Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
223
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237};
238
239/* for encoding cft->private value on file */
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246};
247
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250#define MEMFILE_ATTR(val) ((val) & 0xffff)
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
253
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
272#ifndef CONFIG_SLOB
273/*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
286
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324#endif /* !CONFIG_SLOB */
325
326static struct mem_cgroup_per_zone *
327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328{
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333}
334
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356}
357
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
386static struct mem_cgroup_per_zone *
387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388{
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393}
394
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453{
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459}
460
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558}
559
560/*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583{
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597}
598
599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608}
609
610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613{
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640}
641
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238{
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331{
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1395 /*
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1400 */
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1403
1404 memcg->last_scanned_node = node;
1405 return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410 return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1418{
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1427 };
1428
1429 excess = soft_limit_excess(root_memcg);
1430
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!total)
1442 break;
1443 /*
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1448 */
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1452 }
1453 continue;
1454 }
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1460 }
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479 struct mem_cgroup *iter, *failed = NULL;
1480
1481 spin_lock(&memcg_oom_lock);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1485 /*
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1488 */
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1494 }
1495
1496 if (failed) {
1497 /*
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1500 */
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1505 }
1506 iter->oom_lock = false;
1507 }
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511 spin_unlock(&memcg_oom_lock);
1512
1513 return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518 struct mem_cgroup *iter;
1519
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529 struct mem_cgroup *iter;
1530
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539 struct mem_cgroup *iter;
1540
1541 /*
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 */
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1561{
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1565
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1568
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577 /*
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1584 */
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591 if (!current->memcg_may_oom)
1592 return;
1593 /*
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1597 *
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1601 *
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1606 */
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1635
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1639
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1642
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1651
1652 locked = mem_cgroup_oom_trylock(memcg);
1653
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1656
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1666 }
1667
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1670 /*
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1674 */
1675 memcg_oom_recover(memcg);
1676 }
1677cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1694
1695 /*
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1699 */
1700 rcu_read_lock();
1701
1702 if (mem_cgroup_disabled())
1703 return;
1704again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1708
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1711
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1716 }
1717
1718 /*
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1722 */
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1725
1726 return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1740
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1743
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 }
1746
1747 rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH 32U
1756struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE 0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1781
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1784
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1789 }
1790 put_cpu_var(memcg_stock);
1791 return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799 struct mem_cgroup *old = stock->cached;
1800
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1807 }
1808 stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1833 }
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844 int cpu, curcpu;
1845
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1855
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1866 }
1867 }
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1879
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1882
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1885
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1894{
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905 struct mem_cgroup *memcg;
1906
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1919
1920 if (likely(!nr_pages))
1921 return;
1922
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1931{
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1939
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1945
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1956 }
1957
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1961 }
1962
1963 /*
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1968 */
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1973
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1976
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1979
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1984
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1987
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1992 }
1993
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1996 /*
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2000 *
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2004 */
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2007 /*
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2010 */
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2013
2014 if (nr_retries--)
2015 goto retry;
2016
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2019
2020 if (fatal_signal_pending(current))
2021 goto force;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030force:
2031 /*
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2035 */
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2040
2041 return 0;
2042
2043done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047
2048 /*
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2056 */
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2063 }
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2067 }
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070 return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2077
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082 css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087 struct zone *zone = page_zone(page);
2088
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2092
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 if (isolated) {
2106 struct lruvec *lruvec;
2107
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2112 }
2113 spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2118{
2119 int isolated;
2120
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123 /*
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2126 */
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2129
2130 /*
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2133 *
2134 * - the page is uncharged
2135 *
2136 * - the page is off-LRU
2137 *
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2140 *
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2143 */
2144 page->mem_cgroup = memcg;
2145
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153 int id, size;
2154 int err;
2155
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2160
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2163
2164 /*
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2167 */
2168 down_write(&memcg_cache_ids_sem);
2169
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2175
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2181
2182 up_write(&memcg_cache_ids_sem);
2183
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2187 }
2188 return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193 ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2208
2209 memcg_create_kmem_cache(memcg, cachep);
2210
2211 css_put(&memcg->css);
2212 kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2220{
2221 struct memcg_kmem_cache_create_work *cw;
2222
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2226
2227 css_get(&memcg->css);
2228
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233 schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2238{
2239 /*
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2243 *
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2249 */
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2273
2274 VM_BUG_ON(!is_root_cache(cachep));
2275
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2278
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2281
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2284
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2289
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2293
2294 /*
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2299 *
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2305 */
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308 css_put(&memcg->css);
2309 return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320{
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2356
2357 if (!memcg)
2358 return;
2359
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382 int i;
2383
2384 if (mem_cgroup_disabled())
2385 return;
2386
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2389
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2398{
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436 return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444{
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499{
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673{
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683{
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689{
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766}
2767
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778{
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919{
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969{
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010{
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047{
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054{
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195#ifdef CONFIG_DEBUG_VM
3196 {
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218#endif
3219
3220 return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225{
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233{
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294unlock:
3295 rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428{
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434{
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519{
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525{
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531{
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553{
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579{
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597 return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607 wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646{
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665}
3666
3667#else /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671 return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727{
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760{
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778{
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893out_put_css:
3894 css_put(css);
3895out_put_cfile:
3896 fdput(cfile);
3897out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900 fdput(efile);
3901out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974#ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979#endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003#ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011#endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4043 /*
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4046 *
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4050 */
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4056
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4063 }
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070 kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075 int node;
4076
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4089
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4096
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4100
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4104
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4107
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123 return memcg;
4124fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4135
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4139
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4145 }
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4159 /*
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4163 */
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4166 }
4167
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4172 }
4173
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4177
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181 return &memcg->css;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4192
4193 return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4200
4201 /*
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4205 */
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4210 }
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221 invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314};
4315
4316enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324{
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365 return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397#else
4398 page = find_get_page(mapping, pgoff);
4399#endif
4400 return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419{
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493out_unlock:
4494 unlock_page(page);
4495out:
4496 return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568 return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575{
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671 struct mm_struct *mm = mc.mm;
4672
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4684
4685 mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4697
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4701
4702 /*
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4707 */
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4713 }
4714 if (!p)
4715 return 0;
4716
4717 /*
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4721 */
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4725
4726 from = mem_cgroup_from_task(p);
4727
4728 VM_BUG_ON(from == memcg);
4729
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4740
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4748
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4754 }
4755 return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4767{
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4775
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4781 }
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4790 }
4791 putback_lru_page(page);
4792 }
4793 put_page(page);
4794 }
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4806
4807 if (!mc.precharge)
4808 break;
4809
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4813 /*
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4818 */
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4828 }
4829 putback_lru_page(page);
4830put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4839 }
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4847
4848 if (addr != end) {
4849 /*
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4854 */
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4858 }
4859
4860 return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4868 };
4869
4870 lru_add_drain_all();
4871 /*
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4875 */
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 /*
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4886 */
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4890 }
4891 /*
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4894 */
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4905 }
4906}
4907#else /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910 return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940{
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961{
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5008
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5039
5040 xchg(&memcg->memory.limit, max);
5041
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045 if (nr_pages <= max)
5046 break;
5047
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5051 }
5052
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5057 }
5058
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5064 }
5065
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5069 }
5070
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084 return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5093
5094 /*
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5097 *
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 *
5102 * Current memory state:
5103 */
5104
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5107
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5130
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 }
5136
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142 /* Accumulated memory events */
5143
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149 return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153 {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5157 },
5158 {
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5163 },
5164 {
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5169 },
5170 {
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5175 },
5176 {
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5181 },
5182 {
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5186 },
5187 { } /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5263{
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5267
5268 if (mem_cgroup_disabled())
5269 goto out;
5270
5271 if (PageSwapCache(page)) {
5272 /*
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5278 */
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5282
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5292 }
5293 }
5294
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5297
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300 css_put(&memcg->css);
5301out:
5302 *memcgp = memcg;
5303 return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5324{
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330 if (mem_cgroup_disabled())
5331 return;
5332 /*
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5336 */
5337 if (!memcg)
5338 return;
5339
5340 commit_charge(page, memcg, lrucare);
5341
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5346
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5349 /*
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5353 */
5354 mem_cgroup_uncharge_swap(entry);
5355 }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5367{
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370 if (mem_cgroup_disabled())
5371 return;
5372 /*
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5376 */
5377 if (!memcg)
5378 return;
5379
5380 cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5386{
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5389
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5395 }
5396
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5405
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5419
5420 /*
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5423 */
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5427
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5430
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434 if (!page->mem_cgroup)
5435 continue;
5436
5437 /*
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5441 */
5442
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 }
5449 memcg = page->mem_cgroup;
5450 }
5451
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5456 }
5457
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5462
5463 page->mem_cgroup = NULL;
5464
5465 pgpgout++;
5466 } while (next != page_list);
5467
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482 if (mem_cgroup_disabled())
5483 return;
5484
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5488
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5524
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5530
5531 if (mem_cgroup_disabled())
5532 return;
5533
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5537
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5542
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5551
5552 commit_charge(newpage, memcg, false);
5553
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589out:
5590 rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610 gfp_t gfp_mask = GFP_KERNEL;
5611
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5614
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5618 }
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5622 }
5623
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5627
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5632
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5647 }
5648
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657 char *token;
5658
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5666 }
5667 return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681 int cpu, node;
5682
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5688
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5692
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5695
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5698
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5702 }
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 }
5705
5706 return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5722
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5725
5726 if (!do_memsw_account())
5727 return;
5728
5729 memcg = page->mem_cgroup;
5730
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5734
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5738
5739 page->mem_cgroup = NULL;
5740
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5743
5744 /*
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5749 */
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5769
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5772
5773 memcg = page->mem_cgroup;
5774
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5778
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5782
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5786
5787 css_get(&memcg->css);
5788 return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5801
5802 if (!do_swap_account)
5803 return;
5804
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5814 }
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5817 }
5818 rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823 long nr_swap_pages = get_nr_swap_pages();
5824
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836 struct mem_cgroup *memcg;
5837
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5844
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5848
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5852
5853 return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891 return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5896{
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5900
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5905
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5911
5912 return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916 {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5920 },
5921 {
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5926 },
5927 { } /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931 {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5935 },
5936 {
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5941 },
5942 {
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5947 },
5948 {
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5953 },
5954 { }, /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5965 }
5966 return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/mm.h>
32#include <linux/hugetlb.h>
33#include <linux/pagemap.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/page_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include "internal.h"
60#include <net/sock.h>
61#include <net/ip.h>
62#include <net/tcp_memcontrol.h>
63#include "slab.h"
64
65#include <asm/uaccess.h>
66
67#include <trace/events/vmscan.h>
68
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
71
72#define MEM_CGROUP_RECLAIM_RETRIES 5
73static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75#ifdef CONFIG_MEMCG_SWAP
76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77int do_swap_account __read_mostly;
78
79/* for remember boot option*/
80#ifdef CONFIG_MEMCG_SWAP_ENABLED
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
86#else
87#define do_swap_account 0
88#endif
89
90
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98};
99
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106};
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134};
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
138
139struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144};
145
146struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
158/*
159 * per-zone information in memory controller.
160 */
161struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173};
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
204/* For threshold */
205struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
230
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
234struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358#endif
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381};
382
383/* internal only representation about the status of kmem accounting. */
384enum {
385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387};
388
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
416#endif
417
418/* Stuffs for move charges at task migration. */
419/*
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 */
423enum move_type {
424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
426 NR_MOVE_TYPE,
427};
428
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
431 spinlock_t lock; /* for from, to */
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
434 unsigned long immigrate_flags;
435 unsigned long precharge;
436 unsigned long moved_charge;
437 unsigned long moved_swap;
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
444
445static bool move_anon(void)
446{
447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448}
449
450static bool move_file(void)
451{
452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453}
454
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 MEM_CGROUP_CHARGE_TYPE_ANON,
465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
467 NR_CHARGE_TYPE,
468};
469
470/* for encoding cft->private value on file */
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
475 _KMEM,
476};
477
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
480#define MEMFILE_ATTR(val) ((val) & 0xffff)
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
483
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
502}
503
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &memory_cgrp_subsys);
542 return mem_cgroup_from_css(css);
543}
544
545/* Writing them here to avoid exposing memcg's inner layout */
546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547
548void sock_update_memcg(struct sock *sk)
549{
550 if (mem_cgroup_sockets_enabled) {
551 struct mem_cgroup *memcg;
552 struct cg_proto *cg_proto;
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 css_get(&sk->sk_cgrp->memcg->css);
567 return;
568 }
569
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 sk->sk_cgrp = cg_proto;
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
588 css_put(&sk->sk_cgrp->memcg->css);
589 }
590}
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
597 return &memcg->tcp_mem;
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
600
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
603 if (!memcg_proto_activated(&memcg->tcp_mem))
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
613#ifdef CONFIG_MEMCG_KMEM
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
627int memcg_limited_groups_array_size;
628
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
650struct static_key memcg_kmem_enabled_key;
651EXPORT_SYMBOL(memcg_kmem_enabled_key);
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
655 if (memcg_kmem_is_active(memcg)) {
656 static_key_slow_dec(&memcg_kmem_enabled_key);
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
677static void drain_all_stock_async(struct mem_cgroup *memcg);
678
679static struct mem_cgroup_per_zone *
680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681{
682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684}
685
686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687{
688 return &memcg->css;
689}
690
691static struct mem_cgroup_per_zone *
692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693{
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
696
697 return mem_cgroup_zoneinfo(memcg, nid, zid);
698}
699
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 enum mem_cgroup_stat_index idx)
879{
880 long val = 0;
881 int cpu;
882
883 get_online_cpus();
884 for_each_online_cpu(cpu)
885 val += per_cpu(memcg->stat->count[idx], cpu);
886#ifdef CONFIG_HOTPLUG_CPU
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
890#endif
891 put_online_cpus();
892 return val;
893}
894
895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900}
901
902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
908 get_online_cpus();
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911#ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915#endif
916 put_online_cpus();
917 return val;
918}
919
920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 struct page *page,
922 bool anon, int nr_pages)
923{
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 nr_pages);
931 else
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 nr_pages);
934
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
942 else {
943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
944 nr_pages = -nr_pages; /* for event */
945 }
946
947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
948}
949
950unsigned long
951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952{
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957}
958
959static unsigned long
960mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961 unsigned int lru_mask)
962{
963 struct mem_cgroup_per_zone *mz;
964 enum lru_list lru;
965 unsigned long ret = 0;
966
967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
972 }
973 return ret;
974}
975
976static unsigned long
977mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 int nid, unsigned int lru_mask)
979{
980 u64 total = 0;
981 int zid;
982
983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
986
987 return total;
988}
989
990static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991 unsigned int lru_mask)
992{
993 int nid;
994 u64 total = 0;
995
996 for_each_node_state(nid, N_MEMORY)
997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998 return total;
999}
1000
1001static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
1003{
1004 unsigned long val, next;
1005
1006 val = __this_cpu_read(memcg->stat->nr_page_events);
1007 next = __this_cpu_read(memcg->stat->targets[target]);
1008 /* from time_after() in jiffies.h */
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
1025 }
1026 return false;
1027}
1028
1029/*
1030 * Check events in order.
1031 *
1032 */
1033static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034{
1035 preempt_disable();
1036 /* threshold event is triggered in finer grain than soft limit */
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
1039 bool do_softlimit;
1040 bool do_numainfo __maybe_unused;
1041
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
1044#if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047#endif
1048 preempt_enable();
1049
1050 mem_cgroup_threshold(memcg);
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
1053#if MAX_NUMNODES > 1
1054 if (unlikely(do_numainfo))
1055 atomic_inc(&memcg->numainfo_events);
1056#endif
1057 } else
1058 preempt_enable();
1059}
1060
1061struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1062{
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1072}
1073
1074static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1075{
1076 struct mem_cgroup *memcg = NULL;
1077
1078 rcu_read_lock();
1079 do {
1080 /*
1081 * Page cache insertions can happen withou an
1082 * actual mm context, e.g. during disk probing
1083 * on boot, loopback IO, acct() writes etc.
1084 */
1085 if (unlikely(!mm))
1086 memcg = root_mem_cgroup;
1087 else {
1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1089 if (unlikely(!memcg))
1090 memcg = root_mem_cgroup;
1091 }
1092 } while (!css_tryget(&memcg->css));
1093 rcu_read_unlock();
1094 return memcg;
1095}
1096
1097/*
1098 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1099 * ref. count) or NULL if the whole root's subtree has been visited.
1100 *
1101 * helper function to be used by mem_cgroup_iter
1102 */
1103static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1104 struct mem_cgroup *last_visited)
1105{
1106 struct cgroup_subsys_state *prev_css, *next_css;
1107
1108 prev_css = last_visited ? &last_visited->css : NULL;
1109skip_node:
1110 next_css = css_next_descendant_pre(prev_css, &root->css);
1111
1112 /*
1113 * Even if we found a group we have to make sure it is
1114 * alive. css && !memcg means that the groups should be
1115 * skipped and we should continue the tree walk.
1116 * last_visited css is safe to use because it is
1117 * protected by css_get and the tree walk is rcu safe.
1118 *
1119 * We do not take a reference on the root of the tree walk
1120 * because we might race with the root removal when it would
1121 * be the only node in the iterated hierarchy and mem_cgroup_iter
1122 * would end up in an endless loop because it expects that at
1123 * least one valid node will be returned. Root cannot disappear
1124 * because caller of the iterator should hold it already so
1125 * skipping css reference should be safe.
1126 */
1127 if (next_css) {
1128 if ((next_css == &root->css) ||
1129 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1130 return mem_cgroup_from_css(next_css);
1131
1132 prev_css = next_css;
1133 goto skip_node;
1134 }
1135
1136 return NULL;
1137}
1138
1139static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1140{
1141 /*
1142 * When a group in the hierarchy below root is destroyed, the
1143 * hierarchy iterator can no longer be trusted since it might
1144 * have pointed to the destroyed group. Invalidate it.
1145 */
1146 atomic_inc(&root->dead_count);
1147}
1148
1149static struct mem_cgroup *
1150mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1151 struct mem_cgroup *root,
1152 int *sequence)
1153{
1154 struct mem_cgroup *position = NULL;
1155 /*
1156 * A cgroup destruction happens in two stages: offlining and
1157 * release. They are separated by a RCU grace period.
1158 *
1159 * If the iterator is valid, we may still race with an
1160 * offlining. The RCU lock ensures the object won't be
1161 * released, tryget will fail if we lost the race.
1162 */
1163 *sequence = atomic_read(&root->dead_count);
1164 if (iter->last_dead_count == *sequence) {
1165 smp_rmb();
1166 position = iter->last_visited;
1167
1168 /*
1169 * We cannot take a reference to root because we might race
1170 * with root removal and returning NULL would end up in
1171 * an endless loop on the iterator user level when root
1172 * would be returned all the time.
1173 */
1174 if (position && position != root &&
1175 !css_tryget(&position->css))
1176 position = NULL;
1177 }
1178 return position;
1179}
1180
1181static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1182 struct mem_cgroup *last_visited,
1183 struct mem_cgroup *new_position,
1184 struct mem_cgroup *root,
1185 int sequence)
1186{
1187 /* root reference counting symmetric to mem_cgroup_iter_load */
1188 if (last_visited && last_visited != root)
1189 css_put(&last_visited->css);
1190 /*
1191 * We store the sequence count from the time @last_visited was
1192 * loaded successfully instead of rereading it here so that we
1193 * don't lose destruction events in between. We could have
1194 * raced with the destruction of @new_position after all.
1195 */
1196 iter->last_visited = new_position;
1197 smp_wmb();
1198 iter->last_dead_count = sequence;
1199}
1200
1201/**
1202 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1203 * @root: hierarchy root
1204 * @prev: previously returned memcg, NULL on first invocation
1205 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1206 *
1207 * Returns references to children of the hierarchy below @root, or
1208 * @root itself, or %NULL after a full round-trip.
1209 *
1210 * Caller must pass the return value in @prev on subsequent
1211 * invocations for reference counting, or use mem_cgroup_iter_break()
1212 * to cancel a hierarchy walk before the round-trip is complete.
1213 *
1214 * Reclaimers can specify a zone and a priority level in @reclaim to
1215 * divide up the memcgs in the hierarchy among all concurrent
1216 * reclaimers operating on the same zone and priority.
1217 */
1218struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1219 struct mem_cgroup *prev,
1220 struct mem_cgroup_reclaim_cookie *reclaim)
1221{
1222 struct mem_cgroup *memcg = NULL;
1223 struct mem_cgroup *last_visited = NULL;
1224
1225 if (mem_cgroup_disabled())
1226 return NULL;
1227
1228 if (!root)
1229 root = root_mem_cgroup;
1230
1231 if (prev && !reclaim)
1232 last_visited = prev;
1233
1234 if (!root->use_hierarchy && root != root_mem_cgroup) {
1235 if (prev)
1236 goto out_css_put;
1237 return root;
1238 }
1239
1240 rcu_read_lock();
1241 while (!memcg) {
1242 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1243 int uninitialized_var(seq);
1244
1245 if (reclaim) {
1246 int nid = zone_to_nid(reclaim->zone);
1247 int zid = zone_idx(reclaim->zone);
1248 struct mem_cgroup_per_zone *mz;
1249
1250 mz = mem_cgroup_zoneinfo(root, nid, zid);
1251 iter = &mz->reclaim_iter[reclaim->priority];
1252 if (prev && reclaim->generation != iter->generation) {
1253 iter->last_visited = NULL;
1254 goto out_unlock;
1255 }
1256
1257 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1258 }
1259
1260 memcg = __mem_cgroup_iter_next(root, last_visited);
1261
1262 if (reclaim) {
1263 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1264 seq);
1265
1266 if (!memcg)
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
1271
1272 if (prev && !memcg)
1273 goto out_unlock;
1274 }
1275out_unlock:
1276 rcu_read_unlock();
1277out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
1281 return memcg;
1282}
1283
1284/**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
1291{
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296}
1297
1298/*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303#define for_each_mem_cgroup_tree(iter, root) \
1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1305 iter != NULL; \
1306 iter = mem_cgroup_iter(root, iter, NULL))
1307
1308#define for_each_mem_cgroup(iter) \
1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1310 iter != NULL; \
1311 iter = mem_cgroup_iter(NULL, iter, NULL))
1312
1313void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1314{
1315 struct mem_cgroup *memcg;
1316
1317 rcu_read_lock();
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
1320 goto out;
1321
1322 switch (idx) {
1323 case PGFAULT:
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1328 break;
1329 default:
1330 BUG();
1331 }
1332out:
1333 rcu_read_unlock();
1334}
1335EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1336
1337/**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
1340 * @memcg: memcg of the wanted lruvec
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348{
1349 struct mem_cgroup_per_zone *mz;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1358 lruvec = &mz->lruvec;
1359out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
1368}
1369
1370/*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
1383
1384/**
1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1386 * @page: the page
1387 * @zone: zone of the page
1388 */
1389struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1390{
1391 struct mem_cgroup_per_zone *mz;
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
1394 struct lruvec *lruvec;
1395
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
1400
1401 pc = lookup_page_cgroup(page);
1402 memcg = pc->mem_cgroup;
1403
1404 /*
1405 * Surreptitiously switch any uncharged offlist page to root:
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
1416 mz = page_cgroup_zoneinfo(memcg, page);
1417 lruvec = &mz->lruvec;
1418out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
1427}
1428
1429/**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
1434 *
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
1437 */
1438void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
1440{
1441 struct mem_cgroup_per_zone *mz;
1442 unsigned long *lru_size;
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
1451}
1452
1453/*
1454 * Checks whether given mem is same or in the root_mem_cgroup's
1455 * hierarchy subtree
1456 */
1457bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
1459{
1460 if (root_memcg == memcg)
1461 return true;
1462 if (!root_memcg->use_hierarchy || !memcg)
1463 return false;
1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1465}
1466
1467static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469{
1470 bool ret;
1471
1472 rcu_read_lock();
1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1474 rcu_read_unlock();
1475 return ret;
1476}
1477
1478bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
1480{
1481 struct mem_cgroup *curr = NULL;
1482 struct task_struct *p;
1483 bool ret;
1484
1485 p = find_lock_task_mm(task);
1486 if (p) {
1487 curr = get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
1495 rcu_read_lock();
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
1499 rcu_read_unlock();
1500 }
1501 /*
1502 * We should check use_hierarchy of "memcg" not "curr". Because checking
1503 * use_hierarchy of "curr" here make this function true if hierarchy is
1504 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1505 * hierarchy(even if use_hierarchy is disabled in "memcg").
1506 */
1507 ret = mem_cgroup_same_or_subtree(memcg, curr);
1508 css_put(&curr->css);
1509 return ret;
1510}
1511
1512int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1513{
1514 unsigned long inactive_ratio;
1515 unsigned long inactive;
1516 unsigned long active;
1517 unsigned long gb;
1518
1519 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1520 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1521
1522 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1523 if (gb)
1524 inactive_ratio = int_sqrt(10 * gb);
1525 else
1526 inactive_ratio = 1;
1527
1528 return inactive * inactive_ratio < active;
1529}
1530
1531#define mem_cgroup_from_res_counter(counter, member) \
1532 container_of(counter, struct mem_cgroup, member)
1533
1534/**
1535 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1536 * @memcg: the memory cgroup
1537 *
1538 * Returns the maximum amount of memory @mem can be charged with, in
1539 * pages.
1540 */
1541static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1542{
1543 unsigned long long margin;
1544
1545 margin = res_counter_margin(&memcg->res);
1546 if (do_swap_account)
1547 margin = min(margin, res_counter_margin(&memcg->memsw));
1548 return margin >> PAGE_SHIFT;
1549}
1550
1551int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1552{
1553 /* root ? */
1554 if (!css_parent(&memcg->css))
1555 return vm_swappiness;
1556
1557 return memcg->swappiness;
1558}
1559
1560/*
1561 * memcg->moving_account is used for checking possibility that some thread is
1562 * calling move_account(). When a thread on CPU-A starts moving pages under
1563 * a memcg, other threads should check memcg->moving_account under
1564 * rcu_read_lock(), like this:
1565 *
1566 * CPU-A CPU-B
1567 * rcu_read_lock()
1568 * memcg->moving_account+1 if (memcg->mocing_account)
1569 * take heavy locks.
1570 * synchronize_rcu() update something.
1571 * rcu_read_unlock()
1572 * start move here.
1573 */
1574
1575/* for quick checking without looking up memcg */
1576atomic_t memcg_moving __read_mostly;
1577
1578static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1579{
1580 atomic_inc(&memcg_moving);
1581 atomic_inc(&memcg->moving_account);
1582 synchronize_rcu();
1583}
1584
1585static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1586{
1587 /*
1588 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1589 * We check NULL in callee rather than caller.
1590 */
1591 if (memcg) {
1592 atomic_dec(&memcg_moving);
1593 atomic_dec(&memcg->moving_account);
1594 }
1595}
1596
1597/*
1598 * 2 routines for checking "mem" is under move_account() or not.
1599 *
1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1601 * is used for avoiding races in accounting. If true,
1602 * pc->mem_cgroup may be overwritten.
1603 *
1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1605 * under hierarchy of moving cgroups. This is for
1606 * waiting at hith-memory prressure caused by "move".
1607 */
1608
1609static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1610{
1611 VM_BUG_ON(!rcu_read_lock_held());
1612 return atomic_read(&memcg->moving_account) > 0;
1613}
1614
1615static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1616{
1617 struct mem_cgroup *from;
1618 struct mem_cgroup *to;
1619 bool ret = false;
1620 /*
1621 * Unlike task_move routines, we access mc.to, mc.from not under
1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1623 */
1624 spin_lock(&mc.lock);
1625 from = mc.from;
1626 to = mc.to;
1627 if (!from)
1628 goto unlock;
1629
1630 ret = mem_cgroup_same_or_subtree(memcg, from)
1631 || mem_cgroup_same_or_subtree(memcg, to);
1632unlock:
1633 spin_unlock(&mc.lock);
1634 return ret;
1635}
1636
1637static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1638{
1639 if (mc.moving_task && current != mc.moving_task) {
1640 if (mem_cgroup_under_move(memcg)) {
1641 DEFINE_WAIT(wait);
1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1643 /* moving charge context might have finished. */
1644 if (mc.moving_task)
1645 schedule();
1646 finish_wait(&mc.waitq, &wait);
1647 return true;
1648 }
1649 }
1650 return false;
1651}
1652
1653/*
1654 * Take this lock when
1655 * - a code tries to modify page's memcg while it's USED.
1656 * - a code tries to modify page state accounting in a memcg.
1657 * see mem_cgroup_stolen(), too.
1658 */
1659static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1660 unsigned long *flags)
1661{
1662 spin_lock_irqsave(&memcg->move_lock, *flags);
1663}
1664
1665static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1666 unsigned long *flags)
1667{
1668 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1669}
1670
1671#define K(x) ((x) << (PAGE_SHIFT-10))
1672/**
1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1674 * @memcg: The memory cgroup that went over limit
1675 * @p: Task that is going to be killed
1676 *
1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1678 * enabled
1679 */
1680void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1681{
1682 /* oom_info_lock ensures that parallel ooms do not interleave */
1683 static DEFINE_MUTEX(oom_info_lock);
1684 struct mem_cgroup *iter;
1685 unsigned int i;
1686
1687 if (!p)
1688 return;
1689
1690 mutex_lock(&oom_info_lock);
1691 rcu_read_lock();
1692
1693 pr_info("Task in ");
1694 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1695 pr_info(" killed as a result of limit of ");
1696 pr_cont_cgroup_path(memcg->css.cgroup);
1697 pr_info("\n");
1698
1699 rcu_read_unlock();
1700
1701 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1702 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1706 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1709 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1710 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1713
1714 for_each_mem_cgroup_tree(iter, memcg) {
1715 pr_info("Memory cgroup stats for ");
1716 pr_cont_cgroup_path(iter->css.cgroup);
1717 pr_cont(":");
1718
1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1721 continue;
1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1723 K(mem_cgroup_read_stat(iter, i)));
1724 }
1725
1726 for (i = 0; i < NR_LRU_LISTS; i++)
1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729
1730 pr_cont("\n");
1731 }
1732 mutex_unlock(&oom_info_lock);
1733}
1734
1735/*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
1739static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740{
1741 int num = 0;
1742 struct mem_cgroup *iter;
1743
1744 for_each_mem_cgroup_tree(iter, memcg)
1745 num++;
1746 return num;
1747}
1748
1749/*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1753{
1754 u64 limit;
1755
1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757
1758 /*
1759 * Do not consider swap space if we cannot swap due to swappiness
1760 */
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1763
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767 /*
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1770 */
1771 limit = min(limit, memsw);
1772 }
1773
1774 return limit;
1775}
1776
1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
1779{
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1785
1786 /*
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
1790 */
1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1794 }
1795
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
1799 struct css_task_iter it;
1800 struct task_struct *task;
1801
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
1816 css_task_iter_end(&it);
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1823 };
1824 points = oom_badness(task, memcg, NULL, totalpages);
1825 if (!points || points < chosen_points)
1826 continue;
1827 /* Prefer thread group leaders for display purposes */
1828 if (points == chosen_points &&
1829 thread_group_leader(chosen))
1830 continue;
1831
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = points;
1836 get_task_struct(chosen);
1837 }
1838 css_task_iter_end(&it);
1839 }
1840
1841 if (!chosen)
1842 return;
1843 points = chosen_points * 1000 / totalpages;
1844 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1845 NULL, "Memory cgroup out of memory");
1846}
1847
1848static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1849 gfp_t gfp_mask,
1850 unsigned long flags)
1851{
1852 unsigned long total = 0;
1853 bool noswap = false;
1854 int loop;
1855
1856 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1857 noswap = true;
1858 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1859 noswap = true;
1860
1861 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1862 if (loop)
1863 drain_all_stock_async(memcg);
1864 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1865 /*
1866 * Allow limit shrinkers, which are triggered directly
1867 * by userspace, to catch signals and stop reclaim
1868 * after minimal progress, regardless of the margin.
1869 */
1870 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1871 break;
1872 if (mem_cgroup_margin(memcg))
1873 break;
1874 /*
1875 * If nothing was reclaimed after two attempts, there
1876 * may be no reclaimable pages in this hierarchy.
1877 */
1878 if (loop && !total)
1879 break;
1880 }
1881 return total;
1882}
1883
1884/**
1885 * test_mem_cgroup_node_reclaimable
1886 * @memcg: the target memcg
1887 * @nid: the node ID to be checked.
1888 * @noswap : specify true here if the user wants flle only information.
1889 *
1890 * This function returns whether the specified memcg contains any
1891 * reclaimable pages on a node. Returns true if there are any reclaimable
1892 * pages in the node.
1893 */
1894static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1895 int nid, bool noswap)
1896{
1897 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1898 return true;
1899 if (noswap || !total_swap_pages)
1900 return false;
1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1902 return true;
1903 return false;
1904
1905}
1906#if MAX_NUMNODES > 1
1907
1908/*
1909 * Always updating the nodemask is not very good - even if we have an empty
1910 * list or the wrong list here, we can start from some node and traverse all
1911 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 *
1913 */
1914static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1915{
1916 int nid;
1917 /*
1918 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1919 * pagein/pageout changes since the last update.
1920 */
1921 if (!atomic_read(&memcg->numainfo_events))
1922 return;
1923 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1924 return;
1925
1926 /* make a nodemask where this memcg uses memory from */
1927 memcg->scan_nodes = node_states[N_MEMORY];
1928
1929 for_each_node_mask(nid, node_states[N_MEMORY]) {
1930
1931 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1932 node_clear(nid, memcg->scan_nodes);
1933 }
1934
1935 atomic_set(&memcg->numainfo_events, 0);
1936 atomic_set(&memcg->numainfo_updating, 0);
1937}
1938
1939/*
1940 * Selecting a node where we start reclaim from. Because what we need is just
1941 * reducing usage counter, start from anywhere is O,K. Considering
1942 * memory reclaim from current node, there are pros. and cons.
1943 *
1944 * Freeing memory from current node means freeing memory from a node which
1945 * we'll use or we've used. So, it may make LRU bad. And if several threads
1946 * hit limits, it will see a contention on a node. But freeing from remote
1947 * node means more costs for memory reclaim because of memory latency.
1948 *
1949 * Now, we use round-robin. Better algorithm is welcomed.
1950 */
1951int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1952{
1953 int node;
1954
1955 mem_cgroup_may_update_nodemask(memcg);
1956 node = memcg->last_scanned_node;
1957
1958 node = next_node(node, memcg->scan_nodes);
1959 if (node == MAX_NUMNODES)
1960 node = first_node(memcg->scan_nodes);
1961 /*
1962 * We call this when we hit limit, not when pages are added to LRU.
1963 * No LRU may hold pages because all pages are UNEVICTABLE or
1964 * memcg is too small and all pages are not on LRU. In that case,
1965 * we use curret node.
1966 */
1967 if (unlikely(node == MAX_NUMNODES))
1968 node = numa_node_id();
1969
1970 memcg->last_scanned_node = node;
1971 return node;
1972}
1973
1974/*
1975 * Check all nodes whether it contains reclaimable pages or not.
1976 * For quick scan, we make use of scan_nodes. This will allow us to skip
1977 * unused nodes. But scan_nodes is lazily updated and may not cotain
1978 * enough new information. We need to do double check.
1979 */
1980static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1981{
1982 int nid;
1983
1984 /*
1985 * quick check...making use of scan_node.
1986 * We can skip unused nodes.
1987 */
1988 if (!nodes_empty(memcg->scan_nodes)) {
1989 for (nid = first_node(memcg->scan_nodes);
1990 nid < MAX_NUMNODES;
1991 nid = next_node(nid, memcg->scan_nodes)) {
1992
1993 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1994 return true;
1995 }
1996 }
1997 /*
1998 * Check rest of nodes.
1999 */
2000 for_each_node_state(nid, N_MEMORY) {
2001 if (node_isset(nid, memcg->scan_nodes))
2002 continue;
2003 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2004 return true;
2005 }
2006 return false;
2007}
2008
2009#else
2010int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2011{
2012 return 0;
2013}
2014
2015static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2016{
2017 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2018}
2019#endif
2020
2021static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2022 struct zone *zone,
2023 gfp_t gfp_mask,
2024 unsigned long *total_scanned)
2025{
2026 struct mem_cgroup *victim = NULL;
2027 int total = 0;
2028 int loop = 0;
2029 unsigned long excess;
2030 unsigned long nr_scanned;
2031 struct mem_cgroup_reclaim_cookie reclaim = {
2032 .zone = zone,
2033 .priority = 0,
2034 };
2035
2036 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2037
2038 while (1) {
2039 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2040 if (!victim) {
2041 loop++;
2042 if (loop >= 2) {
2043 /*
2044 * If we have not been able to reclaim
2045 * anything, it might because there are
2046 * no reclaimable pages under this hierarchy
2047 */
2048 if (!total)
2049 break;
2050 /*
2051 * We want to do more targeted reclaim.
2052 * excess >> 2 is not to excessive so as to
2053 * reclaim too much, nor too less that we keep
2054 * coming back to reclaim from this cgroup
2055 */
2056 if (total >= (excess >> 2) ||
2057 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2058 break;
2059 }
2060 continue;
2061 }
2062 if (!mem_cgroup_reclaimable(victim, false))
2063 continue;
2064 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2065 zone, &nr_scanned);
2066 *total_scanned += nr_scanned;
2067 if (!res_counter_soft_limit_excess(&root_memcg->res))
2068 break;
2069 }
2070 mem_cgroup_iter_break(root_memcg, victim);
2071 return total;
2072}
2073
2074#ifdef CONFIG_LOCKDEP
2075static struct lockdep_map memcg_oom_lock_dep_map = {
2076 .name = "memcg_oom_lock",
2077};
2078#endif
2079
2080static DEFINE_SPINLOCK(memcg_oom_lock);
2081
2082/*
2083 * Check OOM-Killer is already running under our hierarchy.
2084 * If someone is running, return false.
2085 */
2086static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2087{
2088 struct mem_cgroup *iter, *failed = NULL;
2089
2090 spin_lock(&memcg_oom_lock);
2091
2092 for_each_mem_cgroup_tree(iter, memcg) {
2093 if (iter->oom_lock) {
2094 /*
2095 * this subtree of our hierarchy is already locked
2096 * so we cannot give a lock.
2097 */
2098 failed = iter;
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
2101 } else
2102 iter->oom_lock = true;
2103 }
2104
2105 if (failed) {
2106 /*
2107 * OK, we failed to lock the whole subtree so we have
2108 * to clean up what we set up to the failing subtree
2109 */
2110 for_each_mem_cgroup_tree(iter, memcg) {
2111 if (iter == failed) {
2112 mem_cgroup_iter_break(memcg, iter);
2113 break;
2114 }
2115 iter->oom_lock = false;
2116 }
2117 } else
2118 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2119
2120 spin_unlock(&memcg_oom_lock);
2121
2122 return !failed;
2123}
2124
2125static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2126{
2127 struct mem_cgroup *iter;
2128
2129 spin_lock(&memcg_oom_lock);
2130 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2131 for_each_mem_cgroup_tree(iter, memcg)
2132 iter->oom_lock = false;
2133 spin_unlock(&memcg_oom_lock);
2134}
2135
2136static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2137{
2138 struct mem_cgroup *iter;
2139
2140 for_each_mem_cgroup_tree(iter, memcg)
2141 atomic_inc(&iter->under_oom);
2142}
2143
2144static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2145{
2146 struct mem_cgroup *iter;
2147
2148 /*
2149 * When a new child is created while the hierarchy is under oom,
2150 * mem_cgroup_oom_lock() may not be called. We have to use
2151 * atomic_add_unless() here.
2152 */
2153 for_each_mem_cgroup_tree(iter, memcg)
2154 atomic_add_unless(&iter->under_oom, -1, 0);
2155}
2156
2157static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2158
2159struct oom_wait_info {
2160 struct mem_cgroup *memcg;
2161 wait_queue_t wait;
2162};
2163
2164static int memcg_oom_wake_function(wait_queue_t *wait,
2165 unsigned mode, int sync, void *arg)
2166{
2167 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2168 struct mem_cgroup *oom_wait_memcg;
2169 struct oom_wait_info *oom_wait_info;
2170
2171 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2172 oom_wait_memcg = oom_wait_info->memcg;
2173
2174 /*
2175 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2176 * Then we can use css_is_ancestor without taking care of RCU.
2177 */
2178 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2179 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2180 return 0;
2181 return autoremove_wake_function(wait, mode, sync, arg);
2182}
2183
2184static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2185{
2186 atomic_inc(&memcg->oom_wakeups);
2187 /* for filtering, pass "memcg" as argument. */
2188 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2189}
2190
2191static void memcg_oom_recover(struct mem_cgroup *memcg)
2192{
2193 if (memcg && atomic_read(&memcg->under_oom))
2194 memcg_wakeup_oom(memcg);
2195}
2196
2197static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2198{
2199 if (!current->memcg_oom.may_oom)
2200 return;
2201 /*
2202 * We are in the middle of the charge context here, so we
2203 * don't want to block when potentially sitting on a callstack
2204 * that holds all kinds of filesystem and mm locks.
2205 *
2206 * Also, the caller may handle a failed allocation gracefully
2207 * (like optional page cache readahead) and so an OOM killer
2208 * invocation might not even be necessary.
2209 *
2210 * That's why we don't do anything here except remember the
2211 * OOM context and then deal with it at the end of the page
2212 * fault when the stack is unwound, the locks are released,
2213 * and when we know whether the fault was overall successful.
2214 */
2215 css_get(&memcg->css);
2216 current->memcg_oom.memcg = memcg;
2217 current->memcg_oom.gfp_mask = mask;
2218 current->memcg_oom.order = order;
2219}
2220
2221/**
2222 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2223 * @handle: actually kill/wait or just clean up the OOM state
2224 *
2225 * This has to be called at the end of a page fault if the memcg OOM
2226 * handler was enabled.
2227 *
2228 * Memcg supports userspace OOM handling where failed allocations must
2229 * sleep on a waitqueue until the userspace task resolves the
2230 * situation. Sleeping directly in the charge context with all kinds
2231 * of locks held is not a good idea, instead we remember an OOM state
2232 * in the task and mem_cgroup_oom_synchronize() has to be called at
2233 * the end of the page fault to complete the OOM handling.
2234 *
2235 * Returns %true if an ongoing memcg OOM situation was detected and
2236 * completed, %false otherwise.
2237 */
2238bool mem_cgroup_oom_synchronize(bool handle)
2239{
2240 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2241 struct oom_wait_info owait;
2242 bool locked;
2243
2244 /* OOM is global, do not handle */
2245 if (!memcg)
2246 return false;
2247
2248 if (!handle)
2249 goto cleanup;
2250
2251 owait.memcg = memcg;
2252 owait.wait.flags = 0;
2253 owait.wait.func = memcg_oom_wake_function;
2254 owait.wait.private = current;
2255 INIT_LIST_HEAD(&owait.wait.task_list);
2256
2257 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2258 mem_cgroup_mark_under_oom(memcg);
2259
2260 locked = mem_cgroup_oom_trylock(memcg);
2261
2262 if (locked)
2263 mem_cgroup_oom_notify(memcg);
2264
2265 if (locked && !memcg->oom_kill_disable) {
2266 mem_cgroup_unmark_under_oom(memcg);
2267 finish_wait(&memcg_oom_waitq, &owait.wait);
2268 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2269 current->memcg_oom.order);
2270 } else {
2271 schedule();
2272 mem_cgroup_unmark_under_oom(memcg);
2273 finish_wait(&memcg_oom_waitq, &owait.wait);
2274 }
2275
2276 if (locked) {
2277 mem_cgroup_oom_unlock(memcg);
2278 /*
2279 * There is no guarantee that an OOM-lock contender
2280 * sees the wakeups triggered by the OOM kill
2281 * uncharges. Wake any sleepers explicitely.
2282 */
2283 memcg_oom_recover(memcg);
2284 }
2285cleanup:
2286 current->memcg_oom.memcg = NULL;
2287 css_put(&memcg->css);
2288 return true;
2289}
2290
2291/*
2292 * Currently used to update mapped file statistics, but the routine can be
2293 * generalized to update other statistics as well.
2294 *
2295 * Notes: Race condition
2296 *
2297 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2298 * it tends to be costly. But considering some conditions, we doesn't need
2299 * to do so _always_.
2300 *
2301 * Considering "charge", lock_page_cgroup() is not required because all
2302 * file-stat operations happen after a page is attached to radix-tree. There
2303 * are no race with "charge".
2304 *
2305 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2306 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2307 * if there are race with "uncharge". Statistics itself is properly handled
2308 * by flags.
2309 *
2310 * Considering "move", this is an only case we see a race. To make the race
2311 * small, we check mm->moving_account and detect there are possibility of race
2312 * If there is, we take a lock.
2313 */
2314
2315void __mem_cgroup_begin_update_page_stat(struct page *page,
2316 bool *locked, unsigned long *flags)
2317{
2318 struct mem_cgroup *memcg;
2319 struct page_cgroup *pc;
2320
2321 pc = lookup_page_cgroup(page);
2322again:
2323 memcg = pc->mem_cgroup;
2324 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2325 return;
2326 /*
2327 * If this memory cgroup is not under account moving, we don't
2328 * need to take move_lock_mem_cgroup(). Because we already hold
2329 * rcu_read_lock(), any calls to move_account will be delayed until
2330 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2331 */
2332 if (!mem_cgroup_stolen(memcg))
2333 return;
2334
2335 move_lock_mem_cgroup(memcg, flags);
2336 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2337 move_unlock_mem_cgroup(memcg, flags);
2338 goto again;
2339 }
2340 *locked = true;
2341}
2342
2343void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2344{
2345 struct page_cgroup *pc = lookup_page_cgroup(page);
2346
2347 /*
2348 * It's guaranteed that pc->mem_cgroup never changes while
2349 * lock is held because a routine modifies pc->mem_cgroup
2350 * should take move_lock_mem_cgroup().
2351 */
2352 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2353}
2354
2355void mem_cgroup_update_page_stat(struct page *page,
2356 enum mem_cgroup_stat_index idx, int val)
2357{
2358 struct mem_cgroup *memcg;
2359 struct page_cgroup *pc = lookup_page_cgroup(page);
2360 unsigned long uninitialized_var(flags);
2361
2362 if (mem_cgroup_disabled())
2363 return;
2364
2365 VM_BUG_ON(!rcu_read_lock_held());
2366 memcg = pc->mem_cgroup;
2367 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2368 return;
2369
2370 this_cpu_add(memcg->stat->count[idx], val);
2371}
2372
2373/*
2374 * size of first charge trial. "32" comes from vmscan.c's magic value.
2375 * TODO: maybe necessary to use big numbers in big irons.
2376 */
2377#define CHARGE_BATCH 32U
2378struct memcg_stock_pcp {
2379 struct mem_cgroup *cached; /* this never be root cgroup */
2380 unsigned int nr_pages;
2381 struct work_struct work;
2382 unsigned long flags;
2383#define FLUSHING_CACHED_CHARGE 0
2384};
2385static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2386static DEFINE_MUTEX(percpu_charge_mutex);
2387
2388/**
2389 * consume_stock: Try to consume stocked charge on this cpu.
2390 * @memcg: memcg to consume from.
2391 * @nr_pages: how many pages to charge.
2392 *
2393 * The charges will only happen if @memcg matches the current cpu's memcg
2394 * stock, and at least @nr_pages are available in that stock. Failure to
2395 * service an allocation will refill the stock.
2396 *
2397 * returns true if successful, false otherwise.
2398 */
2399static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400{
2401 struct memcg_stock_pcp *stock;
2402 bool ret = true;
2403
2404 if (nr_pages > CHARGE_BATCH)
2405 return false;
2406
2407 stock = &get_cpu_var(memcg_stock);
2408 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2409 stock->nr_pages -= nr_pages;
2410 else /* need to call res_counter_charge */
2411 ret = false;
2412 put_cpu_var(memcg_stock);
2413 return ret;
2414}
2415
2416/*
2417 * Returns stocks cached in percpu to res_counter and reset cached information.
2418 */
2419static void drain_stock(struct memcg_stock_pcp *stock)
2420{
2421 struct mem_cgroup *old = stock->cached;
2422
2423 if (stock->nr_pages) {
2424 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2425
2426 res_counter_uncharge(&old->res, bytes);
2427 if (do_swap_account)
2428 res_counter_uncharge(&old->memsw, bytes);
2429 stock->nr_pages = 0;
2430 }
2431 stock->cached = NULL;
2432}
2433
2434/*
2435 * This must be called under preempt disabled or must be called by
2436 * a thread which is pinned to local cpu.
2437 */
2438static void drain_local_stock(struct work_struct *dummy)
2439{
2440 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2441 drain_stock(stock);
2442 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2443}
2444
2445static void __init memcg_stock_init(void)
2446{
2447 int cpu;
2448
2449 for_each_possible_cpu(cpu) {
2450 struct memcg_stock_pcp *stock =
2451 &per_cpu(memcg_stock, cpu);
2452 INIT_WORK(&stock->work, drain_local_stock);
2453 }
2454}
2455
2456/*
2457 * Cache charges(val) which is from res_counter, to local per_cpu area.
2458 * This will be consumed by consume_stock() function, later.
2459 */
2460static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2461{
2462 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2463
2464 if (stock->cached != memcg) { /* reset if necessary */
2465 drain_stock(stock);
2466 stock->cached = memcg;
2467 }
2468 stock->nr_pages += nr_pages;
2469 put_cpu_var(memcg_stock);
2470}
2471
2472/*
2473 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2474 * of the hierarchy under it. sync flag says whether we should block
2475 * until the work is done.
2476 */
2477static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2478{
2479 int cpu, curcpu;
2480
2481 /* Notify other cpus that system-wide "drain" is running */
2482 get_online_cpus();
2483 curcpu = get_cpu();
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2486 struct mem_cgroup *memcg;
2487
2488 memcg = stock->cached;
2489 if (!memcg || !stock->nr_pages)
2490 continue;
2491 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2492 continue;
2493 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2494 if (cpu == curcpu)
2495 drain_local_stock(&stock->work);
2496 else
2497 schedule_work_on(cpu, &stock->work);
2498 }
2499 }
2500 put_cpu();
2501
2502 if (!sync)
2503 goto out;
2504
2505 for_each_online_cpu(cpu) {
2506 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2507 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2508 flush_work(&stock->work);
2509 }
2510out:
2511 put_online_cpus();
2512}
2513
2514/*
2515 * Tries to drain stocked charges in other cpus. This function is asynchronous
2516 * and just put a work per cpu for draining localy on each cpu. Caller can
2517 * expects some charges will be back to res_counter later but cannot wait for
2518 * it.
2519 */
2520static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2521{
2522 /*
2523 * If someone calls draining, avoid adding more kworker runs.
2524 */
2525 if (!mutex_trylock(&percpu_charge_mutex))
2526 return;
2527 drain_all_stock(root_memcg, false);
2528 mutex_unlock(&percpu_charge_mutex);
2529}
2530
2531/* This is a synchronous drain interface. */
2532static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2533{
2534 /* called when force_empty is called */
2535 mutex_lock(&percpu_charge_mutex);
2536 drain_all_stock(root_memcg, true);
2537 mutex_unlock(&percpu_charge_mutex);
2538}
2539
2540/*
2541 * This function drains percpu counter value from DEAD cpu and
2542 * move it to local cpu. Note that this function can be preempted.
2543 */
2544static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2545{
2546 int i;
2547
2548 spin_lock(&memcg->pcp_counter_lock);
2549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2550 long x = per_cpu(memcg->stat->count[i], cpu);
2551
2552 per_cpu(memcg->stat->count[i], cpu) = 0;
2553 memcg->nocpu_base.count[i] += x;
2554 }
2555 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2556 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2557
2558 per_cpu(memcg->stat->events[i], cpu) = 0;
2559 memcg->nocpu_base.events[i] += x;
2560 }
2561 spin_unlock(&memcg->pcp_counter_lock);
2562}
2563
2564static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2565 unsigned long action,
2566 void *hcpu)
2567{
2568 int cpu = (unsigned long)hcpu;
2569 struct memcg_stock_pcp *stock;
2570 struct mem_cgroup *iter;
2571
2572 if (action == CPU_ONLINE)
2573 return NOTIFY_OK;
2574
2575 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2576 return NOTIFY_OK;
2577
2578 for_each_mem_cgroup(iter)
2579 mem_cgroup_drain_pcp_counter(iter, cpu);
2580
2581 stock = &per_cpu(memcg_stock, cpu);
2582 drain_stock(stock);
2583 return NOTIFY_OK;
2584}
2585
2586
2587/* See mem_cgroup_try_charge() for details */
2588enum {
2589 CHARGE_OK, /* success */
2590 CHARGE_RETRY, /* need to retry but retry is not bad */
2591 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2592 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2593};
2594
2595static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2596 unsigned int nr_pages, unsigned int min_pages,
2597 bool invoke_oom)
2598{
2599 unsigned long csize = nr_pages * PAGE_SIZE;
2600 struct mem_cgroup *mem_over_limit;
2601 struct res_counter *fail_res;
2602 unsigned long flags = 0;
2603 int ret;
2604
2605 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2606
2607 if (likely(!ret)) {
2608 if (!do_swap_account)
2609 return CHARGE_OK;
2610 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2611 if (likely(!ret))
2612 return CHARGE_OK;
2613
2614 res_counter_uncharge(&memcg->res, csize);
2615 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2616 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2617 } else
2618 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2619 /*
2620 * Never reclaim on behalf of optional batching, retry with a
2621 * single page instead.
2622 */
2623 if (nr_pages > min_pages)
2624 return CHARGE_RETRY;
2625
2626 if (!(gfp_mask & __GFP_WAIT))
2627 return CHARGE_WOULDBLOCK;
2628
2629 if (gfp_mask & __GFP_NORETRY)
2630 return CHARGE_NOMEM;
2631
2632 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2633 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2634 return CHARGE_RETRY;
2635 /*
2636 * Even though the limit is exceeded at this point, reclaim
2637 * may have been able to free some pages. Retry the charge
2638 * before killing the task.
2639 *
2640 * Only for regular pages, though: huge pages are rather
2641 * unlikely to succeed so close to the limit, and we fall back
2642 * to regular pages anyway in case of failure.
2643 */
2644 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2645 return CHARGE_RETRY;
2646
2647 /*
2648 * At task move, charge accounts can be doubly counted. So, it's
2649 * better to wait until the end of task_move if something is going on.
2650 */
2651 if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 return CHARGE_RETRY;
2653
2654 if (invoke_oom)
2655 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2656
2657 return CHARGE_NOMEM;
2658}
2659
2660/**
2661 * mem_cgroup_try_charge - try charging a memcg
2662 * @memcg: memcg to charge
2663 * @nr_pages: number of pages to charge
2664 * @oom: trigger OOM if reclaim fails
2665 *
2666 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2667 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2668 */
2669static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2670 gfp_t gfp_mask,
2671 unsigned int nr_pages,
2672 bool oom)
2673{
2674 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2675 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2676 int ret;
2677
2678 if (mem_cgroup_is_root(memcg))
2679 goto done;
2680 /*
2681 * Unlike in global OOM situations, memcg is not in a physical
2682 * memory shortage. Allow dying and OOM-killed tasks to
2683 * bypass the last charges so that they can exit quickly and
2684 * free their memory.
2685 */
2686 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2687 fatal_signal_pending(current)))
2688 goto bypass;
2689
2690 if (unlikely(task_in_memcg_oom(current)))
2691 goto nomem;
2692
2693 if (gfp_mask & __GFP_NOFAIL)
2694 oom = false;
2695again:
2696 if (consume_stock(memcg, nr_pages))
2697 goto done;
2698
2699 do {
2700 bool invoke_oom = oom && !nr_oom_retries;
2701
2702 /* If killed, bypass charge */
2703 if (fatal_signal_pending(current))
2704 goto bypass;
2705
2706 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2707 nr_pages, invoke_oom);
2708 switch (ret) {
2709 case CHARGE_OK:
2710 break;
2711 case CHARGE_RETRY: /* not in OOM situation but retry */
2712 batch = nr_pages;
2713 goto again;
2714 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2715 goto nomem;
2716 case CHARGE_NOMEM: /* OOM routine works */
2717 if (!oom || invoke_oom)
2718 goto nomem;
2719 nr_oom_retries--;
2720 break;
2721 }
2722 } while (ret != CHARGE_OK);
2723
2724 if (batch > nr_pages)
2725 refill_stock(memcg, batch - nr_pages);
2726done:
2727 return 0;
2728nomem:
2729 if (!(gfp_mask & __GFP_NOFAIL))
2730 return -ENOMEM;
2731bypass:
2732 return -EINTR;
2733}
2734
2735/**
2736 * mem_cgroup_try_charge_mm - try charging a mm
2737 * @mm: mm_struct to charge
2738 * @nr_pages: number of pages to charge
2739 * @oom: trigger OOM if reclaim fails
2740 *
2741 * Returns the charged mem_cgroup associated with the given mm_struct or
2742 * NULL the charge failed.
2743 */
2744static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2745 gfp_t gfp_mask,
2746 unsigned int nr_pages,
2747 bool oom)
2748
2749{
2750 struct mem_cgroup *memcg;
2751 int ret;
2752
2753 memcg = get_mem_cgroup_from_mm(mm);
2754 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2755 css_put(&memcg->css);
2756 if (ret == -EINTR)
2757 memcg = root_mem_cgroup;
2758 else if (ret)
2759 memcg = NULL;
2760
2761 return memcg;
2762}
2763
2764/*
2765 * Somemtimes we have to undo a charge we got by try_charge().
2766 * This function is for that and do uncharge, put css's refcnt.
2767 * gotten by try_charge().
2768 */
2769static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2770 unsigned int nr_pages)
2771{
2772 if (!mem_cgroup_is_root(memcg)) {
2773 unsigned long bytes = nr_pages * PAGE_SIZE;
2774
2775 res_counter_uncharge(&memcg->res, bytes);
2776 if (do_swap_account)
2777 res_counter_uncharge(&memcg->memsw, bytes);
2778 }
2779}
2780
2781/*
2782 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2783 * This is useful when moving usage to parent cgroup.
2784 */
2785static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2786 unsigned int nr_pages)
2787{
2788 unsigned long bytes = nr_pages * PAGE_SIZE;
2789
2790 if (mem_cgroup_is_root(memcg))
2791 return;
2792
2793 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2794 if (do_swap_account)
2795 res_counter_uncharge_until(&memcg->memsw,
2796 memcg->memsw.parent, bytes);
2797}
2798
2799/*
2800 * A helper function to get mem_cgroup from ID. must be called under
2801 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2802 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2803 * called against removed memcg.)
2804 */
2805static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2806{
2807 /* ID 0 is unused ID */
2808 if (!id)
2809 return NULL;
2810 return mem_cgroup_from_id(id);
2811}
2812
2813struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2814{
2815 struct mem_cgroup *memcg = NULL;
2816 struct page_cgroup *pc;
2817 unsigned short id;
2818 swp_entry_t ent;
2819
2820 VM_BUG_ON_PAGE(!PageLocked(page), page);
2821
2822 pc = lookup_page_cgroup(page);
2823 lock_page_cgroup(pc);
2824 if (PageCgroupUsed(pc)) {
2825 memcg = pc->mem_cgroup;
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
2828 } else if (PageSwapCache(page)) {
2829 ent.val = page_private(page);
2830 id = lookup_swap_cgroup_id(ent);
2831 rcu_read_lock();
2832 memcg = mem_cgroup_lookup(id);
2833 if (memcg && !css_tryget(&memcg->css))
2834 memcg = NULL;
2835 rcu_read_unlock();
2836 }
2837 unlock_page_cgroup(pc);
2838 return memcg;
2839}
2840
2841static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2842 struct page *page,
2843 unsigned int nr_pages,
2844 enum charge_type ctype,
2845 bool lrucare)
2846{
2847 struct page_cgroup *pc = lookup_page_cgroup(page);
2848 struct zone *uninitialized_var(zone);
2849 struct lruvec *lruvec;
2850 bool was_on_lru = false;
2851 bool anon;
2852
2853 lock_page_cgroup(pc);
2854 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2855 /*
2856 * we don't need page_cgroup_lock about tail pages, becase they are not
2857 * accessed by any other context at this point.
2858 */
2859
2860 /*
2861 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2862 * may already be on some other mem_cgroup's LRU. Take care of it.
2863 */
2864 if (lrucare) {
2865 zone = page_zone(page);
2866 spin_lock_irq(&zone->lru_lock);
2867 if (PageLRU(page)) {
2868 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2869 ClearPageLRU(page);
2870 del_page_from_lru_list(page, lruvec, page_lru(page));
2871 was_on_lru = true;
2872 }
2873 }
2874
2875 pc->mem_cgroup = memcg;
2876 /*
2877 * We access a page_cgroup asynchronously without lock_page_cgroup().
2878 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2879 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2880 * before USED bit, we need memory barrier here.
2881 * See mem_cgroup_add_lru_list(), etc.
2882 */
2883 smp_wmb();
2884 SetPageCgroupUsed(pc);
2885
2886 if (lrucare) {
2887 if (was_on_lru) {
2888 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2889 VM_BUG_ON_PAGE(PageLRU(page), page);
2890 SetPageLRU(page);
2891 add_page_to_lru_list(page, lruvec, page_lru(page));
2892 }
2893 spin_unlock_irq(&zone->lru_lock);
2894 }
2895
2896 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2897 anon = true;
2898 else
2899 anon = false;
2900
2901 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2902 unlock_page_cgroup(pc);
2903
2904 /*
2905 * "charge_statistics" updated event counter. Then, check it.
2906 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2907 * if they exceeds softlimit.
2908 */
2909 memcg_check_events(memcg, page);
2910}
2911
2912static DEFINE_MUTEX(set_limit_mutex);
2913
2914#ifdef CONFIG_MEMCG_KMEM
2915static DEFINE_MUTEX(activate_kmem_mutex);
2916
2917static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2918{
2919 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2920 memcg_kmem_is_active(memcg);
2921}
2922
2923/*
2924 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2925 * in the memcg_cache_params struct.
2926 */
2927static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2928{
2929 struct kmem_cache *cachep;
2930
2931 VM_BUG_ON(p->is_root_cache);
2932 cachep = p->root_cache;
2933 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2934}
2935
2936#ifdef CONFIG_SLABINFO
2937static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2938{
2939 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2940 struct memcg_cache_params *params;
2941
2942 if (!memcg_can_account_kmem(memcg))
2943 return -EIO;
2944
2945 print_slabinfo_header(m);
2946
2947 mutex_lock(&memcg->slab_caches_mutex);
2948 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2949 cache_show(memcg_params_to_cache(params), m);
2950 mutex_unlock(&memcg->slab_caches_mutex);
2951
2952 return 0;
2953}
2954#endif
2955
2956static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2957{
2958 struct res_counter *fail_res;
2959 int ret = 0;
2960
2961 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2962 if (ret)
2963 return ret;
2964
2965 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2966 oom_gfp_allowed(gfp));
2967 if (ret == -EINTR) {
2968 /*
2969 * mem_cgroup_try_charge() chosed to bypass to root due to
2970 * OOM kill or fatal signal. Since our only options are to
2971 * either fail the allocation or charge it to this cgroup, do
2972 * it as a temporary condition. But we can't fail. From a
2973 * kmem/slab perspective, the cache has already been selected,
2974 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2975 * our minds.
2976 *
2977 * This condition will only trigger if the task entered
2978 * memcg_charge_kmem in a sane state, but was OOM-killed during
2979 * mem_cgroup_try_charge() above. Tasks that were already
2980 * dying when the allocation triggers should have been already
2981 * directed to the root cgroup in memcontrol.h
2982 */
2983 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2984 if (do_swap_account)
2985 res_counter_charge_nofail(&memcg->memsw, size,
2986 &fail_res);
2987 ret = 0;
2988 } else if (ret)
2989 res_counter_uncharge(&memcg->kmem, size);
2990
2991 return ret;
2992}
2993
2994static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2995{
2996 res_counter_uncharge(&memcg->res, size);
2997 if (do_swap_account)
2998 res_counter_uncharge(&memcg->memsw, size);
2999
3000 /* Not down to 0 */
3001 if (res_counter_uncharge(&memcg->kmem, size))
3002 return;
3003
3004 /*
3005 * Releases a reference taken in kmem_cgroup_css_offline in case
3006 * this last uncharge is racing with the offlining code or it is
3007 * outliving the memcg existence.
3008 *
3009 * The memory barrier imposed by test&clear is paired with the
3010 * explicit one in memcg_kmem_mark_dead().
3011 */
3012 if (memcg_kmem_test_and_clear_dead(memcg))
3013 css_put(&memcg->css);
3014}
3015
3016/*
3017 * helper for acessing a memcg's index. It will be used as an index in the
3018 * child cache array in kmem_cache, and also to derive its name. This function
3019 * will return -1 when this is not a kmem-limited memcg.
3020 */
3021int memcg_cache_id(struct mem_cgroup *memcg)
3022{
3023 return memcg ? memcg->kmemcg_id : -1;
3024}
3025
3026static size_t memcg_caches_array_size(int num_groups)
3027{
3028 ssize_t size;
3029 if (num_groups <= 0)
3030 return 0;
3031
3032 size = 2 * num_groups;
3033 if (size < MEMCG_CACHES_MIN_SIZE)
3034 size = MEMCG_CACHES_MIN_SIZE;
3035 else if (size > MEMCG_CACHES_MAX_SIZE)
3036 size = MEMCG_CACHES_MAX_SIZE;
3037
3038 return size;
3039}
3040
3041/*
3042 * We should update the current array size iff all caches updates succeed. This
3043 * can only be done from the slab side. The slab mutex needs to be held when
3044 * calling this.
3045 */
3046void memcg_update_array_size(int num)
3047{
3048 if (num > memcg_limited_groups_array_size)
3049 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3050}
3051
3052static void kmem_cache_destroy_work_func(struct work_struct *w);
3053
3054int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3055{
3056 struct memcg_cache_params *cur_params = s->memcg_params;
3057
3058 VM_BUG_ON(!is_root_cache(s));
3059
3060 if (num_groups > memcg_limited_groups_array_size) {
3061 int i;
3062 struct memcg_cache_params *new_params;
3063 ssize_t size = memcg_caches_array_size(num_groups);
3064
3065 size *= sizeof(void *);
3066 size += offsetof(struct memcg_cache_params, memcg_caches);
3067
3068 new_params = kzalloc(size, GFP_KERNEL);
3069 if (!new_params)
3070 return -ENOMEM;
3071
3072 new_params->is_root_cache = true;
3073
3074 /*
3075 * There is the chance it will be bigger than
3076 * memcg_limited_groups_array_size, if we failed an allocation
3077 * in a cache, in which case all caches updated before it, will
3078 * have a bigger array.
3079 *
3080 * But if that is the case, the data after
3081 * memcg_limited_groups_array_size is certainly unused
3082 */
3083 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3084 if (!cur_params->memcg_caches[i])
3085 continue;
3086 new_params->memcg_caches[i] =
3087 cur_params->memcg_caches[i];
3088 }
3089
3090 /*
3091 * Ideally, we would wait until all caches succeed, and only
3092 * then free the old one. But this is not worth the extra
3093 * pointer per-cache we'd have to have for this.
3094 *
3095 * It is not a big deal if some caches are left with a size
3096 * bigger than the others. And all updates will reset this
3097 * anyway.
3098 */
3099 rcu_assign_pointer(s->memcg_params, new_params);
3100 if (cur_params)
3101 kfree_rcu(cur_params, rcu_head);
3102 }
3103 return 0;
3104}
3105
3106char *memcg_create_cache_name(struct mem_cgroup *memcg,
3107 struct kmem_cache *root_cache)
3108{
3109 static char *buf = NULL;
3110
3111 /*
3112 * We need a mutex here to protect the shared buffer. Since this is
3113 * expected to be called only on cache creation, we can employ the
3114 * slab_mutex for that purpose.
3115 */
3116 lockdep_assert_held(&slab_mutex);
3117
3118 if (!buf) {
3119 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3120 if (!buf)
3121 return NULL;
3122 }
3123
3124 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3125 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3126 memcg_cache_id(memcg), buf);
3127}
3128
3129int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3130 struct kmem_cache *root_cache)
3131{
3132 size_t size;
3133
3134 if (!memcg_kmem_enabled())
3135 return 0;
3136
3137 if (!memcg) {
3138 size = offsetof(struct memcg_cache_params, memcg_caches);
3139 size += memcg_limited_groups_array_size * sizeof(void *);
3140 } else
3141 size = sizeof(struct memcg_cache_params);
3142
3143 s->memcg_params = kzalloc(size, GFP_KERNEL);
3144 if (!s->memcg_params)
3145 return -ENOMEM;
3146
3147 if (memcg) {
3148 s->memcg_params->memcg = memcg;
3149 s->memcg_params->root_cache = root_cache;
3150 INIT_WORK(&s->memcg_params->destroy,
3151 kmem_cache_destroy_work_func);
3152 css_get(&memcg->css);
3153 } else
3154 s->memcg_params->is_root_cache = true;
3155
3156 return 0;
3157}
3158
3159void memcg_free_cache_params(struct kmem_cache *s)
3160{
3161 if (!s->memcg_params)
3162 return;
3163 if (!s->memcg_params->is_root_cache)
3164 css_put(&s->memcg_params->memcg->css);
3165 kfree(s->memcg_params);
3166}
3167
3168void memcg_register_cache(struct kmem_cache *s)
3169{
3170 struct kmem_cache *root;
3171 struct mem_cgroup *memcg;
3172 int id;
3173
3174 if (is_root_cache(s))
3175 return;
3176
3177 /*
3178 * Holding the slab_mutex assures nobody will touch the memcg_caches
3179 * array while we are modifying it.
3180 */
3181 lockdep_assert_held(&slab_mutex);
3182
3183 root = s->memcg_params->root_cache;
3184 memcg = s->memcg_params->memcg;
3185 id = memcg_cache_id(memcg);
3186
3187 /*
3188 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3189 * barrier here to ensure nobody will see the kmem_cache partially
3190 * initialized.
3191 */
3192 smp_wmb();
3193
3194 /*
3195 * Initialize the pointer to this cache in its parent's memcg_params
3196 * before adding it to the memcg_slab_caches list, otherwise we can
3197 * fail to convert memcg_params_to_cache() while traversing the list.
3198 */
3199 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3200 root->memcg_params->memcg_caches[id] = s;
3201
3202 mutex_lock(&memcg->slab_caches_mutex);
3203 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3204 mutex_unlock(&memcg->slab_caches_mutex);
3205}
3206
3207void memcg_unregister_cache(struct kmem_cache *s)
3208{
3209 struct kmem_cache *root;
3210 struct mem_cgroup *memcg;
3211 int id;
3212
3213 if (is_root_cache(s))
3214 return;
3215
3216 /*
3217 * Holding the slab_mutex assures nobody will touch the memcg_caches
3218 * array while we are modifying it.
3219 */
3220 lockdep_assert_held(&slab_mutex);
3221
3222 root = s->memcg_params->root_cache;
3223 memcg = s->memcg_params->memcg;
3224 id = memcg_cache_id(memcg);
3225
3226 mutex_lock(&memcg->slab_caches_mutex);
3227 list_del(&s->memcg_params->list);
3228 mutex_unlock(&memcg->slab_caches_mutex);
3229
3230 /*
3231 * Clear the pointer to this cache in its parent's memcg_params only
3232 * after removing it from the memcg_slab_caches list, otherwise we can
3233 * fail to convert memcg_params_to_cache() while traversing the list.
3234 */
3235 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
3236 root->memcg_params->memcg_caches[id] = NULL;
3237}
3238
3239/*
3240 * During the creation a new cache, we need to disable our accounting mechanism
3241 * altogether. This is true even if we are not creating, but rather just
3242 * enqueing new caches to be created.
3243 *
3244 * This is because that process will trigger allocations; some visible, like
3245 * explicit kmallocs to auxiliary data structures, name strings and internal
3246 * cache structures; some well concealed, like INIT_WORK() that can allocate
3247 * objects during debug.
3248 *
3249 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3250 * to it. This may not be a bounded recursion: since the first cache creation
3251 * failed to complete (waiting on the allocation), we'll just try to create the
3252 * cache again, failing at the same point.
3253 *
3254 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3255 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3256 * inside the following two functions.
3257 */
3258static inline void memcg_stop_kmem_account(void)
3259{
3260 VM_BUG_ON(!current->mm);
3261 current->memcg_kmem_skip_account++;
3262}
3263
3264static inline void memcg_resume_kmem_account(void)
3265{
3266 VM_BUG_ON(!current->mm);
3267 current->memcg_kmem_skip_account--;
3268}
3269
3270static void kmem_cache_destroy_work_func(struct work_struct *w)
3271{
3272 struct kmem_cache *cachep;
3273 struct memcg_cache_params *p;
3274
3275 p = container_of(w, struct memcg_cache_params, destroy);
3276
3277 cachep = memcg_params_to_cache(p);
3278
3279 /*
3280 * If we get down to 0 after shrink, we could delete right away.
3281 * However, memcg_release_pages() already puts us back in the workqueue
3282 * in that case. If we proceed deleting, we'll get a dangling
3283 * reference, and removing the object from the workqueue in that case
3284 * is unnecessary complication. We are not a fast path.
3285 *
3286 * Note that this case is fundamentally different from racing with
3287 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3288 * kmem_cache_shrink, not only we would be reinserting a dead cache
3289 * into the queue, but doing so from inside the worker racing to
3290 * destroy it.
3291 *
3292 * So if we aren't down to zero, we'll just schedule a worker and try
3293 * again
3294 */
3295 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3296 kmem_cache_shrink(cachep);
3297 else
3298 kmem_cache_destroy(cachep);
3299}
3300
3301void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3302{
3303 if (!cachep->memcg_params->dead)
3304 return;
3305
3306 /*
3307 * There are many ways in which we can get here.
3308 *
3309 * We can get to a memory-pressure situation while the delayed work is
3310 * still pending to run. The vmscan shrinkers can then release all
3311 * cache memory and get us to destruction. If this is the case, we'll
3312 * be executed twice, which is a bug (the second time will execute over
3313 * bogus data). In this case, cancelling the work should be fine.
3314 *
3315 * But we can also get here from the worker itself, if
3316 * kmem_cache_shrink is enough to shake all the remaining objects and
3317 * get the page count to 0. In this case, we'll deadlock if we try to
3318 * cancel the work (the worker runs with an internal lock held, which
3319 * is the same lock we would hold for cancel_work_sync().)
3320 *
3321 * Since we can't possibly know who got us here, just refrain from
3322 * running if there is already work pending
3323 */
3324 if (work_pending(&cachep->memcg_params->destroy))
3325 return;
3326 /*
3327 * We have to defer the actual destroying to a workqueue, because
3328 * we might currently be in a context that cannot sleep.
3329 */
3330 schedule_work(&cachep->memcg_params->destroy);
3331}
3332
3333int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3334{
3335 struct kmem_cache *c;
3336 int i, failed = 0;
3337
3338 /*
3339 * If the cache is being destroyed, we trust that there is no one else
3340 * requesting objects from it. Even if there are, the sanity checks in
3341 * kmem_cache_destroy should caught this ill-case.
3342 *
3343 * Still, we don't want anyone else freeing memcg_caches under our
3344 * noses, which can happen if a new memcg comes to life. As usual,
3345 * we'll take the activate_kmem_mutex to protect ourselves against
3346 * this.
3347 */
3348 mutex_lock(&activate_kmem_mutex);
3349 for_each_memcg_cache_index(i) {
3350 c = cache_from_memcg_idx(s, i);
3351 if (!c)
3352 continue;
3353
3354 /*
3355 * We will now manually delete the caches, so to avoid races
3356 * we need to cancel all pending destruction workers and
3357 * proceed with destruction ourselves.
3358 *
3359 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3360 * and that could spawn the workers again: it is likely that
3361 * the cache still have active pages until this very moment.
3362 * This would lead us back to mem_cgroup_destroy_cache.
3363 *
3364 * But that will not execute at all if the "dead" flag is not
3365 * set, so flip it down to guarantee we are in control.
3366 */
3367 c->memcg_params->dead = false;
3368 cancel_work_sync(&c->memcg_params->destroy);
3369 kmem_cache_destroy(c);
3370
3371 if (cache_from_memcg_idx(s, i))
3372 failed++;
3373 }
3374 mutex_unlock(&activate_kmem_mutex);
3375 return failed;
3376}
3377
3378static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3379{
3380 struct kmem_cache *cachep;
3381 struct memcg_cache_params *params;
3382
3383 if (!memcg_kmem_is_active(memcg))
3384 return;
3385
3386 mutex_lock(&memcg->slab_caches_mutex);
3387 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3388 cachep = memcg_params_to_cache(params);
3389 cachep->memcg_params->dead = true;
3390 schedule_work(&cachep->memcg_params->destroy);
3391 }
3392 mutex_unlock(&memcg->slab_caches_mutex);
3393}
3394
3395struct create_work {
3396 struct mem_cgroup *memcg;
3397 struct kmem_cache *cachep;
3398 struct work_struct work;
3399};
3400
3401static void memcg_create_cache_work_func(struct work_struct *w)
3402{
3403 struct create_work *cw = container_of(w, struct create_work, work);
3404 struct mem_cgroup *memcg = cw->memcg;
3405 struct kmem_cache *cachep = cw->cachep;
3406
3407 kmem_cache_create_memcg(memcg, cachep);
3408 css_put(&memcg->css);
3409 kfree(cw);
3410}
3411
3412/*
3413 * Enqueue the creation of a per-memcg kmem_cache.
3414 */
3415static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3416 struct kmem_cache *cachep)
3417{
3418 struct create_work *cw;
3419
3420 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3421 if (cw == NULL) {
3422 css_put(&memcg->css);
3423 return;
3424 }
3425
3426 cw->memcg = memcg;
3427 cw->cachep = cachep;
3428
3429 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3430 schedule_work(&cw->work);
3431}
3432
3433static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3434 struct kmem_cache *cachep)
3435{
3436 /*
3437 * We need to stop accounting when we kmalloc, because if the
3438 * corresponding kmalloc cache is not yet created, the first allocation
3439 * in __memcg_create_cache_enqueue will recurse.
3440 *
3441 * However, it is better to enclose the whole function. Depending on
3442 * the debugging options enabled, INIT_WORK(), for instance, can
3443 * trigger an allocation. This too, will make us recurse. Because at
3444 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3445 * the safest choice is to do it like this, wrapping the whole function.
3446 */
3447 memcg_stop_kmem_account();
3448 __memcg_create_cache_enqueue(memcg, cachep);
3449 memcg_resume_kmem_account();
3450}
3451/*
3452 * Return the kmem_cache we're supposed to use for a slab allocation.
3453 * We try to use the current memcg's version of the cache.
3454 *
3455 * If the cache does not exist yet, if we are the first user of it,
3456 * we either create it immediately, if possible, or create it asynchronously
3457 * in a workqueue.
3458 * In the latter case, we will let the current allocation go through with
3459 * the original cache.
3460 *
3461 * Can't be called in interrupt context or from kernel threads.
3462 * This function needs to be called with rcu_read_lock() held.
3463 */
3464struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3465 gfp_t gfp)
3466{
3467 struct mem_cgroup *memcg;
3468 struct kmem_cache *memcg_cachep;
3469
3470 VM_BUG_ON(!cachep->memcg_params);
3471 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3472
3473 if (!current->mm || current->memcg_kmem_skip_account)
3474 return cachep;
3475
3476 rcu_read_lock();
3477 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3478
3479 if (!memcg_can_account_kmem(memcg))
3480 goto out;
3481
3482 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3483 if (likely(memcg_cachep)) {
3484 cachep = memcg_cachep;
3485 goto out;
3486 }
3487
3488 /* The corresponding put will be done in the workqueue. */
3489 if (!css_tryget(&memcg->css))
3490 goto out;
3491 rcu_read_unlock();
3492
3493 /*
3494 * If we are in a safe context (can wait, and not in interrupt
3495 * context), we could be be predictable and return right away.
3496 * This would guarantee that the allocation being performed
3497 * already belongs in the new cache.
3498 *
3499 * However, there are some clashes that can arrive from locking.
3500 * For instance, because we acquire the slab_mutex while doing
3501 * kmem_cache_dup, this means no further allocation could happen
3502 * with the slab_mutex held.
3503 *
3504 * Also, because cache creation issue get_online_cpus(), this
3505 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3506 * that ends up reversed during cpu hotplug. (cpuset allocates
3507 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3508 * better to defer everything.
3509 */
3510 memcg_create_cache_enqueue(memcg, cachep);
3511 return cachep;
3512out:
3513 rcu_read_unlock();
3514 return cachep;
3515}
3516EXPORT_SYMBOL(__memcg_kmem_get_cache);
3517
3518/*
3519 * We need to verify if the allocation against current->mm->owner's memcg is
3520 * possible for the given order. But the page is not allocated yet, so we'll
3521 * need a further commit step to do the final arrangements.
3522 *
3523 * It is possible for the task to switch cgroups in this mean time, so at
3524 * commit time, we can't rely on task conversion any longer. We'll then use
3525 * the handle argument to return to the caller which cgroup we should commit
3526 * against. We could also return the memcg directly and avoid the pointer
3527 * passing, but a boolean return value gives better semantics considering
3528 * the compiled-out case as well.
3529 *
3530 * Returning true means the allocation is possible.
3531 */
3532bool
3533__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3534{
3535 struct mem_cgroup *memcg;
3536 int ret;
3537
3538 *_memcg = NULL;
3539
3540 /*
3541 * Disabling accounting is only relevant for some specific memcg
3542 * internal allocations. Therefore we would initially not have such
3543 * check here, since direct calls to the page allocator that are marked
3544 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3545 * concerned with cache allocations, and by having this test at
3546 * memcg_kmem_get_cache, we are already able to relay the allocation to
3547 * the root cache and bypass the memcg cache altogether.
3548 *
3549 * There is one exception, though: the SLUB allocator does not create
3550 * large order caches, but rather service large kmallocs directly from
3551 * the page allocator. Therefore, the following sequence when backed by
3552 * the SLUB allocator:
3553 *
3554 * memcg_stop_kmem_account();
3555 * kmalloc(<large_number>)
3556 * memcg_resume_kmem_account();
3557 *
3558 * would effectively ignore the fact that we should skip accounting,
3559 * since it will drive us directly to this function without passing
3560 * through the cache selector memcg_kmem_get_cache. Such large
3561 * allocations are extremely rare but can happen, for instance, for the
3562 * cache arrays. We bring this test here.
3563 */
3564 if (!current->mm || current->memcg_kmem_skip_account)
3565 return true;
3566
3567 memcg = get_mem_cgroup_from_mm(current->mm);
3568
3569 if (!memcg_can_account_kmem(memcg)) {
3570 css_put(&memcg->css);
3571 return true;
3572 }
3573
3574 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3575 if (!ret)
3576 *_memcg = memcg;
3577
3578 css_put(&memcg->css);
3579 return (ret == 0);
3580}
3581
3582void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3583 int order)
3584{
3585 struct page_cgroup *pc;
3586
3587 VM_BUG_ON(mem_cgroup_is_root(memcg));
3588
3589 /* The page allocation failed. Revert */
3590 if (!page) {
3591 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3592 return;
3593 }
3594
3595 pc = lookup_page_cgroup(page);
3596 lock_page_cgroup(pc);
3597 pc->mem_cgroup = memcg;
3598 SetPageCgroupUsed(pc);
3599 unlock_page_cgroup(pc);
3600}
3601
3602void __memcg_kmem_uncharge_pages(struct page *page, int order)
3603{
3604 struct mem_cgroup *memcg = NULL;
3605 struct page_cgroup *pc;
3606
3607
3608 pc = lookup_page_cgroup(page);
3609 /*
3610 * Fast unlocked return. Theoretically might have changed, have to
3611 * check again after locking.
3612 */
3613 if (!PageCgroupUsed(pc))
3614 return;
3615
3616 lock_page_cgroup(pc);
3617 if (PageCgroupUsed(pc)) {
3618 memcg = pc->mem_cgroup;
3619 ClearPageCgroupUsed(pc);
3620 }
3621 unlock_page_cgroup(pc);
3622
3623 /*
3624 * We trust that only if there is a memcg associated with the page, it
3625 * is a valid allocation
3626 */
3627 if (!memcg)
3628 return;
3629
3630 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3631 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3632}
3633#else
3634static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3635{
3636}
3637#endif /* CONFIG_MEMCG_KMEM */
3638
3639#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3640
3641#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3642/*
3643 * Because tail pages are not marked as "used", set it. We're under
3644 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3645 * charge/uncharge will be never happen and move_account() is done under
3646 * compound_lock(), so we don't have to take care of races.
3647 */
3648void mem_cgroup_split_huge_fixup(struct page *head)
3649{
3650 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3651 struct page_cgroup *pc;
3652 struct mem_cgroup *memcg;
3653 int i;
3654
3655 if (mem_cgroup_disabled())
3656 return;
3657
3658 memcg = head_pc->mem_cgroup;
3659 for (i = 1; i < HPAGE_PMD_NR; i++) {
3660 pc = head_pc + i;
3661 pc->mem_cgroup = memcg;
3662 smp_wmb();/* see __commit_charge() */
3663 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3664 }
3665 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3666 HPAGE_PMD_NR);
3667}
3668#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3669
3670/**
3671 * mem_cgroup_move_account - move account of the page
3672 * @page: the page
3673 * @nr_pages: number of regular pages (>1 for huge pages)
3674 * @pc: page_cgroup of the page.
3675 * @from: mem_cgroup which the page is moved from.
3676 * @to: mem_cgroup which the page is moved to. @from != @to.
3677 *
3678 * The caller must confirm following.
3679 * - page is not on LRU (isolate_page() is useful.)
3680 * - compound_lock is held when nr_pages > 1
3681 *
3682 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3683 * from old cgroup.
3684 */
3685static int mem_cgroup_move_account(struct page *page,
3686 unsigned int nr_pages,
3687 struct page_cgroup *pc,
3688 struct mem_cgroup *from,
3689 struct mem_cgroup *to)
3690{
3691 unsigned long flags;
3692 int ret;
3693 bool anon = PageAnon(page);
3694
3695 VM_BUG_ON(from == to);
3696 VM_BUG_ON_PAGE(PageLRU(page), page);
3697 /*
3698 * The page is isolated from LRU. So, collapse function
3699 * will not handle this page. But page splitting can happen.
3700 * Do this check under compound_page_lock(). The caller should
3701 * hold it.
3702 */
3703 ret = -EBUSY;
3704 if (nr_pages > 1 && !PageTransHuge(page))
3705 goto out;
3706
3707 lock_page_cgroup(pc);
3708
3709 ret = -EINVAL;
3710 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3711 goto unlock;
3712
3713 move_lock_mem_cgroup(from, &flags);
3714
3715 if (!anon && page_mapped(page)) {
3716 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3717 nr_pages);
3718 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3719 nr_pages);
3720 }
3721
3722 if (PageWriteback(page)) {
3723 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3724 nr_pages);
3725 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3726 nr_pages);
3727 }
3728
3729 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3730
3731 /* caller should have done css_get */
3732 pc->mem_cgroup = to;
3733 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3734 move_unlock_mem_cgroup(from, &flags);
3735 ret = 0;
3736unlock:
3737 unlock_page_cgroup(pc);
3738 /*
3739 * check events
3740 */
3741 memcg_check_events(to, page);
3742 memcg_check_events(from, page);
3743out:
3744 return ret;
3745}
3746
3747/**
3748 * mem_cgroup_move_parent - moves page to the parent group
3749 * @page: the page to move
3750 * @pc: page_cgroup of the page
3751 * @child: page's cgroup
3752 *
3753 * move charges to its parent or the root cgroup if the group has no
3754 * parent (aka use_hierarchy==0).
3755 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3756 * mem_cgroup_move_account fails) the failure is always temporary and
3757 * it signals a race with a page removal/uncharge or migration. In the
3758 * first case the page is on the way out and it will vanish from the LRU
3759 * on the next attempt and the call should be retried later.
3760 * Isolation from the LRU fails only if page has been isolated from
3761 * the LRU since we looked at it and that usually means either global
3762 * reclaim or migration going on. The page will either get back to the
3763 * LRU or vanish.
3764 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3765 * (!PageCgroupUsed) or moved to a different group. The page will
3766 * disappear in the next attempt.
3767 */
3768static int mem_cgroup_move_parent(struct page *page,
3769 struct page_cgroup *pc,
3770 struct mem_cgroup *child)
3771{
3772 struct mem_cgroup *parent;
3773 unsigned int nr_pages;
3774 unsigned long uninitialized_var(flags);
3775 int ret;
3776
3777 VM_BUG_ON(mem_cgroup_is_root(child));
3778
3779 ret = -EBUSY;
3780 if (!get_page_unless_zero(page))
3781 goto out;
3782 if (isolate_lru_page(page))
3783 goto put;
3784
3785 nr_pages = hpage_nr_pages(page);
3786
3787 parent = parent_mem_cgroup(child);
3788 /*
3789 * If no parent, move charges to root cgroup.
3790 */
3791 if (!parent)
3792 parent = root_mem_cgroup;
3793
3794 if (nr_pages > 1) {
3795 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3796 flags = compound_lock_irqsave(page);
3797 }
3798
3799 ret = mem_cgroup_move_account(page, nr_pages,
3800 pc, child, parent);
3801 if (!ret)
3802 __mem_cgroup_cancel_local_charge(child, nr_pages);
3803
3804 if (nr_pages > 1)
3805 compound_unlock_irqrestore(page, flags);
3806 putback_lru_page(page);
3807put:
3808 put_page(page);
3809out:
3810 return ret;
3811}
3812
3813int mem_cgroup_charge_anon(struct page *page,
3814 struct mm_struct *mm, gfp_t gfp_mask)
3815{
3816 unsigned int nr_pages = 1;
3817 struct mem_cgroup *memcg;
3818 bool oom = true;
3819
3820 if (mem_cgroup_disabled())
3821 return 0;
3822
3823 VM_BUG_ON_PAGE(page_mapped(page), page);
3824 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3825 VM_BUG_ON(!mm);
3826
3827 if (PageTransHuge(page)) {
3828 nr_pages <<= compound_order(page);
3829 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3830 /*
3831 * Never OOM-kill a process for a huge page. The
3832 * fault handler will fall back to regular pages.
3833 */
3834 oom = false;
3835 }
3836
3837 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3838 if (!memcg)
3839 return -ENOMEM;
3840 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3841 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3842 return 0;
3843}
3844
3845/*
3846 * While swap-in, try_charge -> commit or cancel, the page is locked.
3847 * And when try_charge() successfully returns, one refcnt to memcg without
3848 * struct page_cgroup is acquired. This refcnt will be consumed by
3849 * "commit()" or removed by "cancel()"
3850 */
3851static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3852 struct page *page,
3853 gfp_t mask,
3854 struct mem_cgroup **memcgp)
3855{
3856 struct mem_cgroup *memcg = NULL;
3857 struct page_cgroup *pc;
3858 int ret;
3859
3860 pc = lookup_page_cgroup(page);
3861 /*
3862 * Every swap fault against a single page tries to charge the
3863 * page, bail as early as possible. shmem_unuse() encounters
3864 * already charged pages, too. The USED bit is protected by
3865 * the page lock, which serializes swap cache removal, which
3866 * in turn serializes uncharging.
3867 */
3868 if (PageCgroupUsed(pc))
3869 goto out;
3870 if (do_swap_account)
3871 memcg = try_get_mem_cgroup_from_page(page);
3872 if (!memcg)
3873 memcg = get_mem_cgroup_from_mm(mm);
3874 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3875 css_put(&memcg->css);
3876 if (ret == -EINTR)
3877 memcg = root_mem_cgroup;
3878 else if (ret)
3879 return ret;
3880out:
3881 *memcgp = memcg;
3882 return 0;
3883}
3884
3885int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3886 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3887{
3888 if (mem_cgroup_disabled()) {
3889 *memcgp = NULL;
3890 return 0;
3891 }
3892 /*
3893 * A racing thread's fault, or swapoff, may have already
3894 * updated the pte, and even removed page from swap cache: in
3895 * those cases unuse_pte()'s pte_same() test will fail; but
3896 * there's also a KSM case which does need to charge the page.
3897 */
3898 if (!PageSwapCache(page)) {
3899 struct mem_cgroup *memcg;
3900
3901 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3902 if (!memcg)
3903 return -ENOMEM;
3904 *memcgp = memcg;
3905 return 0;
3906 }
3907 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3908}
3909
3910void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3911{
3912 if (mem_cgroup_disabled())
3913 return;
3914 if (!memcg)
3915 return;
3916 __mem_cgroup_cancel_charge(memcg, 1);
3917}
3918
3919static void
3920__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3921 enum charge_type ctype)
3922{
3923 if (mem_cgroup_disabled())
3924 return;
3925 if (!memcg)
3926 return;
3927
3928 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3929 /*
3930 * Now swap is on-memory. This means this page may be
3931 * counted both as mem and swap....double count.
3932 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3933 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3934 * may call delete_from_swap_cache() before reach here.
3935 */
3936 if (do_swap_account && PageSwapCache(page)) {
3937 swp_entry_t ent = {.val = page_private(page)};
3938 mem_cgroup_uncharge_swap(ent);
3939 }
3940}
3941
3942void mem_cgroup_commit_charge_swapin(struct page *page,
3943 struct mem_cgroup *memcg)
3944{
3945 __mem_cgroup_commit_charge_swapin(page, memcg,
3946 MEM_CGROUP_CHARGE_TYPE_ANON);
3947}
3948
3949int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3950 gfp_t gfp_mask)
3951{
3952 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3953 struct mem_cgroup *memcg;
3954 int ret;
3955
3956 if (mem_cgroup_disabled())
3957 return 0;
3958 if (PageCompound(page))
3959 return 0;
3960
3961 if (PageSwapCache(page)) { /* shmem */
3962 ret = __mem_cgroup_try_charge_swapin(mm, page,
3963 gfp_mask, &memcg);
3964 if (ret)
3965 return ret;
3966 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3967 return 0;
3968 }
3969
3970 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3971 if (!memcg)
3972 return -ENOMEM;
3973 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3974 return 0;
3975}
3976
3977static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3978 unsigned int nr_pages,
3979 const enum charge_type ctype)
3980{
3981 struct memcg_batch_info *batch = NULL;
3982 bool uncharge_memsw = true;
3983
3984 /* If swapout, usage of swap doesn't decrease */
3985 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3986 uncharge_memsw = false;
3987
3988 batch = ¤t->memcg_batch;
3989 /*
3990 * In usual, we do css_get() when we remember memcg pointer.
3991 * But in this case, we keep res->usage until end of a series of
3992 * uncharges. Then, it's ok to ignore memcg's refcnt.
3993 */
3994 if (!batch->memcg)
3995 batch->memcg = memcg;
3996 /*
3997 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3998 * In those cases, all pages freed continuously can be expected to be in
3999 * the same cgroup and we have chance to coalesce uncharges.
4000 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4001 * because we want to do uncharge as soon as possible.
4002 */
4003
4004 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4005 goto direct_uncharge;
4006
4007 if (nr_pages > 1)
4008 goto direct_uncharge;
4009
4010 /*
4011 * In typical case, batch->memcg == mem. This means we can
4012 * merge a series of uncharges to an uncharge of res_counter.
4013 * If not, we uncharge res_counter ony by one.
4014 */
4015 if (batch->memcg != memcg)
4016 goto direct_uncharge;
4017 /* remember freed charge and uncharge it later */
4018 batch->nr_pages++;
4019 if (uncharge_memsw)
4020 batch->memsw_nr_pages++;
4021 return;
4022direct_uncharge:
4023 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4024 if (uncharge_memsw)
4025 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4026 if (unlikely(batch->memcg != memcg))
4027 memcg_oom_recover(memcg);
4028}
4029
4030/*
4031 * uncharge if !page_mapped(page)
4032 */
4033static struct mem_cgroup *
4034__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4035 bool end_migration)
4036{
4037 struct mem_cgroup *memcg = NULL;
4038 unsigned int nr_pages = 1;
4039 struct page_cgroup *pc;
4040 bool anon;
4041
4042 if (mem_cgroup_disabled())
4043 return NULL;
4044
4045 if (PageTransHuge(page)) {
4046 nr_pages <<= compound_order(page);
4047 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4048 }
4049 /*
4050 * Check if our page_cgroup is valid
4051 */
4052 pc = lookup_page_cgroup(page);
4053 if (unlikely(!PageCgroupUsed(pc)))
4054 return NULL;
4055
4056 lock_page_cgroup(pc);
4057
4058 memcg = pc->mem_cgroup;
4059
4060 if (!PageCgroupUsed(pc))
4061 goto unlock_out;
4062
4063 anon = PageAnon(page);
4064
4065 switch (ctype) {
4066 case MEM_CGROUP_CHARGE_TYPE_ANON:
4067 /*
4068 * Generally PageAnon tells if it's the anon statistics to be
4069 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4070 * used before page reached the stage of being marked PageAnon.
4071 */
4072 anon = true;
4073 /* fallthrough */
4074 case MEM_CGROUP_CHARGE_TYPE_DROP:
4075 /* See mem_cgroup_prepare_migration() */
4076 if (page_mapped(page))
4077 goto unlock_out;
4078 /*
4079 * Pages under migration may not be uncharged. But
4080 * end_migration() /must/ be the one uncharging the
4081 * unused post-migration page and so it has to call
4082 * here with the migration bit still set. See the
4083 * res_counter handling below.
4084 */
4085 if (!end_migration && PageCgroupMigration(pc))
4086 goto unlock_out;
4087 break;
4088 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4089 if (!PageAnon(page)) { /* Shared memory */
4090 if (page->mapping && !page_is_file_cache(page))
4091 goto unlock_out;
4092 } else if (page_mapped(page)) /* Anon */
4093 goto unlock_out;
4094 break;
4095 default:
4096 break;
4097 }
4098
4099 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4100
4101 ClearPageCgroupUsed(pc);
4102 /*
4103 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4104 * freed from LRU. This is safe because uncharged page is expected not
4105 * to be reused (freed soon). Exception is SwapCache, it's handled by
4106 * special functions.
4107 */
4108
4109 unlock_page_cgroup(pc);
4110 /*
4111 * even after unlock, we have memcg->res.usage here and this memcg
4112 * will never be freed, so it's safe to call css_get().
4113 */
4114 memcg_check_events(memcg, page);
4115 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4116 mem_cgroup_swap_statistics(memcg, true);
4117 css_get(&memcg->css);
4118 }
4119 /*
4120 * Migration does not charge the res_counter for the
4121 * replacement page, so leave it alone when phasing out the
4122 * page that is unused after the migration.
4123 */
4124 if (!end_migration && !mem_cgroup_is_root(memcg))
4125 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4126
4127 return memcg;
4128
4129unlock_out:
4130 unlock_page_cgroup(pc);
4131 return NULL;
4132}
4133
4134void mem_cgroup_uncharge_page(struct page *page)
4135{
4136 /* early check. */
4137 if (page_mapped(page))
4138 return;
4139 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4140 /*
4141 * If the page is in swap cache, uncharge should be deferred
4142 * to the swap path, which also properly accounts swap usage
4143 * and handles memcg lifetime.
4144 *
4145 * Note that this check is not stable and reclaim may add the
4146 * page to swap cache at any time after this. However, if the
4147 * page is not in swap cache by the time page->mapcount hits
4148 * 0, there won't be any page table references to the swap
4149 * slot, and reclaim will free it and not actually write the
4150 * page to disk.
4151 */
4152 if (PageSwapCache(page))
4153 return;
4154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4155}
4156
4157void mem_cgroup_uncharge_cache_page(struct page *page)
4158{
4159 VM_BUG_ON_PAGE(page_mapped(page), page);
4160 VM_BUG_ON_PAGE(page->mapping, page);
4161 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4162}
4163
4164/*
4165 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4166 * In that cases, pages are freed continuously and we can expect pages
4167 * are in the same memcg. All these calls itself limits the number of
4168 * pages freed at once, then uncharge_start/end() is called properly.
4169 * This may be called prural(2) times in a context,
4170 */
4171
4172void mem_cgroup_uncharge_start(void)
4173{
4174 current->memcg_batch.do_batch++;
4175 /* We can do nest. */
4176 if (current->memcg_batch.do_batch == 1) {
4177 current->memcg_batch.memcg = NULL;
4178 current->memcg_batch.nr_pages = 0;
4179 current->memcg_batch.memsw_nr_pages = 0;
4180 }
4181}
4182
4183void mem_cgroup_uncharge_end(void)
4184{
4185 struct memcg_batch_info *batch = ¤t->memcg_batch;
4186
4187 if (!batch->do_batch)
4188 return;
4189
4190 batch->do_batch--;
4191 if (batch->do_batch) /* If stacked, do nothing. */
4192 return;
4193
4194 if (!batch->memcg)
4195 return;
4196 /*
4197 * This "batch->memcg" is valid without any css_get/put etc...
4198 * bacause we hide charges behind us.
4199 */
4200 if (batch->nr_pages)
4201 res_counter_uncharge(&batch->memcg->res,
4202 batch->nr_pages * PAGE_SIZE);
4203 if (batch->memsw_nr_pages)
4204 res_counter_uncharge(&batch->memcg->memsw,
4205 batch->memsw_nr_pages * PAGE_SIZE);
4206 memcg_oom_recover(batch->memcg);
4207 /* forget this pointer (for sanity check) */
4208 batch->memcg = NULL;
4209}
4210
4211#ifdef CONFIG_SWAP
4212/*
4213 * called after __delete_from_swap_cache() and drop "page" account.
4214 * memcg information is recorded to swap_cgroup of "ent"
4215 */
4216void
4217mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4218{
4219 struct mem_cgroup *memcg;
4220 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4221
4222 if (!swapout) /* this was a swap cache but the swap is unused ! */
4223 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4224
4225 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4226
4227 /*
4228 * record memcg information, if swapout && memcg != NULL,
4229 * css_get() was called in uncharge().
4230 */
4231 if (do_swap_account && swapout && memcg)
4232 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4233}
4234#endif
4235
4236#ifdef CONFIG_MEMCG_SWAP
4237/*
4238 * called from swap_entry_free(). remove record in swap_cgroup and
4239 * uncharge "memsw" account.
4240 */
4241void mem_cgroup_uncharge_swap(swp_entry_t ent)
4242{
4243 struct mem_cgroup *memcg;
4244 unsigned short id;
4245
4246 if (!do_swap_account)
4247 return;
4248
4249 id = swap_cgroup_record(ent, 0);
4250 rcu_read_lock();
4251 memcg = mem_cgroup_lookup(id);
4252 if (memcg) {
4253 /*
4254 * We uncharge this because swap is freed.
4255 * This memcg can be obsolete one. We avoid calling css_tryget
4256 */
4257 if (!mem_cgroup_is_root(memcg))
4258 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4259 mem_cgroup_swap_statistics(memcg, false);
4260 css_put(&memcg->css);
4261 }
4262 rcu_read_unlock();
4263}
4264
4265/**
4266 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4267 * @entry: swap entry to be moved
4268 * @from: mem_cgroup which the entry is moved from
4269 * @to: mem_cgroup which the entry is moved to
4270 *
4271 * It succeeds only when the swap_cgroup's record for this entry is the same
4272 * as the mem_cgroup's id of @from.
4273 *
4274 * Returns 0 on success, -EINVAL on failure.
4275 *
4276 * The caller must have charged to @to, IOW, called res_counter_charge() about
4277 * both res and memsw, and called css_get().
4278 */
4279static int mem_cgroup_move_swap_account(swp_entry_t entry,
4280 struct mem_cgroup *from, struct mem_cgroup *to)
4281{
4282 unsigned short old_id, new_id;
4283
4284 old_id = mem_cgroup_id(from);
4285 new_id = mem_cgroup_id(to);
4286
4287 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4288 mem_cgroup_swap_statistics(from, false);
4289 mem_cgroup_swap_statistics(to, true);
4290 /*
4291 * This function is only called from task migration context now.
4292 * It postpones res_counter and refcount handling till the end
4293 * of task migration(mem_cgroup_clear_mc()) for performance
4294 * improvement. But we cannot postpone css_get(to) because if
4295 * the process that has been moved to @to does swap-in, the
4296 * refcount of @to might be decreased to 0.
4297 *
4298 * We are in attach() phase, so the cgroup is guaranteed to be
4299 * alive, so we can just call css_get().
4300 */
4301 css_get(&to->css);
4302 return 0;
4303 }
4304 return -EINVAL;
4305}
4306#else
4307static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4308 struct mem_cgroup *from, struct mem_cgroup *to)
4309{
4310 return -EINVAL;
4311}
4312#endif
4313
4314/*
4315 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4316 * page belongs to.
4317 */
4318void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4319 struct mem_cgroup **memcgp)
4320{
4321 struct mem_cgroup *memcg = NULL;
4322 unsigned int nr_pages = 1;
4323 struct page_cgroup *pc;
4324 enum charge_type ctype;
4325
4326 *memcgp = NULL;
4327
4328 if (mem_cgroup_disabled())
4329 return;
4330
4331 if (PageTransHuge(page))
4332 nr_pages <<= compound_order(page);
4333
4334 pc = lookup_page_cgroup(page);
4335 lock_page_cgroup(pc);
4336 if (PageCgroupUsed(pc)) {
4337 memcg = pc->mem_cgroup;
4338 css_get(&memcg->css);
4339 /*
4340 * At migrating an anonymous page, its mapcount goes down
4341 * to 0 and uncharge() will be called. But, even if it's fully
4342 * unmapped, migration may fail and this page has to be
4343 * charged again. We set MIGRATION flag here and delay uncharge
4344 * until end_migration() is called
4345 *
4346 * Corner Case Thinking
4347 * A)
4348 * When the old page was mapped as Anon and it's unmap-and-freed
4349 * while migration was ongoing.
4350 * If unmap finds the old page, uncharge() of it will be delayed
4351 * until end_migration(). If unmap finds a new page, it's
4352 * uncharged when it make mapcount to be 1->0. If unmap code
4353 * finds swap_migration_entry, the new page will not be mapped
4354 * and end_migration() will find it(mapcount==0).
4355 *
4356 * B)
4357 * When the old page was mapped but migraion fails, the kernel
4358 * remaps it. A charge for it is kept by MIGRATION flag even
4359 * if mapcount goes down to 0. We can do remap successfully
4360 * without charging it again.
4361 *
4362 * C)
4363 * The "old" page is under lock_page() until the end of
4364 * migration, so, the old page itself will not be swapped-out.
4365 * If the new page is swapped out before end_migraton, our
4366 * hook to usual swap-out path will catch the event.
4367 */
4368 if (PageAnon(page))
4369 SetPageCgroupMigration(pc);
4370 }
4371 unlock_page_cgroup(pc);
4372 /*
4373 * If the page is not charged at this point,
4374 * we return here.
4375 */
4376 if (!memcg)
4377 return;
4378
4379 *memcgp = memcg;
4380 /*
4381 * We charge new page before it's used/mapped. So, even if unlock_page()
4382 * is called before end_migration, we can catch all events on this new
4383 * page. In the case new page is migrated but not remapped, new page's
4384 * mapcount will be finally 0 and we call uncharge in end_migration().
4385 */
4386 if (PageAnon(page))
4387 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4388 else
4389 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4390 /*
4391 * The page is committed to the memcg, but it's not actually
4392 * charged to the res_counter since we plan on replacing the
4393 * old one and only one page is going to be left afterwards.
4394 */
4395 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4396}
4397
4398/* remove redundant charge if migration failed*/
4399void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4400 struct page *oldpage, struct page *newpage, bool migration_ok)
4401{
4402 struct page *used, *unused;
4403 struct page_cgroup *pc;
4404 bool anon;
4405
4406 if (!memcg)
4407 return;
4408
4409 if (!migration_ok) {
4410 used = oldpage;
4411 unused = newpage;
4412 } else {
4413 used = newpage;
4414 unused = oldpage;
4415 }
4416 anon = PageAnon(used);
4417 __mem_cgroup_uncharge_common(unused,
4418 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4419 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4420 true);
4421 css_put(&memcg->css);
4422 /*
4423 * We disallowed uncharge of pages under migration because mapcount
4424 * of the page goes down to zero, temporarly.
4425 * Clear the flag and check the page should be charged.
4426 */
4427 pc = lookup_page_cgroup(oldpage);
4428 lock_page_cgroup(pc);
4429 ClearPageCgroupMigration(pc);
4430 unlock_page_cgroup(pc);
4431
4432 /*
4433 * If a page is a file cache, radix-tree replacement is very atomic
4434 * and we can skip this check. When it was an Anon page, its mapcount
4435 * goes down to 0. But because we added MIGRATION flage, it's not
4436 * uncharged yet. There are several case but page->mapcount check
4437 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4438 * check. (see prepare_charge() also)
4439 */
4440 if (anon)
4441 mem_cgroup_uncharge_page(used);
4442}
4443
4444/*
4445 * At replace page cache, newpage is not under any memcg but it's on
4446 * LRU. So, this function doesn't touch res_counter but handles LRU
4447 * in correct way. Both pages are locked so we cannot race with uncharge.
4448 */
4449void mem_cgroup_replace_page_cache(struct page *oldpage,
4450 struct page *newpage)
4451{
4452 struct mem_cgroup *memcg = NULL;
4453 struct page_cgroup *pc;
4454 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4455
4456 if (mem_cgroup_disabled())
4457 return;
4458
4459 pc = lookup_page_cgroup(oldpage);
4460 /* fix accounting on old pages */
4461 lock_page_cgroup(pc);
4462 if (PageCgroupUsed(pc)) {
4463 memcg = pc->mem_cgroup;
4464 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4465 ClearPageCgroupUsed(pc);
4466 }
4467 unlock_page_cgroup(pc);
4468
4469 /*
4470 * When called from shmem_replace_page(), in some cases the
4471 * oldpage has already been charged, and in some cases not.
4472 */
4473 if (!memcg)
4474 return;
4475 /*
4476 * Even if newpage->mapping was NULL before starting replacement,
4477 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4478 * LRU while we overwrite pc->mem_cgroup.
4479 */
4480 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4481}
4482
4483#ifdef CONFIG_DEBUG_VM
4484static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4485{
4486 struct page_cgroup *pc;
4487
4488 pc = lookup_page_cgroup(page);
4489 /*
4490 * Can be NULL while feeding pages into the page allocator for
4491 * the first time, i.e. during boot or memory hotplug;
4492 * or when mem_cgroup_disabled().
4493 */
4494 if (likely(pc) && PageCgroupUsed(pc))
4495 return pc;
4496 return NULL;
4497}
4498
4499bool mem_cgroup_bad_page_check(struct page *page)
4500{
4501 if (mem_cgroup_disabled())
4502 return false;
4503
4504 return lookup_page_cgroup_used(page) != NULL;
4505}
4506
4507void mem_cgroup_print_bad_page(struct page *page)
4508{
4509 struct page_cgroup *pc;
4510
4511 pc = lookup_page_cgroup_used(page);
4512 if (pc) {
4513 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4514 pc, pc->flags, pc->mem_cgroup);
4515 }
4516}
4517#endif
4518
4519static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4520 unsigned long long val)
4521{
4522 int retry_count;
4523 u64 memswlimit, memlimit;
4524 int ret = 0;
4525 int children = mem_cgroup_count_children(memcg);
4526 u64 curusage, oldusage;
4527 int enlarge;
4528
4529 /*
4530 * For keeping hierarchical_reclaim simple, how long we should retry
4531 * is depends on callers. We set our retry-count to be function
4532 * of # of children which we should visit in this loop.
4533 */
4534 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4535
4536 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4537
4538 enlarge = 0;
4539 while (retry_count) {
4540 if (signal_pending(current)) {
4541 ret = -EINTR;
4542 break;
4543 }
4544 /*
4545 * Rather than hide all in some function, I do this in
4546 * open coded manner. You see what this really does.
4547 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4548 */
4549 mutex_lock(&set_limit_mutex);
4550 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4551 if (memswlimit < val) {
4552 ret = -EINVAL;
4553 mutex_unlock(&set_limit_mutex);
4554 break;
4555 }
4556
4557 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4558 if (memlimit < val)
4559 enlarge = 1;
4560
4561 ret = res_counter_set_limit(&memcg->res, val);
4562 if (!ret) {
4563 if (memswlimit == val)
4564 memcg->memsw_is_minimum = true;
4565 else
4566 memcg->memsw_is_minimum = false;
4567 }
4568 mutex_unlock(&set_limit_mutex);
4569
4570 if (!ret)
4571 break;
4572
4573 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4574 MEM_CGROUP_RECLAIM_SHRINK);
4575 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4576 /* Usage is reduced ? */
4577 if (curusage >= oldusage)
4578 retry_count--;
4579 else
4580 oldusage = curusage;
4581 }
4582 if (!ret && enlarge)
4583 memcg_oom_recover(memcg);
4584
4585 return ret;
4586}
4587
4588static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4589 unsigned long long val)
4590{
4591 int retry_count;
4592 u64 memlimit, memswlimit, oldusage, curusage;
4593 int children = mem_cgroup_count_children(memcg);
4594 int ret = -EBUSY;
4595 int enlarge = 0;
4596
4597 /* see mem_cgroup_resize_res_limit */
4598 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4599 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4600 while (retry_count) {
4601 if (signal_pending(current)) {
4602 ret = -EINTR;
4603 break;
4604 }
4605 /*
4606 * Rather than hide all in some function, I do this in
4607 * open coded manner. You see what this really does.
4608 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4609 */
4610 mutex_lock(&set_limit_mutex);
4611 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4612 if (memlimit > val) {
4613 ret = -EINVAL;
4614 mutex_unlock(&set_limit_mutex);
4615 break;
4616 }
4617 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4618 if (memswlimit < val)
4619 enlarge = 1;
4620 ret = res_counter_set_limit(&memcg->memsw, val);
4621 if (!ret) {
4622 if (memlimit == val)
4623 memcg->memsw_is_minimum = true;
4624 else
4625 memcg->memsw_is_minimum = false;
4626 }
4627 mutex_unlock(&set_limit_mutex);
4628
4629 if (!ret)
4630 break;
4631
4632 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4633 MEM_CGROUP_RECLAIM_NOSWAP |
4634 MEM_CGROUP_RECLAIM_SHRINK);
4635 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4636 /* Usage is reduced ? */
4637 if (curusage >= oldusage)
4638 retry_count--;
4639 else
4640 oldusage = curusage;
4641 }
4642 if (!ret && enlarge)
4643 memcg_oom_recover(memcg);
4644 return ret;
4645}
4646
4647unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4648 gfp_t gfp_mask,
4649 unsigned long *total_scanned)
4650{
4651 unsigned long nr_reclaimed = 0;
4652 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4653 unsigned long reclaimed;
4654 int loop = 0;
4655 struct mem_cgroup_tree_per_zone *mctz;
4656 unsigned long long excess;
4657 unsigned long nr_scanned;
4658
4659 if (order > 0)
4660 return 0;
4661
4662 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4663 /*
4664 * This loop can run a while, specially if mem_cgroup's continuously
4665 * keep exceeding their soft limit and putting the system under
4666 * pressure
4667 */
4668 do {
4669 if (next_mz)
4670 mz = next_mz;
4671 else
4672 mz = mem_cgroup_largest_soft_limit_node(mctz);
4673 if (!mz)
4674 break;
4675
4676 nr_scanned = 0;
4677 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4678 gfp_mask, &nr_scanned);
4679 nr_reclaimed += reclaimed;
4680 *total_scanned += nr_scanned;
4681 spin_lock(&mctz->lock);
4682
4683 /*
4684 * If we failed to reclaim anything from this memory cgroup
4685 * it is time to move on to the next cgroup
4686 */
4687 next_mz = NULL;
4688 if (!reclaimed) {
4689 do {
4690 /*
4691 * Loop until we find yet another one.
4692 *
4693 * By the time we get the soft_limit lock
4694 * again, someone might have aded the
4695 * group back on the RB tree. Iterate to
4696 * make sure we get a different mem.
4697 * mem_cgroup_largest_soft_limit_node returns
4698 * NULL if no other cgroup is present on
4699 * the tree
4700 */
4701 next_mz =
4702 __mem_cgroup_largest_soft_limit_node(mctz);
4703 if (next_mz == mz)
4704 css_put(&next_mz->memcg->css);
4705 else /* next_mz == NULL or other memcg */
4706 break;
4707 } while (1);
4708 }
4709 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4710 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4711 /*
4712 * One school of thought says that we should not add
4713 * back the node to the tree if reclaim returns 0.
4714 * But our reclaim could return 0, simply because due
4715 * to priority we are exposing a smaller subset of
4716 * memory to reclaim from. Consider this as a longer
4717 * term TODO.
4718 */
4719 /* If excess == 0, no tree ops */
4720 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4721 spin_unlock(&mctz->lock);
4722 css_put(&mz->memcg->css);
4723 loop++;
4724 /*
4725 * Could not reclaim anything and there are no more
4726 * mem cgroups to try or we seem to be looping without
4727 * reclaiming anything.
4728 */
4729 if (!nr_reclaimed &&
4730 (next_mz == NULL ||
4731 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4732 break;
4733 } while (!nr_reclaimed);
4734 if (next_mz)
4735 css_put(&next_mz->memcg->css);
4736 return nr_reclaimed;
4737}
4738
4739/**
4740 * mem_cgroup_force_empty_list - clears LRU of a group
4741 * @memcg: group to clear
4742 * @node: NUMA node
4743 * @zid: zone id
4744 * @lru: lru to to clear
4745 *
4746 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4747 * reclaim the pages page themselves - pages are moved to the parent (or root)
4748 * group.
4749 */
4750static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4751 int node, int zid, enum lru_list lru)
4752{
4753 struct lruvec *lruvec;
4754 unsigned long flags;
4755 struct list_head *list;
4756 struct page *busy;
4757 struct zone *zone;
4758
4759 zone = &NODE_DATA(node)->node_zones[zid];
4760 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4761 list = &lruvec->lists[lru];
4762
4763 busy = NULL;
4764 do {
4765 struct page_cgroup *pc;
4766 struct page *page;
4767
4768 spin_lock_irqsave(&zone->lru_lock, flags);
4769 if (list_empty(list)) {
4770 spin_unlock_irqrestore(&zone->lru_lock, flags);
4771 break;
4772 }
4773 page = list_entry(list->prev, struct page, lru);
4774 if (busy == page) {
4775 list_move(&page->lru, list);
4776 busy = NULL;
4777 spin_unlock_irqrestore(&zone->lru_lock, flags);
4778 continue;
4779 }
4780 spin_unlock_irqrestore(&zone->lru_lock, flags);
4781
4782 pc = lookup_page_cgroup(page);
4783
4784 if (mem_cgroup_move_parent(page, pc, memcg)) {
4785 /* found lock contention or "pc" is obsolete. */
4786 busy = page;
4787 cond_resched();
4788 } else
4789 busy = NULL;
4790 } while (!list_empty(list));
4791}
4792
4793/*
4794 * make mem_cgroup's charge to be 0 if there is no task by moving
4795 * all the charges and pages to the parent.
4796 * This enables deleting this mem_cgroup.
4797 *
4798 * Caller is responsible for holding css reference on the memcg.
4799 */
4800static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4801{
4802 int node, zid;
4803 u64 usage;
4804
4805 do {
4806 /* This is for making all *used* pages to be on LRU. */
4807 lru_add_drain_all();
4808 drain_all_stock_sync(memcg);
4809 mem_cgroup_start_move(memcg);
4810 for_each_node_state(node, N_MEMORY) {
4811 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4812 enum lru_list lru;
4813 for_each_lru(lru) {
4814 mem_cgroup_force_empty_list(memcg,
4815 node, zid, lru);
4816 }
4817 }
4818 }
4819 mem_cgroup_end_move(memcg);
4820 memcg_oom_recover(memcg);
4821 cond_resched();
4822
4823 /*
4824 * Kernel memory may not necessarily be trackable to a specific
4825 * process. So they are not migrated, and therefore we can't
4826 * expect their value to drop to 0 here.
4827 * Having res filled up with kmem only is enough.
4828 *
4829 * This is a safety check because mem_cgroup_force_empty_list
4830 * could have raced with mem_cgroup_replace_page_cache callers
4831 * so the lru seemed empty but the page could have been added
4832 * right after the check. RES_USAGE should be safe as we always
4833 * charge before adding to the LRU.
4834 */
4835 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4836 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4837 } while (usage > 0);
4838}
4839
4840static inline bool memcg_has_children(struct mem_cgroup *memcg)
4841{
4842 lockdep_assert_held(&memcg_create_mutex);
4843 /*
4844 * The lock does not prevent addition or deletion to the list
4845 * of children, but it prevents a new child from being
4846 * initialized based on this parent in css_online(), so it's
4847 * enough to decide whether hierarchically inherited
4848 * attributes can still be changed or not.
4849 */
4850 return memcg->use_hierarchy &&
4851 !list_empty(&memcg->css.cgroup->children);
4852}
4853
4854/*
4855 * Reclaims as many pages from the given memcg as possible and moves
4856 * the rest to the parent.
4857 *
4858 * Caller is responsible for holding css reference for memcg.
4859 */
4860static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4861{
4862 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4863 struct cgroup *cgrp = memcg->css.cgroup;
4864
4865 /* returns EBUSY if there is a task or if we come here twice. */
4866 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4867 return -EBUSY;
4868
4869 /* we call try-to-free pages for make this cgroup empty */
4870 lru_add_drain_all();
4871 /* try to free all pages in this cgroup */
4872 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4873 int progress;
4874
4875 if (signal_pending(current))
4876 return -EINTR;
4877
4878 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4879 false);
4880 if (!progress) {
4881 nr_retries--;
4882 /* maybe some writeback is necessary */
4883 congestion_wait(BLK_RW_ASYNC, HZ/10);
4884 }
4885
4886 }
4887 lru_add_drain();
4888 mem_cgroup_reparent_charges(memcg);
4889
4890 return 0;
4891}
4892
4893static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4894 unsigned int event)
4895{
4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897
4898 if (mem_cgroup_is_root(memcg))
4899 return -EINVAL;
4900 return mem_cgroup_force_empty(memcg);
4901}
4902
4903static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4904 struct cftype *cft)
4905{
4906 return mem_cgroup_from_css(css)->use_hierarchy;
4907}
4908
4909static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4910 struct cftype *cft, u64 val)
4911{
4912 int retval = 0;
4913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4914 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4915
4916 mutex_lock(&memcg_create_mutex);
4917
4918 if (memcg->use_hierarchy == val)
4919 goto out;
4920
4921 /*
4922 * If parent's use_hierarchy is set, we can't make any modifications
4923 * in the child subtrees. If it is unset, then the change can
4924 * occur, provided the current cgroup has no children.
4925 *
4926 * For the root cgroup, parent_mem is NULL, we allow value to be
4927 * set if there are no children.
4928 */
4929 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4930 (val == 1 || val == 0)) {
4931 if (list_empty(&memcg->css.cgroup->children))
4932 memcg->use_hierarchy = val;
4933 else
4934 retval = -EBUSY;
4935 } else
4936 retval = -EINVAL;
4937
4938out:
4939 mutex_unlock(&memcg_create_mutex);
4940
4941 return retval;
4942}
4943
4944
4945static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4946 enum mem_cgroup_stat_index idx)
4947{
4948 struct mem_cgroup *iter;
4949 long val = 0;
4950
4951 /* Per-cpu values can be negative, use a signed accumulator */
4952 for_each_mem_cgroup_tree(iter, memcg)
4953 val += mem_cgroup_read_stat(iter, idx);
4954
4955 if (val < 0) /* race ? */
4956 val = 0;
4957 return val;
4958}
4959
4960static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4961{
4962 u64 val;
4963
4964 if (!mem_cgroup_is_root(memcg)) {
4965 if (!swap)
4966 return res_counter_read_u64(&memcg->res, RES_USAGE);
4967 else
4968 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4969 }
4970
4971 /*
4972 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4973 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4974 */
4975 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4976 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4977
4978 if (swap)
4979 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4980
4981 return val << PAGE_SHIFT;
4982}
4983
4984static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4985 struct cftype *cft)
4986{
4987 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4988 u64 val;
4989 int name;
4990 enum res_type type;
4991
4992 type = MEMFILE_TYPE(cft->private);
4993 name = MEMFILE_ATTR(cft->private);
4994
4995 switch (type) {
4996 case _MEM:
4997 if (name == RES_USAGE)
4998 val = mem_cgroup_usage(memcg, false);
4999 else
5000 val = res_counter_read_u64(&memcg->res, name);
5001 break;
5002 case _MEMSWAP:
5003 if (name == RES_USAGE)
5004 val = mem_cgroup_usage(memcg, true);
5005 else
5006 val = res_counter_read_u64(&memcg->memsw, name);
5007 break;
5008 case _KMEM:
5009 val = res_counter_read_u64(&memcg->kmem, name);
5010 break;
5011 default:
5012 BUG();
5013 }
5014
5015 return val;
5016}
5017
5018#ifdef CONFIG_MEMCG_KMEM
5019/* should be called with activate_kmem_mutex held */
5020static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5021 unsigned long long limit)
5022{
5023 int err = 0;
5024 int memcg_id;
5025
5026 if (memcg_kmem_is_active(memcg))
5027 return 0;
5028
5029 /*
5030 * We are going to allocate memory for data shared by all memory
5031 * cgroups so let's stop accounting here.
5032 */
5033 memcg_stop_kmem_account();
5034
5035 /*
5036 * For simplicity, we won't allow this to be disabled. It also can't
5037 * be changed if the cgroup has children already, or if tasks had
5038 * already joined.
5039 *
5040 * If tasks join before we set the limit, a person looking at
5041 * kmem.usage_in_bytes will have no way to determine when it took
5042 * place, which makes the value quite meaningless.
5043 *
5044 * After it first became limited, changes in the value of the limit are
5045 * of course permitted.
5046 */
5047 mutex_lock(&memcg_create_mutex);
5048 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5049 err = -EBUSY;
5050 mutex_unlock(&memcg_create_mutex);
5051 if (err)
5052 goto out;
5053
5054 memcg_id = ida_simple_get(&kmem_limited_groups,
5055 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5056 if (memcg_id < 0) {
5057 err = memcg_id;
5058 goto out;
5059 }
5060
5061 /*
5062 * Make sure we have enough space for this cgroup in each root cache's
5063 * memcg_params.
5064 */
5065 err = memcg_update_all_caches(memcg_id + 1);
5066 if (err)
5067 goto out_rmid;
5068
5069 memcg->kmemcg_id = memcg_id;
5070 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5071 mutex_init(&memcg->slab_caches_mutex);
5072
5073 /*
5074 * We couldn't have accounted to this cgroup, because it hasn't got the
5075 * active bit set yet, so this should succeed.
5076 */
5077 err = res_counter_set_limit(&memcg->kmem, limit);
5078 VM_BUG_ON(err);
5079
5080 static_key_slow_inc(&memcg_kmem_enabled_key);
5081 /*
5082 * Setting the active bit after enabling static branching will
5083 * guarantee no one starts accounting before all call sites are
5084 * patched.
5085 */
5086 memcg_kmem_set_active(memcg);
5087out:
5088 memcg_resume_kmem_account();
5089 return err;
5090
5091out_rmid:
5092 ida_simple_remove(&kmem_limited_groups, memcg_id);
5093 goto out;
5094}
5095
5096static int memcg_activate_kmem(struct mem_cgroup *memcg,
5097 unsigned long long limit)
5098{
5099 int ret;
5100
5101 mutex_lock(&activate_kmem_mutex);
5102 ret = __memcg_activate_kmem(memcg, limit);
5103 mutex_unlock(&activate_kmem_mutex);
5104 return ret;
5105}
5106
5107static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5108 unsigned long long val)
5109{
5110 int ret;
5111
5112 if (!memcg_kmem_is_active(memcg))
5113 ret = memcg_activate_kmem(memcg, val);
5114 else
5115 ret = res_counter_set_limit(&memcg->kmem, val);
5116 return ret;
5117}
5118
5119static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5120{
5121 int ret = 0;
5122 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5123
5124 if (!parent)
5125 return 0;
5126
5127 mutex_lock(&activate_kmem_mutex);
5128 /*
5129 * If the parent cgroup is not kmem-active now, it cannot be activated
5130 * after this point, because it has at least one child already.
5131 */
5132 if (memcg_kmem_is_active(parent))
5133 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5134 mutex_unlock(&activate_kmem_mutex);
5135 return ret;
5136}
5137#else
5138static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5139 unsigned long long val)
5140{
5141 return -EINVAL;
5142}
5143#endif /* CONFIG_MEMCG_KMEM */
5144
5145/*
5146 * The user of this function is...
5147 * RES_LIMIT.
5148 */
5149static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5150 char *buffer)
5151{
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5153 enum res_type type;
5154 int name;
5155 unsigned long long val;
5156 int ret;
5157
5158 type = MEMFILE_TYPE(cft->private);
5159 name = MEMFILE_ATTR(cft->private);
5160
5161 switch (name) {
5162 case RES_LIMIT:
5163 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5164 ret = -EINVAL;
5165 break;
5166 }
5167 /* This function does all necessary parse...reuse it */
5168 ret = res_counter_memparse_write_strategy(buffer, &val);
5169 if (ret)
5170 break;
5171 if (type == _MEM)
5172 ret = mem_cgroup_resize_limit(memcg, val);
5173 else if (type == _MEMSWAP)
5174 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5175 else if (type == _KMEM)
5176 ret = memcg_update_kmem_limit(memcg, val);
5177 else
5178 return -EINVAL;
5179 break;
5180 case RES_SOFT_LIMIT:
5181 ret = res_counter_memparse_write_strategy(buffer, &val);
5182 if (ret)
5183 break;
5184 /*
5185 * For memsw, soft limits are hard to implement in terms
5186 * of semantics, for now, we support soft limits for
5187 * control without swap
5188 */
5189 if (type == _MEM)
5190 ret = res_counter_set_soft_limit(&memcg->res, val);
5191 else
5192 ret = -EINVAL;
5193 break;
5194 default:
5195 ret = -EINVAL; /* should be BUG() ? */
5196 break;
5197 }
5198 return ret;
5199}
5200
5201static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5202 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5203{
5204 unsigned long long min_limit, min_memsw_limit, tmp;
5205
5206 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5207 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5208 if (!memcg->use_hierarchy)
5209 goto out;
5210
5211 while (css_parent(&memcg->css)) {
5212 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5213 if (!memcg->use_hierarchy)
5214 break;
5215 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5216 min_limit = min(min_limit, tmp);
5217 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5218 min_memsw_limit = min(min_memsw_limit, tmp);
5219 }
5220out:
5221 *mem_limit = min_limit;
5222 *memsw_limit = min_memsw_limit;
5223}
5224
5225static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5226{
5227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5228 int name;
5229 enum res_type type;
5230
5231 type = MEMFILE_TYPE(event);
5232 name = MEMFILE_ATTR(event);
5233
5234 switch (name) {
5235 case RES_MAX_USAGE:
5236 if (type == _MEM)
5237 res_counter_reset_max(&memcg->res);
5238 else if (type == _MEMSWAP)
5239 res_counter_reset_max(&memcg->memsw);
5240 else if (type == _KMEM)
5241 res_counter_reset_max(&memcg->kmem);
5242 else
5243 return -EINVAL;
5244 break;
5245 case RES_FAILCNT:
5246 if (type == _MEM)
5247 res_counter_reset_failcnt(&memcg->res);
5248 else if (type == _MEMSWAP)
5249 res_counter_reset_failcnt(&memcg->memsw);
5250 else if (type == _KMEM)
5251 res_counter_reset_failcnt(&memcg->kmem);
5252 else
5253 return -EINVAL;
5254 break;
5255 }
5256
5257 return 0;
5258}
5259
5260static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5261 struct cftype *cft)
5262{
5263 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5264}
5265
5266#ifdef CONFIG_MMU
5267static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5268 struct cftype *cft, u64 val)
5269{
5270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271
5272 if (val >= (1 << NR_MOVE_TYPE))
5273 return -EINVAL;
5274
5275 /*
5276 * No kind of locking is needed in here, because ->can_attach() will
5277 * check this value once in the beginning of the process, and then carry
5278 * on with stale data. This means that changes to this value will only
5279 * affect task migrations starting after the change.
5280 */
5281 memcg->move_charge_at_immigrate = val;
5282 return 0;
5283}
5284#else
5285static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5286 struct cftype *cft, u64 val)
5287{
5288 return -ENOSYS;
5289}
5290#endif
5291
5292#ifdef CONFIG_NUMA
5293static int memcg_numa_stat_show(struct seq_file *m, void *v)
5294{
5295 struct numa_stat {
5296 const char *name;
5297 unsigned int lru_mask;
5298 };
5299
5300 static const struct numa_stat stats[] = {
5301 { "total", LRU_ALL },
5302 { "file", LRU_ALL_FILE },
5303 { "anon", LRU_ALL_ANON },
5304 { "unevictable", BIT(LRU_UNEVICTABLE) },
5305 };
5306 const struct numa_stat *stat;
5307 int nid;
5308 unsigned long nr;
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5310
5311 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5312 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5313 seq_printf(m, "%s=%lu", stat->name, nr);
5314 for_each_node_state(nid, N_MEMORY) {
5315 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5316 stat->lru_mask);
5317 seq_printf(m, " N%d=%lu", nid, nr);
5318 }
5319 seq_putc(m, '\n');
5320 }
5321
5322 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5323 struct mem_cgroup *iter;
5324
5325 nr = 0;
5326 for_each_mem_cgroup_tree(iter, memcg)
5327 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5328 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5329 for_each_node_state(nid, N_MEMORY) {
5330 nr = 0;
5331 for_each_mem_cgroup_tree(iter, memcg)
5332 nr += mem_cgroup_node_nr_lru_pages(
5333 iter, nid, stat->lru_mask);
5334 seq_printf(m, " N%d=%lu", nid, nr);
5335 }
5336 seq_putc(m, '\n');
5337 }
5338
5339 return 0;
5340}
5341#endif /* CONFIG_NUMA */
5342
5343static inline void mem_cgroup_lru_names_not_uptodate(void)
5344{
5345 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5346}
5347
5348static int memcg_stat_show(struct seq_file *m, void *v)
5349{
5350 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5351 struct mem_cgroup *mi;
5352 unsigned int i;
5353
5354 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5355 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5356 continue;
5357 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5358 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5359 }
5360
5361 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5362 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5363 mem_cgroup_read_events(memcg, i));
5364
5365 for (i = 0; i < NR_LRU_LISTS; i++)
5366 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5367 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5368
5369 /* Hierarchical information */
5370 {
5371 unsigned long long limit, memsw_limit;
5372 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5373 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5374 if (do_swap_account)
5375 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5376 memsw_limit);
5377 }
5378
5379 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5380 long long val = 0;
5381
5382 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5383 continue;
5384 for_each_mem_cgroup_tree(mi, memcg)
5385 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5386 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5387 }
5388
5389 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5390 unsigned long long val = 0;
5391
5392 for_each_mem_cgroup_tree(mi, memcg)
5393 val += mem_cgroup_read_events(mi, i);
5394 seq_printf(m, "total_%s %llu\n",
5395 mem_cgroup_events_names[i], val);
5396 }
5397
5398 for (i = 0; i < NR_LRU_LISTS; i++) {
5399 unsigned long long val = 0;
5400
5401 for_each_mem_cgroup_tree(mi, memcg)
5402 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5403 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5404 }
5405
5406#ifdef CONFIG_DEBUG_VM
5407 {
5408 int nid, zid;
5409 struct mem_cgroup_per_zone *mz;
5410 struct zone_reclaim_stat *rstat;
5411 unsigned long recent_rotated[2] = {0, 0};
5412 unsigned long recent_scanned[2] = {0, 0};
5413
5414 for_each_online_node(nid)
5415 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5416 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5417 rstat = &mz->lruvec.reclaim_stat;
5418
5419 recent_rotated[0] += rstat->recent_rotated[0];
5420 recent_rotated[1] += rstat->recent_rotated[1];
5421 recent_scanned[0] += rstat->recent_scanned[0];
5422 recent_scanned[1] += rstat->recent_scanned[1];
5423 }
5424 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5425 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5426 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5427 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5428 }
5429#endif
5430
5431 return 0;
5432}
5433
5434static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5435 struct cftype *cft)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5438
5439 return mem_cgroup_swappiness(memcg);
5440}
5441
5442static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5443 struct cftype *cft, u64 val)
5444{
5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5447
5448 if (val > 100 || !parent)
5449 return -EINVAL;
5450
5451 mutex_lock(&memcg_create_mutex);
5452
5453 /* If under hierarchy, only empty-root can set this value */
5454 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5455 mutex_unlock(&memcg_create_mutex);
5456 return -EINVAL;
5457 }
5458
5459 memcg->swappiness = val;
5460
5461 mutex_unlock(&memcg_create_mutex);
5462
5463 return 0;
5464}
5465
5466static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5467{
5468 struct mem_cgroup_threshold_ary *t;
5469 u64 usage;
5470 int i;
5471
5472 rcu_read_lock();
5473 if (!swap)
5474 t = rcu_dereference(memcg->thresholds.primary);
5475 else
5476 t = rcu_dereference(memcg->memsw_thresholds.primary);
5477
5478 if (!t)
5479 goto unlock;
5480
5481 usage = mem_cgroup_usage(memcg, swap);
5482
5483 /*
5484 * current_threshold points to threshold just below or equal to usage.
5485 * If it's not true, a threshold was crossed after last
5486 * call of __mem_cgroup_threshold().
5487 */
5488 i = t->current_threshold;
5489
5490 /*
5491 * Iterate backward over array of thresholds starting from
5492 * current_threshold and check if a threshold is crossed.
5493 * If none of thresholds below usage is crossed, we read
5494 * only one element of the array here.
5495 */
5496 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5497 eventfd_signal(t->entries[i].eventfd, 1);
5498
5499 /* i = current_threshold + 1 */
5500 i++;
5501
5502 /*
5503 * Iterate forward over array of thresholds starting from
5504 * current_threshold+1 and check if a threshold is crossed.
5505 * If none of thresholds above usage is crossed, we read
5506 * only one element of the array here.
5507 */
5508 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5509 eventfd_signal(t->entries[i].eventfd, 1);
5510
5511 /* Update current_threshold */
5512 t->current_threshold = i - 1;
5513unlock:
5514 rcu_read_unlock();
5515}
5516
5517static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5518{
5519 while (memcg) {
5520 __mem_cgroup_threshold(memcg, false);
5521 if (do_swap_account)
5522 __mem_cgroup_threshold(memcg, true);
5523
5524 memcg = parent_mem_cgroup(memcg);
5525 }
5526}
5527
5528static int compare_thresholds(const void *a, const void *b)
5529{
5530 const struct mem_cgroup_threshold *_a = a;
5531 const struct mem_cgroup_threshold *_b = b;
5532
5533 if (_a->threshold > _b->threshold)
5534 return 1;
5535
5536 if (_a->threshold < _b->threshold)
5537 return -1;
5538
5539 return 0;
5540}
5541
5542static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5543{
5544 struct mem_cgroup_eventfd_list *ev;
5545
5546 list_for_each_entry(ev, &memcg->oom_notify, list)
5547 eventfd_signal(ev->eventfd, 1);
5548 return 0;
5549}
5550
5551static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5552{
5553 struct mem_cgroup *iter;
5554
5555 for_each_mem_cgroup_tree(iter, memcg)
5556 mem_cgroup_oom_notify_cb(iter);
5557}
5558
5559static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5560 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5561{
5562 struct mem_cgroup_thresholds *thresholds;
5563 struct mem_cgroup_threshold_ary *new;
5564 u64 threshold, usage;
5565 int i, size, ret;
5566
5567 ret = res_counter_memparse_write_strategy(args, &threshold);
5568 if (ret)
5569 return ret;
5570
5571 mutex_lock(&memcg->thresholds_lock);
5572
5573 if (type == _MEM)
5574 thresholds = &memcg->thresholds;
5575 else if (type == _MEMSWAP)
5576 thresholds = &memcg->memsw_thresholds;
5577 else
5578 BUG();
5579
5580 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5581
5582 /* Check if a threshold crossed before adding a new one */
5583 if (thresholds->primary)
5584 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5585
5586 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5587
5588 /* Allocate memory for new array of thresholds */
5589 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5590 GFP_KERNEL);
5591 if (!new) {
5592 ret = -ENOMEM;
5593 goto unlock;
5594 }
5595 new->size = size;
5596
5597 /* Copy thresholds (if any) to new array */
5598 if (thresholds->primary) {
5599 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5600 sizeof(struct mem_cgroup_threshold));
5601 }
5602
5603 /* Add new threshold */
5604 new->entries[size - 1].eventfd = eventfd;
5605 new->entries[size - 1].threshold = threshold;
5606
5607 /* Sort thresholds. Registering of new threshold isn't time-critical */
5608 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5609 compare_thresholds, NULL);
5610
5611 /* Find current threshold */
5612 new->current_threshold = -1;
5613 for (i = 0; i < size; i++) {
5614 if (new->entries[i].threshold <= usage) {
5615 /*
5616 * new->current_threshold will not be used until
5617 * rcu_assign_pointer(), so it's safe to increment
5618 * it here.
5619 */
5620 ++new->current_threshold;
5621 } else
5622 break;
5623 }
5624
5625 /* Free old spare buffer and save old primary buffer as spare */
5626 kfree(thresholds->spare);
5627 thresholds->spare = thresholds->primary;
5628
5629 rcu_assign_pointer(thresholds->primary, new);
5630
5631 /* To be sure that nobody uses thresholds */
5632 synchronize_rcu();
5633
5634unlock:
5635 mutex_unlock(&memcg->thresholds_lock);
5636
5637 return ret;
5638}
5639
5640static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5641 struct eventfd_ctx *eventfd, const char *args)
5642{
5643 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5644}
5645
5646static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5647 struct eventfd_ctx *eventfd, const char *args)
5648{
5649 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5650}
5651
5652static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5653 struct eventfd_ctx *eventfd, enum res_type type)
5654{
5655 struct mem_cgroup_thresholds *thresholds;
5656 struct mem_cgroup_threshold_ary *new;
5657 u64 usage;
5658 int i, j, size;
5659
5660 mutex_lock(&memcg->thresholds_lock);
5661 if (type == _MEM)
5662 thresholds = &memcg->thresholds;
5663 else if (type == _MEMSWAP)
5664 thresholds = &memcg->memsw_thresholds;
5665 else
5666 BUG();
5667
5668 if (!thresholds->primary)
5669 goto unlock;
5670
5671 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5672
5673 /* Check if a threshold crossed before removing */
5674 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5675
5676 /* Calculate new number of threshold */
5677 size = 0;
5678 for (i = 0; i < thresholds->primary->size; i++) {
5679 if (thresholds->primary->entries[i].eventfd != eventfd)
5680 size++;
5681 }
5682
5683 new = thresholds->spare;
5684
5685 /* Set thresholds array to NULL if we don't have thresholds */
5686 if (!size) {
5687 kfree(new);
5688 new = NULL;
5689 goto swap_buffers;
5690 }
5691
5692 new->size = size;
5693
5694 /* Copy thresholds and find current threshold */
5695 new->current_threshold = -1;
5696 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5697 if (thresholds->primary->entries[i].eventfd == eventfd)
5698 continue;
5699
5700 new->entries[j] = thresholds->primary->entries[i];
5701 if (new->entries[j].threshold <= usage) {
5702 /*
5703 * new->current_threshold will not be used
5704 * until rcu_assign_pointer(), so it's safe to increment
5705 * it here.
5706 */
5707 ++new->current_threshold;
5708 }
5709 j++;
5710 }
5711
5712swap_buffers:
5713 /* Swap primary and spare array */
5714 thresholds->spare = thresholds->primary;
5715 /* If all events are unregistered, free the spare array */
5716 if (!new) {
5717 kfree(thresholds->spare);
5718 thresholds->spare = NULL;
5719 }
5720
5721 rcu_assign_pointer(thresholds->primary, new);
5722
5723 /* To be sure that nobody uses thresholds */
5724 synchronize_rcu();
5725unlock:
5726 mutex_unlock(&memcg->thresholds_lock);
5727}
5728
5729static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5730 struct eventfd_ctx *eventfd)
5731{
5732 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5733}
5734
5735static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5736 struct eventfd_ctx *eventfd)
5737{
5738 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5739}
5740
5741static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5742 struct eventfd_ctx *eventfd, const char *args)
5743{
5744 struct mem_cgroup_eventfd_list *event;
5745
5746 event = kmalloc(sizeof(*event), GFP_KERNEL);
5747 if (!event)
5748 return -ENOMEM;
5749
5750 spin_lock(&memcg_oom_lock);
5751
5752 event->eventfd = eventfd;
5753 list_add(&event->list, &memcg->oom_notify);
5754
5755 /* already in OOM ? */
5756 if (atomic_read(&memcg->under_oom))
5757 eventfd_signal(eventfd, 1);
5758 spin_unlock(&memcg_oom_lock);
5759
5760 return 0;
5761}
5762
5763static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5764 struct eventfd_ctx *eventfd)
5765{
5766 struct mem_cgroup_eventfd_list *ev, *tmp;
5767
5768 spin_lock(&memcg_oom_lock);
5769
5770 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5771 if (ev->eventfd == eventfd) {
5772 list_del(&ev->list);
5773 kfree(ev);
5774 }
5775 }
5776
5777 spin_unlock(&memcg_oom_lock);
5778}
5779
5780static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5781{
5782 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5783
5784 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5785 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5786 return 0;
5787}
5788
5789static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5790 struct cftype *cft, u64 val)
5791{
5792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5793 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5794
5795 /* cannot set to root cgroup and only 0 and 1 are allowed */
5796 if (!parent || !((val == 0) || (val == 1)))
5797 return -EINVAL;
5798
5799 mutex_lock(&memcg_create_mutex);
5800 /* oom-kill-disable is a flag for subhierarchy. */
5801 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5802 mutex_unlock(&memcg_create_mutex);
5803 return -EINVAL;
5804 }
5805 memcg->oom_kill_disable = val;
5806 if (!val)
5807 memcg_oom_recover(memcg);
5808 mutex_unlock(&memcg_create_mutex);
5809 return 0;
5810}
5811
5812#ifdef CONFIG_MEMCG_KMEM
5813static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5814{
5815 int ret;
5816
5817 memcg->kmemcg_id = -1;
5818 ret = memcg_propagate_kmem(memcg);
5819 if (ret)
5820 return ret;
5821
5822 return mem_cgroup_sockets_init(memcg, ss);
5823}
5824
5825static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5826{
5827 mem_cgroup_sockets_destroy(memcg);
5828}
5829
5830static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5831{
5832 if (!memcg_kmem_is_active(memcg))
5833 return;
5834
5835 /*
5836 * kmem charges can outlive the cgroup. In the case of slab
5837 * pages, for instance, a page contain objects from various
5838 * processes. As we prevent from taking a reference for every
5839 * such allocation we have to be careful when doing uncharge
5840 * (see memcg_uncharge_kmem) and here during offlining.
5841 *
5842 * The idea is that that only the _last_ uncharge which sees
5843 * the dead memcg will drop the last reference. An additional
5844 * reference is taken here before the group is marked dead
5845 * which is then paired with css_put during uncharge resp. here.
5846 *
5847 * Although this might sound strange as this path is called from
5848 * css_offline() when the referencemight have dropped down to 0
5849 * and shouldn't be incremented anymore (css_tryget would fail)
5850 * we do not have other options because of the kmem allocations
5851 * lifetime.
5852 */
5853 css_get(&memcg->css);
5854
5855 memcg_kmem_mark_dead(memcg);
5856
5857 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5858 return;
5859
5860 if (memcg_kmem_test_and_clear_dead(memcg))
5861 css_put(&memcg->css);
5862}
5863#else
5864static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5865{
5866 return 0;
5867}
5868
5869static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5870{
5871}
5872
5873static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5874{
5875}
5876#endif
5877
5878/*
5879 * DO NOT USE IN NEW FILES.
5880 *
5881 * "cgroup.event_control" implementation.
5882 *
5883 * This is way over-engineered. It tries to support fully configurable
5884 * events for each user. Such level of flexibility is completely
5885 * unnecessary especially in the light of the planned unified hierarchy.
5886 *
5887 * Please deprecate this and replace with something simpler if at all
5888 * possible.
5889 */
5890
5891/*
5892 * Unregister event and free resources.
5893 *
5894 * Gets called from workqueue.
5895 */
5896static void memcg_event_remove(struct work_struct *work)
5897{
5898 struct mem_cgroup_event *event =
5899 container_of(work, struct mem_cgroup_event, remove);
5900 struct mem_cgroup *memcg = event->memcg;
5901
5902 remove_wait_queue(event->wqh, &event->wait);
5903
5904 event->unregister_event(memcg, event->eventfd);
5905
5906 /* Notify userspace the event is going away. */
5907 eventfd_signal(event->eventfd, 1);
5908
5909 eventfd_ctx_put(event->eventfd);
5910 kfree(event);
5911 css_put(&memcg->css);
5912}
5913
5914/*
5915 * Gets called on POLLHUP on eventfd when user closes it.
5916 *
5917 * Called with wqh->lock held and interrupts disabled.
5918 */
5919static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5920 int sync, void *key)
5921{
5922 struct mem_cgroup_event *event =
5923 container_of(wait, struct mem_cgroup_event, wait);
5924 struct mem_cgroup *memcg = event->memcg;
5925 unsigned long flags = (unsigned long)key;
5926
5927 if (flags & POLLHUP) {
5928 /*
5929 * If the event has been detached at cgroup removal, we
5930 * can simply return knowing the other side will cleanup
5931 * for us.
5932 *
5933 * We can't race against event freeing since the other
5934 * side will require wqh->lock via remove_wait_queue(),
5935 * which we hold.
5936 */
5937 spin_lock(&memcg->event_list_lock);
5938 if (!list_empty(&event->list)) {
5939 list_del_init(&event->list);
5940 /*
5941 * We are in atomic context, but cgroup_event_remove()
5942 * may sleep, so we have to call it in workqueue.
5943 */
5944 schedule_work(&event->remove);
5945 }
5946 spin_unlock(&memcg->event_list_lock);
5947 }
5948
5949 return 0;
5950}
5951
5952static void memcg_event_ptable_queue_proc(struct file *file,
5953 wait_queue_head_t *wqh, poll_table *pt)
5954{
5955 struct mem_cgroup_event *event =
5956 container_of(pt, struct mem_cgroup_event, pt);
5957
5958 event->wqh = wqh;
5959 add_wait_queue(wqh, &event->wait);
5960}
5961
5962/*
5963 * DO NOT USE IN NEW FILES.
5964 *
5965 * Parse input and register new cgroup event handler.
5966 *
5967 * Input must be in format '<event_fd> <control_fd> <args>'.
5968 * Interpretation of args is defined by control file implementation.
5969 */
5970static int memcg_write_event_control(struct cgroup_subsys_state *css,
5971 struct cftype *cft, char *buffer)
5972{
5973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5974 struct mem_cgroup_event *event;
5975 struct cgroup_subsys_state *cfile_css;
5976 unsigned int efd, cfd;
5977 struct fd efile;
5978 struct fd cfile;
5979 const char *name;
5980 char *endp;
5981 int ret;
5982
5983 efd = simple_strtoul(buffer, &endp, 10);
5984 if (*endp != ' ')
5985 return -EINVAL;
5986 buffer = endp + 1;
5987
5988 cfd = simple_strtoul(buffer, &endp, 10);
5989 if ((*endp != ' ') && (*endp != '\0'))
5990 return -EINVAL;
5991 buffer = endp + 1;
5992
5993 event = kzalloc(sizeof(*event), GFP_KERNEL);
5994 if (!event)
5995 return -ENOMEM;
5996
5997 event->memcg = memcg;
5998 INIT_LIST_HEAD(&event->list);
5999 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6000 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6001 INIT_WORK(&event->remove, memcg_event_remove);
6002
6003 efile = fdget(efd);
6004 if (!efile.file) {
6005 ret = -EBADF;
6006 goto out_kfree;
6007 }
6008
6009 event->eventfd = eventfd_ctx_fileget(efile.file);
6010 if (IS_ERR(event->eventfd)) {
6011 ret = PTR_ERR(event->eventfd);
6012 goto out_put_efile;
6013 }
6014
6015 cfile = fdget(cfd);
6016 if (!cfile.file) {
6017 ret = -EBADF;
6018 goto out_put_eventfd;
6019 }
6020
6021 /* the process need read permission on control file */
6022 /* AV: shouldn't we check that it's been opened for read instead? */
6023 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6024 if (ret < 0)
6025 goto out_put_cfile;
6026
6027 /*
6028 * Determine the event callbacks and set them in @event. This used
6029 * to be done via struct cftype but cgroup core no longer knows
6030 * about these events. The following is crude but the whole thing
6031 * is for compatibility anyway.
6032 *
6033 * DO NOT ADD NEW FILES.
6034 */
6035 name = cfile.file->f_dentry->d_name.name;
6036
6037 if (!strcmp(name, "memory.usage_in_bytes")) {
6038 event->register_event = mem_cgroup_usage_register_event;
6039 event->unregister_event = mem_cgroup_usage_unregister_event;
6040 } else if (!strcmp(name, "memory.oom_control")) {
6041 event->register_event = mem_cgroup_oom_register_event;
6042 event->unregister_event = mem_cgroup_oom_unregister_event;
6043 } else if (!strcmp(name, "memory.pressure_level")) {
6044 event->register_event = vmpressure_register_event;
6045 event->unregister_event = vmpressure_unregister_event;
6046 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6047 event->register_event = memsw_cgroup_usage_register_event;
6048 event->unregister_event = memsw_cgroup_usage_unregister_event;
6049 } else {
6050 ret = -EINVAL;
6051 goto out_put_cfile;
6052 }
6053
6054 /*
6055 * Verify @cfile should belong to @css. Also, remaining events are
6056 * automatically removed on cgroup destruction but the removal is
6057 * asynchronous, so take an extra ref on @css.
6058 */
6059 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6060 &memory_cgrp_subsys);
6061 ret = -EINVAL;
6062 if (IS_ERR(cfile_css))
6063 goto out_put_cfile;
6064 if (cfile_css != css) {
6065 css_put(cfile_css);
6066 goto out_put_cfile;
6067 }
6068
6069 ret = event->register_event(memcg, event->eventfd, buffer);
6070 if (ret)
6071 goto out_put_css;
6072
6073 efile.file->f_op->poll(efile.file, &event->pt);
6074
6075 spin_lock(&memcg->event_list_lock);
6076 list_add(&event->list, &memcg->event_list);
6077 spin_unlock(&memcg->event_list_lock);
6078
6079 fdput(cfile);
6080 fdput(efile);
6081
6082 return 0;
6083
6084out_put_css:
6085 css_put(css);
6086out_put_cfile:
6087 fdput(cfile);
6088out_put_eventfd:
6089 eventfd_ctx_put(event->eventfd);
6090out_put_efile:
6091 fdput(efile);
6092out_kfree:
6093 kfree(event);
6094
6095 return ret;
6096}
6097
6098static struct cftype mem_cgroup_files[] = {
6099 {
6100 .name = "usage_in_bytes",
6101 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6102 .read_u64 = mem_cgroup_read_u64,
6103 },
6104 {
6105 .name = "max_usage_in_bytes",
6106 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6107 .trigger = mem_cgroup_reset,
6108 .read_u64 = mem_cgroup_read_u64,
6109 },
6110 {
6111 .name = "limit_in_bytes",
6112 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6113 .write_string = mem_cgroup_write,
6114 .read_u64 = mem_cgroup_read_u64,
6115 },
6116 {
6117 .name = "soft_limit_in_bytes",
6118 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6119 .write_string = mem_cgroup_write,
6120 .read_u64 = mem_cgroup_read_u64,
6121 },
6122 {
6123 .name = "failcnt",
6124 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6125 .trigger = mem_cgroup_reset,
6126 .read_u64 = mem_cgroup_read_u64,
6127 },
6128 {
6129 .name = "stat",
6130 .seq_show = memcg_stat_show,
6131 },
6132 {
6133 .name = "force_empty",
6134 .trigger = mem_cgroup_force_empty_write,
6135 },
6136 {
6137 .name = "use_hierarchy",
6138 .flags = CFTYPE_INSANE,
6139 .write_u64 = mem_cgroup_hierarchy_write,
6140 .read_u64 = mem_cgroup_hierarchy_read,
6141 },
6142 {
6143 .name = "cgroup.event_control", /* XXX: for compat */
6144 .write_string = memcg_write_event_control,
6145 .flags = CFTYPE_NO_PREFIX,
6146 .mode = S_IWUGO,
6147 },
6148 {
6149 .name = "swappiness",
6150 .read_u64 = mem_cgroup_swappiness_read,
6151 .write_u64 = mem_cgroup_swappiness_write,
6152 },
6153 {
6154 .name = "move_charge_at_immigrate",
6155 .read_u64 = mem_cgroup_move_charge_read,
6156 .write_u64 = mem_cgroup_move_charge_write,
6157 },
6158 {
6159 .name = "oom_control",
6160 .seq_show = mem_cgroup_oom_control_read,
6161 .write_u64 = mem_cgroup_oom_control_write,
6162 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6163 },
6164 {
6165 .name = "pressure_level",
6166 },
6167#ifdef CONFIG_NUMA
6168 {
6169 .name = "numa_stat",
6170 .seq_show = memcg_numa_stat_show,
6171 },
6172#endif
6173#ifdef CONFIG_MEMCG_KMEM
6174 {
6175 .name = "kmem.limit_in_bytes",
6176 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6177 .write_string = mem_cgroup_write,
6178 .read_u64 = mem_cgroup_read_u64,
6179 },
6180 {
6181 .name = "kmem.usage_in_bytes",
6182 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6183 .read_u64 = mem_cgroup_read_u64,
6184 },
6185 {
6186 .name = "kmem.failcnt",
6187 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6188 .trigger = mem_cgroup_reset,
6189 .read_u64 = mem_cgroup_read_u64,
6190 },
6191 {
6192 .name = "kmem.max_usage_in_bytes",
6193 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6194 .trigger = mem_cgroup_reset,
6195 .read_u64 = mem_cgroup_read_u64,
6196 },
6197#ifdef CONFIG_SLABINFO
6198 {
6199 .name = "kmem.slabinfo",
6200 .seq_show = mem_cgroup_slabinfo_read,
6201 },
6202#endif
6203#endif
6204 { }, /* terminate */
6205};
6206
6207#ifdef CONFIG_MEMCG_SWAP
6208static struct cftype memsw_cgroup_files[] = {
6209 {
6210 .name = "memsw.usage_in_bytes",
6211 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6212 .read_u64 = mem_cgroup_read_u64,
6213 },
6214 {
6215 .name = "memsw.max_usage_in_bytes",
6216 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6217 .trigger = mem_cgroup_reset,
6218 .read_u64 = mem_cgroup_read_u64,
6219 },
6220 {
6221 .name = "memsw.limit_in_bytes",
6222 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6223 .write_string = mem_cgroup_write,
6224 .read_u64 = mem_cgroup_read_u64,
6225 },
6226 {
6227 .name = "memsw.failcnt",
6228 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6229 .trigger = mem_cgroup_reset,
6230 .read_u64 = mem_cgroup_read_u64,
6231 },
6232 { }, /* terminate */
6233};
6234#endif
6235static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6236{
6237 struct mem_cgroup_per_node *pn;
6238 struct mem_cgroup_per_zone *mz;
6239 int zone, tmp = node;
6240 /*
6241 * This routine is called against possible nodes.
6242 * But it's BUG to call kmalloc() against offline node.
6243 *
6244 * TODO: this routine can waste much memory for nodes which will
6245 * never be onlined. It's better to use memory hotplug callback
6246 * function.
6247 */
6248 if (!node_state(node, N_NORMAL_MEMORY))
6249 tmp = -1;
6250 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6251 if (!pn)
6252 return 1;
6253
6254 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6255 mz = &pn->zoneinfo[zone];
6256 lruvec_init(&mz->lruvec);
6257 mz->usage_in_excess = 0;
6258 mz->on_tree = false;
6259 mz->memcg = memcg;
6260 }
6261 memcg->nodeinfo[node] = pn;
6262 return 0;
6263}
6264
6265static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6266{
6267 kfree(memcg->nodeinfo[node]);
6268}
6269
6270static struct mem_cgroup *mem_cgroup_alloc(void)
6271{
6272 struct mem_cgroup *memcg;
6273 size_t size;
6274
6275 size = sizeof(struct mem_cgroup);
6276 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6277
6278 memcg = kzalloc(size, GFP_KERNEL);
6279 if (!memcg)
6280 return NULL;
6281
6282 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6283 if (!memcg->stat)
6284 goto out_free;
6285 spin_lock_init(&memcg->pcp_counter_lock);
6286 return memcg;
6287
6288out_free:
6289 kfree(memcg);
6290 return NULL;
6291}
6292
6293/*
6294 * At destroying mem_cgroup, references from swap_cgroup can remain.
6295 * (scanning all at force_empty is too costly...)
6296 *
6297 * Instead of clearing all references at force_empty, we remember
6298 * the number of reference from swap_cgroup and free mem_cgroup when
6299 * it goes down to 0.
6300 *
6301 * Removal of cgroup itself succeeds regardless of refs from swap.
6302 */
6303
6304static void __mem_cgroup_free(struct mem_cgroup *memcg)
6305{
6306 int node;
6307
6308 mem_cgroup_remove_from_trees(memcg);
6309
6310 for_each_node(node)
6311 free_mem_cgroup_per_zone_info(memcg, node);
6312
6313 free_percpu(memcg->stat);
6314
6315 /*
6316 * We need to make sure that (at least for now), the jump label
6317 * destruction code runs outside of the cgroup lock. This is because
6318 * get_online_cpus(), which is called from the static_branch update,
6319 * can't be called inside the cgroup_lock. cpusets are the ones
6320 * enforcing this dependency, so if they ever change, we might as well.
6321 *
6322 * schedule_work() will guarantee this happens. Be careful if you need
6323 * to move this code around, and make sure it is outside
6324 * the cgroup_lock.
6325 */
6326 disarm_static_keys(memcg);
6327 kfree(memcg);
6328}
6329
6330/*
6331 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6332 */
6333struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6334{
6335 if (!memcg->res.parent)
6336 return NULL;
6337 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6338}
6339EXPORT_SYMBOL(parent_mem_cgroup);
6340
6341static void __init mem_cgroup_soft_limit_tree_init(void)
6342{
6343 struct mem_cgroup_tree_per_node *rtpn;
6344 struct mem_cgroup_tree_per_zone *rtpz;
6345 int tmp, node, zone;
6346
6347 for_each_node(node) {
6348 tmp = node;
6349 if (!node_state(node, N_NORMAL_MEMORY))
6350 tmp = -1;
6351 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6352 BUG_ON(!rtpn);
6353
6354 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6355
6356 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6357 rtpz = &rtpn->rb_tree_per_zone[zone];
6358 rtpz->rb_root = RB_ROOT;
6359 spin_lock_init(&rtpz->lock);
6360 }
6361 }
6362}
6363
6364static struct cgroup_subsys_state * __ref
6365mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6366{
6367 struct mem_cgroup *memcg;
6368 long error = -ENOMEM;
6369 int node;
6370
6371 memcg = mem_cgroup_alloc();
6372 if (!memcg)
6373 return ERR_PTR(error);
6374
6375 for_each_node(node)
6376 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6377 goto free_out;
6378
6379 /* root ? */
6380 if (parent_css == NULL) {
6381 root_mem_cgroup = memcg;
6382 res_counter_init(&memcg->res, NULL);
6383 res_counter_init(&memcg->memsw, NULL);
6384 res_counter_init(&memcg->kmem, NULL);
6385 }
6386
6387 memcg->last_scanned_node = MAX_NUMNODES;
6388 INIT_LIST_HEAD(&memcg->oom_notify);
6389 memcg->move_charge_at_immigrate = 0;
6390 mutex_init(&memcg->thresholds_lock);
6391 spin_lock_init(&memcg->move_lock);
6392 vmpressure_init(&memcg->vmpressure);
6393 INIT_LIST_HEAD(&memcg->event_list);
6394 spin_lock_init(&memcg->event_list_lock);
6395
6396 return &memcg->css;
6397
6398free_out:
6399 __mem_cgroup_free(memcg);
6400 return ERR_PTR(error);
6401}
6402
6403static int
6404mem_cgroup_css_online(struct cgroup_subsys_state *css)
6405{
6406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6407 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6408
6409 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6410 return -ENOSPC;
6411
6412 if (!parent)
6413 return 0;
6414
6415 mutex_lock(&memcg_create_mutex);
6416
6417 memcg->use_hierarchy = parent->use_hierarchy;
6418 memcg->oom_kill_disable = parent->oom_kill_disable;
6419 memcg->swappiness = mem_cgroup_swappiness(parent);
6420
6421 if (parent->use_hierarchy) {
6422 res_counter_init(&memcg->res, &parent->res);
6423 res_counter_init(&memcg->memsw, &parent->memsw);
6424 res_counter_init(&memcg->kmem, &parent->kmem);
6425
6426 /*
6427 * No need to take a reference to the parent because cgroup
6428 * core guarantees its existence.
6429 */
6430 } else {
6431 res_counter_init(&memcg->res, NULL);
6432 res_counter_init(&memcg->memsw, NULL);
6433 res_counter_init(&memcg->kmem, NULL);
6434 /*
6435 * Deeper hierachy with use_hierarchy == false doesn't make
6436 * much sense so let cgroup subsystem know about this
6437 * unfortunate state in our controller.
6438 */
6439 if (parent != root_mem_cgroup)
6440 memory_cgrp_subsys.broken_hierarchy = true;
6441 }
6442 mutex_unlock(&memcg_create_mutex);
6443
6444 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6445}
6446
6447/*
6448 * Announce all parents that a group from their hierarchy is gone.
6449 */
6450static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6451{
6452 struct mem_cgroup *parent = memcg;
6453
6454 while ((parent = parent_mem_cgroup(parent)))
6455 mem_cgroup_iter_invalidate(parent);
6456
6457 /*
6458 * if the root memcg is not hierarchical we have to check it
6459 * explicitely.
6460 */
6461 if (!root_mem_cgroup->use_hierarchy)
6462 mem_cgroup_iter_invalidate(root_mem_cgroup);
6463}
6464
6465static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6466{
6467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6468 struct mem_cgroup_event *event, *tmp;
6469 struct cgroup_subsys_state *iter;
6470
6471 /*
6472 * Unregister events and notify userspace.
6473 * Notify userspace about cgroup removing only after rmdir of cgroup
6474 * directory to avoid race between userspace and kernelspace.
6475 */
6476 spin_lock(&memcg->event_list_lock);
6477 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6478 list_del_init(&event->list);
6479 schedule_work(&event->remove);
6480 }
6481 spin_unlock(&memcg->event_list_lock);
6482
6483 kmem_cgroup_css_offline(memcg);
6484
6485 mem_cgroup_invalidate_reclaim_iterators(memcg);
6486
6487 /*
6488 * This requires that offlining is serialized. Right now that is
6489 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6490 */
6491 css_for_each_descendant_post(iter, css)
6492 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6493
6494 mem_cgroup_destroy_all_caches(memcg);
6495 vmpressure_cleanup(&memcg->vmpressure);
6496}
6497
6498static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6499{
6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6501 /*
6502 * XXX: css_offline() would be where we should reparent all
6503 * memory to prepare the cgroup for destruction. However,
6504 * memcg does not do css_tryget() and res_counter charging
6505 * under the same RCU lock region, which means that charging
6506 * could race with offlining. Offlining only happens to
6507 * cgroups with no tasks in them but charges can show up
6508 * without any tasks from the swapin path when the target
6509 * memcg is looked up from the swapout record and not from the
6510 * current task as it usually is. A race like this can leak
6511 * charges and put pages with stale cgroup pointers into
6512 * circulation:
6513 *
6514 * #0 #1
6515 * lookup_swap_cgroup_id()
6516 * rcu_read_lock()
6517 * mem_cgroup_lookup()
6518 * css_tryget()
6519 * rcu_read_unlock()
6520 * disable css_tryget()
6521 * call_rcu()
6522 * offline_css()
6523 * reparent_charges()
6524 * res_counter_charge()
6525 * css_put()
6526 * css_free()
6527 * pc->mem_cgroup = dead memcg
6528 * add page to lru
6529 *
6530 * The bulk of the charges are still moved in offline_css() to
6531 * avoid pinning a lot of pages in case a long-term reference
6532 * like a swapout record is deferring the css_free() to long
6533 * after offlining. But this makes sure we catch any charges
6534 * made after offlining:
6535 */
6536 mem_cgroup_reparent_charges(memcg);
6537
6538 memcg_destroy_kmem(memcg);
6539 __mem_cgroup_free(memcg);
6540}
6541
6542#ifdef CONFIG_MMU
6543/* Handlers for move charge at task migration. */
6544#define PRECHARGE_COUNT_AT_ONCE 256
6545static int mem_cgroup_do_precharge(unsigned long count)
6546{
6547 int ret = 0;
6548 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6549 struct mem_cgroup *memcg = mc.to;
6550
6551 if (mem_cgroup_is_root(memcg)) {
6552 mc.precharge += count;
6553 /* we don't need css_get for root */
6554 return ret;
6555 }
6556 /* try to charge at once */
6557 if (count > 1) {
6558 struct res_counter *dummy;
6559 /*
6560 * "memcg" cannot be under rmdir() because we've already checked
6561 * by cgroup_lock_live_cgroup() that it is not removed and we
6562 * are still under the same cgroup_mutex. So we can postpone
6563 * css_get().
6564 */
6565 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6566 goto one_by_one;
6567 if (do_swap_account && res_counter_charge(&memcg->memsw,
6568 PAGE_SIZE * count, &dummy)) {
6569 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6570 goto one_by_one;
6571 }
6572 mc.precharge += count;
6573 return ret;
6574 }
6575one_by_one:
6576 /* fall back to one by one charge */
6577 while (count--) {
6578 if (signal_pending(current)) {
6579 ret = -EINTR;
6580 break;
6581 }
6582 if (!batch_count--) {
6583 batch_count = PRECHARGE_COUNT_AT_ONCE;
6584 cond_resched();
6585 }
6586 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6587 if (ret)
6588 /* mem_cgroup_clear_mc() will do uncharge later */
6589 return ret;
6590 mc.precharge++;
6591 }
6592 return ret;
6593}
6594
6595/**
6596 * get_mctgt_type - get target type of moving charge
6597 * @vma: the vma the pte to be checked belongs
6598 * @addr: the address corresponding to the pte to be checked
6599 * @ptent: the pte to be checked
6600 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6601 *
6602 * Returns
6603 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6604 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6605 * move charge. if @target is not NULL, the page is stored in target->page
6606 * with extra refcnt got(Callers should handle it).
6607 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6608 * target for charge migration. if @target is not NULL, the entry is stored
6609 * in target->ent.
6610 *
6611 * Called with pte lock held.
6612 */
6613union mc_target {
6614 struct page *page;
6615 swp_entry_t ent;
6616};
6617
6618enum mc_target_type {
6619 MC_TARGET_NONE = 0,
6620 MC_TARGET_PAGE,
6621 MC_TARGET_SWAP,
6622};
6623
6624static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6625 unsigned long addr, pte_t ptent)
6626{
6627 struct page *page = vm_normal_page(vma, addr, ptent);
6628
6629 if (!page || !page_mapped(page))
6630 return NULL;
6631 if (PageAnon(page)) {
6632 /* we don't move shared anon */
6633 if (!move_anon())
6634 return NULL;
6635 } else if (!move_file())
6636 /* we ignore mapcount for file pages */
6637 return NULL;
6638 if (!get_page_unless_zero(page))
6639 return NULL;
6640
6641 return page;
6642}
6643
6644#ifdef CONFIG_SWAP
6645static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6646 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6647{
6648 struct page *page = NULL;
6649 swp_entry_t ent = pte_to_swp_entry(ptent);
6650
6651 if (!move_anon() || non_swap_entry(ent))
6652 return NULL;
6653 /*
6654 * Because lookup_swap_cache() updates some statistics counter,
6655 * we call find_get_page() with swapper_space directly.
6656 */
6657 page = find_get_page(swap_address_space(ent), ent.val);
6658 if (do_swap_account)
6659 entry->val = ent.val;
6660
6661 return page;
6662}
6663#else
6664static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6665 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6666{
6667 return NULL;
6668}
6669#endif
6670
6671static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6672 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6673{
6674 struct page *page = NULL;
6675 struct address_space *mapping;
6676 pgoff_t pgoff;
6677
6678 if (!vma->vm_file) /* anonymous vma */
6679 return NULL;
6680 if (!move_file())
6681 return NULL;
6682
6683 mapping = vma->vm_file->f_mapping;
6684 if (pte_none(ptent))
6685 pgoff = linear_page_index(vma, addr);
6686 else /* pte_file(ptent) is true */
6687 pgoff = pte_to_pgoff(ptent);
6688
6689 /* page is moved even if it's not RSS of this task(page-faulted). */
6690#ifdef CONFIG_SWAP
6691 /* shmem/tmpfs may report page out on swap: account for that too. */
6692 if (shmem_mapping(mapping)) {
6693 page = find_get_entry(mapping, pgoff);
6694 if (radix_tree_exceptional_entry(page)) {
6695 swp_entry_t swp = radix_to_swp_entry(page);
6696 if (do_swap_account)
6697 *entry = swp;
6698 page = find_get_page(swap_address_space(swp), swp.val);
6699 }
6700 } else
6701 page = find_get_page(mapping, pgoff);
6702#else
6703 page = find_get_page(mapping, pgoff);
6704#endif
6705 return page;
6706}
6707
6708static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6709 unsigned long addr, pte_t ptent, union mc_target *target)
6710{
6711 struct page *page = NULL;
6712 struct page_cgroup *pc;
6713 enum mc_target_type ret = MC_TARGET_NONE;
6714 swp_entry_t ent = { .val = 0 };
6715
6716 if (pte_present(ptent))
6717 page = mc_handle_present_pte(vma, addr, ptent);
6718 else if (is_swap_pte(ptent))
6719 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6720 else if (pte_none(ptent) || pte_file(ptent))
6721 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6722
6723 if (!page && !ent.val)
6724 return ret;
6725 if (page) {
6726 pc = lookup_page_cgroup(page);
6727 /*
6728 * Do only loose check w/o page_cgroup lock.
6729 * mem_cgroup_move_account() checks the pc is valid or not under
6730 * the lock.
6731 */
6732 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6733 ret = MC_TARGET_PAGE;
6734 if (target)
6735 target->page = page;
6736 }
6737 if (!ret || !target)
6738 put_page(page);
6739 }
6740 /* There is a swap entry and a page doesn't exist or isn't charged */
6741 if (ent.val && !ret &&
6742 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6743 ret = MC_TARGET_SWAP;
6744 if (target)
6745 target->ent = ent;
6746 }
6747 return ret;
6748}
6749
6750#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6751/*
6752 * We don't consider swapping or file mapped pages because THP does not
6753 * support them for now.
6754 * Caller should make sure that pmd_trans_huge(pmd) is true.
6755 */
6756static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6757 unsigned long addr, pmd_t pmd, union mc_target *target)
6758{
6759 struct page *page = NULL;
6760 struct page_cgroup *pc;
6761 enum mc_target_type ret = MC_TARGET_NONE;
6762
6763 page = pmd_page(pmd);
6764 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6765 if (!move_anon())
6766 return ret;
6767 pc = lookup_page_cgroup(page);
6768 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6769 ret = MC_TARGET_PAGE;
6770 if (target) {
6771 get_page(page);
6772 target->page = page;
6773 }
6774 }
6775 return ret;
6776}
6777#else
6778static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6779 unsigned long addr, pmd_t pmd, union mc_target *target)
6780{
6781 return MC_TARGET_NONE;
6782}
6783#endif
6784
6785static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6786 unsigned long addr, unsigned long end,
6787 struct mm_walk *walk)
6788{
6789 struct vm_area_struct *vma = walk->private;
6790 pte_t *pte;
6791 spinlock_t *ptl;
6792
6793 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6794 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6795 mc.precharge += HPAGE_PMD_NR;
6796 spin_unlock(ptl);
6797 return 0;
6798 }
6799
6800 if (pmd_trans_unstable(pmd))
6801 return 0;
6802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6803 for (; addr != end; pte++, addr += PAGE_SIZE)
6804 if (get_mctgt_type(vma, addr, *pte, NULL))
6805 mc.precharge++; /* increment precharge temporarily */
6806 pte_unmap_unlock(pte - 1, ptl);
6807 cond_resched();
6808
6809 return 0;
6810}
6811
6812static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6813{
6814 unsigned long precharge;
6815 struct vm_area_struct *vma;
6816
6817 down_read(&mm->mmap_sem);
6818 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6819 struct mm_walk mem_cgroup_count_precharge_walk = {
6820 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6821 .mm = mm,
6822 .private = vma,
6823 };
6824 if (is_vm_hugetlb_page(vma))
6825 continue;
6826 walk_page_range(vma->vm_start, vma->vm_end,
6827 &mem_cgroup_count_precharge_walk);
6828 }
6829 up_read(&mm->mmap_sem);
6830
6831 precharge = mc.precharge;
6832 mc.precharge = 0;
6833
6834 return precharge;
6835}
6836
6837static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6838{
6839 unsigned long precharge = mem_cgroup_count_precharge(mm);
6840
6841 VM_BUG_ON(mc.moving_task);
6842 mc.moving_task = current;
6843 return mem_cgroup_do_precharge(precharge);
6844}
6845
6846/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6847static void __mem_cgroup_clear_mc(void)
6848{
6849 struct mem_cgroup *from = mc.from;
6850 struct mem_cgroup *to = mc.to;
6851 int i;
6852
6853 /* we must uncharge all the leftover precharges from mc.to */
6854 if (mc.precharge) {
6855 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6856 mc.precharge = 0;
6857 }
6858 /*
6859 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6860 * we must uncharge here.
6861 */
6862 if (mc.moved_charge) {
6863 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6864 mc.moved_charge = 0;
6865 }
6866 /* we must fixup refcnts and charges */
6867 if (mc.moved_swap) {
6868 /* uncharge swap account from the old cgroup */
6869 if (!mem_cgroup_is_root(mc.from))
6870 res_counter_uncharge(&mc.from->memsw,
6871 PAGE_SIZE * mc.moved_swap);
6872
6873 for (i = 0; i < mc.moved_swap; i++)
6874 css_put(&mc.from->css);
6875
6876 if (!mem_cgroup_is_root(mc.to)) {
6877 /*
6878 * we charged both to->res and to->memsw, so we should
6879 * uncharge to->res.
6880 */
6881 res_counter_uncharge(&mc.to->res,
6882 PAGE_SIZE * mc.moved_swap);
6883 }
6884 /* we've already done css_get(mc.to) */
6885 mc.moved_swap = 0;
6886 }
6887 memcg_oom_recover(from);
6888 memcg_oom_recover(to);
6889 wake_up_all(&mc.waitq);
6890}
6891
6892static void mem_cgroup_clear_mc(void)
6893{
6894 struct mem_cgroup *from = mc.from;
6895
6896 /*
6897 * we must clear moving_task before waking up waiters at the end of
6898 * task migration.
6899 */
6900 mc.moving_task = NULL;
6901 __mem_cgroup_clear_mc();
6902 spin_lock(&mc.lock);
6903 mc.from = NULL;
6904 mc.to = NULL;
6905 spin_unlock(&mc.lock);
6906 mem_cgroup_end_move(from);
6907}
6908
6909static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6910 struct cgroup_taskset *tset)
6911{
6912 struct task_struct *p = cgroup_taskset_first(tset);
6913 int ret = 0;
6914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6915 unsigned long move_charge_at_immigrate;
6916
6917 /*
6918 * We are now commited to this value whatever it is. Changes in this
6919 * tunable will only affect upcoming migrations, not the current one.
6920 * So we need to save it, and keep it going.
6921 */
6922 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6923 if (move_charge_at_immigrate) {
6924 struct mm_struct *mm;
6925 struct mem_cgroup *from = mem_cgroup_from_task(p);
6926
6927 VM_BUG_ON(from == memcg);
6928
6929 mm = get_task_mm(p);
6930 if (!mm)
6931 return 0;
6932 /* We move charges only when we move a owner of the mm */
6933 if (mm->owner == p) {
6934 VM_BUG_ON(mc.from);
6935 VM_BUG_ON(mc.to);
6936 VM_BUG_ON(mc.precharge);
6937 VM_BUG_ON(mc.moved_charge);
6938 VM_BUG_ON(mc.moved_swap);
6939 mem_cgroup_start_move(from);
6940 spin_lock(&mc.lock);
6941 mc.from = from;
6942 mc.to = memcg;
6943 mc.immigrate_flags = move_charge_at_immigrate;
6944 spin_unlock(&mc.lock);
6945 /* We set mc.moving_task later */
6946
6947 ret = mem_cgroup_precharge_mc(mm);
6948 if (ret)
6949 mem_cgroup_clear_mc();
6950 }
6951 mmput(mm);
6952 }
6953 return ret;
6954}
6955
6956static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6957 struct cgroup_taskset *tset)
6958{
6959 mem_cgroup_clear_mc();
6960}
6961
6962static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6963 unsigned long addr, unsigned long end,
6964 struct mm_walk *walk)
6965{
6966 int ret = 0;
6967 struct vm_area_struct *vma = walk->private;
6968 pte_t *pte;
6969 spinlock_t *ptl;
6970 enum mc_target_type target_type;
6971 union mc_target target;
6972 struct page *page;
6973 struct page_cgroup *pc;
6974
6975 /*
6976 * We don't take compound_lock() here but no race with splitting thp
6977 * happens because:
6978 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6979 * under splitting, which means there's no concurrent thp split,
6980 * - if another thread runs into split_huge_page() just after we
6981 * entered this if-block, the thread must wait for page table lock
6982 * to be unlocked in __split_huge_page_splitting(), where the main
6983 * part of thp split is not executed yet.
6984 */
6985 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6986 if (mc.precharge < HPAGE_PMD_NR) {
6987 spin_unlock(ptl);
6988 return 0;
6989 }
6990 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6991 if (target_type == MC_TARGET_PAGE) {
6992 page = target.page;
6993 if (!isolate_lru_page(page)) {
6994 pc = lookup_page_cgroup(page);
6995 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6996 pc, mc.from, mc.to)) {
6997 mc.precharge -= HPAGE_PMD_NR;
6998 mc.moved_charge += HPAGE_PMD_NR;
6999 }
7000 putback_lru_page(page);
7001 }
7002 put_page(page);
7003 }
7004 spin_unlock(ptl);
7005 return 0;
7006 }
7007
7008 if (pmd_trans_unstable(pmd))
7009 return 0;
7010retry:
7011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7012 for (; addr != end; addr += PAGE_SIZE) {
7013 pte_t ptent = *(pte++);
7014 swp_entry_t ent;
7015
7016 if (!mc.precharge)
7017 break;
7018
7019 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7020 case MC_TARGET_PAGE:
7021 page = target.page;
7022 if (isolate_lru_page(page))
7023 goto put;
7024 pc = lookup_page_cgroup(page);
7025 if (!mem_cgroup_move_account(page, 1, pc,
7026 mc.from, mc.to)) {
7027 mc.precharge--;
7028 /* we uncharge from mc.from later. */
7029 mc.moved_charge++;
7030 }
7031 putback_lru_page(page);
7032put: /* get_mctgt_type() gets the page */
7033 put_page(page);
7034 break;
7035 case MC_TARGET_SWAP:
7036 ent = target.ent;
7037 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7038 mc.precharge--;
7039 /* we fixup refcnts and charges later. */
7040 mc.moved_swap++;
7041 }
7042 break;
7043 default:
7044 break;
7045 }
7046 }
7047 pte_unmap_unlock(pte - 1, ptl);
7048 cond_resched();
7049
7050 if (addr != end) {
7051 /*
7052 * We have consumed all precharges we got in can_attach().
7053 * We try charge one by one, but don't do any additional
7054 * charges to mc.to if we have failed in charge once in attach()
7055 * phase.
7056 */
7057 ret = mem_cgroup_do_precharge(1);
7058 if (!ret)
7059 goto retry;
7060 }
7061
7062 return ret;
7063}
7064
7065static void mem_cgroup_move_charge(struct mm_struct *mm)
7066{
7067 struct vm_area_struct *vma;
7068
7069 lru_add_drain_all();
7070retry:
7071 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7072 /*
7073 * Someone who are holding the mmap_sem might be waiting in
7074 * waitq. So we cancel all extra charges, wake up all waiters,
7075 * and retry. Because we cancel precharges, we might not be able
7076 * to move enough charges, but moving charge is a best-effort
7077 * feature anyway, so it wouldn't be a big problem.
7078 */
7079 __mem_cgroup_clear_mc();
7080 cond_resched();
7081 goto retry;
7082 }
7083 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7084 int ret;
7085 struct mm_walk mem_cgroup_move_charge_walk = {
7086 .pmd_entry = mem_cgroup_move_charge_pte_range,
7087 .mm = mm,
7088 .private = vma,
7089 };
7090 if (is_vm_hugetlb_page(vma))
7091 continue;
7092 ret = walk_page_range(vma->vm_start, vma->vm_end,
7093 &mem_cgroup_move_charge_walk);
7094 if (ret)
7095 /*
7096 * means we have consumed all precharges and failed in
7097 * doing additional charge. Just abandon here.
7098 */
7099 break;
7100 }
7101 up_read(&mm->mmap_sem);
7102}
7103
7104static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7105 struct cgroup_taskset *tset)
7106{
7107 struct task_struct *p = cgroup_taskset_first(tset);
7108 struct mm_struct *mm = get_task_mm(p);
7109
7110 if (mm) {
7111 if (mc.to)
7112 mem_cgroup_move_charge(mm);
7113 mmput(mm);
7114 }
7115 if (mc.to)
7116 mem_cgroup_clear_mc();
7117}
7118#else /* !CONFIG_MMU */
7119static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7120 struct cgroup_taskset *tset)
7121{
7122 return 0;
7123}
7124static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7125 struct cgroup_taskset *tset)
7126{
7127}
7128static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7129 struct cgroup_taskset *tset)
7130{
7131}
7132#endif
7133
7134/*
7135 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7136 * to verify sane_behavior flag on each mount attempt.
7137 */
7138static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7139{
7140 /*
7141 * use_hierarchy is forced with sane_behavior. cgroup core
7142 * guarantees that @root doesn't have any children, so turning it
7143 * on for the root memcg is enough.
7144 */
7145 if (cgroup_sane_behavior(root_css->cgroup))
7146 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7147}
7148
7149struct cgroup_subsys memory_cgrp_subsys = {
7150 .css_alloc = mem_cgroup_css_alloc,
7151 .css_online = mem_cgroup_css_online,
7152 .css_offline = mem_cgroup_css_offline,
7153 .css_free = mem_cgroup_css_free,
7154 .can_attach = mem_cgroup_can_attach,
7155 .cancel_attach = mem_cgroup_cancel_attach,
7156 .attach = mem_cgroup_move_task,
7157 .bind = mem_cgroup_bind,
7158 .base_cftypes = mem_cgroup_files,
7159 .early_init = 0,
7160};
7161
7162#ifdef CONFIG_MEMCG_SWAP
7163static int __init enable_swap_account(char *s)
7164{
7165 if (!strcmp(s, "1"))
7166 really_do_swap_account = 1;
7167 else if (!strcmp(s, "0"))
7168 really_do_swap_account = 0;
7169 return 1;
7170}
7171__setup("swapaccount=", enable_swap_account);
7172
7173static void __init memsw_file_init(void)
7174{
7175 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7176}
7177
7178static void __init enable_swap_cgroup(void)
7179{
7180 if (!mem_cgroup_disabled() && really_do_swap_account) {
7181 do_swap_account = 1;
7182 memsw_file_init();
7183 }
7184}
7185
7186#else
7187static void __init enable_swap_cgroup(void)
7188{
7189}
7190#endif
7191
7192/*
7193 * subsys_initcall() for memory controller.
7194 *
7195 * Some parts like hotcpu_notifier() have to be initialized from this context
7196 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7197 * everything that doesn't depend on a specific mem_cgroup structure should
7198 * be initialized from here.
7199 */
7200static int __init mem_cgroup_init(void)
7201{
7202 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7203 enable_swap_cgroup();
7204 mem_cgroup_soft_limit_tree_init();
7205 memcg_stock_init();
7206 return 0;
7207}
7208subsys_initcall(mem_cgroup_init);