Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 
 
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 
 
 
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 
 
 
 
 
 
 
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 181	spin_lock_bh(&wb->work_lock);
 182	if (!test_bit(WB_registered, &wb->state))
 183		goto out_unlock;
 184	if (work->done)
 185		atomic_inc(&work->done->cnt);
 186	list_add_tail(&work->list, &wb->work_list);
 187	mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 189	spin_unlock_bh(&wb->work_lock);
 
 
 
 
 
 
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204				   struct wb_completion *done)
 205{
 206	atomic_dec(&done->cnt);		/* put down the initial count */
 207	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 217
 218#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220					/* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 222					/* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224					/* one round can affect upto 5 slots */
 
 
 
 
 
 
 
 
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231	struct backing_dev_info *bdi = inode_to_bdi(inode);
 232	struct bdi_writeback *wb = NULL;
 233
 234	if (inode_cgwb_enabled(inode)) {
 235		struct cgroup_subsys_state *memcg_css;
 236
 237		if (page) {
 238			memcg_css = mem_cgroup_css_from_page(page);
 239			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240		} else {
 241			/* must pin memcg_css, see wb_get_create() */
 242			memcg_css = task_get_css(current, memory_cgrp_id);
 243			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244			css_put(memcg_css);
 245		}
 246	}
 247
 248	if (!wb)
 249		wb = &bdi->wb;
 250
 251	/*
 252	 * There may be multiple instances of this function racing to
 253	 * update the same inode.  Use cmpxchg() to tell the winner.
 254	 */
 255	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256		wb_put(wb);
 257}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269	__releases(&inode->i_lock)
 270	__acquires(&wb->list_lock)
 271{
 272	while (true) {
 273		struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275		/*
 276		 * inode_to_wb() association is protected by both
 277		 * @inode->i_lock and @wb->list_lock but list_lock nests
 278		 * outside i_lock.  Drop i_lock and verify that the
 279		 * association hasn't changed after acquiring list_lock.
 280		 */
 281		wb_get(wb);
 282		spin_unlock(&inode->i_lock);
 283		spin_lock(&wb->list_lock);
 284
 285		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 286		if (likely(wb == inode->i_wb)) {
 287			wb_put(wb);	/* @inode already has ref */
 288			return wb;
 289		}
 290
 291		spin_unlock(&wb->list_lock);
 292		wb_put(wb);
 293		cpu_relax();
 294		spin_lock(&inode->i_lock);
 295	}
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306	__acquires(&wb->list_lock)
 307{
 308	spin_lock(&inode->i_lock);
 309	return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313	struct inode		*inode;
 314	struct bdi_writeback	*new_wb;
 315
 316	struct rcu_head		rcu_head;
 317	struct work_struct	work;
 
 
 
 
 
 
 
 
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 321{
 322	struct inode_switch_wbs_context *isw =
 323		container_of(work, struct inode_switch_wbs_context, work);
 324	struct inode *inode = isw->inode;
 325	struct address_space *mapping = inode->i_mapping;
 326	struct bdi_writeback *old_wb = inode->i_wb;
 327	struct bdi_writeback *new_wb = isw->new_wb;
 328	struct radix_tree_iter iter;
 329	bool switched = false;
 330	void **slot;
 331
 332	/*
 333	 * By the time control reaches here, RCU grace period has passed
 334	 * since I_WB_SWITCH assertion and all wb stat update transactions
 335	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336	 * synchronizing against mapping->tree_lock.
 337	 *
 338	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339	 * gives us exclusion against all wb related operations on @inode
 340	 * including IO list manipulations and stat updates.
 341	 */
 342	if (old_wb < new_wb) {
 343		spin_lock(&old_wb->list_lock);
 344		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345	} else {
 346		spin_lock(&new_wb->list_lock);
 347		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348	}
 349	spin_lock(&inode->i_lock);
 350	spin_lock_irq(&mapping->tree_lock);
 351
 352	/*
 353	 * Once I_FREEING is visible under i_lock, the eviction path owns
 354	 * the inode and we shouldn't modify ->i_io_list.
 355	 */
 356	if (unlikely(inode->i_state & I_FREEING))
 357		goto skip_switch;
 358
 
 
 359	/*
 360	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362	 * pages actually under underwriteback.
 363	 */
 364	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365				   PAGECACHE_TAG_DIRTY) {
 366		struct page *page = radix_tree_deref_slot_protected(slot,
 367							&mapping->tree_lock);
 368		if (likely(page) && PageDirty(page)) {
 369			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371		}
 372	}
 373
 374	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375				   PAGECACHE_TAG_WRITEBACK) {
 376		struct page *page = radix_tree_deref_slot_protected(slot,
 377							&mapping->tree_lock);
 378		if (likely(page)) {
 379			WARN_ON_ONCE(!PageWriteback(page));
 380			__dec_wb_stat(old_wb, WB_WRITEBACK);
 381			__inc_wb_stat(new_wb, WB_WRITEBACK);
 382		}
 
 
 383	}
 384
 385	wb_get(new_wb);
 386
 387	/*
 388	 * Transfer to @new_wb's IO list if necessary.  The specific list
 389	 * @inode was on is ignored and the inode is put on ->b_dirty which
 390	 * is always correct including from ->b_dirty_time.  The transfer
 391	 * preserves @inode->dirtied_when ordering.
 
 
 392	 */
 393	if (!list_empty(&inode->i_io_list)) {
 394		struct inode *pos;
 395
 396		inode_io_list_del_locked(inode, old_wb);
 397		inode->i_wb = new_wb;
 398		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399			if (time_after_eq(inode->dirtied_when,
 400					  pos->dirtied_when))
 401				break;
 402		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 
 
 
 
 
 
 
 
 403	} else {
 404		inode->i_wb = new_wb;
 405	}
 406
 407	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408	inode->i_wb_frn_winner = 0;
 409	inode->i_wb_frn_avg_time = 0;
 410	inode->i_wb_frn_history = 0;
 411	switched = true;
 412skip_switch:
 413	/*
 414	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416	 */
 417	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419	spin_unlock_irq(&mapping->tree_lock);
 420	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421	spin_unlock(&new_wb->list_lock);
 422	spin_unlock(&old_wb->list_lock);
 423
 424	if (switched) {
 
 
 425		wb_wakeup(new_wb);
 426		wb_put(old_wb);
 427	}
 428	wb_put(new_wb);
 429
 430	iput(inode);
 
 
 431	kfree(isw);
 432
 433	atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 
 437{
 438	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439				struct inode_switch_wbs_context, rcu_head);
 
 
 
 
 
 
 
 
 440
 441	/* needs to grab bh-unsafe locks, bounce to work item */
 442	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443	queue_work(isw_wq, &isw->work);
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456	struct backing_dev_info *bdi = inode_to_bdi(inode);
 457	struct cgroup_subsys_state *memcg_css;
 458	struct inode_switch_wbs_context *isw;
 459
 460	/* noop if seems to be already in progress */
 461	if (inode->i_state & I_WB_SWITCH)
 462		return;
 463
 464	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 
 
 
 
 465	if (!isw)
 466		return;
 467
 
 
 468	/* find and pin the new wb */
 469	rcu_read_lock();
 470	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471	if (memcg_css)
 472		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473	rcu_read_unlock();
 474	if (!isw->new_wb)
 475		goto out_free;
 476
 477	/* while holding I_WB_SWITCH, no one else can update the association */
 478	spin_lock(&inode->i_lock);
 479	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481	    inode_to_wb(inode) == isw->new_wb) {
 482		spin_unlock(&inode->i_lock);
 483		goto out_free;
 484	}
 485	inode->i_state |= I_WB_SWITCH;
 486	__iget(inode);
 487	spin_unlock(&inode->i_lock);
 488
 489	isw->inode = inode;
 
 490
 491	atomic_inc(&isw_nr_in_flight);
 492
 493	/*
 494	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495	 * the RCU protected stat update paths to grab the mapping's
 496	 * tree_lock so that stat transfer can synchronize against them.
 497	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498	 */
 499	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 
 500	return;
 501
 502out_free:
 
 503	if (isw->new_wb)
 504		wb_put(isw->new_wb);
 505	kfree(isw);
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519				 struct inode *inode)
 520{
 521	if (!inode_cgwb_enabled(inode)) {
 522		spin_unlock(&inode->i_lock);
 523		return;
 524	}
 525
 526	wbc->wb = inode_to_wb(inode);
 527	wbc->inode = inode;
 528
 529	wbc->wb_id = wbc->wb->memcg_css->id;
 530	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531	wbc->wb_tcand_id = 0;
 532	wbc->wb_bytes = 0;
 533	wbc->wb_lcand_bytes = 0;
 534	wbc->wb_tcand_bytes = 0;
 535
 536	wb_get(wbc->wb);
 537	spin_unlock(&inode->i_lock);
 538
 539	/*
 540	 * A dying wb indicates that the memcg-blkcg mapping has changed
 541	 * and a new wb is already serving the memcg.  Switch immediately.
 
 
 
 542	 */
 543	if (unlikely(wb_dying(wbc->wb)))
 544		inode_switch_wbs(inode, wbc->wb_id);
 545}
 
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586	struct bdi_writeback *wb = wbc->wb;
 587	struct inode *inode = wbc->inode;
 588	unsigned long avg_time, max_bytes, max_time;
 589	u16 history;
 590	int max_id;
 591
 592	if (!wb)
 593		return;
 594
 595	history = inode->i_wb_frn_history;
 596	avg_time = inode->i_wb_frn_avg_time;
 597
 598	/* pick the winner of this round */
 599	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601		max_id = wbc->wb_id;
 602		max_bytes = wbc->wb_bytes;
 603	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604		max_id = wbc->wb_lcand_id;
 605		max_bytes = wbc->wb_lcand_bytes;
 606	} else {
 607		max_id = wbc->wb_tcand_id;
 608		max_bytes = wbc->wb_tcand_bytes;
 609	}
 610
 611	/*
 612	 * Calculate the amount of IO time the winner consumed and fold it
 613	 * into the running average kept per inode.  If the consumed IO
 614	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615	 * deciding whether to switch or not.  This is to prevent one-off
 616	 * small dirtiers from skewing the verdict.
 617	 */
 618	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619				wb->avg_write_bandwidth);
 620	if (avg_time)
 621		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623	else
 624		avg_time = max_time;	/* immediate catch up on first run */
 625
 626	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627		int slots;
 628
 629		/*
 630		 * The switch verdict is reached if foreign wb's consume
 631		 * more than a certain proportion of IO time in a
 632		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633		 * history mask where each bit represents one sixteenth of
 634		 * the period.  Determine the number of slots to shift into
 635		 * history from @max_time.
 636		 */
 637		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639		history <<= slots;
 640		if (wbc->wb_id != max_id)
 641			history |= (1U << slots) - 1;
 642
 
 
 
 643		/*
 644		 * Switch if the current wb isn't the consistent winner.
 645		 * If there are multiple closely competing dirtiers, the
 646		 * inode may switch across them repeatedly over time, which
 647		 * is okay.  The main goal is avoiding keeping an inode on
 648		 * the wrong wb for an extended period of time.
 649		 */
 650		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651			inode_switch_wbs(inode, max_id);
 652	}
 653
 654	/*
 655	 * Multiple instances of this function may race to update the
 656	 * following fields but we don't mind occassional inaccuracies.
 657	 */
 658	inode->i_wb_frn_winner = max_id;
 659	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660	inode->i_wb_frn_history = history;
 661
 662	wb_put(wbc->wb);
 663	wbc->wb = NULL;
 664}
 
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677		    size_t bytes)
 678{
 
 
 679	int id;
 680
 681	/*
 682	 * pageout() path doesn't attach @wbc to the inode being written
 683	 * out.  This is intentional as we don't want the function to block
 684	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685	 * regular writeback instead of writing things out itself.
 686	 */
 687	if (!wbc->wb)
 
 
 
 
 
 
 688		return;
 689
 690	id = mem_cgroup_css_from_page(page)->id;
 691
 692	if (id == wbc->wb_id) {
 693		wbc->wb_bytes += bytes;
 694		return;
 695	}
 696
 697	if (id == wbc->wb_lcand_id)
 698		wbc->wb_lcand_bytes += bytes;
 699
 700	/* Boyer-Moore majority vote algorithm */
 701	if (!wbc->wb_tcand_bytes)
 702		wbc->wb_tcand_id = id;
 703	if (id == wbc->wb_tcand_id)
 704		wbc->wb_tcand_bytes += bytes;
 705	else
 706		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728	/*
 729	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 730	 * Start transaction iff ->i_wb is visible.
 731	 */
 732	if (inode && inode_to_wb_is_valid(inode)) {
 733		struct bdi_writeback *wb;
 734		bool locked, congested;
 735
 736		wb = unlocked_inode_to_wb_begin(inode, &locked);
 737		congested = wb_congested(wb, cong_bits);
 738		unlocked_inode_to_wb_end(inode, locked);
 739		return congested;
 740	}
 741
 742	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757	unsigned long this_bw = wb->avg_write_bandwidth;
 758	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760	if (nr_pages == LONG_MAX)
 761		return LONG_MAX;
 762
 763	/*
 764	 * This may be called on clean wb's and proportional distribution
 765	 * may not make sense, just use the original @nr_pages in those
 766	 * cases.  In general, we wanna err on the side of writing more.
 767	 */
 768	if (!tot_bw || this_bw >= tot_bw)
 769		return nr_pages;
 770	else
 771		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786				  struct wb_writeback_work *base_work,
 787				  bool skip_if_busy)
 788{
 789	struct bdi_writeback *last_wb = NULL;
 790	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791					      struct bdi_writeback, bdi_node);
 792
 793	might_sleep();
 794restart:
 795	rcu_read_lock();
 796	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798		struct wb_writeback_work fallback_work;
 799		struct wb_writeback_work *work;
 800		long nr_pages;
 801
 802		if (last_wb) {
 803			wb_put(last_wb);
 804			last_wb = NULL;
 805		}
 806
 807		/* SYNC_ALL writes out I_DIRTY_TIME too */
 808		if (!wb_has_dirty_io(wb) &&
 809		    (base_work->sync_mode == WB_SYNC_NONE ||
 810		     list_empty(&wb->b_dirty_time)))
 811			continue;
 812		if (skip_if_busy && writeback_in_progress(wb))
 813			continue;
 814
 815		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818		if (work) {
 819			*work = *base_work;
 820			work->nr_pages = nr_pages;
 821			work->auto_free = 1;
 822			wb_queue_work(wb, work);
 823			continue;
 824		}
 825
 
 
 
 
 
 
 
 
 
 
 826		/* alloc failed, execute synchronously using on-stack fallback */
 827		work = &fallback_work;
 828		*work = *base_work;
 829		work->nr_pages = nr_pages;
 830		work->auto_free = 0;
 831		work->done = &fallback_work_done;
 832
 833		wb_queue_work(wb, work);
 834
 835		/*
 836		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837		 * continuing iteration from @wb after dropping and
 838		 * regrabbing rcu read lock.
 839		 */
 840		wb_get(wb);
 841		last_wb = wb;
 842
 843		rcu_read_unlock();
 844		wb_wait_for_completion(bdi, &fallback_work_done);
 845		goto restart;
 846	}
 847	rcu_read_unlock();
 848
 849	if (last_wb)
 850		wb_put(last_wb);
 851}
 852
 853/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 
 
 
 
 
 
 865	if (atomic_read(&isw_nr_in_flight)) {
 866		synchronize_rcu();
 
 
 
 
 867		flush_workqueue(isw_wq);
 868	}
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874	if (!isw_wq)
 875		return -ENOMEM;
 876	return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else	/* CONFIG_CGROUP_WRITEBACK */
 881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884	__releases(&inode->i_lock)
 885	__acquires(&wb->list_lock)
 886{
 887	struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889	spin_unlock(&inode->i_lock);
 890	spin_lock(&wb->list_lock);
 891	return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895	__acquires(&wb->list_lock)
 896{
 897	struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899	spin_lock(&wb->list_lock);
 900	return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905	return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909				  struct wb_writeback_work *base_work,
 910				  bool skip_if_busy)
 911{
 912	might_sleep();
 913
 914	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915		base_work->auto_free = 0;
 916		wb_queue_work(&bdi->wb, base_work);
 917	}
 918}
 919
 920#endif	/* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923			bool range_cyclic, enum wb_reason reason)
 
 
 
 924{
 925	struct wb_writeback_work *work;
 
 
 926
 
 
 927	if (!wb_has_dirty_io(wb))
 928		return;
 929
 930	/*
 931	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 932	 * wakeup the thread for old dirty data writeback
 
 
 
 
 933	 */
 934	work = kzalloc(sizeof(*work),
 935		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936	if (!work) {
 937		trace_writeback_nowork(wb);
 938		wb_wakeup(wb);
 939		return;
 940	}
 941
 942	work->sync_mode	= WB_SYNC_NONE;
 943	work->nr_pages	= nr_pages;
 944	work->range_cyclic = range_cyclic;
 945	work->reason	= reason;
 946	work->auto_free	= 1;
 947
 948	wb_queue_work(wb, work);
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963	/*
 964	 * We just wake up the flusher thread. It will perform background
 965	 * writeback as soon as there is no other work to do.
 966	 */
 967	trace_writeback_wake_background(wb);
 968	wb_wakeup(wb);
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976	struct bdi_writeback *wb;
 977
 978	wb = inode_to_wb_and_lock_list(inode);
 979	inode_io_list_del_locked(inode, wb);
 
 
 
 
 
 
 980	spin_unlock(&wb->list_lock);
 981}
 
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988	struct super_block *sb = inode->i_sb;
 989	unsigned long flags;
 990
 991	if (list_empty(&inode->i_wb_list)) {
 992		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993		if (list_empty(&inode->i_wb_list)) {
 994			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995			trace_sb_mark_inode_writeback(inode);
 996		}
 997		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998	}
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (!list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (!list_empty(&inode->i_wb_list)) {
1012			list_del_init(&inode->i_wb_list);
1013			trace_sb_clear_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
 
 
 
 
 
 
 
 
 
 
 
 
 
1030	if (!list_empty(&wb->b_dirty)) {
1031		struct inode *tail;
1032
1033		tail = wb_inode(wb->b_dirty.next);
1034		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035			inode->dirtied_when = jiffies;
1036	}
1037	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
 
 
 
 
 
 
 
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050	inode->i_state &= ~I_SYNC;
1051	/* If inode is clean an unused, put it into LRU now... */
1052	inode_add_lru(inode);
1053	/* Waiters must see I_SYNC cleared before being woken up */
1054	smp_mb();
1055	wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060	bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062	/*
1063	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064	 * It _appears_ to be in the future, but is actually in distant past.
1065	 * This test is necessary to prevent such wrapped-around relative times
1066	 * from permanently stopping the whole bdi writeback.
1067	 */
1068	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070	return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080			       struct list_head *dispatch_queue,
1081			       int flags,
1082			       struct wb_writeback_work *work)
1083{
1084	unsigned long *older_than_this = NULL;
1085	unsigned long expire_time;
1086	LIST_HEAD(tmp);
1087	struct list_head *pos, *node;
1088	struct super_block *sb = NULL;
1089	struct inode *inode;
1090	int do_sb_sort = 0;
1091	int moved = 0;
1092
1093	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094		older_than_this = work->older_than_this;
1095	else if (!work->for_sync) {
1096		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097		older_than_this = &expire_time;
1098	}
1099	while (!list_empty(delaying_queue)) {
1100		inode = wb_inode(delaying_queue->prev);
1101		if (older_than_this &&
1102		    inode_dirtied_after(inode, *older_than_this))
1103			break;
 
1104		list_move(&inode->i_io_list, &tmp);
1105		moved++;
1106		if (flags & EXPIRE_DIRTY_ATIME)
1107			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108		if (sb_is_blkdev_sb(inode->i_sb))
1109			continue;
1110		if (sb && sb != inode->i_sb)
1111			do_sb_sort = 1;
1112		sb = inode->i_sb;
1113	}
1114
1115	/* just one sb in list, splice to dispatch_queue and we're done */
1116	if (!do_sb_sort) {
1117		list_splice(&tmp, dispatch_queue);
1118		goto out;
1119	}
1120
1121	/* Move inodes from one superblock together */
 
 
 
 
 
1122	while (!list_empty(&tmp)) {
1123		sb = wb_inode(tmp.prev)->i_sb;
1124		list_for_each_prev_safe(pos, node, &tmp) {
1125			inode = wb_inode(pos);
1126			if (inode->i_sb == sb)
1127				list_move(&inode->i_io_list, dispatch_queue);
1128		}
1129	}
1130out:
1131	return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
 
1146{
1147	int moved;
 
1148
1149	assert_spin_locked(&wb->list_lock);
1150	list_splice_init(&wb->b_more_io, &wb->b_io);
1151	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
 
 
1152	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153				     EXPIRE_DIRTY_ATIME, work);
1154	if (moved)
1155		wb_io_lists_populated(wb);
1156	trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161	int ret;
1162
1163	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164		trace_writeback_write_inode_start(inode, wbc);
1165		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166		trace_writeback_write_inode(inode, wbc);
1167		return ret;
1168	}
1169	return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177	__releases(inode->i_lock)
1178	__acquires(inode->i_lock)
1179{
1180	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181	wait_queue_head_t *wqh;
1182
1183	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184	while (inode->i_state & I_SYNC) {
1185		spin_unlock(&inode->i_lock);
1186		__wait_on_bit(wqh, &wq, bit_wait,
1187			      TASK_UNINTERRUPTIBLE);
1188		spin_lock(&inode->i_lock);
1189	}
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197	spin_lock(&inode->i_lock);
1198	__inode_wait_for_writeback(inode);
1199	spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208	__releases(inode->i_lock)
1209{
1210	DEFINE_WAIT(wait);
1211	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212	int sleep;
1213
1214	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215	sleep = inode->i_state & I_SYNC;
1216	spin_unlock(&inode->i_lock);
1217	if (sleep)
1218		schedule();
1219	finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231			  struct writeback_control *wbc)
1232{
1233	if (inode->i_state & I_FREEING)
1234		return;
1235
1236	/*
1237	 * Sync livelock prevention. Each inode is tagged and synced in one
1238	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239	 * the dirty time to prevent enqueue and sync it again.
1240	 */
1241	if ((inode->i_state & I_DIRTY) &&
1242	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243		inode->dirtied_when = jiffies;
1244
1245	if (wbc->pages_skipped) {
1246		/*
1247		 * writeback is not making progress due to locked
1248		 * buffers. Skip this inode for now.
 
 
1249		 */
1250		redirty_tail(inode, wb);
 
 
 
1251		return;
1252	}
1253
1254	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255		/*
1256		 * We didn't write back all the pages.  nfs_writepages()
1257		 * sometimes bales out without doing anything.
1258		 */
1259		if (wbc->nr_to_write <= 0) {
1260			/* Slice used up. Queue for next turn. */
1261			requeue_io(inode, wb);
1262		} else {
1263			/*
1264			 * Writeback blocked by something other than
1265			 * congestion. Delay the inode for some time to
1266			 * avoid spinning on the CPU (100% iowait)
1267			 * retrying writeback of the dirty page/inode
1268			 * that cannot be performed immediately.
1269			 */
1270			redirty_tail(inode, wb);
1271		}
1272	} else if (inode->i_state & I_DIRTY) {
1273		/*
1274		 * Filesystems can dirty the inode during writeback operations,
1275		 * such as delayed allocation during submission or metadata
1276		 * updates after data IO completion.
1277		 */
1278		redirty_tail(inode, wb);
1279	} else if (inode->i_state & I_DIRTY_TIME) {
1280		inode->dirtied_when = jiffies;
1281		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
 
1282	} else {
1283		/* The inode is clean. Remove from writeback lists. */
1284		inode_io_list_del_locked(inode, wb);
1285	}
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
 
 
 
 
 
 
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296	struct address_space *mapping = inode->i_mapping;
1297	long nr_to_write = wbc->nr_to_write;
1298	unsigned dirty;
1299	int ret;
1300
1301	WARN_ON(!(inode->i_state & I_SYNC));
1302
1303	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305	ret = do_writepages(mapping, wbc);
1306
1307	/*
1308	 * Make sure to wait on the data before writing out the metadata.
1309	 * This is important for filesystems that modify metadata on data
1310	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312	 * inode metadata is written back correctly.
1313	 */
1314	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315		int err = filemap_fdatawait(mapping);
1316		if (ret == 0)
1317			ret = err;
1318	}
1319
1320	/*
1321	 * Some filesystems may redirty the inode during the writeback
1322	 * due to delalloc, clear dirty metadata flags right before
1323	 * write_inode()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	 */
1325	spin_lock(&inode->i_lock);
1326
1327	dirty = inode->i_state & I_DIRTY;
1328	if (inode->i_state & I_DIRTY_TIME) {
1329		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330		    wbc->sync_mode == WB_SYNC_ALL ||
1331		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332		    unlikely(time_after(jiffies,
1333					(inode->dirtied_time_when +
1334					 dirtytime_expire_interval * HZ)))) {
1335			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336			trace_writeback_lazytime(inode);
1337		}
1338	} else
1339		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340	inode->i_state &= ~dirty;
1341
1342	/*
1343	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346	 * inode.
1347	 *
1348	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350	 * necessary.  This guarantees that either __mark_inode_dirty()
1351	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352	 */
1353	smp_mb();
1354
1355	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356		inode->i_state |= I_DIRTY_PAGES;
 
 
 
 
 
 
 
1357
1358	spin_unlock(&inode->i_lock);
1359
1360	if (dirty & I_DIRTY_TIME)
1361		mark_inode_dirty_sync(inode);
1362	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363	if (dirty & ~I_DIRTY_PAGES) {
1364		int err = write_inode(inode, wbc);
1365		if (ret == 0)
1366			ret = err;
1367	}
 
1368	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369	return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
 
 
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381				  struct writeback_control *wbc)
1382{
1383	struct bdi_writeback *wb;
1384	int ret = 0;
1385
1386	spin_lock(&inode->i_lock);
1387	if (!atomic_read(&inode->i_count))
1388		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389	else
1390		WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392	if (inode->i_state & I_SYNC) {
1393		if (wbc->sync_mode != WB_SYNC_ALL)
1394			goto out;
1395		/*
1396		 * It's a data-integrity sync. We must wait. Since callers hold
1397		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398		 * away under us.
 
1399		 */
 
 
1400		__inode_wait_for_writeback(inode);
1401	}
1402	WARN_ON(inode->i_state & I_SYNC);
1403	/*
1404	 * Skip inode if it is clean and we have no outstanding writeback in
1405	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406	 * function since flusher thread may be doing for example sync in
1407	 * parallel and if we move the inode, it could get skipped. So here we
1408	 * make sure inode is on some writeback list and leave it there unless
1409	 * we have completely cleaned the inode.
1410	 */
1411	if (!(inode->i_state & I_DIRTY_ALL) &&
1412	    (wbc->sync_mode != WB_SYNC_ALL ||
1413	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414		goto out;
1415	inode->i_state |= I_SYNC;
1416	wbc_attach_and_unlock_inode(wbc, inode);
1417
1418	ret = __writeback_single_inode(inode, wbc);
1419
1420	wbc_detach_inode(wbc);
1421
1422	wb = inode_to_wb_and_lock_list(inode);
1423	spin_lock(&inode->i_lock);
1424	/*
1425	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426	 * touch it. See comment above for explanation.
1427	 */
1428	if (!(inode->i_state & I_DIRTY_ALL))
1429		inode_io_list_del_locked(inode, wb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430	spin_unlock(&wb->list_lock);
1431	inode_sync_complete(inode);
1432out:
1433	spin_unlock(&inode->i_lock);
1434	return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438				 struct wb_writeback_work *work)
1439{
1440	long pages;
1441
1442	/*
1443	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445	 * here avoids calling into writeback_inodes_wb() more than once.
1446	 *
1447	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448	 *
1449	 *      wb_writeback()
1450	 *          writeback_sb_inodes()       <== called only once
1451	 *              write_cache_pages()     <== called once for each inode
1452	 *                   (quickly) tag currently dirty pages
1453	 *                   (maybe slowly) sync all tagged pages
1454	 */
1455	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456		pages = LONG_MAX;
1457	else {
1458		pages = min(wb->avg_write_bandwidth / 2,
1459			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460		pages = min(pages, work->nr_pages);
1461		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462				   MIN_WRITEBACK_PAGES);
1463	}
1464
1465	return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478				struct bdi_writeback *wb,
1479				struct wb_writeback_work *work)
1480{
1481	struct writeback_control wbc = {
1482		.sync_mode		= work->sync_mode,
1483		.tagged_writepages	= work->tagged_writepages,
1484		.for_kupdate		= work->for_kupdate,
1485		.for_background		= work->for_background,
1486		.for_sync		= work->for_sync,
1487		.range_cyclic		= work->range_cyclic,
1488		.range_start		= 0,
1489		.range_end		= LLONG_MAX,
1490	};
1491	unsigned long start_time = jiffies;
1492	long write_chunk;
1493	long wrote = 0;  /* count both pages and inodes */
1494
1495	while (!list_empty(&wb->b_io)) {
1496		struct inode *inode = wb_inode(wb->b_io.prev);
1497		struct bdi_writeback *tmp_wb;
 
1498
1499		if (inode->i_sb != sb) {
1500			if (work->sb) {
1501				/*
1502				 * We only want to write back data for this
1503				 * superblock, move all inodes not belonging
1504				 * to it back onto the dirty list.
1505				 */
1506				redirty_tail(inode, wb);
1507				continue;
1508			}
1509
1510			/*
1511			 * The inode belongs to a different superblock.
1512			 * Bounce back to the caller to unpin this and
1513			 * pin the next superblock.
1514			 */
1515			break;
1516		}
1517
1518		/*
1519		 * Don't bother with new inodes or inodes being freed, first
1520		 * kind does not need periodic writeout yet, and for the latter
1521		 * kind writeout is handled by the freer.
1522		 */
1523		spin_lock(&inode->i_lock);
1524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 
1525			spin_unlock(&inode->i_lock);
1526			redirty_tail(inode, wb);
1527			continue;
1528		}
1529		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530			/*
1531			 * If this inode is locked for writeback and we are not
1532			 * doing writeback-for-data-integrity, move it to
1533			 * b_more_io so that writeback can proceed with the
1534			 * other inodes on s_io.
1535			 *
1536			 * We'll have another go at writing back this inode
1537			 * when we completed a full scan of b_io.
1538			 */
1539			spin_unlock(&inode->i_lock);
1540			requeue_io(inode, wb);
 
1541			trace_writeback_sb_inodes_requeue(inode);
1542			continue;
1543		}
1544		spin_unlock(&wb->list_lock);
1545
1546		/*
1547		 * We already requeued the inode if it had I_SYNC set and we
1548		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549		 * WB_SYNC_ALL case.
1550		 */
1551		if (inode->i_state & I_SYNC) {
1552			/* Wait for I_SYNC. This function drops i_lock... */
1553			inode_sleep_on_writeback(inode);
1554			/* Inode may be gone, start again */
1555			spin_lock(&wb->list_lock);
1556			continue;
1557		}
1558		inode->i_state |= I_SYNC;
1559		wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561		write_chunk = writeback_chunk_size(wb, work);
1562		wbc.nr_to_write = write_chunk;
1563		wbc.pages_skipped = 0;
1564
1565		/*
1566		 * We use I_SYNC to pin the inode in memory. While it is set
1567		 * evict_inode() will wait so the inode cannot be freed.
1568		 */
1569		__writeback_single_inode(inode, &wbc);
1570
1571		wbc_detach_inode(&wbc);
1572		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573		wrote += write_chunk - wbc.nr_to_write;
 
 
1574
1575		if (need_resched()) {
1576			/*
1577			 * We're trying to balance between building up a nice
1578			 * long list of IOs to improve our merge rate, and
1579			 * getting those IOs out quickly for anyone throttling
1580			 * in balance_dirty_pages().  cond_resched() doesn't
1581			 * unplug, so get our IOs out the door before we
1582			 * give up the CPU.
1583			 */
1584			blk_flush_plug(current);
1585			cond_resched();
1586		}
1587
1588		/*
1589		 * Requeue @inode if still dirty.  Be careful as @inode may
1590		 * have been switched to another wb in the meantime.
1591		 */
1592		tmp_wb = inode_to_wb_and_lock_list(inode);
1593		spin_lock(&inode->i_lock);
1594		if (!(inode->i_state & I_DIRTY_ALL))
1595			wrote++;
1596		requeue_inode(inode, tmp_wb, &wbc);
1597		inode_sync_complete(inode);
1598		spin_unlock(&inode->i_lock);
1599
1600		if (unlikely(tmp_wb != wb)) {
1601			spin_unlock(&tmp_wb->list_lock);
1602			spin_lock(&wb->list_lock);
1603		}
1604
1605		/*
1606		 * bail out to wb_writeback() often enough to check
1607		 * background threshold and other termination conditions.
1608		 */
1609		if (wrote) {
1610			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611				break;
1612			if (work->nr_pages <= 0)
1613				break;
1614		}
1615	}
1616	return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620				  struct wb_writeback_work *work)
1621{
1622	unsigned long start_time = jiffies;
1623	long wrote = 0;
1624
1625	while (!list_empty(&wb->b_io)) {
1626		struct inode *inode = wb_inode(wb->b_io.prev);
1627		struct super_block *sb = inode->i_sb;
1628
1629		if (!trylock_super(sb)) {
1630			/*
1631			 * trylock_super() may fail consistently due to
1632			 * s_umount being grabbed by someone else. Don't use
1633			 * requeue_io() to avoid busy retrying the inode/sb.
1634			 */
1635			redirty_tail(inode, wb);
1636			continue;
1637		}
1638		wrote += writeback_sb_inodes(sb, wb, work);
1639		up_read(&sb->s_umount);
1640
1641		/* refer to the same tests at the end of writeback_sb_inodes */
1642		if (wrote) {
1643			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644				break;
1645			if (work->nr_pages <= 0)
1646				break;
1647		}
1648	}
1649	/* Leave any unwritten inodes on b_io */
1650	return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654				enum wb_reason reason)
1655{
1656	struct wb_writeback_work work = {
1657		.nr_pages	= nr_pages,
1658		.sync_mode	= WB_SYNC_NONE,
1659		.range_cyclic	= 1,
1660		.reason		= reason,
1661	};
1662	struct blk_plug plug;
1663
1664	blk_start_plug(&plug);
1665	spin_lock(&wb->list_lock);
1666	if (list_empty(&wb->b_io))
1667		queue_io(wb, &work);
1668	__writeback_inodes_wb(wb, &work);
1669	spin_unlock(&wb->list_lock);
1670	blk_finish_plug(&plug);
1671
1672	return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691			 struct wb_writeback_work *work)
1692{
1693	unsigned long wb_start = jiffies;
1694	long nr_pages = work->nr_pages;
1695	unsigned long oldest_jif;
1696	struct inode *inode;
1697	long progress;
1698	struct blk_plug plug;
1699
1700	oldest_jif = jiffies;
1701	work->older_than_this = &oldest_jif;
1702
1703	blk_start_plug(&plug);
1704	spin_lock(&wb->list_lock);
1705	for (;;) {
1706		/*
1707		 * Stop writeback when nr_pages has been consumed
1708		 */
1709		if (work->nr_pages <= 0)
1710			break;
1711
1712		/*
1713		 * Background writeout and kupdate-style writeback may
1714		 * run forever. Stop them if there is other work to do
1715		 * so that e.g. sync can proceed. They'll be restarted
1716		 * after the other works are all done.
1717		 */
1718		if ((work->for_background || work->for_kupdate) &&
1719		    !list_empty(&wb->work_list))
1720			break;
1721
1722		/*
1723		 * For background writeout, stop when we are below the
1724		 * background dirty threshold
1725		 */
1726		if (work->for_background && !wb_over_bg_thresh(wb))
1727			break;
1728
 
 
 
1729		/*
1730		 * Kupdate and background works are special and we want to
1731		 * include all inodes that need writing. Livelock avoidance is
1732		 * handled by these works yielding to any other work so we are
1733		 * safe.
1734		 */
1735		if (work->for_kupdate) {
1736			oldest_jif = jiffies -
1737				msecs_to_jiffies(dirty_expire_interval * 10);
1738		} else if (work->for_background)
1739			oldest_jif = jiffies;
1740
1741		trace_writeback_start(wb, work);
1742		if (list_empty(&wb->b_io))
1743			queue_io(wb, work);
1744		if (work->sb)
1745			progress = writeback_sb_inodes(work->sb, wb, work);
1746		else
1747			progress = __writeback_inodes_wb(wb, work);
1748		trace_writeback_written(wb, work);
1749
1750		wb_update_bandwidth(wb, wb_start);
1751
1752		/*
1753		 * Did we write something? Try for more
1754		 *
1755		 * Dirty inodes are moved to b_io for writeback in batches.
1756		 * The completion of the current batch does not necessarily
1757		 * mean the overall work is done. So we keep looping as long
1758		 * as made some progress on cleaning pages or inodes.
1759		 */
1760		if (progress)
 
1761			continue;
 
 
1762		/*
1763		 * No more inodes for IO, bail
1764		 */
1765		if (list_empty(&wb->b_more_io))
 
1766			break;
 
 
1767		/*
1768		 * Nothing written. Wait for some inode to
1769		 * become available for writeback. Otherwise
1770		 * we'll just busyloop.
1771		 */
1772		trace_writeback_wait(wb, work);
1773		inode = wb_inode(wb->b_more_io.prev);
1774		spin_lock(&inode->i_lock);
1775		spin_unlock(&wb->list_lock);
1776		/* This function drops i_lock... */
1777		inode_sleep_on_writeback(inode);
1778		spin_lock(&wb->list_lock);
1779	}
1780	spin_unlock(&wb->list_lock);
1781	blk_finish_plug(&plug);
1782
1783	return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790{
1791	struct wb_writeback_work *work = NULL;
1792
1793	spin_lock_bh(&wb->work_lock);
1794	if (!list_empty(&wb->work_list)) {
1795		work = list_entry(wb->work_list.next,
1796				  struct wb_writeback_work, list);
1797		list_del_init(&work->list);
1798	}
1799	spin_unlock_bh(&wb->work_lock);
1800	return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809	return global_node_page_state(NR_FILE_DIRTY) +
1810		global_node_page_state(NR_UNSTABLE_NFS) +
1811		get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816	if (wb_over_bg_thresh(wb)) {
1817
1818		struct wb_writeback_work work = {
1819			.nr_pages	= LONG_MAX,
1820			.sync_mode	= WB_SYNC_NONE,
1821			.for_background	= 1,
1822			.range_cyclic	= 1,
1823			.reason		= WB_REASON_BACKGROUND,
1824		};
1825
1826		return wb_writeback(wb, &work);
1827	}
1828
1829	return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834	unsigned long expired;
1835	long nr_pages;
1836
1837	/*
1838	 * When set to zero, disable periodic writeback
1839	 */
1840	if (!dirty_writeback_interval)
1841		return 0;
1842
1843	expired = wb->last_old_flush +
1844			msecs_to_jiffies(dirty_writeback_interval * 10);
1845	if (time_before(jiffies, expired))
1846		return 0;
1847
1848	wb->last_old_flush = jiffies;
1849	nr_pages = get_nr_dirty_pages();
1850
1851	if (nr_pages) {
1852		struct wb_writeback_work work = {
1853			.nr_pages	= nr_pages,
1854			.sync_mode	= WB_SYNC_NONE,
1855			.for_kupdate	= 1,
1856			.range_cyclic	= 1,
1857			.reason		= WB_REASON_PERIODIC,
1858		};
1859
1860		return wb_writeback(wb, &work);
1861	}
1862
1863	return 0;
1864}
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
1871	struct wb_writeback_work *work;
1872	long wrote = 0;
1873
1874	set_bit(WB_writeback_running, &wb->state);
1875	while ((work = get_next_work_item(wb)) != NULL) {
1876		struct wb_completion *done = work->done;
1877
1878		trace_writeback_exec(wb, work);
1879
1880		wrote += wb_writeback(wb, work);
1881
1882		if (work->auto_free)
1883			kfree(work);
1884		if (done && atomic_dec_and_test(&done->cnt))
1885			wake_up_all(&wb->bdi->wb_waitq);
1886	}
1887
1888	/*
 
 
 
 
 
1889	 * Check for periodic writeback, kupdated() style
1890	 */
1891	wrote += wb_check_old_data_flush(wb);
1892	wrote += wb_check_background_flush(wb);
1893	clear_bit(WB_writeback_running, &wb->state);
1894
1895	return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905						struct bdi_writeback, dwork);
1906	long pages_written;
1907
1908	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909	current->flags |= PF_SWAPWRITE;
1910
1911	if (likely(!current_is_workqueue_rescuer() ||
1912		   !test_bit(WB_registered, &wb->state))) {
1913		/*
1914		 * The normal path.  Keep writing back @wb until its
1915		 * work_list is empty.  Note that this path is also taken
1916		 * if @wb is shutting down even when we're running off the
1917		 * rescuer as work_list needs to be drained.
1918		 */
1919		do {
1920			pages_written = wb_do_writeback(wb);
1921			trace_writeback_pages_written(pages_written);
1922		} while (!list_empty(&wb->work_list));
1923	} else {
1924		/*
1925		 * bdi_wq can't get enough workers and we're running off
1926		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927		 * enough for efficient IO.
1928		 */
1929		pages_written = writeback_inodes_wb(wb, 1024,
1930						    WB_REASON_FORKER_THREAD);
1931		trace_writeback_pages_written(pages_written);
1932	}
1933
1934	if (!list_empty(&wb->work_list))
1935		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937		wb_wakeup_delayed(wb);
 
 
 
 
 
 
 
 
 
 
1938
1939	current->flags &= ~PF_SWAPWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
1940}
1941
1942/*
1943 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1947{
1948	struct backing_dev_info *bdi;
1949
1950	/*
1951	 * If we are expecting writeback progress we must submit plugged IO.
1952	 */
1953	if (blk_needs_flush_plug(current))
1954		blk_schedule_flush_plug(current);
1955
1956	if (!nr_pages)
1957		nr_pages = get_nr_dirty_pages();
1958
1959	rcu_read_lock();
1960	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961		struct bdi_writeback *wb;
1962
1963		if (!bdi_has_dirty_io(bdi))
1964			continue;
1965
1966		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968					   false, reason);
1969	}
1970	rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically.  We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system.  So instead we define a separate delayed work
1979 * function which gets called much more rarely.  (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary.  But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993	struct backing_dev_info *bdi;
1994
1995	rcu_read_lock();
1996	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997		struct bdi_writeback *wb;
1998
1999		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000			if (!list_empty(&wb->b_dirty_time))
2001				wb_wakeup(wb);
2002	}
2003	rcu_read_unlock();
2004	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010	return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017	int ret;
2018
2019	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020	if (ret == 0 && write)
2021		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022	return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028		struct dentry *dentry;
2029		const char *name = "?";
2030
2031		dentry = d_find_alias(inode);
2032		if (dentry) {
2033			spin_lock(&dentry->d_lock);
2034			name = (const char *) dentry->d_name.name;
2035		}
2036		printk(KERN_DEBUG
2037		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038		       current->comm, task_pid_nr(current), inode->i_ino,
2039		       name, inode->i_sb->s_id);
2040		if (dentry) {
2041			spin_unlock(&dentry->d_lock);
2042			dput(dentry);
2043		}
2044	}
2045}
2046
2047/**
2048 *	__mark_inode_dirty -	internal function
2049 *	@inode: inode to mark
2050 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 *  	mark_inode_dirty_sync.
2053 *
2054 * Put the inode on the super block's dirty list.
 
 
 
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
 
 
 
 
 
 
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074	struct super_block *sb = inode->i_sb;
2075	int dirtytime;
 
2076
2077	trace_writeback_mark_inode_dirty(inode, flags);
2078
2079	/*
2080	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081	 * dirty the inode itself
2082	 */
2083	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084		trace_writeback_dirty_inode_start(inode, flags);
 
 
 
 
 
 
 
 
2085
 
 
 
 
 
 
 
 
2086		if (sb->s_op->dirty_inode)
2087			sb->s_op->dirty_inode(inode, flags);
2088
2089		trace_writeback_dirty_inode(inode, flags);
2090	}
2091	if (flags & I_DIRTY_INODE)
2092		flags &= ~I_DIRTY_TIME;
2093	dirtytime = flags & I_DIRTY_TIME;
 
 
 
 
 
 
 
 
2094
2095	/*
2096	 * Paired with smp_mb() in __writeback_single_inode() for the
2097	 * following lockless i_state test.  See there for details.
2098	 */
2099	smp_mb();
2100
2101	if (((inode->i_state & flags) == flags) ||
2102	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103		return;
2104
2105	if (unlikely(block_dump))
2106		block_dump___mark_inode_dirty(inode);
2107
2108	spin_lock(&inode->i_lock);
2109	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110		goto out_unlock_inode;
2111	if ((inode->i_state & flags) != flags) {
2112		const int was_dirty = inode->i_state & I_DIRTY;
2113
2114		inode_attach_wb(inode, NULL);
2115
2116		if (flags & I_DIRTY_INODE)
2117			inode->i_state &= ~I_DIRTY_TIME;
2118		inode->i_state |= flags;
2119
2120		/*
2121		 * If the inode is being synced, just update its dirty state.
2122		 * The unlocker will place the inode on the appropriate
2123		 * superblock list, based upon its state.
 
2124		 */
2125		if (inode->i_state & I_SYNC)
2126			goto out_unlock_inode;
 
 
 
 
 
 
 
 
 
 
 
2127
2128		/*
2129		 * Only add valid (hashed) inodes to the superblock's
2130		 * dirty list.  Add blockdev inodes as well.
2131		 */
2132		if (!S_ISBLK(inode->i_mode)) {
2133			if (inode_unhashed(inode))
2134				goto out_unlock_inode;
2135		}
2136		if (inode->i_state & I_FREEING)
2137			goto out_unlock_inode;
2138
2139		/*
2140		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141		 * reposition it (that would break b_dirty time-ordering).
2142		 */
2143		if (!was_dirty) {
2144			struct bdi_writeback *wb;
2145			struct list_head *dirty_list;
2146			bool wakeup_bdi = false;
2147
2148			wb = locked_inode_to_wb_and_lock_list(inode);
2149
2150			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151			     !test_bit(WB_registered, &wb->state),
2152			     "bdi-%s not registered\n", wb->bdi->name);
2153
2154			inode->dirtied_when = jiffies;
2155			if (dirtytime)
2156				inode->dirtied_time_when = jiffies;
2157
2158			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159				dirty_list = &wb->b_dirty;
2160			else
2161				dirty_list = &wb->b_dirty_time;
2162
2163			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164							       dirty_list);
2165
2166			spin_unlock(&wb->list_lock);
 
2167			trace_writeback_dirty_inode_enqueue(inode);
2168
2169			/*
2170			 * If this is the first dirty inode for this bdi,
2171			 * we have to wake-up the corresponding bdi thread
2172			 * to make sure background write-back happens
2173			 * later.
2174			 */
2175			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
 
2176				wb_wakeup_delayed(wb);
2177			return;
2178		}
2179	}
2180out_unlock_inode:
 
 
2181	spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198	LIST_HEAD(sync_list);
2199
2200	/*
2201	 * We need to be protected against the filesystem going from
2202	 * r/o to r/w or vice versa.
2203	 */
2204	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206	mutex_lock(&sb->s_sync_lock);
2207
2208	/*
2209	 * Splice the writeback list onto a temporary list to avoid waiting on
2210	 * inodes that have started writeback after this point.
2211	 *
2212	 * Use rcu_read_lock() to keep the inodes around until we have a
2213	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214	 * the local list because inodes can be dropped from either by writeback
2215	 * completion.
2216	 */
2217	rcu_read_lock();
2218	spin_lock_irq(&sb->s_inode_wblist_lock);
2219	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221	/*
2222	 * Data integrity sync. Must wait for all pages under writeback, because
2223	 * there may have been pages dirtied before our sync call, but which had
2224	 * writeout started before we write it out.  In which case, the inode
2225	 * may not be on the dirty list, but we still have to wait for that
2226	 * writeout.
2227	 */
2228	while (!list_empty(&sync_list)) {
2229		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230						       i_wb_list);
2231		struct address_space *mapping = inode->i_mapping;
2232
2233		/*
2234		 * Move each inode back to the wb list before we drop the lock
2235		 * to preserve consistency between i_wb_list and the mapping
2236		 * writeback tag. Writeback completion is responsible to remove
2237		 * the inode from either list once the writeback tag is cleared.
2238		 */
2239		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241		/*
2242		 * The mapping can appear untagged while still on-list since we
2243		 * do not have the mapping lock. Skip it here, wb completion
2244		 * will remove it.
2245		 */
2246		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247			continue;
2248
2249		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251		spin_lock(&inode->i_lock);
2252		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253			spin_unlock(&inode->i_lock);
2254
2255			spin_lock_irq(&sb->s_inode_wblist_lock);
2256			continue;
2257		}
2258		__iget(inode);
2259		spin_unlock(&inode->i_lock);
2260		rcu_read_unlock();
2261
2262		/*
2263		 * We keep the error status of individual mapping so that
2264		 * applications can catch the writeback error using fsync(2).
2265		 * See filemap_fdatawait_keep_errors() for details.
2266		 */
2267		filemap_fdatawait_keep_errors(mapping);
2268
2269		cond_resched();
2270
2271		iput(inode);
2272
2273		rcu_read_lock();
2274		spin_lock_irq(&sb->s_inode_wblist_lock);
2275	}
2276	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277	rcu_read_unlock();
2278	mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282				     enum wb_reason reason, bool skip_if_busy)
2283{
2284	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2285	struct wb_writeback_work work = {
2286		.sb			= sb,
2287		.sync_mode		= WB_SYNC_NONE,
2288		.tagged_writepages	= 1,
2289		.done			= &done,
2290		.nr_pages		= nr,
2291		.reason			= reason,
2292	};
2293	struct backing_dev_info *bdi = sb->s_bdi;
2294
2295	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296		return;
2297	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300	wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314			    unsigned long nr,
2315			    enum wb_reason reason)
2316{
2317	__writeback_inodes_sb_nr(sb, nr, reason, false);
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346				   enum wb_reason reason)
2347{
2348	if (!down_read_trylock(&sb->s_umount))
2349		return false;
2350
2351	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352	up_read(&sb->s_umount);
2353	return true;
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366{
2367	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb	-	sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2381	struct wb_writeback_work work = {
2382		.sb		= sb,
2383		.sync_mode	= WB_SYNC_ALL,
2384		.nr_pages	= LONG_MAX,
2385		.range_cyclic	= 0,
2386		.done		= &done,
2387		.reason		= WB_REASON_SYNC,
2388		.for_sync	= 1,
2389	};
2390	struct backing_dev_info *bdi = sb->s_bdi;
2391
2392	/*
2393	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395	 * bdi_has_dirty() need to be written out too.
2396	 */
2397	if (bdi == &noop_backing_dev_info)
2398		return;
2399	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
 
 
2401	bdi_split_work_to_wbs(bdi, &work, false);
2402	wb_wait_for_completion(bdi, &done);
 
2403
2404	wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now	-	write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
2420	struct writeback_control wbc = {
2421		.nr_to_write = LONG_MAX,
2422		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423		.range_start = 0,
2424		.range_end = LLONG_MAX,
2425	};
2426
2427	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428		wbc.nr_to_write = 0;
2429
2430	might_sleep();
2431	return writeback_single_inode(inode, &wbc);
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk.  It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448	return writeback_single_inode(inode, wbc);
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463	struct writeback_control wbc = {
2464		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465		.nr_to_write = 0, /* metadata-only */
2466	};
2467
2468	return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/fs-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains all the functions related to writing back and waiting
   8 * upon dirty inodes against superblocks, and writing back dirty
   9 * pages against inodes.  ie: data writeback.  Writeout of the
  10 * inode itself is not handled here.
  11 *
  12 * 10Apr2002	Andrew Morton
  13 *		Split out of fs/inode.c
  14 *		Additions for address_space-based writeback
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/export.h>
  19#include <linux/spinlock.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24#include <linux/pagemap.h>
  25#include <linux/kthread.h>
  26#include <linux/writeback.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/tracepoint.h>
  30#include <linux/device.h>
  31#include <linux/memcontrol.h>
  32#include "internal.h"
  33
  34/*
  35 * 4MB minimal write chunk size
  36 */
  37#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  38
 
 
 
 
  39/*
  40 * Passed into wb_writeback(), essentially a subset of writeback_control
  41 */
  42struct wb_writeback_work {
  43	long nr_pages;
  44	struct super_block *sb;
 
  45	enum writeback_sync_modes sync_mode;
  46	unsigned int tagged_writepages:1;
  47	unsigned int for_kupdate:1;
  48	unsigned int range_cyclic:1;
  49	unsigned int for_background:1;
  50	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  51	unsigned int auto_free:1;	/* free on completion */
  52	enum wb_reason reason;		/* why was writeback initiated? */
  53
  54	struct list_head list;		/* pending work list */
  55	struct wb_completion *done;	/* set if the caller waits */
  56};
  57
  58/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  59 * If an inode is constantly having its pages dirtied, but then the
  60 * updates stop dirtytime_expire_interval seconds in the past, it's
  61 * possible for the worst case time between when an inode has its
  62 * timestamps updated and when they finally get written out to be two
  63 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  64 * seconds), which means most of the time inodes will have their
  65 * timestamps written to disk after 12 hours, but in the worst case a
  66 * few inodes might not their timestamps updated for 24 hours.
  67 */
  68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  69
  70static inline struct inode *wb_inode(struct list_head *head)
  71{
  72	return list_entry(head, struct inode, i_io_list);
  73}
  74
  75/*
  76 * Include the creation of the trace points after defining the
  77 * wb_writeback_work structure and inline functions so that the definition
  78 * remains local to this file.
  79 */
  80#define CREATE_TRACE_POINTS
  81#include <trace/events/writeback.h>
  82
  83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  84
  85static bool wb_io_lists_populated(struct bdi_writeback *wb)
  86{
  87	if (wb_has_dirty_io(wb)) {
  88		return false;
  89	} else {
  90		set_bit(WB_has_dirty_io, &wb->state);
  91		WARN_ON_ONCE(!wb->avg_write_bandwidth);
  92		atomic_long_add(wb->avg_write_bandwidth,
  93				&wb->bdi->tot_write_bandwidth);
  94		return true;
  95	}
  96}
  97
  98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
  99{
 100	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 101	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 102		clear_bit(WB_has_dirty_io, &wb->state);
 103		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 104					&wb->bdi->tot_write_bandwidth) < 0);
 105	}
 106}
 107
 108/**
 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 110 * @inode: inode to be moved
 111 * @wb: target bdi_writeback
 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 113 *
 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 115 * Returns %true if @inode is the first occupant of the !dirty_time IO
 116 * lists; otherwise, %false.
 117 */
 118static bool inode_io_list_move_locked(struct inode *inode,
 119				      struct bdi_writeback *wb,
 120				      struct list_head *head)
 121{
 122	assert_spin_locked(&wb->list_lock);
 123	assert_spin_locked(&inode->i_lock);
 124	WARN_ON_ONCE(inode->i_state & I_FREEING);
 125
 126	list_move(&inode->i_io_list, head);
 127
 128	/* dirty_time doesn't count as dirty_io until expiration */
 129	if (head != &wb->b_dirty_time)
 130		return wb_io_lists_populated(wb);
 131
 132	wb_io_lists_depopulated(wb);
 133	return false;
 134}
 135
 136static void wb_wakeup(struct bdi_writeback *wb)
 137{
 138	spin_lock_irq(&wb->work_lock);
 139	if (test_bit(WB_registered, &wb->state))
 140		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 141	spin_unlock_irq(&wb->work_lock);
 142}
 143
 144/*
 145 * This function is used when the first inode for this wb is marked dirty. It
 146 * wakes-up the corresponding bdi thread which should then take care of the
 147 * periodic background write-out of dirty inodes. Since the write-out would
 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
 149 * set up a timer which wakes the bdi thread up later.
 150 *
 151 * Note, we wouldn't bother setting up the timer, but this function is on the
 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
 153 * by delaying the wake-up.
 154 *
 155 * We have to be careful not to postpone flush work if it is scheduled for
 156 * earlier. Thus we use queue_delayed_work().
 157 */
 158static void wb_wakeup_delayed(struct bdi_writeback *wb)
 
 159{
 160	unsigned long timeout;
 161
 162	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
 163	spin_lock_irq(&wb->work_lock);
 164	if (test_bit(WB_registered, &wb->state))
 165		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
 166	spin_unlock_irq(&wb->work_lock);
 167}
 168
 169static void finish_writeback_work(struct bdi_writeback *wb,
 170				  struct wb_writeback_work *work)
 171{
 172	struct wb_completion *done = work->done;
 173
 174	if (work->auto_free)
 175		kfree(work);
 176	if (done) {
 177		wait_queue_head_t *waitq = done->waitq;
 178
 179		/* @done can't be accessed after the following dec */
 180		if (atomic_dec_and_test(&done->cnt))
 181			wake_up_all(waitq);
 182	}
 183}
 184
 185static void wb_queue_work(struct bdi_writeback *wb,
 186			  struct wb_writeback_work *work)
 187{
 188	trace_writeback_queue(wb, work);
 189
 
 
 
 190	if (work->done)
 191		atomic_inc(&work->done->cnt);
 192
 193	spin_lock_irq(&wb->work_lock);
 194
 195	if (test_bit(WB_registered, &wb->state)) {
 196		list_add_tail(&work->list, &wb->work_list);
 197		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 198	} else
 199		finish_writeback_work(wb, work);
 200
 201	spin_unlock_irq(&wb->work_lock);
 202}
 203
 204/**
 205 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 
 206 * @done: target wb_completion
 207 *
 208 * Wait for one or more work items issued to @bdi with their ->done field
 209 * set to @done, which should have been initialized with
 210 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 211 * are completed.  Work items which are waited upon aren't freed
 212 * automatically on completion.
 213 */
 214void wb_wait_for_completion(struct wb_completion *done)
 
 215{
 216	atomic_dec(&done->cnt);		/* put down the initial count */
 217	wait_event(*done->waitq, !atomic_read(&done->cnt));
 218}
 219
 220#ifdef CONFIG_CGROUP_WRITEBACK
 221
 222/*
 223 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 224 * how they're used.
 225 *
 226 * These paramters are inherently heuristical as the detection target
 227 * itself is fuzzy.  All we want to do is detaching an inode from the
 228 * current owner if it's being written to by some other cgroups too much.
 229 *
 230 * The current cgroup writeback is built on the assumption that multiple
 231 * cgroups writing to the same inode concurrently is very rare and a mode
 232 * of operation which isn't well supported.  As such, the goal is not
 233 * taking too long when a different cgroup takes over an inode while
 234 * avoiding too aggressive flip-flops from occasional foreign writes.
 235 *
 236 * We record, very roughly, 2s worth of IO time history and if more than
 237 * half of that is foreign, trigger the switch.  The recording is quantized
 238 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 239 * writes smaller than 1/8 of avg size are ignored.
 240 */
 241#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 242#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 243#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
 244#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 245
 246#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 247#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 248					/* each slot's duration is 2s / 16 */
 249#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 250					/* if foreign slots >= 8, switch */
 251#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 252					/* one round can affect upto 5 slots */
 253#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
 254
 255/*
 256 * Maximum inodes per isw.  A specific value has been chosen to make
 257 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
 258 */
 259#define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
 260                                / sizeof(struct inode *))
 261
 262static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 263static struct workqueue_struct *isw_wq;
 264
 265void __inode_attach_wb(struct inode *inode, struct folio *folio)
 266{
 267	struct backing_dev_info *bdi = inode_to_bdi(inode);
 268	struct bdi_writeback *wb = NULL;
 269
 270	if (inode_cgwb_enabled(inode)) {
 271		struct cgroup_subsys_state *memcg_css;
 272
 273		if (folio) {
 274			memcg_css = mem_cgroup_css_from_folio(folio);
 275			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 276		} else {
 277			/* must pin memcg_css, see wb_get_create() */
 278			memcg_css = task_get_css(current, memory_cgrp_id);
 279			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 280			css_put(memcg_css);
 281		}
 282	}
 283
 284	if (!wb)
 285		wb = &bdi->wb;
 286
 287	/*
 288	 * There may be multiple instances of this function racing to
 289	 * update the same inode.  Use cmpxchg() to tell the winner.
 290	 */
 291	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 292		wb_put(wb);
 293}
 294EXPORT_SYMBOL_GPL(__inode_attach_wb);
 295
 296/**
 297 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
 298 * @inode: inode of interest with i_lock held
 299 * @wb: target bdi_writeback
 300 *
 301 * Remove the inode from wb's io lists and if necessarily put onto b_attached
 302 * list.  Only inodes attached to cgwb's are kept on this list.
 303 */
 304static void inode_cgwb_move_to_attached(struct inode *inode,
 305					struct bdi_writeback *wb)
 306{
 307	assert_spin_locked(&wb->list_lock);
 308	assert_spin_locked(&inode->i_lock);
 309	WARN_ON_ONCE(inode->i_state & I_FREEING);
 310
 311	inode->i_state &= ~I_SYNC_QUEUED;
 312	if (wb != &wb->bdi->wb)
 313		list_move(&inode->i_io_list, &wb->b_attached);
 314	else
 315		list_del_init(&inode->i_io_list);
 316	wb_io_lists_depopulated(wb);
 317}
 318
 319/**
 320 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 321 * @inode: inode of interest with i_lock held
 322 *
 323 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 324 * held on entry and is released on return.  The returned wb is guaranteed
 325 * to stay @inode's associated wb until its list_lock is released.
 326 */
 327static struct bdi_writeback *
 328locked_inode_to_wb_and_lock_list(struct inode *inode)
 329	__releases(&inode->i_lock)
 330	__acquires(&wb->list_lock)
 331{
 332	while (true) {
 333		struct bdi_writeback *wb = inode_to_wb(inode);
 334
 335		/*
 336		 * inode_to_wb() association is protected by both
 337		 * @inode->i_lock and @wb->list_lock but list_lock nests
 338		 * outside i_lock.  Drop i_lock and verify that the
 339		 * association hasn't changed after acquiring list_lock.
 340		 */
 341		wb_get(wb);
 342		spin_unlock(&inode->i_lock);
 343		spin_lock(&wb->list_lock);
 344
 345		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 346		if (likely(wb == inode->i_wb)) {
 347			wb_put(wb);	/* @inode already has ref */
 348			return wb;
 349		}
 350
 351		spin_unlock(&wb->list_lock);
 352		wb_put(wb);
 353		cpu_relax();
 354		spin_lock(&inode->i_lock);
 355	}
 356}
 357
 358/**
 359 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 360 * @inode: inode of interest
 361 *
 362 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 363 * on entry.
 364 */
 365static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 366	__acquires(&wb->list_lock)
 367{
 368	spin_lock(&inode->i_lock);
 369	return locked_inode_to_wb_and_lock_list(inode);
 370}
 371
 372struct inode_switch_wbs_context {
 373	struct rcu_work		work;
 
 374
 375	/*
 376	 * Multiple inodes can be switched at once.  The switching procedure
 377	 * consists of two parts, separated by a RCU grace period.  To make
 378	 * sure that the second part is executed for each inode gone through
 379	 * the first part, all inode pointers are placed into a NULL-terminated
 380	 * array embedded into struct inode_switch_wbs_context.  Otherwise
 381	 * an inode could be left in a non-consistent state.
 382	 */
 383	struct bdi_writeback	*new_wb;
 384	struct inode		*inodes[];
 385};
 386
 387static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 388{
 389	down_write(&bdi->wb_switch_rwsem);
 390}
 391
 392static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 393{
 394	up_write(&bdi->wb_switch_rwsem);
 395}
 396
 397static bool inode_do_switch_wbs(struct inode *inode,
 398				struct bdi_writeback *old_wb,
 399				struct bdi_writeback *new_wb)
 400{
 
 
 
 401	struct address_space *mapping = inode->i_mapping;
 402	XA_STATE(xas, &mapping->i_pages, 0);
 403	struct folio *folio;
 
 404	bool switched = false;
 
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406	spin_lock(&inode->i_lock);
 407	xa_lock_irq(&mapping->i_pages);
 408
 409	/*
 410	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
 411	 * path owns the inode and we shouldn't modify ->i_io_list.
 412	 */
 413	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
 414		goto skip_switch;
 415
 416	trace_inode_switch_wbs(inode, old_wb, new_wb);
 417
 418	/*
 419	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 420	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
 421	 * folios actually under writeback.
 422	 */
 423	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
 424		if (folio_test_dirty(folio)) {
 425			long nr = folio_nr_pages(folio);
 426			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
 427			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
 
 
 428		}
 429	}
 430
 431	xas_set(&xas, 0);
 432	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
 433		long nr = folio_nr_pages(folio);
 434		WARN_ON_ONCE(!folio_test_writeback(folio));
 435		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
 436		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
 437	}
 438
 439	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
 440		atomic_dec(&old_wb->writeback_inodes);
 441		atomic_inc(&new_wb->writeback_inodes);
 442	}
 443
 444	wb_get(new_wb);
 445
 446	/*
 447	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
 448	 * the specific list @inode was on is ignored and the @inode is put on
 449	 * ->b_dirty which is always correct including from ->b_dirty_time.
 450	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
 451	 * was clean, it means it was on the b_attached list, so move it onto
 452	 * the b_attached list of @new_wb.
 453	 */
 454	if (!list_empty(&inode->i_io_list)) {
 
 
 
 455		inode->i_wb = new_wb;
 456
 457		if (inode->i_state & I_DIRTY_ALL) {
 458			struct inode *pos;
 459
 460			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 461				if (time_after_eq(inode->dirtied_when,
 462						  pos->dirtied_when))
 463					break;
 464			inode_io_list_move_locked(inode, new_wb,
 465						  pos->i_io_list.prev);
 466		} else {
 467			inode_cgwb_move_to_attached(inode, new_wb);
 468		}
 469	} else {
 470		inode->i_wb = new_wb;
 471	}
 472
 473	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 474	inode->i_wb_frn_winner = 0;
 475	inode->i_wb_frn_avg_time = 0;
 476	inode->i_wb_frn_history = 0;
 477	switched = true;
 478skip_switch:
 479	/*
 480	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 481	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 482	 */
 483	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 484
 485	xa_unlock_irq(&mapping->i_pages);
 486	spin_unlock(&inode->i_lock);
 487
 488	return switched;
 489}
 490
 491static void inode_switch_wbs_work_fn(struct work_struct *work)
 492{
 493	struct inode_switch_wbs_context *isw =
 494		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
 495	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
 496	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
 497	struct bdi_writeback *new_wb = isw->new_wb;
 498	unsigned long nr_switched = 0;
 499	struct inode **inodep;
 500
 501	/*
 502	 * If @inode switches cgwb membership while sync_inodes_sb() is
 503	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
 504	 */
 505	down_read(&bdi->wb_switch_rwsem);
 506
 507	/*
 508	 * By the time control reaches here, RCU grace period has passed
 509	 * since I_WB_SWITCH assertion and all wb stat update transactions
 510	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 511	 * synchronizing against the i_pages lock.
 512	 *
 513	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 514	 * gives us exclusion against all wb related operations on @inode
 515	 * including IO list manipulations and stat updates.
 516	 */
 517	if (old_wb < new_wb) {
 518		spin_lock(&old_wb->list_lock);
 519		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 520	} else {
 521		spin_lock(&new_wb->list_lock);
 522		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 523	}
 524
 525	for (inodep = isw->inodes; *inodep; inodep++) {
 526		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
 527		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
 528			nr_switched++;
 529	}
 530
 531	spin_unlock(&new_wb->list_lock);
 532	spin_unlock(&old_wb->list_lock);
 533
 534	up_read(&bdi->wb_switch_rwsem);
 535
 536	if (nr_switched) {
 537		wb_wakeup(new_wb);
 538		wb_put_many(old_wb, nr_switched);
 539	}
 
 540
 541	for (inodep = isw->inodes; *inodep; inodep++)
 542		iput(*inodep);
 543	wb_put(new_wb);
 544	kfree(isw);
 
 545	atomic_dec(&isw_nr_in_flight);
 546}
 547
 548static bool inode_prepare_wbs_switch(struct inode *inode,
 549				     struct bdi_writeback *new_wb)
 550{
 551	/*
 552	 * Paired with smp_mb() in cgroup_writeback_umount().
 553	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
 554	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
 555	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
 556	 */
 557	smp_mb();
 558
 559	if (IS_DAX(inode))
 560		return false;
 561
 562	/* while holding I_WB_SWITCH, no one else can update the association */
 563	spin_lock(&inode->i_lock);
 564	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 565	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
 566	    inode_to_wb(inode) == new_wb) {
 567		spin_unlock(&inode->i_lock);
 568		return false;
 569	}
 570	inode->i_state |= I_WB_SWITCH;
 571	__iget(inode);
 572	spin_unlock(&inode->i_lock);
 573
 574	return true;
 575}
 576
 577/**
 578 * inode_switch_wbs - change the wb association of an inode
 579 * @inode: target inode
 580 * @new_wb_id: ID of the new wb
 581 *
 582 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 583 * switching is performed asynchronously and may fail silently.
 584 */
 585static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 586{
 587	struct backing_dev_info *bdi = inode_to_bdi(inode);
 588	struct cgroup_subsys_state *memcg_css;
 589	struct inode_switch_wbs_context *isw;
 590
 591	/* noop if seems to be already in progress */
 592	if (inode->i_state & I_WB_SWITCH)
 593		return;
 594
 595	/* avoid queueing a new switch if too many are already in flight */
 596	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
 597		return;
 598
 599	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
 600	if (!isw)
 601		return;
 602
 603	atomic_inc(&isw_nr_in_flight);
 604
 605	/* find and pin the new wb */
 606	rcu_read_lock();
 607	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 608	if (memcg_css && !css_tryget(memcg_css))
 609		memcg_css = NULL;
 610	rcu_read_unlock();
 611	if (!memcg_css)
 612		goto out_free;
 613
 614	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 615	css_put(memcg_css);
 616	if (!isw->new_wb)
 
 
 
 617		goto out_free;
 
 
 
 
 618
 619	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
 620		goto out_free;
 621
 622	isw->inodes[0] = inode;
 623
 624	/*
 625	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 626	 * the RCU protected stat update paths to grab the i_page
 627	 * lock so that stat transfer can synchronize against them.
 628	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 629	 */
 630	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
 631	queue_rcu_work(isw_wq, &isw->work);
 632	return;
 633
 634out_free:
 635	atomic_dec(&isw_nr_in_flight);
 636	if (isw->new_wb)
 637		wb_put(isw->new_wb);
 638	kfree(isw);
 639}
 640
 641static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
 642				   struct list_head *list, int *nr)
 643{
 644	struct inode *inode;
 645
 646	list_for_each_entry(inode, list, i_io_list) {
 647		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
 648			continue;
 649
 650		isw->inodes[*nr] = inode;
 651		(*nr)++;
 652
 653		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
 654			return true;
 655	}
 656	return false;
 657}
 658
 659/**
 660 * cleanup_offline_cgwb - detach associated inodes
 661 * @wb: target wb
 662 *
 663 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
 664 * to eventually release the dying @wb.  Returns %true if not all inodes were
 665 * switched and the function has to be restarted.
 666 */
 667bool cleanup_offline_cgwb(struct bdi_writeback *wb)
 668{
 669	struct cgroup_subsys_state *memcg_css;
 670	struct inode_switch_wbs_context *isw;
 671	int nr;
 672	bool restart = false;
 673
 674	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
 675		      GFP_KERNEL);
 676	if (!isw)
 677		return restart;
 678
 679	atomic_inc(&isw_nr_in_flight);
 680
 681	for (memcg_css = wb->memcg_css->parent; memcg_css;
 682	     memcg_css = memcg_css->parent) {
 683		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
 684		if (isw->new_wb)
 685			break;
 686	}
 687	if (unlikely(!isw->new_wb))
 688		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
 689
 690	nr = 0;
 691	spin_lock(&wb->list_lock);
 692	/*
 693	 * In addition to the inodes that have completed writeback, also switch
 694	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
 695	 * inodes won't be written back for a long time when lazytime is
 696	 * enabled, and thus pinning the dying cgwbs. It won't break the
 697	 * bandwidth restrictions, as writeback of inode metadata is not
 698	 * accounted for.
 699	 */
 700	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
 701	if (!restart)
 702		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
 703	spin_unlock(&wb->list_lock);
 704
 705	/* no attached inodes? bail out */
 706	if (nr == 0) {
 707		atomic_dec(&isw_nr_in_flight);
 708		wb_put(isw->new_wb);
 709		kfree(isw);
 710		return restart;
 711	}
 712
 713	/*
 714	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 715	 * the RCU protected stat update paths to grab the i_page
 716	 * lock so that stat transfer can synchronize against them.
 717	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 718	 */
 719	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
 720	queue_rcu_work(isw_wq, &isw->work);
 721
 722	return restart;
 723}
 724
 725/**
 726 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 727 * @wbc: writeback_control of interest
 728 * @inode: target inode
 729 *
 730 * @inode is locked and about to be written back under the control of @wbc.
 731 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 732 * writeback completion, wbc_detach_inode() should be called.  This is used
 733 * to track the cgroup writeback context.
 734 */
 735void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 736				 struct inode *inode)
 737{
 738	if (!inode_cgwb_enabled(inode)) {
 739		spin_unlock(&inode->i_lock);
 740		return;
 741	}
 742
 743	wbc->wb = inode_to_wb(inode);
 744	wbc->inode = inode;
 745
 746	wbc->wb_id = wbc->wb->memcg_css->id;
 747	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 748	wbc->wb_tcand_id = 0;
 749	wbc->wb_bytes = 0;
 750	wbc->wb_lcand_bytes = 0;
 751	wbc->wb_tcand_bytes = 0;
 752
 753	wb_get(wbc->wb);
 754	spin_unlock(&inode->i_lock);
 755
 756	/*
 757	 * A dying wb indicates that either the blkcg associated with the
 758	 * memcg changed or the associated memcg is dying.  In the first
 759	 * case, a replacement wb should already be available and we should
 760	 * refresh the wb immediately.  In the second case, trying to
 761	 * refresh will keep failing.
 762	 */
 763	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
 764		inode_switch_wbs(inode, wbc->wb_id);
 765}
 766EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
 767
 768/**
 769 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 770 * @wbc: writeback_control of the just finished writeback
 771 *
 772 * To be called after a writeback attempt of an inode finishes and undoes
 773 * wbc_attach_and_unlock_inode().  Can be called under any context.
 774 *
 775 * As concurrent write sharing of an inode is expected to be very rare and
 776 * memcg only tracks page ownership on first-use basis severely confining
 777 * the usefulness of such sharing, cgroup writeback tracks ownership
 778 * per-inode.  While the support for concurrent write sharing of an inode
 779 * is deemed unnecessary, an inode being written to by different cgroups at
 780 * different points in time is a lot more common, and, more importantly,
 781 * charging only by first-use can too readily lead to grossly incorrect
 782 * behaviors (single foreign page can lead to gigabytes of writeback to be
 783 * incorrectly attributed).
 784 *
 785 * To resolve this issue, cgroup writeback detects the majority dirtier of
 786 * an inode and transfers the ownership to it.  To avoid unnecessary
 787 * oscillation, the detection mechanism keeps track of history and gives
 788 * out the switch verdict only if the foreign usage pattern is stable over
 789 * a certain amount of time and/or writeback attempts.
 790 *
 791 * On each writeback attempt, @wbc tries to detect the majority writer
 792 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 793 * count from the majority voting, it also counts the bytes written for the
 794 * current wb and the last round's winner wb (max of last round's current
 795 * wb, the winner from two rounds ago, and the last round's majority
 796 * candidate).  Keeping track of the historical winner helps the algorithm
 797 * to semi-reliably detect the most active writer even when it's not the
 798 * absolute majority.
 799 *
 800 * Once the winner of the round is determined, whether the winner is
 801 * foreign or not and how much IO time the round consumed is recorded in
 802 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 803 * over a certain threshold, the switch verdict is given.
 804 */
 805void wbc_detach_inode(struct writeback_control *wbc)
 806{
 807	struct bdi_writeback *wb = wbc->wb;
 808	struct inode *inode = wbc->inode;
 809	unsigned long avg_time, max_bytes, max_time;
 810	u16 history;
 811	int max_id;
 812
 813	if (!wb)
 814		return;
 815
 816	history = inode->i_wb_frn_history;
 817	avg_time = inode->i_wb_frn_avg_time;
 818
 819	/* pick the winner of this round */
 820	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 821	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 822		max_id = wbc->wb_id;
 823		max_bytes = wbc->wb_bytes;
 824	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 825		max_id = wbc->wb_lcand_id;
 826		max_bytes = wbc->wb_lcand_bytes;
 827	} else {
 828		max_id = wbc->wb_tcand_id;
 829		max_bytes = wbc->wb_tcand_bytes;
 830	}
 831
 832	/*
 833	 * Calculate the amount of IO time the winner consumed and fold it
 834	 * into the running average kept per inode.  If the consumed IO
 835	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 836	 * deciding whether to switch or not.  This is to prevent one-off
 837	 * small dirtiers from skewing the verdict.
 838	 */
 839	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 840				wb->avg_write_bandwidth);
 841	if (avg_time)
 842		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 843			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 844	else
 845		avg_time = max_time;	/* immediate catch up on first run */
 846
 847	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 848		int slots;
 849
 850		/*
 851		 * The switch verdict is reached if foreign wb's consume
 852		 * more than a certain proportion of IO time in a
 853		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 854		 * history mask where each bit represents one sixteenth of
 855		 * the period.  Determine the number of slots to shift into
 856		 * history from @max_time.
 857		 */
 858		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 859			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 860		history <<= slots;
 861		if (wbc->wb_id != max_id)
 862			history |= (1U << slots) - 1;
 863
 864		if (history)
 865			trace_inode_foreign_history(inode, wbc, history);
 866
 867		/*
 868		 * Switch if the current wb isn't the consistent winner.
 869		 * If there are multiple closely competing dirtiers, the
 870		 * inode may switch across them repeatedly over time, which
 871		 * is okay.  The main goal is avoiding keeping an inode on
 872		 * the wrong wb for an extended period of time.
 873		 */
 874		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
 875			inode_switch_wbs(inode, max_id);
 876	}
 877
 878	/*
 879	 * Multiple instances of this function may race to update the
 880	 * following fields but we don't mind occassional inaccuracies.
 881	 */
 882	inode->i_wb_frn_winner = max_id;
 883	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 884	inode->i_wb_frn_history = history;
 885
 886	wb_put(wbc->wb);
 887	wbc->wb = NULL;
 888}
 889EXPORT_SYMBOL_GPL(wbc_detach_inode);
 890
 891/**
 892 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
 893 * @wbc: writeback_control of the writeback in progress
 894 * @page: page being written out
 895 * @bytes: number of bytes being written out
 896 *
 897 * @bytes from @page are about to written out during the writeback
 898 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 899 * wbc_detach_inode().
 900 */
 901void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
 902			      size_t bytes)
 903{
 904	struct folio *folio;
 905	struct cgroup_subsys_state *css;
 906	int id;
 907
 908	/*
 909	 * pageout() path doesn't attach @wbc to the inode being written
 910	 * out.  This is intentional as we don't want the function to block
 911	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 912	 * regular writeback instead of writing things out itself.
 913	 */
 914	if (!wbc->wb || wbc->no_cgroup_owner)
 915		return;
 916
 917	folio = page_folio(page);
 918	css = mem_cgroup_css_from_folio(folio);
 919	/* dead cgroups shouldn't contribute to inode ownership arbitration */
 920	if (!(css->flags & CSS_ONLINE))
 921		return;
 922
 923	id = css->id;
 924
 925	if (id == wbc->wb_id) {
 926		wbc->wb_bytes += bytes;
 927		return;
 928	}
 929
 930	if (id == wbc->wb_lcand_id)
 931		wbc->wb_lcand_bytes += bytes;
 932
 933	/* Boyer-Moore majority vote algorithm */
 934	if (!wbc->wb_tcand_bytes)
 935		wbc->wb_tcand_id = id;
 936	if (id == wbc->wb_tcand_id)
 937		wbc->wb_tcand_bytes += bytes;
 938	else
 939		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 940}
 941EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942
 943/**
 944 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 945 * @wb: target bdi_writeback to split @nr_pages to
 946 * @nr_pages: number of pages to write for the whole bdi
 947 *
 948 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 949 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 950 * @wb->bdi.
 951 */
 952static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 953{
 954	unsigned long this_bw = wb->avg_write_bandwidth;
 955	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 956
 957	if (nr_pages == LONG_MAX)
 958		return LONG_MAX;
 959
 960	/*
 961	 * This may be called on clean wb's and proportional distribution
 962	 * may not make sense, just use the original @nr_pages in those
 963	 * cases.  In general, we wanna err on the side of writing more.
 964	 */
 965	if (!tot_bw || this_bw >= tot_bw)
 966		return nr_pages;
 967	else
 968		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 969}
 970
 971/**
 972 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 973 * @bdi: target backing_dev_info
 974 * @base_work: wb_writeback_work to issue
 975 * @skip_if_busy: skip wb's which already have writeback in progress
 976 *
 977 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 978 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 979 * distributed to the busy wbs according to each wb's proportion in the
 980 * total active write bandwidth of @bdi.
 981 */
 982static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 983				  struct wb_writeback_work *base_work,
 984				  bool skip_if_busy)
 985{
 986	struct bdi_writeback *last_wb = NULL;
 987	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 988					      struct bdi_writeback, bdi_node);
 989
 990	might_sleep();
 991restart:
 992	rcu_read_lock();
 993	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 994		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
 995		struct wb_writeback_work fallback_work;
 996		struct wb_writeback_work *work;
 997		long nr_pages;
 998
 999		if (last_wb) {
1000			wb_put(last_wb);
1001			last_wb = NULL;
1002		}
1003
1004		/* SYNC_ALL writes out I_DIRTY_TIME too */
1005		if (!wb_has_dirty_io(wb) &&
1006		    (base_work->sync_mode == WB_SYNC_NONE ||
1007		     list_empty(&wb->b_dirty_time)))
1008			continue;
1009		if (skip_if_busy && writeback_in_progress(wb))
1010			continue;
1011
1012		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013
1014		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1015		if (work) {
1016			*work = *base_work;
1017			work->nr_pages = nr_pages;
1018			work->auto_free = 1;
1019			wb_queue_work(wb, work);
1020			continue;
1021		}
1022
1023		/*
1024		 * If wb_tryget fails, the wb has been shutdown, skip it.
1025		 *
1026		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1027		 * continuing iteration from @wb after dropping and
1028		 * regrabbing rcu read lock.
1029		 */
1030		if (!wb_tryget(wb))
1031			continue;
1032
1033		/* alloc failed, execute synchronously using on-stack fallback */
1034		work = &fallback_work;
1035		*work = *base_work;
1036		work->nr_pages = nr_pages;
1037		work->auto_free = 0;
1038		work->done = &fallback_work_done;
1039
1040		wb_queue_work(wb, work);
 
 
 
 
 
 
 
1041		last_wb = wb;
1042
1043		rcu_read_unlock();
1044		wb_wait_for_completion(&fallback_work_done);
1045		goto restart;
1046	}
1047	rcu_read_unlock();
1048
1049	if (last_wb)
1050		wb_put(last_wb);
1051}
1052
1053/**
1054 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1055 * @bdi_id: target bdi id
1056 * @memcg_id: target memcg css id
1057 * @reason: reason why some writeback work initiated
1058 * @done: target wb_completion
1059 *
1060 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1061 * with the specified parameters.
1062 */
1063int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1064			   enum wb_reason reason, struct wb_completion *done)
1065{
1066	struct backing_dev_info *bdi;
1067	struct cgroup_subsys_state *memcg_css;
1068	struct bdi_writeback *wb;
1069	struct wb_writeback_work *work;
1070	unsigned long dirty;
1071	int ret;
1072
1073	/* lookup bdi and memcg */
1074	bdi = bdi_get_by_id(bdi_id);
1075	if (!bdi)
1076		return -ENOENT;
1077
1078	rcu_read_lock();
1079	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1080	if (memcg_css && !css_tryget(memcg_css))
1081		memcg_css = NULL;
1082	rcu_read_unlock();
1083	if (!memcg_css) {
1084		ret = -ENOENT;
1085		goto out_bdi_put;
1086	}
1087
1088	/*
1089	 * And find the associated wb.  If the wb isn't there already
1090	 * there's nothing to flush, don't create one.
1091	 */
1092	wb = wb_get_lookup(bdi, memcg_css);
1093	if (!wb) {
1094		ret = -ENOENT;
1095		goto out_css_put;
1096	}
1097
1098	/*
1099	 * The caller is attempting to write out most of
1100	 * the currently dirty pages.  Let's take the current dirty page
1101	 * count and inflate it by 25% which should be large enough to
1102	 * flush out most dirty pages while avoiding getting livelocked by
1103	 * concurrent dirtiers.
1104	 *
1105	 * BTW the memcg stats are flushed periodically and this is best-effort
1106	 * estimation, so some potential error is ok.
1107	 */
1108	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1109	dirty = dirty * 10 / 8;
1110
1111	/* issue the writeback work */
1112	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1113	if (work) {
1114		work->nr_pages = dirty;
1115		work->sync_mode = WB_SYNC_NONE;
1116		work->range_cyclic = 1;
1117		work->reason = reason;
1118		work->done = done;
1119		work->auto_free = 1;
1120		wb_queue_work(wb, work);
1121		ret = 0;
1122	} else {
1123		ret = -ENOMEM;
1124	}
1125
1126	wb_put(wb);
1127out_css_put:
1128	css_put(memcg_css);
1129out_bdi_put:
1130	bdi_put(bdi);
1131	return ret;
1132}
1133
1134/**
1135 * cgroup_writeback_umount - flush inode wb switches for umount
1136 *
1137 * This function is called when a super_block is about to be destroyed and
1138 * flushes in-flight inode wb switches.  An inode wb switch goes through
1139 * RCU and then workqueue, so the two need to be flushed in order to ensure
1140 * that all previously scheduled switches are finished.  As wb switches are
1141 * rare occurrences and synchronize_rcu() can take a while, perform
1142 * flushing iff wb switches are in flight.
1143 */
1144void cgroup_writeback_umount(void)
1145{
1146	/*
1147	 * SB_ACTIVE should be reliably cleared before checking
1148	 * isw_nr_in_flight, see generic_shutdown_super().
1149	 */
1150	smp_mb();
1151
1152	if (atomic_read(&isw_nr_in_flight)) {
1153		/*
1154		 * Use rcu_barrier() to wait for all pending callbacks to
1155		 * ensure that all in-flight wb switches are in the workqueue.
1156		 */
1157		rcu_barrier();
1158		flush_workqueue(isw_wq);
1159	}
1160}
1161
1162static int __init cgroup_writeback_init(void)
1163{
1164	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1165	if (!isw_wq)
1166		return -ENOMEM;
1167	return 0;
1168}
1169fs_initcall(cgroup_writeback_init);
1170
1171#else	/* CONFIG_CGROUP_WRITEBACK */
1172
1173static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1174static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1175
1176static void inode_cgwb_move_to_attached(struct inode *inode,
1177					struct bdi_writeback *wb)
1178{
1179	assert_spin_locked(&wb->list_lock);
1180	assert_spin_locked(&inode->i_lock);
1181	WARN_ON_ONCE(inode->i_state & I_FREEING);
1182
1183	inode->i_state &= ~I_SYNC_QUEUED;
1184	list_del_init(&inode->i_io_list);
1185	wb_io_lists_depopulated(wb);
1186}
1187
1188static struct bdi_writeback *
1189locked_inode_to_wb_and_lock_list(struct inode *inode)
1190	__releases(&inode->i_lock)
1191	__acquires(&wb->list_lock)
1192{
1193	struct bdi_writeback *wb = inode_to_wb(inode);
1194
1195	spin_unlock(&inode->i_lock);
1196	spin_lock(&wb->list_lock);
1197	return wb;
1198}
1199
1200static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1201	__acquires(&wb->list_lock)
1202{
1203	struct bdi_writeback *wb = inode_to_wb(inode);
1204
1205	spin_lock(&wb->list_lock);
1206	return wb;
1207}
1208
1209static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1210{
1211	return nr_pages;
1212}
1213
1214static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1215				  struct wb_writeback_work *base_work,
1216				  bool skip_if_busy)
1217{
1218	might_sleep();
1219
1220	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1221		base_work->auto_free = 0;
1222		wb_queue_work(&bdi->wb, base_work);
1223	}
1224}
1225
1226#endif	/* CONFIG_CGROUP_WRITEBACK */
1227
1228/*
1229 * Add in the number of potentially dirty inodes, because each inode
1230 * write can dirty pagecache in the underlying blockdev.
1231 */
1232static unsigned long get_nr_dirty_pages(void)
1233{
1234	return global_node_page_state(NR_FILE_DIRTY) +
1235		get_nr_dirty_inodes();
1236}
1237
1238static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1239{
1240	if (!wb_has_dirty_io(wb))
1241		return;
1242
1243	/*
1244	 * All callers of this function want to start writeback of all
1245	 * dirty pages. Places like vmscan can call this at a very
1246	 * high frequency, causing pointless allocations of tons of
1247	 * work items and keeping the flusher threads busy retrieving
1248	 * that work. Ensure that we only allow one of them pending and
1249	 * inflight at the time.
1250	 */
1251	if (test_bit(WB_start_all, &wb->state) ||
1252	    test_and_set_bit(WB_start_all, &wb->state))
 
 
 
1253		return;
 
1254
1255	wb->start_all_reason = reason;
1256	wb_wakeup(wb);
 
 
 
 
 
1257}
1258
1259/**
1260 * wb_start_background_writeback - start background writeback
1261 * @wb: bdi_writback to write from
1262 *
1263 * Description:
1264 *   This makes sure WB_SYNC_NONE background writeback happens. When
1265 *   this function returns, it is only guaranteed that for given wb
1266 *   some IO is happening if we are over background dirty threshold.
1267 *   Caller need not hold sb s_umount semaphore.
1268 */
1269void wb_start_background_writeback(struct bdi_writeback *wb)
1270{
1271	/*
1272	 * We just wake up the flusher thread. It will perform background
1273	 * writeback as soon as there is no other work to do.
1274	 */
1275	trace_writeback_wake_background(wb);
1276	wb_wakeup(wb);
1277}
1278
1279/*
1280 * Remove the inode from the writeback list it is on.
1281 */
1282void inode_io_list_del(struct inode *inode)
1283{
1284	struct bdi_writeback *wb;
1285
1286	wb = inode_to_wb_and_lock_list(inode);
1287	spin_lock(&inode->i_lock);
1288
1289	inode->i_state &= ~I_SYNC_QUEUED;
1290	list_del_init(&inode->i_io_list);
1291	wb_io_lists_depopulated(wb);
1292
1293	spin_unlock(&inode->i_lock);
1294	spin_unlock(&wb->list_lock);
1295}
1296EXPORT_SYMBOL(inode_io_list_del);
1297
1298/*
1299 * mark an inode as under writeback on the sb
1300 */
1301void sb_mark_inode_writeback(struct inode *inode)
1302{
1303	struct super_block *sb = inode->i_sb;
1304	unsigned long flags;
1305
1306	if (list_empty(&inode->i_wb_list)) {
1307		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1308		if (list_empty(&inode->i_wb_list)) {
1309			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1310			trace_sb_mark_inode_writeback(inode);
1311		}
1312		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1313	}
1314}
1315
1316/*
1317 * clear an inode as under writeback on the sb
1318 */
1319void sb_clear_inode_writeback(struct inode *inode)
1320{
1321	struct super_block *sb = inode->i_sb;
1322	unsigned long flags;
1323
1324	if (!list_empty(&inode->i_wb_list)) {
1325		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1326		if (!list_empty(&inode->i_wb_list)) {
1327			list_del_init(&inode->i_wb_list);
1328			trace_sb_clear_inode_writeback(inode);
1329		}
1330		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1331	}
1332}
1333
1334/*
1335 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1336 * furthest end of its superblock's dirty-inode list.
1337 *
1338 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1339 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1340 * the case then the inode must have been redirtied while it was being written
1341 * out and we don't reset its dirtied_when.
1342 */
1343static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1344{
1345	assert_spin_locked(&inode->i_lock);
1346
1347	inode->i_state &= ~I_SYNC_QUEUED;
1348	/*
1349	 * When the inode is being freed just don't bother with dirty list
1350	 * tracking. Flush worker will ignore this inode anyway and it will
1351	 * trigger assertions in inode_io_list_move_locked().
1352	 */
1353	if (inode->i_state & I_FREEING) {
1354		list_del_init(&inode->i_io_list);
1355		wb_io_lists_depopulated(wb);
1356		return;
1357	}
1358	if (!list_empty(&wb->b_dirty)) {
1359		struct inode *tail;
1360
1361		tail = wb_inode(wb->b_dirty.next);
1362		if (time_before(inode->dirtied_when, tail->dirtied_when))
1363			inode->dirtied_when = jiffies;
1364	}
1365	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1366}
1367
1368static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1369{
1370	spin_lock(&inode->i_lock);
1371	redirty_tail_locked(inode, wb);
1372	spin_unlock(&inode->i_lock);
1373}
1374
1375/*
1376 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1377 */
1378static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1379{
1380	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1381}
1382
1383static void inode_sync_complete(struct inode *inode)
1384{
1385	inode->i_state &= ~I_SYNC;
1386	/* If inode is clean an unused, put it into LRU now... */
1387	inode_add_lru(inode);
1388	/* Waiters must see I_SYNC cleared before being woken up */
1389	smp_mb();
1390	wake_up_bit(&inode->i_state, __I_SYNC);
1391}
1392
1393static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1394{
1395	bool ret = time_after(inode->dirtied_when, t);
1396#ifndef CONFIG_64BIT
1397	/*
1398	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1399	 * It _appears_ to be in the future, but is actually in distant past.
1400	 * This test is necessary to prevent such wrapped-around relative times
1401	 * from permanently stopping the whole bdi writeback.
1402	 */
1403	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1404#endif
1405	return ret;
1406}
1407
 
 
1408/*
1409 * Move expired (dirtied before dirtied_before) dirty inodes from
1410 * @delaying_queue to @dispatch_queue.
1411 */
1412static int move_expired_inodes(struct list_head *delaying_queue,
1413			       struct list_head *dispatch_queue,
1414			       unsigned long dirtied_before)
 
1415{
 
 
1416	LIST_HEAD(tmp);
1417	struct list_head *pos, *node;
1418	struct super_block *sb = NULL;
1419	struct inode *inode;
1420	int do_sb_sort = 0;
1421	int moved = 0;
1422
 
 
 
 
 
 
1423	while (!list_empty(delaying_queue)) {
1424		inode = wb_inode(delaying_queue->prev);
1425		if (inode_dirtied_after(inode, dirtied_before))
 
1426			break;
1427		spin_lock(&inode->i_lock);
1428		list_move(&inode->i_io_list, &tmp);
1429		moved++;
1430		inode->i_state |= I_SYNC_QUEUED;
1431		spin_unlock(&inode->i_lock);
1432		if (sb_is_blkdev_sb(inode->i_sb))
1433			continue;
1434		if (sb && sb != inode->i_sb)
1435			do_sb_sort = 1;
1436		sb = inode->i_sb;
1437	}
1438
1439	/* just one sb in list, splice to dispatch_queue and we're done */
1440	if (!do_sb_sort) {
1441		list_splice(&tmp, dispatch_queue);
1442		goto out;
1443	}
1444
1445	/*
1446	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1447	 * we don't take inode->i_lock here because it is just a pointless overhead.
1448	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1449	 * fully under our control.
1450	 */
1451	while (!list_empty(&tmp)) {
1452		sb = wb_inode(tmp.prev)->i_sb;
1453		list_for_each_prev_safe(pos, node, &tmp) {
1454			inode = wb_inode(pos);
1455			if (inode->i_sb == sb)
1456				list_move(&inode->i_io_list, dispatch_queue);
1457		}
1458	}
1459out:
1460	return moved;
1461}
1462
1463/*
1464 * Queue all expired dirty inodes for io, eldest first.
1465 * Before
1466 *         newly dirtied     b_dirty    b_io    b_more_io
1467 *         =============>    gf         edc     BA
1468 * After
1469 *         newly dirtied     b_dirty    b_io    b_more_io
1470 *         =============>    g          fBAedc
1471 *                                           |
1472 *                                           +--> dequeue for IO
1473 */
1474static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1475		     unsigned long dirtied_before)
1476{
1477	int moved;
1478	unsigned long time_expire_jif = dirtied_before;
1479
1480	assert_spin_locked(&wb->list_lock);
1481	list_splice_init(&wb->b_more_io, &wb->b_io);
1482	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1483	if (!work->for_sync)
1484		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1485	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1486				     time_expire_jif);
1487	if (moved)
1488		wb_io_lists_populated(wb);
1489	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1490}
1491
1492static int write_inode(struct inode *inode, struct writeback_control *wbc)
1493{
1494	int ret;
1495
1496	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1497		trace_writeback_write_inode_start(inode, wbc);
1498		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1499		trace_writeback_write_inode(inode, wbc);
1500		return ret;
1501	}
1502	return 0;
1503}
1504
1505/*
1506 * Wait for writeback on an inode to complete. Called with i_lock held.
1507 * Caller must make sure inode cannot go away when we drop i_lock.
1508 */
1509static void __inode_wait_for_writeback(struct inode *inode)
1510	__releases(inode->i_lock)
1511	__acquires(inode->i_lock)
1512{
1513	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1514	wait_queue_head_t *wqh;
1515
1516	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1517	while (inode->i_state & I_SYNC) {
1518		spin_unlock(&inode->i_lock);
1519		__wait_on_bit(wqh, &wq, bit_wait,
1520			      TASK_UNINTERRUPTIBLE);
1521		spin_lock(&inode->i_lock);
1522	}
1523}
1524
1525/*
1526 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1527 */
1528void inode_wait_for_writeback(struct inode *inode)
1529{
1530	spin_lock(&inode->i_lock);
1531	__inode_wait_for_writeback(inode);
1532	spin_unlock(&inode->i_lock);
1533}
1534
1535/*
1536 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1537 * held and drops it. It is aimed for callers not holding any inode reference
1538 * so once i_lock is dropped, inode can go away.
1539 */
1540static void inode_sleep_on_writeback(struct inode *inode)
1541	__releases(inode->i_lock)
1542{
1543	DEFINE_WAIT(wait);
1544	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1545	int sleep;
1546
1547	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1548	sleep = inode->i_state & I_SYNC;
1549	spin_unlock(&inode->i_lock);
1550	if (sleep)
1551		schedule();
1552	finish_wait(wqh, &wait);
1553}
1554
1555/*
1556 * Find proper writeback list for the inode depending on its current state and
1557 * possibly also change of its state while we were doing writeback.  Here we
1558 * handle things such as livelock prevention or fairness of writeback among
1559 * inodes. This function can be called only by flusher thread - noone else
1560 * processes all inodes in writeback lists and requeueing inodes behind flusher
1561 * thread's back can have unexpected consequences.
1562 */
1563static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1564			  struct writeback_control *wbc)
1565{
1566	if (inode->i_state & I_FREEING)
1567		return;
1568
1569	/*
1570	 * Sync livelock prevention. Each inode is tagged and synced in one
1571	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1572	 * the dirty time to prevent enqueue and sync it again.
1573	 */
1574	if ((inode->i_state & I_DIRTY) &&
1575	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1576		inode->dirtied_when = jiffies;
1577
1578	if (wbc->pages_skipped) {
1579		/*
1580		 * Writeback is not making progress due to locked buffers.
1581		 * Skip this inode for now. Although having skipped pages
1582		 * is odd for clean inodes, it can happen for some
1583		 * filesystems so handle that gracefully.
1584		 */
1585		if (inode->i_state & I_DIRTY_ALL)
1586			redirty_tail_locked(inode, wb);
1587		else
1588			inode_cgwb_move_to_attached(inode, wb);
1589		return;
1590	}
1591
1592	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1593		/*
1594		 * We didn't write back all the pages.  nfs_writepages()
1595		 * sometimes bales out without doing anything.
1596		 */
1597		if (wbc->nr_to_write <= 0) {
1598			/* Slice used up. Queue for next turn. */
1599			requeue_io(inode, wb);
1600		} else {
1601			/*
1602			 * Writeback blocked by something other than
1603			 * congestion. Delay the inode for some time to
1604			 * avoid spinning on the CPU (100% iowait)
1605			 * retrying writeback of the dirty page/inode
1606			 * that cannot be performed immediately.
1607			 */
1608			redirty_tail_locked(inode, wb);
1609		}
1610	} else if (inode->i_state & I_DIRTY) {
1611		/*
1612		 * Filesystems can dirty the inode during writeback operations,
1613		 * such as delayed allocation during submission or metadata
1614		 * updates after data IO completion.
1615		 */
1616		redirty_tail_locked(inode, wb);
1617	} else if (inode->i_state & I_DIRTY_TIME) {
1618		inode->dirtied_when = jiffies;
1619		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1620		inode->i_state &= ~I_SYNC_QUEUED;
1621	} else {
1622		/* The inode is clean. Remove from writeback lists. */
1623		inode_cgwb_move_to_attached(inode, wb);
1624	}
1625}
1626
1627/*
1628 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1629 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1630 *
1631 * This doesn't remove the inode from the writeback list it is on, except
1632 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1633 * expiration.  The caller is otherwise responsible for writeback list handling.
1634 *
1635 * The caller is also responsible for setting the I_SYNC flag beforehand and
1636 * calling inode_sync_complete() to clear it afterwards.
1637 */
1638static int
1639__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1640{
1641	struct address_space *mapping = inode->i_mapping;
1642	long nr_to_write = wbc->nr_to_write;
1643	unsigned dirty;
1644	int ret;
1645
1646	WARN_ON(!(inode->i_state & I_SYNC));
1647
1648	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1649
1650	ret = do_writepages(mapping, wbc);
1651
1652	/*
1653	 * Make sure to wait on the data before writing out the metadata.
1654	 * This is important for filesystems that modify metadata on data
1655	 * I/O completion. We don't do it for sync(2) writeback because it has a
1656	 * separate, external IO completion path and ->sync_fs for guaranteeing
1657	 * inode metadata is written back correctly.
1658	 */
1659	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1660		int err = filemap_fdatawait(mapping);
1661		if (ret == 0)
1662			ret = err;
1663	}
1664
1665	/*
1666	 * If the inode has dirty timestamps and we need to write them, call
1667	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1668	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1669	 */
1670	if ((inode->i_state & I_DIRTY_TIME) &&
1671	    (wbc->sync_mode == WB_SYNC_ALL ||
1672	     time_after(jiffies, inode->dirtied_time_when +
1673			dirtytime_expire_interval * HZ))) {
1674		trace_writeback_lazytime(inode);
1675		mark_inode_dirty_sync(inode);
1676	}
1677
1678	/*
1679	 * Get and clear the dirty flags from i_state.  This needs to be done
1680	 * after calling writepages because some filesystems may redirty the
1681	 * inode during writepages due to delalloc.  It also needs to be done
1682	 * after handling timestamp expiration, as that may dirty the inode too.
1683	 */
1684	spin_lock(&inode->i_lock);
 
1685	dirty = inode->i_state & I_DIRTY;
 
 
 
 
 
 
 
 
 
 
 
 
1686	inode->i_state &= ~dirty;
1687
1688	/*
1689	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1690	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1691	 * either they see the I_DIRTY bits cleared or we see the dirtied
1692	 * inode.
1693	 *
1694	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1695	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1696	 * necessary.  This guarantees that either __mark_inode_dirty()
1697	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1698	 */
1699	smp_mb();
1700
1701	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1702		inode->i_state |= I_DIRTY_PAGES;
1703	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1704		if (!(inode->i_state & I_DIRTY_PAGES)) {
1705			inode->i_state &= ~I_PINNING_NETFS_WB;
1706			wbc->unpinned_netfs_wb = true;
1707			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1708		}
1709	}
1710
1711	spin_unlock(&inode->i_lock);
1712
 
 
1713	/* Don't write the inode if only I_DIRTY_PAGES was set */
1714	if (dirty & ~I_DIRTY_PAGES) {
1715		int err = write_inode(inode, wbc);
1716		if (ret == 0)
1717			ret = err;
1718	}
1719	wbc->unpinned_netfs_wb = false;
1720	trace_writeback_single_inode(inode, wbc, nr_to_write);
1721	return ret;
1722}
1723
1724/*
1725 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1726 * the regular batched writeback done by the flusher threads in
1727 * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1728 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1729 *
1730 * To prevent the inode from going away, either the caller must have a reference
1731 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
 
1732 */
1733static int writeback_single_inode(struct inode *inode,
1734				  struct writeback_control *wbc)
1735{
1736	struct bdi_writeback *wb;
1737	int ret = 0;
1738
1739	spin_lock(&inode->i_lock);
1740	if (!atomic_read(&inode->i_count))
1741		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1742	else
1743		WARN_ON(inode->i_state & I_WILL_FREE);
1744
1745	if (inode->i_state & I_SYNC) {
 
 
1746		/*
1747		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1748		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1749		 * must wait for the existing writeback to complete, then do
1750		 * writeback again if there's anything left.
1751		 */
1752		if (wbc->sync_mode != WB_SYNC_ALL)
1753			goto out;
1754		__inode_wait_for_writeback(inode);
1755	}
1756	WARN_ON(inode->i_state & I_SYNC);
1757	/*
1758	 * If the inode is already fully clean, then there's nothing to do.
1759	 *
1760	 * For data-integrity syncs we also need to check whether any pages are
1761	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1762	 * there are any such pages, we'll need to wait for them.
 
1763	 */
1764	if (!(inode->i_state & I_DIRTY_ALL) &&
1765	    (wbc->sync_mode != WB_SYNC_ALL ||
1766	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1767		goto out;
1768	inode->i_state |= I_SYNC;
1769	wbc_attach_and_unlock_inode(wbc, inode);
1770
1771	ret = __writeback_single_inode(inode, wbc);
1772
1773	wbc_detach_inode(wbc);
1774
1775	wb = inode_to_wb_and_lock_list(inode);
1776	spin_lock(&inode->i_lock);
1777	/*
1778	 * If the inode is freeing, its i_io_list shoudn't be updated
1779	 * as it can be finally deleted at this moment.
1780	 */
1781	if (!(inode->i_state & I_FREEING)) {
1782		/*
1783		 * If the inode is now fully clean, then it can be safely
1784		 * removed from its writeback list (if any). Otherwise the
1785		 * flusher threads are responsible for the writeback lists.
1786		 */
1787		if (!(inode->i_state & I_DIRTY_ALL))
1788			inode_cgwb_move_to_attached(inode, wb);
1789		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1790			if ((inode->i_state & I_DIRTY))
1791				redirty_tail_locked(inode, wb);
1792			else if (inode->i_state & I_DIRTY_TIME) {
1793				inode->dirtied_when = jiffies;
1794				inode_io_list_move_locked(inode,
1795							  wb,
1796							  &wb->b_dirty_time);
1797			}
1798		}
1799	}
1800
1801	spin_unlock(&wb->list_lock);
1802	inode_sync_complete(inode);
1803out:
1804	spin_unlock(&inode->i_lock);
1805	return ret;
1806}
1807
1808static long writeback_chunk_size(struct bdi_writeback *wb,
1809				 struct wb_writeback_work *work)
1810{
1811	long pages;
1812
1813	/*
1814	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1815	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1816	 * here avoids calling into writeback_inodes_wb() more than once.
1817	 *
1818	 * The intended call sequence for WB_SYNC_ALL writeback is:
1819	 *
1820	 *      wb_writeback()
1821	 *          writeback_sb_inodes()       <== called only once
1822	 *              write_cache_pages()     <== called once for each inode
1823	 *                   (quickly) tag currently dirty pages
1824	 *                   (maybe slowly) sync all tagged pages
1825	 */
1826	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1827		pages = LONG_MAX;
1828	else {
1829		pages = min(wb->avg_write_bandwidth / 2,
1830			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1831		pages = min(pages, work->nr_pages);
1832		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1833				   MIN_WRITEBACK_PAGES);
1834	}
1835
1836	return pages;
1837}
1838
1839/*
1840 * Write a portion of b_io inodes which belong to @sb.
1841 *
1842 * Return the number of pages and/or inodes written.
1843 *
1844 * NOTE! This is called with wb->list_lock held, and will
1845 * unlock and relock that for each inode it ends up doing
1846 * IO for.
1847 */
1848static long writeback_sb_inodes(struct super_block *sb,
1849				struct bdi_writeback *wb,
1850				struct wb_writeback_work *work)
1851{
1852	struct writeback_control wbc = {
1853		.sync_mode		= work->sync_mode,
1854		.tagged_writepages	= work->tagged_writepages,
1855		.for_kupdate		= work->for_kupdate,
1856		.for_background		= work->for_background,
1857		.for_sync		= work->for_sync,
1858		.range_cyclic		= work->range_cyclic,
1859		.range_start		= 0,
1860		.range_end		= LLONG_MAX,
1861	};
1862	unsigned long start_time = jiffies;
1863	long write_chunk;
1864	long total_wrote = 0;  /* count both pages and inodes */
1865
1866	while (!list_empty(&wb->b_io)) {
1867		struct inode *inode = wb_inode(wb->b_io.prev);
1868		struct bdi_writeback *tmp_wb;
1869		long wrote;
1870
1871		if (inode->i_sb != sb) {
1872			if (work->sb) {
1873				/*
1874				 * We only want to write back data for this
1875				 * superblock, move all inodes not belonging
1876				 * to it back onto the dirty list.
1877				 */
1878				redirty_tail(inode, wb);
1879				continue;
1880			}
1881
1882			/*
1883			 * The inode belongs to a different superblock.
1884			 * Bounce back to the caller to unpin this and
1885			 * pin the next superblock.
1886			 */
1887			break;
1888		}
1889
1890		/*
1891		 * Don't bother with new inodes or inodes being freed, first
1892		 * kind does not need periodic writeout yet, and for the latter
1893		 * kind writeout is handled by the freer.
1894		 */
1895		spin_lock(&inode->i_lock);
1896		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1897			redirty_tail_locked(inode, wb);
1898			spin_unlock(&inode->i_lock);
 
1899			continue;
1900		}
1901		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1902			/*
1903			 * If this inode is locked for writeback and we are not
1904			 * doing writeback-for-data-integrity, move it to
1905			 * b_more_io so that writeback can proceed with the
1906			 * other inodes on s_io.
1907			 *
1908			 * We'll have another go at writing back this inode
1909			 * when we completed a full scan of b_io.
1910			 */
 
1911			requeue_io(inode, wb);
1912			spin_unlock(&inode->i_lock);
1913			trace_writeback_sb_inodes_requeue(inode);
1914			continue;
1915		}
1916		spin_unlock(&wb->list_lock);
1917
1918		/*
1919		 * We already requeued the inode if it had I_SYNC set and we
1920		 * are doing WB_SYNC_NONE writeback. So this catches only the
1921		 * WB_SYNC_ALL case.
1922		 */
1923		if (inode->i_state & I_SYNC) {
1924			/* Wait for I_SYNC. This function drops i_lock... */
1925			inode_sleep_on_writeback(inode);
1926			/* Inode may be gone, start again */
1927			spin_lock(&wb->list_lock);
1928			continue;
1929		}
1930		inode->i_state |= I_SYNC;
1931		wbc_attach_and_unlock_inode(&wbc, inode);
1932
1933		write_chunk = writeback_chunk_size(wb, work);
1934		wbc.nr_to_write = write_chunk;
1935		wbc.pages_skipped = 0;
1936
1937		/*
1938		 * We use I_SYNC to pin the inode in memory. While it is set
1939		 * evict_inode() will wait so the inode cannot be freed.
1940		 */
1941		__writeback_single_inode(inode, &wbc);
1942
1943		wbc_detach_inode(&wbc);
1944		work->nr_pages -= write_chunk - wbc.nr_to_write;
1945		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1946		wrote = wrote < 0 ? 0 : wrote;
1947		total_wrote += wrote;
1948
1949		if (need_resched()) {
1950			/*
1951			 * We're trying to balance between building up a nice
1952			 * long list of IOs to improve our merge rate, and
1953			 * getting those IOs out quickly for anyone throttling
1954			 * in balance_dirty_pages().  cond_resched() doesn't
1955			 * unplug, so get our IOs out the door before we
1956			 * give up the CPU.
1957			 */
1958			blk_flush_plug(current->plug, false);
1959			cond_resched();
1960		}
1961
1962		/*
1963		 * Requeue @inode if still dirty.  Be careful as @inode may
1964		 * have been switched to another wb in the meantime.
1965		 */
1966		tmp_wb = inode_to_wb_and_lock_list(inode);
1967		spin_lock(&inode->i_lock);
1968		if (!(inode->i_state & I_DIRTY_ALL))
1969			total_wrote++;
1970		requeue_inode(inode, tmp_wb, &wbc);
1971		inode_sync_complete(inode);
1972		spin_unlock(&inode->i_lock);
1973
1974		if (unlikely(tmp_wb != wb)) {
1975			spin_unlock(&tmp_wb->list_lock);
1976			spin_lock(&wb->list_lock);
1977		}
1978
1979		/*
1980		 * bail out to wb_writeback() often enough to check
1981		 * background threshold and other termination conditions.
1982		 */
1983		if (total_wrote) {
1984			if (time_is_before_jiffies(start_time + HZ / 10UL))
1985				break;
1986			if (work->nr_pages <= 0)
1987				break;
1988		}
1989	}
1990	return total_wrote;
1991}
1992
1993static long __writeback_inodes_wb(struct bdi_writeback *wb,
1994				  struct wb_writeback_work *work)
1995{
1996	unsigned long start_time = jiffies;
1997	long wrote = 0;
1998
1999	while (!list_empty(&wb->b_io)) {
2000		struct inode *inode = wb_inode(wb->b_io.prev);
2001		struct super_block *sb = inode->i_sb;
2002
2003		if (!super_trylock_shared(sb)) {
2004			/*
2005			 * super_trylock_shared() may fail consistently due to
2006			 * s_umount being grabbed by someone else. Don't use
2007			 * requeue_io() to avoid busy retrying the inode/sb.
2008			 */
2009			redirty_tail(inode, wb);
2010			continue;
2011		}
2012		wrote += writeback_sb_inodes(sb, wb, work);
2013		up_read(&sb->s_umount);
2014
2015		/* refer to the same tests at the end of writeback_sb_inodes */
2016		if (wrote) {
2017			if (time_is_before_jiffies(start_time + HZ / 10UL))
2018				break;
2019			if (work->nr_pages <= 0)
2020				break;
2021		}
2022	}
2023	/* Leave any unwritten inodes on b_io */
2024	return wrote;
2025}
2026
2027static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2028				enum wb_reason reason)
2029{
2030	struct wb_writeback_work work = {
2031		.nr_pages	= nr_pages,
2032		.sync_mode	= WB_SYNC_NONE,
2033		.range_cyclic	= 1,
2034		.reason		= reason,
2035	};
2036	struct blk_plug plug;
2037
2038	blk_start_plug(&plug);
2039	spin_lock(&wb->list_lock);
2040	if (list_empty(&wb->b_io))
2041		queue_io(wb, &work, jiffies);
2042	__writeback_inodes_wb(wb, &work);
2043	spin_unlock(&wb->list_lock);
2044	blk_finish_plug(&plug);
2045
2046	return nr_pages - work.nr_pages;
2047}
2048
2049/*
2050 * Explicit flushing or periodic writeback of "old" data.
2051 *
2052 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2053 * dirtying-time in the inode's address_space.  So this periodic writeback code
2054 * just walks the superblock inode list, writing back any inodes which are
2055 * older than a specific point in time.
2056 *
2057 * Try to run once per dirty_writeback_interval.  But if a writeback event
2058 * takes longer than a dirty_writeback_interval interval, then leave a
2059 * one-second gap.
2060 *
2061 * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2062 * all dirty pages if they are all attached to "old" mappings.
2063 */
2064static long wb_writeback(struct bdi_writeback *wb,
2065			 struct wb_writeback_work *work)
2066{
 
2067	long nr_pages = work->nr_pages;
2068	unsigned long dirtied_before = jiffies;
2069	struct inode *inode;
2070	long progress;
2071	struct blk_plug plug;
2072
 
 
 
2073	blk_start_plug(&plug);
 
2074	for (;;) {
2075		/*
2076		 * Stop writeback when nr_pages has been consumed
2077		 */
2078		if (work->nr_pages <= 0)
2079			break;
2080
2081		/*
2082		 * Background writeout and kupdate-style writeback may
2083		 * run forever. Stop them if there is other work to do
2084		 * so that e.g. sync can proceed. They'll be restarted
2085		 * after the other works are all done.
2086		 */
2087		if ((work->for_background || work->for_kupdate) &&
2088		    !list_empty(&wb->work_list))
2089			break;
2090
2091		/*
2092		 * For background writeout, stop when we are below the
2093		 * background dirty threshold
2094		 */
2095		if (work->for_background && !wb_over_bg_thresh(wb))
2096			break;
2097
2098
2099		spin_lock(&wb->list_lock);
2100
2101		/*
2102		 * Kupdate and background works are special and we want to
2103		 * include all inodes that need writing. Livelock avoidance is
2104		 * handled by these works yielding to any other work so we are
2105		 * safe.
2106		 */
2107		if (work->for_kupdate) {
2108			dirtied_before = jiffies -
2109				msecs_to_jiffies(dirty_expire_interval * 10);
2110		} else if (work->for_background)
2111			dirtied_before = jiffies;
2112
2113		trace_writeback_start(wb, work);
2114		if (list_empty(&wb->b_io))
2115			queue_io(wb, work, dirtied_before);
2116		if (work->sb)
2117			progress = writeback_sb_inodes(work->sb, wb, work);
2118		else
2119			progress = __writeback_inodes_wb(wb, work);
2120		trace_writeback_written(wb, work);
2121
 
 
2122		/*
2123		 * Did we write something? Try for more
2124		 *
2125		 * Dirty inodes are moved to b_io for writeback in batches.
2126		 * The completion of the current batch does not necessarily
2127		 * mean the overall work is done. So we keep looping as long
2128		 * as made some progress on cleaning pages or inodes.
2129		 */
2130		if (progress) {
2131			spin_unlock(&wb->list_lock);
2132			continue;
2133		}
2134
2135		/*
2136		 * No more inodes for IO, bail
2137		 */
2138		if (list_empty(&wb->b_more_io)) {
2139			spin_unlock(&wb->list_lock);
2140			break;
2141		}
2142
2143		/*
2144		 * Nothing written. Wait for some inode to
2145		 * become available for writeback. Otherwise
2146		 * we'll just busyloop.
2147		 */
2148		trace_writeback_wait(wb, work);
2149		inode = wb_inode(wb->b_more_io.prev);
2150		spin_lock(&inode->i_lock);
2151		spin_unlock(&wb->list_lock);
2152		/* This function drops i_lock... */
2153		inode_sleep_on_writeback(inode);
 
2154	}
 
2155	blk_finish_plug(&plug);
2156
2157	return nr_pages - work->nr_pages;
2158}
2159
2160/*
2161 * Return the next wb_writeback_work struct that hasn't been processed yet.
2162 */
2163static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2164{
2165	struct wb_writeback_work *work = NULL;
2166
2167	spin_lock_irq(&wb->work_lock);
2168	if (!list_empty(&wb->work_list)) {
2169		work = list_entry(wb->work_list.next,
2170				  struct wb_writeback_work, list);
2171		list_del_init(&work->list);
2172	}
2173	spin_unlock_irq(&wb->work_lock);
2174	return work;
2175}
2176
 
 
 
 
 
 
 
 
 
 
 
2177static long wb_check_background_flush(struct bdi_writeback *wb)
2178{
2179	if (wb_over_bg_thresh(wb)) {
2180
2181		struct wb_writeback_work work = {
2182			.nr_pages	= LONG_MAX,
2183			.sync_mode	= WB_SYNC_NONE,
2184			.for_background	= 1,
2185			.range_cyclic	= 1,
2186			.reason		= WB_REASON_BACKGROUND,
2187		};
2188
2189		return wb_writeback(wb, &work);
2190	}
2191
2192	return 0;
2193}
2194
2195static long wb_check_old_data_flush(struct bdi_writeback *wb)
2196{
2197	unsigned long expired;
2198	long nr_pages;
2199
2200	/*
2201	 * When set to zero, disable periodic writeback
2202	 */
2203	if (!dirty_writeback_interval)
2204		return 0;
2205
2206	expired = wb->last_old_flush +
2207			msecs_to_jiffies(dirty_writeback_interval * 10);
2208	if (time_before(jiffies, expired))
2209		return 0;
2210
2211	wb->last_old_flush = jiffies;
2212	nr_pages = get_nr_dirty_pages();
2213
2214	if (nr_pages) {
2215		struct wb_writeback_work work = {
2216			.nr_pages	= nr_pages,
2217			.sync_mode	= WB_SYNC_NONE,
2218			.for_kupdate	= 1,
2219			.range_cyclic	= 1,
2220			.reason		= WB_REASON_PERIODIC,
2221		};
2222
2223		return wb_writeback(wb, &work);
2224	}
2225
2226	return 0;
2227}
2228
2229static long wb_check_start_all(struct bdi_writeback *wb)
2230{
2231	long nr_pages;
2232
2233	if (!test_bit(WB_start_all, &wb->state))
2234		return 0;
2235
2236	nr_pages = get_nr_dirty_pages();
2237	if (nr_pages) {
2238		struct wb_writeback_work work = {
2239			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2240			.sync_mode	= WB_SYNC_NONE,
2241			.range_cyclic	= 1,
2242			.reason		= wb->start_all_reason,
2243		};
2244
2245		nr_pages = wb_writeback(wb, &work);
2246	}
2247
2248	clear_bit(WB_start_all, &wb->state);
2249	return nr_pages;
2250}
2251
2252
2253/*
2254 * Retrieve work items and do the writeback they describe
2255 */
2256static long wb_do_writeback(struct bdi_writeback *wb)
2257{
2258	struct wb_writeback_work *work;
2259	long wrote = 0;
2260
2261	set_bit(WB_writeback_running, &wb->state);
2262	while ((work = get_next_work_item(wb)) != NULL) {
 
 
2263		trace_writeback_exec(wb, work);
 
2264		wrote += wb_writeback(wb, work);
2265		finish_writeback_work(wb, work);
 
 
 
 
2266	}
2267
2268	/*
2269	 * Check for a flush-everything request
2270	 */
2271	wrote += wb_check_start_all(wb);
2272
2273	/*
2274	 * Check for periodic writeback, kupdated() style
2275	 */
2276	wrote += wb_check_old_data_flush(wb);
2277	wrote += wb_check_background_flush(wb);
2278	clear_bit(WB_writeback_running, &wb->state);
2279
2280	return wrote;
2281}
2282
2283/*
2284 * Handle writeback of dirty data for the device backed by this bdi. Also
2285 * reschedules periodically and does kupdated style flushing.
2286 */
2287void wb_workfn(struct work_struct *work)
2288{
2289	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2290						struct bdi_writeback, dwork);
2291	long pages_written;
2292
2293	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
 
2294
2295	if (likely(!current_is_workqueue_rescuer() ||
2296		   !test_bit(WB_registered, &wb->state))) {
2297		/*
2298		 * The normal path.  Keep writing back @wb until its
2299		 * work_list is empty.  Note that this path is also taken
2300		 * if @wb is shutting down even when we're running off the
2301		 * rescuer as work_list needs to be drained.
2302		 */
2303		do {
2304			pages_written = wb_do_writeback(wb);
2305			trace_writeback_pages_written(pages_written);
2306		} while (!list_empty(&wb->work_list));
2307	} else {
2308		/*
2309		 * bdi_wq can't get enough workers and we're running off
2310		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2311		 * enough for efficient IO.
2312		 */
2313		pages_written = writeback_inodes_wb(wb, 1024,
2314						    WB_REASON_FORKER_THREAD);
2315		trace_writeback_pages_written(pages_written);
2316	}
2317
2318	if (!list_empty(&wb->work_list))
2319		wb_wakeup(wb);
2320	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2321		wb_wakeup_delayed(wb);
2322}
2323
2324/*
2325 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2326 * write back the whole world.
2327 */
2328static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2329					 enum wb_reason reason)
2330{
2331	struct bdi_writeback *wb;
2332
2333	if (!bdi_has_dirty_io(bdi))
2334		return;
2335
2336	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2337		wb_start_writeback(wb, reason);
2338}
2339
2340void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2341				enum wb_reason reason)
2342{
2343	rcu_read_lock();
2344	__wakeup_flusher_threads_bdi(bdi, reason);
2345	rcu_read_unlock();
2346}
2347
2348/*
2349 * Wakeup the flusher threads to start writeback of all currently dirty pages
 
2350 */
2351void wakeup_flusher_threads(enum wb_reason reason)
2352{
2353	struct backing_dev_info *bdi;
2354
2355	/*
2356	 * If we are expecting writeback progress we must submit plugged IO.
2357	 */
2358	blk_flush_plug(current->plug, true);
 
 
 
 
2359
2360	rcu_read_lock();
2361	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2362		__wakeup_flusher_threads_bdi(bdi, reason);
 
 
 
 
 
 
 
 
2363	rcu_read_unlock();
2364}
2365
2366/*
2367 * Wake up bdi's periodically to make sure dirtytime inodes gets
2368 * written back periodically.  We deliberately do *not* check the
2369 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2370 * kernel to be constantly waking up once there are any dirtytime
2371 * inodes on the system.  So instead we define a separate delayed work
2372 * function which gets called much more rarely.  (By default, only
2373 * once every 12 hours.)
2374 *
2375 * If there is any other write activity going on in the file system,
2376 * this function won't be necessary.  But if the only thing that has
2377 * happened on the file system is a dirtytime inode caused by an atime
2378 * update, we need this infrastructure below to make sure that inode
2379 * eventually gets pushed out to disk.
2380 */
2381static void wakeup_dirtytime_writeback(struct work_struct *w);
2382static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2383
2384static void wakeup_dirtytime_writeback(struct work_struct *w)
2385{
2386	struct backing_dev_info *bdi;
2387
2388	rcu_read_lock();
2389	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2390		struct bdi_writeback *wb;
2391
2392		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2393			if (!list_empty(&wb->b_dirty_time))
2394				wb_wakeup(wb);
2395	}
2396	rcu_read_unlock();
2397	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2398}
2399
2400static int __init start_dirtytime_writeback(void)
2401{
2402	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2403	return 0;
2404}
2405__initcall(start_dirtytime_writeback);
2406
2407int dirtytime_interval_handler(struct ctl_table *table, int write,
2408			       void *buffer, size_t *lenp, loff_t *ppos)
2409{
2410	int ret;
2411
2412	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2413	if (ret == 0 && write)
2414		mod_delayed_work(system_wq, &dirtytime_work, 0);
2415	return ret;
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418/**
2419 * __mark_inode_dirty -	internal function to mark an inode dirty
 
 
 
 
2420 *
2421 * @inode: inode to mark
2422 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2423 *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2424 *	   with I_DIRTY_PAGES.
2425 *
2426 * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2427 * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
 
 
2428 *
2429 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2430 * instead of calling this directly.
2431 *
2432 * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2433 * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2434 * even if they are later hashed, as they will have been marked dirty already.
2435 *
2436 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2437 *
2438 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2439 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2440 * the kernel-internal blockdev inode represents the dirtying time of the
2441 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2442 * page->mapping->host, so the page-dirtying time is recorded in the internal
2443 * blockdev inode.
2444 */
2445void __mark_inode_dirty(struct inode *inode, int flags)
2446{
 
2447	struct super_block *sb = inode->i_sb;
2448	int dirtytime = 0;
2449	struct bdi_writeback *wb = NULL;
2450
2451	trace_writeback_mark_inode_dirty(inode, flags);
2452
2453	if (flags & I_DIRTY_INODE) {
2454		/*
2455		 * Inode timestamp update will piggback on this dirtying.
2456		 * We tell ->dirty_inode callback that timestamps need to
2457		 * be updated by setting I_DIRTY_TIME in flags.
2458		 */
2459		if (inode->i_state & I_DIRTY_TIME) {
2460			spin_lock(&inode->i_lock);
2461			if (inode->i_state & I_DIRTY_TIME) {
2462				inode->i_state &= ~I_DIRTY_TIME;
2463				flags |= I_DIRTY_TIME;
2464			}
2465			spin_unlock(&inode->i_lock);
2466		}
2467
2468		/*
2469		 * Notify the filesystem about the inode being dirtied, so that
2470		 * (if needed) it can update on-disk fields and journal the
2471		 * inode.  This is only needed when the inode itself is being
2472		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2473		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2474		 */
2475		trace_writeback_dirty_inode_start(inode, flags);
2476		if (sb->s_op->dirty_inode)
2477			sb->s_op->dirty_inode(inode,
2478				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2479		trace_writeback_dirty_inode(inode, flags);
2480
2481		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2482		flags &= ~I_DIRTY_TIME;
2483	} else {
2484		/*
2485		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2486		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2487		 * in one call to __mark_inode_dirty().)
2488		 */
2489		dirtytime = flags & I_DIRTY_TIME;
2490		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2491	}
2492
2493	/*
2494	 * Paired with smp_mb() in __writeback_single_inode() for the
2495	 * following lockless i_state test.  See there for details.
2496	 */
2497	smp_mb();
2498
2499	if ((inode->i_state & flags) == flags)
 
2500		return;
2501
 
 
 
2502	spin_lock(&inode->i_lock);
 
 
2503	if ((inode->i_state & flags) != flags) {
2504		const int was_dirty = inode->i_state & I_DIRTY;
2505
2506		inode_attach_wb(inode, NULL);
2507
 
 
2508		inode->i_state |= flags;
2509
2510		/*
2511		 * Grab inode's wb early because it requires dropping i_lock and we
2512		 * need to make sure following checks happen atomically with dirty
2513		 * list handling so that we don't move inodes under flush worker's
2514		 * hands.
2515		 */
2516		if (!was_dirty) {
2517			wb = locked_inode_to_wb_and_lock_list(inode);
2518			spin_lock(&inode->i_lock);
2519		}
2520
2521		/*
2522		 * If the inode is queued for writeback by flush worker, just
2523		 * update its dirty state. Once the flush worker is done with
2524		 * the inode it will place it on the appropriate superblock
2525		 * list, based upon its state.
2526		 */
2527		if (inode->i_state & I_SYNC_QUEUED)
2528			goto out_unlock;
2529
2530		/*
2531		 * Only add valid (hashed) inodes to the superblock's
2532		 * dirty list.  Add blockdev inodes as well.
2533		 */
2534		if (!S_ISBLK(inode->i_mode)) {
2535			if (inode_unhashed(inode))
2536				goto out_unlock;
2537		}
2538		if (inode->i_state & I_FREEING)
2539			goto out_unlock;
2540
2541		/*
2542		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2543		 * reposition it (that would break b_dirty time-ordering).
2544		 */
2545		if (!was_dirty) {
 
2546			struct list_head *dirty_list;
2547			bool wakeup_bdi = false;
2548
 
 
 
 
 
 
2549			inode->dirtied_when = jiffies;
2550			if (dirtytime)
2551				inode->dirtied_time_when = jiffies;
2552
2553			if (inode->i_state & I_DIRTY)
2554				dirty_list = &wb->b_dirty;
2555			else
2556				dirty_list = &wb->b_dirty_time;
2557
2558			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2559							       dirty_list);
2560
2561			spin_unlock(&wb->list_lock);
2562			spin_unlock(&inode->i_lock);
2563			trace_writeback_dirty_inode_enqueue(inode);
2564
2565			/*
2566			 * If this is the first dirty inode for this bdi,
2567			 * we have to wake-up the corresponding bdi thread
2568			 * to make sure background write-back happens
2569			 * later.
2570			 */
2571			if (wakeup_bdi &&
2572			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2573				wb_wakeup_delayed(wb);
2574			return;
2575		}
2576	}
2577out_unlock:
2578	if (wb)
2579		spin_unlock(&wb->list_lock);
2580	spin_unlock(&inode->i_lock);
 
 
2581}
2582EXPORT_SYMBOL(__mark_inode_dirty);
2583
2584/*
2585 * The @s_sync_lock is used to serialise concurrent sync operations
2586 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2587 * Concurrent callers will block on the s_sync_lock rather than doing contending
2588 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2589 * has been issued up to the time this function is enter is guaranteed to be
2590 * completed by the time we have gained the lock and waited for all IO that is
2591 * in progress regardless of the order callers are granted the lock.
2592 */
2593static void wait_sb_inodes(struct super_block *sb)
2594{
2595	LIST_HEAD(sync_list);
2596
2597	/*
2598	 * We need to be protected against the filesystem going from
2599	 * r/o to r/w or vice versa.
2600	 */
2601	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2602
2603	mutex_lock(&sb->s_sync_lock);
2604
2605	/*
2606	 * Splice the writeback list onto a temporary list to avoid waiting on
2607	 * inodes that have started writeback after this point.
2608	 *
2609	 * Use rcu_read_lock() to keep the inodes around until we have a
2610	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2611	 * the local list because inodes can be dropped from either by writeback
2612	 * completion.
2613	 */
2614	rcu_read_lock();
2615	spin_lock_irq(&sb->s_inode_wblist_lock);
2616	list_splice_init(&sb->s_inodes_wb, &sync_list);
2617
2618	/*
2619	 * Data integrity sync. Must wait for all pages under writeback, because
2620	 * there may have been pages dirtied before our sync call, but which had
2621	 * writeout started before we write it out.  In which case, the inode
2622	 * may not be on the dirty list, but we still have to wait for that
2623	 * writeout.
2624	 */
2625	while (!list_empty(&sync_list)) {
2626		struct inode *inode = list_first_entry(&sync_list, struct inode,
2627						       i_wb_list);
2628		struct address_space *mapping = inode->i_mapping;
2629
2630		/*
2631		 * Move each inode back to the wb list before we drop the lock
2632		 * to preserve consistency between i_wb_list and the mapping
2633		 * writeback tag. Writeback completion is responsible to remove
2634		 * the inode from either list once the writeback tag is cleared.
2635		 */
2636		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2637
2638		/*
2639		 * The mapping can appear untagged while still on-list since we
2640		 * do not have the mapping lock. Skip it here, wb completion
2641		 * will remove it.
2642		 */
2643		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2644			continue;
2645
2646		spin_unlock_irq(&sb->s_inode_wblist_lock);
2647
2648		spin_lock(&inode->i_lock);
2649		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2650			spin_unlock(&inode->i_lock);
2651
2652			spin_lock_irq(&sb->s_inode_wblist_lock);
2653			continue;
2654		}
2655		__iget(inode);
2656		spin_unlock(&inode->i_lock);
2657		rcu_read_unlock();
2658
2659		/*
2660		 * We keep the error status of individual mapping so that
2661		 * applications can catch the writeback error using fsync(2).
2662		 * See filemap_fdatawait_keep_errors() for details.
2663		 */
2664		filemap_fdatawait_keep_errors(mapping);
2665
2666		cond_resched();
2667
2668		iput(inode);
2669
2670		rcu_read_lock();
2671		spin_lock_irq(&sb->s_inode_wblist_lock);
2672	}
2673	spin_unlock_irq(&sb->s_inode_wblist_lock);
2674	rcu_read_unlock();
2675	mutex_unlock(&sb->s_sync_lock);
2676}
2677
2678static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2679				     enum wb_reason reason, bool skip_if_busy)
2680{
2681	struct backing_dev_info *bdi = sb->s_bdi;
2682	DEFINE_WB_COMPLETION(done, bdi);
2683	struct wb_writeback_work work = {
2684		.sb			= sb,
2685		.sync_mode		= WB_SYNC_NONE,
2686		.tagged_writepages	= 1,
2687		.done			= &done,
2688		.nr_pages		= nr,
2689		.reason			= reason,
2690	};
 
2691
2692	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2693		return;
2694	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2695
2696	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2697	wb_wait_for_completion(&done);
2698}
2699
2700/**
2701 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2702 * @sb: the superblock
2703 * @nr: the number of pages to write
2704 * @reason: reason why some writeback work initiated
2705 *
2706 * Start writeback on some inodes on this super_block. No guarantees are made
2707 * on how many (if any) will be written, and this function does not wait
2708 * for IO completion of submitted IO.
2709 */
2710void writeback_inodes_sb_nr(struct super_block *sb,
2711			    unsigned long nr,
2712			    enum wb_reason reason)
2713{
2714	__writeback_inodes_sb_nr(sb, nr, reason, false);
2715}
2716EXPORT_SYMBOL(writeback_inodes_sb_nr);
2717
2718/**
2719 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2720 * @sb: the superblock
2721 * @reason: reason why some writeback work was initiated
2722 *
2723 * Start writeback on some inodes on this super_block. No guarantees are made
2724 * on how many (if any) will be written, and this function does not wait
2725 * for IO completion of submitted IO.
2726 */
2727void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2728{
2729	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2730}
2731EXPORT_SYMBOL(writeback_inodes_sb);
2732
2733/**
2734 * try_to_writeback_inodes_sb - try to start writeback if none underway
2735 * @sb: the superblock
2736 * @reason: reason why some writeback work was initiated
 
2737 *
2738 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
 
2739 */
2740void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
 
2741{
2742	if (!down_read_trylock(&sb->s_umount))
2743		return;
2744
2745	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2746	up_read(&sb->s_umount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747}
2748EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2749
2750/**
2751 * sync_inodes_sb	-	sync sb inode pages
2752 * @sb: the superblock
2753 *
2754 * This function writes and waits on any dirty inode belonging to this
2755 * super_block.
2756 */
2757void sync_inodes_sb(struct super_block *sb)
2758{
2759	struct backing_dev_info *bdi = sb->s_bdi;
2760	DEFINE_WB_COMPLETION(done, bdi);
2761	struct wb_writeback_work work = {
2762		.sb		= sb,
2763		.sync_mode	= WB_SYNC_ALL,
2764		.nr_pages	= LONG_MAX,
2765		.range_cyclic	= 0,
2766		.done		= &done,
2767		.reason		= WB_REASON_SYNC,
2768		.for_sync	= 1,
2769	};
 
2770
2771	/*
2772	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2773	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2774	 * bdi_has_dirty() need to be written out too.
2775	 */
2776	if (bdi == &noop_backing_dev_info)
2777		return;
2778	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2779
2780	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2781	bdi_down_write_wb_switch_rwsem(bdi);
2782	bdi_split_work_to_wbs(bdi, &work, false);
2783	wb_wait_for_completion(&done);
2784	bdi_up_write_wb_switch_rwsem(bdi);
2785
2786	wait_sb_inodes(sb);
2787}
2788EXPORT_SYMBOL(sync_inodes_sb);
2789
2790/**
2791 * write_inode_now	-	write an inode to disk
2792 * @inode: inode to write to disk
2793 * @sync: whether the write should be synchronous or not
2794 *
2795 * This function commits an inode to disk immediately if it is dirty. This is
2796 * primarily needed by knfsd.
2797 *
2798 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2799 */
2800int write_inode_now(struct inode *inode, int sync)
2801{
2802	struct writeback_control wbc = {
2803		.nr_to_write = LONG_MAX,
2804		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2805		.range_start = 0,
2806		.range_end = LLONG_MAX,
2807	};
2808
2809	if (!mapping_can_writeback(inode->i_mapping))
2810		wbc.nr_to_write = 0;
2811
2812	might_sleep();
2813	return writeback_single_inode(inode, &wbc);
2814}
2815EXPORT_SYMBOL(write_inode_now);
2816
2817/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818 * sync_inode_metadata - write an inode to disk
2819 * @inode: the inode to sync
2820 * @wait: wait for I/O to complete.
2821 *
2822 * Write an inode to disk and adjust its dirty state after completion.
2823 *
2824 * Note: only writes the actual inode, no associated data or other metadata.
2825 */
2826int sync_inode_metadata(struct inode *inode, int wait)
2827{
2828	struct writeback_control wbc = {
2829		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2830		.nr_to_write = 0, /* metadata-only */
2831	};
2832
2833	return writeback_single_inode(inode, &wbc);
2834}
2835EXPORT_SYMBOL(sync_inode_metadata);