Loading...
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34#include <linux/page_counter.h>
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
37#include <linux/mm.h>
38#include <linux/hugetlb.h>
39#include <linux/pagemap.h>
40#include <linux/smp.h>
41#include <linux/page-flags.h>
42#include <linux/backing-dev.h>
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/limits.h>
46#include <linux/export.h>
47#include <linux/mutex.h>
48#include <linux/rbtree.h>
49#include <linux/slab.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/spinlock.h>
53#include <linux/eventfd.h>
54#include <linux/poll.h>
55#include <linux/sort.h>
56#include <linux/fs.h>
57#include <linux/seq_file.h>
58#include <linux/vmpressure.h>
59#include <linux/mm_inline.h>
60#include <linux/swap_cgroup.h>
61#include <linux/cpu.h>
62#include <linux/oom.h>
63#include <linux/lockdep.h>
64#include <linux/file.h>
65#include <linux/tracehook.h>
66#include "internal.h"
67#include <net/sock.h>
68#include <net/ip.h>
69#include "slab.h"
70
71#include <asm/uaccess.h>
72
73#include <trace/events/vmscan.h>
74
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
77
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80#define MEM_CGROUP_RECLAIM_RETRIES 5
81
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
88/* Whether the swap controller is active */
89#ifdef CONFIG_MEMCG_SWAP
90int do_swap_account __read_mostly;
91#else
92#define do_swap_account 0
93#endif
94
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109};
110
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
129
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
155
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
159struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199/* Stuffs for move charges at task migration. */
200/*
201 * Types of charges to be moved.
202 */
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
223
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237};
238
239/* for encoding cft->private value on file */
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246};
247
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250#define MEMFILE_ATTR(val) ((val) & 0xffff)
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
253
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
272#ifndef CONFIG_SLOB
273/*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
286
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324#endif /* !CONFIG_SLOB */
325
326static struct mem_cgroup_per_zone *
327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328{
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333}
334
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356}
357
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
386static struct mem_cgroup_per_zone *
387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388{
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393}
394
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453{
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459}
460
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558}
559
560/*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583{
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597}
598
599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608}
609
610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613{
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640}
641
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644{
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662}
663
664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666{
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673}
674
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677{
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701}
702
703/*
704 * Check events in order.
705 *
706 */
707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708{
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724#if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727#endif
728 }
729}
730
731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732{
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742}
743EXPORT_SYMBOL(mem_cgroup_from_task);
744
745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746{
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766}
767
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788{
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886out_unlock:
887 rcu_read_unlock();
888out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893}
894
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
908
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941#define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977}
978
979/**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018}
1019
1020/**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042}
1043
1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045{
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068}
1069
1070/**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078{
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096}
1097
1098/*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106{
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125}
1126
1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
1143#define K(x) ((x) << (PAGE_SHIFT-10))
1144/**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200}
1201
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207{
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214}
1215
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220{
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234}
1235
1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238{
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1244 };
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
1251 mutex_lock(&oom_lock);
1252
1253 /*
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1257 */
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1261 }
1262
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1303 }
1304 css_task_iter_end(&it);
1305 }
1306
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1315}
1316
1317#if MAX_NUMNODES > 1
1318
1319/**
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1331{
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1339
1340}
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349{
1350 int nid;
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1359
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1362
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1364
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1367 }
1368
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386{
1387 int node;
1388
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1391
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1395 /*
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1400 */
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1403
1404 memcg->last_scanned_node = node;
1405 return node;
1406}
1407#else
1408int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409{
1410 return 0;
1411}
1412#endif
1413
1414static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1418{
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1427 };
1428
1429 excess = soft_limit_excess(root_memcg);
1430
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!total)
1442 break;
1443 /*
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1448 */
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1452 }
1453 continue;
1454 }
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1460 }
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1463}
1464
1465#ifdef CONFIG_LOCKDEP
1466static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1468};
1469#endif
1470
1471static DEFINE_SPINLOCK(memcg_oom_lock);
1472
1473/*
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1476 */
1477static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478{
1479 struct mem_cgroup *iter, *failed = NULL;
1480
1481 spin_lock(&memcg_oom_lock);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1485 /*
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1488 */
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1494 }
1495
1496 if (failed) {
1497 /*
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1500 */
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1505 }
1506 iter->oom_lock = false;
1507 }
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510
1511 spin_unlock(&memcg_oom_lock);
1512
1513 return !failed;
1514}
1515
1516static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517{
1518 struct mem_cgroup *iter;
1519
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1525}
1526
1527static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528{
1529 struct mem_cgroup *iter;
1530
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1535}
1536
1537static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538{
1539 struct mem_cgroup *iter;
1540
1541 /*
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 */
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1550}
1551
1552static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553
1554struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1557};
1558
1559static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1561{
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1565
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1568
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1573}
1574
1575static void memcg_oom_recover(struct mem_cgroup *memcg)
1576{
1577 /*
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1584 */
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587}
1588
1589static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590{
1591 if (!current->memcg_may_oom)
1592 return;
1593 /*
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1597 *
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1601 *
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1606 */
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1611}
1612
1613/**
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1616 *
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1619 *
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1626 *
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1629 */
1630bool mem_cgroup_oom_synchronize(bool handle)
1631{
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1635
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1639
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1642
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1648
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1651
1652 locked = mem_cgroup_oom_trylock(memcg);
1653
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1656
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1666 }
1667
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1670 /*
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1674 */
1675 memcg_oom_recover(memcg);
1676 }
1677cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1681}
1682
1683/**
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1686 *
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1689 */
1690void lock_page_memcg(struct page *page)
1691{
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1694
1695 /*
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1699 */
1700 rcu_read_lock();
1701
1702 if (mem_cgroup_disabled())
1703 return;
1704again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1708
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1711
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1716 }
1717
1718 /*
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1722 */
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1725
1726 return;
1727}
1728EXPORT_SYMBOL(lock_page_memcg);
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1737
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1740
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1743
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 }
1746
1747 rcu_read_unlock();
1748}
1749EXPORT_SYMBOL(unlock_page_memcg);
1750
1751/*
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1754 */
1755#define CHARGE_BATCH 32U
1756struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761#define FLUSHING_CACHED_CHARGE 0
1762};
1763static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764static DEFINE_MUTEX(percpu_charge_mutex);
1765
1766/**
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1770 *
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1774 *
1775 * returns true if successful, false otherwise.
1776 */
1777static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778{
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1781
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1784
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1789 }
1790 put_cpu_var(memcg_stock);
1791 return ret;
1792}
1793
1794/*
1795 * Returns stocks cached in percpu and reset cached information.
1796 */
1797static void drain_stock(struct memcg_stock_pcp *stock)
1798{
1799 struct mem_cgroup *old = stock->cached;
1800
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1807 }
1808 stock->cached = NULL;
1809}
1810
1811/*
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1814 */
1815static void drain_local_stock(struct work_struct *dummy)
1816{
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820}
1821
1822/*
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1825 */
1826static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827{
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1833 }
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1836}
1837
1838/*
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1841 */
1842static void drain_all_stock(struct mem_cgroup *root_memcg)
1843{
1844 int cpu, curcpu;
1845
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1855
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1866 }
1867 }
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1871}
1872
1873static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1876{
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1879
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1882
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1885
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1889}
1890
1891static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1894{
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1901}
1902
1903static void high_work_func(struct work_struct *work)
1904{
1905 struct mem_cgroup *memcg;
1906
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909}
1910
1911/*
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1914 */
1915void mem_cgroup_handle_over_high(void)
1916{
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1919
1920 if (likely(!nr_pages))
1921 return;
1922
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1927}
1928
1929static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1931{
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1939
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1945
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1956 }
1957
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1961 }
1962
1963 /*
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1968 */
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1973
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1976
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1979
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1984
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1987
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1992 }
1993
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1996 /*
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2000 *
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2004 */
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2007 /*
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2010 */
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2013
2014 if (nr_retries--)
2015 goto retry;
2016
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2019
2020 if (fatal_signal_pending(current))
2021 goto force;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030force:
2031 /*
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2035 */
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2040
2041 return 0;
2042
2043done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047
2048 /*
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2056 */
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2063 }
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2067 }
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2069
2070 return 0;
2071}
2072
2073static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074{
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2077
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2081
2082 css_put_many(&memcg->css, nr_pages);
2083}
2084
2085static void lock_page_lru(struct page *page, int *isolated)
2086{
2087 struct zone *zone = page_zone(page);
2088
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2092
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2099}
2100
2101static void unlock_page_lru(struct page *page, int isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 if (isolated) {
2106 struct lruvec *lruvec;
2107
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2112 }
2113 spin_unlock_irq(&zone->lru_lock);
2114}
2115
2116static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2118{
2119 int isolated;
2120
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122
2123 /*
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2126 */
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2129
2130 /*
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2133 *
2134 * - the page is uncharged
2135 *
2136 * - the page is off-LRU
2137 *
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2140 *
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2143 */
2144 page->mem_cgroup = memcg;
2145
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2148}
2149
2150#ifndef CONFIG_SLOB
2151static int memcg_alloc_cache_id(void)
2152{
2153 int id, size;
2154 int err;
2155
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2160
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2163
2164 /*
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2167 */
2168 down_write(&memcg_cache_ids_sem);
2169
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2175
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2181
2182 up_write(&memcg_cache_ids_sem);
2183
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2187 }
2188 return id;
2189}
2190
2191static void memcg_free_cache_id(int id)
2192{
2193 ida_simple_remove(&memcg_cache_ida, id);
2194}
2195
2196struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2200};
2201
2202static void memcg_kmem_cache_create_func(struct work_struct *w)
2203{
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2208
2209 memcg_create_kmem_cache(memcg, cachep);
2210
2211 css_put(&memcg->css);
2212 kfree(cw);
2213}
2214
2215/*
2216 * Enqueue the creation of a per-memcg kmem_cache.
2217 */
2218static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2220{
2221 struct memcg_kmem_cache_create_work *cw;
2222
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2226
2227 css_get(&memcg->css);
2228
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232
2233 schedule_work(&cw->work);
2234}
2235
2236static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2238{
2239 /*
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2243 *
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2249 */
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2253}
2254
2255/*
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2258 *
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2264 *
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2267 */
2268struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269{
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2273
2274 VM_BUG_ON(!is_root_cache(cachep));
2275
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2278
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2281
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2284
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2289
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2293
2294 /*
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2299 *
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2305 */
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307out:
2308 css_put(&memcg->css);
2309 return cachep;
2310}
2311
2312void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313{
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2316}
2317
2318int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320{
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338}
2339
2340int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341{
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2350}
2351
2352void __memcg_kmem_uncharge(struct page *page, int order)
2353{
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2356
2357 if (!memcg)
2358 return;
2359
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2364
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2368
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2371}
2372#endif /* !CONFIG_SLOB */
2373
2374#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375
2376/*
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2379 */
2380void mem_cgroup_split_huge_fixup(struct page *head)
2381{
2382 int i;
2383
2384 if (mem_cgroup_disabled())
2385 return;
2386
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2389
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2392}
2393#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394
2395#ifdef CONFIG_MEMCG_SWAP
2396static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2398{
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401}
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2419{
2420 unsigned short old_id, new_id;
2421
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435{
2436 return -EINVAL;
2437}
2438#endif
2439
2440static DEFINE_MUTEX(memcg_limit_mutex);
2441
2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2444{
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2458
2459 oldusage = page_counter_read(&memcg->memory);
2460
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2472 }
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2477
2478 if (!ret)
2479 break;
2480
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2490
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2493
2494 return ret;
2495}
2496
2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2499{
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2505
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2523 }
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2528
2529 if (!ret)
2530 break;
2531
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2541
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2544
2545 return ret;
2546}
2547
2548unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 /*
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2568 */
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2576
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2584
2585 /*
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2588 */
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592
2593 excess = soft_limit_excess(mz->memcg);
2594 /*
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2601 */
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2607 /*
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2611 */
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2620}
2621
2622/*
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2627 */
2628static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629{
2630 bool ret;
2631
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2636}
2637
2638/*
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2653
2654 if (signal_pending(current))
2655 return -EINTR;
2656
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 }
2664
2665 }
2666
2667 return 0;
2668}
2669
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2673{
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2679}
2680
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2683{
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2685}
2686
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2689{
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2696
2697 /*
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2713
2714 return retval;
2715}
2716
2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718{
2719 struct mem_cgroup *iter;
2720 int i;
2721
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
2728}
2729
2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731{
2732 struct mem_cgroup *iter;
2733 int i;
2734
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
2741}
2742
2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744{
2745 unsigned long val = 0;
2746
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2764 }
2765 return val;
2766}
2767
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
2775
2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2778{
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2781
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2797 }
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
2817}
2818
2819#ifndef CONFIG_SLOB
2820static int memcg_online_kmem(struct mem_cgroup *memcg)
2821{
2822 int memcg_id;
2823
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2829
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2833
2834 static_branch_inc(&memcg_kmem_enabled_key);
2835 /*
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2843
2844 return 0;
2845}
2846
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
2903}
2904#else
2905static int memcg_online_kmem(struct mem_cgroup *memcg)
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2919{
2920 int ret;
2921
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2926}
2927
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2937
2938 if (!memcg->tcpmem_active) {
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
2962
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2969{
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2973
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006}
3007
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010{
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3029 }
3030
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 return nbytes;
3043}
3044
3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3047{
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049}
3050
3051#ifdef CONFIG_MMU
3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3054{
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3059
3060 /*
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3065 */
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3068}
3069#else
3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
3076
3077#ifdef CONFIG_NUMA
3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079{
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
3105 }
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
3128static int memcg_stat_show(struct seq_file *m, void *v)
3129{
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3134
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 }
3147
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3161 }
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3170
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 }
3194
3195#ifdef CONFIG_DEBUG_VM
3196 {
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3207
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3212 }
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 }
3218#endif
3219
3220 return 0;
3221}
3222
3223static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3225{
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227
3228 return mem_cgroup_swappiness(memcg);
3229}
3230
3231static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3233{
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235
3236 if (val > 100)
3237 return -EINVAL;
3238
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3243
3244 return 0;
3245}
3246
3247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248{
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3252
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3258
3259 if (!t)
3260 goto unlock;
3261
3262 usage = mem_cgroup_usage(memcg, swap);
3263
3264 /*
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3268 */
3269 i = t->current_threshold;
3270
3271 /*
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3276 */
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3279
3280 /* i = current_threshold + 1 */
3281 i++;
3282
3283 /*
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3288 */
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3291
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294unlock:
3295 rcu_read_unlock();
3296}
3297
3298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299{
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3304
3305 memcg = parent_mem_cgroup(memcg);
3306 }
3307}
3308
3309static int compare_thresholds(const void *a, const void *b)
3310{
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3313
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3316
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3319
3320 return 0;
3321}
3322
3323static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324{
3325 struct mem_cgroup_eventfd_list *ev;
3326
3327 spin_lock(&memcg_oom_lock);
3328
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3331
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3334}
3335
3336static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337{
3338 struct mem_cgroup *iter;
3339
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3342}
3343
3344static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346{
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3352
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3356
3357 mutex_lock(&memcg->thresholds_lock);
3358
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3367
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3380 }
3381 new->size = size;
3382
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3387 }
3388
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3392
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3396
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3401 /*
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3405 */
3406 ++new->current_threshold;
3407 } else
3408 break;
3409 }
3410
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3414
3415 rcu_assign_pointer(thresholds->primary, new);
3416
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3419
3420unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3422
3423 return ret;
3424}
3425
3426static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3428{
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430}
3431
3432static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3434{
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436}
3437
3438static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3440{
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3445
3446 mutex_lock(&memcg->thresholds_lock);
3447
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3456
3457 if (!thresholds->primary)
3458 goto unlock;
3459
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3468 }
3469
3470 new = thresholds->spare;
3471
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3477 }
3478
3479 new->size = size;
3480
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3486
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3489 /*
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3493 */
3494 ++new->current_threshold;
3495 }
3496 j++;
3497 }
3498
3499swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3502
3503 rcu_assign_pointer(thresholds->primary, new);
3504
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3507
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3512 }
3513unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3515}
3516
3517static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3519{
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521}
3522
3523static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3525{
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527}
3528
3529static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3531{
3532 struct mem_cgroup_eventfd_list *event;
3533
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3537
3538 spin_lock(&memcg_oom_lock);
3539
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3542
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3547
3548 return 0;
3549}
3550
3551static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553{
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3555
3556 spin_lock(&memcg_oom_lock);
3557
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3562 }
3563 }
3564
3565 spin_unlock(&memcg_oom_lock);
3566}
3567
3568static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3575}
3576
3577static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3579{
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3585
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3589
3590 return 0;
3591}
3592
3593#ifdef CONFIG_CGROUP_WRITEBACK
3594
3595struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596{
3597 return &memcg->cgwb_list;
3598}
3599
3600static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601{
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3603}
3604
3605static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606{
3607 wb_domain_exit(&memcg->cgwb_domain);
3608}
3609
3610static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611{
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3613}
3614
3615struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616{
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618
3619 if (!memcg->css.parent)
3620 return NULL;
3621
3622 return &memcg->cgwb_domain;
3623}
3624
3625/**
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3632 *
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3636 *
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3642 */
3643void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3646{
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3649
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3657
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3661
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3664 }
3665}
3666
3667#else /* CONFIG_CGROUP_WRITEBACK */
3668
3669static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670{
3671 return 0;
3672}
3673
3674static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675{
3676}
3677
3678static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679{
3680}
3681
3682#endif /* CONFIG_CGROUP_WRITEBACK */
3683
3684/*
3685 * DO NOT USE IN NEW FILES.
3686 *
3687 * "cgroup.event_control" implementation.
3688 *
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3692 *
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3695 */
3696
3697/*
3698 * Unregister event and free resources.
3699 *
3700 * Gets called from workqueue.
3701 */
3702static void memcg_event_remove(struct work_struct *work)
3703{
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3707
3708 remove_wait_queue(event->wqh, &event->wait);
3709
3710 event->unregister_event(memcg, event->eventfd);
3711
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3714
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3718}
3719
3720/*
3721 * Gets called on POLLHUP on eventfd when user closes it.
3722 *
3723 * Called with wqh->lock held and interrupts disabled.
3724 */
3725static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3727{
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3732
3733 if (flags & POLLHUP) {
3734 /*
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3738 *
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3742 */
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3746 /*
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3749 */
3750 schedule_work(&event->remove);
3751 }
3752 spin_unlock(&memcg->event_list_lock);
3753 }
3754
3755 return 0;
3756}
3757
3758static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3760{
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3763
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3766}
3767
3768/*
3769 * DO NOT USE IN NEW FILES.
3770 *
3771 * Parse input and register new cgroup event handler.
3772 *
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3775 */
3776static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3778{
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3789
3790 buf = strstrip(buf);
3791
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3796
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3805
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3811
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3816 }
3817
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3822 }
3823
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3828 }
3829
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3835
3836 /*
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3841 *
3842 * DO NOT ADD NEW FILES.
3843 */
3844 name = cfile.file->f_path.dentry->d_name.name;
3845
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3861 }
3862
3863 /*
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3867 */
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3876 }
3877
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3881
3882 efile.file->f_op->poll(efile.file, &event->pt);
3883
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3887
3888 fdput(cfile);
3889 fdput(efile);
3890
3891 return nbytes;
3892
3893out_put_css:
3894 css_put(css);
3895out_put_cfile:
3896 fdput(cfile);
3897out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899out_put_efile:
3900 fdput(efile);
3901out_kfree:
3902 kfree(event);
3903
3904 return ret;
3905}
3906
3907static struct cftype mem_cgroup_legacy_files[] = {
3908 {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3912 },
3913 {
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3918 },
3919 {
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3924 },
3925 {
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3930 },
3931 {
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3940 },
3941 {
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3944 },
3945 {
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3949 },
3950 {
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 },
3955 {
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3959 },
3960 {
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3964 },
3965 {
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 },
3971 {
3972 .name = "pressure_level",
3973 },
3974#ifdef CONFIG_NUMA
3975 {
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3978 },
3979#endif
3980 {
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003#ifdef CONFIG_SLABINFO
4004 {
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4010 },
4011#endif
4012 {
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4028 },
4029 {
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 { }, /* terminate */
4036};
4037
4038static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039{
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4043 /*
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4046 *
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4050 */
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4056
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4063 }
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4066}
4067
4068static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069{
4070 kfree(memcg->nodeinfo[node]);
4071}
4072
4073static void mem_cgroup_free(struct mem_cgroup *memcg)
4074{
4075 int node;
4076
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4082}
4083
4084static struct mem_cgroup *mem_cgroup_alloc(void)
4085{
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4089
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4096
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4100
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4104
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4107
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117#ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119#endif
4120#ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122#endif
4123 return memcg;
4124fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4127}
4128
4129static struct cgroup_subsys_state * __ref
4130mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131{
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4135
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4139
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4145 }
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4159 /*
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4163 */
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4166 }
4167
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4172 }
4173
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4177
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4180
4181 return &memcg->css;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4185}
4186
4187static int
4188mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189{
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4192
4193 return 0;
4194}
4195
4196static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197{
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4200
4201 /*
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4205 */
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4210 }
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4215}
4216
4217static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220
4221 invalidate_reclaim_iterators(memcg);
4222}
4223
4224static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4230
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4233
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4239}
4240
4241/**
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4244 *
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4250 *
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4253 */
4254static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255{
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4267}
4268
4269#ifdef CONFIG_MMU
4270/* Handlers for move charge at task migration. */
4271static int mem_cgroup_do_precharge(unsigned long count)
4272{
4273 int ret;
4274
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4280 }
4281
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4289 }
4290 return 0;
4291}
4292
4293/**
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 *
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4308 *
4309 * Called with pte lock held.
4310 */
4311union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4314};
4315
4316enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4320};
4321
4322static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4324{
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4326
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4335 }
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4338
4339 return page;
4340}
4341
4342#ifdef CONFIG_SWAP
4343static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345{
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4348
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4351 /*
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4354 */
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4358
4359 return page;
4360}
4361#else
4362static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364{
4365 return NULL;
4366}
4367#endif
4368
4369static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371{
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4375
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4383
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385#ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4394 }
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397#else
4398 page = find_get_page(mapping, pgoff);
4399#endif
4400 return page;
4401}
4402
4403/**
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4409 *
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 *
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4414 */
4415static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4419{
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4424
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4428
4429 /*
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4432 */
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4436
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4440
4441 anon = PageAnon(page);
4442
4443 spin_lock_irqsave(&from->move_lock, flags);
4444
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 }
4451
4452 /*
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4456 */
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4459
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 }
4466 }
4467
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 }
4474
4475 /*
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4479 */
4480
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4484
4485 ret = 0;
4486
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493out_unlock:
4494 unlock_page(page);
4495out:
4496 return ret;
4497}
4498
4499static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4501{
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4505
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4516 /*
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4520 */
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4525 }
4526 if (!ret || !target)
4527 put_page(page);
4528 }
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4535 }
4536 return ret;
4537}
4538
4539#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540/*
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4544 */
4545static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4547{
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4550
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4560 }
4561 }
4562 return ret;
4563}
4564#else
4565static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4567{
4568 return MC_TARGET_NONE;
4569}
4570#endif
4571
4572static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4575{
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4579
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4586 }
4587
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4596
4597 return 0;
4598}
4599
4600static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601{
4602 unsigned long precharge;
4603
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4607 };
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4611
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4614
4615 return precharge;
4616}
4617
4618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619{
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4621
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4625}
4626
4627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628static void __mem_cgroup_clear_mc(void)
4629{
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4632
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4637 }
4638 /*
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4641 */
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4645 }
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651
4652 /*
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4655 */
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658
4659 css_put_many(&mc.from->css, mc.moved_swap);
4660
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4663 }
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4667}
4668
4669static void mem_cgroup_clear_mc(void)
4670{
4671 struct mm_struct *mm = mc.mm;
4672
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4684
4685 mmput(mm);
4686}
4687
4688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689{
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4697
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4701
4702 /*
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4707 */
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4713 }
4714 if (!p)
4715 return 0;
4716
4717 /*
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4721 */
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4725
4726 from = mem_cgroup_from_task(p);
4727
4728 VM_BUG_ON(from == memcg);
4729
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4740
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4748
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4754 }
4755 return ret;
4756}
4757
4758static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759{
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4762}
4763
4764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4767{
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4775
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4781 }
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4790 }
4791 putback_lru_page(page);
4792 }
4793 put_page(page);
4794 }
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4806
4807 if (!mc.precharge)
4808 break;
4809
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4813 /*
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4818 */
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4828 }
4829 putback_lru_page(page);
4830put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4839 }
4840 break;
4841 default:
4842 break;
4843 }
4844 }
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4847
4848 if (addr != end) {
4849 /*
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4854 */
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4858 }
4859
4860 return ret;
4861}
4862
4863static void mem_cgroup_move_charge(void)
4864{
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4868 };
4869
4870 lru_add_drain_all();
4871 /*
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4875 */
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 /*
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4886 */
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4890 }
4891 /*
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4894 */
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4898}
4899
4900static void mem_cgroup_move_task(void)
4901{
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4905 }
4906}
4907#else /* !CONFIG_MMU */
4908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909{
4910 return 0;
4911}
4912static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913{
4914}
4915static void mem_cgroup_move_task(void)
4916{
4917}
4918#endif
4919
4920/*
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4924 */
4925static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926{
4927 /*
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4931 */
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4936}
4937
4938static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4940{
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944}
4945
4946static int memory_low_show(struct seq_file *m, void *v)
4947{
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4950
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955
4956 return 0;
4957}
4958
4959static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961{
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4965
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4970
4971 memcg->low = low;
4972
4973 return nbytes;
4974}
4975
4976static int memory_high_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4980
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4996
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5001
5002 memcg->high = high;
5003
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5008
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5011}
5012
5013static int memory_max_show(struct seq_file *m, void *v)
5014{
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5017
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022
5023 return 0;
5024}
5025
5026static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5039
5040 xchg(&memcg->memory.limit, max);
5041
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5044
5045 if (nr_pages <= max)
5046 break;
5047
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5051 }
5052
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5057 }
5058
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5064 }
5065
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5069 }
5070
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5073}
5074
5075static int memory_events_show(struct seq_file *m, void *v)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083
5084 return 0;
5085}
5086
5087static int memory_stat_show(struct seq_file *m, void *v)
5088{
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5093
5094 /*
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5097 *
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 *
5102 * Current memory state:
5103 */
5104
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5107
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5130
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 }
5136
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141
5142 /* Accumulated memory events */
5143
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148
5149 return 0;
5150}
5151
5152static struct cftype memory_files[] = {
5153 {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5157 },
5158 {
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5163 },
5164 {
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5169 },
5170 {
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5175 },
5176 {
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5181 },
5182 {
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5186 },
5187 { } /* terminate */
5188};
5189
5190struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5204};
5205
5206/**
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5210 *
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5213 */
5214bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215{
5216 if (mem_cgroup_disabled())
5217 return false;
5218
5219 /*
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5223 */
5224
5225 if (memcg == root_mem_cgroup)
5226 return false;
5227
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5230
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5233
5234 if (memcg == root_mem_cgroup)
5235 break;
5236
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5239 }
5240 return true;
5241}
5242
5243/**
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5249 *
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5252 *
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5255 *
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259 */
5260int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5263{
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5267
5268 if (mem_cgroup_disabled())
5269 goto out;
5270
5271 if (PageSwapCache(page)) {
5272 /*
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5278 */
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5282
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5286
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5292 }
5293 }
5294
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5297
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5299
5300 css_put(&memcg->css);
5301out:
5302 *memcgp = memcg;
5303 return ret;
5304}
5305
5306/**
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5311 *
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5316 *
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5319 *
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321 */
5322void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5324{
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329
5330 if (mem_cgroup_disabled())
5331 return;
5332 /*
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5336 */
5337 if (!memcg)
5338 return;
5339
5340 commit_charge(page, memcg, lrucare);
5341
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5346
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5349 /*
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5353 */
5354 mem_cgroup_uncharge_swap(entry);
5355 }
5356}
5357
5358/**
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5362 *
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5364 */
5365void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5367{
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369
5370 if (mem_cgroup_disabled())
5371 return;
5372 /*
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5376 */
5377 if (!memcg)
5378 return;
5379
5380 cancel_charge(memcg, nr_pages);
5381}
5382
5383static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5386{
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5389
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5395 }
5396
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5405
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5408}
5409
5410static void uncharge_list(struct list_head *page_list)
5411{
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5419
5420 /*
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5423 */
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5427
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5430
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5433
5434 if (!page->mem_cgroup)
5435 continue;
5436
5437 /*
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5441 */
5442
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 }
5449 memcg = page->mem_cgroup;
5450 }
5451
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5456 }
5457
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5462
5463 page->mem_cgroup = NULL;
5464
5465 pgpgout++;
5466 } while (next != page_list);
5467
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5471}
5472
5473/**
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5476 *
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5479 */
5480void mem_cgroup_uncharge(struct page *page)
5481{
5482 if (mem_cgroup_disabled())
5483 return;
5484
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5488
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5491}
5492
5493/**
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5496 *
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499 */
5500void mem_cgroup_uncharge_list(struct list_head *page_list)
5501{
5502 if (mem_cgroup_disabled())
5503 return;
5504
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5507}
5508
5509/**
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5513 *
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5516 *
5517 * Both pages must be locked, @newpage->mapping must be set up.
5518 */
5519void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520{
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5524
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5530
5531 if (mem_cgroup_disabled())
5532 return;
5533
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5537
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5542
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5551
5552 commit_charge(newpage, memcg, false);
5553
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5558}
5559
5560DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562
5563void sock_update_memcg(struct sock *sk)
5564{
5565 struct mem_cgroup *memcg;
5566
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5571 *
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5574 */
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5579 }
5580
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589out:
5590 rcu_read_unlock();
5591}
5592EXPORT_SYMBOL(sock_update_memcg);
5593
5594void sock_release_memcg(struct sock *sk)
5595{
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5598}
5599
5600/**
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5604 *
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5607 */
5608bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609{
5610 gfp_t gfp_mask = GFP_KERNEL;
5611
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5614
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5618 }
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5622 }
5623
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5627
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5632
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5635}
5636
5637/**
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5641 */
5642void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643{
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5647 }
5648
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5653}
5654
5655static int __init cgroup_memory(char *s)
5656{
5657 char *token;
5658
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5666 }
5667 return 0;
5668}
5669__setup("cgroup.memory=", cgroup_memory);
5670
5671/*
5672 * subsys_initcall() for memory controller.
5673 *
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5678 */
5679static int __init mem_cgroup_init(void)
5680{
5681 int cpu, node;
5682
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5688
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5692
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5695
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5698
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5702 }
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 }
5705
5706 return 0;
5707}
5708subsys_initcall(mem_cgroup_init);
5709
5710#ifdef CONFIG_MEMCG_SWAP
5711/**
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5715 *
5716 * Transfer the memsw charge of @page to @entry.
5717 */
5718void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719{
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5722
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5725
5726 if (!do_memsw_account())
5727 return;
5728
5729 memcg = page->mem_cgroup;
5730
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5734
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5738
5739 page->mem_cgroup = NULL;
5740
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5743
5744 /*
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5749 */
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5753}
5754
5755/*
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5759 *
5760 * Try to charge @entry to the memcg that @page belongs to.
5761 *
5762 * Returns 0 on success, -ENOMEM on failure.
5763 */
5764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765{
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5769
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5772
5773 memcg = page->mem_cgroup;
5774
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5778
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5782
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5786
5787 css_get(&memcg->css);
5788 return 0;
5789}
5790
5791/**
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5794 *
5795 * Drop the swap charge associated with @entry.
5796 */
5797void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798{
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5801
5802 if (!do_swap_account)
5803 return;
5804
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5814 }
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5817 }
5818 rcu_read_unlock();
5819}
5820
5821long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822{
5823 long nr_swap_pages = get_nr_swap_pages();
5824
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5832}
5833
5834bool mem_cgroup_swap_full(struct page *page)
5835{
5836 struct mem_cgroup *memcg;
5837
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5839
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5844
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5848
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5852
5853 return false;
5854}
5855
5856/* for remember boot option*/
5857#ifdef CONFIG_MEMCG_SWAP_ENABLED
5858static int really_do_swap_account __initdata = 1;
5859#else
5860static int really_do_swap_account __initdata;
5861#endif
5862
5863static int __init enable_swap_account(char *s)
5864{
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5870}
5871__setup("swapaccount=", enable_swap_account);
5872
5873static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879}
5880
5881static int swap_max_show(struct seq_file *m, void *v)
5882{
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5885
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890
5891 return 0;
5892}
5893
5894static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5896{
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5900
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5905
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5911
5912 return nbytes;
5913}
5914
5915static struct cftype swap_files[] = {
5916 {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5920 },
5921 {
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5926 },
5927 { } /* terminate */
5928};
5929
5930static struct cftype memsw_cgroup_files[] = {
5931 {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5935 },
5936 {
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5941 },
5942 {
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5947 },
5948 {
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5953 },
5954 { }, /* terminate */
5955};
5956
5957static int __init mem_cgroup_swap_init(void)
5958{
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5965 }
5966 return 0;
5967}
5968subsys_initcall(mem_cgroup_swap_init);
5969
5970#endif /* CONFIG_MEMCG_SWAP */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25#include <linux/page_counter.h>
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
28#include <linux/pagewalk.h>
29#include <linux/sched/mm.h>
30#include <linux/shmem_fs.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vm_event_item.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/poll.h>
49#include <linux/sort.h>
50#include <linux/fs.h>
51#include <linux/seq_file.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/swap_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include <linux/file.h>
59#include <linux/tracehook.h>
60#include <linux/psi.h>
61#include <linux/seq_buf.h>
62#include "internal.h"
63#include <net/sock.h>
64#include <net/ip.h>
65#include "slab.h"
66
67#include <linux/uaccess.h>
68
69#include <trace/events/vmscan.h>
70
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
73
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76/* Socket memory accounting disabled? */
77static bool cgroup_memory_nosocket;
78
79/* Kernel memory accounting disabled? */
80static bool cgroup_memory_nokmem;
81
82/* Whether the swap controller is active */
83#ifdef CONFIG_MEMCG_SWAP
84bool cgroup_memory_noswap __read_mostly;
85#else
86#define cgroup_memory_noswap 1
87#endif
88
89#ifdef CONFIG_CGROUP_WRITEBACK
90static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91#endif
92
93/* Whether legacy memory+swap accounting is active */
94static bool do_memsw_account(void)
95{
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97}
98
99#define THRESHOLDS_EVENTS_TARGET 128
100#define SOFTLIMIT_EVENTS_TARGET 1024
101
102/*
103 * Cgroups above their limits are maintained in a RB-Tree, independent of
104 * their hierarchy representation
105 */
106
107struct mem_cgroup_tree_per_node {
108 struct rb_root rb_root;
109 struct rb_node *rb_rightmost;
110 spinlock_t lock;
111};
112
113struct mem_cgroup_tree {
114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115};
116
117static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119/* for OOM */
120struct mem_cgroup_eventfd_list {
121 struct list_head list;
122 struct eventfd_ctx *eventfd;
123};
124
125/*
126 * cgroup_event represents events which userspace want to receive.
127 */
128struct mem_cgroup_event {
129 /*
130 * memcg which the event belongs to.
131 */
132 struct mem_cgroup *memcg;
133 /*
134 * eventfd to signal userspace about the event.
135 */
136 struct eventfd_ctx *eventfd;
137 /*
138 * Each of these stored in a list by the cgroup.
139 */
140 struct list_head list;
141 /*
142 * register_event() callback will be used to add new userspace
143 * waiter for changes related to this event. Use eventfd_signal()
144 * on eventfd to send notification to userspace.
145 */
146 int (*register_event)(struct mem_cgroup *memcg,
147 struct eventfd_ctx *eventfd, const char *args);
148 /*
149 * unregister_event() callback will be called when userspace closes
150 * the eventfd or on cgroup removing. This callback must be set,
151 * if you want provide notification functionality.
152 */
153 void (*unregister_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd);
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
161 wait_queue_entry_t wait;
162 struct work_struct remove;
163};
164
165static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168/* Stuffs for move charges at task migration. */
169/*
170 * Types of charges to be moved.
171 */
172#define MOVE_ANON 0x1U
173#define MOVE_FILE 0x2U
174#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
175
176/* "mc" and its members are protected by cgroup_mutex */
177static struct move_charge_struct {
178 spinlock_t lock; /* for from, to */
179 struct mm_struct *mm;
180 struct mem_cgroup *from;
181 struct mem_cgroup *to;
182 unsigned long flags;
183 unsigned long precharge;
184 unsigned long moved_charge;
185 unsigned long moved_swap;
186 struct task_struct *moving_task; /* a task moving charges */
187 wait_queue_head_t waitq; /* a waitq for other context */
188} mc = {
189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191};
192
193/*
194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195 * limit reclaim to prevent infinite loops, if they ever occur.
196 */
197#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
198#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200enum charge_type {
201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202 MEM_CGROUP_CHARGE_TYPE_ANON,
203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
205 NR_CHARGE_TYPE,
206};
207
208/* for encoding cft->private value on file */
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
213 _KMEM,
214 _TCP,
215};
216
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219#define MEMFILE_ATTR(val) ((val) & 0xffff)
220/* Used for OOM nofiier */
221#define OOM_CONTROL (0)
222
223/*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228#define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233#define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
238static inline bool should_force_charge(void)
239{
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242}
243
244/* Some nice accessors for the vmpressure. */
245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246{
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250}
251
252struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253{
254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255}
256
257#ifdef CONFIG_MEMCG_KMEM
258extern spinlock_t css_set_lock;
259
260static void obj_cgroup_release(struct percpu_ref *ref)
261{
262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263 struct mem_cgroup *memcg;
264 unsigned int nr_bytes;
265 unsigned int nr_pages;
266 unsigned long flags;
267
268 /*
269 * At this point all allocated objects are freed, and
270 * objcg->nr_charged_bytes can't have an arbitrary byte value.
271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272 *
273 * The following sequence can lead to it:
274 * 1) CPU0: objcg == stock->cached_objcg
275 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276 * PAGE_SIZE bytes are charged
277 * 3) CPU1: a process from another memcg is allocating something,
278 * the stock if flushed,
279 * objcg->nr_charged_bytes = PAGE_SIZE - 92
280 * 5) CPU0: we do release this object,
281 * 92 bytes are added to stock->nr_bytes
282 * 6) CPU0: stock is flushed,
283 * 92 bytes are added to objcg->nr_charged_bytes
284 *
285 * In the result, nr_charged_bytes == PAGE_SIZE.
286 * This page will be uncharged in obj_cgroup_release().
287 */
288 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290 nr_pages = nr_bytes >> PAGE_SHIFT;
291
292 spin_lock_irqsave(&css_set_lock, flags);
293 memcg = obj_cgroup_memcg(objcg);
294 if (nr_pages)
295 __memcg_kmem_uncharge(memcg, nr_pages);
296 list_del(&objcg->list);
297 mem_cgroup_put(memcg);
298 spin_unlock_irqrestore(&css_set_lock, flags);
299
300 percpu_ref_exit(ref);
301 kfree_rcu(objcg, rcu);
302}
303
304static struct obj_cgroup *obj_cgroup_alloc(void)
305{
306 struct obj_cgroup *objcg;
307 int ret;
308
309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 if (!objcg)
311 return NULL;
312
313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 GFP_KERNEL);
315 if (ret) {
316 kfree(objcg);
317 return NULL;
318 }
319 INIT_LIST_HEAD(&objcg->list);
320 return objcg;
321}
322
323static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 struct mem_cgroup *parent)
325{
326 struct obj_cgroup *objcg, *iter;
327
328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330 spin_lock_irq(&css_set_lock);
331
332 /* Move active objcg to the parent's list */
333 xchg(&objcg->memcg, parent);
334 css_get(&parent->css);
335 list_add(&objcg->list, &parent->objcg_list);
336
337 /* Move already reparented objcgs to the parent's list */
338 list_for_each_entry(iter, &memcg->objcg_list, list) {
339 css_get(&parent->css);
340 xchg(&iter->memcg, parent);
341 css_put(&memcg->css);
342 }
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
350/*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
363
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399EXPORT_SYMBOL(memcg_kmem_enabled_key);
400#endif
401
402static int memcg_shrinker_map_size;
403static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406{
407 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408}
409
410static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411 int size, int old_size)
412{
413 struct memcg_shrinker_map *new, *old;
414 int nid;
415
416 lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418 for_each_node(nid) {
419 old = rcu_dereference_protected(
420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421 /* Not yet online memcg */
422 if (!old)
423 return 0;
424
425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426 if (!new)
427 return -ENOMEM;
428
429 /* Set all old bits, clear all new bits */
430 memset(new->map, (int)0xff, old_size);
431 memset((void *)new->map + old_size, 0, size - old_size);
432
433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435 }
436
437 return 0;
438}
439
440static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441{
442 struct mem_cgroup_per_node *pn;
443 struct memcg_shrinker_map *map;
444 int nid;
445
446 if (mem_cgroup_is_root(memcg))
447 return;
448
449 for_each_node(nid) {
450 pn = mem_cgroup_nodeinfo(memcg, nid);
451 map = rcu_dereference_protected(pn->shrinker_map, true);
452 if (map)
453 kvfree(map);
454 rcu_assign_pointer(pn->shrinker_map, NULL);
455 }
456}
457
458static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459{
460 struct memcg_shrinker_map *map;
461 int nid, size, ret = 0;
462
463 if (mem_cgroup_is_root(memcg))
464 return 0;
465
466 mutex_lock(&memcg_shrinker_map_mutex);
467 size = memcg_shrinker_map_size;
468 for_each_node(nid) {
469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470 if (!map) {
471 memcg_free_shrinker_maps(memcg);
472 ret = -ENOMEM;
473 break;
474 }
475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476 }
477 mutex_unlock(&memcg_shrinker_map_mutex);
478
479 return ret;
480}
481
482int memcg_expand_shrinker_maps(int new_id)
483{
484 int size, old_size, ret = 0;
485 struct mem_cgroup *memcg;
486
487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488 old_size = memcg_shrinker_map_size;
489 if (size <= old_size)
490 return 0;
491
492 mutex_lock(&memcg_shrinker_map_mutex);
493 if (!root_mem_cgroup)
494 goto unlock;
495
496 for_each_mem_cgroup(memcg) {
497 if (mem_cgroup_is_root(memcg))
498 continue;
499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500 if (ret) {
501 mem_cgroup_iter_break(NULL, memcg);
502 goto unlock;
503 }
504 }
505unlock:
506 if (!ret)
507 memcg_shrinker_map_size = size;
508 mutex_unlock(&memcg_shrinker_map_mutex);
509 return ret;
510}
511
512void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513{
514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515 struct memcg_shrinker_map *map;
516
517 rcu_read_lock();
518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519 /* Pairs with smp mb in shrink_slab() */
520 smp_mb__before_atomic();
521 set_bit(shrinker_id, map->map);
522 rcu_read_unlock();
523 }
524}
525
526/**
527 * mem_cgroup_css_from_page - css of the memcg associated with a page
528 * @page: page of interest
529 *
530 * If memcg is bound to the default hierarchy, css of the memcg associated
531 * with @page is returned. The returned css remains associated with @page
532 * until it is released.
533 *
534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535 * is returned.
536 */
537struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538{
539 struct mem_cgroup *memcg;
540
541 memcg = page->mem_cgroup;
542
543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544 memcg = root_mem_cgroup;
545
546 return &memcg->css;
547}
548
549/**
550 * page_cgroup_ino - return inode number of the memcg a page is charged to
551 * @page: the page
552 *
553 * Look up the closest online ancestor of the memory cgroup @page is charged to
554 * and return its inode number or 0 if @page is not charged to any cgroup. It
555 * is safe to call this function without holding a reference to @page.
556 *
557 * Note, this function is inherently racy, because there is nothing to prevent
558 * the cgroup inode from getting torn down and potentially reallocated a moment
559 * after page_cgroup_ino() returns, so it only should be used by callers that
560 * do not care (such as procfs interfaces).
561 */
562ino_t page_cgroup_ino(struct page *page)
563{
564 struct mem_cgroup *memcg;
565 unsigned long ino = 0;
566
567 rcu_read_lock();
568 memcg = page->mem_cgroup;
569
570 /*
571 * The lowest bit set means that memcg isn't a valid
572 * memcg pointer, but a obj_cgroups pointer.
573 * In this case the page is shared and doesn't belong
574 * to any specific memory cgroup.
575 */
576 if ((unsigned long) memcg & 0x1UL)
577 memcg = NULL;
578
579 while (memcg && !(memcg->css.flags & CSS_ONLINE))
580 memcg = parent_mem_cgroup(memcg);
581 if (memcg)
582 ino = cgroup_ino(memcg->css.cgroup);
583 rcu_read_unlock();
584 return ino;
585}
586
587static struct mem_cgroup_per_node *
588mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589{
590 int nid = page_to_nid(page);
591
592 return memcg->nodeinfo[nid];
593}
594
595static struct mem_cgroup_tree_per_node *
596soft_limit_tree_node(int nid)
597{
598 return soft_limit_tree.rb_tree_per_node[nid];
599}
600
601static struct mem_cgroup_tree_per_node *
602soft_limit_tree_from_page(struct page *page)
603{
604 int nid = page_to_nid(page);
605
606 return soft_limit_tree.rb_tree_per_node[nid];
607}
608
609static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610 struct mem_cgroup_tree_per_node *mctz,
611 unsigned long new_usage_in_excess)
612{
613 struct rb_node **p = &mctz->rb_root.rb_node;
614 struct rb_node *parent = NULL;
615 struct mem_cgroup_per_node *mz_node;
616 bool rightmost = true;
617
618 if (mz->on_tree)
619 return;
620
621 mz->usage_in_excess = new_usage_in_excess;
622 if (!mz->usage_in_excess)
623 return;
624 while (*p) {
625 parent = *p;
626 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627 tree_node);
628 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629 p = &(*p)->rb_left;
630 rightmost = false;
631 }
632
633 /*
634 * We can't avoid mem cgroups that are over their soft
635 * limit by the same amount
636 */
637 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638 p = &(*p)->rb_right;
639 }
640
641 if (rightmost)
642 mctz->rb_rightmost = &mz->tree_node;
643
644 rb_link_node(&mz->tree_node, parent, p);
645 rb_insert_color(&mz->tree_node, &mctz->rb_root);
646 mz->on_tree = true;
647}
648
649static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650 struct mem_cgroup_tree_per_node *mctz)
651{
652 if (!mz->on_tree)
653 return;
654
655 if (&mz->tree_node == mctz->rb_rightmost)
656 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658 rb_erase(&mz->tree_node, &mctz->rb_root);
659 mz->on_tree = false;
660}
661
662static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663 struct mem_cgroup_tree_per_node *mctz)
664{
665 unsigned long flags;
666
667 spin_lock_irqsave(&mctz->lock, flags);
668 __mem_cgroup_remove_exceeded(mz, mctz);
669 spin_unlock_irqrestore(&mctz->lock, flags);
670}
671
672static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673{
674 unsigned long nr_pages = page_counter_read(&memcg->memory);
675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676 unsigned long excess = 0;
677
678 if (nr_pages > soft_limit)
679 excess = nr_pages - soft_limit;
680
681 return excess;
682}
683
684static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685{
686 unsigned long excess;
687 struct mem_cgroup_per_node *mz;
688 struct mem_cgroup_tree_per_node *mctz;
689
690 mctz = soft_limit_tree_from_page(page);
691 if (!mctz)
692 return;
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_nodeinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719}
720
721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722{
723 struct mem_cgroup_tree_per_node *mctz;
724 struct mem_cgroup_per_node *mz;
725 int nid;
726
727 for_each_node(nid) {
728 mz = mem_cgroup_nodeinfo(memcg, nid);
729 mctz = soft_limit_tree_node(nid);
730 if (mctz)
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733}
734
735static struct mem_cgroup_per_node *
736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737{
738 struct mem_cgroup_per_node *mz;
739
740retry:
741 mz = NULL;
742 if (!mctz->rb_rightmost)
743 goto done; /* Nothing to reclaim from */
744
745 mz = rb_entry(mctz->rb_rightmost,
746 struct mem_cgroup_per_node, tree_node);
747 /*
748 * Remove the node now but someone else can add it back,
749 * we will to add it back at the end of reclaim to its correct
750 * position in the tree.
751 */
752 __mem_cgroup_remove_exceeded(mz, mctz);
753 if (!soft_limit_excess(mz->memcg) ||
754 !css_tryget(&mz->memcg->css))
755 goto retry;
756done:
757 return mz;
758}
759
760static struct mem_cgroup_per_node *
761mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762{
763 struct mem_cgroup_per_node *mz;
764
765 spin_lock_irq(&mctz->lock);
766 mz = __mem_cgroup_largest_soft_limit_node(mctz);
767 spin_unlock_irq(&mctz->lock);
768 return mz;
769}
770
771/**
772 * __mod_memcg_state - update cgroup memory statistics
773 * @memcg: the memory cgroup
774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775 * @val: delta to add to the counter, can be negative
776 */
777void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778{
779 long x, threshold = MEMCG_CHARGE_BATCH;
780
781 if (mem_cgroup_disabled())
782 return;
783
784 if (memcg_stat_item_in_bytes(idx))
785 threshold <<= PAGE_SHIFT;
786
787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788 if (unlikely(abs(x) > threshold)) {
789 struct mem_cgroup *mi;
790
791 /*
792 * Batch local counters to keep them in sync with
793 * the hierarchical ones.
794 */
795 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797 atomic_long_add(x, &mi->vmstats[idx]);
798 x = 0;
799 }
800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801}
802
803static struct mem_cgroup_per_node *
804parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805{
806 struct mem_cgroup *parent;
807
808 parent = parent_mem_cgroup(pn->memcg);
809 if (!parent)
810 return NULL;
811 return mem_cgroup_nodeinfo(parent, nid);
812}
813
814void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815 int val)
816{
817 struct mem_cgroup_per_node *pn;
818 struct mem_cgroup *memcg;
819 long x, threshold = MEMCG_CHARGE_BATCH;
820
821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822 memcg = pn->memcg;
823
824 /* Update memcg */
825 __mod_memcg_state(memcg, idx, val);
826
827 /* Update lruvec */
828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830 if (vmstat_item_in_bytes(idx))
831 threshold <<= PAGE_SHIFT;
832
833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834 if (unlikely(abs(x) > threshold)) {
835 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836 struct mem_cgroup_per_node *pi;
837
838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839 atomic_long_add(x, &pi->lruvec_stat[idx]);
840 x = 0;
841 }
842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843}
844
845/**
846 * __mod_lruvec_state - update lruvec memory statistics
847 * @lruvec: the lruvec
848 * @idx: the stat item
849 * @val: delta to add to the counter, can be negative
850 *
851 * The lruvec is the intersection of the NUMA node and a cgroup. This
852 * function updates the all three counters that are affected by a
853 * change of state at this level: per-node, per-cgroup, per-lruvec.
854 */
855void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856 int val)
857{
858 /* Update node */
859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861 /* Update memcg and lruvec */
862 if (!mem_cgroup_disabled())
863 __mod_memcg_lruvec_state(lruvec, idx, val);
864}
865
866void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867{
868 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869 struct mem_cgroup *memcg;
870 struct lruvec *lruvec;
871
872 rcu_read_lock();
873 memcg = mem_cgroup_from_obj(p);
874
875 /* Untracked pages have no memcg, no lruvec. Update only the node */
876 if (!memcg || memcg == root_mem_cgroup) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883}
884
885void mod_memcg_obj_state(void *p, int idx, int val)
886{
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894}
895
896/**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904{
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924}
925
926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927{
928 return atomic_long_read(&memcg->vmevents[event]);
929}
930
931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932{
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
939}
940
941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
943 int nr_pages)
944{
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954}
955
956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958{
959 unsigned long val, next;
960
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976 return true;
977 }
978 return false;
979}
980
981/*
982 * Check events in order.
983 *
984 */
985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986{
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
997 }
998}
999
1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001{
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011}
1012EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023{
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046}
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072/**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076{
1077 if (unlikely(current->active_memcg)) {
1078 struct mem_cgroup *memcg;
1079
1080 rcu_read_lock();
1081 /* current->active_memcg must hold a ref. */
1082 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css)))
1083 memcg = root_mem_cgroup;
1084 else
1085 memcg = current->active_memcg;
1086 rcu_read_unlock();
1087 return memcg;
1088 }
1089 return get_mem_cgroup_from_mm(current->mm);
1090}
1091
1092/**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
1105 * Reclaimers can specify a node and a priority level in @reclaim to
1106 * divide up the memcgs in the hierarchy among all concurrent
1107 * reclaimers operating on the same node and priority.
1108 */
1109struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110 struct mem_cgroup *prev,
1111 struct mem_cgroup_reclaim_cookie *reclaim)
1112{
1113 struct mem_cgroup_reclaim_iter *iter;
1114 struct cgroup_subsys_state *css = NULL;
1115 struct mem_cgroup *memcg = NULL;
1116 struct mem_cgroup *pos = NULL;
1117
1118 if (mem_cgroup_disabled())
1119 return NULL;
1120
1121 if (!root)
1122 root = root_mem_cgroup;
1123
1124 if (prev && !reclaim)
1125 pos = prev;
1126
1127 if (!root->use_hierarchy && root != root_mem_cgroup) {
1128 if (prev)
1129 goto out;
1130 return root;
1131 }
1132
1133 rcu_read_lock();
1134
1135 if (reclaim) {
1136 struct mem_cgroup_per_node *mz;
1137
1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139 iter = &mz->iter;
1140
1141 if (prev && reclaim->generation != iter->generation)
1142 goto out_unlock;
1143
1144 while (1) {
1145 pos = READ_ONCE(iter->position);
1146 if (!pos || css_tryget(&pos->css))
1147 break;
1148 /*
1149 * css reference reached zero, so iter->position will
1150 * be cleared by ->css_released. However, we should not
1151 * rely on this happening soon, because ->css_released
1152 * is called from a work queue, and by busy-waiting we
1153 * might block it. So we clear iter->position right
1154 * away.
1155 */
1156 (void)cmpxchg(&iter->position, pos, NULL);
1157 }
1158 }
1159
1160 if (pos)
1161 css = &pos->css;
1162
1163 for (;;) {
1164 css = css_next_descendant_pre(css, &root->css);
1165 if (!css) {
1166 /*
1167 * Reclaimers share the hierarchy walk, and a
1168 * new one might jump in right at the end of
1169 * the hierarchy - make sure they see at least
1170 * one group and restart from the beginning.
1171 */
1172 if (!prev)
1173 continue;
1174 break;
1175 }
1176
1177 /*
1178 * Verify the css and acquire a reference. The root
1179 * is provided by the caller, so we know it's alive
1180 * and kicking, and don't take an extra reference.
1181 */
1182 memcg = mem_cgroup_from_css(css);
1183
1184 if (css == &root->css)
1185 break;
1186
1187 if (css_tryget(css))
1188 break;
1189
1190 memcg = NULL;
1191 }
1192
1193 if (reclaim) {
1194 /*
1195 * The position could have already been updated by a competing
1196 * thread, so check that the value hasn't changed since we read
1197 * it to avoid reclaiming from the same cgroup twice.
1198 */
1199 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201 if (pos)
1202 css_put(&pos->css);
1203
1204 if (!memcg)
1205 iter->generation++;
1206 else if (!prev)
1207 reclaim->generation = iter->generation;
1208 }
1209
1210out_unlock:
1211 rcu_read_unlock();
1212out:
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
1216 return memcg;
1217}
1218
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
1226{
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231}
1232
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
1235{
1236 struct mem_cgroup_reclaim_iter *iter;
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
1239
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
1244 }
1245}
1246
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266}
1267
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303}
1304
1305/**
1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307 * @page: the page
1308 * @pgdat: pgdat of the page
1309 *
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
1312 */
1313struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314{
1315 struct mem_cgroup_per_node *mz;
1316 struct mem_cgroup *memcg;
1317 struct lruvec *lruvec;
1318
1319 if (mem_cgroup_disabled()) {
1320 lruvec = &pgdat->__lruvec;
1321 goto out;
1322 }
1323
1324 memcg = page->mem_cgroup;
1325 /*
1326 * Swapcache readahead pages are added to the LRU - and
1327 * possibly migrated - before they are charged.
1328 */
1329 if (!memcg)
1330 memcg = root_mem_cgroup;
1331
1332 mz = mem_cgroup_page_nodeinfo(memcg, page);
1333 lruvec = &mz->lruvec;
1334out:
1335 /*
1336 * Since a node can be onlined after the mem_cgroup was created,
1337 * we have to be prepared to initialize lruvec->zone here;
1338 * and if offlined then reonlined, we need to reinitialize it.
1339 */
1340 if (unlikely(lruvec->pgdat != pgdat))
1341 lruvec->pgdat = pgdat;
1342 return lruvec;
1343}
1344
1345/**
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
1349 * @zid: zone id of the accounted pages
1350 * @nr_pages: positive when adding or negative when removing
1351 *
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355 */
1356void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357 int zid, int nr_pages)
1358{
1359 struct mem_cgroup_per_node *mz;
1360 unsigned long *lru_size;
1361 long size;
1362
1363 if (mem_cgroup_disabled())
1364 return;
1365
1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367 lru_size = &mz->lru_zone_size[zid][lru];
1368
1369 if (nr_pages < 0)
1370 *lru_size += nr_pages;
1371
1372 size = *lru_size;
1373 if (WARN_ONCE(size < 0,
1374 "%s(%p, %d, %d): lru_size %ld\n",
1375 __func__, lruvec, lru, nr_pages, size)) {
1376 VM_BUG_ON(1);
1377 *lru_size = 0;
1378 }
1379
1380 if (nr_pages > 0)
1381 *lru_size += nr_pages;
1382}
1383
1384/**
1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386 * @memcg: the memory cgroup
1387 *
1388 * Returns the maximum amount of memory @mem can be charged with, in
1389 * pages.
1390 */
1391static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392{
1393 unsigned long margin = 0;
1394 unsigned long count;
1395 unsigned long limit;
1396
1397 count = page_counter_read(&memcg->memory);
1398 limit = READ_ONCE(memcg->memory.max);
1399 if (count < limit)
1400 margin = limit - count;
1401
1402 if (do_memsw_account()) {
1403 count = page_counter_read(&memcg->memsw);
1404 limit = READ_ONCE(memcg->memsw.max);
1405 if (count < limit)
1406 margin = min(margin, limit - count);
1407 else
1408 margin = 0;
1409 }
1410
1411 return margin;
1412}
1413
1414/*
1415 * A routine for checking "mem" is under move_account() or not.
1416 *
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
1420 */
1421static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422{
1423 struct mem_cgroup *from;
1424 struct mem_cgroup *to;
1425 bool ret = false;
1426 /*
1427 * Unlike task_move routines, we access mc.to, mc.from not under
1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429 */
1430 spin_lock(&mc.lock);
1431 from = mc.from;
1432 to = mc.to;
1433 if (!from)
1434 goto unlock;
1435
1436 ret = mem_cgroup_is_descendant(from, memcg) ||
1437 mem_cgroup_is_descendant(to, memcg);
1438unlock:
1439 spin_unlock(&mc.lock);
1440 return ret;
1441}
1442
1443static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444{
1445 if (mc.moving_task && current != mc.moving_task) {
1446 if (mem_cgroup_under_move(memcg)) {
1447 DEFINE_WAIT(wait);
1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449 /* moving charge context might have finished. */
1450 if (mc.moving_task)
1451 schedule();
1452 finish_wait(&mc.waitq, &wait);
1453 return true;
1454 }
1455 }
1456 return false;
1457}
1458
1459static char *memory_stat_format(struct mem_cgroup *memcg)
1460{
1461 struct seq_buf s;
1462 int i;
1463
1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465 if (!s.buffer)
1466 return NULL;
1467
1468 /*
1469 * Provide statistics on the state of the memory subsystem as
1470 * well as cumulative event counters that show past behavior.
1471 *
1472 * This list is ordered following a combination of these gradients:
1473 * 1) generic big picture -> specifics and details
1474 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475 *
1476 * Current memory state:
1477 */
1478
1479 seq_buf_printf(&s, "anon %llu\n",
1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481 PAGE_SIZE);
1482 seq_buf_printf(&s, "file %llu\n",
1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484 PAGE_SIZE);
1485 seq_buf_printf(&s, "kernel_stack %llu\n",
1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487 1024);
1488 seq_buf_printf(&s, "slab %llu\n",
1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491 seq_buf_printf(&s, "percpu %llu\n",
1492 (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493 seq_buf_printf(&s, "sock %llu\n",
1494 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495 PAGE_SIZE);
1496
1497 seq_buf_printf(&s, "shmem %llu\n",
1498 (u64)memcg_page_state(memcg, NR_SHMEM) *
1499 PAGE_SIZE);
1500 seq_buf_printf(&s, "file_mapped %llu\n",
1501 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502 PAGE_SIZE);
1503 seq_buf_printf(&s, "file_dirty %llu\n",
1504 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505 PAGE_SIZE);
1506 seq_buf_printf(&s, "file_writeback %llu\n",
1507 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508 PAGE_SIZE);
1509
1510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511 seq_buf_printf(&s, "anon_thp %llu\n",
1512 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513 HPAGE_PMD_SIZE);
1514#endif
1515
1516 for (i = 0; i < NR_LRU_LISTS; i++)
1517 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519 PAGE_SIZE);
1520
1521 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525
1526 /* Accumulated memory events */
1527
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529 memcg_events(memcg, PGFAULT));
1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531 memcg_events(memcg, PGMAJFAULT));
1532
1533 seq_buf_printf(&s, "workingset_refault_anon %lu\n",
1534 memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
1535 seq_buf_printf(&s, "workingset_refault_file %lu\n",
1536 memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
1537 seq_buf_printf(&s, "workingset_activate_anon %lu\n",
1538 memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
1539 seq_buf_printf(&s, "workingset_activate_file %lu\n",
1540 memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1541 seq_buf_printf(&s, "workingset_restore_anon %lu\n",
1542 memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
1543 seq_buf_printf(&s, "workingset_restore_file %lu\n",
1544 memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1545 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1546 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1547
1548 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1549 memcg_events(memcg, PGREFILL));
1550 seq_buf_printf(&s, "pgscan %lu\n",
1551 memcg_events(memcg, PGSCAN_KSWAPD) +
1552 memcg_events(memcg, PGSCAN_DIRECT));
1553 seq_buf_printf(&s, "pgsteal %lu\n",
1554 memcg_events(memcg, PGSTEAL_KSWAPD) +
1555 memcg_events(memcg, PGSTEAL_DIRECT));
1556 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1557 memcg_events(memcg, PGACTIVATE));
1558 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1559 memcg_events(memcg, PGDEACTIVATE));
1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1561 memcg_events(memcg, PGLAZYFREE));
1562 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1563 memcg_events(memcg, PGLAZYFREED));
1564
1565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567 memcg_events(memcg, THP_FAULT_ALLOC));
1568 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1570#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1571
1572 /* The above should easily fit into one page */
1573 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1574
1575 return s.buffer;
1576}
1577
1578#define K(x) ((x) << (PAGE_SHIFT-10))
1579/**
1580 * mem_cgroup_print_oom_context: Print OOM information relevant to
1581 * memory controller.
1582 * @memcg: The memory cgroup that went over limit
1583 * @p: Task that is going to be killed
1584 *
1585 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1586 * enabled
1587 */
1588void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1589{
1590 rcu_read_lock();
1591
1592 if (memcg) {
1593 pr_cont(",oom_memcg=");
1594 pr_cont_cgroup_path(memcg->css.cgroup);
1595 } else
1596 pr_cont(",global_oom");
1597 if (p) {
1598 pr_cont(",task_memcg=");
1599 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1600 }
1601 rcu_read_unlock();
1602}
1603
1604/**
1605 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1606 * memory controller.
1607 * @memcg: The memory cgroup that went over limit
1608 */
1609void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1610{
1611 char *buf;
1612
1613 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1614 K((u64)page_counter_read(&memcg->memory)),
1615 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1617 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1618 K((u64)page_counter_read(&memcg->swap)),
1619 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620 else {
1621 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1622 K((u64)page_counter_read(&memcg->memsw)),
1623 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1624 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1625 K((u64)page_counter_read(&memcg->kmem)),
1626 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627 }
1628
1629 pr_info("Memory cgroup stats for ");
1630 pr_cont_cgroup_path(memcg->css.cgroup);
1631 pr_cont(":");
1632 buf = memory_stat_format(memcg);
1633 if (!buf)
1634 return;
1635 pr_info("%s", buf);
1636 kfree(buf);
1637}
1638
1639/*
1640 * Return the memory (and swap, if configured) limit for a memcg.
1641 */
1642unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1643{
1644 unsigned long max;
1645
1646 max = READ_ONCE(memcg->memory.max);
1647 if (mem_cgroup_swappiness(memcg)) {
1648 unsigned long memsw_max;
1649 unsigned long swap_max;
1650
1651 memsw_max = memcg->memsw.max;
1652 swap_max = READ_ONCE(memcg->swap.max);
1653 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1654 max = min(max + swap_max, memsw_max);
1655 }
1656 return max;
1657}
1658
1659unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1660{
1661 return page_counter_read(&memcg->memory);
1662}
1663
1664static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665 int order)
1666{
1667 struct oom_control oc = {
1668 .zonelist = NULL,
1669 .nodemask = NULL,
1670 .memcg = memcg,
1671 .gfp_mask = gfp_mask,
1672 .order = order,
1673 };
1674 bool ret = true;
1675
1676 if (mutex_lock_killable(&oom_lock))
1677 return true;
1678
1679 if (mem_cgroup_margin(memcg) >= (1 << order))
1680 goto unlock;
1681
1682 /*
1683 * A few threads which were not waiting at mutex_lock_killable() can
1684 * fail to bail out. Therefore, check again after holding oom_lock.
1685 */
1686 ret = should_force_charge() || out_of_memory(&oc);
1687
1688unlock:
1689 mutex_unlock(&oom_lock);
1690 return ret;
1691}
1692
1693static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694 pg_data_t *pgdat,
1695 gfp_t gfp_mask,
1696 unsigned long *total_scanned)
1697{
1698 struct mem_cgroup *victim = NULL;
1699 int total = 0;
1700 int loop = 0;
1701 unsigned long excess;
1702 unsigned long nr_scanned;
1703 struct mem_cgroup_reclaim_cookie reclaim = {
1704 .pgdat = pgdat,
1705 };
1706
1707 excess = soft_limit_excess(root_memcg);
1708
1709 while (1) {
1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711 if (!victim) {
1712 loop++;
1713 if (loop >= 2) {
1714 /*
1715 * If we have not been able to reclaim
1716 * anything, it might because there are
1717 * no reclaimable pages under this hierarchy
1718 */
1719 if (!total)
1720 break;
1721 /*
1722 * We want to do more targeted reclaim.
1723 * excess >> 2 is not to excessive so as to
1724 * reclaim too much, nor too less that we keep
1725 * coming back to reclaim from this cgroup
1726 */
1727 if (total >= (excess >> 2) ||
1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729 break;
1730 }
1731 continue;
1732 }
1733 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1734 pgdat, &nr_scanned);
1735 *total_scanned += nr_scanned;
1736 if (!soft_limit_excess(root_memcg))
1737 break;
1738 }
1739 mem_cgroup_iter_break(root_memcg, victim);
1740 return total;
1741}
1742
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745 .name = "memcg_oom_lock",
1746};
1747#endif
1748
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1756{
1757 struct mem_cgroup *iter, *failed = NULL;
1758
1759 spin_lock(&memcg_oom_lock);
1760
1761 for_each_mem_cgroup_tree(iter, memcg) {
1762 if (iter->oom_lock) {
1763 /*
1764 * this subtree of our hierarchy is already locked
1765 * so we cannot give a lock.
1766 */
1767 failed = iter;
1768 mem_cgroup_iter_break(memcg, iter);
1769 break;
1770 } else
1771 iter->oom_lock = true;
1772 }
1773
1774 if (failed) {
1775 /*
1776 * OK, we failed to lock the whole subtree so we have
1777 * to clean up what we set up to the failing subtree
1778 */
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 if (iter == failed) {
1781 mem_cgroup_iter_break(memcg, iter);
1782 break;
1783 }
1784 iter->oom_lock = false;
1785 }
1786 } else
1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788
1789 spin_unlock(&memcg_oom_lock);
1790
1791 return !failed;
1792}
1793
1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795{
1796 struct mem_cgroup *iter;
1797
1798 spin_lock(&memcg_oom_lock);
1799 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1800 for_each_mem_cgroup_tree(iter, memcg)
1801 iter->oom_lock = false;
1802 spin_unlock(&memcg_oom_lock);
1803}
1804
1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806{
1807 struct mem_cgroup *iter;
1808
1809 spin_lock(&memcg_oom_lock);
1810 for_each_mem_cgroup_tree(iter, memcg)
1811 iter->under_oom++;
1812 spin_unlock(&memcg_oom_lock);
1813}
1814
1815static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1816{
1817 struct mem_cgroup *iter;
1818
1819 /*
1820 * When a new child is created while the hierarchy is under oom,
1821 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1822 */
1823 spin_lock(&memcg_oom_lock);
1824 for_each_mem_cgroup_tree(iter, memcg)
1825 if (iter->under_oom > 0)
1826 iter->under_oom--;
1827 spin_unlock(&memcg_oom_lock);
1828}
1829
1830static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1831
1832struct oom_wait_info {
1833 struct mem_cgroup *memcg;
1834 wait_queue_entry_t wait;
1835};
1836
1837static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1838 unsigned mode, int sync, void *arg)
1839{
1840 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1841 struct mem_cgroup *oom_wait_memcg;
1842 struct oom_wait_info *oom_wait_info;
1843
1844 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845 oom_wait_memcg = oom_wait_info->memcg;
1846
1847 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1848 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1849 return 0;
1850 return autoremove_wake_function(wait, mode, sync, arg);
1851}
1852
1853static void memcg_oom_recover(struct mem_cgroup *memcg)
1854{
1855 /*
1856 * For the following lockless ->under_oom test, the only required
1857 * guarantee is that it must see the state asserted by an OOM when
1858 * this function is called as a result of userland actions
1859 * triggered by the notification of the OOM. This is trivially
1860 * achieved by invoking mem_cgroup_mark_under_oom() before
1861 * triggering notification.
1862 */
1863 if (memcg && memcg->under_oom)
1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865}
1866
1867enum oom_status {
1868 OOM_SUCCESS,
1869 OOM_FAILED,
1870 OOM_ASYNC,
1871 OOM_SKIPPED
1872};
1873
1874static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1875{
1876 enum oom_status ret;
1877 bool locked;
1878
1879 if (order > PAGE_ALLOC_COSTLY_ORDER)
1880 return OOM_SKIPPED;
1881
1882 memcg_memory_event(memcg, MEMCG_OOM);
1883
1884 /*
1885 * We are in the middle of the charge context here, so we
1886 * don't want to block when potentially sitting on a callstack
1887 * that holds all kinds of filesystem and mm locks.
1888 *
1889 * cgroup1 allows disabling the OOM killer and waiting for outside
1890 * handling until the charge can succeed; remember the context and put
1891 * the task to sleep at the end of the page fault when all locks are
1892 * released.
1893 *
1894 * On the other hand, in-kernel OOM killer allows for an async victim
1895 * memory reclaim (oom_reaper) and that means that we are not solely
1896 * relying on the oom victim to make a forward progress and we can
1897 * invoke the oom killer here.
1898 *
1899 * Please note that mem_cgroup_out_of_memory might fail to find a
1900 * victim and then we have to bail out from the charge path.
1901 */
1902 if (memcg->oom_kill_disable) {
1903 if (!current->in_user_fault)
1904 return OOM_SKIPPED;
1905 css_get(&memcg->css);
1906 current->memcg_in_oom = memcg;
1907 current->memcg_oom_gfp_mask = mask;
1908 current->memcg_oom_order = order;
1909
1910 return OOM_ASYNC;
1911 }
1912
1913 mem_cgroup_mark_under_oom(memcg);
1914
1915 locked = mem_cgroup_oom_trylock(memcg);
1916
1917 if (locked)
1918 mem_cgroup_oom_notify(memcg);
1919
1920 mem_cgroup_unmark_under_oom(memcg);
1921 if (mem_cgroup_out_of_memory(memcg, mask, order))
1922 ret = OOM_SUCCESS;
1923 else
1924 ret = OOM_FAILED;
1925
1926 if (locked)
1927 mem_cgroup_oom_unlock(memcg);
1928
1929 return ret;
1930}
1931
1932/**
1933 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1934 * @handle: actually kill/wait or just clean up the OOM state
1935 *
1936 * This has to be called at the end of a page fault if the memcg OOM
1937 * handler was enabled.
1938 *
1939 * Memcg supports userspace OOM handling where failed allocations must
1940 * sleep on a waitqueue until the userspace task resolves the
1941 * situation. Sleeping directly in the charge context with all kinds
1942 * of locks held is not a good idea, instead we remember an OOM state
1943 * in the task and mem_cgroup_oom_synchronize() has to be called at
1944 * the end of the page fault to complete the OOM handling.
1945 *
1946 * Returns %true if an ongoing memcg OOM situation was detected and
1947 * completed, %false otherwise.
1948 */
1949bool mem_cgroup_oom_synchronize(bool handle)
1950{
1951 struct mem_cgroup *memcg = current->memcg_in_oom;
1952 struct oom_wait_info owait;
1953 bool locked;
1954
1955 /* OOM is global, do not handle */
1956 if (!memcg)
1957 return false;
1958
1959 if (!handle)
1960 goto cleanup;
1961
1962 owait.memcg = memcg;
1963 owait.wait.flags = 0;
1964 owait.wait.func = memcg_oom_wake_function;
1965 owait.wait.private = current;
1966 INIT_LIST_HEAD(&owait.wait.entry);
1967
1968 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1969 mem_cgroup_mark_under_oom(memcg);
1970
1971 locked = mem_cgroup_oom_trylock(memcg);
1972
1973 if (locked)
1974 mem_cgroup_oom_notify(memcg);
1975
1976 if (locked && !memcg->oom_kill_disable) {
1977 mem_cgroup_unmark_under_oom(memcg);
1978 finish_wait(&memcg_oom_waitq, &owait.wait);
1979 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1980 current->memcg_oom_order);
1981 } else {
1982 schedule();
1983 mem_cgroup_unmark_under_oom(memcg);
1984 finish_wait(&memcg_oom_waitq, &owait.wait);
1985 }
1986
1987 if (locked) {
1988 mem_cgroup_oom_unlock(memcg);
1989 /*
1990 * There is no guarantee that an OOM-lock contender
1991 * sees the wakeups triggered by the OOM kill
1992 * uncharges. Wake any sleepers explicitely.
1993 */
1994 memcg_oom_recover(memcg);
1995 }
1996cleanup:
1997 current->memcg_in_oom = NULL;
1998 css_put(&memcg->css);
1999 return true;
2000}
2001
2002/**
2003 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2004 * @victim: task to be killed by the OOM killer
2005 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2006 *
2007 * Returns a pointer to a memory cgroup, which has to be cleaned up
2008 * by killing all belonging OOM-killable tasks.
2009 *
2010 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2011 */
2012struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2013 struct mem_cgroup *oom_domain)
2014{
2015 struct mem_cgroup *oom_group = NULL;
2016 struct mem_cgroup *memcg;
2017
2018 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2019 return NULL;
2020
2021 if (!oom_domain)
2022 oom_domain = root_mem_cgroup;
2023
2024 rcu_read_lock();
2025
2026 memcg = mem_cgroup_from_task(victim);
2027 if (memcg == root_mem_cgroup)
2028 goto out;
2029
2030 /*
2031 * If the victim task has been asynchronously moved to a different
2032 * memory cgroup, we might end up killing tasks outside oom_domain.
2033 * In this case it's better to ignore memory.group.oom.
2034 */
2035 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2036 goto out;
2037
2038 /*
2039 * Traverse the memory cgroup hierarchy from the victim task's
2040 * cgroup up to the OOMing cgroup (or root) to find the
2041 * highest-level memory cgroup with oom.group set.
2042 */
2043 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2044 if (memcg->oom_group)
2045 oom_group = memcg;
2046
2047 if (memcg == oom_domain)
2048 break;
2049 }
2050
2051 if (oom_group)
2052 css_get(&oom_group->css);
2053out:
2054 rcu_read_unlock();
2055
2056 return oom_group;
2057}
2058
2059void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2060{
2061 pr_info("Tasks in ");
2062 pr_cont_cgroup_path(memcg->css.cgroup);
2063 pr_cont(" are going to be killed due to memory.oom.group set\n");
2064}
2065
2066/**
2067 * lock_page_memcg - lock a page->mem_cgroup binding
2068 * @page: the page
2069 *
2070 * This function protects unlocked LRU pages from being moved to
2071 * another cgroup.
2072 *
2073 * It ensures lifetime of the returned memcg. Caller is responsible
2074 * for the lifetime of the page; __unlock_page_memcg() is available
2075 * when @page might get freed inside the locked section.
2076 */
2077struct mem_cgroup *lock_page_memcg(struct page *page)
2078{
2079 struct page *head = compound_head(page); /* rmap on tail pages */
2080 struct mem_cgroup *memcg;
2081 unsigned long flags;
2082
2083 /*
2084 * The RCU lock is held throughout the transaction. The fast
2085 * path can get away without acquiring the memcg->move_lock
2086 * because page moving starts with an RCU grace period.
2087 *
2088 * The RCU lock also protects the memcg from being freed when
2089 * the page state that is going to change is the only thing
2090 * preventing the page itself from being freed. E.g. writeback
2091 * doesn't hold a page reference and relies on PG_writeback to
2092 * keep off truncation, migration and so forth.
2093 */
2094 rcu_read_lock();
2095
2096 if (mem_cgroup_disabled())
2097 return NULL;
2098again:
2099 memcg = head->mem_cgroup;
2100 if (unlikely(!memcg))
2101 return NULL;
2102
2103 if (atomic_read(&memcg->moving_account) <= 0)
2104 return memcg;
2105
2106 spin_lock_irqsave(&memcg->move_lock, flags);
2107 if (memcg != head->mem_cgroup) {
2108 spin_unlock_irqrestore(&memcg->move_lock, flags);
2109 goto again;
2110 }
2111
2112 /*
2113 * When charge migration first begins, we can have locked and
2114 * unlocked page stat updates happening concurrently. Track
2115 * the task who has the lock for unlock_page_memcg().
2116 */
2117 memcg->move_lock_task = current;
2118 memcg->move_lock_flags = flags;
2119
2120 return memcg;
2121}
2122EXPORT_SYMBOL(lock_page_memcg);
2123
2124/**
2125 * __unlock_page_memcg - unlock and unpin a memcg
2126 * @memcg: the memcg
2127 *
2128 * Unlock and unpin a memcg returned by lock_page_memcg().
2129 */
2130void __unlock_page_memcg(struct mem_cgroup *memcg)
2131{
2132 if (memcg && memcg->move_lock_task == current) {
2133 unsigned long flags = memcg->move_lock_flags;
2134
2135 memcg->move_lock_task = NULL;
2136 memcg->move_lock_flags = 0;
2137
2138 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139 }
2140
2141 rcu_read_unlock();
2142}
2143
2144/**
2145 * unlock_page_memcg - unlock a page->mem_cgroup binding
2146 * @page: the page
2147 */
2148void unlock_page_memcg(struct page *page)
2149{
2150 struct page *head = compound_head(page);
2151
2152 __unlock_page_memcg(head->mem_cgroup);
2153}
2154EXPORT_SYMBOL(unlock_page_memcg);
2155
2156struct memcg_stock_pcp {
2157 struct mem_cgroup *cached; /* this never be root cgroup */
2158 unsigned int nr_pages;
2159
2160#ifdef CONFIG_MEMCG_KMEM
2161 struct obj_cgroup *cached_objcg;
2162 unsigned int nr_bytes;
2163#endif
2164
2165 struct work_struct work;
2166 unsigned long flags;
2167#define FLUSHING_CACHED_CHARGE 0
2168};
2169static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2170static DEFINE_MUTEX(percpu_charge_mutex);
2171
2172#ifdef CONFIG_MEMCG_KMEM
2173static void drain_obj_stock(struct memcg_stock_pcp *stock);
2174static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2175 struct mem_cgroup *root_memcg);
2176
2177#else
2178static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2179{
2180}
2181static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2182 struct mem_cgroup *root_memcg)
2183{
2184 return false;
2185}
2186#endif
2187
2188/**
2189 * consume_stock: Try to consume stocked charge on this cpu.
2190 * @memcg: memcg to consume from.
2191 * @nr_pages: how many pages to charge.
2192 *
2193 * The charges will only happen if @memcg matches the current cpu's memcg
2194 * stock, and at least @nr_pages are available in that stock. Failure to
2195 * service an allocation will refill the stock.
2196 *
2197 * returns true if successful, false otherwise.
2198 */
2199static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2200{
2201 struct memcg_stock_pcp *stock;
2202 unsigned long flags;
2203 bool ret = false;
2204
2205 if (nr_pages > MEMCG_CHARGE_BATCH)
2206 return ret;
2207
2208 local_irq_save(flags);
2209
2210 stock = this_cpu_ptr(&memcg_stock);
2211 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2212 stock->nr_pages -= nr_pages;
2213 ret = true;
2214 }
2215
2216 local_irq_restore(flags);
2217
2218 return ret;
2219}
2220
2221/*
2222 * Returns stocks cached in percpu and reset cached information.
2223 */
2224static void drain_stock(struct memcg_stock_pcp *stock)
2225{
2226 struct mem_cgroup *old = stock->cached;
2227
2228 if (!old)
2229 return;
2230
2231 if (stock->nr_pages) {
2232 page_counter_uncharge(&old->memory, stock->nr_pages);
2233 if (do_memsw_account())
2234 page_counter_uncharge(&old->memsw, stock->nr_pages);
2235 stock->nr_pages = 0;
2236 }
2237
2238 css_put(&old->css);
2239 stock->cached = NULL;
2240}
2241
2242static void drain_local_stock(struct work_struct *dummy)
2243{
2244 struct memcg_stock_pcp *stock;
2245 unsigned long flags;
2246
2247 /*
2248 * The only protection from memory hotplug vs. drain_stock races is
2249 * that we always operate on local CPU stock here with IRQ disabled
2250 */
2251 local_irq_save(flags);
2252
2253 stock = this_cpu_ptr(&memcg_stock);
2254 drain_obj_stock(stock);
2255 drain_stock(stock);
2256 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257
2258 local_irq_restore(flags);
2259}
2260
2261/*
2262 * Cache charges(val) to local per_cpu area.
2263 * This will be consumed by consume_stock() function, later.
2264 */
2265static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266{
2267 struct memcg_stock_pcp *stock;
2268 unsigned long flags;
2269
2270 local_irq_save(flags);
2271
2272 stock = this_cpu_ptr(&memcg_stock);
2273 if (stock->cached != memcg) { /* reset if necessary */
2274 drain_stock(stock);
2275 css_get(&memcg->css);
2276 stock->cached = memcg;
2277 }
2278 stock->nr_pages += nr_pages;
2279
2280 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2281 drain_stock(stock);
2282
2283 local_irq_restore(flags);
2284}
2285
2286/*
2287 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2288 * of the hierarchy under it.
2289 */
2290static void drain_all_stock(struct mem_cgroup *root_memcg)
2291{
2292 int cpu, curcpu;
2293
2294 /* If someone's already draining, avoid adding running more workers. */
2295 if (!mutex_trylock(&percpu_charge_mutex))
2296 return;
2297 /*
2298 * Notify other cpus that system-wide "drain" is running
2299 * We do not care about races with the cpu hotplug because cpu down
2300 * as well as workers from this path always operate on the local
2301 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2302 */
2303 curcpu = get_cpu();
2304 for_each_online_cpu(cpu) {
2305 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2306 struct mem_cgroup *memcg;
2307 bool flush = false;
2308
2309 rcu_read_lock();
2310 memcg = stock->cached;
2311 if (memcg && stock->nr_pages &&
2312 mem_cgroup_is_descendant(memcg, root_memcg))
2313 flush = true;
2314 if (obj_stock_flush_required(stock, root_memcg))
2315 flush = true;
2316 rcu_read_unlock();
2317
2318 if (flush &&
2319 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2320 if (cpu == curcpu)
2321 drain_local_stock(&stock->work);
2322 else
2323 schedule_work_on(cpu, &stock->work);
2324 }
2325 }
2326 put_cpu();
2327 mutex_unlock(&percpu_charge_mutex);
2328}
2329
2330static int memcg_hotplug_cpu_dead(unsigned int cpu)
2331{
2332 struct memcg_stock_pcp *stock;
2333 struct mem_cgroup *memcg, *mi;
2334
2335 stock = &per_cpu(memcg_stock, cpu);
2336 drain_stock(stock);
2337
2338 for_each_mem_cgroup(memcg) {
2339 int i;
2340
2341 for (i = 0; i < MEMCG_NR_STAT; i++) {
2342 int nid;
2343 long x;
2344
2345 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2346 if (x)
2347 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2348 atomic_long_add(x, &memcg->vmstats[i]);
2349
2350 if (i >= NR_VM_NODE_STAT_ITEMS)
2351 continue;
2352
2353 for_each_node(nid) {
2354 struct mem_cgroup_per_node *pn;
2355
2356 pn = mem_cgroup_nodeinfo(memcg, nid);
2357 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2358 if (x)
2359 do {
2360 atomic_long_add(x, &pn->lruvec_stat[i]);
2361 } while ((pn = parent_nodeinfo(pn, nid)));
2362 }
2363 }
2364
2365 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2366 long x;
2367
2368 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2369 if (x)
2370 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2371 atomic_long_add(x, &memcg->vmevents[i]);
2372 }
2373 }
2374
2375 return 0;
2376}
2377
2378static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379 unsigned int nr_pages,
2380 gfp_t gfp_mask)
2381{
2382 unsigned long nr_reclaimed = 0;
2383
2384 do {
2385 unsigned long pflags;
2386
2387 if (page_counter_read(&memcg->memory) <=
2388 READ_ONCE(memcg->memory.high))
2389 continue;
2390
2391 memcg_memory_event(memcg, MEMCG_HIGH);
2392
2393 psi_memstall_enter(&pflags);
2394 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2395 gfp_mask, true);
2396 psi_memstall_leave(&pflags);
2397 } while ((memcg = parent_mem_cgroup(memcg)) &&
2398 !mem_cgroup_is_root(memcg));
2399
2400 return nr_reclaimed;
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405 struct mem_cgroup *memcg;
2406
2407 memcg = container_of(work, struct mem_cgroup, high_work);
2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409}
2410
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 * overage ratio to a delay.
2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 * to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 * +-------+------------------------+
2436 * | usage | time to allocate in ms |
2437 * +-------+------------------------+
2438 * | 100M | 0 |
2439 * | 101M | 6 |
2440 * | 102M | 25 |
2441 * | 103M | 57 |
2442 * | 104M | 102 |
2443 * | 105M | 159 |
2444 * | 106M | 230 |
2445 * | 107M | 313 |
2446 * | 108M | 409 |
2447 * | 109M | 518 |
2448 * | 110M | 639 |
2449 * | 111M | 774 |
2450 * | 112M | 921 |
2451 * | 113M | 1081 |
2452 * | 114M | 1254 |
2453 * | 115M | 1439 |
2454 * | 116M | 1638 |
2455 * | 117M | 1849 |
2456 * | 118M | 2000 |
2457 * | 119M | 2000 |
2458 * | 120M | 2000 |
2459 * +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
2464static u64 calculate_overage(unsigned long usage, unsigned long high)
2465{
2466 u64 overage;
2467
2468 if (usage <= high)
2469 return 0;
2470
2471 /*
2472 * Prevent division by 0 in overage calculation by acting as if
2473 * it was a threshold of 1 page
2474 */
2475 high = max(high, 1UL);
2476
2477 overage = usage - high;
2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 return div64_u64(overage, high);
2480}
2481
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484 u64 overage, max_overage = 0;
2485
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->memory),
2488 READ_ONCE(memcg->memory.high));
2489 max_overage = max(overage, max_overage);
2490 } while ((memcg = parent_mem_cgroup(memcg)) &&
2491 !mem_cgroup_is_root(memcg));
2492
2493 return max_overage;
2494}
2495
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498 u64 overage, max_overage = 0;
2499
2500 do {
2501 overage = calculate_overage(page_counter_read(&memcg->swap),
2502 READ_ONCE(memcg->swap.high));
2503 if (overage)
2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 max_overage = max(overage, max_overage);
2506 } while ((memcg = parent_mem_cgroup(memcg)) &&
2507 !mem_cgroup_is_root(memcg));
2508
2509 return max_overage;
2510}
2511
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 unsigned int nr_pages,
2518 u64 max_overage)
2519{
2520 unsigned long penalty_jiffies;
2521
2522 if (!max_overage)
2523 return 0;
2524
2525 /*
2526 * We use overage compared to memory.high to calculate the number of
2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 * fairly lenient on small overages, and increasingly harsh when the
2529 * memcg in question makes it clear that it has no intention of stopping
2530 * its crazy behaviour, so we exponentially increase the delay based on
2531 * overage amount.
2532 */
2533 penalty_jiffies = max_overage * max_overage * HZ;
2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536
2537 /*
2538 * Factor in the task's own contribution to the overage, such that four
2539 * N-sized allocations are throttled approximately the same as one
2540 * 4N-sized allocation.
2541 *
2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 * larger the current charge patch is than that.
2544 */
2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554 unsigned long penalty_jiffies;
2555 unsigned long pflags;
2556 unsigned long nr_reclaimed;
2557 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 int nr_retries = MAX_RECLAIM_RETRIES;
2559 struct mem_cgroup *memcg;
2560 bool in_retry = false;
2561
2562 if (likely(!nr_pages))
2563 return;
2564
2565 memcg = get_mem_cgroup_from_mm(current->mm);
2566 current->memcg_nr_pages_over_high = 0;
2567
2568retry_reclaim:
2569 /*
2570 * The allocating task should reclaim at least the batch size, but for
2571 * subsequent retries we only want to do what's necessary to prevent oom
2572 * or breaching resource isolation.
2573 *
2574 * This is distinct from memory.max or page allocator behaviour because
2575 * memory.high is currently batched, whereas memory.max and the page
2576 * allocator run every time an allocation is made.
2577 */
2578 nr_reclaimed = reclaim_high(memcg,
2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 GFP_KERNEL);
2581
2582 /*
2583 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 * allocators proactively to slow down excessive growth.
2585 */
2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 mem_find_max_overage(memcg));
2588
2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 swap_find_max_overage(memcg));
2591
2592 /*
2593 * Clamp the max delay per usermode return so as to still keep the
2594 * application moving forwards and also permit diagnostics, albeit
2595 * extremely slowly.
2596 */
2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
2599 /*
2600 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 * that it's not even worth doing, in an attempt to be nice to those who
2602 * go only a small amount over their memory.high value and maybe haven't
2603 * been aggressively reclaimed enough yet.
2604 */
2605 if (penalty_jiffies <= HZ / 100)
2606 goto out;
2607
2608 /*
2609 * If reclaim is making forward progress but we're still over
2610 * memory.high, we want to encourage that rather than doing allocator
2611 * throttling.
2612 */
2613 if (nr_reclaimed || nr_retries--) {
2614 in_retry = true;
2615 goto retry_reclaim;
2616 }
2617
2618 /*
2619 * If we exit early, we're guaranteed to die (since
2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 * need to account for any ill-begotten jiffies to pay them off later.
2622 */
2623 psi_memstall_enter(&pflags);
2624 schedule_timeout_killable(penalty_jiffies);
2625 psi_memstall_leave(&pflags);
2626
2627out:
2628 css_put(&memcg->css);
2629}
2630
2631static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages)
2633{
2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 int nr_retries = MAX_RECLAIM_RETRIES;
2636 struct mem_cgroup *mem_over_limit;
2637 struct page_counter *counter;
2638 enum oom_status oom_status;
2639 unsigned long nr_reclaimed;
2640 bool may_swap = true;
2641 bool drained = false;
2642 unsigned long pflags;
2643
2644 if (mem_cgroup_is_root(memcg))
2645 return 0;
2646retry:
2647 if (consume_stock(memcg, nr_pages))
2648 return 0;
2649
2650 if (!do_memsw_account() ||
2651 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2652 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653 goto done_restock;
2654 if (do_memsw_account())
2655 page_counter_uncharge(&memcg->memsw, batch);
2656 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657 } else {
2658 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659 may_swap = false;
2660 }
2661
2662 if (batch > nr_pages) {
2663 batch = nr_pages;
2664 goto retry;
2665 }
2666
2667 /*
2668 * Memcg doesn't have a dedicated reserve for atomic
2669 * allocations. But like the global atomic pool, we need to
2670 * put the burden of reclaim on regular allocation requests
2671 * and let these go through as privileged allocations.
2672 */
2673 if (gfp_mask & __GFP_ATOMIC)
2674 goto force;
2675
2676 /*
2677 * Unlike in global OOM situations, memcg is not in a physical
2678 * memory shortage. Allow dying and OOM-killed tasks to
2679 * bypass the last charges so that they can exit quickly and
2680 * free their memory.
2681 */
2682 if (unlikely(should_force_charge()))
2683 goto force;
2684
2685 /*
2686 * Prevent unbounded recursion when reclaim operations need to
2687 * allocate memory. This might exceed the limits temporarily,
2688 * but we prefer facilitating memory reclaim and getting back
2689 * under the limit over triggering OOM kills in these cases.
2690 */
2691 if (unlikely(current->flags & PF_MEMALLOC))
2692 goto force;
2693
2694 if (unlikely(task_in_memcg_oom(current)))
2695 goto nomem;
2696
2697 if (!gfpflags_allow_blocking(gfp_mask))
2698 goto nomem;
2699
2700 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701
2702 psi_memstall_enter(&pflags);
2703 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2704 gfp_mask, may_swap);
2705 psi_memstall_leave(&pflags);
2706
2707 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708 goto retry;
2709
2710 if (!drained) {
2711 drain_all_stock(mem_over_limit);
2712 drained = true;
2713 goto retry;
2714 }
2715
2716 if (gfp_mask & __GFP_NORETRY)
2717 goto nomem;
2718 /*
2719 * Even though the limit is exceeded at this point, reclaim
2720 * may have been able to free some pages. Retry the charge
2721 * before killing the task.
2722 *
2723 * Only for regular pages, though: huge pages are rather
2724 * unlikely to succeed so close to the limit, and we fall back
2725 * to regular pages anyway in case of failure.
2726 */
2727 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728 goto retry;
2729 /*
2730 * At task move, charge accounts can be doubly counted. So, it's
2731 * better to wait until the end of task_move if something is going on.
2732 */
2733 if (mem_cgroup_wait_acct_move(mem_over_limit))
2734 goto retry;
2735
2736 if (nr_retries--)
2737 goto retry;
2738
2739 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740 goto nomem;
2741
2742 if (gfp_mask & __GFP_NOFAIL)
2743 goto force;
2744
2745 if (fatal_signal_pending(current))
2746 goto force;
2747
2748 /*
2749 * keep retrying as long as the memcg oom killer is able to make
2750 * a forward progress or bypass the charge if the oom killer
2751 * couldn't make any progress.
2752 */
2753 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2754 get_order(nr_pages * PAGE_SIZE));
2755 switch (oom_status) {
2756 case OOM_SUCCESS:
2757 nr_retries = MAX_RECLAIM_RETRIES;
2758 goto retry;
2759 case OOM_FAILED:
2760 goto force;
2761 default:
2762 goto nomem;
2763 }
2764nomem:
2765 if (!(gfp_mask & __GFP_NOFAIL))
2766 return -ENOMEM;
2767force:
2768 /*
2769 * The allocation either can't fail or will lead to more memory
2770 * being freed very soon. Allow memory usage go over the limit
2771 * temporarily by force charging it.
2772 */
2773 page_counter_charge(&memcg->memory, nr_pages);
2774 if (do_memsw_account())
2775 page_counter_charge(&memcg->memsw, nr_pages);
2776
2777 return 0;
2778
2779done_restock:
2780 if (batch > nr_pages)
2781 refill_stock(memcg, batch - nr_pages);
2782
2783 /*
2784 * If the hierarchy is above the normal consumption range, schedule
2785 * reclaim on returning to userland. We can perform reclaim here
2786 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2787 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2788 * not recorded as it most likely matches current's and won't
2789 * change in the meantime. As high limit is checked again before
2790 * reclaim, the cost of mismatch is negligible.
2791 */
2792 do {
2793 bool mem_high, swap_high;
2794
2795 mem_high = page_counter_read(&memcg->memory) >
2796 READ_ONCE(memcg->memory.high);
2797 swap_high = page_counter_read(&memcg->swap) >
2798 READ_ONCE(memcg->swap.high);
2799
2800 /* Don't bother a random interrupted task */
2801 if (in_interrupt()) {
2802 if (mem_high) {
2803 schedule_work(&memcg->high_work);
2804 break;
2805 }
2806 continue;
2807 }
2808
2809 if (mem_high || swap_high) {
2810 /*
2811 * The allocating tasks in this cgroup will need to do
2812 * reclaim or be throttled to prevent further growth
2813 * of the memory or swap footprints.
2814 *
2815 * Target some best-effort fairness between the tasks,
2816 * and distribute reclaim work and delay penalties
2817 * based on how much each task is actually allocating.
2818 */
2819 current->memcg_nr_pages_over_high += batch;
2820 set_notify_resume(current);
2821 break;
2822 }
2823 } while ((memcg = parent_mem_cgroup(memcg)));
2824
2825 return 0;
2826}
2827
2828#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2829static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2830{
2831 if (mem_cgroup_is_root(memcg))
2832 return;
2833
2834 page_counter_uncharge(&memcg->memory, nr_pages);
2835 if (do_memsw_account())
2836 page_counter_uncharge(&memcg->memsw, nr_pages);
2837}
2838#endif
2839
2840static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2841{
2842 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2843 /*
2844 * Any of the following ensures page->mem_cgroup stability:
2845 *
2846 * - the page lock
2847 * - LRU isolation
2848 * - lock_page_memcg()
2849 * - exclusive reference
2850 */
2851 page->mem_cgroup = memcg;
2852}
2853
2854#ifdef CONFIG_MEMCG_KMEM
2855int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2856 gfp_t gfp)
2857{
2858 unsigned int objects = objs_per_slab_page(s, page);
2859 void *vec;
2860
2861 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2862 page_to_nid(page));
2863 if (!vec)
2864 return -ENOMEM;
2865
2866 if (cmpxchg(&page->obj_cgroups, NULL,
2867 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2868 kfree(vec);
2869 else
2870 kmemleak_not_leak(vec);
2871
2872 return 0;
2873}
2874
2875/*
2876 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2877 *
2878 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2879 * cgroup_mutex, etc.
2880 */
2881struct mem_cgroup *mem_cgroup_from_obj(void *p)
2882{
2883 struct page *page;
2884
2885 if (mem_cgroup_disabled())
2886 return NULL;
2887
2888 page = virt_to_head_page(p);
2889
2890 /*
2891 * Slab objects are accounted individually, not per-page.
2892 * Memcg membership data for each individual object is saved in
2893 * the page->obj_cgroups.
2894 */
2895 if (page_has_obj_cgroups(page)) {
2896 struct obj_cgroup *objcg;
2897 unsigned int off;
2898
2899 off = obj_to_index(page->slab_cache, page, p);
2900 objcg = page_obj_cgroups(page)[off];
2901 if (objcg)
2902 return obj_cgroup_memcg(objcg);
2903
2904 return NULL;
2905 }
2906
2907 /* All other pages use page->mem_cgroup */
2908 return page->mem_cgroup;
2909}
2910
2911__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2912{
2913 struct obj_cgroup *objcg = NULL;
2914 struct mem_cgroup *memcg;
2915
2916 if (unlikely(!current->mm && !current->active_memcg))
2917 return NULL;
2918
2919 rcu_read_lock();
2920 if (unlikely(current->active_memcg))
2921 memcg = rcu_dereference(current->active_memcg);
2922 else
2923 memcg = mem_cgroup_from_task(current);
2924
2925 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2926 objcg = rcu_dereference(memcg->objcg);
2927 if (objcg && obj_cgroup_tryget(objcg))
2928 break;
2929 }
2930 rcu_read_unlock();
2931
2932 return objcg;
2933}
2934
2935static int memcg_alloc_cache_id(void)
2936{
2937 int id, size;
2938 int err;
2939
2940 id = ida_simple_get(&memcg_cache_ida,
2941 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2942 if (id < 0)
2943 return id;
2944
2945 if (id < memcg_nr_cache_ids)
2946 return id;
2947
2948 /*
2949 * There's no space for the new id in memcg_caches arrays,
2950 * so we have to grow them.
2951 */
2952 down_write(&memcg_cache_ids_sem);
2953
2954 size = 2 * (id + 1);
2955 if (size < MEMCG_CACHES_MIN_SIZE)
2956 size = MEMCG_CACHES_MIN_SIZE;
2957 else if (size > MEMCG_CACHES_MAX_SIZE)
2958 size = MEMCG_CACHES_MAX_SIZE;
2959
2960 err = memcg_update_all_list_lrus(size);
2961 if (!err)
2962 memcg_nr_cache_ids = size;
2963
2964 up_write(&memcg_cache_ids_sem);
2965
2966 if (err) {
2967 ida_simple_remove(&memcg_cache_ida, id);
2968 return err;
2969 }
2970 return id;
2971}
2972
2973static void memcg_free_cache_id(int id)
2974{
2975 ida_simple_remove(&memcg_cache_ida, id);
2976}
2977
2978/**
2979 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2980 * @memcg: memory cgroup to charge
2981 * @gfp: reclaim mode
2982 * @nr_pages: number of pages to charge
2983 *
2984 * Returns 0 on success, an error code on failure.
2985 */
2986int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2987 unsigned int nr_pages)
2988{
2989 struct page_counter *counter;
2990 int ret;
2991
2992 ret = try_charge(memcg, gfp, nr_pages);
2993 if (ret)
2994 return ret;
2995
2996 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2997 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2998
2999 /*
3000 * Enforce __GFP_NOFAIL allocation because callers are not
3001 * prepared to see failures and likely do not have any failure
3002 * handling code.
3003 */
3004 if (gfp & __GFP_NOFAIL) {
3005 page_counter_charge(&memcg->kmem, nr_pages);
3006 return 0;
3007 }
3008 cancel_charge(memcg, nr_pages);
3009 return -ENOMEM;
3010 }
3011 return 0;
3012}
3013
3014/**
3015 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3016 * @memcg: memcg to uncharge
3017 * @nr_pages: number of pages to uncharge
3018 */
3019void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3020{
3021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3022 page_counter_uncharge(&memcg->kmem, nr_pages);
3023
3024 page_counter_uncharge(&memcg->memory, nr_pages);
3025 if (do_memsw_account())
3026 page_counter_uncharge(&memcg->memsw, nr_pages);
3027}
3028
3029/**
3030 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 * @page: page to charge
3032 * @gfp: reclaim mode
3033 * @order: allocation order
3034 *
3035 * Returns 0 on success, an error code on failure.
3036 */
3037int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038{
3039 struct mem_cgroup *memcg;
3040 int ret = 0;
3041
3042 if (memcg_kmem_bypass())
3043 return 0;
3044
3045 memcg = get_mem_cgroup_from_current();
3046 if (!mem_cgroup_is_root(memcg)) {
3047 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3048 if (!ret) {
3049 page->mem_cgroup = memcg;
3050 __SetPageKmemcg(page);
3051 return 0;
3052 }
3053 }
3054 css_put(&memcg->css);
3055 return ret;
3056}
3057
3058/**
3059 * __memcg_kmem_uncharge_page: uncharge a kmem page
3060 * @page: page to uncharge
3061 * @order: allocation order
3062 */
3063void __memcg_kmem_uncharge_page(struct page *page, int order)
3064{
3065 struct mem_cgroup *memcg = page->mem_cgroup;
3066 unsigned int nr_pages = 1 << order;
3067
3068 if (!memcg)
3069 return;
3070
3071 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3072 __memcg_kmem_uncharge(memcg, nr_pages);
3073 page->mem_cgroup = NULL;
3074 css_put(&memcg->css);
3075
3076 /* slab pages do not have PageKmemcg flag set */
3077 if (PageKmemcg(page))
3078 __ClearPageKmemcg(page);
3079}
3080
3081static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3082{
3083 struct memcg_stock_pcp *stock;
3084 unsigned long flags;
3085 bool ret = false;
3086
3087 local_irq_save(flags);
3088
3089 stock = this_cpu_ptr(&memcg_stock);
3090 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3091 stock->nr_bytes -= nr_bytes;
3092 ret = true;
3093 }
3094
3095 local_irq_restore(flags);
3096
3097 return ret;
3098}
3099
3100static void drain_obj_stock(struct memcg_stock_pcp *stock)
3101{
3102 struct obj_cgroup *old = stock->cached_objcg;
3103
3104 if (!old)
3105 return;
3106
3107 if (stock->nr_bytes) {
3108 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3109 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3110
3111 if (nr_pages) {
3112 rcu_read_lock();
3113 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3114 rcu_read_unlock();
3115 }
3116
3117 /*
3118 * The leftover is flushed to the centralized per-memcg value.
3119 * On the next attempt to refill obj stock it will be moved
3120 * to a per-cpu stock (probably, on an other CPU), see
3121 * refill_obj_stock().
3122 *
3123 * How often it's flushed is a trade-off between the memory
3124 * limit enforcement accuracy and potential CPU contention,
3125 * so it might be changed in the future.
3126 */
3127 atomic_add(nr_bytes, &old->nr_charged_bytes);
3128 stock->nr_bytes = 0;
3129 }
3130
3131 obj_cgroup_put(old);
3132 stock->cached_objcg = NULL;
3133}
3134
3135static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3136 struct mem_cgroup *root_memcg)
3137{
3138 struct mem_cgroup *memcg;
3139
3140 if (stock->cached_objcg) {
3141 memcg = obj_cgroup_memcg(stock->cached_objcg);
3142 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3143 return true;
3144 }
3145
3146 return false;
3147}
3148
3149static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3150{
3151 struct memcg_stock_pcp *stock;
3152 unsigned long flags;
3153
3154 local_irq_save(flags);
3155
3156 stock = this_cpu_ptr(&memcg_stock);
3157 if (stock->cached_objcg != objcg) { /* reset if necessary */
3158 drain_obj_stock(stock);
3159 obj_cgroup_get(objcg);
3160 stock->cached_objcg = objcg;
3161 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3162 }
3163 stock->nr_bytes += nr_bytes;
3164
3165 if (stock->nr_bytes > PAGE_SIZE)
3166 drain_obj_stock(stock);
3167
3168 local_irq_restore(flags);
3169}
3170
3171int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3172{
3173 struct mem_cgroup *memcg;
3174 unsigned int nr_pages, nr_bytes;
3175 int ret;
3176
3177 if (consume_obj_stock(objcg, size))
3178 return 0;
3179
3180 /*
3181 * In theory, memcg->nr_charged_bytes can have enough
3182 * pre-charged bytes to satisfy the allocation. However,
3183 * flushing memcg->nr_charged_bytes requires two atomic
3184 * operations, and memcg->nr_charged_bytes can't be big,
3185 * so it's better to ignore it and try grab some new pages.
3186 * memcg->nr_charged_bytes will be flushed in
3187 * refill_obj_stock(), called from this function or
3188 * independently later.
3189 */
3190 rcu_read_lock();
3191 memcg = obj_cgroup_memcg(objcg);
3192 css_get(&memcg->css);
3193 rcu_read_unlock();
3194
3195 nr_pages = size >> PAGE_SHIFT;
3196 nr_bytes = size & (PAGE_SIZE - 1);
3197
3198 if (nr_bytes)
3199 nr_pages += 1;
3200
3201 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3202 if (!ret && nr_bytes)
3203 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3204
3205 css_put(&memcg->css);
3206 return ret;
3207}
3208
3209void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3210{
3211 refill_obj_stock(objcg, size);
3212}
3213
3214#endif /* CONFIG_MEMCG_KMEM */
3215
3216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3217
3218/*
3219 * Because tail pages are not marked as "used", set it. We're under
3220 * pgdat->lru_lock and migration entries setup in all page mappings.
3221 */
3222void mem_cgroup_split_huge_fixup(struct page *head)
3223{
3224 struct mem_cgroup *memcg = head->mem_cgroup;
3225 int i;
3226
3227 if (mem_cgroup_disabled())
3228 return;
3229
3230 for (i = 1; i < HPAGE_PMD_NR; i++) {
3231 css_get(&memcg->css);
3232 head[i].mem_cgroup = memcg;
3233 }
3234}
3235#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3236
3237#ifdef CONFIG_MEMCG_SWAP
3238/**
3239 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3240 * @entry: swap entry to be moved
3241 * @from: mem_cgroup which the entry is moved from
3242 * @to: mem_cgroup which the entry is moved to
3243 *
3244 * It succeeds only when the swap_cgroup's record for this entry is the same
3245 * as the mem_cgroup's id of @from.
3246 *
3247 * Returns 0 on success, -EINVAL on failure.
3248 *
3249 * The caller must have charged to @to, IOW, called page_counter_charge() about
3250 * both res and memsw, and called css_get().
3251 */
3252static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253 struct mem_cgroup *from, struct mem_cgroup *to)
3254{
3255 unsigned short old_id, new_id;
3256
3257 old_id = mem_cgroup_id(from);
3258 new_id = mem_cgroup_id(to);
3259
3260 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261 mod_memcg_state(from, MEMCG_SWAP, -1);
3262 mod_memcg_state(to, MEMCG_SWAP, 1);
3263 return 0;
3264 }
3265 return -EINVAL;
3266}
3267#else
3268static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3269 struct mem_cgroup *from, struct mem_cgroup *to)
3270{
3271 return -EINVAL;
3272}
3273#endif
3274
3275static DEFINE_MUTEX(memcg_max_mutex);
3276
3277static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3278 unsigned long max, bool memsw)
3279{
3280 bool enlarge = false;
3281 bool drained = false;
3282 int ret;
3283 bool limits_invariant;
3284 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3285
3286 do {
3287 if (signal_pending(current)) {
3288 ret = -EINTR;
3289 break;
3290 }
3291
3292 mutex_lock(&memcg_max_mutex);
3293 /*
3294 * Make sure that the new limit (memsw or memory limit) doesn't
3295 * break our basic invariant rule memory.max <= memsw.max.
3296 */
3297 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3298 max <= memcg->memsw.max;
3299 if (!limits_invariant) {
3300 mutex_unlock(&memcg_max_mutex);
3301 ret = -EINVAL;
3302 break;
3303 }
3304 if (max > counter->max)
3305 enlarge = true;
3306 ret = page_counter_set_max(counter, max);
3307 mutex_unlock(&memcg_max_mutex);
3308
3309 if (!ret)
3310 break;
3311
3312 if (!drained) {
3313 drain_all_stock(memcg);
3314 drained = true;
3315 continue;
3316 }
3317
3318 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3319 GFP_KERNEL, !memsw)) {
3320 ret = -EBUSY;
3321 break;
3322 }
3323 } while (true);
3324
3325 if (!ret && enlarge)
3326 memcg_oom_recover(memcg);
3327
3328 return ret;
3329}
3330
3331unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3332 gfp_t gfp_mask,
3333 unsigned long *total_scanned)
3334{
3335 unsigned long nr_reclaimed = 0;
3336 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3337 unsigned long reclaimed;
3338 int loop = 0;
3339 struct mem_cgroup_tree_per_node *mctz;
3340 unsigned long excess;
3341 unsigned long nr_scanned;
3342
3343 if (order > 0)
3344 return 0;
3345
3346 mctz = soft_limit_tree_node(pgdat->node_id);
3347
3348 /*
3349 * Do not even bother to check the largest node if the root
3350 * is empty. Do it lockless to prevent lock bouncing. Races
3351 * are acceptable as soft limit is best effort anyway.
3352 */
3353 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3354 return 0;
3355
3356 /*
3357 * This loop can run a while, specially if mem_cgroup's continuously
3358 * keep exceeding their soft limit and putting the system under
3359 * pressure
3360 */
3361 do {
3362 if (next_mz)
3363 mz = next_mz;
3364 else
3365 mz = mem_cgroup_largest_soft_limit_node(mctz);
3366 if (!mz)
3367 break;
3368
3369 nr_scanned = 0;
3370 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3371 gfp_mask, &nr_scanned);
3372 nr_reclaimed += reclaimed;
3373 *total_scanned += nr_scanned;
3374 spin_lock_irq(&mctz->lock);
3375 __mem_cgroup_remove_exceeded(mz, mctz);
3376
3377 /*
3378 * If we failed to reclaim anything from this memory cgroup
3379 * it is time to move on to the next cgroup
3380 */
3381 next_mz = NULL;
3382 if (!reclaimed)
3383 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3384
3385 excess = soft_limit_excess(mz->memcg);
3386 /*
3387 * One school of thought says that we should not add
3388 * back the node to the tree if reclaim returns 0.
3389 * But our reclaim could return 0, simply because due
3390 * to priority we are exposing a smaller subset of
3391 * memory to reclaim from. Consider this as a longer
3392 * term TODO.
3393 */
3394 /* If excess == 0, no tree ops */
3395 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3396 spin_unlock_irq(&mctz->lock);
3397 css_put(&mz->memcg->css);
3398 loop++;
3399 /*
3400 * Could not reclaim anything and there are no more
3401 * mem cgroups to try or we seem to be looping without
3402 * reclaiming anything.
3403 */
3404 if (!nr_reclaimed &&
3405 (next_mz == NULL ||
3406 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3407 break;
3408 } while (!nr_reclaimed);
3409 if (next_mz)
3410 css_put(&next_mz->memcg->css);
3411 return nr_reclaimed;
3412}
3413
3414/*
3415 * Test whether @memcg has children, dead or alive. Note that this
3416 * function doesn't care whether @memcg has use_hierarchy enabled and
3417 * returns %true if there are child csses according to the cgroup
3418 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3419 */
3420static inline bool memcg_has_children(struct mem_cgroup *memcg)
3421{
3422 bool ret;
3423
3424 rcu_read_lock();
3425 ret = css_next_child(NULL, &memcg->css);
3426 rcu_read_unlock();
3427 return ret;
3428}
3429
3430/*
3431 * Reclaims as many pages from the given memcg as possible.
3432 *
3433 * Caller is responsible for holding css reference for memcg.
3434 */
3435static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3436{
3437 int nr_retries = MAX_RECLAIM_RETRIES;
3438
3439 /* we call try-to-free pages for make this cgroup empty */
3440 lru_add_drain_all();
3441
3442 drain_all_stock(memcg);
3443
3444 /* try to free all pages in this cgroup */
3445 while (nr_retries && page_counter_read(&memcg->memory)) {
3446 int progress;
3447
3448 if (signal_pending(current))
3449 return -EINTR;
3450
3451 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3452 GFP_KERNEL, true);
3453 if (!progress) {
3454 nr_retries--;
3455 /* maybe some writeback is necessary */
3456 congestion_wait(BLK_RW_ASYNC, HZ/10);
3457 }
3458
3459 }
3460
3461 return 0;
3462}
3463
3464static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3465 char *buf, size_t nbytes,
3466 loff_t off)
3467{
3468 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3469
3470 if (mem_cgroup_is_root(memcg))
3471 return -EINVAL;
3472 return mem_cgroup_force_empty(memcg) ?: nbytes;
3473}
3474
3475static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3476 struct cftype *cft)
3477{
3478 return mem_cgroup_from_css(css)->use_hierarchy;
3479}
3480
3481static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3482 struct cftype *cft, u64 val)
3483{
3484 int retval = 0;
3485 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3486 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3487
3488 if (memcg->use_hierarchy == val)
3489 return 0;
3490
3491 /*
3492 * If parent's use_hierarchy is set, we can't make any modifications
3493 * in the child subtrees. If it is unset, then the change can
3494 * occur, provided the current cgroup has no children.
3495 *
3496 * For the root cgroup, parent_mem is NULL, we allow value to be
3497 * set if there are no children.
3498 */
3499 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3500 (val == 1 || val == 0)) {
3501 if (!memcg_has_children(memcg))
3502 memcg->use_hierarchy = val;
3503 else
3504 retval = -EBUSY;
3505 } else
3506 retval = -EINVAL;
3507
3508 return retval;
3509}
3510
3511static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3512{
3513 unsigned long val;
3514
3515 if (mem_cgroup_is_root(memcg)) {
3516 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3517 memcg_page_state(memcg, NR_ANON_MAPPED);
3518 if (swap)
3519 val += memcg_page_state(memcg, MEMCG_SWAP);
3520 } else {
3521 if (!swap)
3522 val = page_counter_read(&memcg->memory);
3523 else
3524 val = page_counter_read(&memcg->memsw);
3525 }
3526 return val;
3527}
3528
3529enum {
3530 RES_USAGE,
3531 RES_LIMIT,
3532 RES_MAX_USAGE,
3533 RES_FAILCNT,
3534 RES_SOFT_LIMIT,
3535};
3536
3537static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3538 struct cftype *cft)
3539{
3540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3541 struct page_counter *counter;
3542
3543 switch (MEMFILE_TYPE(cft->private)) {
3544 case _MEM:
3545 counter = &memcg->memory;
3546 break;
3547 case _MEMSWAP:
3548 counter = &memcg->memsw;
3549 break;
3550 case _KMEM:
3551 counter = &memcg->kmem;
3552 break;
3553 case _TCP:
3554 counter = &memcg->tcpmem;
3555 break;
3556 default:
3557 BUG();
3558 }
3559
3560 switch (MEMFILE_ATTR(cft->private)) {
3561 case RES_USAGE:
3562 if (counter == &memcg->memory)
3563 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3564 if (counter == &memcg->memsw)
3565 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3566 return (u64)page_counter_read(counter) * PAGE_SIZE;
3567 case RES_LIMIT:
3568 return (u64)counter->max * PAGE_SIZE;
3569 case RES_MAX_USAGE:
3570 return (u64)counter->watermark * PAGE_SIZE;
3571 case RES_FAILCNT:
3572 return counter->failcnt;
3573 case RES_SOFT_LIMIT:
3574 return (u64)memcg->soft_limit * PAGE_SIZE;
3575 default:
3576 BUG();
3577 }
3578}
3579
3580static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3581{
3582 unsigned long stat[MEMCG_NR_STAT] = {0};
3583 struct mem_cgroup *mi;
3584 int node, cpu, i;
3585
3586 for_each_online_cpu(cpu)
3587 for (i = 0; i < MEMCG_NR_STAT; i++)
3588 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3589
3590 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3591 for (i = 0; i < MEMCG_NR_STAT; i++)
3592 atomic_long_add(stat[i], &mi->vmstats[i]);
3593
3594 for_each_node(node) {
3595 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3596 struct mem_cgroup_per_node *pi;
3597
3598 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3599 stat[i] = 0;
3600
3601 for_each_online_cpu(cpu)
3602 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3603 stat[i] += per_cpu(
3604 pn->lruvec_stat_cpu->count[i], cpu);
3605
3606 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3607 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3609 }
3610}
3611
3612static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3613{
3614 unsigned long events[NR_VM_EVENT_ITEMS];
3615 struct mem_cgroup *mi;
3616 int cpu, i;
3617
3618 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3619 events[i] = 0;
3620
3621 for_each_online_cpu(cpu)
3622 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3623 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3624 cpu);
3625
3626 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3627 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3628 atomic_long_add(events[i], &mi->vmevents[i]);
3629}
3630
3631#ifdef CONFIG_MEMCG_KMEM
3632static int memcg_online_kmem(struct mem_cgroup *memcg)
3633{
3634 struct obj_cgroup *objcg;
3635 int memcg_id;
3636
3637 if (cgroup_memory_nokmem)
3638 return 0;
3639
3640 BUG_ON(memcg->kmemcg_id >= 0);
3641 BUG_ON(memcg->kmem_state);
3642
3643 memcg_id = memcg_alloc_cache_id();
3644 if (memcg_id < 0)
3645 return memcg_id;
3646
3647 objcg = obj_cgroup_alloc();
3648 if (!objcg) {
3649 memcg_free_cache_id(memcg_id);
3650 return -ENOMEM;
3651 }
3652 objcg->memcg = memcg;
3653 rcu_assign_pointer(memcg->objcg, objcg);
3654
3655 static_branch_enable(&memcg_kmem_enabled_key);
3656
3657 /*
3658 * A memory cgroup is considered kmem-online as soon as it gets
3659 * kmemcg_id. Setting the id after enabling static branching will
3660 * guarantee no one starts accounting before all call sites are
3661 * patched.
3662 */
3663 memcg->kmemcg_id = memcg_id;
3664 memcg->kmem_state = KMEM_ONLINE;
3665
3666 return 0;
3667}
3668
3669static void memcg_offline_kmem(struct mem_cgroup *memcg)
3670{
3671 struct cgroup_subsys_state *css;
3672 struct mem_cgroup *parent, *child;
3673 int kmemcg_id;
3674
3675 if (memcg->kmem_state != KMEM_ONLINE)
3676 return;
3677
3678 memcg->kmem_state = KMEM_ALLOCATED;
3679
3680 parent = parent_mem_cgroup(memcg);
3681 if (!parent)
3682 parent = root_mem_cgroup;
3683
3684 memcg_reparent_objcgs(memcg, parent);
3685
3686 kmemcg_id = memcg->kmemcg_id;
3687 BUG_ON(kmemcg_id < 0);
3688
3689 /*
3690 * Change kmemcg_id of this cgroup and all its descendants to the
3691 * parent's id, and then move all entries from this cgroup's list_lrus
3692 * to ones of the parent. After we have finished, all list_lrus
3693 * corresponding to this cgroup are guaranteed to remain empty. The
3694 * ordering is imposed by list_lru_node->lock taken by
3695 * memcg_drain_all_list_lrus().
3696 */
3697 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3698 css_for_each_descendant_pre(css, &memcg->css) {
3699 child = mem_cgroup_from_css(css);
3700 BUG_ON(child->kmemcg_id != kmemcg_id);
3701 child->kmemcg_id = parent->kmemcg_id;
3702 if (!memcg->use_hierarchy)
3703 break;
3704 }
3705 rcu_read_unlock();
3706
3707 memcg_drain_all_list_lrus(kmemcg_id, parent);
3708
3709 memcg_free_cache_id(kmemcg_id);
3710}
3711
3712static void memcg_free_kmem(struct mem_cgroup *memcg)
3713{
3714 /* css_alloc() failed, offlining didn't happen */
3715 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3716 memcg_offline_kmem(memcg);
3717}
3718#else
3719static int memcg_online_kmem(struct mem_cgroup *memcg)
3720{
3721 return 0;
3722}
3723static void memcg_offline_kmem(struct mem_cgroup *memcg)
3724{
3725}
3726static void memcg_free_kmem(struct mem_cgroup *memcg)
3727{
3728}
3729#endif /* CONFIG_MEMCG_KMEM */
3730
3731static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3732 unsigned long max)
3733{
3734 int ret;
3735
3736 mutex_lock(&memcg_max_mutex);
3737 ret = page_counter_set_max(&memcg->kmem, max);
3738 mutex_unlock(&memcg_max_mutex);
3739 return ret;
3740}
3741
3742static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3743{
3744 int ret;
3745
3746 mutex_lock(&memcg_max_mutex);
3747
3748 ret = page_counter_set_max(&memcg->tcpmem, max);
3749 if (ret)
3750 goto out;
3751
3752 if (!memcg->tcpmem_active) {
3753 /*
3754 * The active flag needs to be written after the static_key
3755 * update. This is what guarantees that the socket activation
3756 * function is the last one to run. See mem_cgroup_sk_alloc()
3757 * for details, and note that we don't mark any socket as
3758 * belonging to this memcg until that flag is up.
3759 *
3760 * We need to do this, because static_keys will span multiple
3761 * sites, but we can't control their order. If we mark a socket
3762 * as accounted, but the accounting functions are not patched in
3763 * yet, we'll lose accounting.
3764 *
3765 * We never race with the readers in mem_cgroup_sk_alloc(),
3766 * because when this value change, the code to process it is not
3767 * patched in yet.
3768 */
3769 static_branch_inc(&memcg_sockets_enabled_key);
3770 memcg->tcpmem_active = true;
3771 }
3772out:
3773 mutex_unlock(&memcg_max_mutex);
3774 return ret;
3775}
3776
3777/*
3778 * The user of this function is...
3779 * RES_LIMIT.
3780 */
3781static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3782 char *buf, size_t nbytes, loff_t off)
3783{
3784 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3785 unsigned long nr_pages;
3786 int ret;
3787
3788 buf = strstrip(buf);
3789 ret = page_counter_memparse(buf, "-1", &nr_pages);
3790 if (ret)
3791 return ret;
3792
3793 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3794 case RES_LIMIT:
3795 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3796 ret = -EINVAL;
3797 break;
3798 }
3799 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3800 case _MEM:
3801 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3802 break;
3803 case _MEMSWAP:
3804 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3805 break;
3806 case _KMEM:
3807 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3808 "Please report your usecase to linux-mm@kvack.org if you "
3809 "depend on this functionality.\n");
3810 ret = memcg_update_kmem_max(memcg, nr_pages);
3811 break;
3812 case _TCP:
3813 ret = memcg_update_tcp_max(memcg, nr_pages);
3814 break;
3815 }
3816 break;
3817 case RES_SOFT_LIMIT:
3818 memcg->soft_limit = nr_pages;
3819 ret = 0;
3820 break;
3821 }
3822 return ret ?: nbytes;
3823}
3824
3825static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3826 size_t nbytes, loff_t off)
3827{
3828 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3829 struct page_counter *counter;
3830
3831 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3832 case _MEM:
3833 counter = &memcg->memory;
3834 break;
3835 case _MEMSWAP:
3836 counter = &memcg->memsw;
3837 break;
3838 case _KMEM:
3839 counter = &memcg->kmem;
3840 break;
3841 case _TCP:
3842 counter = &memcg->tcpmem;
3843 break;
3844 default:
3845 BUG();
3846 }
3847
3848 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3849 case RES_MAX_USAGE:
3850 page_counter_reset_watermark(counter);
3851 break;
3852 case RES_FAILCNT:
3853 counter->failcnt = 0;
3854 break;
3855 default:
3856 BUG();
3857 }
3858
3859 return nbytes;
3860}
3861
3862static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3863 struct cftype *cft)
3864{
3865 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3866}
3867
3868#ifdef CONFIG_MMU
3869static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3870 struct cftype *cft, u64 val)
3871{
3872 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3873
3874 if (val & ~MOVE_MASK)
3875 return -EINVAL;
3876
3877 /*
3878 * No kind of locking is needed in here, because ->can_attach() will
3879 * check this value once in the beginning of the process, and then carry
3880 * on with stale data. This means that changes to this value will only
3881 * affect task migrations starting after the change.
3882 */
3883 memcg->move_charge_at_immigrate = val;
3884 return 0;
3885}
3886#else
3887static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3888 struct cftype *cft, u64 val)
3889{
3890 return -ENOSYS;
3891}
3892#endif
3893
3894#ifdef CONFIG_NUMA
3895
3896#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3897#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3898#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3899
3900static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3901 int nid, unsigned int lru_mask, bool tree)
3902{
3903 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3904 unsigned long nr = 0;
3905 enum lru_list lru;
3906
3907 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3908
3909 for_each_lru(lru) {
3910 if (!(BIT(lru) & lru_mask))
3911 continue;
3912 if (tree)
3913 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3914 else
3915 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3916 }
3917 return nr;
3918}
3919
3920static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3921 unsigned int lru_mask,
3922 bool tree)
3923{
3924 unsigned long nr = 0;
3925 enum lru_list lru;
3926
3927 for_each_lru(lru) {
3928 if (!(BIT(lru) & lru_mask))
3929 continue;
3930 if (tree)
3931 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3932 else
3933 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3934 }
3935 return nr;
3936}
3937
3938static int memcg_numa_stat_show(struct seq_file *m, void *v)
3939{
3940 struct numa_stat {
3941 const char *name;
3942 unsigned int lru_mask;
3943 };
3944
3945 static const struct numa_stat stats[] = {
3946 { "total", LRU_ALL },
3947 { "file", LRU_ALL_FILE },
3948 { "anon", LRU_ALL_ANON },
3949 { "unevictable", BIT(LRU_UNEVICTABLE) },
3950 };
3951 const struct numa_stat *stat;
3952 int nid;
3953 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3954
3955 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3956 seq_printf(m, "%s=%lu", stat->name,
3957 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3958 false));
3959 for_each_node_state(nid, N_MEMORY)
3960 seq_printf(m, " N%d=%lu", nid,
3961 mem_cgroup_node_nr_lru_pages(memcg, nid,
3962 stat->lru_mask, false));
3963 seq_putc(m, '\n');
3964 }
3965
3966 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967
3968 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3969 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3970 true));
3971 for_each_node_state(nid, N_MEMORY)
3972 seq_printf(m, " N%d=%lu", nid,
3973 mem_cgroup_node_nr_lru_pages(memcg, nid,
3974 stat->lru_mask, true));
3975 seq_putc(m, '\n');
3976 }
3977
3978 return 0;
3979}
3980#endif /* CONFIG_NUMA */
3981
3982static const unsigned int memcg1_stats[] = {
3983 NR_FILE_PAGES,
3984 NR_ANON_MAPPED,
3985#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3986 NR_ANON_THPS,
3987#endif
3988 NR_SHMEM,
3989 NR_FILE_MAPPED,
3990 NR_FILE_DIRTY,
3991 NR_WRITEBACK,
3992 MEMCG_SWAP,
3993};
3994
3995static const char *const memcg1_stat_names[] = {
3996 "cache",
3997 "rss",
3998#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999 "rss_huge",
4000#endif
4001 "shmem",
4002 "mapped_file",
4003 "dirty",
4004 "writeback",
4005 "swap",
4006};
4007
4008/* Universal VM events cgroup1 shows, original sort order */
4009static const unsigned int memcg1_events[] = {
4010 PGPGIN,
4011 PGPGOUT,
4012 PGFAULT,
4013 PGMAJFAULT,
4014};
4015
4016static int memcg_stat_show(struct seq_file *m, void *v)
4017{
4018 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4019 unsigned long memory, memsw;
4020 struct mem_cgroup *mi;
4021 unsigned int i;
4022
4023 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4024
4025 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4026 unsigned long nr;
4027
4028 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4029 continue;
4030 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4031#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4032 if (memcg1_stats[i] == NR_ANON_THPS)
4033 nr *= HPAGE_PMD_NR;
4034#endif
4035 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4036 }
4037
4038 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4039 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4040 memcg_events_local(memcg, memcg1_events[i]));
4041
4042 for (i = 0; i < NR_LRU_LISTS; i++)
4043 seq_printf(m, "%s %lu\n", lru_list_name(i),
4044 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4045 PAGE_SIZE);
4046
4047 /* Hierarchical information */
4048 memory = memsw = PAGE_COUNTER_MAX;
4049 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4050 memory = min(memory, READ_ONCE(mi->memory.max));
4051 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4052 }
4053 seq_printf(m, "hierarchical_memory_limit %llu\n",
4054 (u64)memory * PAGE_SIZE);
4055 if (do_memsw_account())
4056 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4057 (u64)memsw * PAGE_SIZE);
4058
4059 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4060 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4061 continue;
4062 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4063 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4064 PAGE_SIZE);
4065 }
4066
4067 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4068 seq_printf(m, "total_%s %llu\n",
4069 vm_event_name(memcg1_events[i]),
4070 (u64)memcg_events(memcg, memcg1_events[i]));
4071
4072 for (i = 0; i < NR_LRU_LISTS; i++)
4073 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4074 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4075 PAGE_SIZE);
4076
4077#ifdef CONFIG_DEBUG_VM
4078 {
4079 pg_data_t *pgdat;
4080 struct mem_cgroup_per_node *mz;
4081 unsigned long anon_cost = 0;
4082 unsigned long file_cost = 0;
4083
4084 for_each_online_pgdat(pgdat) {
4085 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4086
4087 anon_cost += mz->lruvec.anon_cost;
4088 file_cost += mz->lruvec.file_cost;
4089 }
4090 seq_printf(m, "anon_cost %lu\n", anon_cost);
4091 seq_printf(m, "file_cost %lu\n", file_cost);
4092 }
4093#endif
4094
4095 return 0;
4096}
4097
4098static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4099 struct cftype *cft)
4100{
4101 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4102
4103 return mem_cgroup_swappiness(memcg);
4104}
4105
4106static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4107 struct cftype *cft, u64 val)
4108{
4109 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110
4111 if (val > 100)
4112 return -EINVAL;
4113
4114 if (css->parent)
4115 memcg->swappiness = val;
4116 else
4117 vm_swappiness = val;
4118
4119 return 0;
4120}
4121
4122static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4123{
4124 struct mem_cgroup_threshold_ary *t;
4125 unsigned long usage;
4126 int i;
4127
4128 rcu_read_lock();
4129 if (!swap)
4130 t = rcu_dereference(memcg->thresholds.primary);
4131 else
4132 t = rcu_dereference(memcg->memsw_thresholds.primary);
4133
4134 if (!t)
4135 goto unlock;
4136
4137 usage = mem_cgroup_usage(memcg, swap);
4138
4139 /*
4140 * current_threshold points to threshold just below or equal to usage.
4141 * If it's not true, a threshold was crossed after last
4142 * call of __mem_cgroup_threshold().
4143 */
4144 i = t->current_threshold;
4145
4146 /*
4147 * Iterate backward over array of thresholds starting from
4148 * current_threshold and check if a threshold is crossed.
4149 * If none of thresholds below usage is crossed, we read
4150 * only one element of the array here.
4151 */
4152 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4153 eventfd_signal(t->entries[i].eventfd, 1);
4154
4155 /* i = current_threshold + 1 */
4156 i++;
4157
4158 /*
4159 * Iterate forward over array of thresholds starting from
4160 * current_threshold+1 and check if a threshold is crossed.
4161 * If none of thresholds above usage is crossed, we read
4162 * only one element of the array here.
4163 */
4164 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4165 eventfd_signal(t->entries[i].eventfd, 1);
4166
4167 /* Update current_threshold */
4168 t->current_threshold = i - 1;
4169unlock:
4170 rcu_read_unlock();
4171}
4172
4173static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4174{
4175 while (memcg) {
4176 __mem_cgroup_threshold(memcg, false);
4177 if (do_memsw_account())
4178 __mem_cgroup_threshold(memcg, true);
4179
4180 memcg = parent_mem_cgroup(memcg);
4181 }
4182}
4183
4184static int compare_thresholds(const void *a, const void *b)
4185{
4186 const struct mem_cgroup_threshold *_a = a;
4187 const struct mem_cgroup_threshold *_b = b;
4188
4189 if (_a->threshold > _b->threshold)
4190 return 1;
4191
4192 if (_a->threshold < _b->threshold)
4193 return -1;
4194
4195 return 0;
4196}
4197
4198static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4199{
4200 struct mem_cgroup_eventfd_list *ev;
4201
4202 spin_lock(&memcg_oom_lock);
4203
4204 list_for_each_entry(ev, &memcg->oom_notify, list)
4205 eventfd_signal(ev->eventfd, 1);
4206
4207 spin_unlock(&memcg_oom_lock);
4208 return 0;
4209}
4210
4211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4212{
4213 struct mem_cgroup *iter;
4214
4215 for_each_mem_cgroup_tree(iter, memcg)
4216 mem_cgroup_oom_notify_cb(iter);
4217}
4218
4219static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4220 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4221{
4222 struct mem_cgroup_thresholds *thresholds;
4223 struct mem_cgroup_threshold_ary *new;
4224 unsigned long threshold;
4225 unsigned long usage;
4226 int i, size, ret;
4227
4228 ret = page_counter_memparse(args, "-1", &threshold);
4229 if (ret)
4230 return ret;
4231
4232 mutex_lock(&memcg->thresholds_lock);
4233
4234 if (type == _MEM) {
4235 thresholds = &memcg->thresholds;
4236 usage = mem_cgroup_usage(memcg, false);
4237 } else if (type == _MEMSWAP) {
4238 thresholds = &memcg->memsw_thresholds;
4239 usage = mem_cgroup_usage(memcg, true);
4240 } else
4241 BUG();
4242
4243 /* Check if a threshold crossed before adding a new one */
4244 if (thresholds->primary)
4245 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4246
4247 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4248
4249 /* Allocate memory for new array of thresholds */
4250 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4251 if (!new) {
4252 ret = -ENOMEM;
4253 goto unlock;
4254 }
4255 new->size = size;
4256
4257 /* Copy thresholds (if any) to new array */
4258 if (thresholds->primary) {
4259 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4260 sizeof(struct mem_cgroup_threshold));
4261 }
4262
4263 /* Add new threshold */
4264 new->entries[size - 1].eventfd = eventfd;
4265 new->entries[size - 1].threshold = threshold;
4266
4267 /* Sort thresholds. Registering of new threshold isn't time-critical */
4268 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4269 compare_thresholds, NULL);
4270
4271 /* Find current threshold */
4272 new->current_threshold = -1;
4273 for (i = 0; i < size; i++) {
4274 if (new->entries[i].threshold <= usage) {
4275 /*
4276 * new->current_threshold will not be used until
4277 * rcu_assign_pointer(), so it's safe to increment
4278 * it here.
4279 */
4280 ++new->current_threshold;
4281 } else
4282 break;
4283 }
4284
4285 /* Free old spare buffer and save old primary buffer as spare */
4286 kfree(thresholds->spare);
4287 thresholds->spare = thresholds->primary;
4288
4289 rcu_assign_pointer(thresholds->primary, new);
4290
4291 /* To be sure that nobody uses thresholds */
4292 synchronize_rcu();
4293
4294unlock:
4295 mutex_unlock(&memcg->thresholds_lock);
4296
4297 return ret;
4298}
4299
4300static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4301 struct eventfd_ctx *eventfd, const char *args)
4302{
4303 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4304}
4305
4306static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4307 struct eventfd_ctx *eventfd, const char *args)
4308{
4309 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4310}
4311
4312static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4313 struct eventfd_ctx *eventfd, enum res_type type)
4314{
4315 struct mem_cgroup_thresholds *thresholds;
4316 struct mem_cgroup_threshold_ary *new;
4317 unsigned long usage;
4318 int i, j, size, entries;
4319
4320 mutex_lock(&memcg->thresholds_lock);
4321
4322 if (type == _MEM) {
4323 thresholds = &memcg->thresholds;
4324 usage = mem_cgroup_usage(memcg, false);
4325 } else if (type == _MEMSWAP) {
4326 thresholds = &memcg->memsw_thresholds;
4327 usage = mem_cgroup_usage(memcg, true);
4328 } else
4329 BUG();
4330
4331 if (!thresholds->primary)
4332 goto unlock;
4333
4334 /* Check if a threshold crossed before removing */
4335 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4336
4337 /* Calculate new number of threshold */
4338 size = entries = 0;
4339 for (i = 0; i < thresholds->primary->size; i++) {
4340 if (thresholds->primary->entries[i].eventfd != eventfd)
4341 size++;
4342 else
4343 entries++;
4344 }
4345
4346 new = thresholds->spare;
4347
4348 /* If no items related to eventfd have been cleared, nothing to do */
4349 if (!entries)
4350 goto unlock;
4351
4352 /* Set thresholds array to NULL if we don't have thresholds */
4353 if (!size) {
4354 kfree(new);
4355 new = NULL;
4356 goto swap_buffers;
4357 }
4358
4359 new->size = size;
4360
4361 /* Copy thresholds and find current threshold */
4362 new->current_threshold = -1;
4363 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4364 if (thresholds->primary->entries[i].eventfd == eventfd)
4365 continue;
4366
4367 new->entries[j] = thresholds->primary->entries[i];
4368 if (new->entries[j].threshold <= usage) {
4369 /*
4370 * new->current_threshold will not be used
4371 * until rcu_assign_pointer(), so it's safe to increment
4372 * it here.
4373 */
4374 ++new->current_threshold;
4375 }
4376 j++;
4377 }
4378
4379swap_buffers:
4380 /* Swap primary and spare array */
4381 thresholds->spare = thresholds->primary;
4382
4383 rcu_assign_pointer(thresholds->primary, new);
4384
4385 /* To be sure that nobody uses thresholds */
4386 synchronize_rcu();
4387
4388 /* If all events are unregistered, free the spare array */
4389 if (!new) {
4390 kfree(thresholds->spare);
4391 thresholds->spare = NULL;
4392 }
4393unlock:
4394 mutex_unlock(&memcg->thresholds_lock);
4395}
4396
4397static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4398 struct eventfd_ctx *eventfd)
4399{
4400 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4401}
4402
4403static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4404 struct eventfd_ctx *eventfd)
4405{
4406 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4407}
4408
4409static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4410 struct eventfd_ctx *eventfd, const char *args)
4411{
4412 struct mem_cgroup_eventfd_list *event;
4413
4414 event = kmalloc(sizeof(*event), GFP_KERNEL);
4415 if (!event)
4416 return -ENOMEM;
4417
4418 spin_lock(&memcg_oom_lock);
4419
4420 event->eventfd = eventfd;
4421 list_add(&event->list, &memcg->oom_notify);
4422
4423 /* already in OOM ? */
4424 if (memcg->under_oom)
4425 eventfd_signal(eventfd, 1);
4426 spin_unlock(&memcg_oom_lock);
4427
4428 return 0;
4429}
4430
4431static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4432 struct eventfd_ctx *eventfd)
4433{
4434 struct mem_cgroup_eventfd_list *ev, *tmp;
4435
4436 spin_lock(&memcg_oom_lock);
4437
4438 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4439 if (ev->eventfd == eventfd) {
4440 list_del(&ev->list);
4441 kfree(ev);
4442 }
4443 }
4444
4445 spin_unlock(&memcg_oom_lock);
4446}
4447
4448static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4449{
4450 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4451
4452 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4454 seq_printf(sf, "oom_kill %lu\n",
4455 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4456 return 0;
4457}
4458
4459static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4460 struct cftype *cft, u64 val)
4461{
4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463
4464 /* cannot set to root cgroup and only 0 and 1 are allowed */
4465 if (!css->parent || !((val == 0) || (val == 1)))
4466 return -EINVAL;
4467
4468 memcg->oom_kill_disable = val;
4469 if (!val)
4470 memcg_oom_recover(memcg);
4471
4472 return 0;
4473}
4474
4475#ifdef CONFIG_CGROUP_WRITEBACK
4476
4477#include <trace/events/writeback.h>
4478
4479static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4480{
4481 return wb_domain_init(&memcg->cgwb_domain, gfp);
4482}
4483
4484static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4485{
4486 wb_domain_exit(&memcg->cgwb_domain);
4487}
4488
4489static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4490{
4491 wb_domain_size_changed(&memcg->cgwb_domain);
4492}
4493
4494struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4495{
4496 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4497
4498 if (!memcg->css.parent)
4499 return NULL;
4500
4501 return &memcg->cgwb_domain;
4502}
4503
4504/*
4505 * idx can be of type enum memcg_stat_item or node_stat_item.
4506 * Keep in sync with memcg_exact_page().
4507 */
4508static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4509{
4510 long x = atomic_long_read(&memcg->vmstats[idx]);
4511 int cpu;
4512
4513 for_each_online_cpu(cpu)
4514 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4515 if (x < 0)
4516 x = 0;
4517 return x;
4518}
4519
4520/**
4521 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4522 * @wb: bdi_writeback in question
4523 * @pfilepages: out parameter for number of file pages
4524 * @pheadroom: out parameter for number of allocatable pages according to memcg
4525 * @pdirty: out parameter for number of dirty pages
4526 * @pwriteback: out parameter for number of pages under writeback
4527 *
4528 * Determine the numbers of file, headroom, dirty, and writeback pages in
4529 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4530 * is a bit more involved.
4531 *
4532 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4533 * headroom is calculated as the lowest headroom of itself and the
4534 * ancestors. Note that this doesn't consider the actual amount of
4535 * available memory in the system. The caller should further cap
4536 * *@pheadroom accordingly.
4537 */
4538void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4539 unsigned long *pheadroom, unsigned long *pdirty,
4540 unsigned long *pwriteback)
4541{
4542 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4543 struct mem_cgroup *parent;
4544
4545 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4546
4547 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4548 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4549 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4550 *pheadroom = PAGE_COUNTER_MAX;
4551
4552 while ((parent = parent_mem_cgroup(memcg))) {
4553 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4554 READ_ONCE(memcg->memory.high));
4555 unsigned long used = page_counter_read(&memcg->memory);
4556
4557 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4558 memcg = parent;
4559 }
4560}
4561
4562/*
4563 * Foreign dirty flushing
4564 *
4565 * There's an inherent mismatch between memcg and writeback. The former
4566 * trackes ownership per-page while the latter per-inode. This was a
4567 * deliberate design decision because honoring per-page ownership in the
4568 * writeback path is complicated, may lead to higher CPU and IO overheads
4569 * and deemed unnecessary given that write-sharing an inode across
4570 * different cgroups isn't a common use-case.
4571 *
4572 * Combined with inode majority-writer ownership switching, this works well
4573 * enough in most cases but there are some pathological cases. For
4574 * example, let's say there are two cgroups A and B which keep writing to
4575 * different but confined parts of the same inode. B owns the inode and
4576 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4577 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4578 * triggering background writeback. A will be slowed down without a way to
4579 * make writeback of the dirty pages happen.
4580 *
4581 * Conditions like the above can lead to a cgroup getting repatedly and
4582 * severely throttled after making some progress after each
4583 * dirty_expire_interval while the underyling IO device is almost
4584 * completely idle.
4585 *
4586 * Solving this problem completely requires matching the ownership tracking
4587 * granularities between memcg and writeback in either direction. However,
4588 * the more egregious behaviors can be avoided by simply remembering the
4589 * most recent foreign dirtying events and initiating remote flushes on
4590 * them when local writeback isn't enough to keep the memory clean enough.
4591 *
4592 * The following two functions implement such mechanism. When a foreign
4593 * page - a page whose memcg and writeback ownerships don't match - is
4594 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4595 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4596 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4597 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4598 * foreign bdi_writebacks which haven't expired. Both the numbers of
4599 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4600 * limited to MEMCG_CGWB_FRN_CNT.
4601 *
4602 * The mechanism only remembers IDs and doesn't hold any object references.
4603 * As being wrong occasionally doesn't matter, updates and accesses to the
4604 * records are lockless and racy.
4605 */
4606void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4607 struct bdi_writeback *wb)
4608{
4609 struct mem_cgroup *memcg = page->mem_cgroup;
4610 struct memcg_cgwb_frn *frn;
4611 u64 now = get_jiffies_64();
4612 u64 oldest_at = now;
4613 int oldest = -1;
4614 int i;
4615
4616 trace_track_foreign_dirty(page, wb);
4617
4618 /*
4619 * Pick the slot to use. If there is already a slot for @wb, keep
4620 * using it. If not replace the oldest one which isn't being
4621 * written out.
4622 */
4623 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4624 frn = &memcg->cgwb_frn[i];
4625 if (frn->bdi_id == wb->bdi->id &&
4626 frn->memcg_id == wb->memcg_css->id)
4627 break;
4628 if (time_before64(frn->at, oldest_at) &&
4629 atomic_read(&frn->done.cnt) == 1) {
4630 oldest = i;
4631 oldest_at = frn->at;
4632 }
4633 }
4634
4635 if (i < MEMCG_CGWB_FRN_CNT) {
4636 /*
4637 * Re-using an existing one. Update timestamp lazily to
4638 * avoid making the cacheline hot. We want them to be
4639 * reasonably up-to-date and significantly shorter than
4640 * dirty_expire_interval as that's what expires the record.
4641 * Use the shorter of 1s and dirty_expire_interval / 8.
4642 */
4643 unsigned long update_intv =
4644 min_t(unsigned long, HZ,
4645 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4646
4647 if (time_before64(frn->at, now - update_intv))
4648 frn->at = now;
4649 } else if (oldest >= 0) {
4650 /* replace the oldest free one */
4651 frn = &memcg->cgwb_frn[oldest];
4652 frn->bdi_id = wb->bdi->id;
4653 frn->memcg_id = wb->memcg_css->id;
4654 frn->at = now;
4655 }
4656}
4657
4658/* issue foreign writeback flushes for recorded foreign dirtying events */
4659void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4660{
4661 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4662 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4663 u64 now = jiffies_64;
4664 int i;
4665
4666 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4667 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4668
4669 /*
4670 * If the record is older than dirty_expire_interval,
4671 * writeback on it has already started. No need to kick it
4672 * off again. Also, don't start a new one if there's
4673 * already one in flight.
4674 */
4675 if (time_after64(frn->at, now - intv) &&
4676 atomic_read(&frn->done.cnt) == 1) {
4677 frn->at = 0;
4678 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4679 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4680 WB_REASON_FOREIGN_FLUSH,
4681 &frn->done);
4682 }
4683 }
4684}
4685
4686#else /* CONFIG_CGROUP_WRITEBACK */
4687
4688static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4689{
4690 return 0;
4691}
4692
4693static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4694{
4695}
4696
4697static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4698{
4699}
4700
4701#endif /* CONFIG_CGROUP_WRITEBACK */
4702
4703/*
4704 * DO NOT USE IN NEW FILES.
4705 *
4706 * "cgroup.event_control" implementation.
4707 *
4708 * This is way over-engineered. It tries to support fully configurable
4709 * events for each user. Such level of flexibility is completely
4710 * unnecessary especially in the light of the planned unified hierarchy.
4711 *
4712 * Please deprecate this and replace with something simpler if at all
4713 * possible.
4714 */
4715
4716/*
4717 * Unregister event and free resources.
4718 *
4719 * Gets called from workqueue.
4720 */
4721static void memcg_event_remove(struct work_struct *work)
4722{
4723 struct mem_cgroup_event *event =
4724 container_of(work, struct mem_cgroup_event, remove);
4725 struct mem_cgroup *memcg = event->memcg;
4726
4727 remove_wait_queue(event->wqh, &event->wait);
4728
4729 event->unregister_event(memcg, event->eventfd);
4730
4731 /* Notify userspace the event is going away. */
4732 eventfd_signal(event->eventfd, 1);
4733
4734 eventfd_ctx_put(event->eventfd);
4735 kfree(event);
4736 css_put(&memcg->css);
4737}
4738
4739/*
4740 * Gets called on EPOLLHUP on eventfd when user closes it.
4741 *
4742 * Called with wqh->lock held and interrupts disabled.
4743 */
4744static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4745 int sync, void *key)
4746{
4747 struct mem_cgroup_event *event =
4748 container_of(wait, struct mem_cgroup_event, wait);
4749 struct mem_cgroup *memcg = event->memcg;
4750 __poll_t flags = key_to_poll(key);
4751
4752 if (flags & EPOLLHUP) {
4753 /*
4754 * If the event has been detached at cgroup removal, we
4755 * can simply return knowing the other side will cleanup
4756 * for us.
4757 *
4758 * We can't race against event freeing since the other
4759 * side will require wqh->lock via remove_wait_queue(),
4760 * which we hold.
4761 */
4762 spin_lock(&memcg->event_list_lock);
4763 if (!list_empty(&event->list)) {
4764 list_del_init(&event->list);
4765 /*
4766 * We are in atomic context, but cgroup_event_remove()
4767 * may sleep, so we have to call it in workqueue.
4768 */
4769 schedule_work(&event->remove);
4770 }
4771 spin_unlock(&memcg->event_list_lock);
4772 }
4773
4774 return 0;
4775}
4776
4777static void memcg_event_ptable_queue_proc(struct file *file,
4778 wait_queue_head_t *wqh, poll_table *pt)
4779{
4780 struct mem_cgroup_event *event =
4781 container_of(pt, struct mem_cgroup_event, pt);
4782
4783 event->wqh = wqh;
4784 add_wait_queue(wqh, &event->wait);
4785}
4786
4787/*
4788 * DO NOT USE IN NEW FILES.
4789 *
4790 * Parse input and register new cgroup event handler.
4791 *
4792 * Input must be in format '<event_fd> <control_fd> <args>'.
4793 * Interpretation of args is defined by control file implementation.
4794 */
4795static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4796 char *buf, size_t nbytes, loff_t off)
4797{
4798 struct cgroup_subsys_state *css = of_css(of);
4799 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4800 struct mem_cgroup_event *event;
4801 struct cgroup_subsys_state *cfile_css;
4802 unsigned int efd, cfd;
4803 struct fd efile;
4804 struct fd cfile;
4805 const char *name;
4806 char *endp;
4807 int ret;
4808
4809 buf = strstrip(buf);
4810
4811 efd = simple_strtoul(buf, &endp, 10);
4812 if (*endp != ' ')
4813 return -EINVAL;
4814 buf = endp + 1;
4815
4816 cfd = simple_strtoul(buf, &endp, 10);
4817 if ((*endp != ' ') && (*endp != '\0'))
4818 return -EINVAL;
4819 buf = endp + 1;
4820
4821 event = kzalloc(sizeof(*event), GFP_KERNEL);
4822 if (!event)
4823 return -ENOMEM;
4824
4825 event->memcg = memcg;
4826 INIT_LIST_HEAD(&event->list);
4827 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4828 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4829 INIT_WORK(&event->remove, memcg_event_remove);
4830
4831 efile = fdget(efd);
4832 if (!efile.file) {
4833 ret = -EBADF;
4834 goto out_kfree;
4835 }
4836
4837 event->eventfd = eventfd_ctx_fileget(efile.file);
4838 if (IS_ERR(event->eventfd)) {
4839 ret = PTR_ERR(event->eventfd);
4840 goto out_put_efile;
4841 }
4842
4843 cfile = fdget(cfd);
4844 if (!cfile.file) {
4845 ret = -EBADF;
4846 goto out_put_eventfd;
4847 }
4848
4849 /* the process need read permission on control file */
4850 /* AV: shouldn't we check that it's been opened for read instead? */
4851 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4852 if (ret < 0)
4853 goto out_put_cfile;
4854
4855 /*
4856 * Determine the event callbacks and set them in @event. This used
4857 * to be done via struct cftype but cgroup core no longer knows
4858 * about these events. The following is crude but the whole thing
4859 * is for compatibility anyway.
4860 *
4861 * DO NOT ADD NEW FILES.
4862 */
4863 name = cfile.file->f_path.dentry->d_name.name;
4864
4865 if (!strcmp(name, "memory.usage_in_bytes")) {
4866 event->register_event = mem_cgroup_usage_register_event;
4867 event->unregister_event = mem_cgroup_usage_unregister_event;
4868 } else if (!strcmp(name, "memory.oom_control")) {
4869 event->register_event = mem_cgroup_oom_register_event;
4870 event->unregister_event = mem_cgroup_oom_unregister_event;
4871 } else if (!strcmp(name, "memory.pressure_level")) {
4872 event->register_event = vmpressure_register_event;
4873 event->unregister_event = vmpressure_unregister_event;
4874 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4875 event->register_event = memsw_cgroup_usage_register_event;
4876 event->unregister_event = memsw_cgroup_usage_unregister_event;
4877 } else {
4878 ret = -EINVAL;
4879 goto out_put_cfile;
4880 }
4881
4882 /*
4883 * Verify @cfile should belong to @css. Also, remaining events are
4884 * automatically removed on cgroup destruction but the removal is
4885 * asynchronous, so take an extra ref on @css.
4886 */
4887 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4888 &memory_cgrp_subsys);
4889 ret = -EINVAL;
4890 if (IS_ERR(cfile_css))
4891 goto out_put_cfile;
4892 if (cfile_css != css) {
4893 css_put(cfile_css);
4894 goto out_put_cfile;
4895 }
4896
4897 ret = event->register_event(memcg, event->eventfd, buf);
4898 if (ret)
4899 goto out_put_css;
4900
4901 vfs_poll(efile.file, &event->pt);
4902
4903 spin_lock(&memcg->event_list_lock);
4904 list_add(&event->list, &memcg->event_list);
4905 spin_unlock(&memcg->event_list_lock);
4906
4907 fdput(cfile);
4908 fdput(efile);
4909
4910 return nbytes;
4911
4912out_put_css:
4913 css_put(css);
4914out_put_cfile:
4915 fdput(cfile);
4916out_put_eventfd:
4917 eventfd_ctx_put(event->eventfd);
4918out_put_efile:
4919 fdput(efile);
4920out_kfree:
4921 kfree(event);
4922
4923 return ret;
4924}
4925
4926static struct cftype mem_cgroup_legacy_files[] = {
4927 {
4928 .name = "usage_in_bytes",
4929 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4930 .read_u64 = mem_cgroup_read_u64,
4931 },
4932 {
4933 .name = "max_usage_in_bytes",
4934 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4935 .write = mem_cgroup_reset,
4936 .read_u64 = mem_cgroup_read_u64,
4937 },
4938 {
4939 .name = "limit_in_bytes",
4940 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4941 .write = mem_cgroup_write,
4942 .read_u64 = mem_cgroup_read_u64,
4943 },
4944 {
4945 .name = "soft_limit_in_bytes",
4946 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4947 .write = mem_cgroup_write,
4948 .read_u64 = mem_cgroup_read_u64,
4949 },
4950 {
4951 .name = "failcnt",
4952 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4953 .write = mem_cgroup_reset,
4954 .read_u64 = mem_cgroup_read_u64,
4955 },
4956 {
4957 .name = "stat",
4958 .seq_show = memcg_stat_show,
4959 },
4960 {
4961 .name = "force_empty",
4962 .write = mem_cgroup_force_empty_write,
4963 },
4964 {
4965 .name = "use_hierarchy",
4966 .write_u64 = mem_cgroup_hierarchy_write,
4967 .read_u64 = mem_cgroup_hierarchy_read,
4968 },
4969 {
4970 .name = "cgroup.event_control", /* XXX: for compat */
4971 .write = memcg_write_event_control,
4972 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4973 },
4974 {
4975 .name = "swappiness",
4976 .read_u64 = mem_cgroup_swappiness_read,
4977 .write_u64 = mem_cgroup_swappiness_write,
4978 },
4979 {
4980 .name = "move_charge_at_immigrate",
4981 .read_u64 = mem_cgroup_move_charge_read,
4982 .write_u64 = mem_cgroup_move_charge_write,
4983 },
4984 {
4985 .name = "oom_control",
4986 .seq_show = mem_cgroup_oom_control_read,
4987 .write_u64 = mem_cgroup_oom_control_write,
4988 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4989 },
4990 {
4991 .name = "pressure_level",
4992 },
4993#ifdef CONFIG_NUMA
4994 {
4995 .name = "numa_stat",
4996 .seq_show = memcg_numa_stat_show,
4997 },
4998#endif
4999 {
5000 .name = "kmem.limit_in_bytes",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5002 .write = mem_cgroup_write,
5003 .read_u64 = mem_cgroup_read_u64,
5004 },
5005 {
5006 .name = "kmem.usage_in_bytes",
5007 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5008 .read_u64 = mem_cgroup_read_u64,
5009 },
5010 {
5011 .name = "kmem.failcnt",
5012 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5013 .write = mem_cgroup_reset,
5014 .read_u64 = mem_cgroup_read_u64,
5015 },
5016 {
5017 .name = "kmem.max_usage_in_bytes",
5018 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5019 .write = mem_cgroup_reset,
5020 .read_u64 = mem_cgroup_read_u64,
5021 },
5022#if defined(CONFIG_MEMCG_KMEM) && \
5023 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5024 {
5025 .name = "kmem.slabinfo",
5026 .seq_show = memcg_slab_show,
5027 },
5028#endif
5029 {
5030 .name = "kmem.tcp.limit_in_bytes",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5032 .write = mem_cgroup_write,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 {
5036 .name = "kmem.tcp.usage_in_bytes",
5037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5038 .read_u64 = mem_cgroup_read_u64,
5039 },
5040 {
5041 .name = "kmem.tcp.failcnt",
5042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5043 .write = mem_cgroup_reset,
5044 .read_u64 = mem_cgroup_read_u64,
5045 },
5046 {
5047 .name = "kmem.tcp.max_usage_in_bytes",
5048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5049 .write = mem_cgroup_reset,
5050 .read_u64 = mem_cgroup_read_u64,
5051 },
5052 { }, /* terminate */
5053};
5054
5055/*
5056 * Private memory cgroup IDR
5057 *
5058 * Swap-out records and page cache shadow entries need to store memcg
5059 * references in constrained space, so we maintain an ID space that is
5060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5061 * memory-controlled cgroups to 64k.
5062 *
5063 * However, there usually are many references to the offline CSS after
5064 * the cgroup has been destroyed, such as page cache or reclaimable
5065 * slab objects, that don't need to hang on to the ID. We want to keep
5066 * those dead CSS from occupying IDs, or we might quickly exhaust the
5067 * relatively small ID space and prevent the creation of new cgroups
5068 * even when there are much fewer than 64k cgroups - possibly none.
5069 *
5070 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5071 * be freed and recycled when it's no longer needed, which is usually
5072 * when the CSS is offlined.
5073 *
5074 * The only exception to that are records of swapped out tmpfs/shmem
5075 * pages that need to be attributed to live ancestors on swapin. But
5076 * those references are manageable from userspace.
5077 */
5078
5079static DEFINE_IDR(mem_cgroup_idr);
5080
5081static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5082{
5083 if (memcg->id.id > 0) {
5084 idr_remove(&mem_cgroup_idr, memcg->id.id);
5085 memcg->id.id = 0;
5086 }
5087}
5088
5089static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5090 unsigned int n)
5091{
5092 refcount_add(n, &memcg->id.ref);
5093}
5094
5095static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5096{
5097 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5098 mem_cgroup_id_remove(memcg);
5099
5100 /* Memcg ID pins CSS */
5101 css_put(&memcg->css);
5102 }
5103}
5104
5105static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5106{
5107 mem_cgroup_id_put_many(memcg, 1);
5108}
5109
5110/**
5111 * mem_cgroup_from_id - look up a memcg from a memcg id
5112 * @id: the memcg id to look up
5113 *
5114 * Caller must hold rcu_read_lock().
5115 */
5116struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5117{
5118 WARN_ON_ONCE(!rcu_read_lock_held());
5119 return idr_find(&mem_cgroup_idr, id);
5120}
5121
5122static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5123{
5124 struct mem_cgroup_per_node *pn;
5125 int tmp = node;
5126 /*
5127 * This routine is called against possible nodes.
5128 * But it's BUG to call kmalloc() against offline node.
5129 *
5130 * TODO: this routine can waste much memory for nodes which will
5131 * never be onlined. It's better to use memory hotplug callback
5132 * function.
5133 */
5134 if (!node_state(node, N_NORMAL_MEMORY))
5135 tmp = -1;
5136 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5137 if (!pn)
5138 return 1;
5139
5140 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5141 GFP_KERNEL_ACCOUNT);
5142 if (!pn->lruvec_stat_local) {
5143 kfree(pn);
5144 return 1;
5145 }
5146
5147 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5148 GFP_KERNEL_ACCOUNT);
5149 if (!pn->lruvec_stat_cpu) {
5150 free_percpu(pn->lruvec_stat_local);
5151 kfree(pn);
5152 return 1;
5153 }
5154
5155 lruvec_init(&pn->lruvec);
5156 pn->usage_in_excess = 0;
5157 pn->on_tree = false;
5158 pn->memcg = memcg;
5159
5160 memcg->nodeinfo[node] = pn;
5161 return 0;
5162}
5163
5164static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5165{
5166 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5167
5168 if (!pn)
5169 return;
5170
5171 free_percpu(pn->lruvec_stat_cpu);
5172 free_percpu(pn->lruvec_stat_local);
5173 kfree(pn);
5174}
5175
5176static void __mem_cgroup_free(struct mem_cgroup *memcg)
5177{
5178 int node;
5179
5180 for_each_node(node)
5181 free_mem_cgroup_per_node_info(memcg, node);
5182 free_percpu(memcg->vmstats_percpu);
5183 free_percpu(memcg->vmstats_local);
5184 kfree(memcg);
5185}
5186
5187static void mem_cgroup_free(struct mem_cgroup *memcg)
5188{
5189 memcg_wb_domain_exit(memcg);
5190 /*
5191 * Flush percpu vmstats and vmevents to guarantee the value correctness
5192 * on parent's and all ancestor levels.
5193 */
5194 memcg_flush_percpu_vmstats(memcg);
5195 memcg_flush_percpu_vmevents(memcg);
5196 __mem_cgroup_free(memcg);
5197}
5198
5199static struct mem_cgroup *mem_cgroup_alloc(void)
5200{
5201 struct mem_cgroup *memcg;
5202 unsigned int size;
5203 int node;
5204 int __maybe_unused i;
5205 long error = -ENOMEM;
5206
5207 size = sizeof(struct mem_cgroup);
5208 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5209
5210 memcg = kzalloc(size, GFP_KERNEL);
5211 if (!memcg)
5212 return ERR_PTR(error);
5213
5214 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5215 1, MEM_CGROUP_ID_MAX,
5216 GFP_KERNEL);
5217 if (memcg->id.id < 0) {
5218 error = memcg->id.id;
5219 goto fail;
5220 }
5221
5222 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5223 GFP_KERNEL_ACCOUNT);
5224 if (!memcg->vmstats_local)
5225 goto fail;
5226
5227 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5228 GFP_KERNEL_ACCOUNT);
5229 if (!memcg->vmstats_percpu)
5230 goto fail;
5231
5232 for_each_node(node)
5233 if (alloc_mem_cgroup_per_node_info(memcg, node))
5234 goto fail;
5235
5236 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5237 goto fail;
5238
5239 INIT_WORK(&memcg->high_work, high_work_func);
5240 INIT_LIST_HEAD(&memcg->oom_notify);
5241 mutex_init(&memcg->thresholds_lock);
5242 spin_lock_init(&memcg->move_lock);
5243 vmpressure_init(&memcg->vmpressure);
5244 INIT_LIST_HEAD(&memcg->event_list);
5245 spin_lock_init(&memcg->event_list_lock);
5246 memcg->socket_pressure = jiffies;
5247#ifdef CONFIG_MEMCG_KMEM
5248 memcg->kmemcg_id = -1;
5249 INIT_LIST_HEAD(&memcg->objcg_list);
5250#endif
5251#ifdef CONFIG_CGROUP_WRITEBACK
5252 INIT_LIST_HEAD(&memcg->cgwb_list);
5253 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5254 memcg->cgwb_frn[i].done =
5255 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5256#endif
5257#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5258 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5259 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5260 memcg->deferred_split_queue.split_queue_len = 0;
5261#endif
5262 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5263 return memcg;
5264fail:
5265 mem_cgroup_id_remove(memcg);
5266 __mem_cgroup_free(memcg);
5267 return ERR_PTR(error);
5268}
5269
5270static struct cgroup_subsys_state * __ref
5271mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5272{
5273 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5274 struct mem_cgroup *memcg;
5275 long error = -ENOMEM;
5276
5277 memalloc_use_memcg(parent);
5278 memcg = mem_cgroup_alloc();
5279 memalloc_unuse_memcg();
5280 if (IS_ERR(memcg))
5281 return ERR_CAST(memcg);
5282
5283 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5284 memcg->soft_limit = PAGE_COUNTER_MAX;
5285 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5286 if (parent) {
5287 memcg->swappiness = mem_cgroup_swappiness(parent);
5288 memcg->oom_kill_disable = parent->oom_kill_disable;
5289 }
5290 if (parent && parent->use_hierarchy) {
5291 memcg->use_hierarchy = true;
5292 page_counter_init(&memcg->memory, &parent->memory);
5293 page_counter_init(&memcg->swap, &parent->swap);
5294 page_counter_init(&memcg->memsw, &parent->memsw);
5295 page_counter_init(&memcg->kmem, &parent->kmem);
5296 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5297 } else {
5298 page_counter_init(&memcg->memory, NULL);
5299 page_counter_init(&memcg->swap, NULL);
5300 page_counter_init(&memcg->memsw, NULL);
5301 page_counter_init(&memcg->kmem, NULL);
5302 page_counter_init(&memcg->tcpmem, NULL);
5303 /*
5304 * Deeper hierachy with use_hierarchy == false doesn't make
5305 * much sense so let cgroup subsystem know about this
5306 * unfortunate state in our controller.
5307 */
5308 if (parent != root_mem_cgroup)
5309 memory_cgrp_subsys.broken_hierarchy = true;
5310 }
5311
5312 /* The following stuff does not apply to the root */
5313 if (!parent) {
5314 root_mem_cgroup = memcg;
5315 return &memcg->css;
5316 }
5317
5318 error = memcg_online_kmem(memcg);
5319 if (error)
5320 goto fail;
5321
5322 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5323 static_branch_inc(&memcg_sockets_enabled_key);
5324
5325 return &memcg->css;
5326fail:
5327 mem_cgroup_id_remove(memcg);
5328 mem_cgroup_free(memcg);
5329 return ERR_PTR(error);
5330}
5331
5332static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5333{
5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335
5336 /*
5337 * A memcg must be visible for memcg_expand_shrinker_maps()
5338 * by the time the maps are allocated. So, we allocate maps
5339 * here, when for_each_mem_cgroup() can't skip it.
5340 */
5341 if (memcg_alloc_shrinker_maps(memcg)) {
5342 mem_cgroup_id_remove(memcg);
5343 return -ENOMEM;
5344 }
5345
5346 /* Online state pins memcg ID, memcg ID pins CSS */
5347 refcount_set(&memcg->id.ref, 1);
5348 css_get(css);
5349 return 0;
5350}
5351
5352static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5353{
5354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355 struct mem_cgroup_event *event, *tmp;
5356
5357 /*
5358 * Unregister events and notify userspace.
5359 * Notify userspace about cgroup removing only after rmdir of cgroup
5360 * directory to avoid race between userspace and kernelspace.
5361 */
5362 spin_lock(&memcg->event_list_lock);
5363 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5364 list_del_init(&event->list);
5365 schedule_work(&event->remove);
5366 }
5367 spin_unlock(&memcg->event_list_lock);
5368
5369 page_counter_set_min(&memcg->memory, 0);
5370 page_counter_set_low(&memcg->memory, 0);
5371
5372 memcg_offline_kmem(memcg);
5373 wb_memcg_offline(memcg);
5374
5375 drain_all_stock(memcg);
5376
5377 mem_cgroup_id_put(memcg);
5378}
5379
5380static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5381{
5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
5384 invalidate_reclaim_iterators(memcg);
5385}
5386
5387static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5388{
5389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390 int __maybe_unused i;
5391
5392#ifdef CONFIG_CGROUP_WRITEBACK
5393 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5394 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5395#endif
5396 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5397 static_branch_dec(&memcg_sockets_enabled_key);
5398
5399 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5400 static_branch_dec(&memcg_sockets_enabled_key);
5401
5402 vmpressure_cleanup(&memcg->vmpressure);
5403 cancel_work_sync(&memcg->high_work);
5404 mem_cgroup_remove_from_trees(memcg);
5405 memcg_free_shrinker_maps(memcg);
5406 memcg_free_kmem(memcg);
5407 mem_cgroup_free(memcg);
5408}
5409
5410/**
5411 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5412 * @css: the target css
5413 *
5414 * Reset the states of the mem_cgroup associated with @css. This is
5415 * invoked when the userland requests disabling on the default hierarchy
5416 * but the memcg is pinned through dependency. The memcg should stop
5417 * applying policies and should revert to the vanilla state as it may be
5418 * made visible again.
5419 *
5420 * The current implementation only resets the essential configurations.
5421 * This needs to be expanded to cover all the visible parts.
5422 */
5423static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5424{
5425 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426
5427 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5428 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5429 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5430 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5431 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5432 page_counter_set_min(&memcg->memory, 0);
5433 page_counter_set_low(&memcg->memory, 0);
5434 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5435 memcg->soft_limit = PAGE_COUNTER_MAX;
5436 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5437 memcg_wb_domain_size_changed(memcg);
5438}
5439
5440#ifdef CONFIG_MMU
5441/* Handlers for move charge at task migration. */
5442static int mem_cgroup_do_precharge(unsigned long count)
5443{
5444 int ret;
5445
5446 /* Try a single bulk charge without reclaim first, kswapd may wake */
5447 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5448 if (!ret) {
5449 mc.precharge += count;
5450 return ret;
5451 }
5452
5453 /* Try charges one by one with reclaim, but do not retry */
5454 while (count--) {
5455 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5456 if (ret)
5457 return ret;
5458 mc.precharge++;
5459 cond_resched();
5460 }
5461 return 0;
5462}
5463
5464union mc_target {
5465 struct page *page;
5466 swp_entry_t ent;
5467};
5468
5469enum mc_target_type {
5470 MC_TARGET_NONE = 0,
5471 MC_TARGET_PAGE,
5472 MC_TARGET_SWAP,
5473 MC_TARGET_DEVICE,
5474};
5475
5476static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5477 unsigned long addr, pte_t ptent)
5478{
5479 struct page *page = vm_normal_page(vma, addr, ptent);
5480
5481 if (!page || !page_mapped(page))
5482 return NULL;
5483 if (PageAnon(page)) {
5484 if (!(mc.flags & MOVE_ANON))
5485 return NULL;
5486 } else {
5487 if (!(mc.flags & MOVE_FILE))
5488 return NULL;
5489 }
5490 if (!get_page_unless_zero(page))
5491 return NULL;
5492
5493 return page;
5494}
5495
5496#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5497static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5498 pte_t ptent, swp_entry_t *entry)
5499{
5500 struct page *page = NULL;
5501 swp_entry_t ent = pte_to_swp_entry(ptent);
5502
5503 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5504 return NULL;
5505
5506 /*
5507 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5508 * a device and because they are not accessible by CPU they are store
5509 * as special swap entry in the CPU page table.
5510 */
5511 if (is_device_private_entry(ent)) {
5512 page = device_private_entry_to_page(ent);
5513 /*
5514 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5515 * a refcount of 1 when free (unlike normal page)
5516 */
5517 if (!page_ref_add_unless(page, 1, 1))
5518 return NULL;
5519 return page;
5520 }
5521
5522 /*
5523 * Because lookup_swap_cache() updates some statistics counter,
5524 * we call find_get_page() with swapper_space directly.
5525 */
5526 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5527 entry->val = ent.val;
5528
5529 return page;
5530}
5531#else
5532static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533 pte_t ptent, swp_entry_t *entry)
5534{
5535 return NULL;
5536}
5537#endif
5538
5539static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5540 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5541{
5542 struct page *page = NULL;
5543 struct address_space *mapping;
5544 pgoff_t pgoff;
5545
5546 if (!vma->vm_file) /* anonymous vma */
5547 return NULL;
5548 if (!(mc.flags & MOVE_FILE))
5549 return NULL;
5550
5551 mapping = vma->vm_file->f_mapping;
5552 pgoff = linear_page_index(vma, addr);
5553
5554 /* page is moved even if it's not RSS of this task(page-faulted). */
5555#ifdef CONFIG_SWAP
5556 /* shmem/tmpfs may report page out on swap: account for that too. */
5557 if (shmem_mapping(mapping)) {
5558 page = find_get_entry(mapping, pgoff);
5559 if (xa_is_value(page)) {
5560 swp_entry_t swp = radix_to_swp_entry(page);
5561 *entry = swp;
5562 page = find_get_page(swap_address_space(swp),
5563 swp_offset(swp));
5564 }
5565 } else
5566 page = find_get_page(mapping, pgoff);
5567#else
5568 page = find_get_page(mapping, pgoff);
5569#endif
5570 return page;
5571}
5572
5573/**
5574 * mem_cgroup_move_account - move account of the page
5575 * @page: the page
5576 * @compound: charge the page as compound or small page
5577 * @from: mem_cgroup which the page is moved from.
5578 * @to: mem_cgroup which the page is moved to. @from != @to.
5579 *
5580 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5581 *
5582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5583 * from old cgroup.
5584 */
5585static int mem_cgroup_move_account(struct page *page,
5586 bool compound,
5587 struct mem_cgroup *from,
5588 struct mem_cgroup *to)
5589{
5590 struct lruvec *from_vec, *to_vec;
5591 struct pglist_data *pgdat;
5592 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5593 int ret;
5594
5595 VM_BUG_ON(from == to);
5596 VM_BUG_ON_PAGE(PageLRU(page), page);
5597 VM_BUG_ON(compound && !PageTransHuge(page));
5598
5599 /*
5600 * Prevent mem_cgroup_migrate() from looking at
5601 * page->mem_cgroup of its source page while we change it.
5602 */
5603 ret = -EBUSY;
5604 if (!trylock_page(page))
5605 goto out;
5606
5607 ret = -EINVAL;
5608 if (page->mem_cgroup != from)
5609 goto out_unlock;
5610
5611 pgdat = page_pgdat(page);
5612 from_vec = mem_cgroup_lruvec(from, pgdat);
5613 to_vec = mem_cgroup_lruvec(to, pgdat);
5614
5615 lock_page_memcg(page);
5616
5617 if (PageAnon(page)) {
5618 if (page_mapped(page)) {
5619 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5620 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5621 if (PageTransHuge(page)) {
5622 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5623 -nr_pages);
5624 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5625 nr_pages);
5626 }
5627
5628 }
5629 } else {
5630 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5632
5633 if (PageSwapBacked(page)) {
5634 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5635 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5636 }
5637
5638 if (page_mapped(page)) {
5639 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5640 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5641 }
5642
5643 if (PageDirty(page)) {
5644 struct address_space *mapping = page_mapping(page);
5645
5646 if (mapping_cap_account_dirty(mapping)) {
5647 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5648 -nr_pages);
5649 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5650 nr_pages);
5651 }
5652 }
5653 }
5654
5655 if (PageWriteback(page)) {
5656 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5657 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5658 }
5659
5660 /*
5661 * All state has been migrated, let's switch to the new memcg.
5662 *
5663 * It is safe to change page->mem_cgroup here because the page
5664 * is referenced, charged, isolated, and locked: we can't race
5665 * with (un)charging, migration, LRU putback, or anything else
5666 * that would rely on a stable page->mem_cgroup.
5667 *
5668 * Note that lock_page_memcg is a memcg lock, not a page lock,
5669 * to save space. As soon as we switch page->mem_cgroup to a
5670 * new memcg that isn't locked, the above state can change
5671 * concurrently again. Make sure we're truly done with it.
5672 */
5673 smp_mb();
5674
5675 css_get(&to->css);
5676 css_put(&from->css);
5677
5678 page->mem_cgroup = to;
5679
5680 __unlock_page_memcg(from);
5681
5682 ret = 0;
5683
5684 local_irq_disable();
5685 mem_cgroup_charge_statistics(to, page, nr_pages);
5686 memcg_check_events(to, page);
5687 mem_cgroup_charge_statistics(from, page, -nr_pages);
5688 memcg_check_events(from, page);
5689 local_irq_enable();
5690out_unlock:
5691 unlock_page(page);
5692out:
5693 return ret;
5694}
5695
5696/**
5697 * get_mctgt_type - get target type of moving charge
5698 * @vma: the vma the pte to be checked belongs
5699 * @addr: the address corresponding to the pte to be checked
5700 * @ptent: the pte to be checked
5701 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5702 *
5703 * Returns
5704 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5705 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5706 * move charge. if @target is not NULL, the page is stored in target->page
5707 * with extra refcnt got(Callers should handle it).
5708 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5709 * target for charge migration. if @target is not NULL, the entry is stored
5710 * in target->ent.
5711 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5712 * (so ZONE_DEVICE page and thus not on the lru).
5713 * For now we such page is charge like a regular page would be as for all
5714 * intent and purposes it is just special memory taking the place of a
5715 * regular page.
5716 *
5717 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5718 *
5719 * Called with pte lock held.
5720 */
5721
5722static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5723 unsigned long addr, pte_t ptent, union mc_target *target)
5724{
5725 struct page *page = NULL;
5726 enum mc_target_type ret = MC_TARGET_NONE;
5727 swp_entry_t ent = { .val = 0 };
5728
5729 if (pte_present(ptent))
5730 page = mc_handle_present_pte(vma, addr, ptent);
5731 else if (is_swap_pte(ptent))
5732 page = mc_handle_swap_pte(vma, ptent, &ent);
5733 else if (pte_none(ptent))
5734 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5735
5736 if (!page && !ent.val)
5737 return ret;
5738 if (page) {
5739 /*
5740 * Do only loose check w/o serialization.
5741 * mem_cgroup_move_account() checks the page is valid or
5742 * not under LRU exclusion.
5743 */
5744 if (page->mem_cgroup == mc.from) {
5745 ret = MC_TARGET_PAGE;
5746 if (is_device_private_page(page))
5747 ret = MC_TARGET_DEVICE;
5748 if (target)
5749 target->page = page;
5750 }
5751 if (!ret || !target)
5752 put_page(page);
5753 }
5754 /*
5755 * There is a swap entry and a page doesn't exist or isn't charged.
5756 * But we cannot move a tail-page in a THP.
5757 */
5758 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5759 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5760 ret = MC_TARGET_SWAP;
5761 if (target)
5762 target->ent = ent;
5763 }
5764 return ret;
5765}
5766
5767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5768/*
5769 * We don't consider PMD mapped swapping or file mapped pages because THP does
5770 * not support them for now.
5771 * Caller should make sure that pmd_trans_huge(pmd) is true.
5772 */
5773static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774 unsigned long addr, pmd_t pmd, union mc_target *target)
5775{
5776 struct page *page = NULL;
5777 enum mc_target_type ret = MC_TARGET_NONE;
5778
5779 if (unlikely(is_swap_pmd(pmd))) {
5780 VM_BUG_ON(thp_migration_supported() &&
5781 !is_pmd_migration_entry(pmd));
5782 return ret;
5783 }
5784 page = pmd_page(pmd);
5785 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5786 if (!(mc.flags & MOVE_ANON))
5787 return ret;
5788 if (page->mem_cgroup == mc.from) {
5789 ret = MC_TARGET_PAGE;
5790 if (target) {
5791 get_page(page);
5792 target->page = page;
5793 }
5794 }
5795 return ret;
5796}
5797#else
5798static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799 unsigned long addr, pmd_t pmd, union mc_target *target)
5800{
5801 return MC_TARGET_NONE;
5802}
5803#endif
5804
5805static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5806 unsigned long addr, unsigned long end,
5807 struct mm_walk *walk)
5808{
5809 struct vm_area_struct *vma = walk->vma;
5810 pte_t *pte;
5811 spinlock_t *ptl;
5812
5813 ptl = pmd_trans_huge_lock(pmd, vma);
5814 if (ptl) {
5815 /*
5816 * Note their can not be MC_TARGET_DEVICE for now as we do not
5817 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5818 * this might change.
5819 */
5820 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5821 mc.precharge += HPAGE_PMD_NR;
5822 spin_unlock(ptl);
5823 return 0;
5824 }
5825
5826 if (pmd_trans_unstable(pmd))
5827 return 0;
5828 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5829 for (; addr != end; pte++, addr += PAGE_SIZE)
5830 if (get_mctgt_type(vma, addr, *pte, NULL))
5831 mc.precharge++; /* increment precharge temporarily */
5832 pte_unmap_unlock(pte - 1, ptl);
5833 cond_resched();
5834
5835 return 0;
5836}
5837
5838static const struct mm_walk_ops precharge_walk_ops = {
5839 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5840};
5841
5842static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5843{
5844 unsigned long precharge;
5845
5846 mmap_read_lock(mm);
5847 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5848 mmap_read_unlock(mm);
5849
5850 precharge = mc.precharge;
5851 mc.precharge = 0;
5852
5853 return precharge;
5854}
5855
5856static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5857{
5858 unsigned long precharge = mem_cgroup_count_precharge(mm);
5859
5860 VM_BUG_ON(mc.moving_task);
5861 mc.moving_task = current;
5862 return mem_cgroup_do_precharge(precharge);
5863}
5864
5865/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5866static void __mem_cgroup_clear_mc(void)
5867{
5868 struct mem_cgroup *from = mc.from;
5869 struct mem_cgroup *to = mc.to;
5870
5871 /* we must uncharge all the leftover precharges from mc.to */
5872 if (mc.precharge) {
5873 cancel_charge(mc.to, mc.precharge);
5874 mc.precharge = 0;
5875 }
5876 /*
5877 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5878 * we must uncharge here.
5879 */
5880 if (mc.moved_charge) {
5881 cancel_charge(mc.from, mc.moved_charge);
5882 mc.moved_charge = 0;
5883 }
5884 /* we must fixup refcnts and charges */
5885 if (mc.moved_swap) {
5886 /* uncharge swap account from the old cgroup */
5887 if (!mem_cgroup_is_root(mc.from))
5888 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5889
5890 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5891
5892 /*
5893 * we charged both to->memory and to->memsw, so we
5894 * should uncharge to->memory.
5895 */
5896 if (!mem_cgroup_is_root(mc.to))
5897 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5898
5899 mc.moved_swap = 0;
5900 }
5901 memcg_oom_recover(from);
5902 memcg_oom_recover(to);
5903 wake_up_all(&mc.waitq);
5904}
5905
5906static void mem_cgroup_clear_mc(void)
5907{
5908 struct mm_struct *mm = mc.mm;
5909
5910 /*
5911 * we must clear moving_task before waking up waiters at the end of
5912 * task migration.
5913 */
5914 mc.moving_task = NULL;
5915 __mem_cgroup_clear_mc();
5916 spin_lock(&mc.lock);
5917 mc.from = NULL;
5918 mc.to = NULL;
5919 mc.mm = NULL;
5920 spin_unlock(&mc.lock);
5921
5922 mmput(mm);
5923}
5924
5925static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5926{
5927 struct cgroup_subsys_state *css;
5928 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5929 struct mem_cgroup *from;
5930 struct task_struct *leader, *p;
5931 struct mm_struct *mm;
5932 unsigned long move_flags;
5933 int ret = 0;
5934
5935 /* charge immigration isn't supported on the default hierarchy */
5936 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5937 return 0;
5938
5939 /*
5940 * Multi-process migrations only happen on the default hierarchy
5941 * where charge immigration is not used. Perform charge
5942 * immigration if @tset contains a leader and whine if there are
5943 * multiple.
5944 */
5945 p = NULL;
5946 cgroup_taskset_for_each_leader(leader, css, tset) {
5947 WARN_ON_ONCE(p);
5948 p = leader;
5949 memcg = mem_cgroup_from_css(css);
5950 }
5951 if (!p)
5952 return 0;
5953
5954 /*
5955 * We are now commited to this value whatever it is. Changes in this
5956 * tunable will only affect upcoming migrations, not the current one.
5957 * So we need to save it, and keep it going.
5958 */
5959 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5960 if (!move_flags)
5961 return 0;
5962
5963 from = mem_cgroup_from_task(p);
5964
5965 VM_BUG_ON(from == memcg);
5966
5967 mm = get_task_mm(p);
5968 if (!mm)
5969 return 0;
5970 /* We move charges only when we move a owner of the mm */
5971 if (mm->owner == p) {
5972 VM_BUG_ON(mc.from);
5973 VM_BUG_ON(mc.to);
5974 VM_BUG_ON(mc.precharge);
5975 VM_BUG_ON(mc.moved_charge);
5976 VM_BUG_ON(mc.moved_swap);
5977
5978 spin_lock(&mc.lock);
5979 mc.mm = mm;
5980 mc.from = from;
5981 mc.to = memcg;
5982 mc.flags = move_flags;
5983 spin_unlock(&mc.lock);
5984 /* We set mc.moving_task later */
5985
5986 ret = mem_cgroup_precharge_mc(mm);
5987 if (ret)
5988 mem_cgroup_clear_mc();
5989 } else {
5990 mmput(mm);
5991 }
5992 return ret;
5993}
5994
5995static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5996{
5997 if (mc.to)
5998 mem_cgroup_clear_mc();
5999}
6000
6001static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002 unsigned long addr, unsigned long end,
6003 struct mm_walk *walk)
6004{
6005 int ret = 0;
6006 struct vm_area_struct *vma = walk->vma;
6007 pte_t *pte;
6008 spinlock_t *ptl;
6009 enum mc_target_type target_type;
6010 union mc_target target;
6011 struct page *page;
6012
6013 ptl = pmd_trans_huge_lock(pmd, vma);
6014 if (ptl) {
6015 if (mc.precharge < HPAGE_PMD_NR) {
6016 spin_unlock(ptl);
6017 return 0;
6018 }
6019 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6020 if (target_type == MC_TARGET_PAGE) {
6021 page = target.page;
6022 if (!isolate_lru_page(page)) {
6023 if (!mem_cgroup_move_account(page, true,
6024 mc.from, mc.to)) {
6025 mc.precharge -= HPAGE_PMD_NR;
6026 mc.moved_charge += HPAGE_PMD_NR;
6027 }
6028 putback_lru_page(page);
6029 }
6030 put_page(page);
6031 } else if (target_type == MC_TARGET_DEVICE) {
6032 page = target.page;
6033 if (!mem_cgroup_move_account(page, true,
6034 mc.from, mc.to)) {
6035 mc.precharge -= HPAGE_PMD_NR;
6036 mc.moved_charge += HPAGE_PMD_NR;
6037 }
6038 put_page(page);
6039 }
6040 spin_unlock(ptl);
6041 return 0;
6042 }
6043
6044 if (pmd_trans_unstable(pmd))
6045 return 0;
6046retry:
6047 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6048 for (; addr != end; addr += PAGE_SIZE) {
6049 pte_t ptent = *(pte++);
6050 bool device = false;
6051 swp_entry_t ent;
6052
6053 if (!mc.precharge)
6054 break;
6055
6056 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6057 case MC_TARGET_DEVICE:
6058 device = true;
6059 fallthrough;
6060 case MC_TARGET_PAGE:
6061 page = target.page;
6062 /*
6063 * We can have a part of the split pmd here. Moving it
6064 * can be done but it would be too convoluted so simply
6065 * ignore such a partial THP and keep it in original
6066 * memcg. There should be somebody mapping the head.
6067 */
6068 if (PageTransCompound(page))
6069 goto put;
6070 if (!device && isolate_lru_page(page))
6071 goto put;
6072 if (!mem_cgroup_move_account(page, false,
6073 mc.from, mc.to)) {
6074 mc.precharge--;
6075 /* we uncharge from mc.from later. */
6076 mc.moved_charge++;
6077 }
6078 if (!device)
6079 putback_lru_page(page);
6080put: /* get_mctgt_type() gets the page */
6081 put_page(page);
6082 break;
6083 case MC_TARGET_SWAP:
6084 ent = target.ent;
6085 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6086 mc.precharge--;
6087 mem_cgroup_id_get_many(mc.to, 1);
6088 /* we fixup other refcnts and charges later. */
6089 mc.moved_swap++;
6090 }
6091 break;
6092 default:
6093 break;
6094 }
6095 }
6096 pte_unmap_unlock(pte - 1, ptl);
6097 cond_resched();
6098
6099 if (addr != end) {
6100 /*
6101 * We have consumed all precharges we got in can_attach().
6102 * We try charge one by one, but don't do any additional
6103 * charges to mc.to if we have failed in charge once in attach()
6104 * phase.
6105 */
6106 ret = mem_cgroup_do_precharge(1);
6107 if (!ret)
6108 goto retry;
6109 }
6110
6111 return ret;
6112}
6113
6114static const struct mm_walk_ops charge_walk_ops = {
6115 .pmd_entry = mem_cgroup_move_charge_pte_range,
6116};
6117
6118static void mem_cgroup_move_charge(void)
6119{
6120 lru_add_drain_all();
6121 /*
6122 * Signal lock_page_memcg() to take the memcg's move_lock
6123 * while we're moving its pages to another memcg. Then wait
6124 * for already started RCU-only updates to finish.
6125 */
6126 atomic_inc(&mc.from->moving_account);
6127 synchronize_rcu();
6128retry:
6129 if (unlikely(!mmap_read_trylock(mc.mm))) {
6130 /*
6131 * Someone who are holding the mmap_lock might be waiting in
6132 * waitq. So we cancel all extra charges, wake up all waiters,
6133 * and retry. Because we cancel precharges, we might not be able
6134 * to move enough charges, but moving charge is a best-effort
6135 * feature anyway, so it wouldn't be a big problem.
6136 */
6137 __mem_cgroup_clear_mc();
6138 cond_resched();
6139 goto retry;
6140 }
6141 /*
6142 * When we have consumed all precharges and failed in doing
6143 * additional charge, the page walk just aborts.
6144 */
6145 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6146 NULL);
6147
6148 mmap_read_unlock(mc.mm);
6149 atomic_dec(&mc.from->moving_account);
6150}
6151
6152static void mem_cgroup_move_task(void)
6153{
6154 if (mc.to) {
6155 mem_cgroup_move_charge();
6156 mem_cgroup_clear_mc();
6157 }
6158}
6159#else /* !CONFIG_MMU */
6160static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6161{
6162 return 0;
6163}
6164static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6165{
6166}
6167static void mem_cgroup_move_task(void)
6168{
6169}
6170#endif
6171
6172/*
6173 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6174 * to verify whether we're attached to the default hierarchy on each mount
6175 * attempt.
6176 */
6177static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6178{
6179 /*
6180 * use_hierarchy is forced on the default hierarchy. cgroup core
6181 * guarantees that @root doesn't have any children, so turning it
6182 * on for the root memcg is enough.
6183 */
6184 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6185 root_mem_cgroup->use_hierarchy = true;
6186 else
6187 root_mem_cgroup->use_hierarchy = false;
6188}
6189
6190static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6191{
6192 if (value == PAGE_COUNTER_MAX)
6193 seq_puts(m, "max\n");
6194 else
6195 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6196
6197 return 0;
6198}
6199
6200static u64 memory_current_read(struct cgroup_subsys_state *css,
6201 struct cftype *cft)
6202{
6203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6204
6205 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6206}
6207
6208static int memory_min_show(struct seq_file *m, void *v)
6209{
6210 return seq_puts_memcg_tunable(m,
6211 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6212}
6213
6214static ssize_t memory_min_write(struct kernfs_open_file *of,
6215 char *buf, size_t nbytes, loff_t off)
6216{
6217 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6218 unsigned long min;
6219 int err;
6220
6221 buf = strstrip(buf);
6222 err = page_counter_memparse(buf, "max", &min);
6223 if (err)
6224 return err;
6225
6226 page_counter_set_min(&memcg->memory, min);
6227
6228 return nbytes;
6229}
6230
6231static int memory_low_show(struct seq_file *m, void *v)
6232{
6233 return seq_puts_memcg_tunable(m,
6234 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6235}
6236
6237static ssize_t memory_low_write(struct kernfs_open_file *of,
6238 char *buf, size_t nbytes, loff_t off)
6239{
6240 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6241 unsigned long low;
6242 int err;
6243
6244 buf = strstrip(buf);
6245 err = page_counter_memparse(buf, "max", &low);
6246 if (err)
6247 return err;
6248
6249 page_counter_set_low(&memcg->memory, low);
6250
6251 return nbytes;
6252}
6253
6254static int memory_high_show(struct seq_file *m, void *v)
6255{
6256 return seq_puts_memcg_tunable(m,
6257 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6258}
6259
6260static ssize_t memory_high_write(struct kernfs_open_file *of,
6261 char *buf, size_t nbytes, loff_t off)
6262{
6263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6265 bool drained = false;
6266 unsigned long high;
6267 int err;
6268
6269 buf = strstrip(buf);
6270 err = page_counter_memparse(buf, "max", &high);
6271 if (err)
6272 return err;
6273
6274 for (;;) {
6275 unsigned long nr_pages = page_counter_read(&memcg->memory);
6276 unsigned long reclaimed;
6277
6278 if (nr_pages <= high)
6279 break;
6280
6281 if (signal_pending(current))
6282 break;
6283
6284 if (!drained) {
6285 drain_all_stock(memcg);
6286 drained = true;
6287 continue;
6288 }
6289
6290 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6291 GFP_KERNEL, true);
6292
6293 if (!reclaimed && !nr_retries--)
6294 break;
6295 }
6296
6297 page_counter_set_high(&memcg->memory, high);
6298
6299 memcg_wb_domain_size_changed(memcg);
6300
6301 return nbytes;
6302}
6303
6304static int memory_max_show(struct seq_file *m, void *v)
6305{
6306 return seq_puts_memcg_tunable(m,
6307 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6308}
6309
6310static ssize_t memory_max_write(struct kernfs_open_file *of,
6311 char *buf, size_t nbytes, loff_t off)
6312{
6313 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6314 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6315 bool drained = false;
6316 unsigned long max;
6317 int err;
6318
6319 buf = strstrip(buf);
6320 err = page_counter_memparse(buf, "max", &max);
6321 if (err)
6322 return err;
6323
6324 xchg(&memcg->memory.max, max);
6325
6326 for (;;) {
6327 unsigned long nr_pages = page_counter_read(&memcg->memory);
6328
6329 if (nr_pages <= max)
6330 break;
6331
6332 if (signal_pending(current))
6333 break;
6334
6335 if (!drained) {
6336 drain_all_stock(memcg);
6337 drained = true;
6338 continue;
6339 }
6340
6341 if (nr_reclaims) {
6342 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6343 GFP_KERNEL, true))
6344 nr_reclaims--;
6345 continue;
6346 }
6347
6348 memcg_memory_event(memcg, MEMCG_OOM);
6349 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6350 break;
6351 }
6352
6353 memcg_wb_domain_size_changed(memcg);
6354 return nbytes;
6355}
6356
6357static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6358{
6359 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6360 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6361 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6362 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6363 seq_printf(m, "oom_kill %lu\n",
6364 atomic_long_read(&events[MEMCG_OOM_KILL]));
6365}
6366
6367static int memory_events_show(struct seq_file *m, void *v)
6368{
6369 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6370
6371 __memory_events_show(m, memcg->memory_events);
6372 return 0;
6373}
6374
6375static int memory_events_local_show(struct seq_file *m, void *v)
6376{
6377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6378
6379 __memory_events_show(m, memcg->memory_events_local);
6380 return 0;
6381}
6382
6383static int memory_stat_show(struct seq_file *m, void *v)
6384{
6385 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6386 char *buf;
6387
6388 buf = memory_stat_format(memcg);
6389 if (!buf)
6390 return -ENOMEM;
6391 seq_puts(m, buf);
6392 kfree(buf);
6393 return 0;
6394}
6395
6396static int memory_oom_group_show(struct seq_file *m, void *v)
6397{
6398 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6399
6400 seq_printf(m, "%d\n", memcg->oom_group);
6401
6402 return 0;
6403}
6404
6405static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6406 char *buf, size_t nbytes, loff_t off)
6407{
6408 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6409 int ret, oom_group;
6410
6411 buf = strstrip(buf);
6412 if (!buf)
6413 return -EINVAL;
6414
6415 ret = kstrtoint(buf, 0, &oom_group);
6416 if (ret)
6417 return ret;
6418
6419 if (oom_group != 0 && oom_group != 1)
6420 return -EINVAL;
6421
6422 memcg->oom_group = oom_group;
6423
6424 return nbytes;
6425}
6426
6427static struct cftype memory_files[] = {
6428 {
6429 .name = "current",
6430 .flags = CFTYPE_NOT_ON_ROOT,
6431 .read_u64 = memory_current_read,
6432 },
6433 {
6434 .name = "min",
6435 .flags = CFTYPE_NOT_ON_ROOT,
6436 .seq_show = memory_min_show,
6437 .write = memory_min_write,
6438 },
6439 {
6440 .name = "low",
6441 .flags = CFTYPE_NOT_ON_ROOT,
6442 .seq_show = memory_low_show,
6443 .write = memory_low_write,
6444 },
6445 {
6446 .name = "high",
6447 .flags = CFTYPE_NOT_ON_ROOT,
6448 .seq_show = memory_high_show,
6449 .write = memory_high_write,
6450 },
6451 {
6452 .name = "max",
6453 .flags = CFTYPE_NOT_ON_ROOT,
6454 .seq_show = memory_max_show,
6455 .write = memory_max_write,
6456 },
6457 {
6458 .name = "events",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .file_offset = offsetof(struct mem_cgroup, events_file),
6461 .seq_show = memory_events_show,
6462 },
6463 {
6464 .name = "events.local",
6465 .flags = CFTYPE_NOT_ON_ROOT,
6466 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6467 .seq_show = memory_events_local_show,
6468 },
6469 {
6470 .name = "stat",
6471 .seq_show = memory_stat_show,
6472 },
6473 {
6474 .name = "oom.group",
6475 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6476 .seq_show = memory_oom_group_show,
6477 .write = memory_oom_group_write,
6478 },
6479 { } /* terminate */
6480};
6481
6482struct cgroup_subsys memory_cgrp_subsys = {
6483 .css_alloc = mem_cgroup_css_alloc,
6484 .css_online = mem_cgroup_css_online,
6485 .css_offline = mem_cgroup_css_offline,
6486 .css_released = mem_cgroup_css_released,
6487 .css_free = mem_cgroup_css_free,
6488 .css_reset = mem_cgroup_css_reset,
6489 .can_attach = mem_cgroup_can_attach,
6490 .cancel_attach = mem_cgroup_cancel_attach,
6491 .post_attach = mem_cgroup_move_task,
6492 .bind = mem_cgroup_bind,
6493 .dfl_cftypes = memory_files,
6494 .legacy_cftypes = mem_cgroup_legacy_files,
6495 .early_init = 0,
6496};
6497
6498/*
6499 * This function calculates an individual cgroup's effective
6500 * protection which is derived from its own memory.min/low, its
6501 * parent's and siblings' settings, as well as the actual memory
6502 * distribution in the tree.
6503 *
6504 * The following rules apply to the effective protection values:
6505 *
6506 * 1. At the first level of reclaim, effective protection is equal to
6507 * the declared protection in memory.min and memory.low.
6508 *
6509 * 2. To enable safe delegation of the protection configuration, at
6510 * subsequent levels the effective protection is capped to the
6511 * parent's effective protection.
6512 *
6513 * 3. To make complex and dynamic subtrees easier to configure, the
6514 * user is allowed to overcommit the declared protection at a given
6515 * level. If that is the case, the parent's effective protection is
6516 * distributed to the children in proportion to how much protection
6517 * they have declared and how much of it they are utilizing.
6518 *
6519 * This makes distribution proportional, but also work-conserving:
6520 * if one cgroup claims much more protection than it uses memory,
6521 * the unused remainder is available to its siblings.
6522 *
6523 * 4. Conversely, when the declared protection is undercommitted at a
6524 * given level, the distribution of the larger parental protection
6525 * budget is NOT proportional. A cgroup's protection from a sibling
6526 * is capped to its own memory.min/low setting.
6527 *
6528 * 5. However, to allow protecting recursive subtrees from each other
6529 * without having to declare each individual cgroup's fixed share
6530 * of the ancestor's claim to protection, any unutilized -
6531 * "floating" - protection from up the tree is distributed in
6532 * proportion to each cgroup's *usage*. This makes the protection
6533 * neutral wrt sibling cgroups and lets them compete freely over
6534 * the shared parental protection budget, but it protects the
6535 * subtree as a whole from neighboring subtrees.
6536 *
6537 * Note that 4. and 5. are not in conflict: 4. is about protecting
6538 * against immediate siblings whereas 5. is about protecting against
6539 * neighboring subtrees.
6540 */
6541static unsigned long effective_protection(unsigned long usage,
6542 unsigned long parent_usage,
6543 unsigned long setting,
6544 unsigned long parent_effective,
6545 unsigned long siblings_protected)
6546{
6547 unsigned long protected;
6548 unsigned long ep;
6549
6550 protected = min(usage, setting);
6551 /*
6552 * If all cgroups at this level combined claim and use more
6553 * protection then what the parent affords them, distribute
6554 * shares in proportion to utilization.
6555 *
6556 * We are using actual utilization rather than the statically
6557 * claimed protection in order to be work-conserving: claimed
6558 * but unused protection is available to siblings that would
6559 * otherwise get a smaller chunk than what they claimed.
6560 */
6561 if (siblings_protected > parent_effective)
6562 return protected * parent_effective / siblings_protected;
6563
6564 /*
6565 * Ok, utilized protection of all children is within what the
6566 * parent affords them, so we know whatever this child claims
6567 * and utilizes is effectively protected.
6568 *
6569 * If there is unprotected usage beyond this value, reclaim
6570 * will apply pressure in proportion to that amount.
6571 *
6572 * If there is unutilized protection, the cgroup will be fully
6573 * shielded from reclaim, but we do return a smaller value for
6574 * protection than what the group could enjoy in theory. This
6575 * is okay. With the overcommit distribution above, effective
6576 * protection is always dependent on how memory is actually
6577 * consumed among the siblings anyway.
6578 */
6579 ep = protected;
6580
6581 /*
6582 * If the children aren't claiming (all of) the protection
6583 * afforded to them by the parent, distribute the remainder in
6584 * proportion to the (unprotected) memory of each cgroup. That
6585 * way, cgroups that aren't explicitly prioritized wrt each
6586 * other compete freely over the allowance, but they are
6587 * collectively protected from neighboring trees.
6588 *
6589 * We're using unprotected memory for the weight so that if
6590 * some cgroups DO claim explicit protection, we don't protect
6591 * the same bytes twice.
6592 *
6593 * Check both usage and parent_usage against the respective
6594 * protected values. One should imply the other, but they
6595 * aren't read atomically - make sure the division is sane.
6596 */
6597 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6598 return ep;
6599 if (parent_effective > siblings_protected &&
6600 parent_usage > siblings_protected &&
6601 usage > protected) {
6602 unsigned long unclaimed;
6603
6604 unclaimed = parent_effective - siblings_protected;
6605 unclaimed *= usage - protected;
6606 unclaimed /= parent_usage - siblings_protected;
6607
6608 ep += unclaimed;
6609 }
6610
6611 return ep;
6612}
6613
6614/**
6615 * mem_cgroup_protected - check if memory consumption is in the normal range
6616 * @root: the top ancestor of the sub-tree being checked
6617 * @memcg: the memory cgroup to check
6618 *
6619 * WARNING: This function is not stateless! It can only be used as part
6620 * of a top-down tree iteration, not for isolated queries.
6621 */
6622void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6623 struct mem_cgroup *memcg)
6624{
6625 unsigned long usage, parent_usage;
6626 struct mem_cgroup *parent;
6627
6628 if (mem_cgroup_disabled())
6629 return;
6630
6631 if (!root)
6632 root = root_mem_cgroup;
6633
6634 /*
6635 * Effective values of the reclaim targets are ignored so they
6636 * can be stale. Have a look at mem_cgroup_protection for more
6637 * details.
6638 * TODO: calculation should be more robust so that we do not need
6639 * that special casing.
6640 */
6641 if (memcg == root)
6642 return;
6643
6644 usage = page_counter_read(&memcg->memory);
6645 if (!usage)
6646 return;
6647
6648 parent = parent_mem_cgroup(memcg);
6649 /* No parent means a non-hierarchical mode on v1 memcg */
6650 if (!parent)
6651 return;
6652
6653 if (parent == root) {
6654 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6655 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6656 return;
6657 }
6658
6659 parent_usage = page_counter_read(&parent->memory);
6660
6661 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6662 READ_ONCE(memcg->memory.min),
6663 READ_ONCE(parent->memory.emin),
6664 atomic_long_read(&parent->memory.children_min_usage)));
6665
6666 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6667 READ_ONCE(memcg->memory.low),
6668 READ_ONCE(parent->memory.elow),
6669 atomic_long_read(&parent->memory.children_low_usage)));
6670}
6671
6672/**
6673 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6674 * @page: page to charge
6675 * @mm: mm context of the victim
6676 * @gfp_mask: reclaim mode
6677 *
6678 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6679 * pages according to @gfp_mask if necessary.
6680 *
6681 * Returns 0 on success. Otherwise, an error code is returned.
6682 */
6683int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6684{
6685 unsigned int nr_pages = thp_nr_pages(page);
6686 struct mem_cgroup *memcg = NULL;
6687 int ret = 0;
6688
6689 if (mem_cgroup_disabled())
6690 goto out;
6691
6692 if (PageSwapCache(page)) {
6693 swp_entry_t ent = { .val = page_private(page), };
6694 unsigned short id;
6695
6696 /*
6697 * Every swap fault against a single page tries to charge the
6698 * page, bail as early as possible. shmem_unuse() encounters
6699 * already charged pages, too. page->mem_cgroup is protected
6700 * by the page lock, which serializes swap cache removal, which
6701 * in turn serializes uncharging.
6702 */
6703 VM_BUG_ON_PAGE(!PageLocked(page), page);
6704 if (compound_head(page)->mem_cgroup)
6705 goto out;
6706
6707 id = lookup_swap_cgroup_id(ent);
6708 rcu_read_lock();
6709 memcg = mem_cgroup_from_id(id);
6710 if (memcg && !css_tryget_online(&memcg->css))
6711 memcg = NULL;
6712 rcu_read_unlock();
6713 }
6714
6715 if (!memcg)
6716 memcg = get_mem_cgroup_from_mm(mm);
6717
6718 ret = try_charge(memcg, gfp_mask, nr_pages);
6719 if (ret)
6720 goto out_put;
6721
6722 css_get(&memcg->css);
6723 commit_charge(page, memcg);
6724
6725 local_irq_disable();
6726 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6727 memcg_check_events(memcg, page);
6728 local_irq_enable();
6729
6730 if (PageSwapCache(page)) {
6731 swp_entry_t entry = { .val = page_private(page) };
6732 /*
6733 * The swap entry might not get freed for a long time,
6734 * let's not wait for it. The page already received a
6735 * memory+swap charge, drop the swap entry duplicate.
6736 */
6737 mem_cgroup_uncharge_swap(entry, nr_pages);
6738 }
6739
6740out_put:
6741 css_put(&memcg->css);
6742out:
6743 return ret;
6744}
6745
6746struct uncharge_gather {
6747 struct mem_cgroup *memcg;
6748 unsigned long nr_pages;
6749 unsigned long pgpgout;
6750 unsigned long nr_kmem;
6751 struct page *dummy_page;
6752};
6753
6754static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6755{
6756 memset(ug, 0, sizeof(*ug));
6757}
6758
6759static void uncharge_batch(const struct uncharge_gather *ug)
6760{
6761 unsigned long flags;
6762
6763 if (!mem_cgroup_is_root(ug->memcg)) {
6764 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6765 if (do_memsw_account())
6766 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6767 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6768 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6769 memcg_oom_recover(ug->memcg);
6770 }
6771
6772 local_irq_save(flags);
6773 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6774 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6775 memcg_check_events(ug->memcg, ug->dummy_page);
6776 local_irq_restore(flags);
6777
6778 /* drop reference from uncharge_page */
6779 css_put(&ug->memcg->css);
6780}
6781
6782static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6783{
6784 unsigned long nr_pages;
6785
6786 VM_BUG_ON_PAGE(PageLRU(page), page);
6787
6788 if (!page->mem_cgroup)
6789 return;
6790
6791 /*
6792 * Nobody should be changing or seriously looking at
6793 * page->mem_cgroup at this point, we have fully
6794 * exclusive access to the page.
6795 */
6796
6797 if (ug->memcg != page->mem_cgroup) {
6798 if (ug->memcg) {
6799 uncharge_batch(ug);
6800 uncharge_gather_clear(ug);
6801 }
6802 ug->memcg = page->mem_cgroup;
6803
6804 /* pairs with css_put in uncharge_batch */
6805 css_get(&ug->memcg->css);
6806 }
6807
6808 nr_pages = compound_nr(page);
6809 ug->nr_pages += nr_pages;
6810
6811 if (!PageKmemcg(page)) {
6812 ug->pgpgout++;
6813 } else {
6814 ug->nr_kmem += nr_pages;
6815 __ClearPageKmemcg(page);
6816 }
6817
6818 ug->dummy_page = page;
6819 page->mem_cgroup = NULL;
6820 css_put(&ug->memcg->css);
6821}
6822
6823static void uncharge_list(struct list_head *page_list)
6824{
6825 struct uncharge_gather ug;
6826 struct list_head *next;
6827
6828 uncharge_gather_clear(&ug);
6829
6830 /*
6831 * Note that the list can be a single page->lru; hence the
6832 * do-while loop instead of a simple list_for_each_entry().
6833 */
6834 next = page_list->next;
6835 do {
6836 struct page *page;
6837
6838 page = list_entry(next, struct page, lru);
6839 next = page->lru.next;
6840
6841 uncharge_page(page, &ug);
6842 } while (next != page_list);
6843
6844 if (ug.memcg)
6845 uncharge_batch(&ug);
6846}
6847
6848/**
6849 * mem_cgroup_uncharge - uncharge a page
6850 * @page: page to uncharge
6851 *
6852 * Uncharge a page previously charged with mem_cgroup_charge().
6853 */
6854void mem_cgroup_uncharge(struct page *page)
6855{
6856 struct uncharge_gather ug;
6857
6858 if (mem_cgroup_disabled())
6859 return;
6860
6861 /* Don't touch page->lru of any random page, pre-check: */
6862 if (!page->mem_cgroup)
6863 return;
6864
6865 uncharge_gather_clear(&ug);
6866 uncharge_page(page, &ug);
6867 uncharge_batch(&ug);
6868}
6869
6870/**
6871 * mem_cgroup_uncharge_list - uncharge a list of page
6872 * @page_list: list of pages to uncharge
6873 *
6874 * Uncharge a list of pages previously charged with
6875 * mem_cgroup_charge().
6876 */
6877void mem_cgroup_uncharge_list(struct list_head *page_list)
6878{
6879 if (mem_cgroup_disabled())
6880 return;
6881
6882 if (!list_empty(page_list))
6883 uncharge_list(page_list);
6884}
6885
6886/**
6887 * mem_cgroup_migrate - charge a page's replacement
6888 * @oldpage: currently circulating page
6889 * @newpage: replacement page
6890 *
6891 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6892 * be uncharged upon free.
6893 *
6894 * Both pages must be locked, @newpage->mapping must be set up.
6895 */
6896void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6897{
6898 struct mem_cgroup *memcg;
6899 unsigned int nr_pages;
6900 unsigned long flags;
6901
6902 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6903 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6904 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6905 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6906 newpage);
6907
6908 if (mem_cgroup_disabled())
6909 return;
6910
6911 /* Page cache replacement: new page already charged? */
6912 if (newpage->mem_cgroup)
6913 return;
6914
6915 /* Swapcache readahead pages can get replaced before being charged */
6916 memcg = oldpage->mem_cgroup;
6917 if (!memcg)
6918 return;
6919
6920 /* Force-charge the new page. The old one will be freed soon */
6921 nr_pages = thp_nr_pages(newpage);
6922
6923 page_counter_charge(&memcg->memory, nr_pages);
6924 if (do_memsw_account())
6925 page_counter_charge(&memcg->memsw, nr_pages);
6926
6927 css_get(&memcg->css);
6928 commit_charge(newpage, memcg);
6929
6930 local_irq_save(flags);
6931 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6932 memcg_check_events(memcg, newpage);
6933 local_irq_restore(flags);
6934}
6935
6936DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6937EXPORT_SYMBOL(memcg_sockets_enabled_key);
6938
6939void mem_cgroup_sk_alloc(struct sock *sk)
6940{
6941 struct mem_cgroup *memcg;
6942
6943 if (!mem_cgroup_sockets_enabled)
6944 return;
6945
6946 /* Do not associate the sock with unrelated interrupted task's memcg. */
6947 if (in_interrupt())
6948 return;
6949
6950 rcu_read_lock();
6951 memcg = mem_cgroup_from_task(current);
6952 if (memcg == root_mem_cgroup)
6953 goto out;
6954 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6955 goto out;
6956 if (css_tryget(&memcg->css))
6957 sk->sk_memcg = memcg;
6958out:
6959 rcu_read_unlock();
6960}
6961
6962void mem_cgroup_sk_free(struct sock *sk)
6963{
6964 if (sk->sk_memcg)
6965 css_put(&sk->sk_memcg->css);
6966}
6967
6968/**
6969 * mem_cgroup_charge_skmem - charge socket memory
6970 * @memcg: memcg to charge
6971 * @nr_pages: number of pages to charge
6972 *
6973 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6974 * @memcg's configured limit, %false if the charge had to be forced.
6975 */
6976bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977{
6978 gfp_t gfp_mask = GFP_KERNEL;
6979
6980 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6981 struct page_counter *fail;
6982
6983 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6984 memcg->tcpmem_pressure = 0;
6985 return true;
6986 }
6987 page_counter_charge(&memcg->tcpmem, nr_pages);
6988 memcg->tcpmem_pressure = 1;
6989 return false;
6990 }
6991
6992 /* Don't block in the packet receive path */
6993 if (in_softirq())
6994 gfp_mask = GFP_NOWAIT;
6995
6996 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6997
6998 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6999 return true;
7000
7001 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7002 return false;
7003}
7004
7005/**
7006 * mem_cgroup_uncharge_skmem - uncharge socket memory
7007 * @memcg: memcg to uncharge
7008 * @nr_pages: number of pages to uncharge
7009 */
7010void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011{
7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7013 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7014 return;
7015 }
7016
7017 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7018
7019 refill_stock(memcg, nr_pages);
7020}
7021
7022static int __init cgroup_memory(char *s)
7023{
7024 char *token;
7025
7026 while ((token = strsep(&s, ",")) != NULL) {
7027 if (!*token)
7028 continue;
7029 if (!strcmp(token, "nosocket"))
7030 cgroup_memory_nosocket = true;
7031 if (!strcmp(token, "nokmem"))
7032 cgroup_memory_nokmem = true;
7033 }
7034 return 0;
7035}
7036__setup("cgroup.memory=", cgroup_memory);
7037
7038/*
7039 * subsys_initcall() for memory controller.
7040 *
7041 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7042 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7043 * basically everything that doesn't depend on a specific mem_cgroup structure
7044 * should be initialized from here.
7045 */
7046static int __init mem_cgroup_init(void)
7047{
7048 int cpu, node;
7049
7050 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7051 memcg_hotplug_cpu_dead);
7052
7053 for_each_possible_cpu(cpu)
7054 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7055 drain_local_stock);
7056
7057 for_each_node(node) {
7058 struct mem_cgroup_tree_per_node *rtpn;
7059
7060 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7061 node_online(node) ? node : NUMA_NO_NODE);
7062
7063 rtpn->rb_root = RB_ROOT;
7064 rtpn->rb_rightmost = NULL;
7065 spin_lock_init(&rtpn->lock);
7066 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7067 }
7068
7069 return 0;
7070}
7071subsys_initcall(mem_cgroup_init);
7072
7073#ifdef CONFIG_MEMCG_SWAP
7074static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7075{
7076 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7077 /*
7078 * The root cgroup cannot be destroyed, so it's refcount must
7079 * always be >= 1.
7080 */
7081 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7082 VM_BUG_ON(1);
7083 break;
7084 }
7085 memcg = parent_mem_cgroup(memcg);
7086 if (!memcg)
7087 memcg = root_mem_cgroup;
7088 }
7089 return memcg;
7090}
7091
7092/**
7093 * mem_cgroup_swapout - transfer a memsw charge to swap
7094 * @page: page whose memsw charge to transfer
7095 * @entry: swap entry to move the charge to
7096 *
7097 * Transfer the memsw charge of @page to @entry.
7098 */
7099void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7100{
7101 struct mem_cgroup *memcg, *swap_memcg;
7102 unsigned int nr_entries;
7103 unsigned short oldid;
7104
7105 VM_BUG_ON_PAGE(PageLRU(page), page);
7106 VM_BUG_ON_PAGE(page_count(page), page);
7107
7108 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7109 return;
7110
7111 memcg = page->mem_cgroup;
7112
7113 /* Readahead page, never charged */
7114 if (!memcg)
7115 return;
7116
7117 /*
7118 * In case the memcg owning these pages has been offlined and doesn't
7119 * have an ID allocated to it anymore, charge the closest online
7120 * ancestor for the swap instead and transfer the memory+swap charge.
7121 */
7122 swap_memcg = mem_cgroup_id_get_online(memcg);
7123 nr_entries = thp_nr_pages(page);
7124 /* Get references for the tail pages, too */
7125 if (nr_entries > 1)
7126 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7127 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7128 nr_entries);
7129 VM_BUG_ON_PAGE(oldid, page);
7130 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7131
7132 page->mem_cgroup = NULL;
7133
7134 if (!mem_cgroup_is_root(memcg))
7135 page_counter_uncharge(&memcg->memory, nr_entries);
7136
7137 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7138 if (!mem_cgroup_is_root(swap_memcg))
7139 page_counter_charge(&swap_memcg->memsw, nr_entries);
7140 page_counter_uncharge(&memcg->memsw, nr_entries);
7141 }
7142
7143 /*
7144 * Interrupts should be disabled here because the caller holds the
7145 * i_pages lock which is taken with interrupts-off. It is
7146 * important here to have the interrupts disabled because it is the
7147 * only synchronisation we have for updating the per-CPU variables.
7148 */
7149 VM_BUG_ON(!irqs_disabled());
7150 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7151 memcg_check_events(memcg, page);
7152
7153 css_put(&memcg->css);
7154}
7155
7156/**
7157 * mem_cgroup_try_charge_swap - try charging swap space for a page
7158 * @page: page being added to swap
7159 * @entry: swap entry to charge
7160 *
7161 * Try to charge @page's memcg for the swap space at @entry.
7162 *
7163 * Returns 0 on success, -ENOMEM on failure.
7164 */
7165int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7166{
7167 unsigned int nr_pages = thp_nr_pages(page);
7168 struct page_counter *counter;
7169 struct mem_cgroup *memcg;
7170 unsigned short oldid;
7171
7172 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7173 return 0;
7174
7175 memcg = page->mem_cgroup;
7176
7177 /* Readahead page, never charged */
7178 if (!memcg)
7179 return 0;
7180
7181 if (!entry.val) {
7182 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7183 return 0;
7184 }
7185
7186 memcg = mem_cgroup_id_get_online(memcg);
7187
7188 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7189 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7190 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7191 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7192 mem_cgroup_id_put(memcg);
7193 return -ENOMEM;
7194 }
7195
7196 /* Get references for the tail pages, too */
7197 if (nr_pages > 1)
7198 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7199 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7200 VM_BUG_ON_PAGE(oldid, page);
7201 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7202
7203 return 0;
7204}
7205
7206/**
7207 * mem_cgroup_uncharge_swap - uncharge swap space
7208 * @entry: swap entry to uncharge
7209 * @nr_pages: the amount of swap space to uncharge
7210 */
7211void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7212{
7213 struct mem_cgroup *memcg;
7214 unsigned short id;
7215
7216 id = swap_cgroup_record(entry, 0, nr_pages);
7217 rcu_read_lock();
7218 memcg = mem_cgroup_from_id(id);
7219 if (memcg) {
7220 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7221 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7222 page_counter_uncharge(&memcg->swap, nr_pages);
7223 else
7224 page_counter_uncharge(&memcg->memsw, nr_pages);
7225 }
7226 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7227 mem_cgroup_id_put_many(memcg, nr_pages);
7228 }
7229 rcu_read_unlock();
7230}
7231
7232long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7233{
7234 long nr_swap_pages = get_nr_swap_pages();
7235
7236 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7237 return nr_swap_pages;
7238 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7239 nr_swap_pages = min_t(long, nr_swap_pages,
7240 READ_ONCE(memcg->swap.max) -
7241 page_counter_read(&memcg->swap));
7242 return nr_swap_pages;
7243}
7244
7245bool mem_cgroup_swap_full(struct page *page)
7246{
7247 struct mem_cgroup *memcg;
7248
7249 VM_BUG_ON_PAGE(!PageLocked(page), page);
7250
7251 if (vm_swap_full())
7252 return true;
7253 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254 return false;
7255
7256 memcg = page->mem_cgroup;
7257 if (!memcg)
7258 return false;
7259
7260 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7261 unsigned long usage = page_counter_read(&memcg->swap);
7262
7263 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7264 usage * 2 >= READ_ONCE(memcg->swap.max))
7265 return true;
7266 }
7267
7268 return false;
7269}
7270
7271static int __init setup_swap_account(char *s)
7272{
7273 if (!strcmp(s, "1"))
7274 cgroup_memory_noswap = 0;
7275 else if (!strcmp(s, "0"))
7276 cgroup_memory_noswap = 1;
7277 return 1;
7278}
7279__setup("swapaccount=", setup_swap_account);
7280
7281static u64 swap_current_read(struct cgroup_subsys_state *css,
7282 struct cftype *cft)
7283{
7284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7285
7286 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7287}
7288
7289static int swap_high_show(struct seq_file *m, void *v)
7290{
7291 return seq_puts_memcg_tunable(m,
7292 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7293}
7294
7295static ssize_t swap_high_write(struct kernfs_open_file *of,
7296 char *buf, size_t nbytes, loff_t off)
7297{
7298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7299 unsigned long high;
7300 int err;
7301
7302 buf = strstrip(buf);
7303 err = page_counter_memparse(buf, "max", &high);
7304 if (err)
7305 return err;
7306
7307 page_counter_set_high(&memcg->swap, high);
7308
7309 return nbytes;
7310}
7311
7312static int swap_max_show(struct seq_file *m, void *v)
7313{
7314 return seq_puts_memcg_tunable(m,
7315 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7316}
7317
7318static ssize_t swap_max_write(struct kernfs_open_file *of,
7319 char *buf, size_t nbytes, loff_t off)
7320{
7321 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7322 unsigned long max;
7323 int err;
7324
7325 buf = strstrip(buf);
7326 err = page_counter_memparse(buf, "max", &max);
7327 if (err)
7328 return err;
7329
7330 xchg(&memcg->swap.max, max);
7331
7332 return nbytes;
7333}
7334
7335static int swap_events_show(struct seq_file *m, void *v)
7336{
7337 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7338
7339 seq_printf(m, "high %lu\n",
7340 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7341 seq_printf(m, "max %lu\n",
7342 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7343 seq_printf(m, "fail %lu\n",
7344 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7345
7346 return 0;
7347}
7348
7349static struct cftype swap_files[] = {
7350 {
7351 .name = "swap.current",
7352 .flags = CFTYPE_NOT_ON_ROOT,
7353 .read_u64 = swap_current_read,
7354 },
7355 {
7356 .name = "swap.high",
7357 .flags = CFTYPE_NOT_ON_ROOT,
7358 .seq_show = swap_high_show,
7359 .write = swap_high_write,
7360 },
7361 {
7362 .name = "swap.max",
7363 .flags = CFTYPE_NOT_ON_ROOT,
7364 .seq_show = swap_max_show,
7365 .write = swap_max_write,
7366 },
7367 {
7368 .name = "swap.events",
7369 .flags = CFTYPE_NOT_ON_ROOT,
7370 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7371 .seq_show = swap_events_show,
7372 },
7373 { } /* terminate */
7374};
7375
7376static struct cftype memsw_files[] = {
7377 {
7378 .name = "memsw.usage_in_bytes",
7379 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7380 .read_u64 = mem_cgroup_read_u64,
7381 },
7382 {
7383 .name = "memsw.max_usage_in_bytes",
7384 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7385 .write = mem_cgroup_reset,
7386 .read_u64 = mem_cgroup_read_u64,
7387 },
7388 {
7389 .name = "memsw.limit_in_bytes",
7390 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7391 .write = mem_cgroup_write,
7392 .read_u64 = mem_cgroup_read_u64,
7393 },
7394 {
7395 .name = "memsw.failcnt",
7396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7397 .write = mem_cgroup_reset,
7398 .read_u64 = mem_cgroup_read_u64,
7399 },
7400 { }, /* terminate */
7401};
7402
7403/*
7404 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7405 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7406 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7407 * boot parameter. This may result in premature OOPS inside
7408 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7409 */
7410static int __init mem_cgroup_swap_init(void)
7411{
7412 /* No memory control -> no swap control */
7413 if (mem_cgroup_disabled())
7414 cgroup_memory_noswap = true;
7415
7416 if (cgroup_memory_noswap)
7417 return 0;
7418
7419 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7420 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7421
7422 return 0;
7423}
7424core_initcall(mem_cgroup_swap_init);
7425
7426#endif /* CONFIG_MEMCG_SWAP */