
5617 }
5618 page = pmd_page(pmd);
5619 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5620 if (!(mc.flags & MOVE_ANON))
5621 return ret;
5622 if (page->mem_cgroup == mc.from) {
5623 ret = MC_TARGET_PAGE;
5624 if (target) {
5625 get_page(page);
5626 target->page = page;
5627 }
5628 }
5629 return ret;
5630}
5631#else
5632static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5633 unsigned long addr, pmd_t pmd, union mc_target *target)
5634{
5635 return MC_TARGET_NONE;
5636}
5637#endif
5638
5639static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5640 unsigned long addr, unsigned long end,
5641 struct mm_walk *walk)
5642{
5643 struct vm_area_struct *vma = walk->vma;
5644 pte_t *pte;
5645 spinlock_t *ptl;
5646
5647 ptl = pmd_trans_huge_lock(pmd, vma);
5648 if (ptl) {
5649 /*
5650 * Note their can not be MC_TARGET_DEVICE for now as we do not
5651 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5652 * this might change.
5653 */
5654 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5655 mc.precharge += HPAGE_PMD_NR;
5656 spin_unlock(ptl);
5657 return 0;
5658 }
5659
5660 if (pmd_trans_unstable(pmd))
5661 return 0;
5662 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5663 for (; addr != end; pte++, addr += PAGE_SIZE)
5664 if (get_mctgt_type(vma, addr, *pte, NULL))
5665 mc.precharge++; /* increment precharge temporarily */
5666 pte_unmap_unlock(pte - 1, ptl);
5667 cond_resched();
5668
5669 return 0;
5670}
5671
5672static const struct mm_walk_ops precharge_walk_ops = {
5673 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5674};
5675
5676static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5677{
5678 unsigned long precharge;
5679
5680 down_read(&mm->mmap_sem);
5681 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5682 up_read(&mm->mmap_sem);
5683
5684 precharge = mc.precharge;
5685 mc.precharge = 0;
5686
5687 return precharge;
5688}
5689
5690static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5691{
5692 unsigned long precharge = mem_cgroup_count_precharge(mm);
5693
5694 VM_BUG_ON(mc.moving_task);
5695 mc.moving_task = current;
5696 return mem_cgroup_do_precharge(precharge);
5697}
5698
5699/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5700static void __mem_cgroup_clear_mc(void)
5701{
5702 struct mem_cgroup *from = mc.from;
5703 struct mem_cgroup *to = mc.to;
5704
5705 /* we must uncharge all the leftover precharges from mc.to */
5706 if (mc.precharge) {
5707 cancel_charge(mc.to, mc.precharge);
5708 mc.precharge = 0;
5709 }
5710 /*
5711 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5712 * we must uncharge here.
5713 */
5714 if (mc.moved_charge) {
5715 cancel_charge(mc.from, mc.moved_charge);
5716 mc.moved_charge = 0;
5717 }
5718 /* we must fixup refcnts and charges */
5719 if (mc.moved_swap) {
5720 /* uncharge swap account from the old cgroup */
5721 if (!mem_cgroup_is_root(mc.from))
5722 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5723
5724 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5725
5726 /*
5727 * we charged both to->memory and to->memsw, so we
5728 * should uncharge to->memory.
5729 */
5730 if (!mem_cgroup_is_root(mc.to))
5731 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5732
5733 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5734 css_put_many(&mc.to->css, mc.moved_swap);
5735
5736 mc.moved_swap = 0;
5737 }
5738 memcg_oom_recover(from);
5739 memcg_oom_recover(to);
5740 wake_up_all(&mc.waitq);
5741}
5742
5743static void mem_cgroup_clear_mc(void)
5744{
5745 struct mm_struct *mm = mc.mm;
5746
5747 /*
5748 * we must clear moving_task before waking up waiters at the end of
5749 * task migration.
5750 */
5751 mc.moving_task = NULL;
5752 __mem_cgroup_clear_mc();
5753 spin_lock(&mc.lock);
5754 mc.from = NULL;
5755 mc.to = NULL;
5756 mc.mm = NULL;
5757 spin_unlock(&mc.lock);
5758
5759 mmput(mm);
5760}
5761
5762static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5763{
5764 struct cgroup_subsys_state *css;
5765 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5766 struct mem_cgroup *from;
5767 struct task_struct *leader, *p;
5768 struct mm_struct *mm;
5769 unsigned long move_flags;
5770 int ret = 0;
5771
5772 /* charge immigration isn't supported on the default hierarchy */
5773 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5774 return 0;
5775
5776 /*
5777 * Multi-process migrations only happen on the default hierarchy
5778 * where charge immigration is not used. Perform charge
5779 * immigration if @tset contains a leader and whine if there are
5780 * multiple.
5781 */
5782 p = NULL;
5783 cgroup_taskset_for_each_leader(leader, css, tset) {
5784 WARN_ON_ONCE(p);
5785 p = leader;
5786 memcg = mem_cgroup_from_css(css);
5787 }
5788 if (!p)
5789 return 0;
5790
5791 /*
5792 * We are now commited to this value whatever it is. Changes in this
5793 * tunable will only affect upcoming migrations, not the current one.
5794 * So we need to save it, and keep it going.
5795 */
5796 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5797 if (!move_flags)
5798 return 0;
5799
5800 from = mem_cgroup_from_task(p);
5801
5802 VM_BUG_ON(from == memcg);
5803
5804 mm = get_task_mm(p);
5805 if (!mm)
5806 return 0;
5807 /* We move charges only when we move a owner of the mm */
5808 if (mm->owner == p) {
5809 VM_BUG_ON(mc.from);
5810 VM_BUG_ON(mc.to);
5811 VM_BUG_ON(mc.precharge);
5812 VM_BUG_ON(mc.moved_charge);
5813 VM_BUG_ON(mc.moved_swap);
5814
5815 spin_lock(&mc.lock);
5816 mc.mm = mm;
5817 mc.from = from;
5818 mc.to = memcg;
5819 mc.flags = move_flags;
5820 spin_unlock(&mc.lock);
5821 /* We set mc.moving_task later */
5822
5823 ret = mem_cgroup_precharge_mc(mm);
5824 if (ret)
5825 mem_cgroup_clear_mc();
5826 } else {
5827 mmput(mm);
5828 }
5829 return ret;
5830}
5831
5832static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5833{
5834 if (mc.to)
5835 mem_cgroup_clear_mc();
5836}
5837
5838static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5839 unsigned long addr, unsigned long end,
5840 struct mm_walk *walk)
5841{
5842 int ret = 0;
5843 struct vm_area_struct *vma = walk->vma;
5844 pte_t *pte;
5845 spinlock_t *ptl;
5846 enum mc_target_type target_type;
5847 union mc_target target;
5848 struct page *page;
5849
5850 ptl = pmd_trans_huge_lock(pmd, vma);
5851 if (ptl) {
5852 if (mc.precharge < HPAGE_PMD_NR) {
5853 spin_unlock(ptl);
5854 return 0;
5855 }
5856 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5857 if (target_type == MC_TARGET_PAGE) {
5858 page = target.page;
5859 if (!isolate_lru_page(page)) {
5860 if (!mem_cgroup_move_account(page, true,
5861 mc.from, mc.to)) {
5862 mc.precharge -= HPAGE_PMD_NR;
5863 mc.moved_charge += HPAGE_PMD_NR;
5864 }
5865 putback_lru_page(page);
5866 }
5867 put_page(page);
5868 } else if (target_type == MC_TARGET_DEVICE) {
5869 page = target.page;
5870 if (!mem_cgroup_move_account(page, true,
5871 mc.from, mc.to)) {
5872 mc.precharge -= HPAGE_PMD_NR;
5873 mc.moved_charge += HPAGE_PMD_NR;
5874 }
5875 put_page(page);
5876 }
5877 spin_unlock(ptl);
5878 return 0;
5879 }
5880
5881 if (pmd_trans_unstable(pmd))
5882 return 0;
5883retry:
5884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5885 for (; addr != end; addr += PAGE_SIZE) {
5886 pte_t ptent = *(pte++);
5887 bool device = false;
5888 swp_entry_t ent;
5889
5890 if (!mc.precharge)
5891 break;
5892
5893 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5894 case MC_TARGET_DEVICE:
5895 device = true;
5896 /* fall through */
5897 case MC_TARGET_PAGE:
5898 page = target.page;
5899 /*
5900 * We can have a part of the split pmd here. Moving it
5901 * can be done but it would be too convoluted so simply
5902 * ignore such a partial THP and keep it in original
5903 * memcg. There should be somebody mapping the head.
5904 */
5905 if (PageTransCompound(page))
5906 goto put;
5907 if (!device && isolate_lru_page(page))
5908 goto put;
5909 if (!mem_cgroup_move_account(page, false,
5910 mc.from, mc.to)) {
5911 mc.precharge--;
5912 /* we uncharge from mc.from later. */
5913 mc.moved_charge++;
5914 }
5915 if (!device)
5916 putback_lru_page(page);
5917put: /* get_mctgt_type() gets the page */
5918 put_page(page);
5919 break;
5920 case MC_TARGET_SWAP:
5921 ent = target.ent;
5922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5923 mc.precharge--;
5924 /* we fixup refcnts and charges later. */
5925 mc.moved_swap++;
5926 }
5927 break;
5928 default:
5929 break;
5930 }
5931 }
5932 pte_unmap_unlock(pte - 1, ptl);
5933 cond_resched();
5934
5935 if (addr != end) {
5936 /*
5937 * We have consumed all precharges we got in can_attach().
5938 * We try charge one by one, but don't do any additional
5939 * charges to mc.to if we have failed in charge once in attach()
5940 * phase.
5941 */
5942 ret = mem_cgroup_do_precharge(1);
5943 if (!ret)
5944 goto retry;
5945 }
5946
5947 return ret;
5948}
5949
5950static const struct mm_walk_ops charge_walk_ops = {
5951 .pmd_entry = mem_cgroup_move_charge_pte_range,
5952};
5953
5954static void mem_cgroup_move_charge(void)
5955{
5956 lru_add_drain_all();
5957 /*
5958 * Signal lock_page_memcg() to take the memcg's move_lock
5959 * while we're moving its pages to another memcg. Then wait
5960 * for already started RCU-only updates to finish.
5961 */
5962 atomic_inc(&mc.from->moving_account);
5963 synchronize_rcu();
5964retry:
5965 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5966 /*
5967 * Someone who are holding the mmap_sem might be waiting in
5968 * waitq. So we cancel all extra charges, wake up all waiters,
5969 * and retry. Because we cancel precharges, we might not be able
5970 * to move enough charges, but moving charge is a best-effort
5971 * feature anyway, so it wouldn't be a big problem.
5972 */
5973 __mem_cgroup_clear_mc();
5974 cond_resched();
5975 goto retry;
5976 }
5977 /*
5978 * When we have consumed all precharges and failed in doing
5979 * additional charge, the page walk just aborts.
5980 */
5981 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5982 NULL);
5983
5984 up_read(&mc.mm->mmap_sem);
5985 atomic_dec(&mc.from->moving_account);
5986}
5987
5988static void mem_cgroup_move_task(void)
5989{
5990 if (mc.to) {
5991 mem_cgroup_move_charge();
5992 mem_cgroup_clear_mc();
5993 }
5994}
5995#else /* !CONFIG_MMU */
5996static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5997{
5998 return 0;
5999}
6000static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6001{
6002}
6003static void mem_cgroup_move_task(void)
6004{
6005}
6006#endif
6007
6008/*
6009 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6010 * to verify whether we're attached to the default hierarchy on each mount
6011 * attempt.
6012 */
6013static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6014{
6015 /*
6016 * use_hierarchy is forced on the default hierarchy. cgroup core
6017 * guarantees that @root doesn't have any children, so turning it
6018 * on for the root memcg is enough.
6019 */
6020 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6021 root_mem_cgroup->use_hierarchy = true;
6022 else
6023 root_mem_cgroup->use_hierarchy = false;
6024}
6025
6026static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6027{
6028 if (value == PAGE_COUNTER_MAX)
6029 seq_puts(m, "max\n");
6030 else
6031 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6032
6033 return 0;
6034}
6035
6036static u64 memory_current_read(struct cgroup_subsys_state *css,
6037 struct cftype *cft)
6038{
6039 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6040
6041 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6042}
6043
6044static int memory_min_show(struct seq_file *m, void *v)
6045{
6046 return seq_puts_memcg_tunable(m,
6047 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6048}
6049
6050static ssize_t memory_min_write(struct kernfs_open_file *of,
6051 char *buf, size_t nbytes, loff_t off)
6052{
6053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054 unsigned long min;
6055 int err;
6056
6057 buf = strstrip(buf);
6058 err = page_counter_memparse(buf, "max", &min);
6059 if (err)
6060 return err;
6061
6062 page_counter_set_min(&memcg->memory, min);
6063
6064 return nbytes;
6065}
6066
6067static int memory_low_show(struct seq_file *m, void *v)
6068{
6069 return seq_puts_memcg_tunable(m,
6070 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6071}
6072
6073static ssize_t memory_low_write(struct kernfs_open_file *of,
6074 char *buf, size_t nbytes, loff_t off)
6075{
6076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6077 unsigned long low;
6078 int err;
6079
6080 buf = strstrip(buf);
6081 err = page_counter_memparse(buf, "max", &low);
6082 if (err)
6083 return err;
6084
6085 page_counter_set_low(&memcg->memory, low);
6086
6087 return nbytes;
6088}
6089
6090static int memory_high_show(struct seq_file *m, void *v)
6091{
6092 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6093}
6094
6095static ssize_t memory_high_write(struct kernfs_open_file *of,
6096 char *buf, size_t nbytes, loff_t off)
6097{
6098 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6099 unsigned long nr_pages;
6100 unsigned long high;
6101 int err;
6102
6103 buf = strstrip(buf);
6104 err = page_counter_memparse(buf, "max", &high);
6105 if (err)
6106 return err;
6107
6108 memcg->high = high;
6109
6110 nr_pages = page_counter_read(&memcg->memory);
6111 if (nr_pages > high)
6112 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6113 GFP_KERNEL, true);
6114
6115 memcg_wb_domain_size_changed(memcg);
6116 return nbytes;
6117}
6118
6119static int memory_max_show(struct seq_file *m, void *v)
6120{
6121 return seq_puts_memcg_tunable(m,
6122 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6123}
6124
6125static ssize_t memory_max_write(struct kernfs_open_file *of,
6126 char *buf, size_t nbytes, loff_t off)
6127{
6128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6129 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6130 bool drained = false;
6131 unsigned long max;
6132 int err;
6133
6134 buf = strstrip(buf);
6135 err = page_counter_memparse(buf, "max", &max);
6136 if (err)
6137 return err;
6138
6139 xchg(&memcg->memory.max, max);
6140
6141 for (;;) {
6142 unsigned long nr_pages = page_counter_read(&memcg->memory);
6143
6144 if (nr_pages <= max)
6145 break;
6146
6147 if (signal_pending(current)) {
6148 err = -EINTR;
6149 break;
6150 }
6151
6152 if (!drained) {
6153 drain_all_stock(memcg);
6154 drained = true;
6155 continue;
6156 }
6157
6158 if (nr_reclaims) {
6159 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6160 GFP_KERNEL, true))
6161 nr_reclaims--;
6162 continue;
6163 }
6164
6165 memcg_memory_event(memcg, MEMCG_OOM);
6166 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6167 break;
6168 }
6169
6170 memcg_wb_domain_size_changed(memcg);
6171 return nbytes;
6172}
6173
6174static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6175{
6176 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6177 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6178 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6179 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6180 seq_printf(m, "oom_kill %lu\n",
6181 atomic_long_read(&events[MEMCG_OOM_KILL]));
6182}
6183
6184static int memory_events_show(struct seq_file *m, void *v)
6185{
6186 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6187
6188 __memory_events_show(m, memcg->memory_events);
6189 return 0;
6190}
6191
6192static int memory_events_local_show(struct seq_file *m, void *v)
6193{
6194 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6195
6196 __memory_events_show(m, memcg->memory_events_local);
6197 return 0;
6198}
6199
6200static int memory_stat_show(struct seq_file *m, void *v)
6201{
6202 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6203 char *buf;
6204
6205 buf = memory_stat_format(memcg);
6206 if (!buf)
6207 return -ENOMEM;
6208 seq_puts(m, buf);
6209 kfree(buf);
6210 return 0;
6211}
6212
6213static int memory_oom_group_show(struct seq_file *m, void *v)
6214{
6215 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6216
6217 seq_printf(m, "%d\n", memcg->oom_group);
6218
6219 return 0;
6220}
6221
6222static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6223 char *buf, size_t nbytes, loff_t off)
6224{
6225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6226 int ret, oom_group;
6227
6228 buf = strstrip(buf);
6229 if (!buf)
6230 return -EINVAL;
6231
6232 ret = kstrtoint(buf, 0, &oom_group);
6233 if (ret)
6234 return ret;
6235
6236 if (oom_group != 0 && oom_group != 1)
6237 return -EINVAL;
6238
6239 memcg->oom_group = oom_group;
6240
6241 return nbytes;
6242}
6243
6244static struct cftype memory_files[] = {
6245 {
6246 .name = "current",
6247 .flags = CFTYPE_NOT_ON_ROOT,
6248 .read_u64 = memory_current_read,
6249 },
6250 {
6251 .name = "min",
6252 .flags = CFTYPE_NOT_ON_ROOT,
6253 .seq_show = memory_min_show,
6254 .write = memory_min_write,
6255 },
6256 {
6257 .name = "low",
6258 .flags = CFTYPE_NOT_ON_ROOT,
6259 .seq_show = memory_low_show,
6260 .write = memory_low_write,
6261 },
6262 {
6263 .name = "high",
6264 .flags = CFTYPE_NOT_ON_ROOT,
6265 .seq_show = memory_high_show,
6266 .write = memory_high_write,
6267 },
6268 {
6269 .name = "max",
6270 .flags = CFTYPE_NOT_ON_ROOT,
6271 .seq_show = memory_max_show,
6272 .write = memory_max_write,
6273 },
6274 {
6275 .name = "events",
6276 .flags = CFTYPE_NOT_ON_ROOT,
6277 .file_offset = offsetof(struct mem_cgroup, events_file),
6278 .seq_show = memory_events_show,
6279 },
6280 {
6281 .name = "events.local",
6282 .flags = CFTYPE_NOT_ON_ROOT,
6283 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6284 .seq_show = memory_events_local_show,
6285 },
6286 {
6287 .name = "stat",
6288 .flags = CFTYPE_NOT_ON_ROOT,
6289 .seq_show = memory_stat_show,
6290 },
6291 {
6292 .name = "oom.group",
6293 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6294 .seq_show = memory_oom_group_show,
6295 .write = memory_oom_group_write,
6296 },
6297 { } /* terminate */
6298};
6299
6300struct cgroup_subsys memory_cgrp_subsys = {
6301 .css_alloc = mem_cgroup_css_alloc,
6302 .css_online = mem_cgroup_css_online,
6303 .css_offline = mem_cgroup_css_offline,
6304 .css_released = mem_cgroup_css_released,
6305 .css_free = mem_cgroup_css_free,
6306 .css_reset = mem_cgroup_css_reset,
6307 .can_attach = mem_cgroup_can_attach,
6308 .cancel_attach = mem_cgroup_cancel_attach,
6309 .post_attach = mem_cgroup_move_task,
6310 .bind = mem_cgroup_bind,
6311 .dfl_cftypes = memory_files,
6312 .legacy_cftypes = mem_cgroup_legacy_files,
6313 .early_init = 0,
6314};
6315
6316/**
6317 * mem_cgroup_protected - check if memory consumption is in the normal range
6318 * @root: the top ancestor of the sub-tree being checked
6319 * @memcg: the memory cgroup to check
6320 *
6321 * WARNING: This function is not stateless! It can only be used as part
6322 * of a top-down tree iteration, not for isolated queries.
6323 *
6324 * Returns one of the following:
6325 * MEMCG_PROT_NONE: cgroup memory is not protected
6326 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6327 * an unprotected supply of reclaimable memory from other cgroups.
6328 * MEMCG_PROT_MIN: cgroup memory is protected
6329 *
6330 * @root is exclusive; it is never protected when looked at directly
6331 *
6332 * To provide a proper hierarchical behavior, effective memory.min/low values
6333 * are used. Below is the description of how effective memory.low is calculated.
6334 * Effective memory.min values is calculated in the same way.
6335 *
6336 * Effective memory.low is always equal or less than the original memory.low.
6337 * If there is no memory.low overcommittment (which is always true for
6338 * top-level memory cgroups), these two values are equal.
6339 * Otherwise, it's a part of parent's effective memory.low,
6340 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6341 * memory.low usages, where memory.low usage is the size of actually
6342 * protected memory.
6343 *
6344 * low_usage
6345 * elow = min( memory.low, parent->elow * ------------------ ),
6346 * siblings_low_usage
6347 *
6348 * | memory.current, if memory.current < memory.low
6349 * low_usage = |
6350 * | 0, otherwise.
6351 *
6352 *
6353 * Such definition of the effective memory.low provides the expected
6354 * hierarchical behavior: parent's memory.low value is limiting
6355 * children, unprotected memory is reclaimed first and cgroups,
6356 * which are not using their guarantee do not affect actual memory
6357 * distribution.
6358 *
6359 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6360 *
6361 * A A/memory.low = 2G, A/memory.current = 6G
6362 * //\\
6363 * BC DE B/memory.low = 3G B/memory.current = 2G
6364 * C/memory.low = 1G C/memory.current = 2G
6365 * D/memory.low = 0 D/memory.current = 2G
6366 * E/memory.low = 10G E/memory.current = 0
6367 *
6368 * and the memory pressure is applied, the following memory distribution
6369 * is expected (approximately):
6370 *
6371 * A/memory.current = 2G
6372 *
6373 * B/memory.current = 1.3G
6374 * C/memory.current = 0.6G
6375 * D/memory.current = 0
6376 * E/memory.current = 0
6377 *
6378 * These calculations require constant tracking of the actual low usages
6379 * (see propagate_protected_usage()), as well as recursive calculation of
6380 * effective memory.low values. But as we do call mem_cgroup_protected()
6381 * path for each memory cgroup top-down from the reclaim,
6382 * it's possible to optimize this part, and save calculated elow
6383 * for next usage. This part is intentionally racy, but it's ok,
6384 * as memory.low is a best-effort mechanism.
6385 */
6386enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6387 struct mem_cgroup *memcg)
6388{
6389 struct mem_cgroup *parent;
6390 unsigned long emin, parent_emin;
6391 unsigned long elow, parent_elow;
6392 unsigned long usage;
6393
6394 if (mem_cgroup_disabled())
6395 return MEMCG_PROT_NONE;
6396
6397 if (!root)
6398 root = root_mem_cgroup;
6399 if (memcg == root)
6400 return MEMCG_PROT_NONE;
6401
6402 usage = page_counter_read(&memcg->memory);
6403 if (!usage)
6404 return MEMCG_PROT_NONE;
6405
6406 emin = memcg->memory.min;
6407 elow = memcg->memory.low;
6408
6409 parent = parent_mem_cgroup(memcg);
6410 /* No parent means a non-hierarchical mode on v1 memcg */
6411 if (!parent)
6412 return MEMCG_PROT_NONE;
6413
6414 if (parent == root)
6415 goto exit;
6416
6417 parent_emin = READ_ONCE(parent->memory.emin);
6418 emin = min(emin, parent_emin);
6419 if (emin && parent_emin) {
6420 unsigned long min_usage, siblings_min_usage;
6421
6422 min_usage = min(usage, memcg->memory.min);
6423 siblings_min_usage = atomic_long_read(
6424 &parent->memory.children_min_usage);
6425
6426 if (min_usage && siblings_min_usage)
6427 emin = min(emin, parent_emin * min_usage /
6428 siblings_min_usage);
6429 }
6430
6431 parent_elow = READ_ONCE(parent->memory.elow);
6432 elow = min(elow, parent_elow);
6433 if (elow && parent_elow) {
6434 unsigned long low_usage, siblings_low_usage;
6435
6436 low_usage = min(usage, memcg->memory.low);
6437 siblings_low_usage = atomic_long_read(
6438 &parent->memory.children_low_usage);
6439
6440 if (low_usage && siblings_low_usage)
6441 elow = min(elow, parent_elow * low_usage /
6442 siblings_low_usage);
6443 }
6444
6445exit:
6446 memcg->memory.emin = emin;
6447 memcg->memory.elow = elow;
6448
6449 if (usage <= emin)
6450 return MEMCG_PROT_MIN;
6451 else if (usage <= elow)
6452 return MEMCG_PROT_LOW;
6453 else
6454 return MEMCG_PROT_NONE;
6455}
6456
6457/**
6458 * mem_cgroup_try_charge - try charging a page
6459 * @page: page to charge
6460 * @mm: mm context of the victim
6461 * @gfp_mask: reclaim mode
6462 * @memcgp: charged memcg return
6463 * @compound: charge the page as compound or small page
6464 *
6465 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6466 * pages according to @gfp_mask if necessary.
6467 *
6468 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6469 * Otherwise, an error code is returned.
6470 *
6471 * After page->mapping has been set up, the caller must finalize the
6472 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6473 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6474 */
6475int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6476 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6477 bool compound)
6478{
6479 struct mem_cgroup *memcg = NULL;
6480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6481 int ret = 0;
6482
6483 if (mem_cgroup_disabled())
6484 goto out;
6485
6486 if (PageSwapCache(page)) {
6487 /*
6488 * Every swap fault against a single page tries to charge the
6489 * page, bail as early as possible. shmem_unuse() encounters
6490 * already charged pages, too. The USED bit is protected by
6491 * the page lock, which serializes swap cache removal, which
6492 * in turn serializes uncharging.
6493 */
6494 VM_BUG_ON_PAGE(!PageLocked(page), page);
6495 if (compound_head(page)->mem_cgroup)
6496 goto out;
6497
6498 if (do_swap_account) {
6499 swp_entry_t ent = { .val = page_private(page), };
6500 unsigned short id = lookup_swap_cgroup_id(ent);
6501
6502 rcu_read_lock();
6503 memcg = mem_cgroup_from_id(id);
6504 if (memcg && !css_tryget_online(&memcg->css))
6505 memcg = NULL;
6506 rcu_read_unlock();
6507 }
6508 }
6509
6510 if (!memcg)
6511 memcg = get_mem_cgroup_from_mm(mm);
6512
6513 ret = try_charge(memcg, gfp_mask, nr_pages);
6514
6515 css_put(&memcg->css);
6516out:
6517 *memcgp = memcg;
6518 return ret;
6519}
6520
6521int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6522 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6523 bool compound)
6524{
6525 struct mem_cgroup *memcg;
6526 int ret;
6527
6528 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6529 memcg = *memcgp;
6530 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6531 return ret;
6532}
6533
6534/**
6535 * mem_cgroup_commit_charge - commit a page charge
6536 * @page: page to charge
6537 * @memcg: memcg to charge the page to
6538 * @lrucare: page might be on LRU already
6539 * @compound: charge the page as compound or small page
6540 *
6541 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6542 * after page->mapping has been set up. This must happen atomically
6543 * as part of the page instantiation, i.e. under the page table lock
6544 * for anonymous pages, under the page lock for page and swap cache.
6545 *
6546 * In addition, the page must not be on the LRU during the commit, to
6547 * prevent racing with task migration. If it might be, use @lrucare.
6548 *
6549 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6550 */
6551void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6552 bool lrucare, bool compound)
6553{
6554 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6555
6556 VM_BUG_ON_PAGE(!page->mapping, page);
6557 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6558
6559 if (mem_cgroup_disabled())
6560 return;
6561 /*
6562 * Swap faults will attempt to charge the same page multiple
6563 * times. But reuse_swap_page() might have removed the page
6564 * from swapcache already, so we can't check PageSwapCache().
6565 */
6566 if (!memcg)
6567 return;
6568
6569 commit_charge(page, memcg, lrucare);
6570
6571 local_irq_disable();
6572 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6573 memcg_check_events(memcg, page);
6574 local_irq_enable();
6575
6576 if (do_memsw_account() && PageSwapCache(page)) {
6577 swp_entry_t entry = { .val = page_private(page) };
6578 /*
6579 * The swap entry might not get freed for a long time,
6580 * let's not wait for it. The page already received a
6581 * memory+swap charge, drop the swap entry duplicate.
6582 */
6583 mem_cgroup_uncharge_swap(entry, nr_pages);
6584 }
6585}
6586
6587/**
6588 * mem_cgroup_cancel_charge - cancel a page charge
6589 * @page: page to charge
6590 * @memcg: memcg to charge the page to
6591 * @compound: charge the page as compound or small page
6592 *
6593 * Cancel a charge transaction started by mem_cgroup_try_charge().
6594 */
6595void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6596 bool compound)
6597{
6598 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6599
6600 if (mem_cgroup_disabled())
6601 return;
6602 /*
6603 * Swap faults will attempt to charge the same page multiple
6604 * times. But reuse_swap_page() might have removed the page
6605 * from swapcache already, so we can't check PageSwapCache().
6606 */
6607 if (!memcg)
6608 return;
6609
6610 cancel_charge(memcg, nr_pages);
6611}
6612
6613struct uncharge_gather {
6614 struct mem_cgroup *memcg;
6615 unsigned long pgpgout;
6616 unsigned long nr_anon;
6617 unsigned long nr_file;
6618 unsigned long nr_kmem;
6619 unsigned long nr_huge;
6620 unsigned long nr_shmem;
6621 struct page *dummy_page;
6622};
6623
6624static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6625{
6626 memset(ug, 0, sizeof(*ug));
6627}
6628
6629static void uncharge_batch(const struct uncharge_gather *ug)
6630{
6631 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6632 unsigned long flags;
6633
6634 if (!mem_cgroup_is_root(ug->memcg)) {
6635 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6636 if (do_memsw_account())
6637 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6638 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6639 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6640 memcg_oom_recover(ug->memcg);
6641 }
6642
6643 local_irq_save(flags);
6644 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6645 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6646 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6647 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6648 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6649 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6650 memcg_check_events(ug->memcg, ug->dummy_page);
6651 local_irq_restore(flags);
6652
6653 if (!mem_cgroup_is_root(ug->memcg))
6654 css_put_many(&ug->memcg->css, nr_pages);
6655}
6656
6657static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6658{
6659 VM_BUG_ON_PAGE(PageLRU(page), page);
6660 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6661 !PageHWPoison(page) , page);
6662
6663 if (!page->mem_cgroup)
6664 return;
6665
6666 /*
6667 * Nobody should be changing or seriously looking at
6668 * page->mem_cgroup at this point, we have fully
6669 * exclusive access to the page.
6670 */
6671
6672 if (ug->memcg != page->mem_cgroup) {
6673 if (ug->memcg) {
6674 uncharge_batch(ug);
6675 uncharge_gather_clear(ug);
6676 }
6677 ug->memcg = page->mem_cgroup;
6678 }
6679
6680 if (!PageKmemcg(page)) {
6681 unsigned int nr_pages = 1;
6682
6683 if (PageTransHuge(page)) {
6684 nr_pages = compound_nr(page);
6685 ug->nr_huge += nr_pages;
6686 }
6687 if (PageAnon(page))
6688 ug->nr_anon += nr_pages;
6689 else {
6690 ug->nr_file += nr_pages;
6691 if (PageSwapBacked(page))
6692 ug->nr_shmem += nr_pages;
6693 }
6694 ug->pgpgout++;
6695 } else {
6696 ug->nr_kmem += compound_nr(page);
6697 __ClearPageKmemcg(page);
6698 }
6699
6700 ug->dummy_page = page;
6701 page->mem_cgroup = NULL;
6702}
6703
6704static void uncharge_list(struct list_head *page_list)
6705{
6706 struct uncharge_gather ug;
6707 struct list_head *next;
6708
6709 uncharge_gather_clear(&ug);
6710
6711 /*
6712 * Note that the list can be a single page->lru; hence the
6713 * do-while loop instead of a simple list_for_each_entry().
6714 */
6715 next = page_list->next;
6716 do {
6717 struct page *page;
6718
6719 page = list_entry(next, struct page, lru);
6720 next = page->lru.next;
6721
6722 uncharge_page(page, &ug);
6723 } while (next != page_list);
6724
6725 if (ug.memcg)
6726 uncharge_batch(&ug);
6727}
6728
6729/**
6730 * mem_cgroup_uncharge - uncharge a page
6731 * @page: page to uncharge
6732 *
6733 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6734 * mem_cgroup_commit_charge().
6735 */
6736void mem_cgroup_uncharge(struct page *page)
6737{
6738 struct uncharge_gather ug;
6739
6740 if (mem_cgroup_disabled())
6741 return;
6742
6743 /* Don't touch page->lru of any random page, pre-check: */
6744 if (!page->mem_cgroup)
6745 return;
6746
6747 uncharge_gather_clear(&ug);
6748 uncharge_page(page, &ug);
6749 uncharge_batch(&ug);
6750}
6751
6752/**
6753 * mem_cgroup_uncharge_list - uncharge a list of page
6754 * @page_list: list of pages to uncharge
6755 *
6756 * Uncharge a list of pages previously charged with
6757 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6758 */
6759void mem_cgroup_uncharge_list(struct list_head *page_list)
6760{
6761 if (mem_cgroup_disabled())
6762 return;
6763
6764 if (!list_empty(page_list))
6765 uncharge_list(page_list);
6766}
6767
6768/**
6769 * mem_cgroup_migrate - charge a page's replacement
6770 * @oldpage: currently circulating page
6771 * @newpage: replacement page
6772 *
6773 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6774 * be uncharged upon free.
6775 *
6776 * Both pages must be locked, @newpage->mapping must be set up.
6777 */
6778void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6779{
6780 struct mem_cgroup *memcg;
6781 unsigned int nr_pages;
6782 bool compound;
6783 unsigned long flags;
6784
6785 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6786 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6787 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6788 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6789 newpage);
6790
6791 if (mem_cgroup_disabled())
6792 return;
6793
6794 /* Page cache replacement: new page already charged? */
6795 if (newpage->mem_cgroup)
6796 return;
6797
6798 /* Swapcache readahead pages can get replaced before being charged */
6799 memcg = oldpage->mem_cgroup;
6800 if (!memcg)
6801 return;
6802
6803 /* Force-charge the new page. The old one will be freed soon */
6804 compound = PageTransHuge(newpage);
6805 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6806
6807 page_counter_charge(&memcg->memory, nr_pages);
6808 if (do_memsw_account())
6809 page_counter_charge(&memcg->memsw, nr_pages);
6810 css_get_many(&memcg->css, nr_pages);
6811
6812 commit_charge(newpage, memcg, false);
6813
6814 local_irq_save(flags);
6815 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6816 memcg_check_events(memcg, newpage);
6817 local_irq_restore(flags);
6818}
6819
6820DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6821EXPORT_SYMBOL(memcg_sockets_enabled_key);
6822
6823void mem_cgroup_sk_alloc(struct sock *sk)
6824{
6825 struct mem_cgroup *memcg;
6826
6827 if (!mem_cgroup_sockets_enabled)
6828 return;
6829
6830 /*
6831 * Socket cloning can throw us here with sk_memcg already
6832 * filled. It won't however, necessarily happen from
6833 * process context. So the test for root memcg given
6834 * the current task's memcg won't help us in this case.
6835 *
6836 * Respecting the original socket's memcg is a better
6837 * decision in this case.
6838 */
6839 if (sk->sk_memcg) {
6840 css_get(&sk->sk_memcg->css);
6841 return;
6842 }
6843
6844 rcu_read_lock();
6845 memcg = mem_cgroup_from_task(current);
6846 if (memcg == root_mem_cgroup)
6847 goto out;
6848 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6849 goto out;
6850 if (css_tryget_online(&memcg->css))
6851 sk->sk_memcg = memcg;
6852out:
6853 rcu_read_unlock();
6854}
6855
6856void mem_cgroup_sk_free(struct sock *sk)
6857{
6858 if (sk->sk_memcg)
6859 css_put(&sk->sk_memcg->css);
6860}
6861
6862/**
6863 * mem_cgroup_charge_skmem - charge socket memory
6864 * @memcg: memcg to charge
6865 * @nr_pages: number of pages to charge
6866 *
6867 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6868 * @memcg's configured limit, %false if the charge had to be forced.
6869 */
6870bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6871{
6872 gfp_t gfp_mask = GFP_KERNEL;
6873
6874 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6875 struct page_counter *fail;
6876
6877 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6878 memcg->tcpmem_pressure = 0;
6879 return true;
6880 }
6881 page_counter_charge(&memcg->tcpmem, nr_pages);
6882 memcg->tcpmem_pressure = 1;
6883 return false;
6884 }
6885
6886 /* Don't block in the packet receive path */
6887 if (in_softirq())
6888 gfp_mask = GFP_NOWAIT;
6889
6890 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6891
6892 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6893 return true;
6894
6895 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6896 return false;
6897}
6898
6899/**
6900 * mem_cgroup_uncharge_skmem - uncharge socket memory
6901 * @memcg: memcg to uncharge
6902 * @nr_pages: number of pages to uncharge
6903 */
6904void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6905{
6906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6907 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6908 return;
6909 }
6910
6911 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6912
6913 refill_stock(memcg, nr_pages);
6914}
6915
6916static int __init cgroup_memory(char *s)
6917{
6918 char *token;
6919
6920 while ((token = strsep(&s, ",")) != NULL) {
6921 if (!*token)
6922 continue;
6923 if (!strcmp(token, "nosocket"))
6924 cgroup_memory_nosocket = true;
6925 if (!strcmp(token, "nokmem"))
6926 cgroup_memory_nokmem = true;
6927 }
6928 return 0;
6929}
6930__setup("cgroup.memory=", cgroup_memory);
6931
6932/*
6933 * subsys_initcall() for memory controller.
6934 *
6935 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6936 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6937 * basically everything that doesn't depend on a specific mem_cgroup structure
6938 * should be initialized from here.
6939 */
6940static int __init mem_cgroup_init(void)
6941{
6942 int cpu, node;
6943
6944#ifdef CONFIG_MEMCG_KMEM
6945 /*
6946 * Kmem cache creation is mostly done with the slab_mutex held,
6947 * so use a workqueue with limited concurrency to avoid stalling
6948 * all worker threads in case lots of cgroups are created and
6949 * destroyed simultaneously.
6950 */
6951 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6952 BUG_ON(!memcg_kmem_cache_wq);
6953#endif
6954
6955 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6956 memcg_hotplug_cpu_dead);
6957
6958 for_each_possible_cpu(cpu)
6959 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6960 drain_local_stock);
6961
6962 for_each_node(node) {
6963 struct mem_cgroup_tree_per_node *rtpn;
6964
6965 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6966 node_online(node) ? node : NUMA_NO_NODE);
6967
6968 rtpn->rb_root = RB_ROOT;
6969 rtpn->rb_rightmost = NULL;
6970 spin_lock_init(&rtpn->lock);
6971 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6972 }
6973
6974 return 0;
6975}
6976subsys_initcall(mem_cgroup_init);
6977
6978#ifdef CONFIG_MEMCG_SWAP
6979static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6980{
6981 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6982 /*
6983 * The root cgroup cannot be destroyed, so it's refcount must
6984 * always be >= 1.
6985 */
6986 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6987 VM_BUG_ON(1);
6988 break;
6989 }
6990 memcg = parent_mem_cgroup(memcg);
6991 if (!memcg)
6992 memcg = root_mem_cgroup;
6993 }
6994 return memcg;
6995}
6996
6997/**
6998 * mem_cgroup_swapout - transfer a memsw charge to swap
6999 * @page: page whose memsw charge to transfer
7000 * @entry: swap entry to move the charge to
7001 *
7002 * Transfer the memsw charge of @page to @entry.
7003 */
7004void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7005{
7006 struct mem_cgroup *memcg, *swap_memcg;
7007 unsigned int nr_entries;
7008 unsigned short oldid;
7009
7010 VM_BUG_ON_PAGE(PageLRU(page), page);
7011 VM_BUG_ON_PAGE(page_count(page), page);
7012
7013 if (!do_memsw_account())
7014 return;
7015
7016 memcg = page->mem_cgroup;
7017
7018 /* Readahead page, never charged */
7019 if (!memcg)
7020 return;
7021
7022 /*
7023 * In case the memcg owning these pages has been offlined and doesn't
7024 * have an ID allocated to it anymore, charge the closest online
7025 * ancestor for the swap instead and transfer the memory+swap charge.
7026 */
7027 swap_memcg = mem_cgroup_id_get_online(memcg);
7028 nr_entries = hpage_nr_pages(page);
7029 /* Get references for the tail pages, too */
7030 if (nr_entries > 1)
7031 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7032 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7033 nr_entries);
7034 VM_BUG_ON_PAGE(oldid, page);
7035 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7036
7037 page->mem_cgroup = NULL;
7038
7039 if (!mem_cgroup_is_root(memcg))
7040 page_counter_uncharge(&memcg->memory, nr_entries);
7041
7042 if (memcg != swap_memcg) {
7043 if (!mem_cgroup_is_root(swap_memcg))
7044 page_counter_charge(&swap_memcg->memsw, nr_entries);
7045 page_counter_uncharge(&memcg->memsw, nr_entries);
7046 }
7047
7048 /*
7049 * Interrupts should be disabled here because the caller holds the
7050 * i_pages lock which is taken with interrupts-off. It is
7051 * important here to have the interrupts disabled because it is the
7052 * only synchronisation we have for updating the per-CPU variables.
7053 */
7054 VM_BUG_ON(!irqs_disabled());
7055 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7056 -nr_entries);
7057 memcg_check_events(memcg, page);
7058
7059 if (!mem_cgroup_is_root(memcg))
7060 css_put_many(&memcg->css, nr_entries);
7061}
7062
7063/**
7064 * mem_cgroup_try_charge_swap - try charging swap space for a page
7065 * @page: page being added to swap
7066 * @entry: swap entry to charge
7067 *
7068 * Try to charge @page's memcg for the swap space at @entry.
7069 *
7070 * Returns 0 on success, -ENOMEM on failure.
7071 */
7072int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7073{
7074 unsigned int nr_pages = hpage_nr_pages(page);
7075 struct page_counter *counter;
7076 struct mem_cgroup *memcg;
7077 unsigned short oldid;
7078
7079 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7080 return 0;
7081
7082 memcg = page->mem_cgroup;
7083
7084 /* Readahead page, never charged */
7085 if (!memcg)
7086 return 0;
7087
7088 if (!entry.val) {
7089 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7090 return 0;
7091 }
7092
7093 memcg = mem_cgroup_id_get_online(memcg);
7094
7095 if (!mem_cgroup_is_root(memcg) &&
7096 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7097 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7098 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7099 mem_cgroup_id_put(memcg);
7100 return -ENOMEM;
7101 }
7102
7103 /* Get references for the tail pages, too */
7104 if (nr_pages > 1)
7105 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7106 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7107 VM_BUG_ON_PAGE(oldid, page);
7108 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7109
7110 return 0;
7111}
7112
7113/**
7114 * mem_cgroup_uncharge_swap - uncharge swap space
7115 * @entry: swap entry to uncharge
7116 * @nr_pages: the amount of swap space to uncharge
7117 */
7118void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7119{
7120 struct mem_cgroup *memcg;
7121 unsigned short id;
7122
7123 if (!do_swap_account)
7124 return;
7125
7126 id = swap_cgroup_record(entry, 0, nr_pages);
7127 rcu_read_lock();
7128 memcg = mem_cgroup_from_id(id);
7129 if (memcg) {
7130 if (!mem_cgroup_is_root(memcg)) {
7131 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7132 page_counter_uncharge(&memcg->swap, nr_pages);
7133 else
7134 page_counter_uncharge(&memcg->memsw, nr_pages);
7135 }
7136 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7137 mem_cgroup_id_put_many(memcg, nr_pages);
7138 }
7139 rcu_read_unlock();
7140}
7141
7142long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7143{
7144 long nr_swap_pages = get_nr_swap_pages();
7145
7146 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7147 return nr_swap_pages;
7148 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7149 nr_swap_pages = min_t(long, nr_swap_pages,
7150 READ_ONCE(memcg->swap.max) -
7151 page_counter_read(&memcg->swap));
7152 return nr_swap_pages;
7153}
7154
7155bool mem_cgroup_swap_full(struct page *page)
7156{
7157 struct mem_cgroup *memcg;
7158
7159 VM_BUG_ON_PAGE(!PageLocked(page), page);
7160
7161 if (vm_swap_full())
7162 return true;
7163 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7164 return false;
7165
7166 memcg = page->mem_cgroup;
7167 if (!memcg)
7168 return false;
7169
7170 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7171 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7172 return true;
7173
7174 return false;
7175}
7176
7177/* for remember boot option*/
7178#ifdef CONFIG_MEMCG_SWAP_ENABLED
7179static int really_do_swap_account __initdata = 1;
7180#else
7181static int really_do_swap_account __initdata;
7182#endif
7183
7184static int __init enable_swap_account(char *s)
7185{
7186 if (!strcmp(s, "1"))
7187 really_do_swap_account = 1;
7188 else if (!strcmp(s, "0"))
7189 really_do_swap_account = 0;
7190 return 1;
7191}
7192__setup("swapaccount=", enable_swap_account);
7193
7194static u64 swap_current_read(struct cgroup_subsys_state *css,
7195 struct cftype *cft)
7196{
7197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7198
7199 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7200}
7201
7202static int swap_max_show(struct seq_file *m, void *v)
7203{
7204 return seq_puts_memcg_tunable(m,
7205 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7206}
7207
7208static ssize_t swap_max_write(struct kernfs_open_file *of,
7209 char *buf, size_t nbytes, loff_t off)
7210{
7211 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7212 unsigned long max;
7213 int err;
7214
7215 buf = strstrip(buf);
7216 err = page_counter_memparse(buf, "max", &max);
7217 if (err)
7218 return err;
7219
7220 xchg(&memcg->swap.max, max);
7221
7222 return nbytes;
7223}
7224
7225static int swap_events_show(struct seq_file *m, void *v)
7226{
7227 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7228
7229 seq_printf(m, "max %lu\n",
7230 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7231 seq_printf(m, "fail %lu\n",
7232 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7233
7234 return 0;
7235}
7236
7237static struct cftype swap_files[] = {
7238 {
7239 .name = "swap.current",
7240 .flags = CFTYPE_NOT_ON_ROOT,
7241 .read_u64 = swap_current_read,
7242 },
7243 {
7244 .name = "swap.max",
7245 .flags = CFTYPE_NOT_ON_ROOT,
7246 .seq_show = swap_max_show,
7247 .write = swap_max_write,
7248 },
7249 {
7250 .name = "swap.events",
7251 .flags = CFTYPE_NOT_ON_ROOT,
7252 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7253 .seq_show = swap_events_show,
7254 },
7255 { } /* terminate */
7256};
7257
7258static struct cftype memsw_cgroup_files[] = {
7259 {
7260 .name = "memsw.usage_in_bytes",
7261 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7262 .read_u64 = mem_cgroup_read_u64,
7263 },
7264 {
7265 .name = "memsw.max_usage_in_bytes",
7266 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7267 .write = mem_cgroup_reset,
7268 .read_u64 = mem_cgroup_read_u64,
7269 },
7270 {
7271 .name = "memsw.limit_in_bytes",
7272 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7273 .write = mem_cgroup_write,
7274 .read_u64 = mem_cgroup_read_u64,
7275 },
7276 {
7277 .name = "memsw.failcnt",
7278 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7279 .write = mem_cgroup_reset,
7280 .read_u64 = mem_cgroup_read_u64,
7281 },
7282 { }, /* terminate */
7283};
7284
7285static int __init mem_cgroup_swap_init(void)
7286{
7287 if (!mem_cgroup_disabled() && really_do_swap_account) {
7288 do_swap_account = 1;
7289 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7290 swap_files));
7291 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7292 memsw_cgroup_files));
7293 }
7294 return 0;
7295}
7296subsys_initcall(mem_cgroup_swap_init);
7297
7298#endif /* CONFIG_MEMCG_SWAP */