Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
223
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237};
238
239/* for encoding cft->private value on file */
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246};
247
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250#define MEMFILE_ATTR(val) ((val) & 0xffff)
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
253
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
272#ifndef CONFIG_SLOB
273/*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
286
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324#endif /* !CONFIG_SLOB */
325
326static struct mem_cgroup_per_zone *
327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328{
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333}
334
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356}
357
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
386static struct mem_cgroup_per_zone *
387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388{
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393}
394
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453{
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459}
460
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558}
559
560/*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583{
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597}
598
599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608}
609
610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613{
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640}
641
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238{
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331{
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1395 /*
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1400 */
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1403
1404 memcg->last_scanned_node = node;
1405 return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410 return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1418{
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1427 };
1428
1429 excess = soft_limit_excess(root_memcg);
1430
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!total)
1442 break;
1443 /*
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1448 */
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1452 }
1453 continue;
1454 }
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1460 }
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479 struct mem_cgroup *iter, *failed = NULL;
1480
1481 spin_lock(&memcg_oom_lock);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1485 /*
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1488 */
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1494 }
1495
1496 if (failed) {
1497 /*
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1500 */
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1505 }
1506 iter->oom_lock = false;
1507 }
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511 spin_unlock(&memcg_oom_lock);
1512
1513 return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518 struct mem_cgroup *iter;
1519
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529 struct mem_cgroup *iter;
1530
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539 struct mem_cgroup *iter;
1540
1541 /*
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 */
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1561{
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1565
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1568
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577 /*
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1584 */
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591 if (!current->memcg_may_oom)
1592 return;
1593 /*
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1597 *
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1601 *
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1606 */
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1635
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1639
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1642
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1651
1652 locked = mem_cgroup_oom_trylock(memcg);
1653
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1656
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1666 }
1667
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1670 /*
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1674 */
1675 memcg_oom_recover(memcg);
1676 }
1677cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1694
1695 /*
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1699 */
1700 rcu_read_lock();
1701
1702 if (mem_cgroup_disabled())
1703 return;
1704again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1708
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1711
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1716 }
1717
1718 /*
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1722 */
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1725
1726 return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1740
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1743
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 }
1746
1747 rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH 32U
1756struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE 0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1781
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1784
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1789 }
1790 put_cpu_var(memcg_stock);
1791 return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799 struct mem_cgroup *old = stock->cached;
1800
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1807 }
1808 stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1833 }
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844 int cpu, curcpu;
1845
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1855
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1866 }
1867 }
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1879
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1882
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1885
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1894{
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905 struct mem_cgroup *memcg;
1906
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1919
1920 if (likely(!nr_pages))
1921 return;
1922
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1931{
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1939
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1945
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1956 }
1957
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1961 }
1962
1963 /*
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1968 */
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1973
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1976
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1979
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1984
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1987
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1992 }
1993
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1996 /*
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2000 *
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2004 */
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2007 /*
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2010 */
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2013
2014 if (nr_retries--)
2015 goto retry;
2016
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2019
2020 if (fatal_signal_pending(current))
2021 goto force;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030force:
2031 /*
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2035 */
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2040
2041 return 0;
2042
2043done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047
2048 /*
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2056 */
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2063 }
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2067 }
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070 return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2077
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082 css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087 struct zone *zone = page_zone(page);
2088
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2092
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 if (isolated) {
2106 struct lruvec *lruvec;
2107
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2112 }
2113 spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2118{
2119 int isolated;
2120
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123 /*
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2126 */
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2129
2130 /*
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2133 *
2134 * - the page is uncharged
2135 *
2136 * - the page is off-LRU
2137 *
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2140 *
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2143 */
2144 page->mem_cgroup = memcg;
2145
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153 int id, size;
2154 int err;
2155
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2160
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2163
2164 /*
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2167 */
2168 down_write(&memcg_cache_ids_sem);
2169
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2175
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2181
2182 up_write(&memcg_cache_ids_sem);
2183
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2187 }
2188 return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193 ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2208
2209 memcg_create_kmem_cache(memcg, cachep);
2210
2211 css_put(&memcg->css);
2212 kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2220{
2221 struct memcg_kmem_cache_create_work *cw;
2222
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2226
2227 css_get(&memcg->css);
2228
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233 schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2238{
2239 /*
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2243 *
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2249 */
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2273
2274 VM_BUG_ON(!is_root_cache(cachep));
2275
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2278
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2281
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2284
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2289
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2293
2294 /*
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2299 *
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2305 */
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308 css_put(&memcg->css);
2309 return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320{
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2356
2357 if (!memcg)
2358 return;
2359
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382 int i;
2383
2384 if (mem_cgroup_disabled())
2385 return;
2386
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2389
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2398{
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436 return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444{
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499{
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673{
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683{
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689{
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766}
2767
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778{
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919{
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969{
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010{
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047{
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054{
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195#ifdef CONFIG_DEBUG_VM
3196 {
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218#endif
3219
3220 return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225{
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233{
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294unlock:
3295 rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428{
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434{
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519{
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525{
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531{
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553{
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579{
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597 return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607 wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646{
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665}
3666
3667#else /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671 return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727{
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760{
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778{
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893out_put_css:
3894 css_put(css);
3895out_put_cfile:
3896 fdput(cfile);
3897out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900 fdput(efile);
3901out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974#ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979#endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003#ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011#endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4043 /*
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4046 *
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4050 */
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4056
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4063 }
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070 kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075 int node;
4076
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4089
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4096
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4100
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4104
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4107
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123 return memcg;
4124fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4135
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4139
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4145 }
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4159 /*
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4163 */
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4166 }
4167
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4172 }
4173
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4177
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181 return &memcg->css;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4192
4193 return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4200
4201 /*
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4205 */
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4210 }
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221 invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314};
4315
4316enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324{
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365 return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397#else
4398 page = find_get_page(mapping, pgoff);
4399#endif
4400 return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419{
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493out_unlock:
4494 unlock_page(page);
4495out:
4496 return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568 return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575{
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671 struct mm_struct *mm = mc.mm;
4672
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4684
4685 mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4697
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4701
4702 /*
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4707 */
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4713 }
4714 if (!p)
4715 return 0;
4716
4717 /*
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4721 */
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4725
4726 from = mem_cgroup_from_task(p);
4727
4728 VM_BUG_ON(from == memcg);
4729
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4740
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4748
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4754 }
4755 return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4767{
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4775
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4781 }
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4790 }
4791 putback_lru_page(page);
4792 }
4793 put_page(page);
4794 }
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4806
4807 if (!mc.precharge)
4808 break;
4809
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4813 /*
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4818 */
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4828 }
4829 putback_lru_page(page);
4830put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4839 }
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4847
4848 if (addr != end) {
4849 /*
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4854 */
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4858 }
4859
4860 return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4868 };
4869
4870 lru_add_drain_all();
4871 /*
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4875 */
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 /*
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4886 */
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4890 }
4891 /*
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4894 */
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4905 }
4906}
4907#else /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910 return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940{
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961{
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5008
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5039
5040 xchg(&memcg->memory.limit, max);
5041
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045 if (nr_pages <= max)
5046 break;
5047
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5051 }
5052
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5057 }
5058
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5064 }
5065
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5069 }
5070
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084 return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5093
5094 /*
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5097 *
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 *
5102 * Current memory state:
5103 */
5104
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5107
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5130
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 }
5136
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142 /* Accumulated memory events */
5143
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149 return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153 {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5157 },
5158 {
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5163 },
5164 {
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5169 },
5170 {
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5175 },
5176 {
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5181 },
5182 {
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5186 },
5187 { } /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5263{
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5267
5268 if (mem_cgroup_disabled())
5269 goto out;
5270
5271 if (PageSwapCache(page)) {
5272 /*
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5278 */
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5282
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5292 }
5293 }
5294
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5297
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300 css_put(&memcg->css);
5301out:
5302 *memcgp = memcg;
5303 return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5324{
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330 if (mem_cgroup_disabled())
5331 return;
5332 /*
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5336 */
5337 if (!memcg)
5338 return;
5339
5340 commit_charge(page, memcg, lrucare);
5341
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5346
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5349 /*
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5353 */
5354 mem_cgroup_uncharge_swap(entry);
5355 }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5367{
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370 if (mem_cgroup_disabled())
5371 return;
5372 /*
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5376 */
5377 if (!memcg)
5378 return;
5379
5380 cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5386{
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5389
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5395 }
5396
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5405
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5419
5420 /*
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5423 */
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5427
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5430
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434 if (!page->mem_cgroup)
5435 continue;
5436
5437 /*
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5441 */
5442
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 }
5449 memcg = page->mem_cgroup;
5450 }
5451
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5456 }
5457
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5462
5463 page->mem_cgroup = NULL;
5464
5465 pgpgout++;
5466 } while (next != page_list);
5467
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482 if (mem_cgroup_disabled())
5483 return;
5484
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5488
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5524
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5530
5531 if (mem_cgroup_disabled())
5532 return;
5533
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5537
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5542
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5551
5552 commit_charge(newpage, memcg, false);
5553
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589out:
5590 rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610 gfp_t gfp_mask = GFP_KERNEL;
5611
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5614
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5618 }
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5622 }
5623
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5627
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5632
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5647 }
5648
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657 char *token;
5658
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5666 }
5667 return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681 int cpu, node;
5682
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5688
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5692
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5695
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5698
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5702 }
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 }
5705
5706 return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5722
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5725
5726 if (!do_memsw_account())
5727 return;
5728
5729 memcg = page->mem_cgroup;
5730
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5734
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5738
5739 page->mem_cgroup = NULL;
5740
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5743
5744 /*
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5749 */
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5769
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5772
5773 memcg = page->mem_cgroup;
5774
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5778
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5782
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5786
5787 css_get(&memcg->css);
5788 return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5801
5802 if (!do_swap_account)
5803 return;
5804
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5814 }
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5817 }
5818 rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823 long nr_swap_pages = get_nr_swap_pages();
5824
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836 struct mem_cgroup *memcg;
5837
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5844
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5848
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5852
5853 return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891 return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5896{
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5900
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5905
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5911
5912 return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916 {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5920 },
5921 {
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5926 },
5927 { } /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931 {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5935 },
5936 {
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5941 },
5942 {
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5947 },
5948 {
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5953 },
5954 { }, /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5965 }
5966 return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES 5
62static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account 0
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92};
93
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107};
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127};
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
131
132struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137};
138
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
146/*
147 * per-zone information in memory controller.
148 */
149struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161};
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
196/* For threshold */
197struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
222
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277#endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
332};
333
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343};
344
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
359
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_MAPPED,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
385 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
386 NR_CHARGE_TYPE,
387};
388
389/* for encoding cft->private value on file */
390#define _MEM (0)
391#define _MEMSWAP (1)
392#define _OOM_TYPE (2)
393#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
394#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
395#define MEMFILE_ATTR(val) ((val) & 0xffff)
396/* Used for OOM nofiier */
397#define OOM_CONTROL (0)
398
399/*
400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 */
402#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
403#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
405#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406
407static void mem_cgroup_get(struct mem_cgroup *memcg);
408static void mem_cgroup_put(struct mem_cgroup *memcg);
409
410/* Writing them here to avoid exposing memcg's inner layout */
411#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
412#include <net/sock.h>
413#include <net/ip.h>
414
415static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
416void sock_update_memcg(struct sock *sk)
417{
418 if (mem_cgroup_sockets_enabled) {
419 struct mem_cgroup *memcg;
420 struct cg_proto *cg_proto;
421
422 BUG_ON(!sk->sk_prot->proto_cgroup);
423
424 /* Socket cloning can throw us here with sk_cgrp already
425 * filled. It won't however, necessarily happen from
426 * process context. So the test for root memcg given
427 * the current task's memcg won't help us in this case.
428 *
429 * Respecting the original socket's memcg is a better
430 * decision in this case.
431 */
432 if (sk->sk_cgrp) {
433 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
434 mem_cgroup_get(sk->sk_cgrp->memcg);
435 return;
436 }
437
438 rcu_read_lock();
439 memcg = mem_cgroup_from_task(current);
440 cg_proto = sk->sk_prot->proto_cgroup(memcg);
441 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
442 mem_cgroup_get(memcg);
443 sk->sk_cgrp = cg_proto;
444 }
445 rcu_read_unlock();
446 }
447}
448EXPORT_SYMBOL(sock_update_memcg);
449
450void sock_release_memcg(struct sock *sk)
451{
452 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
453 struct mem_cgroup *memcg;
454 WARN_ON(!sk->sk_cgrp->memcg);
455 memcg = sk->sk_cgrp->memcg;
456 mem_cgroup_put(memcg);
457 }
458}
459
460#ifdef CONFIG_INET
461struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
462{
463 if (!memcg || mem_cgroup_is_root(memcg))
464 return NULL;
465
466 return &memcg->tcp_mem.cg_proto;
467}
468EXPORT_SYMBOL(tcp_proto_cgroup);
469#endif /* CONFIG_INET */
470#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
471
472#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
473static void disarm_sock_keys(struct mem_cgroup *memcg)
474{
475 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
476 return;
477 static_key_slow_dec(&memcg_socket_limit_enabled);
478}
479#else
480static void disarm_sock_keys(struct mem_cgroup *memcg)
481{
482}
483#endif
484
485static void drain_all_stock_async(struct mem_cgroup *memcg);
486
487static struct mem_cgroup_per_zone *
488mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
489{
490 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
491}
492
493struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
494{
495 return &memcg->css;
496}
497
498static struct mem_cgroup_per_zone *
499page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
500{
501 int nid = page_to_nid(page);
502 int zid = page_zonenum(page);
503
504 return mem_cgroup_zoneinfo(memcg, nid, zid);
505}
506
507static struct mem_cgroup_tree_per_zone *
508soft_limit_tree_node_zone(int nid, int zid)
509{
510 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
511}
512
513static struct mem_cgroup_tree_per_zone *
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
517 int zid = page_zonenum(page);
518
519 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
520}
521
522static void
523__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
524 struct mem_cgroup_per_zone *mz,
525 struct mem_cgroup_tree_per_zone *mctz,
526 unsigned long long new_usage_in_excess)
527{
528 struct rb_node **p = &mctz->rb_root.rb_node;
529 struct rb_node *parent = NULL;
530 struct mem_cgroup_per_zone *mz_node;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess)
543 p = &(*p)->rb_left;
544 /*
545 * We can't avoid mem cgroups that are over their soft
546 * limit by the same amount
547 */
548 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
549 p = &(*p)->rb_right;
550 }
551 rb_link_node(&mz->tree_node, parent, p);
552 rb_insert_color(&mz->tree_node, &mctz->rb_root);
553 mz->on_tree = true;
554}
555
556static void
557__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
558 struct mem_cgroup_per_zone *mz,
559 struct mem_cgroup_tree_per_zone *mctz)
560{
561 if (!mz->on_tree)
562 return;
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
567static void
568mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
569 struct mem_cgroup_per_zone *mz,
570 struct mem_cgroup_tree_per_zone *mctz)
571{
572 spin_lock(&mctz->lock);
573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 spin_unlock(&mctz->lock);
575}
576
577
578static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
579{
580 unsigned long long excess;
581 struct mem_cgroup_per_zone *mz;
582 struct mem_cgroup_tree_per_zone *mctz;
583 int nid = page_to_nid(page);
584 int zid = page_zonenum(page);
585 mctz = soft_limit_tree_from_page(page);
586
587 /*
588 * Necessary to update all ancestors when hierarchy is used.
589 * because their event counter is not touched.
590 */
591 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
592 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
593 excess = res_counter_soft_limit_excess(&memcg->res);
594 /*
595 * We have to update the tree if mz is on RB-tree or
596 * mem is over its softlimit.
597 */
598 if (excess || mz->on_tree) {
599 spin_lock(&mctz->lock);
600 /* if on-tree, remove it */
601 if (mz->on_tree)
602 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
603 /*
604 * Insert again. mz->usage_in_excess will be updated.
605 * If excess is 0, no tree ops.
606 */
607 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
608 spin_unlock(&mctz->lock);
609 }
610 }
611}
612
613static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
614{
615 int node, zone;
616 struct mem_cgroup_per_zone *mz;
617 struct mem_cgroup_tree_per_zone *mctz;
618
619 for_each_node(node) {
620 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
621 mz = mem_cgroup_zoneinfo(memcg, node, zone);
622 mctz = soft_limit_tree_node_zone(node, zone);
623 mem_cgroup_remove_exceeded(memcg, mz, mctz);
624 }
625 }
626}
627
628static struct mem_cgroup_per_zone *
629__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
630{
631 struct rb_node *rightmost = NULL;
632 struct mem_cgroup_per_zone *mz;
633
634retry:
635 mz = NULL;
636 rightmost = rb_last(&mctz->rb_root);
637 if (!rightmost)
638 goto done; /* Nothing to reclaim from */
639
640 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
641 /*
642 * Remove the node now but someone else can add it back,
643 * we will to add it back at the end of reclaim to its correct
644 * position in the tree.
645 */
646 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
647 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
648 !css_tryget(&mz->memcg->css))
649 goto retry;
650done:
651 return mz;
652}
653
654static struct mem_cgroup_per_zone *
655mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
656{
657 struct mem_cgroup_per_zone *mz;
658
659 spin_lock(&mctz->lock);
660 mz = __mem_cgroup_largest_soft_limit_node(mctz);
661 spin_unlock(&mctz->lock);
662 return mz;
663}
664
665/*
666 * Implementation Note: reading percpu statistics for memcg.
667 *
668 * Both of vmstat[] and percpu_counter has threshold and do periodic
669 * synchronization to implement "quick" read. There are trade-off between
670 * reading cost and precision of value. Then, we may have a chance to implement
671 * a periodic synchronizion of counter in memcg's counter.
672 *
673 * But this _read() function is used for user interface now. The user accounts
674 * memory usage by memory cgroup and he _always_ requires exact value because
675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
676 * have to visit all online cpus and make sum. So, for now, unnecessary
677 * synchronization is not implemented. (just implemented for cpu hotplug)
678 *
679 * If there are kernel internal actions which can make use of some not-exact
680 * value, and reading all cpu value can be performance bottleneck in some
681 * common workload, threashold and synchonization as vmstat[] should be
682 * implemented.
683 */
684static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
685 enum mem_cgroup_stat_index idx)
686{
687 long val = 0;
688 int cpu;
689
690 get_online_cpus();
691 for_each_online_cpu(cpu)
692 val += per_cpu(memcg->stat->count[idx], cpu);
693#ifdef CONFIG_HOTPLUG_CPU
694 spin_lock(&memcg->pcp_counter_lock);
695 val += memcg->nocpu_base.count[idx];
696 spin_unlock(&memcg->pcp_counter_lock);
697#endif
698 put_online_cpus();
699 return val;
700}
701
702static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
703 bool charge)
704{
705 int val = (charge) ? 1 : -1;
706 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
707}
708
709static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
710 enum mem_cgroup_events_index idx)
711{
712 unsigned long val = 0;
713 int cpu;
714
715 for_each_online_cpu(cpu)
716 val += per_cpu(memcg->stat->events[idx], cpu);
717#ifdef CONFIG_HOTPLUG_CPU
718 spin_lock(&memcg->pcp_counter_lock);
719 val += memcg->nocpu_base.events[idx];
720 spin_unlock(&memcg->pcp_counter_lock);
721#endif
722 return val;
723}
724
725static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
726 bool anon, int nr_pages)
727{
728 preempt_disable();
729
730 /*
731 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
732 * counted as CACHE even if it's on ANON LRU.
733 */
734 if (anon)
735 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
736 nr_pages);
737 else
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
739 nr_pages);
740
741 /* pagein of a big page is an event. So, ignore page size */
742 if (nr_pages > 0)
743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
744 else {
745 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
746 nr_pages = -nr_pages; /* for event */
747 }
748
749 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
750
751 preempt_enable();
752}
753
754unsigned long
755mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
756{
757 struct mem_cgroup_per_zone *mz;
758
759 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
760 return mz->lru_size[lru];
761}
762
763static unsigned long
764mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
765 unsigned int lru_mask)
766{
767 struct mem_cgroup_per_zone *mz;
768 enum lru_list lru;
769 unsigned long ret = 0;
770
771 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
772
773 for_each_lru(lru) {
774 if (BIT(lru) & lru_mask)
775 ret += mz->lru_size[lru];
776 }
777 return ret;
778}
779
780static unsigned long
781mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
782 int nid, unsigned int lru_mask)
783{
784 u64 total = 0;
785 int zid;
786
787 for (zid = 0; zid < MAX_NR_ZONES; zid++)
788 total += mem_cgroup_zone_nr_lru_pages(memcg,
789 nid, zid, lru_mask);
790
791 return total;
792}
793
794static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
795 unsigned int lru_mask)
796{
797 int nid;
798 u64 total = 0;
799
800 for_each_node_state(nid, N_HIGH_MEMORY)
801 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
802 return total;
803}
804
805static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
806 enum mem_cgroup_events_target target)
807{
808 unsigned long val, next;
809
810 val = __this_cpu_read(memcg->stat->nr_page_events);
811 next = __this_cpu_read(memcg->stat->targets[target]);
812 /* from time_after() in jiffies.h */
813 if ((long)next - (long)val < 0) {
814 switch (target) {
815 case MEM_CGROUP_TARGET_THRESH:
816 next = val + THRESHOLDS_EVENTS_TARGET;
817 break;
818 case MEM_CGROUP_TARGET_SOFTLIMIT:
819 next = val + SOFTLIMIT_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_NUMAINFO:
822 next = val + NUMAINFO_EVENTS_TARGET;
823 break;
824 default:
825 break;
826 }
827 __this_cpu_write(memcg->stat->targets[target], next);
828 return true;
829 }
830 return false;
831}
832
833/*
834 * Check events in order.
835 *
836 */
837static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
838{
839 preempt_disable();
840 /* threshold event is triggered in finer grain than soft limit */
841 if (unlikely(mem_cgroup_event_ratelimit(memcg,
842 MEM_CGROUP_TARGET_THRESH))) {
843 bool do_softlimit;
844 bool do_numainfo __maybe_unused;
845
846 do_softlimit = mem_cgroup_event_ratelimit(memcg,
847 MEM_CGROUP_TARGET_SOFTLIMIT);
848#if MAX_NUMNODES > 1
849 do_numainfo = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_NUMAINFO);
851#endif
852 preempt_enable();
853
854 mem_cgroup_threshold(memcg);
855 if (unlikely(do_softlimit))
856 mem_cgroup_update_tree(memcg, page);
857#if MAX_NUMNODES > 1
858 if (unlikely(do_numainfo))
859 atomic_inc(&memcg->numainfo_events);
860#endif
861 } else
862 preempt_enable();
863}
864
865struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
866{
867 return container_of(cgroup_subsys_state(cont,
868 mem_cgroup_subsys_id), struct mem_cgroup,
869 css);
870}
871
872struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
873{
874 /*
875 * mm_update_next_owner() may clear mm->owner to NULL
876 * if it races with swapoff, page migration, etc.
877 * So this can be called with p == NULL.
878 */
879 if (unlikely(!p))
880 return NULL;
881
882 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
883 struct mem_cgroup, css);
884}
885
886struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
887{
888 struct mem_cgroup *memcg = NULL;
889
890 if (!mm)
891 return NULL;
892 /*
893 * Because we have no locks, mm->owner's may be being moved to other
894 * cgroup. We use css_tryget() here even if this looks
895 * pessimistic (rather than adding locks here).
896 */
897 rcu_read_lock();
898 do {
899 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
900 if (unlikely(!memcg))
901 break;
902 } while (!css_tryget(&memcg->css));
903 rcu_read_unlock();
904 return memcg;
905}
906
907/**
908 * mem_cgroup_iter - iterate over memory cgroup hierarchy
909 * @root: hierarchy root
910 * @prev: previously returned memcg, NULL on first invocation
911 * @reclaim: cookie for shared reclaim walks, NULL for full walks
912 *
913 * Returns references to children of the hierarchy below @root, or
914 * @root itself, or %NULL after a full round-trip.
915 *
916 * Caller must pass the return value in @prev on subsequent
917 * invocations for reference counting, or use mem_cgroup_iter_break()
918 * to cancel a hierarchy walk before the round-trip is complete.
919 *
920 * Reclaimers can specify a zone and a priority level in @reclaim to
921 * divide up the memcgs in the hierarchy among all concurrent
922 * reclaimers operating on the same zone and priority.
923 */
924struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
925 struct mem_cgroup *prev,
926 struct mem_cgroup_reclaim_cookie *reclaim)
927{
928 struct mem_cgroup *memcg = NULL;
929 int id = 0;
930
931 if (mem_cgroup_disabled())
932 return NULL;
933
934 if (!root)
935 root = root_mem_cgroup;
936
937 if (prev && !reclaim)
938 id = css_id(&prev->css);
939
940 if (prev && prev != root)
941 css_put(&prev->css);
942
943 if (!root->use_hierarchy && root != root_mem_cgroup) {
944 if (prev)
945 return NULL;
946 return root;
947 }
948
949 while (!memcg) {
950 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
951 struct cgroup_subsys_state *css;
952
953 if (reclaim) {
954 int nid = zone_to_nid(reclaim->zone);
955 int zid = zone_idx(reclaim->zone);
956 struct mem_cgroup_per_zone *mz;
957
958 mz = mem_cgroup_zoneinfo(root, nid, zid);
959 iter = &mz->reclaim_iter[reclaim->priority];
960 if (prev && reclaim->generation != iter->generation)
961 return NULL;
962 id = iter->position;
963 }
964
965 rcu_read_lock();
966 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
967 if (css) {
968 if (css == &root->css || css_tryget(css))
969 memcg = container_of(css,
970 struct mem_cgroup, css);
971 } else
972 id = 0;
973 rcu_read_unlock();
974
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
987}
988
989/**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
996{
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001}
1002
1003/*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008#define for_each_mem_cgroup_tree(iter, root) \
1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010 iter != NULL; \
1011 iter = mem_cgroup_iter(root, iter, NULL))
1012
1013#define for_each_mem_cgroup(iter) \
1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015 iter != NULL; \
1016 iter = mem_cgroup_iter(NULL, iter, NULL))
1017
1018static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1019{
1020 return (memcg == root_mem_cgroup);
1021}
1022
1023void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1024{
1025 struct mem_cgroup *memcg;
1026
1027 if (!mm)
1028 return;
1029
1030 rcu_read_lock();
1031 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1032 if (unlikely(!memcg))
1033 goto out;
1034
1035 switch (idx) {
1036 case PGFAULT:
1037 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1038 break;
1039 case PGMAJFAULT:
1040 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1041 break;
1042 default:
1043 BUG();
1044 }
1045out:
1046 rcu_read_unlock();
1047}
1048EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1049
1050/**
1051 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1052 * @zone: zone of the wanted lruvec
1053 * @memcg: memcg of the wanted lruvec
1054 *
1055 * Returns the lru list vector holding pages for the given @zone and
1056 * @mem. This can be the global zone lruvec, if the memory controller
1057 * is disabled.
1058 */
1059struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1060 struct mem_cgroup *memcg)
1061{
1062 struct mem_cgroup_per_zone *mz;
1063
1064 if (mem_cgroup_disabled())
1065 return &zone->lruvec;
1066
1067 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1068 return &mz->lruvec;
1069}
1070
1071/*
1072 * Following LRU functions are allowed to be used without PCG_LOCK.
1073 * Operations are called by routine of global LRU independently from memcg.
1074 * What we have to take care of here is validness of pc->mem_cgroup.
1075 *
1076 * Changes to pc->mem_cgroup happens when
1077 * 1. charge
1078 * 2. moving account
1079 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1080 * It is added to LRU before charge.
1081 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1082 * When moving account, the page is not on LRU. It's isolated.
1083 */
1084
1085/**
1086 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1087 * @page: the page
1088 * @zone: zone of the page
1089 */
1090struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1091{
1092 struct mem_cgroup_per_zone *mz;
1093 struct mem_cgroup *memcg;
1094 struct page_cgroup *pc;
1095
1096 if (mem_cgroup_disabled())
1097 return &zone->lruvec;
1098
1099 pc = lookup_page_cgroup(page);
1100 memcg = pc->mem_cgroup;
1101
1102 /*
1103 * Surreptitiously switch any uncharged offlist page to root:
1104 * an uncharged page off lru does nothing to secure
1105 * its former mem_cgroup from sudden removal.
1106 *
1107 * Our caller holds lru_lock, and PageCgroupUsed is updated
1108 * under page_cgroup lock: between them, they make all uses
1109 * of pc->mem_cgroup safe.
1110 */
1111 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1112 pc->mem_cgroup = memcg = root_mem_cgroup;
1113
1114 mz = page_cgroup_zoneinfo(memcg, page);
1115 return &mz->lruvec;
1116}
1117
1118/**
1119 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1120 * @lruvec: mem_cgroup per zone lru vector
1121 * @lru: index of lru list the page is sitting on
1122 * @nr_pages: positive when adding or negative when removing
1123 *
1124 * This function must be called when a page is added to or removed from an
1125 * lru list.
1126 */
1127void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1128 int nr_pages)
1129{
1130 struct mem_cgroup_per_zone *mz;
1131 unsigned long *lru_size;
1132
1133 if (mem_cgroup_disabled())
1134 return;
1135
1136 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1137 lru_size = mz->lru_size + lru;
1138 *lru_size += nr_pages;
1139 VM_BUG_ON((long)(*lru_size) < 0);
1140}
1141
1142/*
1143 * Checks whether given mem is same or in the root_mem_cgroup's
1144 * hierarchy subtree
1145 */
1146bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1147 struct mem_cgroup *memcg)
1148{
1149 if (root_memcg == memcg)
1150 return true;
1151 if (!root_memcg->use_hierarchy || !memcg)
1152 return false;
1153 return css_is_ancestor(&memcg->css, &root_memcg->css);
1154}
1155
1156static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1157 struct mem_cgroup *memcg)
1158{
1159 bool ret;
1160
1161 rcu_read_lock();
1162 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1163 rcu_read_unlock();
1164 return ret;
1165}
1166
1167int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168{
1169 int ret;
1170 struct mem_cgroup *curr = NULL;
1171 struct task_struct *p;
1172
1173 p = find_lock_task_mm(task);
1174 if (p) {
1175 curr = try_get_mem_cgroup_from_mm(p->mm);
1176 task_unlock(p);
1177 } else {
1178 /*
1179 * All threads may have already detached their mm's, but the oom
1180 * killer still needs to detect if they have already been oom
1181 * killed to prevent needlessly killing additional tasks.
1182 */
1183 task_lock(task);
1184 curr = mem_cgroup_from_task(task);
1185 if (curr)
1186 css_get(&curr->css);
1187 task_unlock(task);
1188 }
1189 if (!curr)
1190 return 0;
1191 /*
1192 * We should check use_hierarchy of "memcg" not "curr". Because checking
1193 * use_hierarchy of "curr" here make this function true if hierarchy is
1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196 */
1197 ret = mem_cgroup_same_or_subtree(memcg, curr);
1198 css_put(&curr->css);
1199 return ret;
1200}
1201
1202int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1203{
1204 unsigned long inactive_ratio;
1205 unsigned long inactive;
1206 unsigned long active;
1207 unsigned long gb;
1208
1209 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1210 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1211
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
1218 return inactive * inactive_ratio < active;
1219}
1220
1221int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1222{
1223 unsigned long active;
1224 unsigned long inactive;
1225
1226 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1227 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1228
1229 return (active > inactive);
1230}
1231
1232#define mem_cgroup_from_res_counter(counter, member) \
1233 container_of(counter, struct mem_cgroup, member)
1234
1235/**
1236 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1237 * @memcg: the memory cgroup
1238 *
1239 * Returns the maximum amount of memory @mem can be charged with, in
1240 * pages.
1241 */
1242static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1243{
1244 unsigned long long margin;
1245
1246 margin = res_counter_margin(&memcg->res);
1247 if (do_swap_account)
1248 margin = min(margin, res_counter_margin(&memcg->memsw));
1249 return margin >> PAGE_SHIFT;
1250}
1251
1252int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1253{
1254 struct cgroup *cgrp = memcg->css.cgroup;
1255
1256 /* root ? */
1257 if (cgrp->parent == NULL)
1258 return vm_swappiness;
1259
1260 return memcg->swappiness;
1261}
1262
1263/*
1264 * memcg->moving_account is used for checking possibility that some thread is
1265 * calling move_account(). When a thread on CPU-A starts moving pages under
1266 * a memcg, other threads should check memcg->moving_account under
1267 * rcu_read_lock(), like this:
1268 *
1269 * CPU-A CPU-B
1270 * rcu_read_lock()
1271 * memcg->moving_account+1 if (memcg->mocing_account)
1272 * take heavy locks.
1273 * synchronize_rcu() update something.
1274 * rcu_read_unlock()
1275 * start move here.
1276 */
1277
1278/* for quick checking without looking up memcg */
1279atomic_t memcg_moving __read_mostly;
1280
1281static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282{
1283 atomic_inc(&memcg_moving);
1284 atomic_inc(&memcg->moving_account);
1285 synchronize_rcu();
1286}
1287
1288static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1289{
1290 /*
1291 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1292 * We check NULL in callee rather than caller.
1293 */
1294 if (memcg) {
1295 atomic_dec(&memcg_moving);
1296 atomic_dec(&memcg->moving_account);
1297 }
1298}
1299
1300/*
1301 * 2 routines for checking "mem" is under move_account() or not.
1302 *
1303 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1304 * is used for avoiding races in accounting. If true,
1305 * pc->mem_cgroup may be overwritten.
1306 *
1307 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1308 * under hierarchy of moving cgroups. This is for
1309 * waiting at hith-memory prressure caused by "move".
1310 */
1311
1312static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1313{
1314 VM_BUG_ON(!rcu_read_lock_held());
1315 return atomic_read(&memcg->moving_account) > 0;
1316}
1317
1318static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319{
1320 struct mem_cgroup *from;
1321 struct mem_cgroup *to;
1322 bool ret = false;
1323 /*
1324 * Unlike task_move routines, we access mc.to, mc.from not under
1325 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 */
1327 spin_lock(&mc.lock);
1328 from = mc.from;
1329 to = mc.to;
1330 if (!from)
1331 goto unlock;
1332
1333 ret = mem_cgroup_same_or_subtree(memcg, from)
1334 || mem_cgroup_same_or_subtree(memcg, to);
1335unlock:
1336 spin_unlock(&mc.lock);
1337 return ret;
1338}
1339
1340static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341{
1342 if (mc.moving_task && current != mc.moving_task) {
1343 if (mem_cgroup_under_move(memcg)) {
1344 DEFINE_WAIT(wait);
1345 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1346 /* moving charge context might have finished. */
1347 if (mc.moving_task)
1348 schedule();
1349 finish_wait(&mc.waitq, &wait);
1350 return true;
1351 }
1352 }
1353 return false;
1354}
1355
1356/*
1357 * Take this lock when
1358 * - a code tries to modify page's memcg while it's USED.
1359 * - a code tries to modify page state accounting in a memcg.
1360 * see mem_cgroup_stolen(), too.
1361 */
1362static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1363 unsigned long *flags)
1364{
1365 spin_lock_irqsave(&memcg->move_lock, *flags);
1366}
1367
1368static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1369 unsigned long *flags)
1370{
1371 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1372}
1373
1374/**
1375 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1376 * @memcg: The memory cgroup that went over limit
1377 * @p: Task that is going to be killed
1378 *
1379 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1380 * enabled
1381 */
1382void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1383{
1384 struct cgroup *task_cgrp;
1385 struct cgroup *mem_cgrp;
1386 /*
1387 * Need a buffer in BSS, can't rely on allocations. The code relies
1388 * on the assumption that OOM is serialized for memory controller.
1389 * If this assumption is broken, revisit this code.
1390 */
1391 static char memcg_name[PATH_MAX];
1392 int ret;
1393
1394 if (!memcg || !p)
1395 return;
1396
1397 rcu_read_lock();
1398
1399 mem_cgrp = memcg->css.cgroup;
1400 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401
1402 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403 if (ret < 0) {
1404 /*
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1407 */
1408 rcu_read_unlock();
1409 goto done;
1410 }
1411 rcu_read_unlock();
1412
1413 printk(KERN_INFO "Task in %s killed", memcg_name);
1414
1415 rcu_read_lock();
1416 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417 if (ret < 0) {
1418 rcu_read_unlock();
1419 goto done;
1420 }
1421 rcu_read_unlock();
1422
1423 /*
1424 * Continues from above, so we don't need an KERN_ level
1425 */
1426 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427done:
1428
1429 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434 "failcnt %llu\n",
1435 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438}
1439
1440/*
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1443 */
1444static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445{
1446 int num = 0;
1447 struct mem_cgroup *iter;
1448
1449 for_each_mem_cgroup_tree(iter, memcg)
1450 num++;
1451 return num;
1452}
1453
1454/*
1455 * Return the memory (and swap, if configured) limit for a memcg.
1456 */
1457u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458{
1459 u64 limit;
1460 u64 memsw;
1461
1462 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463 limit += total_swap_pages << PAGE_SHIFT;
1464
1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 /*
1467 * If memsw is finite and limits the amount of swap space available
1468 * to this memcg, return that limit.
1469 */
1470 return min(limit, memsw);
1471}
1472
1473static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474 gfp_t gfp_mask,
1475 unsigned long flags)
1476{
1477 unsigned long total = 0;
1478 bool noswap = false;
1479 int loop;
1480
1481 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482 noswap = true;
1483 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484 noswap = true;
1485
1486 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487 if (loop)
1488 drain_all_stock_async(memcg);
1489 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1490 /*
1491 * Allow limit shrinkers, which are triggered directly
1492 * by userspace, to catch signals and stop reclaim
1493 * after minimal progress, regardless of the margin.
1494 */
1495 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496 break;
1497 if (mem_cgroup_margin(memcg))
1498 break;
1499 /*
1500 * If nothing was reclaimed after two attempts, there
1501 * may be no reclaimable pages in this hierarchy.
1502 */
1503 if (loop && !total)
1504 break;
1505 }
1506 return total;
1507}
1508
1509/**
1510 * test_mem_cgroup_node_reclaimable
1511 * @memcg: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1514 *
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1518 */
1519static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1520 int nid, bool noswap)
1521{
1522 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1523 return true;
1524 if (noswap || !total_swap_pages)
1525 return false;
1526 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1527 return true;
1528 return false;
1529
1530}
1531#if MAX_NUMNODES > 1
1532
1533/*
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537 *
1538 */
1539static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1540{
1541 int nid;
1542 /*
1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 * pagein/pageout changes since the last update.
1545 */
1546 if (!atomic_read(&memcg->numainfo_events))
1547 return;
1548 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1549 return;
1550
1551 /* make a nodemask where this memcg uses memory from */
1552 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1553
1554 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555
1556 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557 node_clear(nid, memcg->scan_nodes);
1558 }
1559
1560 atomic_set(&memcg->numainfo_events, 0);
1561 atomic_set(&memcg->numainfo_updating, 0);
1562}
1563
1564/*
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1568 *
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1573 *
1574 * Now, we use round-robin. Better algorithm is welcomed.
1575 */
1576int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1577{
1578 int node;
1579
1580 mem_cgroup_may_update_nodemask(memcg);
1581 node = memcg->last_scanned_node;
1582
1583 node = next_node(node, memcg->scan_nodes);
1584 if (node == MAX_NUMNODES)
1585 node = first_node(memcg->scan_nodes);
1586 /*
1587 * We call this when we hit limit, not when pages are added to LRU.
1588 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 * memcg is too small and all pages are not on LRU. In that case,
1590 * we use curret node.
1591 */
1592 if (unlikely(node == MAX_NUMNODES))
1593 node = numa_node_id();
1594
1595 memcg->last_scanned_node = node;
1596 return node;
1597}
1598
1599/*
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1604 */
1605static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606{
1607 int nid;
1608
1609 /*
1610 * quick check...making use of scan_node.
1611 * We can skip unused nodes.
1612 */
1613 if (!nodes_empty(memcg->scan_nodes)) {
1614 for (nid = first_node(memcg->scan_nodes);
1615 nid < MAX_NUMNODES;
1616 nid = next_node(nid, memcg->scan_nodes)) {
1617
1618 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1619 return true;
1620 }
1621 }
1622 /*
1623 * Check rest of nodes.
1624 */
1625 for_each_node_state(nid, N_HIGH_MEMORY) {
1626 if (node_isset(nid, memcg->scan_nodes))
1627 continue;
1628 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1629 return true;
1630 }
1631 return false;
1632}
1633
1634#else
1635int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1636{
1637 return 0;
1638}
1639
1640static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1641{
1642 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1643}
1644#endif
1645
1646static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647 struct zone *zone,
1648 gfp_t gfp_mask,
1649 unsigned long *total_scanned)
1650{
1651 struct mem_cgroup *victim = NULL;
1652 int total = 0;
1653 int loop = 0;
1654 unsigned long excess;
1655 unsigned long nr_scanned;
1656 struct mem_cgroup_reclaim_cookie reclaim = {
1657 .zone = zone,
1658 .priority = 0,
1659 };
1660
1661 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1662
1663 while (1) {
1664 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1665 if (!victim) {
1666 loop++;
1667 if (loop >= 2) {
1668 /*
1669 * If we have not been able to reclaim
1670 * anything, it might because there are
1671 * no reclaimable pages under this hierarchy
1672 */
1673 if (!total)
1674 break;
1675 /*
1676 * We want to do more targeted reclaim.
1677 * excess >> 2 is not to excessive so as to
1678 * reclaim too much, nor too less that we keep
1679 * coming back to reclaim from this cgroup
1680 */
1681 if (total >= (excess >> 2) ||
1682 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1683 break;
1684 }
1685 continue;
1686 }
1687 if (!mem_cgroup_reclaimable(victim, false))
1688 continue;
1689 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690 zone, &nr_scanned);
1691 *total_scanned += nr_scanned;
1692 if (!res_counter_soft_limit_excess(&root_memcg->res))
1693 break;
1694 }
1695 mem_cgroup_iter_break(root_memcg, victim);
1696 return total;
1697}
1698
1699/*
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1702 * Has to be called with memcg_oom_lock
1703 */
1704static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1705{
1706 struct mem_cgroup *iter, *failed = NULL;
1707
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 if (iter->oom_lock) {
1710 /*
1711 * this subtree of our hierarchy is already locked
1712 * so we cannot give a lock.
1713 */
1714 failed = iter;
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
1717 } else
1718 iter->oom_lock = true;
1719 }
1720
1721 if (!failed)
1722 return true;
1723
1724 /*
1725 * OK, we failed to lock the whole subtree so we have to clean up
1726 * what we set up to the failing subtree
1727 */
1728 for_each_mem_cgroup_tree(iter, memcg) {
1729 if (iter == failed) {
1730 mem_cgroup_iter_break(memcg, iter);
1731 break;
1732 }
1733 iter->oom_lock = false;
1734 }
1735 return false;
1736}
1737
1738/*
1739 * Has to be called with memcg_oom_lock
1740 */
1741static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1742{
1743 struct mem_cgroup *iter;
1744
1745 for_each_mem_cgroup_tree(iter, memcg)
1746 iter->oom_lock = false;
1747 return 0;
1748}
1749
1750static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1751{
1752 struct mem_cgroup *iter;
1753
1754 for_each_mem_cgroup_tree(iter, memcg)
1755 atomic_inc(&iter->under_oom);
1756}
1757
1758static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1759{
1760 struct mem_cgroup *iter;
1761
1762 /*
1763 * When a new child is created while the hierarchy is under oom,
1764 * mem_cgroup_oom_lock() may not be called. We have to use
1765 * atomic_add_unless() here.
1766 */
1767 for_each_mem_cgroup_tree(iter, memcg)
1768 atomic_add_unless(&iter->under_oom, -1, 0);
1769}
1770
1771static DEFINE_SPINLOCK(memcg_oom_lock);
1772static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1773
1774struct oom_wait_info {
1775 struct mem_cgroup *memcg;
1776 wait_queue_t wait;
1777};
1778
1779static int memcg_oom_wake_function(wait_queue_t *wait,
1780 unsigned mode, int sync, void *arg)
1781{
1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1783 struct mem_cgroup *oom_wait_memcg;
1784 struct oom_wait_info *oom_wait_info;
1785
1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1787 oom_wait_memcg = oom_wait_info->memcg;
1788
1789 /*
1790 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1791 * Then we can use css_is_ancestor without taking care of RCU.
1792 */
1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1795 return 0;
1796 return autoremove_wake_function(wait, mode, sync, arg);
1797}
1798
1799static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1800{
1801 /* for filtering, pass "memcg" as argument. */
1802 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1803}
1804
1805static void memcg_oom_recover(struct mem_cgroup *memcg)
1806{
1807 if (memcg && atomic_read(&memcg->under_oom))
1808 memcg_wakeup_oom(memcg);
1809}
1810
1811/*
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1813 */
1814static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1815 int order)
1816{
1817 struct oom_wait_info owait;
1818 bool locked, need_to_kill;
1819
1820 owait.memcg = memcg;
1821 owait.wait.flags = 0;
1822 owait.wait.func = memcg_oom_wake_function;
1823 owait.wait.private = current;
1824 INIT_LIST_HEAD(&owait.wait.task_list);
1825 need_to_kill = true;
1826 mem_cgroup_mark_under_oom(memcg);
1827
1828 /* At first, try to OOM lock hierarchy under memcg.*/
1829 spin_lock(&memcg_oom_lock);
1830 locked = mem_cgroup_oom_lock(memcg);
1831 /*
1832 * Even if signal_pending(), we can't quit charge() loop without
1833 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1834 * under OOM is always welcomed, use TASK_KILLABLE here.
1835 */
1836 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837 if (!locked || memcg->oom_kill_disable)
1838 need_to_kill = false;
1839 if (locked)
1840 mem_cgroup_oom_notify(memcg);
1841 spin_unlock(&memcg_oom_lock);
1842
1843 if (need_to_kill) {
1844 finish_wait(&memcg_oom_waitq, &owait.wait);
1845 mem_cgroup_out_of_memory(memcg, mask, order);
1846 } else {
1847 schedule();
1848 finish_wait(&memcg_oom_waitq, &owait.wait);
1849 }
1850 spin_lock(&memcg_oom_lock);
1851 if (locked)
1852 mem_cgroup_oom_unlock(memcg);
1853 memcg_wakeup_oom(memcg);
1854 spin_unlock(&memcg_oom_lock);
1855
1856 mem_cgroup_unmark_under_oom(memcg);
1857
1858 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1859 return false;
1860 /* Give chance to dying process */
1861 schedule_timeout_uninterruptible(1);
1862 return true;
1863}
1864
1865/*
1866 * Currently used to update mapped file statistics, but the routine can be
1867 * generalized to update other statistics as well.
1868 *
1869 * Notes: Race condition
1870 *
1871 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1872 * it tends to be costly. But considering some conditions, we doesn't need
1873 * to do so _always_.
1874 *
1875 * Considering "charge", lock_page_cgroup() is not required because all
1876 * file-stat operations happen after a page is attached to radix-tree. There
1877 * are no race with "charge".
1878 *
1879 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1880 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1881 * if there are race with "uncharge". Statistics itself is properly handled
1882 * by flags.
1883 *
1884 * Considering "move", this is an only case we see a race. To make the race
1885 * small, we check mm->moving_account and detect there are possibility of race
1886 * If there is, we take a lock.
1887 */
1888
1889void __mem_cgroup_begin_update_page_stat(struct page *page,
1890 bool *locked, unsigned long *flags)
1891{
1892 struct mem_cgroup *memcg;
1893 struct page_cgroup *pc;
1894
1895 pc = lookup_page_cgroup(page);
1896again:
1897 memcg = pc->mem_cgroup;
1898 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1899 return;
1900 /*
1901 * If this memory cgroup is not under account moving, we don't
1902 * need to take move_lock_page_cgroup(). Because we already hold
1903 * rcu_read_lock(), any calls to move_account will be delayed until
1904 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1905 */
1906 if (!mem_cgroup_stolen(memcg))
1907 return;
1908
1909 move_lock_mem_cgroup(memcg, flags);
1910 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1911 move_unlock_mem_cgroup(memcg, flags);
1912 goto again;
1913 }
1914 *locked = true;
1915}
1916
1917void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1918{
1919 struct page_cgroup *pc = lookup_page_cgroup(page);
1920
1921 /*
1922 * It's guaranteed that pc->mem_cgroup never changes while
1923 * lock is held because a routine modifies pc->mem_cgroup
1924 * should take move_lock_page_cgroup().
1925 */
1926 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1927}
1928
1929void mem_cgroup_update_page_stat(struct page *page,
1930 enum mem_cgroup_page_stat_item idx, int val)
1931{
1932 struct mem_cgroup *memcg;
1933 struct page_cgroup *pc = lookup_page_cgroup(page);
1934 unsigned long uninitialized_var(flags);
1935
1936 if (mem_cgroup_disabled())
1937 return;
1938
1939 memcg = pc->mem_cgroup;
1940 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1941 return;
1942
1943 switch (idx) {
1944 case MEMCG_NR_FILE_MAPPED:
1945 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1946 break;
1947 default:
1948 BUG();
1949 }
1950
1951 this_cpu_add(memcg->stat->count[idx], val);
1952}
1953
1954/*
1955 * size of first charge trial. "32" comes from vmscan.c's magic value.
1956 * TODO: maybe necessary to use big numbers in big irons.
1957 */
1958#define CHARGE_BATCH 32U
1959struct memcg_stock_pcp {
1960 struct mem_cgroup *cached; /* this never be root cgroup */
1961 unsigned int nr_pages;
1962 struct work_struct work;
1963 unsigned long flags;
1964#define FLUSHING_CACHED_CHARGE 0
1965};
1966static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1967static DEFINE_MUTEX(percpu_charge_mutex);
1968
1969/*
1970 * Try to consume stocked charge on this cpu. If success, one page is consumed
1971 * from local stock and true is returned. If the stock is 0 or charges from a
1972 * cgroup which is not current target, returns false. This stock will be
1973 * refilled.
1974 */
1975static bool consume_stock(struct mem_cgroup *memcg)
1976{
1977 struct memcg_stock_pcp *stock;
1978 bool ret = true;
1979
1980 stock = &get_cpu_var(memcg_stock);
1981 if (memcg == stock->cached && stock->nr_pages)
1982 stock->nr_pages--;
1983 else /* need to call res_counter_charge */
1984 ret = false;
1985 put_cpu_var(memcg_stock);
1986 return ret;
1987}
1988
1989/*
1990 * Returns stocks cached in percpu to res_counter and reset cached information.
1991 */
1992static void drain_stock(struct memcg_stock_pcp *stock)
1993{
1994 struct mem_cgroup *old = stock->cached;
1995
1996 if (stock->nr_pages) {
1997 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1998
1999 res_counter_uncharge(&old->res, bytes);
2000 if (do_swap_account)
2001 res_counter_uncharge(&old->memsw, bytes);
2002 stock->nr_pages = 0;
2003 }
2004 stock->cached = NULL;
2005}
2006
2007/*
2008 * This must be called under preempt disabled or must be called by
2009 * a thread which is pinned to local cpu.
2010 */
2011static void drain_local_stock(struct work_struct *dummy)
2012{
2013 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2014 drain_stock(stock);
2015 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2016}
2017
2018/*
2019 * Cache charges(val) which is from res_counter, to local per_cpu area.
2020 * This will be consumed by consume_stock() function, later.
2021 */
2022static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2023{
2024 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2025
2026 if (stock->cached != memcg) { /* reset if necessary */
2027 drain_stock(stock);
2028 stock->cached = memcg;
2029 }
2030 stock->nr_pages += nr_pages;
2031 put_cpu_var(memcg_stock);
2032}
2033
2034/*
2035 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2036 * of the hierarchy under it. sync flag says whether we should block
2037 * until the work is done.
2038 */
2039static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2040{
2041 int cpu, curcpu;
2042
2043 /* Notify other cpus that system-wide "drain" is running */
2044 get_online_cpus();
2045 curcpu = get_cpu();
2046 for_each_online_cpu(cpu) {
2047 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2048 struct mem_cgroup *memcg;
2049
2050 memcg = stock->cached;
2051 if (!memcg || !stock->nr_pages)
2052 continue;
2053 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2054 continue;
2055 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2056 if (cpu == curcpu)
2057 drain_local_stock(&stock->work);
2058 else
2059 schedule_work_on(cpu, &stock->work);
2060 }
2061 }
2062 put_cpu();
2063
2064 if (!sync)
2065 goto out;
2066
2067 for_each_online_cpu(cpu) {
2068 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2069 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2070 flush_work(&stock->work);
2071 }
2072out:
2073 put_online_cpus();
2074}
2075
2076/*
2077 * Tries to drain stocked charges in other cpus. This function is asynchronous
2078 * and just put a work per cpu for draining localy on each cpu. Caller can
2079 * expects some charges will be back to res_counter later but cannot wait for
2080 * it.
2081 */
2082static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2083{
2084 /*
2085 * If someone calls draining, avoid adding more kworker runs.
2086 */
2087 if (!mutex_trylock(&percpu_charge_mutex))
2088 return;
2089 drain_all_stock(root_memcg, false);
2090 mutex_unlock(&percpu_charge_mutex);
2091}
2092
2093/* This is a synchronous drain interface. */
2094static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2095{
2096 /* called when force_empty is called */
2097 mutex_lock(&percpu_charge_mutex);
2098 drain_all_stock(root_memcg, true);
2099 mutex_unlock(&percpu_charge_mutex);
2100}
2101
2102/*
2103 * This function drains percpu counter value from DEAD cpu and
2104 * move it to local cpu. Note that this function can be preempted.
2105 */
2106static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2107{
2108 int i;
2109
2110 spin_lock(&memcg->pcp_counter_lock);
2111 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2112 long x = per_cpu(memcg->stat->count[i], cpu);
2113
2114 per_cpu(memcg->stat->count[i], cpu) = 0;
2115 memcg->nocpu_base.count[i] += x;
2116 }
2117 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2118 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2119
2120 per_cpu(memcg->stat->events[i], cpu) = 0;
2121 memcg->nocpu_base.events[i] += x;
2122 }
2123 spin_unlock(&memcg->pcp_counter_lock);
2124}
2125
2126static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2127 unsigned long action,
2128 void *hcpu)
2129{
2130 int cpu = (unsigned long)hcpu;
2131 struct memcg_stock_pcp *stock;
2132 struct mem_cgroup *iter;
2133
2134 if (action == CPU_ONLINE)
2135 return NOTIFY_OK;
2136
2137 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2138 return NOTIFY_OK;
2139
2140 for_each_mem_cgroup(iter)
2141 mem_cgroup_drain_pcp_counter(iter, cpu);
2142
2143 stock = &per_cpu(memcg_stock, cpu);
2144 drain_stock(stock);
2145 return NOTIFY_OK;
2146}
2147
2148
2149/* See __mem_cgroup_try_charge() for details */
2150enum {
2151 CHARGE_OK, /* success */
2152 CHARGE_RETRY, /* need to retry but retry is not bad */
2153 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2154 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2155 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2156};
2157
2158static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2159 unsigned int nr_pages, bool oom_check)
2160{
2161 unsigned long csize = nr_pages * PAGE_SIZE;
2162 struct mem_cgroup *mem_over_limit;
2163 struct res_counter *fail_res;
2164 unsigned long flags = 0;
2165 int ret;
2166
2167 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2168
2169 if (likely(!ret)) {
2170 if (!do_swap_account)
2171 return CHARGE_OK;
2172 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2173 if (likely(!ret))
2174 return CHARGE_OK;
2175
2176 res_counter_uncharge(&memcg->res, csize);
2177 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2178 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2179 } else
2180 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2181 /*
2182 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2183 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2184 *
2185 * Never reclaim on behalf of optional batching, retry with a
2186 * single page instead.
2187 */
2188 if (nr_pages == CHARGE_BATCH)
2189 return CHARGE_RETRY;
2190
2191 if (!(gfp_mask & __GFP_WAIT))
2192 return CHARGE_WOULDBLOCK;
2193
2194 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2195 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2196 return CHARGE_RETRY;
2197 /*
2198 * Even though the limit is exceeded at this point, reclaim
2199 * may have been able to free some pages. Retry the charge
2200 * before killing the task.
2201 *
2202 * Only for regular pages, though: huge pages are rather
2203 * unlikely to succeed so close to the limit, and we fall back
2204 * to regular pages anyway in case of failure.
2205 */
2206 if (nr_pages == 1 && ret)
2207 return CHARGE_RETRY;
2208
2209 /*
2210 * At task move, charge accounts can be doubly counted. So, it's
2211 * better to wait until the end of task_move if something is going on.
2212 */
2213 if (mem_cgroup_wait_acct_move(mem_over_limit))
2214 return CHARGE_RETRY;
2215
2216 /* If we don't need to call oom-killer at el, return immediately */
2217 if (!oom_check)
2218 return CHARGE_NOMEM;
2219 /* check OOM */
2220 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2221 return CHARGE_OOM_DIE;
2222
2223 return CHARGE_RETRY;
2224}
2225
2226/*
2227 * __mem_cgroup_try_charge() does
2228 * 1. detect memcg to be charged against from passed *mm and *ptr,
2229 * 2. update res_counter
2230 * 3. call memory reclaim if necessary.
2231 *
2232 * In some special case, if the task is fatal, fatal_signal_pending() or
2233 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2234 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2235 * as possible without any hazards. 2: all pages should have a valid
2236 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2237 * pointer, that is treated as a charge to root_mem_cgroup.
2238 *
2239 * So __mem_cgroup_try_charge() will return
2240 * 0 ... on success, filling *ptr with a valid memcg pointer.
2241 * -ENOMEM ... charge failure because of resource limits.
2242 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2243 *
2244 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2245 * the oom-killer can be invoked.
2246 */
2247static int __mem_cgroup_try_charge(struct mm_struct *mm,
2248 gfp_t gfp_mask,
2249 unsigned int nr_pages,
2250 struct mem_cgroup **ptr,
2251 bool oom)
2252{
2253 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2254 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2255 struct mem_cgroup *memcg = NULL;
2256 int ret;
2257
2258 /*
2259 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2260 * in system level. So, allow to go ahead dying process in addition to
2261 * MEMDIE process.
2262 */
2263 if (unlikely(test_thread_flag(TIF_MEMDIE)
2264 || fatal_signal_pending(current)))
2265 goto bypass;
2266
2267 /*
2268 * We always charge the cgroup the mm_struct belongs to.
2269 * The mm_struct's mem_cgroup changes on task migration if the
2270 * thread group leader migrates. It's possible that mm is not
2271 * set, if so charge the init_mm (happens for pagecache usage).
2272 */
2273 if (!*ptr && !mm)
2274 *ptr = root_mem_cgroup;
2275again:
2276 if (*ptr) { /* css should be a valid one */
2277 memcg = *ptr;
2278 VM_BUG_ON(css_is_removed(&memcg->css));
2279 if (mem_cgroup_is_root(memcg))
2280 goto done;
2281 if (nr_pages == 1 && consume_stock(memcg))
2282 goto done;
2283 css_get(&memcg->css);
2284 } else {
2285 struct task_struct *p;
2286
2287 rcu_read_lock();
2288 p = rcu_dereference(mm->owner);
2289 /*
2290 * Because we don't have task_lock(), "p" can exit.
2291 * In that case, "memcg" can point to root or p can be NULL with
2292 * race with swapoff. Then, we have small risk of mis-accouning.
2293 * But such kind of mis-account by race always happens because
2294 * we don't have cgroup_mutex(). It's overkill and we allo that
2295 * small race, here.
2296 * (*) swapoff at el will charge against mm-struct not against
2297 * task-struct. So, mm->owner can be NULL.
2298 */
2299 memcg = mem_cgroup_from_task(p);
2300 if (!memcg)
2301 memcg = root_mem_cgroup;
2302 if (mem_cgroup_is_root(memcg)) {
2303 rcu_read_unlock();
2304 goto done;
2305 }
2306 if (nr_pages == 1 && consume_stock(memcg)) {
2307 /*
2308 * It seems dagerous to access memcg without css_get().
2309 * But considering how consume_stok works, it's not
2310 * necessary. If consume_stock success, some charges
2311 * from this memcg are cached on this cpu. So, we
2312 * don't need to call css_get()/css_tryget() before
2313 * calling consume_stock().
2314 */
2315 rcu_read_unlock();
2316 goto done;
2317 }
2318 /* after here, we may be blocked. we need to get refcnt */
2319 if (!css_tryget(&memcg->css)) {
2320 rcu_read_unlock();
2321 goto again;
2322 }
2323 rcu_read_unlock();
2324 }
2325
2326 do {
2327 bool oom_check;
2328
2329 /* If killed, bypass charge */
2330 if (fatal_signal_pending(current)) {
2331 css_put(&memcg->css);
2332 goto bypass;
2333 }
2334
2335 oom_check = false;
2336 if (oom && !nr_oom_retries) {
2337 oom_check = true;
2338 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339 }
2340
2341 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2342 switch (ret) {
2343 case CHARGE_OK:
2344 break;
2345 case CHARGE_RETRY: /* not in OOM situation but retry */
2346 batch = nr_pages;
2347 css_put(&memcg->css);
2348 memcg = NULL;
2349 goto again;
2350 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2351 css_put(&memcg->css);
2352 goto nomem;
2353 case CHARGE_NOMEM: /* OOM routine works */
2354 if (!oom) {
2355 css_put(&memcg->css);
2356 goto nomem;
2357 }
2358 /* If oom, we never return -ENOMEM */
2359 nr_oom_retries--;
2360 break;
2361 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2362 css_put(&memcg->css);
2363 goto bypass;
2364 }
2365 } while (ret != CHARGE_OK);
2366
2367 if (batch > nr_pages)
2368 refill_stock(memcg, batch - nr_pages);
2369 css_put(&memcg->css);
2370done:
2371 *ptr = memcg;
2372 return 0;
2373nomem:
2374 *ptr = NULL;
2375 return -ENOMEM;
2376bypass:
2377 *ptr = root_mem_cgroup;
2378 return -EINTR;
2379}
2380
2381/*
2382 * Somemtimes we have to undo a charge we got by try_charge().
2383 * This function is for that and do uncharge, put css's refcnt.
2384 * gotten by try_charge().
2385 */
2386static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2387 unsigned int nr_pages)
2388{
2389 if (!mem_cgroup_is_root(memcg)) {
2390 unsigned long bytes = nr_pages * PAGE_SIZE;
2391
2392 res_counter_uncharge(&memcg->res, bytes);
2393 if (do_swap_account)
2394 res_counter_uncharge(&memcg->memsw, bytes);
2395 }
2396}
2397
2398/*
2399 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2400 * This is useful when moving usage to parent cgroup.
2401 */
2402static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2403 unsigned int nr_pages)
2404{
2405 unsigned long bytes = nr_pages * PAGE_SIZE;
2406
2407 if (mem_cgroup_is_root(memcg))
2408 return;
2409
2410 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2411 if (do_swap_account)
2412 res_counter_uncharge_until(&memcg->memsw,
2413 memcg->memsw.parent, bytes);
2414}
2415
2416/*
2417 * A helper function to get mem_cgroup from ID. must be called under
2418 * rcu_read_lock(). The caller must check css_is_removed() or some if
2419 * it's concern. (dropping refcnt from swap can be called against removed
2420 * memcg.)
2421 */
2422static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2423{
2424 struct cgroup_subsys_state *css;
2425
2426 /* ID 0 is unused ID */
2427 if (!id)
2428 return NULL;
2429 css = css_lookup(&mem_cgroup_subsys, id);
2430 if (!css)
2431 return NULL;
2432 return container_of(css, struct mem_cgroup, css);
2433}
2434
2435struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2436{
2437 struct mem_cgroup *memcg = NULL;
2438 struct page_cgroup *pc;
2439 unsigned short id;
2440 swp_entry_t ent;
2441
2442 VM_BUG_ON(!PageLocked(page));
2443
2444 pc = lookup_page_cgroup(page);
2445 lock_page_cgroup(pc);
2446 if (PageCgroupUsed(pc)) {
2447 memcg = pc->mem_cgroup;
2448 if (memcg && !css_tryget(&memcg->css))
2449 memcg = NULL;
2450 } else if (PageSwapCache(page)) {
2451 ent.val = page_private(page);
2452 id = lookup_swap_cgroup_id(ent);
2453 rcu_read_lock();
2454 memcg = mem_cgroup_lookup(id);
2455 if (memcg && !css_tryget(&memcg->css))
2456 memcg = NULL;
2457 rcu_read_unlock();
2458 }
2459 unlock_page_cgroup(pc);
2460 return memcg;
2461}
2462
2463static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2464 struct page *page,
2465 unsigned int nr_pages,
2466 enum charge_type ctype,
2467 bool lrucare)
2468{
2469 struct page_cgroup *pc = lookup_page_cgroup(page);
2470 struct zone *uninitialized_var(zone);
2471 struct lruvec *lruvec;
2472 bool was_on_lru = false;
2473 bool anon;
2474
2475 lock_page_cgroup(pc);
2476 if (unlikely(PageCgroupUsed(pc))) {
2477 unlock_page_cgroup(pc);
2478 __mem_cgroup_cancel_charge(memcg, nr_pages);
2479 return;
2480 }
2481 /*
2482 * we don't need page_cgroup_lock about tail pages, becase they are not
2483 * accessed by any other context at this point.
2484 */
2485
2486 /*
2487 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2488 * may already be on some other mem_cgroup's LRU. Take care of it.
2489 */
2490 if (lrucare) {
2491 zone = page_zone(page);
2492 spin_lock_irq(&zone->lru_lock);
2493 if (PageLRU(page)) {
2494 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2495 ClearPageLRU(page);
2496 del_page_from_lru_list(page, lruvec, page_lru(page));
2497 was_on_lru = true;
2498 }
2499 }
2500
2501 pc->mem_cgroup = memcg;
2502 /*
2503 * We access a page_cgroup asynchronously without lock_page_cgroup().
2504 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2505 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2506 * before USED bit, we need memory barrier here.
2507 * See mem_cgroup_add_lru_list(), etc.
2508 */
2509 smp_wmb();
2510 SetPageCgroupUsed(pc);
2511
2512 if (lrucare) {
2513 if (was_on_lru) {
2514 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2515 VM_BUG_ON(PageLRU(page));
2516 SetPageLRU(page);
2517 add_page_to_lru_list(page, lruvec, page_lru(page));
2518 }
2519 spin_unlock_irq(&zone->lru_lock);
2520 }
2521
2522 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2523 anon = true;
2524 else
2525 anon = false;
2526
2527 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2528 unlock_page_cgroup(pc);
2529
2530 /*
2531 * "charge_statistics" updated event counter. Then, check it.
2532 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2533 * if they exceeds softlimit.
2534 */
2535 memcg_check_events(memcg, page);
2536}
2537
2538#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2539
2540#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2541/*
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2546 */
2547void mem_cgroup_split_huge_fixup(struct page *head)
2548{
2549 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550 struct page_cgroup *pc;
2551 int i;
2552
2553 if (mem_cgroup_disabled())
2554 return;
2555 for (i = 1; i < HPAGE_PMD_NR; i++) {
2556 pc = head_pc + i;
2557 pc->mem_cgroup = head_pc->mem_cgroup;
2558 smp_wmb();/* see __commit_charge() */
2559 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2560 }
2561}
2562#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2563
2564/**
2565 * mem_cgroup_move_account - move account of the page
2566 * @page: the page
2567 * @nr_pages: number of regular pages (>1 for huge pages)
2568 * @pc: page_cgroup of the page.
2569 * @from: mem_cgroup which the page is moved from.
2570 * @to: mem_cgroup which the page is moved to. @from != @to.
2571 *
2572 * The caller must confirm following.
2573 * - page is not on LRU (isolate_page() is useful.)
2574 * - compound_lock is held when nr_pages > 1
2575 *
2576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2577 * from old cgroup.
2578 */
2579static int mem_cgroup_move_account(struct page *page,
2580 unsigned int nr_pages,
2581 struct page_cgroup *pc,
2582 struct mem_cgroup *from,
2583 struct mem_cgroup *to)
2584{
2585 unsigned long flags;
2586 int ret;
2587 bool anon = PageAnon(page);
2588
2589 VM_BUG_ON(from == to);
2590 VM_BUG_ON(PageLRU(page));
2591 /*
2592 * The page is isolated from LRU. So, collapse function
2593 * will not handle this page. But page splitting can happen.
2594 * Do this check under compound_page_lock(). The caller should
2595 * hold it.
2596 */
2597 ret = -EBUSY;
2598 if (nr_pages > 1 && !PageTransHuge(page))
2599 goto out;
2600
2601 lock_page_cgroup(pc);
2602
2603 ret = -EINVAL;
2604 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2605 goto unlock;
2606
2607 move_lock_mem_cgroup(from, &flags);
2608
2609 if (!anon && page_mapped(page)) {
2610 /* Update mapped_file data for mem_cgroup */
2611 preempt_disable();
2612 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2614 preempt_enable();
2615 }
2616 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2617
2618 /* caller should have done css_get */
2619 pc->mem_cgroup = to;
2620 mem_cgroup_charge_statistics(to, anon, nr_pages);
2621 /*
2622 * We charges against "to" which may not have any tasks. Then, "to"
2623 * can be under rmdir(). But in current implementation, caller of
2624 * this function is just force_empty() and move charge, so it's
2625 * guaranteed that "to" is never removed. So, we don't check rmdir
2626 * status here.
2627 */
2628 move_unlock_mem_cgroup(from, &flags);
2629 ret = 0;
2630unlock:
2631 unlock_page_cgroup(pc);
2632 /*
2633 * check events
2634 */
2635 memcg_check_events(to, page);
2636 memcg_check_events(from, page);
2637out:
2638 return ret;
2639}
2640
2641/*
2642 * move charges to its parent.
2643 */
2644
2645static int mem_cgroup_move_parent(struct page *page,
2646 struct page_cgroup *pc,
2647 struct mem_cgroup *child,
2648 gfp_t gfp_mask)
2649{
2650 struct mem_cgroup *parent;
2651 unsigned int nr_pages;
2652 unsigned long uninitialized_var(flags);
2653 int ret;
2654
2655 /* Is ROOT ? */
2656 if (mem_cgroup_is_root(child))
2657 return -EINVAL;
2658
2659 ret = -EBUSY;
2660 if (!get_page_unless_zero(page))
2661 goto out;
2662 if (isolate_lru_page(page))
2663 goto put;
2664
2665 nr_pages = hpage_nr_pages(page);
2666
2667 parent = parent_mem_cgroup(child);
2668 /*
2669 * If no parent, move charges to root cgroup.
2670 */
2671 if (!parent)
2672 parent = root_mem_cgroup;
2673
2674 if (nr_pages > 1)
2675 flags = compound_lock_irqsave(page);
2676
2677 ret = mem_cgroup_move_account(page, nr_pages,
2678 pc, child, parent);
2679 if (!ret)
2680 __mem_cgroup_cancel_local_charge(child, nr_pages);
2681
2682 if (nr_pages > 1)
2683 compound_unlock_irqrestore(page, flags);
2684 putback_lru_page(page);
2685put:
2686 put_page(page);
2687out:
2688 return ret;
2689}
2690
2691/*
2692 * Charge the memory controller for page usage.
2693 * Return
2694 * 0 if the charge was successful
2695 * < 0 if the cgroup is over its limit
2696 */
2697static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2698 gfp_t gfp_mask, enum charge_type ctype)
2699{
2700 struct mem_cgroup *memcg = NULL;
2701 unsigned int nr_pages = 1;
2702 bool oom = true;
2703 int ret;
2704
2705 if (PageTransHuge(page)) {
2706 nr_pages <<= compound_order(page);
2707 VM_BUG_ON(!PageTransHuge(page));
2708 /*
2709 * Never OOM-kill a process for a huge page. The
2710 * fault handler will fall back to regular pages.
2711 */
2712 oom = false;
2713 }
2714
2715 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2716 if (ret == -ENOMEM)
2717 return ret;
2718 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2719 return 0;
2720}
2721
2722int mem_cgroup_newpage_charge(struct page *page,
2723 struct mm_struct *mm, gfp_t gfp_mask)
2724{
2725 if (mem_cgroup_disabled())
2726 return 0;
2727 VM_BUG_ON(page_mapped(page));
2728 VM_BUG_ON(page->mapping && !PageAnon(page));
2729 VM_BUG_ON(!mm);
2730 return mem_cgroup_charge_common(page, mm, gfp_mask,
2731 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2732}
2733
2734static void
2735__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2736 enum charge_type ctype);
2737
2738int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2739 gfp_t gfp_mask)
2740{
2741 struct mem_cgroup *memcg = NULL;
2742 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2743 int ret;
2744
2745 if (mem_cgroup_disabled())
2746 return 0;
2747 if (PageCompound(page))
2748 return 0;
2749
2750 if (unlikely(!mm))
2751 mm = &init_mm;
2752 if (!page_is_file_cache(page))
2753 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2754
2755 if (!PageSwapCache(page))
2756 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2757 else { /* page is swapcache/shmem */
2758 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2759 if (!ret)
2760 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2761 }
2762 return ret;
2763}
2764
2765/*
2766 * While swap-in, try_charge -> commit or cancel, the page is locked.
2767 * And when try_charge() successfully returns, one refcnt to memcg without
2768 * struct page_cgroup is acquired. This refcnt will be consumed by
2769 * "commit()" or removed by "cancel()"
2770 */
2771int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2772 struct page *page,
2773 gfp_t mask, struct mem_cgroup **memcgp)
2774{
2775 struct mem_cgroup *memcg;
2776 int ret;
2777
2778 *memcgp = NULL;
2779
2780 if (mem_cgroup_disabled())
2781 return 0;
2782
2783 if (!do_swap_account)
2784 goto charge_cur_mm;
2785 /*
2786 * A racing thread's fault, or swapoff, may have already updated
2787 * the pte, and even removed page from swap cache: in those cases
2788 * do_swap_page()'s pte_same() test will fail; but there's also a
2789 * KSM case which does need to charge the page.
2790 */
2791 if (!PageSwapCache(page))
2792 goto charge_cur_mm;
2793 memcg = try_get_mem_cgroup_from_page(page);
2794 if (!memcg)
2795 goto charge_cur_mm;
2796 *memcgp = memcg;
2797 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2798 css_put(&memcg->css);
2799 if (ret == -EINTR)
2800 ret = 0;
2801 return ret;
2802charge_cur_mm:
2803 if (unlikely(!mm))
2804 mm = &init_mm;
2805 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2806 if (ret == -EINTR)
2807 ret = 0;
2808 return ret;
2809}
2810
2811static void
2812__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2813 enum charge_type ctype)
2814{
2815 if (mem_cgroup_disabled())
2816 return;
2817 if (!memcg)
2818 return;
2819 cgroup_exclude_rmdir(&memcg->css);
2820
2821 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2822 /*
2823 * Now swap is on-memory. This means this page may be
2824 * counted both as mem and swap....double count.
2825 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2826 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2827 * may call delete_from_swap_cache() before reach here.
2828 */
2829 if (do_swap_account && PageSwapCache(page)) {
2830 swp_entry_t ent = {.val = page_private(page)};
2831 mem_cgroup_uncharge_swap(ent);
2832 }
2833 /*
2834 * At swapin, we may charge account against cgroup which has no tasks.
2835 * So, rmdir()->pre_destroy() can be called while we do this charge.
2836 * In that case, we need to call pre_destroy() again. check it here.
2837 */
2838 cgroup_release_and_wakeup_rmdir(&memcg->css);
2839}
2840
2841void mem_cgroup_commit_charge_swapin(struct page *page,
2842 struct mem_cgroup *memcg)
2843{
2844 __mem_cgroup_commit_charge_swapin(page, memcg,
2845 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2846}
2847
2848void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2849{
2850 if (mem_cgroup_disabled())
2851 return;
2852 if (!memcg)
2853 return;
2854 __mem_cgroup_cancel_charge(memcg, 1);
2855}
2856
2857static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2858 unsigned int nr_pages,
2859 const enum charge_type ctype)
2860{
2861 struct memcg_batch_info *batch = NULL;
2862 bool uncharge_memsw = true;
2863
2864 /* If swapout, usage of swap doesn't decrease */
2865 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2866 uncharge_memsw = false;
2867
2868 batch = ¤t->memcg_batch;
2869 /*
2870 * In usual, we do css_get() when we remember memcg pointer.
2871 * But in this case, we keep res->usage until end of a series of
2872 * uncharges. Then, it's ok to ignore memcg's refcnt.
2873 */
2874 if (!batch->memcg)
2875 batch->memcg = memcg;
2876 /*
2877 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2878 * In those cases, all pages freed continuously can be expected to be in
2879 * the same cgroup and we have chance to coalesce uncharges.
2880 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2881 * because we want to do uncharge as soon as possible.
2882 */
2883
2884 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2885 goto direct_uncharge;
2886
2887 if (nr_pages > 1)
2888 goto direct_uncharge;
2889
2890 /*
2891 * In typical case, batch->memcg == mem. This means we can
2892 * merge a series of uncharges to an uncharge of res_counter.
2893 * If not, we uncharge res_counter ony by one.
2894 */
2895 if (batch->memcg != memcg)
2896 goto direct_uncharge;
2897 /* remember freed charge and uncharge it later */
2898 batch->nr_pages++;
2899 if (uncharge_memsw)
2900 batch->memsw_nr_pages++;
2901 return;
2902direct_uncharge:
2903 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2904 if (uncharge_memsw)
2905 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2906 if (unlikely(batch->memcg != memcg))
2907 memcg_oom_recover(memcg);
2908}
2909
2910/*
2911 * uncharge if !page_mapped(page)
2912 */
2913static struct mem_cgroup *
2914__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2915{
2916 struct mem_cgroup *memcg = NULL;
2917 unsigned int nr_pages = 1;
2918 struct page_cgroup *pc;
2919 bool anon;
2920
2921 if (mem_cgroup_disabled())
2922 return NULL;
2923
2924 if (PageSwapCache(page))
2925 return NULL;
2926
2927 if (PageTransHuge(page)) {
2928 nr_pages <<= compound_order(page);
2929 VM_BUG_ON(!PageTransHuge(page));
2930 }
2931 /*
2932 * Check if our page_cgroup is valid
2933 */
2934 pc = lookup_page_cgroup(page);
2935 if (unlikely(!PageCgroupUsed(pc)))
2936 return NULL;
2937
2938 lock_page_cgroup(pc);
2939
2940 memcg = pc->mem_cgroup;
2941
2942 if (!PageCgroupUsed(pc))
2943 goto unlock_out;
2944
2945 anon = PageAnon(page);
2946
2947 switch (ctype) {
2948 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2949 /*
2950 * Generally PageAnon tells if it's the anon statistics to be
2951 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2952 * used before page reached the stage of being marked PageAnon.
2953 */
2954 anon = true;
2955 /* fallthrough */
2956 case MEM_CGROUP_CHARGE_TYPE_DROP:
2957 /* See mem_cgroup_prepare_migration() */
2958 if (page_mapped(page) || PageCgroupMigration(pc))
2959 goto unlock_out;
2960 break;
2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962 if (!PageAnon(page)) { /* Shared memory */
2963 if (page->mapping && !page_is_file_cache(page))
2964 goto unlock_out;
2965 } else if (page_mapped(page)) /* Anon */
2966 goto unlock_out;
2967 break;
2968 default:
2969 break;
2970 }
2971
2972 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2973
2974 ClearPageCgroupUsed(pc);
2975 /*
2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977 * freed from LRU. This is safe because uncharged page is expected not
2978 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979 * special functions.
2980 */
2981
2982 unlock_page_cgroup(pc);
2983 /*
2984 * even after unlock, we have memcg->res.usage here and this memcg
2985 * will never be freed.
2986 */
2987 memcg_check_events(memcg, page);
2988 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2989 mem_cgroup_swap_statistics(memcg, true);
2990 mem_cgroup_get(memcg);
2991 }
2992 if (!mem_cgroup_is_root(memcg))
2993 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2994
2995 return memcg;
2996
2997unlock_out:
2998 unlock_page_cgroup(pc);
2999 return NULL;
3000}
3001
3002void mem_cgroup_uncharge_page(struct page *page)
3003{
3004 /* early check. */
3005 if (page_mapped(page))
3006 return;
3007 VM_BUG_ON(page->mapping && !PageAnon(page));
3008 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3009}
3010
3011void mem_cgroup_uncharge_cache_page(struct page *page)
3012{
3013 VM_BUG_ON(page_mapped(page));
3014 VM_BUG_ON(page->mapping);
3015 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3016}
3017
3018/*
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3024 */
3025
3026void mem_cgroup_uncharge_start(void)
3027{
3028 current->memcg_batch.do_batch++;
3029 /* We can do nest. */
3030 if (current->memcg_batch.do_batch == 1) {
3031 current->memcg_batch.memcg = NULL;
3032 current->memcg_batch.nr_pages = 0;
3033 current->memcg_batch.memsw_nr_pages = 0;
3034 }
3035}
3036
3037void mem_cgroup_uncharge_end(void)
3038{
3039 struct memcg_batch_info *batch = ¤t->memcg_batch;
3040
3041 if (!batch->do_batch)
3042 return;
3043
3044 batch->do_batch--;
3045 if (batch->do_batch) /* If stacked, do nothing. */
3046 return;
3047
3048 if (!batch->memcg)
3049 return;
3050 /*
3051 * This "batch->memcg" is valid without any css_get/put etc...
3052 * bacause we hide charges behind us.
3053 */
3054 if (batch->nr_pages)
3055 res_counter_uncharge(&batch->memcg->res,
3056 batch->nr_pages * PAGE_SIZE);
3057 if (batch->memsw_nr_pages)
3058 res_counter_uncharge(&batch->memcg->memsw,
3059 batch->memsw_nr_pages * PAGE_SIZE);
3060 memcg_oom_recover(batch->memcg);
3061 /* forget this pointer (for sanity check) */
3062 batch->memcg = NULL;
3063}
3064
3065#ifdef CONFIG_SWAP
3066/*
3067 * called after __delete_from_swap_cache() and drop "page" account.
3068 * memcg information is recorded to swap_cgroup of "ent"
3069 */
3070void
3071mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3072{
3073 struct mem_cgroup *memcg;
3074 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3075
3076 if (!swapout) /* this was a swap cache but the swap is unused ! */
3077 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3078
3079 memcg = __mem_cgroup_uncharge_common(page, ctype);
3080
3081 /*
3082 * record memcg information, if swapout && memcg != NULL,
3083 * mem_cgroup_get() was called in uncharge().
3084 */
3085 if (do_swap_account && swapout && memcg)
3086 swap_cgroup_record(ent, css_id(&memcg->css));
3087}
3088#endif
3089
3090#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3091/*
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3094 */
3095void mem_cgroup_uncharge_swap(swp_entry_t ent)
3096{
3097 struct mem_cgroup *memcg;
3098 unsigned short id;
3099
3100 if (!do_swap_account)
3101 return;
3102
3103 id = swap_cgroup_record(ent, 0);
3104 rcu_read_lock();
3105 memcg = mem_cgroup_lookup(id);
3106 if (memcg) {
3107 /*
3108 * We uncharge this because swap is freed.
3109 * This memcg can be obsolete one. We avoid calling css_tryget
3110 */
3111 if (!mem_cgroup_is_root(memcg))
3112 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3113 mem_cgroup_swap_statistics(memcg, false);
3114 mem_cgroup_put(memcg);
3115 }
3116 rcu_read_unlock();
3117}
3118
3119/**
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from: mem_cgroup which the entry is moved from
3123 * @to: mem_cgroup which the entry is moved to
3124 *
3125 * It succeeds only when the swap_cgroup's record for this entry is the same
3126 * as the mem_cgroup's id of @from.
3127 *
3128 * Returns 0 on success, -EINVAL on failure.
3129 *
3130 * The caller must have charged to @to, IOW, called res_counter_charge() about
3131 * both res and memsw, and called css_get().
3132 */
3133static int mem_cgroup_move_swap_account(swp_entry_t entry,
3134 struct mem_cgroup *from, struct mem_cgroup *to)
3135{
3136 unsigned short old_id, new_id;
3137
3138 old_id = css_id(&from->css);
3139 new_id = css_id(&to->css);
3140
3141 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3142 mem_cgroup_swap_statistics(from, false);
3143 mem_cgroup_swap_statistics(to, true);
3144 /*
3145 * This function is only called from task migration context now.
3146 * It postpones res_counter and refcount handling till the end
3147 * of task migration(mem_cgroup_clear_mc()) for performance
3148 * improvement. But we cannot postpone mem_cgroup_get(to)
3149 * because if the process that has been moved to @to does
3150 * swap-in, the refcount of @to might be decreased to 0.
3151 */
3152 mem_cgroup_get(to);
3153 return 0;
3154 }
3155 return -EINVAL;
3156}
3157#else
3158static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 struct mem_cgroup *from, struct mem_cgroup *to)
3160{
3161 return -EINVAL;
3162}
3163#endif
3164
3165/*
3166 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3167 * page belongs to.
3168 */
3169int mem_cgroup_prepare_migration(struct page *page,
3170 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3171{
3172 struct mem_cgroup *memcg = NULL;
3173 struct page_cgroup *pc;
3174 enum charge_type ctype;
3175 int ret = 0;
3176
3177 *memcgp = NULL;
3178
3179 VM_BUG_ON(PageTransHuge(page));
3180 if (mem_cgroup_disabled())
3181 return 0;
3182
3183 pc = lookup_page_cgroup(page);
3184 lock_page_cgroup(pc);
3185 if (PageCgroupUsed(pc)) {
3186 memcg = pc->mem_cgroup;
3187 css_get(&memcg->css);
3188 /*
3189 * At migrating an anonymous page, its mapcount goes down
3190 * to 0 and uncharge() will be called. But, even if it's fully
3191 * unmapped, migration may fail and this page has to be
3192 * charged again. We set MIGRATION flag here and delay uncharge
3193 * until end_migration() is called
3194 *
3195 * Corner Case Thinking
3196 * A)
3197 * When the old page was mapped as Anon and it's unmap-and-freed
3198 * while migration was ongoing.
3199 * If unmap finds the old page, uncharge() of it will be delayed
3200 * until end_migration(). If unmap finds a new page, it's
3201 * uncharged when it make mapcount to be 1->0. If unmap code
3202 * finds swap_migration_entry, the new page will not be mapped
3203 * and end_migration() will find it(mapcount==0).
3204 *
3205 * B)
3206 * When the old page was mapped but migraion fails, the kernel
3207 * remaps it. A charge for it is kept by MIGRATION flag even
3208 * if mapcount goes down to 0. We can do remap successfully
3209 * without charging it again.
3210 *
3211 * C)
3212 * The "old" page is under lock_page() until the end of
3213 * migration, so, the old page itself will not be swapped-out.
3214 * If the new page is swapped out before end_migraton, our
3215 * hook to usual swap-out path will catch the event.
3216 */
3217 if (PageAnon(page))
3218 SetPageCgroupMigration(pc);
3219 }
3220 unlock_page_cgroup(pc);
3221 /*
3222 * If the page is not charged at this point,
3223 * we return here.
3224 */
3225 if (!memcg)
3226 return 0;
3227
3228 *memcgp = memcg;
3229 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3230 css_put(&memcg->css);/* drop extra refcnt */
3231 if (ret) {
3232 if (PageAnon(page)) {
3233 lock_page_cgroup(pc);
3234 ClearPageCgroupMigration(pc);
3235 unlock_page_cgroup(pc);
3236 /*
3237 * The old page may be fully unmapped while we kept it.
3238 */
3239 mem_cgroup_uncharge_page(page);
3240 }
3241 /* we'll need to revisit this error code (we have -EINTR) */
3242 return -ENOMEM;
3243 }
3244 /*
3245 * We charge new page before it's used/mapped. So, even if unlock_page()
3246 * is called before end_migration, we can catch all events on this new
3247 * page. In the case new page is migrated but not remapped, new page's
3248 * mapcount will be finally 0 and we call uncharge in end_migration().
3249 */
3250 if (PageAnon(page))
3251 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3252 else if (page_is_file_cache(page))
3253 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3254 else
3255 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3256 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3257 return ret;
3258}
3259
3260/* remove redundant charge if migration failed*/
3261void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3262 struct page *oldpage, struct page *newpage, bool migration_ok)
3263{
3264 struct page *used, *unused;
3265 struct page_cgroup *pc;
3266 bool anon;
3267
3268 if (!memcg)
3269 return;
3270 /* blocks rmdir() */
3271 cgroup_exclude_rmdir(&memcg->css);
3272 if (!migration_ok) {
3273 used = oldpage;
3274 unused = newpage;
3275 } else {
3276 used = newpage;
3277 unused = oldpage;
3278 }
3279 /*
3280 * We disallowed uncharge of pages under migration because mapcount
3281 * of the page goes down to zero, temporarly.
3282 * Clear the flag and check the page should be charged.
3283 */
3284 pc = lookup_page_cgroup(oldpage);
3285 lock_page_cgroup(pc);
3286 ClearPageCgroupMigration(pc);
3287 unlock_page_cgroup(pc);
3288 anon = PageAnon(used);
3289 __mem_cgroup_uncharge_common(unused,
3290 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3291 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3292
3293 /*
3294 * If a page is a file cache, radix-tree replacement is very atomic
3295 * and we can skip this check. When it was an Anon page, its mapcount
3296 * goes down to 0. But because we added MIGRATION flage, it's not
3297 * uncharged yet. There are several case but page->mapcount check
3298 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3299 * check. (see prepare_charge() also)
3300 */
3301 if (anon)
3302 mem_cgroup_uncharge_page(used);
3303 /*
3304 * At migration, we may charge account against cgroup which has no
3305 * tasks.
3306 * So, rmdir()->pre_destroy() can be called while we do this charge.
3307 * In that case, we need to call pre_destroy() again. check it here.
3308 */
3309 cgroup_release_and_wakeup_rmdir(&memcg->css);
3310}
3311
3312/*
3313 * At replace page cache, newpage is not under any memcg but it's on
3314 * LRU. So, this function doesn't touch res_counter but handles LRU
3315 * in correct way. Both pages are locked so we cannot race with uncharge.
3316 */
3317void mem_cgroup_replace_page_cache(struct page *oldpage,
3318 struct page *newpage)
3319{
3320 struct mem_cgroup *memcg = NULL;
3321 struct page_cgroup *pc;
3322 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323
3324 if (mem_cgroup_disabled())
3325 return;
3326
3327 pc = lookup_page_cgroup(oldpage);
3328 /* fix accounting on old pages */
3329 lock_page_cgroup(pc);
3330 if (PageCgroupUsed(pc)) {
3331 memcg = pc->mem_cgroup;
3332 mem_cgroup_charge_statistics(memcg, false, -1);
3333 ClearPageCgroupUsed(pc);
3334 }
3335 unlock_page_cgroup(pc);
3336
3337 /*
3338 * When called from shmem_replace_page(), in some cases the
3339 * oldpage has already been charged, and in some cases not.
3340 */
3341 if (!memcg)
3342 return;
3343
3344 if (PageSwapBacked(oldpage))
3345 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3346
3347 /*
3348 * Even if newpage->mapping was NULL before starting replacement,
3349 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3350 * LRU while we overwrite pc->mem_cgroup.
3351 */
3352 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3353}
3354
3355#ifdef CONFIG_DEBUG_VM
3356static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3357{
3358 struct page_cgroup *pc;
3359
3360 pc = lookup_page_cgroup(page);
3361 /*
3362 * Can be NULL while feeding pages into the page allocator for
3363 * the first time, i.e. during boot or memory hotplug;
3364 * or when mem_cgroup_disabled().
3365 */
3366 if (likely(pc) && PageCgroupUsed(pc))
3367 return pc;
3368 return NULL;
3369}
3370
3371bool mem_cgroup_bad_page_check(struct page *page)
3372{
3373 if (mem_cgroup_disabled())
3374 return false;
3375
3376 return lookup_page_cgroup_used(page) != NULL;
3377}
3378
3379void mem_cgroup_print_bad_page(struct page *page)
3380{
3381 struct page_cgroup *pc;
3382
3383 pc = lookup_page_cgroup_used(page);
3384 if (pc) {
3385 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3386 pc, pc->flags, pc->mem_cgroup);
3387 }
3388}
3389#endif
3390
3391static DEFINE_MUTEX(set_limit_mutex);
3392
3393static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3394 unsigned long long val)
3395{
3396 int retry_count;
3397 u64 memswlimit, memlimit;
3398 int ret = 0;
3399 int children = mem_cgroup_count_children(memcg);
3400 u64 curusage, oldusage;
3401 int enlarge;
3402
3403 /*
3404 * For keeping hierarchical_reclaim simple, how long we should retry
3405 * is depends on callers. We set our retry-count to be function
3406 * of # of children which we should visit in this loop.
3407 */
3408 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3409
3410 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3411
3412 enlarge = 0;
3413 while (retry_count) {
3414 if (signal_pending(current)) {
3415 ret = -EINTR;
3416 break;
3417 }
3418 /*
3419 * Rather than hide all in some function, I do this in
3420 * open coded manner. You see what this really does.
3421 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3422 */
3423 mutex_lock(&set_limit_mutex);
3424 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3425 if (memswlimit < val) {
3426 ret = -EINVAL;
3427 mutex_unlock(&set_limit_mutex);
3428 break;
3429 }
3430
3431 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3432 if (memlimit < val)
3433 enlarge = 1;
3434
3435 ret = res_counter_set_limit(&memcg->res, val);
3436 if (!ret) {
3437 if (memswlimit == val)
3438 memcg->memsw_is_minimum = true;
3439 else
3440 memcg->memsw_is_minimum = false;
3441 }
3442 mutex_unlock(&set_limit_mutex);
3443
3444 if (!ret)
3445 break;
3446
3447 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3448 MEM_CGROUP_RECLAIM_SHRINK);
3449 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3450 /* Usage is reduced ? */
3451 if (curusage >= oldusage)
3452 retry_count--;
3453 else
3454 oldusage = curusage;
3455 }
3456 if (!ret && enlarge)
3457 memcg_oom_recover(memcg);
3458
3459 return ret;
3460}
3461
3462static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3463 unsigned long long val)
3464{
3465 int retry_count;
3466 u64 memlimit, memswlimit, oldusage, curusage;
3467 int children = mem_cgroup_count_children(memcg);
3468 int ret = -EBUSY;
3469 int enlarge = 0;
3470
3471 /* see mem_cgroup_resize_res_limit */
3472 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3473 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3474 while (retry_count) {
3475 if (signal_pending(current)) {
3476 ret = -EINTR;
3477 break;
3478 }
3479 /*
3480 * Rather than hide all in some function, I do this in
3481 * open coded manner. You see what this really does.
3482 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3483 */
3484 mutex_lock(&set_limit_mutex);
3485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486 if (memlimit > val) {
3487 ret = -EINVAL;
3488 mutex_unlock(&set_limit_mutex);
3489 break;
3490 }
3491 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3492 if (memswlimit < val)
3493 enlarge = 1;
3494 ret = res_counter_set_limit(&memcg->memsw, val);
3495 if (!ret) {
3496 if (memlimit == val)
3497 memcg->memsw_is_minimum = true;
3498 else
3499 memcg->memsw_is_minimum = false;
3500 }
3501 mutex_unlock(&set_limit_mutex);
3502
3503 if (!ret)
3504 break;
3505
3506 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3507 MEM_CGROUP_RECLAIM_NOSWAP |
3508 MEM_CGROUP_RECLAIM_SHRINK);
3509 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3510 /* Usage is reduced ? */
3511 if (curusage >= oldusage)
3512 retry_count--;
3513 else
3514 oldusage = curusage;
3515 }
3516 if (!ret && enlarge)
3517 memcg_oom_recover(memcg);
3518 return ret;
3519}
3520
3521unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3522 gfp_t gfp_mask,
3523 unsigned long *total_scanned)
3524{
3525 unsigned long nr_reclaimed = 0;
3526 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3527 unsigned long reclaimed;
3528 int loop = 0;
3529 struct mem_cgroup_tree_per_zone *mctz;
3530 unsigned long long excess;
3531 unsigned long nr_scanned;
3532
3533 if (order > 0)
3534 return 0;
3535
3536 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3537 /*
3538 * This loop can run a while, specially if mem_cgroup's continuously
3539 * keep exceeding their soft limit and putting the system under
3540 * pressure
3541 */
3542 do {
3543 if (next_mz)
3544 mz = next_mz;
3545 else
3546 mz = mem_cgroup_largest_soft_limit_node(mctz);
3547 if (!mz)
3548 break;
3549
3550 nr_scanned = 0;
3551 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3552 gfp_mask, &nr_scanned);
3553 nr_reclaimed += reclaimed;
3554 *total_scanned += nr_scanned;
3555 spin_lock(&mctz->lock);
3556
3557 /*
3558 * If we failed to reclaim anything from this memory cgroup
3559 * it is time to move on to the next cgroup
3560 */
3561 next_mz = NULL;
3562 if (!reclaimed) {
3563 do {
3564 /*
3565 * Loop until we find yet another one.
3566 *
3567 * By the time we get the soft_limit lock
3568 * again, someone might have aded the
3569 * group back on the RB tree. Iterate to
3570 * make sure we get a different mem.
3571 * mem_cgroup_largest_soft_limit_node returns
3572 * NULL if no other cgroup is present on
3573 * the tree
3574 */
3575 next_mz =
3576 __mem_cgroup_largest_soft_limit_node(mctz);
3577 if (next_mz == mz)
3578 css_put(&next_mz->memcg->css);
3579 else /* next_mz == NULL or other memcg */
3580 break;
3581 } while (1);
3582 }
3583 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3584 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3585 /*
3586 * One school of thought says that we should not add
3587 * back the node to the tree if reclaim returns 0.
3588 * But our reclaim could return 0, simply because due
3589 * to priority we are exposing a smaller subset of
3590 * memory to reclaim from. Consider this as a longer
3591 * term TODO.
3592 */
3593 /* If excess == 0, no tree ops */
3594 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3595 spin_unlock(&mctz->lock);
3596 css_put(&mz->memcg->css);
3597 loop++;
3598 /*
3599 * Could not reclaim anything and there are no more
3600 * mem cgroups to try or we seem to be looping without
3601 * reclaiming anything.
3602 */
3603 if (!nr_reclaimed &&
3604 (next_mz == NULL ||
3605 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3606 break;
3607 } while (!nr_reclaimed);
3608 if (next_mz)
3609 css_put(&next_mz->memcg->css);
3610 return nr_reclaimed;
3611}
3612
3613/*
3614 * This routine traverse page_cgroup in given list and drop them all.
3615 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3616 */
3617static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3618 int node, int zid, enum lru_list lru)
3619{
3620 struct mem_cgroup_per_zone *mz;
3621 unsigned long flags, loop;
3622 struct list_head *list;
3623 struct page *busy;
3624 struct zone *zone;
3625 int ret = 0;
3626
3627 zone = &NODE_DATA(node)->node_zones[zid];
3628 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3629 list = &mz->lruvec.lists[lru];
3630
3631 loop = mz->lru_size[lru];
3632 /* give some margin against EBUSY etc...*/
3633 loop += 256;
3634 busy = NULL;
3635 while (loop--) {
3636 struct page_cgroup *pc;
3637 struct page *page;
3638
3639 ret = 0;
3640 spin_lock_irqsave(&zone->lru_lock, flags);
3641 if (list_empty(list)) {
3642 spin_unlock_irqrestore(&zone->lru_lock, flags);
3643 break;
3644 }
3645 page = list_entry(list->prev, struct page, lru);
3646 if (busy == page) {
3647 list_move(&page->lru, list);
3648 busy = NULL;
3649 spin_unlock_irqrestore(&zone->lru_lock, flags);
3650 continue;
3651 }
3652 spin_unlock_irqrestore(&zone->lru_lock, flags);
3653
3654 pc = lookup_page_cgroup(page);
3655
3656 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3657 if (ret == -ENOMEM || ret == -EINTR)
3658 break;
3659
3660 if (ret == -EBUSY || ret == -EINVAL) {
3661 /* found lock contention or "pc" is obsolete. */
3662 busy = page;
3663 cond_resched();
3664 } else
3665 busy = NULL;
3666 }
3667
3668 if (!ret && !list_empty(list))
3669 return -EBUSY;
3670 return ret;
3671}
3672
3673/*
3674 * make mem_cgroup's charge to be 0 if there is no task.
3675 * This enables deleting this mem_cgroup.
3676 */
3677static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3678{
3679 int ret;
3680 int node, zid, shrink;
3681 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3682 struct cgroup *cgrp = memcg->css.cgroup;
3683
3684 css_get(&memcg->css);
3685
3686 shrink = 0;
3687 /* should free all ? */
3688 if (free_all)
3689 goto try_to_free;
3690move_account:
3691 do {
3692 ret = -EBUSY;
3693 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3694 goto out;
3695 ret = -EINTR;
3696 if (signal_pending(current))
3697 goto out;
3698 /* This is for making all *used* pages to be on LRU. */
3699 lru_add_drain_all();
3700 drain_all_stock_sync(memcg);
3701 ret = 0;
3702 mem_cgroup_start_move(memcg);
3703 for_each_node_state(node, N_HIGH_MEMORY) {
3704 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3705 enum lru_list lru;
3706 for_each_lru(lru) {
3707 ret = mem_cgroup_force_empty_list(memcg,
3708 node, zid, lru);
3709 if (ret)
3710 break;
3711 }
3712 }
3713 if (ret)
3714 break;
3715 }
3716 mem_cgroup_end_move(memcg);
3717 memcg_oom_recover(memcg);
3718 /* it seems parent cgroup doesn't have enough mem */
3719 if (ret == -ENOMEM)
3720 goto try_to_free;
3721 cond_resched();
3722 /* "ret" should also be checked to ensure all lists are empty. */
3723 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3724out:
3725 css_put(&memcg->css);
3726 return ret;
3727
3728try_to_free:
3729 /* returns EBUSY if there is a task or if we come here twice. */
3730 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3731 ret = -EBUSY;
3732 goto out;
3733 }
3734 /* we call try-to-free pages for make this cgroup empty */
3735 lru_add_drain_all();
3736 /* try to free all pages in this cgroup */
3737 shrink = 1;
3738 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3739 int progress;
3740
3741 if (signal_pending(current)) {
3742 ret = -EINTR;
3743 goto out;
3744 }
3745 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3746 false);
3747 if (!progress) {
3748 nr_retries--;
3749 /* maybe some writeback is necessary */
3750 congestion_wait(BLK_RW_ASYNC, HZ/10);
3751 }
3752
3753 }
3754 lru_add_drain();
3755 /* try move_account...there may be some *locked* pages. */
3756 goto move_account;
3757}
3758
3759static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3760{
3761 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3762}
3763
3764
3765static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3766{
3767 return mem_cgroup_from_cont(cont)->use_hierarchy;
3768}
3769
3770static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3771 u64 val)
3772{
3773 int retval = 0;
3774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3775 struct cgroup *parent = cont->parent;
3776 struct mem_cgroup *parent_memcg = NULL;
3777
3778 if (parent)
3779 parent_memcg = mem_cgroup_from_cont(parent);
3780
3781 cgroup_lock();
3782 /*
3783 * If parent's use_hierarchy is set, we can't make any modifications
3784 * in the child subtrees. If it is unset, then the change can
3785 * occur, provided the current cgroup has no children.
3786 *
3787 * For the root cgroup, parent_mem is NULL, we allow value to be
3788 * set if there are no children.
3789 */
3790 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3791 (val == 1 || val == 0)) {
3792 if (list_empty(&cont->children))
3793 memcg->use_hierarchy = val;
3794 else
3795 retval = -EBUSY;
3796 } else
3797 retval = -EINVAL;
3798 cgroup_unlock();
3799
3800 return retval;
3801}
3802
3803
3804static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3805 enum mem_cgroup_stat_index idx)
3806{
3807 struct mem_cgroup *iter;
3808 long val = 0;
3809
3810 /* Per-cpu values can be negative, use a signed accumulator */
3811 for_each_mem_cgroup_tree(iter, memcg)
3812 val += mem_cgroup_read_stat(iter, idx);
3813
3814 if (val < 0) /* race ? */
3815 val = 0;
3816 return val;
3817}
3818
3819static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3820{
3821 u64 val;
3822
3823 if (!mem_cgroup_is_root(memcg)) {
3824 if (!swap)
3825 return res_counter_read_u64(&memcg->res, RES_USAGE);
3826 else
3827 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3828 }
3829
3830 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3831 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3832
3833 if (swap)
3834 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3835
3836 return val << PAGE_SHIFT;
3837}
3838
3839static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3840 struct file *file, char __user *buf,
3841 size_t nbytes, loff_t *ppos)
3842{
3843 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844 char str[64];
3845 u64 val;
3846 int type, name, len;
3847
3848 type = MEMFILE_TYPE(cft->private);
3849 name = MEMFILE_ATTR(cft->private);
3850
3851 if (!do_swap_account && type == _MEMSWAP)
3852 return -EOPNOTSUPP;
3853
3854 switch (type) {
3855 case _MEM:
3856 if (name == RES_USAGE)
3857 val = mem_cgroup_usage(memcg, false);
3858 else
3859 val = res_counter_read_u64(&memcg->res, name);
3860 break;
3861 case _MEMSWAP:
3862 if (name == RES_USAGE)
3863 val = mem_cgroup_usage(memcg, true);
3864 else
3865 val = res_counter_read_u64(&memcg->memsw, name);
3866 break;
3867 default:
3868 BUG();
3869 }
3870
3871 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3872 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3873}
3874/*
3875 * The user of this function is...
3876 * RES_LIMIT.
3877 */
3878static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3879 const char *buffer)
3880{
3881 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882 int type, name;
3883 unsigned long long val;
3884 int ret;
3885
3886 type = MEMFILE_TYPE(cft->private);
3887 name = MEMFILE_ATTR(cft->private);
3888
3889 if (!do_swap_account && type == _MEMSWAP)
3890 return -EOPNOTSUPP;
3891
3892 switch (name) {
3893 case RES_LIMIT:
3894 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3895 ret = -EINVAL;
3896 break;
3897 }
3898 /* This function does all necessary parse...reuse it */
3899 ret = res_counter_memparse_write_strategy(buffer, &val);
3900 if (ret)
3901 break;
3902 if (type == _MEM)
3903 ret = mem_cgroup_resize_limit(memcg, val);
3904 else
3905 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3906 break;
3907 case RES_SOFT_LIMIT:
3908 ret = res_counter_memparse_write_strategy(buffer, &val);
3909 if (ret)
3910 break;
3911 /*
3912 * For memsw, soft limits are hard to implement in terms
3913 * of semantics, for now, we support soft limits for
3914 * control without swap
3915 */
3916 if (type == _MEM)
3917 ret = res_counter_set_soft_limit(&memcg->res, val);
3918 else
3919 ret = -EINVAL;
3920 break;
3921 default:
3922 ret = -EINVAL; /* should be BUG() ? */
3923 break;
3924 }
3925 return ret;
3926}
3927
3928static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3929 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3930{
3931 struct cgroup *cgroup;
3932 unsigned long long min_limit, min_memsw_limit, tmp;
3933
3934 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3936 cgroup = memcg->css.cgroup;
3937 if (!memcg->use_hierarchy)
3938 goto out;
3939
3940 while (cgroup->parent) {
3941 cgroup = cgroup->parent;
3942 memcg = mem_cgroup_from_cont(cgroup);
3943 if (!memcg->use_hierarchy)
3944 break;
3945 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3946 min_limit = min(min_limit, tmp);
3947 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3948 min_memsw_limit = min(min_memsw_limit, tmp);
3949 }
3950out:
3951 *mem_limit = min_limit;
3952 *memsw_limit = min_memsw_limit;
3953}
3954
3955static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3956{
3957 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958 int type, name;
3959
3960 type = MEMFILE_TYPE(event);
3961 name = MEMFILE_ATTR(event);
3962
3963 if (!do_swap_account && type == _MEMSWAP)
3964 return -EOPNOTSUPP;
3965
3966 switch (name) {
3967 case RES_MAX_USAGE:
3968 if (type == _MEM)
3969 res_counter_reset_max(&memcg->res);
3970 else
3971 res_counter_reset_max(&memcg->memsw);
3972 break;
3973 case RES_FAILCNT:
3974 if (type == _MEM)
3975 res_counter_reset_failcnt(&memcg->res);
3976 else
3977 res_counter_reset_failcnt(&memcg->memsw);
3978 break;
3979 }
3980
3981 return 0;
3982}
3983
3984static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3985 struct cftype *cft)
3986{
3987 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3988}
3989
3990#ifdef CONFIG_MMU
3991static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3992 struct cftype *cft, u64 val)
3993{
3994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3995
3996 if (val >= (1 << NR_MOVE_TYPE))
3997 return -EINVAL;
3998 /*
3999 * We check this value several times in both in can_attach() and
4000 * attach(), so we need cgroup lock to prevent this value from being
4001 * inconsistent.
4002 */
4003 cgroup_lock();
4004 memcg->move_charge_at_immigrate = val;
4005 cgroup_unlock();
4006
4007 return 0;
4008}
4009#else
4010static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4011 struct cftype *cft, u64 val)
4012{
4013 return -ENOSYS;
4014}
4015#endif
4016
4017#ifdef CONFIG_NUMA
4018static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4019 struct seq_file *m)
4020{
4021 int nid;
4022 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4023 unsigned long node_nr;
4024 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4025
4026 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4027 seq_printf(m, "total=%lu", total_nr);
4028 for_each_node_state(nid, N_HIGH_MEMORY) {
4029 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4030 seq_printf(m, " N%d=%lu", nid, node_nr);
4031 }
4032 seq_putc(m, '\n');
4033
4034 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4035 seq_printf(m, "file=%lu", file_nr);
4036 for_each_node_state(nid, N_HIGH_MEMORY) {
4037 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4038 LRU_ALL_FILE);
4039 seq_printf(m, " N%d=%lu", nid, node_nr);
4040 }
4041 seq_putc(m, '\n');
4042
4043 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4044 seq_printf(m, "anon=%lu", anon_nr);
4045 for_each_node_state(nid, N_HIGH_MEMORY) {
4046 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4047 LRU_ALL_ANON);
4048 seq_printf(m, " N%d=%lu", nid, node_nr);
4049 }
4050 seq_putc(m, '\n');
4051
4052 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4053 seq_printf(m, "unevictable=%lu", unevictable_nr);
4054 for_each_node_state(nid, N_HIGH_MEMORY) {
4055 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4056 BIT(LRU_UNEVICTABLE));
4057 seq_printf(m, " N%d=%lu", nid, node_nr);
4058 }
4059 seq_putc(m, '\n');
4060 return 0;
4061}
4062#endif /* CONFIG_NUMA */
4063
4064static const char * const mem_cgroup_lru_names[] = {
4065 "inactive_anon",
4066 "active_anon",
4067 "inactive_file",
4068 "active_file",
4069 "unevictable",
4070};
4071
4072static inline void mem_cgroup_lru_names_not_uptodate(void)
4073{
4074 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4075}
4076
4077static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4078 struct seq_file *m)
4079{
4080 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4081 struct mem_cgroup *mi;
4082 unsigned int i;
4083
4084 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4085 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4086 continue;
4087 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4088 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4089 }
4090
4091 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4092 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4093 mem_cgroup_read_events(memcg, i));
4094
4095 for (i = 0; i < NR_LRU_LISTS; i++)
4096 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4097 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4098
4099 /* Hierarchical information */
4100 {
4101 unsigned long long limit, memsw_limit;
4102 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4103 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4104 if (do_swap_account)
4105 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4106 memsw_limit);
4107 }
4108
4109 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4110 long long val = 0;
4111
4112 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4113 continue;
4114 for_each_mem_cgroup_tree(mi, memcg)
4115 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4116 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4117 }
4118
4119 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4120 unsigned long long val = 0;
4121
4122 for_each_mem_cgroup_tree(mi, memcg)
4123 val += mem_cgroup_read_events(mi, i);
4124 seq_printf(m, "total_%s %llu\n",
4125 mem_cgroup_events_names[i], val);
4126 }
4127
4128 for (i = 0; i < NR_LRU_LISTS; i++) {
4129 unsigned long long val = 0;
4130
4131 for_each_mem_cgroup_tree(mi, memcg)
4132 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4133 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4134 }
4135
4136#ifdef CONFIG_DEBUG_VM
4137 {
4138 int nid, zid;
4139 struct mem_cgroup_per_zone *mz;
4140 struct zone_reclaim_stat *rstat;
4141 unsigned long recent_rotated[2] = {0, 0};
4142 unsigned long recent_scanned[2] = {0, 0};
4143
4144 for_each_online_node(nid)
4145 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4146 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4147 rstat = &mz->lruvec.reclaim_stat;
4148
4149 recent_rotated[0] += rstat->recent_rotated[0];
4150 recent_rotated[1] += rstat->recent_rotated[1];
4151 recent_scanned[0] += rstat->recent_scanned[0];
4152 recent_scanned[1] += rstat->recent_scanned[1];
4153 }
4154 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4155 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4156 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4157 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4158 }
4159#endif
4160
4161 return 0;
4162}
4163
4164static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4165{
4166 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4167
4168 return mem_cgroup_swappiness(memcg);
4169}
4170
4171static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4172 u64 val)
4173{
4174 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4175 struct mem_cgroup *parent;
4176
4177 if (val > 100)
4178 return -EINVAL;
4179
4180 if (cgrp->parent == NULL)
4181 return -EINVAL;
4182
4183 parent = mem_cgroup_from_cont(cgrp->parent);
4184
4185 cgroup_lock();
4186
4187 /* If under hierarchy, only empty-root can set this value */
4188 if ((parent->use_hierarchy) ||
4189 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4190 cgroup_unlock();
4191 return -EINVAL;
4192 }
4193
4194 memcg->swappiness = val;
4195
4196 cgroup_unlock();
4197
4198 return 0;
4199}
4200
4201static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4202{
4203 struct mem_cgroup_threshold_ary *t;
4204 u64 usage;
4205 int i;
4206
4207 rcu_read_lock();
4208 if (!swap)
4209 t = rcu_dereference(memcg->thresholds.primary);
4210 else
4211 t = rcu_dereference(memcg->memsw_thresholds.primary);
4212
4213 if (!t)
4214 goto unlock;
4215
4216 usage = mem_cgroup_usage(memcg, swap);
4217
4218 /*
4219 * current_threshold points to threshold just below or equal to usage.
4220 * If it's not true, a threshold was crossed after last
4221 * call of __mem_cgroup_threshold().
4222 */
4223 i = t->current_threshold;
4224
4225 /*
4226 * Iterate backward over array of thresholds starting from
4227 * current_threshold and check if a threshold is crossed.
4228 * If none of thresholds below usage is crossed, we read
4229 * only one element of the array here.
4230 */
4231 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4232 eventfd_signal(t->entries[i].eventfd, 1);
4233
4234 /* i = current_threshold + 1 */
4235 i++;
4236
4237 /*
4238 * Iterate forward over array of thresholds starting from
4239 * current_threshold+1 and check if a threshold is crossed.
4240 * If none of thresholds above usage is crossed, we read
4241 * only one element of the array here.
4242 */
4243 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4244 eventfd_signal(t->entries[i].eventfd, 1);
4245
4246 /* Update current_threshold */
4247 t->current_threshold = i - 1;
4248unlock:
4249 rcu_read_unlock();
4250}
4251
4252static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4253{
4254 while (memcg) {
4255 __mem_cgroup_threshold(memcg, false);
4256 if (do_swap_account)
4257 __mem_cgroup_threshold(memcg, true);
4258
4259 memcg = parent_mem_cgroup(memcg);
4260 }
4261}
4262
4263static int compare_thresholds(const void *a, const void *b)
4264{
4265 const struct mem_cgroup_threshold *_a = a;
4266 const struct mem_cgroup_threshold *_b = b;
4267
4268 return _a->threshold - _b->threshold;
4269}
4270
4271static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4272{
4273 struct mem_cgroup_eventfd_list *ev;
4274
4275 list_for_each_entry(ev, &memcg->oom_notify, list)
4276 eventfd_signal(ev->eventfd, 1);
4277 return 0;
4278}
4279
4280static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4281{
4282 struct mem_cgroup *iter;
4283
4284 for_each_mem_cgroup_tree(iter, memcg)
4285 mem_cgroup_oom_notify_cb(iter);
4286}
4287
4288static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4289 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4290{
4291 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4292 struct mem_cgroup_thresholds *thresholds;
4293 struct mem_cgroup_threshold_ary *new;
4294 int type = MEMFILE_TYPE(cft->private);
4295 u64 threshold, usage;
4296 int i, size, ret;
4297
4298 ret = res_counter_memparse_write_strategy(args, &threshold);
4299 if (ret)
4300 return ret;
4301
4302 mutex_lock(&memcg->thresholds_lock);
4303
4304 if (type == _MEM)
4305 thresholds = &memcg->thresholds;
4306 else if (type == _MEMSWAP)
4307 thresholds = &memcg->memsw_thresholds;
4308 else
4309 BUG();
4310
4311 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4312
4313 /* Check if a threshold crossed before adding a new one */
4314 if (thresholds->primary)
4315 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4316
4317 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4318
4319 /* Allocate memory for new array of thresholds */
4320 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4321 GFP_KERNEL);
4322 if (!new) {
4323 ret = -ENOMEM;
4324 goto unlock;
4325 }
4326 new->size = size;
4327
4328 /* Copy thresholds (if any) to new array */
4329 if (thresholds->primary) {
4330 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4331 sizeof(struct mem_cgroup_threshold));
4332 }
4333
4334 /* Add new threshold */
4335 new->entries[size - 1].eventfd = eventfd;
4336 new->entries[size - 1].threshold = threshold;
4337
4338 /* Sort thresholds. Registering of new threshold isn't time-critical */
4339 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4340 compare_thresholds, NULL);
4341
4342 /* Find current threshold */
4343 new->current_threshold = -1;
4344 for (i = 0; i < size; i++) {
4345 if (new->entries[i].threshold <= usage) {
4346 /*
4347 * new->current_threshold will not be used until
4348 * rcu_assign_pointer(), so it's safe to increment
4349 * it here.
4350 */
4351 ++new->current_threshold;
4352 } else
4353 break;
4354 }
4355
4356 /* Free old spare buffer and save old primary buffer as spare */
4357 kfree(thresholds->spare);
4358 thresholds->spare = thresholds->primary;
4359
4360 rcu_assign_pointer(thresholds->primary, new);
4361
4362 /* To be sure that nobody uses thresholds */
4363 synchronize_rcu();
4364
4365unlock:
4366 mutex_unlock(&memcg->thresholds_lock);
4367
4368 return ret;
4369}
4370
4371static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4372 struct cftype *cft, struct eventfd_ctx *eventfd)
4373{
4374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375 struct mem_cgroup_thresholds *thresholds;
4376 struct mem_cgroup_threshold_ary *new;
4377 int type = MEMFILE_TYPE(cft->private);
4378 u64 usage;
4379 int i, j, size;
4380
4381 mutex_lock(&memcg->thresholds_lock);
4382 if (type == _MEM)
4383 thresholds = &memcg->thresholds;
4384 else if (type == _MEMSWAP)
4385 thresholds = &memcg->memsw_thresholds;
4386 else
4387 BUG();
4388
4389 if (!thresholds->primary)
4390 goto unlock;
4391
4392 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4393
4394 /* Check if a threshold crossed before removing */
4395 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4396
4397 /* Calculate new number of threshold */
4398 size = 0;
4399 for (i = 0; i < thresholds->primary->size; i++) {
4400 if (thresholds->primary->entries[i].eventfd != eventfd)
4401 size++;
4402 }
4403
4404 new = thresholds->spare;
4405
4406 /* Set thresholds array to NULL if we don't have thresholds */
4407 if (!size) {
4408 kfree(new);
4409 new = NULL;
4410 goto swap_buffers;
4411 }
4412
4413 new->size = size;
4414
4415 /* Copy thresholds and find current threshold */
4416 new->current_threshold = -1;
4417 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418 if (thresholds->primary->entries[i].eventfd == eventfd)
4419 continue;
4420
4421 new->entries[j] = thresholds->primary->entries[i];
4422 if (new->entries[j].threshold <= usage) {
4423 /*
4424 * new->current_threshold will not be used
4425 * until rcu_assign_pointer(), so it's safe to increment
4426 * it here.
4427 */
4428 ++new->current_threshold;
4429 }
4430 j++;
4431 }
4432
4433swap_buffers:
4434 /* Swap primary and spare array */
4435 thresholds->spare = thresholds->primary;
4436 /* If all events are unregistered, free the spare array */
4437 if (!new) {
4438 kfree(thresholds->spare);
4439 thresholds->spare = NULL;
4440 }
4441
4442 rcu_assign_pointer(thresholds->primary, new);
4443
4444 /* To be sure that nobody uses thresholds */
4445 synchronize_rcu();
4446unlock:
4447 mutex_unlock(&memcg->thresholds_lock);
4448}
4449
4450static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4451 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4452{
4453 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4454 struct mem_cgroup_eventfd_list *event;
4455 int type = MEMFILE_TYPE(cft->private);
4456
4457 BUG_ON(type != _OOM_TYPE);
4458 event = kmalloc(sizeof(*event), GFP_KERNEL);
4459 if (!event)
4460 return -ENOMEM;
4461
4462 spin_lock(&memcg_oom_lock);
4463
4464 event->eventfd = eventfd;
4465 list_add(&event->list, &memcg->oom_notify);
4466
4467 /* already in OOM ? */
4468 if (atomic_read(&memcg->under_oom))
4469 eventfd_signal(eventfd, 1);
4470 spin_unlock(&memcg_oom_lock);
4471
4472 return 0;
4473}
4474
4475static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4476 struct cftype *cft, struct eventfd_ctx *eventfd)
4477{
4478 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4479 struct mem_cgroup_eventfd_list *ev, *tmp;
4480 int type = MEMFILE_TYPE(cft->private);
4481
4482 BUG_ON(type != _OOM_TYPE);
4483
4484 spin_lock(&memcg_oom_lock);
4485
4486 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4487 if (ev->eventfd == eventfd) {
4488 list_del(&ev->list);
4489 kfree(ev);
4490 }
4491 }
4492
4493 spin_unlock(&memcg_oom_lock);
4494}
4495
4496static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4497 struct cftype *cft, struct cgroup_map_cb *cb)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4500
4501 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4502
4503 if (atomic_read(&memcg->under_oom))
4504 cb->fill(cb, "under_oom", 1);
4505 else
4506 cb->fill(cb, "under_oom", 0);
4507 return 0;
4508}
4509
4510static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4511 struct cftype *cft, u64 val)
4512{
4513 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4514 struct mem_cgroup *parent;
4515
4516 /* cannot set to root cgroup and only 0 and 1 are allowed */
4517 if (!cgrp->parent || !((val == 0) || (val == 1)))
4518 return -EINVAL;
4519
4520 parent = mem_cgroup_from_cont(cgrp->parent);
4521
4522 cgroup_lock();
4523 /* oom-kill-disable is a flag for subhierarchy. */
4524 if ((parent->use_hierarchy) ||
4525 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4526 cgroup_unlock();
4527 return -EINVAL;
4528 }
4529 memcg->oom_kill_disable = val;
4530 if (!val)
4531 memcg_oom_recover(memcg);
4532 cgroup_unlock();
4533 return 0;
4534}
4535
4536#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4537static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4538{
4539 return mem_cgroup_sockets_init(memcg, ss);
4540};
4541
4542static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4543{
4544 mem_cgroup_sockets_destroy(memcg);
4545}
4546#else
4547static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4548{
4549 return 0;
4550}
4551
4552static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4553{
4554}
4555#endif
4556
4557static struct cftype mem_cgroup_files[] = {
4558 {
4559 .name = "usage_in_bytes",
4560 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4561 .read = mem_cgroup_read,
4562 .register_event = mem_cgroup_usage_register_event,
4563 .unregister_event = mem_cgroup_usage_unregister_event,
4564 },
4565 {
4566 .name = "max_usage_in_bytes",
4567 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4568 .trigger = mem_cgroup_reset,
4569 .read = mem_cgroup_read,
4570 },
4571 {
4572 .name = "limit_in_bytes",
4573 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4574 .write_string = mem_cgroup_write,
4575 .read = mem_cgroup_read,
4576 },
4577 {
4578 .name = "soft_limit_in_bytes",
4579 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4580 .write_string = mem_cgroup_write,
4581 .read = mem_cgroup_read,
4582 },
4583 {
4584 .name = "failcnt",
4585 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4586 .trigger = mem_cgroup_reset,
4587 .read = mem_cgroup_read,
4588 },
4589 {
4590 .name = "stat",
4591 .read_seq_string = mem_control_stat_show,
4592 },
4593 {
4594 .name = "force_empty",
4595 .trigger = mem_cgroup_force_empty_write,
4596 },
4597 {
4598 .name = "use_hierarchy",
4599 .write_u64 = mem_cgroup_hierarchy_write,
4600 .read_u64 = mem_cgroup_hierarchy_read,
4601 },
4602 {
4603 .name = "swappiness",
4604 .read_u64 = mem_cgroup_swappiness_read,
4605 .write_u64 = mem_cgroup_swappiness_write,
4606 },
4607 {
4608 .name = "move_charge_at_immigrate",
4609 .read_u64 = mem_cgroup_move_charge_read,
4610 .write_u64 = mem_cgroup_move_charge_write,
4611 },
4612 {
4613 .name = "oom_control",
4614 .read_map = mem_cgroup_oom_control_read,
4615 .write_u64 = mem_cgroup_oom_control_write,
4616 .register_event = mem_cgroup_oom_register_event,
4617 .unregister_event = mem_cgroup_oom_unregister_event,
4618 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4619 },
4620#ifdef CONFIG_NUMA
4621 {
4622 .name = "numa_stat",
4623 .read_seq_string = mem_control_numa_stat_show,
4624 },
4625#endif
4626#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4627 {
4628 .name = "memsw.usage_in_bytes",
4629 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4630 .read = mem_cgroup_read,
4631 .register_event = mem_cgroup_usage_register_event,
4632 .unregister_event = mem_cgroup_usage_unregister_event,
4633 },
4634 {
4635 .name = "memsw.max_usage_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4637 .trigger = mem_cgroup_reset,
4638 .read = mem_cgroup_read,
4639 },
4640 {
4641 .name = "memsw.limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4643 .write_string = mem_cgroup_write,
4644 .read = mem_cgroup_read,
4645 },
4646 {
4647 .name = "memsw.failcnt",
4648 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4649 .trigger = mem_cgroup_reset,
4650 .read = mem_cgroup_read,
4651 },
4652#endif
4653 { }, /* terminate */
4654};
4655
4656static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4657{
4658 struct mem_cgroup_per_node *pn;
4659 struct mem_cgroup_per_zone *mz;
4660 int zone, tmp = node;
4661 /*
4662 * This routine is called against possible nodes.
4663 * But it's BUG to call kmalloc() against offline node.
4664 *
4665 * TODO: this routine can waste much memory for nodes which will
4666 * never be onlined. It's better to use memory hotplug callback
4667 * function.
4668 */
4669 if (!node_state(node, N_NORMAL_MEMORY))
4670 tmp = -1;
4671 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4672 if (!pn)
4673 return 1;
4674
4675 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4676 mz = &pn->zoneinfo[zone];
4677 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4678 mz->usage_in_excess = 0;
4679 mz->on_tree = false;
4680 mz->memcg = memcg;
4681 }
4682 memcg->info.nodeinfo[node] = pn;
4683 return 0;
4684}
4685
4686static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4687{
4688 kfree(memcg->info.nodeinfo[node]);
4689}
4690
4691static struct mem_cgroup *mem_cgroup_alloc(void)
4692{
4693 struct mem_cgroup *memcg;
4694 int size = sizeof(struct mem_cgroup);
4695
4696 /* Can be very big if MAX_NUMNODES is very big */
4697 if (size < PAGE_SIZE)
4698 memcg = kzalloc(size, GFP_KERNEL);
4699 else
4700 memcg = vzalloc(size);
4701
4702 if (!memcg)
4703 return NULL;
4704
4705 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4706 if (!memcg->stat)
4707 goto out_free;
4708 spin_lock_init(&memcg->pcp_counter_lock);
4709 return memcg;
4710
4711out_free:
4712 if (size < PAGE_SIZE)
4713 kfree(memcg);
4714 else
4715 vfree(memcg);
4716 return NULL;
4717}
4718
4719/*
4720 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4721 * but in process context. The work_freeing structure is overlaid
4722 * on the rcu_freeing structure, which itself is overlaid on memsw.
4723 */
4724static void free_work(struct work_struct *work)
4725{
4726 struct mem_cgroup *memcg;
4727 int size = sizeof(struct mem_cgroup);
4728
4729 memcg = container_of(work, struct mem_cgroup, work_freeing);
4730 /*
4731 * We need to make sure that (at least for now), the jump label
4732 * destruction code runs outside of the cgroup lock. This is because
4733 * get_online_cpus(), which is called from the static_branch update,
4734 * can't be called inside the cgroup_lock. cpusets are the ones
4735 * enforcing this dependency, so if they ever change, we might as well.
4736 *
4737 * schedule_work() will guarantee this happens. Be careful if you need
4738 * to move this code around, and make sure it is outside
4739 * the cgroup_lock.
4740 */
4741 disarm_sock_keys(memcg);
4742 if (size < PAGE_SIZE)
4743 kfree(memcg);
4744 else
4745 vfree(memcg);
4746}
4747
4748static void free_rcu(struct rcu_head *rcu_head)
4749{
4750 struct mem_cgroup *memcg;
4751
4752 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4753 INIT_WORK(&memcg->work_freeing, free_work);
4754 schedule_work(&memcg->work_freeing);
4755}
4756
4757/*
4758 * At destroying mem_cgroup, references from swap_cgroup can remain.
4759 * (scanning all at force_empty is too costly...)
4760 *
4761 * Instead of clearing all references at force_empty, we remember
4762 * the number of reference from swap_cgroup and free mem_cgroup when
4763 * it goes down to 0.
4764 *
4765 * Removal of cgroup itself succeeds regardless of refs from swap.
4766 */
4767
4768static void __mem_cgroup_free(struct mem_cgroup *memcg)
4769{
4770 int node;
4771
4772 mem_cgroup_remove_from_trees(memcg);
4773 free_css_id(&mem_cgroup_subsys, &memcg->css);
4774
4775 for_each_node(node)
4776 free_mem_cgroup_per_zone_info(memcg, node);
4777
4778 free_percpu(memcg->stat);
4779 call_rcu(&memcg->rcu_freeing, free_rcu);
4780}
4781
4782static void mem_cgroup_get(struct mem_cgroup *memcg)
4783{
4784 atomic_inc(&memcg->refcnt);
4785}
4786
4787static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4788{
4789 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4790 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4791 __mem_cgroup_free(memcg);
4792 if (parent)
4793 mem_cgroup_put(parent);
4794 }
4795}
4796
4797static void mem_cgroup_put(struct mem_cgroup *memcg)
4798{
4799 __mem_cgroup_put(memcg, 1);
4800}
4801
4802/*
4803 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4804 */
4805struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4806{
4807 if (!memcg->res.parent)
4808 return NULL;
4809 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4810}
4811EXPORT_SYMBOL(parent_mem_cgroup);
4812
4813#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4814static void __init enable_swap_cgroup(void)
4815{
4816 if (!mem_cgroup_disabled() && really_do_swap_account)
4817 do_swap_account = 1;
4818}
4819#else
4820static void __init enable_swap_cgroup(void)
4821{
4822}
4823#endif
4824
4825static int mem_cgroup_soft_limit_tree_init(void)
4826{
4827 struct mem_cgroup_tree_per_node *rtpn;
4828 struct mem_cgroup_tree_per_zone *rtpz;
4829 int tmp, node, zone;
4830
4831 for_each_node(node) {
4832 tmp = node;
4833 if (!node_state(node, N_NORMAL_MEMORY))
4834 tmp = -1;
4835 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4836 if (!rtpn)
4837 goto err_cleanup;
4838
4839 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4840
4841 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4842 rtpz = &rtpn->rb_tree_per_zone[zone];
4843 rtpz->rb_root = RB_ROOT;
4844 spin_lock_init(&rtpz->lock);
4845 }
4846 }
4847 return 0;
4848
4849err_cleanup:
4850 for_each_node(node) {
4851 if (!soft_limit_tree.rb_tree_per_node[node])
4852 break;
4853 kfree(soft_limit_tree.rb_tree_per_node[node]);
4854 soft_limit_tree.rb_tree_per_node[node] = NULL;
4855 }
4856 return 1;
4857
4858}
4859
4860static struct cgroup_subsys_state * __ref
4861mem_cgroup_create(struct cgroup *cont)
4862{
4863 struct mem_cgroup *memcg, *parent;
4864 long error = -ENOMEM;
4865 int node;
4866
4867 memcg = mem_cgroup_alloc();
4868 if (!memcg)
4869 return ERR_PTR(error);
4870
4871 for_each_node(node)
4872 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4873 goto free_out;
4874
4875 /* root ? */
4876 if (cont->parent == NULL) {
4877 int cpu;
4878 enable_swap_cgroup();
4879 parent = NULL;
4880 if (mem_cgroup_soft_limit_tree_init())
4881 goto free_out;
4882 root_mem_cgroup = memcg;
4883 for_each_possible_cpu(cpu) {
4884 struct memcg_stock_pcp *stock =
4885 &per_cpu(memcg_stock, cpu);
4886 INIT_WORK(&stock->work, drain_local_stock);
4887 }
4888 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4889 } else {
4890 parent = mem_cgroup_from_cont(cont->parent);
4891 memcg->use_hierarchy = parent->use_hierarchy;
4892 memcg->oom_kill_disable = parent->oom_kill_disable;
4893 }
4894
4895 if (parent && parent->use_hierarchy) {
4896 res_counter_init(&memcg->res, &parent->res);
4897 res_counter_init(&memcg->memsw, &parent->memsw);
4898 /*
4899 * We increment refcnt of the parent to ensure that we can
4900 * safely access it on res_counter_charge/uncharge.
4901 * This refcnt will be decremented when freeing this
4902 * mem_cgroup(see mem_cgroup_put).
4903 */
4904 mem_cgroup_get(parent);
4905 } else {
4906 res_counter_init(&memcg->res, NULL);
4907 res_counter_init(&memcg->memsw, NULL);
4908 }
4909 memcg->last_scanned_node = MAX_NUMNODES;
4910 INIT_LIST_HEAD(&memcg->oom_notify);
4911
4912 if (parent)
4913 memcg->swappiness = mem_cgroup_swappiness(parent);
4914 atomic_set(&memcg->refcnt, 1);
4915 memcg->move_charge_at_immigrate = 0;
4916 mutex_init(&memcg->thresholds_lock);
4917 spin_lock_init(&memcg->move_lock);
4918
4919 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4920 if (error) {
4921 /*
4922 * We call put now because our (and parent's) refcnts
4923 * are already in place. mem_cgroup_put() will internally
4924 * call __mem_cgroup_free, so return directly
4925 */
4926 mem_cgroup_put(memcg);
4927 return ERR_PTR(error);
4928 }
4929 return &memcg->css;
4930free_out:
4931 __mem_cgroup_free(memcg);
4932 return ERR_PTR(error);
4933}
4934
4935static int mem_cgroup_pre_destroy(struct cgroup *cont)
4936{
4937 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4938
4939 return mem_cgroup_force_empty(memcg, false);
4940}
4941
4942static void mem_cgroup_destroy(struct cgroup *cont)
4943{
4944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945
4946 kmem_cgroup_destroy(memcg);
4947
4948 mem_cgroup_put(memcg);
4949}
4950
4951#ifdef CONFIG_MMU
4952/* Handlers for move charge at task migration. */
4953#define PRECHARGE_COUNT_AT_ONCE 256
4954static int mem_cgroup_do_precharge(unsigned long count)
4955{
4956 int ret = 0;
4957 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4958 struct mem_cgroup *memcg = mc.to;
4959
4960 if (mem_cgroup_is_root(memcg)) {
4961 mc.precharge += count;
4962 /* we don't need css_get for root */
4963 return ret;
4964 }
4965 /* try to charge at once */
4966 if (count > 1) {
4967 struct res_counter *dummy;
4968 /*
4969 * "memcg" cannot be under rmdir() because we've already checked
4970 * by cgroup_lock_live_cgroup() that it is not removed and we
4971 * are still under the same cgroup_mutex. So we can postpone
4972 * css_get().
4973 */
4974 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4975 goto one_by_one;
4976 if (do_swap_account && res_counter_charge(&memcg->memsw,
4977 PAGE_SIZE * count, &dummy)) {
4978 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4979 goto one_by_one;
4980 }
4981 mc.precharge += count;
4982 return ret;
4983 }
4984one_by_one:
4985 /* fall back to one by one charge */
4986 while (count--) {
4987 if (signal_pending(current)) {
4988 ret = -EINTR;
4989 break;
4990 }
4991 if (!batch_count--) {
4992 batch_count = PRECHARGE_COUNT_AT_ONCE;
4993 cond_resched();
4994 }
4995 ret = __mem_cgroup_try_charge(NULL,
4996 GFP_KERNEL, 1, &memcg, false);
4997 if (ret)
4998 /* mem_cgroup_clear_mc() will do uncharge later */
4999 return ret;
5000 mc.precharge++;
5001 }
5002 return ret;
5003}
5004
5005/**
5006 * get_mctgt_type - get target type of moving charge
5007 * @vma: the vma the pte to be checked belongs
5008 * @addr: the address corresponding to the pte to be checked
5009 * @ptent: the pte to be checked
5010 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5011 *
5012 * Returns
5013 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5014 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5015 * move charge. if @target is not NULL, the page is stored in target->page
5016 * with extra refcnt got(Callers should handle it).
5017 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5018 * target for charge migration. if @target is not NULL, the entry is stored
5019 * in target->ent.
5020 *
5021 * Called with pte lock held.
5022 */
5023union mc_target {
5024 struct page *page;
5025 swp_entry_t ent;
5026};
5027
5028enum mc_target_type {
5029 MC_TARGET_NONE = 0,
5030 MC_TARGET_PAGE,
5031 MC_TARGET_SWAP,
5032};
5033
5034static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5035 unsigned long addr, pte_t ptent)
5036{
5037 struct page *page = vm_normal_page(vma, addr, ptent);
5038
5039 if (!page || !page_mapped(page))
5040 return NULL;
5041 if (PageAnon(page)) {
5042 /* we don't move shared anon */
5043 if (!move_anon())
5044 return NULL;
5045 } else if (!move_file())
5046 /* we ignore mapcount for file pages */
5047 return NULL;
5048 if (!get_page_unless_zero(page))
5049 return NULL;
5050
5051 return page;
5052}
5053
5054#ifdef CONFIG_SWAP
5055static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5056 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5057{
5058 struct page *page = NULL;
5059 swp_entry_t ent = pte_to_swp_entry(ptent);
5060
5061 if (!move_anon() || non_swap_entry(ent))
5062 return NULL;
5063 /*
5064 * Because lookup_swap_cache() updates some statistics counter,
5065 * we call find_get_page() with swapper_space directly.
5066 */
5067 page = find_get_page(&swapper_space, ent.val);
5068 if (do_swap_account)
5069 entry->val = ent.val;
5070
5071 return page;
5072}
5073#else
5074static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5075 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5076{
5077 return NULL;
5078}
5079#endif
5080
5081static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5082 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5083{
5084 struct page *page = NULL;
5085 struct address_space *mapping;
5086 pgoff_t pgoff;
5087
5088 if (!vma->vm_file) /* anonymous vma */
5089 return NULL;
5090 if (!move_file())
5091 return NULL;
5092
5093 mapping = vma->vm_file->f_mapping;
5094 if (pte_none(ptent))
5095 pgoff = linear_page_index(vma, addr);
5096 else /* pte_file(ptent) is true */
5097 pgoff = pte_to_pgoff(ptent);
5098
5099 /* page is moved even if it's not RSS of this task(page-faulted). */
5100 page = find_get_page(mapping, pgoff);
5101
5102#ifdef CONFIG_SWAP
5103 /* shmem/tmpfs may report page out on swap: account for that too. */
5104 if (radix_tree_exceptional_entry(page)) {
5105 swp_entry_t swap = radix_to_swp_entry(page);
5106 if (do_swap_account)
5107 *entry = swap;
5108 page = find_get_page(&swapper_space, swap.val);
5109 }
5110#endif
5111 return page;
5112}
5113
5114static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5115 unsigned long addr, pte_t ptent, union mc_target *target)
5116{
5117 struct page *page = NULL;
5118 struct page_cgroup *pc;
5119 enum mc_target_type ret = MC_TARGET_NONE;
5120 swp_entry_t ent = { .val = 0 };
5121
5122 if (pte_present(ptent))
5123 page = mc_handle_present_pte(vma, addr, ptent);
5124 else if (is_swap_pte(ptent))
5125 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5126 else if (pte_none(ptent) || pte_file(ptent))
5127 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5128
5129 if (!page && !ent.val)
5130 return ret;
5131 if (page) {
5132 pc = lookup_page_cgroup(page);
5133 /*
5134 * Do only loose check w/o page_cgroup lock.
5135 * mem_cgroup_move_account() checks the pc is valid or not under
5136 * the lock.
5137 */
5138 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5139 ret = MC_TARGET_PAGE;
5140 if (target)
5141 target->page = page;
5142 }
5143 if (!ret || !target)
5144 put_page(page);
5145 }
5146 /* There is a swap entry and a page doesn't exist or isn't charged */
5147 if (ent.val && !ret &&
5148 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5149 ret = MC_TARGET_SWAP;
5150 if (target)
5151 target->ent = ent;
5152 }
5153 return ret;
5154}
5155
5156#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5157/*
5158 * We don't consider swapping or file mapped pages because THP does not
5159 * support them for now.
5160 * Caller should make sure that pmd_trans_huge(pmd) is true.
5161 */
5162static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5163 unsigned long addr, pmd_t pmd, union mc_target *target)
5164{
5165 struct page *page = NULL;
5166 struct page_cgroup *pc;
5167 enum mc_target_type ret = MC_TARGET_NONE;
5168
5169 page = pmd_page(pmd);
5170 VM_BUG_ON(!page || !PageHead(page));
5171 if (!move_anon())
5172 return ret;
5173 pc = lookup_page_cgroup(page);
5174 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5175 ret = MC_TARGET_PAGE;
5176 if (target) {
5177 get_page(page);
5178 target->page = page;
5179 }
5180 }
5181 return ret;
5182}
5183#else
5184static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5185 unsigned long addr, pmd_t pmd, union mc_target *target)
5186{
5187 return MC_TARGET_NONE;
5188}
5189#endif
5190
5191static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5192 unsigned long addr, unsigned long end,
5193 struct mm_walk *walk)
5194{
5195 struct vm_area_struct *vma = walk->private;
5196 pte_t *pte;
5197 spinlock_t *ptl;
5198
5199 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5200 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5201 mc.precharge += HPAGE_PMD_NR;
5202 spin_unlock(&vma->vm_mm->page_table_lock);
5203 return 0;
5204 }
5205
5206 if (pmd_trans_unstable(pmd))
5207 return 0;
5208 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5209 for (; addr != end; pte++, addr += PAGE_SIZE)
5210 if (get_mctgt_type(vma, addr, *pte, NULL))
5211 mc.precharge++; /* increment precharge temporarily */
5212 pte_unmap_unlock(pte - 1, ptl);
5213 cond_resched();
5214
5215 return 0;
5216}
5217
5218static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5219{
5220 unsigned long precharge;
5221 struct vm_area_struct *vma;
5222
5223 down_read(&mm->mmap_sem);
5224 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5225 struct mm_walk mem_cgroup_count_precharge_walk = {
5226 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5227 .mm = mm,
5228 .private = vma,
5229 };
5230 if (is_vm_hugetlb_page(vma))
5231 continue;
5232 walk_page_range(vma->vm_start, vma->vm_end,
5233 &mem_cgroup_count_precharge_walk);
5234 }
5235 up_read(&mm->mmap_sem);
5236
5237 precharge = mc.precharge;
5238 mc.precharge = 0;
5239
5240 return precharge;
5241}
5242
5243static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5244{
5245 unsigned long precharge = mem_cgroup_count_precharge(mm);
5246
5247 VM_BUG_ON(mc.moving_task);
5248 mc.moving_task = current;
5249 return mem_cgroup_do_precharge(precharge);
5250}
5251
5252/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5253static void __mem_cgroup_clear_mc(void)
5254{
5255 struct mem_cgroup *from = mc.from;
5256 struct mem_cgroup *to = mc.to;
5257
5258 /* we must uncharge all the leftover precharges from mc.to */
5259 if (mc.precharge) {
5260 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5261 mc.precharge = 0;
5262 }
5263 /*
5264 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5265 * we must uncharge here.
5266 */
5267 if (mc.moved_charge) {
5268 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5269 mc.moved_charge = 0;
5270 }
5271 /* we must fixup refcnts and charges */
5272 if (mc.moved_swap) {
5273 /* uncharge swap account from the old cgroup */
5274 if (!mem_cgroup_is_root(mc.from))
5275 res_counter_uncharge(&mc.from->memsw,
5276 PAGE_SIZE * mc.moved_swap);
5277 __mem_cgroup_put(mc.from, mc.moved_swap);
5278
5279 if (!mem_cgroup_is_root(mc.to)) {
5280 /*
5281 * we charged both to->res and to->memsw, so we should
5282 * uncharge to->res.
5283 */
5284 res_counter_uncharge(&mc.to->res,
5285 PAGE_SIZE * mc.moved_swap);
5286 }
5287 /* we've already done mem_cgroup_get(mc.to) */
5288 mc.moved_swap = 0;
5289 }
5290 memcg_oom_recover(from);
5291 memcg_oom_recover(to);
5292 wake_up_all(&mc.waitq);
5293}
5294
5295static void mem_cgroup_clear_mc(void)
5296{
5297 struct mem_cgroup *from = mc.from;
5298
5299 /*
5300 * we must clear moving_task before waking up waiters at the end of
5301 * task migration.
5302 */
5303 mc.moving_task = NULL;
5304 __mem_cgroup_clear_mc();
5305 spin_lock(&mc.lock);
5306 mc.from = NULL;
5307 mc.to = NULL;
5308 spin_unlock(&mc.lock);
5309 mem_cgroup_end_move(from);
5310}
5311
5312static int mem_cgroup_can_attach(struct cgroup *cgroup,
5313 struct cgroup_taskset *tset)
5314{
5315 struct task_struct *p = cgroup_taskset_first(tset);
5316 int ret = 0;
5317 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5318
5319 if (memcg->move_charge_at_immigrate) {
5320 struct mm_struct *mm;
5321 struct mem_cgroup *from = mem_cgroup_from_task(p);
5322
5323 VM_BUG_ON(from == memcg);
5324
5325 mm = get_task_mm(p);
5326 if (!mm)
5327 return 0;
5328 /* We move charges only when we move a owner of the mm */
5329 if (mm->owner == p) {
5330 VM_BUG_ON(mc.from);
5331 VM_BUG_ON(mc.to);
5332 VM_BUG_ON(mc.precharge);
5333 VM_BUG_ON(mc.moved_charge);
5334 VM_BUG_ON(mc.moved_swap);
5335 mem_cgroup_start_move(from);
5336 spin_lock(&mc.lock);
5337 mc.from = from;
5338 mc.to = memcg;
5339 spin_unlock(&mc.lock);
5340 /* We set mc.moving_task later */
5341
5342 ret = mem_cgroup_precharge_mc(mm);
5343 if (ret)
5344 mem_cgroup_clear_mc();
5345 }
5346 mmput(mm);
5347 }
5348 return ret;
5349}
5350
5351static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5352 struct cgroup_taskset *tset)
5353{
5354 mem_cgroup_clear_mc();
5355}
5356
5357static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5358 unsigned long addr, unsigned long end,
5359 struct mm_walk *walk)
5360{
5361 int ret = 0;
5362 struct vm_area_struct *vma = walk->private;
5363 pte_t *pte;
5364 spinlock_t *ptl;
5365 enum mc_target_type target_type;
5366 union mc_target target;
5367 struct page *page;
5368 struct page_cgroup *pc;
5369
5370 /*
5371 * We don't take compound_lock() here but no race with splitting thp
5372 * happens because:
5373 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5374 * under splitting, which means there's no concurrent thp split,
5375 * - if another thread runs into split_huge_page() just after we
5376 * entered this if-block, the thread must wait for page table lock
5377 * to be unlocked in __split_huge_page_splitting(), where the main
5378 * part of thp split is not executed yet.
5379 */
5380 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5381 if (mc.precharge < HPAGE_PMD_NR) {
5382 spin_unlock(&vma->vm_mm->page_table_lock);
5383 return 0;
5384 }
5385 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5386 if (target_type == MC_TARGET_PAGE) {
5387 page = target.page;
5388 if (!isolate_lru_page(page)) {
5389 pc = lookup_page_cgroup(page);
5390 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5391 pc, mc.from, mc.to)) {
5392 mc.precharge -= HPAGE_PMD_NR;
5393 mc.moved_charge += HPAGE_PMD_NR;
5394 }
5395 putback_lru_page(page);
5396 }
5397 put_page(page);
5398 }
5399 spin_unlock(&vma->vm_mm->page_table_lock);
5400 return 0;
5401 }
5402
5403 if (pmd_trans_unstable(pmd))
5404 return 0;
5405retry:
5406 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5407 for (; addr != end; addr += PAGE_SIZE) {
5408 pte_t ptent = *(pte++);
5409 swp_entry_t ent;
5410
5411 if (!mc.precharge)
5412 break;
5413
5414 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5415 case MC_TARGET_PAGE:
5416 page = target.page;
5417 if (isolate_lru_page(page))
5418 goto put;
5419 pc = lookup_page_cgroup(page);
5420 if (!mem_cgroup_move_account(page, 1, pc,
5421 mc.from, mc.to)) {
5422 mc.precharge--;
5423 /* we uncharge from mc.from later. */
5424 mc.moved_charge++;
5425 }
5426 putback_lru_page(page);
5427put: /* get_mctgt_type() gets the page */
5428 put_page(page);
5429 break;
5430 case MC_TARGET_SWAP:
5431 ent = target.ent;
5432 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5433 mc.precharge--;
5434 /* we fixup refcnts and charges later. */
5435 mc.moved_swap++;
5436 }
5437 break;
5438 default:
5439 break;
5440 }
5441 }
5442 pte_unmap_unlock(pte - 1, ptl);
5443 cond_resched();
5444
5445 if (addr != end) {
5446 /*
5447 * We have consumed all precharges we got in can_attach().
5448 * We try charge one by one, but don't do any additional
5449 * charges to mc.to if we have failed in charge once in attach()
5450 * phase.
5451 */
5452 ret = mem_cgroup_do_precharge(1);
5453 if (!ret)
5454 goto retry;
5455 }
5456
5457 return ret;
5458}
5459
5460static void mem_cgroup_move_charge(struct mm_struct *mm)
5461{
5462 struct vm_area_struct *vma;
5463
5464 lru_add_drain_all();
5465retry:
5466 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5467 /*
5468 * Someone who are holding the mmap_sem might be waiting in
5469 * waitq. So we cancel all extra charges, wake up all waiters,
5470 * and retry. Because we cancel precharges, we might not be able
5471 * to move enough charges, but moving charge is a best-effort
5472 * feature anyway, so it wouldn't be a big problem.
5473 */
5474 __mem_cgroup_clear_mc();
5475 cond_resched();
5476 goto retry;
5477 }
5478 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5479 int ret;
5480 struct mm_walk mem_cgroup_move_charge_walk = {
5481 .pmd_entry = mem_cgroup_move_charge_pte_range,
5482 .mm = mm,
5483 .private = vma,
5484 };
5485 if (is_vm_hugetlb_page(vma))
5486 continue;
5487 ret = walk_page_range(vma->vm_start, vma->vm_end,
5488 &mem_cgroup_move_charge_walk);
5489 if (ret)
5490 /*
5491 * means we have consumed all precharges and failed in
5492 * doing additional charge. Just abandon here.
5493 */
5494 break;
5495 }
5496 up_read(&mm->mmap_sem);
5497}
5498
5499static void mem_cgroup_move_task(struct cgroup *cont,
5500 struct cgroup_taskset *tset)
5501{
5502 struct task_struct *p = cgroup_taskset_first(tset);
5503 struct mm_struct *mm = get_task_mm(p);
5504
5505 if (mm) {
5506 if (mc.to)
5507 mem_cgroup_move_charge(mm);
5508 mmput(mm);
5509 }
5510 if (mc.to)
5511 mem_cgroup_clear_mc();
5512}
5513#else /* !CONFIG_MMU */
5514static int mem_cgroup_can_attach(struct cgroup *cgroup,
5515 struct cgroup_taskset *tset)
5516{
5517 return 0;
5518}
5519static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5520 struct cgroup_taskset *tset)
5521{
5522}
5523static void mem_cgroup_move_task(struct cgroup *cont,
5524 struct cgroup_taskset *tset)
5525{
5526}
5527#endif
5528
5529struct cgroup_subsys mem_cgroup_subsys = {
5530 .name = "memory",
5531 .subsys_id = mem_cgroup_subsys_id,
5532 .create = mem_cgroup_create,
5533 .pre_destroy = mem_cgroup_pre_destroy,
5534 .destroy = mem_cgroup_destroy,
5535 .can_attach = mem_cgroup_can_attach,
5536 .cancel_attach = mem_cgroup_cancel_attach,
5537 .attach = mem_cgroup_move_task,
5538 .base_cftypes = mem_cgroup_files,
5539 .early_init = 0,
5540 .use_id = 1,
5541 .__DEPRECATED_clear_css_refs = true,
5542};
5543
5544#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5545static int __init enable_swap_account(char *s)
5546{
5547 /* consider enabled if no parameter or 1 is given */
5548 if (!strcmp(s, "1"))
5549 really_do_swap_account = 1;
5550 else if (!strcmp(s, "0"))
5551 really_do_swap_account = 0;
5552 return 1;
5553}
5554__setup("swapaccount=", enable_swap_account);
5555
5556#endif