Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 
 
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 
 
 
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 
 
 
 
 
 
 
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 181	spin_lock_bh(&wb->work_lock);
 182	if (!test_bit(WB_registered, &wb->state))
 183		goto out_unlock;
 184	if (work->done)
 185		atomic_inc(&work->done->cnt);
 186	list_add_tail(&work->list, &wb->work_list);
 187	mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 189	spin_unlock_bh(&wb->work_lock);
 
 
 
 
 
 
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204				   struct wb_completion *done)
 205{
 206	atomic_dec(&done->cnt);		/* put down the initial count */
 207	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 217
 218#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220					/* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 222					/* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224					/* one round can affect upto 5 slots */
 
 
 
 
 
 
 
 
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231	struct backing_dev_info *bdi = inode_to_bdi(inode);
 232	struct bdi_writeback *wb = NULL;
 233
 234	if (inode_cgwb_enabled(inode)) {
 235		struct cgroup_subsys_state *memcg_css;
 236
 237		if (page) {
 238			memcg_css = mem_cgroup_css_from_page(page);
 239			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240		} else {
 241			/* must pin memcg_css, see wb_get_create() */
 242			memcg_css = task_get_css(current, memory_cgrp_id);
 243			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244			css_put(memcg_css);
 245		}
 246	}
 247
 248	if (!wb)
 249		wb = &bdi->wb;
 250
 251	/*
 252	 * There may be multiple instances of this function racing to
 253	 * update the same inode.  Use cmpxchg() to tell the winner.
 254	 */
 255	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256		wb_put(wb);
 257}
 258
 259/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269	__releases(&inode->i_lock)
 270	__acquires(&wb->list_lock)
 271{
 272	while (true) {
 273		struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275		/*
 276		 * inode_to_wb() association is protected by both
 277		 * @inode->i_lock and @wb->list_lock but list_lock nests
 278		 * outside i_lock.  Drop i_lock and verify that the
 279		 * association hasn't changed after acquiring list_lock.
 280		 */
 281		wb_get(wb);
 282		spin_unlock(&inode->i_lock);
 283		spin_lock(&wb->list_lock);
 284
 285		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 286		if (likely(wb == inode->i_wb)) {
 287			wb_put(wb);	/* @inode already has ref */
 288			return wb;
 289		}
 290
 291		spin_unlock(&wb->list_lock);
 292		wb_put(wb);
 293		cpu_relax();
 294		spin_lock(&inode->i_lock);
 295	}
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306	__acquires(&wb->list_lock)
 307{
 308	spin_lock(&inode->i_lock);
 309	return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313	struct inode		*inode;
 314	struct bdi_writeback	*new_wb;
 315
 316	struct rcu_head		rcu_head;
 317	struct work_struct	work;
 
 
 
 
 
 
 
 
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 321{
 322	struct inode_switch_wbs_context *isw =
 323		container_of(work, struct inode_switch_wbs_context, work);
 324	struct inode *inode = isw->inode;
 325	struct address_space *mapping = inode->i_mapping;
 326	struct bdi_writeback *old_wb = inode->i_wb;
 327	struct bdi_writeback *new_wb = isw->new_wb;
 328	struct radix_tree_iter iter;
 329	bool switched = false;
 330	void **slot;
 331
 332	/*
 333	 * By the time control reaches here, RCU grace period has passed
 334	 * since I_WB_SWITCH assertion and all wb stat update transactions
 335	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336	 * synchronizing against mapping->tree_lock.
 337	 *
 338	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339	 * gives us exclusion against all wb related operations on @inode
 340	 * including IO list manipulations and stat updates.
 341	 */
 342	if (old_wb < new_wb) {
 343		spin_lock(&old_wb->list_lock);
 344		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345	} else {
 346		spin_lock(&new_wb->list_lock);
 347		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348	}
 349	spin_lock(&inode->i_lock);
 350	spin_lock_irq(&mapping->tree_lock);
 351
 352	/*
 353	 * Once I_FREEING is visible under i_lock, the eviction path owns
 354	 * the inode and we shouldn't modify ->i_io_list.
 355	 */
 356	if (unlikely(inode->i_state & I_FREEING))
 357		goto skip_switch;
 358
 
 
 359	/*
 360	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362	 * pages actually under underwriteback.
 363	 */
 364	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365				   PAGECACHE_TAG_DIRTY) {
 366		struct page *page = radix_tree_deref_slot_protected(slot,
 367							&mapping->tree_lock);
 368		if (likely(page) && PageDirty(page)) {
 369			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371		}
 372	}
 373
 374	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375				   PAGECACHE_TAG_WRITEBACK) {
 376		struct page *page = radix_tree_deref_slot_protected(slot,
 377							&mapping->tree_lock);
 378		if (likely(page)) {
 379			WARN_ON_ONCE(!PageWriteback(page));
 380			__dec_wb_stat(old_wb, WB_WRITEBACK);
 381			__inc_wb_stat(new_wb, WB_WRITEBACK);
 382		}
 
 
 383	}
 384
 385	wb_get(new_wb);
 386
 387	/*
 388	 * Transfer to @new_wb's IO list if necessary.  The specific list
 389	 * @inode was on is ignored and the inode is put on ->b_dirty which
 390	 * is always correct including from ->b_dirty_time.  The transfer
 391	 * preserves @inode->dirtied_when ordering.
 
 
 392	 */
 393	if (!list_empty(&inode->i_io_list)) {
 394		struct inode *pos;
 395
 396		inode_io_list_del_locked(inode, old_wb);
 397		inode->i_wb = new_wb;
 398		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399			if (time_after_eq(inode->dirtied_when,
 400					  pos->dirtied_when))
 401				break;
 402		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 
 
 
 
 
 
 
 
 403	} else {
 404		inode->i_wb = new_wb;
 405	}
 406
 407	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408	inode->i_wb_frn_winner = 0;
 409	inode->i_wb_frn_avg_time = 0;
 410	inode->i_wb_frn_history = 0;
 411	switched = true;
 412skip_switch:
 413	/*
 414	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416	 */
 417	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419	spin_unlock_irq(&mapping->tree_lock);
 420	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421	spin_unlock(&new_wb->list_lock);
 422	spin_unlock(&old_wb->list_lock);
 423
 424	if (switched) {
 
 
 425		wb_wakeup(new_wb);
 426		wb_put(old_wb);
 427	}
 428	wb_put(new_wb);
 429
 430	iput(inode);
 
 
 431	kfree(isw);
 432
 433	atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 
 437{
 438	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439				struct inode_switch_wbs_context, rcu_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	/* needs to grab bh-unsafe locks, bounce to work item */
 442	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443	queue_work(isw_wq, &isw->work);
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456	struct backing_dev_info *bdi = inode_to_bdi(inode);
 457	struct cgroup_subsys_state *memcg_css;
 458	struct inode_switch_wbs_context *isw;
 459
 460	/* noop if seems to be already in progress */
 461	if (inode->i_state & I_WB_SWITCH)
 462		return;
 463
 464	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 
 
 
 
 465	if (!isw)
 466		return;
 467
 
 
 468	/* find and pin the new wb */
 469	rcu_read_lock();
 470	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471	if (memcg_css)
 472		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473	rcu_read_unlock();
 474	if (!isw->new_wb)
 475		goto out_free;
 476
 477	/* while holding I_WB_SWITCH, no one else can update the association */
 478	spin_lock(&inode->i_lock);
 479	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481	    inode_to_wb(inode) == isw->new_wb) {
 482		spin_unlock(&inode->i_lock);
 483		goto out_free;
 484	}
 485	inode->i_state |= I_WB_SWITCH;
 486	__iget(inode);
 487	spin_unlock(&inode->i_lock);
 488
 489	isw->inode = inode;
 
 490
 491	atomic_inc(&isw_nr_in_flight);
 492
 493	/*
 494	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495	 * the RCU protected stat update paths to grab the mapping's
 496	 * tree_lock so that stat transfer can synchronize against them.
 497	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498	 */
 499	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 
 500	return;
 501
 502out_free:
 
 503	if (isw->new_wb)
 504		wb_put(isw->new_wb);
 505	kfree(isw);
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519				 struct inode *inode)
 
 520{
 521	if (!inode_cgwb_enabled(inode)) {
 522		spin_unlock(&inode->i_lock);
 523		return;
 524	}
 525
 526	wbc->wb = inode_to_wb(inode);
 527	wbc->inode = inode;
 528
 529	wbc->wb_id = wbc->wb->memcg_css->id;
 530	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531	wbc->wb_tcand_id = 0;
 532	wbc->wb_bytes = 0;
 533	wbc->wb_lcand_bytes = 0;
 534	wbc->wb_tcand_bytes = 0;
 535
 536	wb_get(wbc->wb);
 537	spin_unlock(&inode->i_lock);
 538
 539	/*
 540	 * A dying wb indicates that the memcg-blkcg mapping has changed
 541	 * and a new wb is already serving the memcg.  Switch immediately.
 
 
 
 542	 */
 543	if (unlikely(wb_dying(wbc->wb)))
 544		inode_switch_wbs(inode, wbc->wb_id);
 545}
 546
 547/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586	struct bdi_writeback *wb = wbc->wb;
 587	struct inode *inode = wbc->inode;
 588	unsigned long avg_time, max_bytes, max_time;
 589	u16 history;
 590	int max_id;
 591
 592	if (!wb)
 593		return;
 594
 595	history = inode->i_wb_frn_history;
 596	avg_time = inode->i_wb_frn_avg_time;
 597
 598	/* pick the winner of this round */
 599	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601		max_id = wbc->wb_id;
 602		max_bytes = wbc->wb_bytes;
 603	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604		max_id = wbc->wb_lcand_id;
 605		max_bytes = wbc->wb_lcand_bytes;
 606	} else {
 607		max_id = wbc->wb_tcand_id;
 608		max_bytes = wbc->wb_tcand_bytes;
 609	}
 610
 611	/*
 612	 * Calculate the amount of IO time the winner consumed and fold it
 613	 * into the running average kept per inode.  If the consumed IO
 614	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615	 * deciding whether to switch or not.  This is to prevent one-off
 616	 * small dirtiers from skewing the verdict.
 617	 */
 618	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619				wb->avg_write_bandwidth);
 620	if (avg_time)
 621		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623	else
 624		avg_time = max_time;	/* immediate catch up on first run */
 625
 626	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627		int slots;
 628
 629		/*
 630		 * The switch verdict is reached if foreign wb's consume
 631		 * more than a certain proportion of IO time in a
 632		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633		 * history mask where each bit represents one sixteenth of
 634		 * the period.  Determine the number of slots to shift into
 635		 * history from @max_time.
 636		 */
 637		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639		history <<= slots;
 640		if (wbc->wb_id != max_id)
 641			history |= (1U << slots) - 1;
 642
 
 
 
 643		/*
 644		 * Switch if the current wb isn't the consistent winner.
 645		 * If there are multiple closely competing dirtiers, the
 646		 * inode may switch across them repeatedly over time, which
 647		 * is okay.  The main goal is avoiding keeping an inode on
 648		 * the wrong wb for an extended period of time.
 649		 */
 650		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651			inode_switch_wbs(inode, max_id);
 652	}
 653
 654	/*
 655	 * Multiple instances of this function may race to update the
 656	 * following fields but we don't mind occassional inaccuracies.
 657	 */
 658	inode->i_wb_frn_winner = max_id;
 659	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660	inode->i_wb_frn_history = history;
 661
 662	wb_put(wbc->wb);
 663	wbc->wb = NULL;
 664}
 
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677		    size_t bytes)
 678{
 
 679	int id;
 680
 681	/*
 682	 * pageout() path doesn't attach @wbc to the inode being written
 683	 * out.  This is intentional as we don't want the function to block
 684	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685	 * regular writeback instead of writing things out itself.
 686	 */
 687	if (!wbc->wb)
 
 
 
 
 
 688		return;
 689
 690	id = mem_cgroup_css_from_page(page)->id;
 691
 692	if (id == wbc->wb_id) {
 693		wbc->wb_bytes += bytes;
 694		return;
 695	}
 696
 697	if (id == wbc->wb_lcand_id)
 698		wbc->wb_lcand_bytes += bytes;
 699
 700	/* Boyer-Moore majority vote algorithm */
 701	if (!wbc->wb_tcand_bytes)
 702		wbc->wb_tcand_id = id;
 703	if (id == wbc->wb_tcand_id)
 704		wbc->wb_tcand_bytes += bytes;
 705	else
 706		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728	/*
 729	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 730	 * Start transaction iff ->i_wb is visible.
 731	 */
 732	if (inode && inode_to_wb_is_valid(inode)) {
 733		struct bdi_writeback *wb;
 734		bool locked, congested;
 735
 736		wb = unlocked_inode_to_wb_begin(inode, &locked);
 737		congested = wb_congested(wb, cong_bits);
 738		unlocked_inode_to_wb_end(inode, locked);
 739		return congested;
 740	}
 741
 742	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757	unsigned long this_bw = wb->avg_write_bandwidth;
 758	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760	if (nr_pages == LONG_MAX)
 761		return LONG_MAX;
 762
 763	/*
 764	 * This may be called on clean wb's and proportional distribution
 765	 * may not make sense, just use the original @nr_pages in those
 766	 * cases.  In general, we wanna err on the side of writing more.
 767	 */
 768	if (!tot_bw || this_bw >= tot_bw)
 769		return nr_pages;
 770	else
 771		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786				  struct wb_writeback_work *base_work,
 787				  bool skip_if_busy)
 788{
 789	struct bdi_writeback *last_wb = NULL;
 790	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791					      struct bdi_writeback, bdi_node);
 792
 793	might_sleep();
 794restart:
 795	rcu_read_lock();
 796	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798		struct wb_writeback_work fallback_work;
 799		struct wb_writeback_work *work;
 800		long nr_pages;
 801
 802		if (last_wb) {
 803			wb_put(last_wb);
 804			last_wb = NULL;
 805		}
 806
 807		/* SYNC_ALL writes out I_DIRTY_TIME too */
 808		if (!wb_has_dirty_io(wb) &&
 809		    (base_work->sync_mode == WB_SYNC_NONE ||
 810		     list_empty(&wb->b_dirty_time)))
 811			continue;
 812		if (skip_if_busy && writeback_in_progress(wb))
 813			continue;
 814
 815		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818		if (work) {
 819			*work = *base_work;
 820			work->nr_pages = nr_pages;
 821			work->auto_free = 1;
 822			wb_queue_work(wb, work);
 823			continue;
 824		}
 825
 
 
 
 
 
 
 
 
 
 
 826		/* alloc failed, execute synchronously using on-stack fallback */
 827		work = &fallback_work;
 828		*work = *base_work;
 829		work->nr_pages = nr_pages;
 830		work->auto_free = 0;
 831		work->done = &fallback_work_done;
 832
 833		wb_queue_work(wb, work);
 834
 835		/*
 836		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837		 * continuing iteration from @wb after dropping and
 838		 * regrabbing rcu read lock.
 839		 */
 840		wb_get(wb);
 841		last_wb = wb;
 842
 843		rcu_read_unlock();
 844		wb_wait_for_completion(bdi, &fallback_work_done);
 845		goto restart;
 846	}
 847	rcu_read_unlock();
 848
 849	if (last_wb)
 850		wb_put(last_wb);
 851}
 852
 853/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 
 
 
 
 
 
 
 
 
 
 865	if (atomic_read(&isw_nr_in_flight)) {
 866		synchronize_rcu();
 
 
 
 
 867		flush_workqueue(isw_wq);
 868	}
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874	if (!isw_wq)
 875		return -ENOMEM;
 876	return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else	/* CONFIG_CGROUP_WRITEBACK */
 881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884	__releases(&inode->i_lock)
 885	__acquires(&wb->list_lock)
 886{
 887	struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889	spin_unlock(&inode->i_lock);
 890	spin_lock(&wb->list_lock);
 891	return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895	__acquires(&wb->list_lock)
 896{
 897	struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899	spin_lock(&wb->list_lock);
 900	return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905	return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909				  struct wb_writeback_work *base_work,
 910				  bool skip_if_busy)
 911{
 912	might_sleep();
 913
 914	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915		base_work->auto_free = 0;
 916		wb_queue_work(&bdi->wb, base_work);
 917	}
 918}
 919
 
 
 
 
 
 
 
 920#endif	/* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923			bool range_cyclic, enum wb_reason reason)
 
 
 
 924{
 925	struct wb_writeback_work *work;
 
 
 926
 
 
 927	if (!wb_has_dirty_io(wb))
 928		return;
 929
 930	/*
 931	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 932	 * wakeup the thread for old dirty data writeback
 
 
 
 
 933	 */
 934	work = kzalloc(sizeof(*work),
 935		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936	if (!work) {
 937		trace_writeback_nowork(wb);
 938		wb_wakeup(wb);
 939		return;
 940	}
 941
 942	work->sync_mode	= WB_SYNC_NONE;
 943	work->nr_pages	= nr_pages;
 944	work->range_cyclic = range_cyclic;
 945	work->reason	= reason;
 946	work->auto_free	= 1;
 947
 948	wb_queue_work(wb, work);
 
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963	/*
 964	 * We just wake up the flusher thread. It will perform background
 965	 * writeback as soon as there is no other work to do.
 966	 */
 967	trace_writeback_wake_background(wb);
 968	wb_wakeup(wb);
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976	struct bdi_writeback *wb;
 977
 978	wb = inode_to_wb_and_lock_list(inode);
 979	inode_io_list_del_locked(inode, wb);
 
 
 
 
 
 
 980	spin_unlock(&wb->list_lock);
 981}
 
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988	struct super_block *sb = inode->i_sb;
 989	unsigned long flags;
 990
 991	if (list_empty(&inode->i_wb_list)) {
 992		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993		if (list_empty(&inode->i_wb_list)) {
 994			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995			trace_sb_mark_inode_writeback(inode);
 996		}
 997		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998	}
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (!list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (!list_empty(&inode->i_wb_list)) {
1012			list_del_init(&inode->i_wb_list);
1013			trace_sb_clear_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
 
 
 
 
 
 
 
 
 
 
 
 
 
1030	if (!list_empty(&wb->b_dirty)) {
1031		struct inode *tail;
1032
1033		tail = wb_inode(wb->b_dirty.next);
1034		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035			inode->dirtied_when = jiffies;
1036	}
1037	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
 
 
 
 
 
 
 
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
 
 
1050	inode->i_state &= ~I_SYNC;
1051	/* If inode is clean an unused, put it into LRU now... */
1052	inode_add_lru(inode);
1053	/* Waiters must see I_SYNC cleared before being woken up */
1054	smp_mb();
1055	wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060	bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062	/*
1063	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064	 * It _appears_ to be in the future, but is actually in distant past.
1065	 * This test is necessary to prevent such wrapped-around relative times
1066	 * from permanently stopping the whole bdi writeback.
1067	 */
1068	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070	return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080			       struct list_head *dispatch_queue,
1081			       int flags,
1082			       struct wb_writeback_work *work)
1083{
1084	unsigned long *older_than_this = NULL;
1085	unsigned long expire_time;
1086	LIST_HEAD(tmp);
1087	struct list_head *pos, *node;
1088	struct super_block *sb = NULL;
1089	struct inode *inode;
1090	int do_sb_sort = 0;
1091	int moved = 0;
1092
1093	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094		older_than_this = work->older_than_this;
1095	else if (!work->for_sync) {
1096		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097		older_than_this = &expire_time;
1098	}
1099	while (!list_empty(delaying_queue)) {
1100		inode = wb_inode(delaying_queue->prev);
1101		if (older_than_this &&
1102		    inode_dirtied_after(inode, *older_than_this))
1103			break;
 
1104		list_move(&inode->i_io_list, &tmp);
1105		moved++;
1106		if (flags & EXPIRE_DIRTY_ATIME)
1107			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108		if (sb_is_blkdev_sb(inode->i_sb))
1109			continue;
1110		if (sb && sb != inode->i_sb)
1111			do_sb_sort = 1;
1112		sb = inode->i_sb;
1113	}
1114
1115	/* just one sb in list, splice to dispatch_queue and we're done */
1116	if (!do_sb_sort) {
1117		list_splice(&tmp, dispatch_queue);
1118		goto out;
1119	}
1120
1121	/* Move inodes from one superblock together */
 
 
 
 
 
1122	while (!list_empty(&tmp)) {
1123		sb = wb_inode(tmp.prev)->i_sb;
1124		list_for_each_prev_safe(pos, node, &tmp) {
1125			inode = wb_inode(pos);
1126			if (inode->i_sb == sb)
1127				list_move(&inode->i_io_list, dispatch_queue);
1128		}
1129	}
1130out:
1131	return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
 
1146{
1147	int moved;
 
1148
1149	assert_spin_locked(&wb->list_lock);
1150	list_splice_init(&wb->b_more_io, &wb->b_io);
1151	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
 
 
1152	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153				     EXPIRE_DIRTY_ATIME, work);
1154	if (moved)
1155		wb_io_lists_populated(wb);
1156	trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161	int ret;
1162
1163	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164		trace_writeback_write_inode_start(inode, wbc);
1165		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166		trace_writeback_write_inode(inode, wbc);
1167		return ret;
1168	}
1169	return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177	__releases(inode->i_lock)
1178	__acquires(inode->i_lock)
1179{
1180	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181	wait_queue_head_t *wqh;
1182
1183	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184	while (inode->i_state & I_SYNC) {
 
 
 
 
 
 
 
 
 
1185		spin_unlock(&inode->i_lock);
1186		__wait_on_bit(wqh, &wq, bit_wait,
1187			      TASK_UNINTERRUPTIBLE);
1188		spin_lock(&inode->i_lock);
1189	}
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197	spin_lock(&inode->i_lock);
1198	__inode_wait_for_writeback(inode);
1199	spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208	__releases(inode->i_lock)
1209{
1210	DEFINE_WAIT(wait);
1211	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212	int sleep;
1213
1214	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215	sleep = inode->i_state & I_SYNC;
 
 
 
 
1216	spin_unlock(&inode->i_lock);
1217	if (sleep)
1218		schedule();
1219	finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231			  struct writeback_control *wbc)
 
1232{
1233	if (inode->i_state & I_FREEING)
1234		return;
1235
1236	/*
1237	 * Sync livelock prevention. Each inode is tagged and synced in one
1238	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239	 * the dirty time to prevent enqueue and sync it again.
1240	 */
1241	if ((inode->i_state & I_DIRTY) &&
1242	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243		inode->dirtied_when = jiffies;
1244
1245	if (wbc->pages_skipped) {
1246		/*
1247		 * writeback is not making progress due to locked
1248		 * buffers. Skip this inode for now.
 
 
1249		 */
1250		redirty_tail(inode, wb);
 
 
 
1251		return;
1252	}
1253
1254	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255		/*
1256		 * We didn't write back all the pages.  nfs_writepages()
1257		 * sometimes bales out without doing anything.
1258		 */
1259		if (wbc->nr_to_write <= 0) {
 
1260			/* Slice used up. Queue for next turn. */
1261			requeue_io(inode, wb);
1262		} else {
1263			/*
1264			 * Writeback blocked by something other than
1265			 * congestion. Delay the inode for some time to
1266			 * avoid spinning on the CPU (100% iowait)
1267			 * retrying writeback of the dirty page/inode
1268			 * that cannot be performed immediately.
1269			 */
1270			redirty_tail(inode, wb);
1271		}
1272	} else if (inode->i_state & I_DIRTY) {
1273		/*
1274		 * Filesystems can dirty the inode during writeback operations,
1275		 * such as delayed allocation during submission or metadata
1276		 * updates after data IO completion.
1277		 */
1278		redirty_tail(inode, wb);
1279	} else if (inode->i_state & I_DIRTY_TIME) {
1280		inode->dirtied_when = jiffies;
1281		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
 
1282	} else {
1283		/* The inode is clean. Remove from writeback lists. */
1284		inode_io_list_del_locked(inode, wb);
1285	}
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
 
 
 
 
 
 
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296	struct address_space *mapping = inode->i_mapping;
1297	long nr_to_write = wbc->nr_to_write;
1298	unsigned dirty;
1299	int ret;
1300
1301	WARN_ON(!(inode->i_state & I_SYNC));
1302
1303	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305	ret = do_writepages(mapping, wbc);
1306
1307	/*
1308	 * Make sure to wait on the data before writing out the metadata.
1309	 * This is important for filesystems that modify metadata on data
1310	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312	 * inode metadata is written back correctly.
1313	 */
1314	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315		int err = filemap_fdatawait(mapping);
1316		if (ret == 0)
1317			ret = err;
1318	}
1319
1320	/*
1321	 * Some filesystems may redirty the inode during the writeback
1322	 * due to delalloc, clear dirty metadata flags right before
1323	 * write_inode()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	 */
1325	spin_lock(&inode->i_lock);
1326
1327	dirty = inode->i_state & I_DIRTY;
1328	if (inode->i_state & I_DIRTY_TIME) {
1329		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330		    wbc->sync_mode == WB_SYNC_ALL ||
1331		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332		    unlikely(time_after(jiffies,
1333					(inode->dirtied_time_when +
1334					 dirtytime_expire_interval * HZ)))) {
1335			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336			trace_writeback_lazytime(inode);
1337		}
1338	} else
1339		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340	inode->i_state &= ~dirty;
1341
1342	/*
1343	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346	 * inode.
1347	 *
1348	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350	 * necessary.  This guarantees that either __mark_inode_dirty()
1351	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352	 */
1353	smp_mb();
1354
1355	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356		inode->i_state |= I_DIRTY_PAGES;
 
 
 
 
 
 
 
1357
1358	spin_unlock(&inode->i_lock);
1359
1360	if (dirty & I_DIRTY_TIME)
1361		mark_inode_dirty_sync(inode);
1362	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363	if (dirty & ~I_DIRTY_PAGES) {
1364		int err = write_inode(inode, wbc);
1365		if (ret == 0)
1366			ret = err;
1367	}
 
1368	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369	return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
 
 
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381				  struct writeback_control *wbc)
1382{
1383	struct bdi_writeback *wb;
1384	int ret = 0;
1385
1386	spin_lock(&inode->i_lock);
1387	if (!atomic_read(&inode->i_count))
1388		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389	else
1390		WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392	if (inode->i_state & I_SYNC) {
1393		if (wbc->sync_mode != WB_SYNC_ALL)
1394			goto out;
1395		/*
1396		 * It's a data-integrity sync. We must wait. Since callers hold
1397		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398		 * away under us.
 
1399		 */
1400		__inode_wait_for_writeback(inode);
 
 
1401	}
1402	WARN_ON(inode->i_state & I_SYNC);
1403	/*
1404	 * Skip inode if it is clean and we have no outstanding writeback in
1405	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406	 * function since flusher thread may be doing for example sync in
1407	 * parallel and if we move the inode, it could get skipped. So here we
1408	 * make sure inode is on some writeback list and leave it there unless
1409	 * we have completely cleaned the inode.
1410	 */
1411	if (!(inode->i_state & I_DIRTY_ALL) &&
1412	    (wbc->sync_mode != WB_SYNC_ALL ||
1413	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414		goto out;
1415	inode->i_state |= I_SYNC;
1416	wbc_attach_and_unlock_inode(wbc, inode);
1417
1418	ret = __writeback_single_inode(inode, wbc);
1419
1420	wbc_detach_inode(wbc);
1421
1422	wb = inode_to_wb_and_lock_list(inode);
1423	spin_lock(&inode->i_lock);
1424	/*
1425	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426	 * touch it. See comment above for explanation.
1427	 */
1428	if (!(inode->i_state & I_DIRTY_ALL))
1429		inode_io_list_del_locked(inode, wb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430	spin_unlock(&wb->list_lock);
1431	inode_sync_complete(inode);
1432out:
1433	spin_unlock(&inode->i_lock);
1434	return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438				 struct wb_writeback_work *work)
1439{
1440	long pages;
1441
1442	/*
1443	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445	 * here avoids calling into writeback_inodes_wb() more than once.
1446	 *
1447	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448	 *
1449	 *      wb_writeback()
1450	 *          writeback_sb_inodes()       <== called only once
1451	 *              write_cache_pages()     <== called once for each inode
1452	 *                   (quickly) tag currently dirty pages
1453	 *                   (maybe slowly) sync all tagged pages
1454	 */
1455	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456		pages = LONG_MAX;
1457	else {
1458		pages = min(wb->avg_write_bandwidth / 2,
1459			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460		pages = min(pages, work->nr_pages);
1461		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462				   MIN_WRITEBACK_PAGES);
1463	}
1464
1465	return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478				struct bdi_writeback *wb,
1479				struct wb_writeback_work *work)
1480{
1481	struct writeback_control wbc = {
1482		.sync_mode		= work->sync_mode,
1483		.tagged_writepages	= work->tagged_writepages,
1484		.for_kupdate		= work->for_kupdate,
1485		.for_background		= work->for_background,
1486		.for_sync		= work->for_sync,
1487		.range_cyclic		= work->range_cyclic,
1488		.range_start		= 0,
1489		.range_end		= LLONG_MAX,
1490	};
1491	unsigned long start_time = jiffies;
1492	long write_chunk;
1493	long wrote = 0;  /* count both pages and inodes */
 
 
 
 
 
1494
1495	while (!list_empty(&wb->b_io)) {
1496		struct inode *inode = wb_inode(wb->b_io.prev);
1497		struct bdi_writeback *tmp_wb;
 
1498
1499		if (inode->i_sb != sb) {
1500			if (work->sb) {
1501				/*
1502				 * We only want to write back data for this
1503				 * superblock, move all inodes not belonging
1504				 * to it back onto the dirty list.
1505				 */
1506				redirty_tail(inode, wb);
1507				continue;
1508			}
1509
1510			/*
1511			 * The inode belongs to a different superblock.
1512			 * Bounce back to the caller to unpin this and
1513			 * pin the next superblock.
1514			 */
1515			break;
1516		}
1517
1518		/*
1519		 * Don't bother with new inodes or inodes being freed, first
1520		 * kind does not need periodic writeout yet, and for the latter
1521		 * kind writeout is handled by the freer.
1522		 */
1523		spin_lock(&inode->i_lock);
1524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 
1525			spin_unlock(&inode->i_lock);
1526			redirty_tail(inode, wb);
1527			continue;
1528		}
1529		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530			/*
1531			 * If this inode is locked for writeback and we are not
1532			 * doing writeback-for-data-integrity, move it to
1533			 * b_more_io so that writeback can proceed with the
1534			 * other inodes on s_io.
1535			 *
1536			 * We'll have another go at writing back this inode
1537			 * when we completed a full scan of b_io.
1538			 */
1539			spin_unlock(&inode->i_lock);
1540			requeue_io(inode, wb);
 
1541			trace_writeback_sb_inodes_requeue(inode);
1542			continue;
1543		}
1544		spin_unlock(&wb->list_lock);
1545
1546		/*
1547		 * We already requeued the inode if it had I_SYNC set and we
1548		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549		 * WB_SYNC_ALL case.
1550		 */
1551		if (inode->i_state & I_SYNC) {
1552			/* Wait for I_SYNC. This function drops i_lock... */
1553			inode_sleep_on_writeback(inode);
1554			/* Inode may be gone, start again */
1555			spin_lock(&wb->list_lock);
1556			continue;
1557		}
1558		inode->i_state |= I_SYNC;
1559		wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561		write_chunk = writeback_chunk_size(wb, work);
1562		wbc.nr_to_write = write_chunk;
1563		wbc.pages_skipped = 0;
1564
1565		/*
1566		 * We use I_SYNC to pin the inode in memory. While it is set
1567		 * evict_inode() will wait so the inode cannot be freed.
1568		 */
1569		__writeback_single_inode(inode, &wbc);
1570
1571		wbc_detach_inode(&wbc);
1572		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573		wrote += write_chunk - wbc.nr_to_write;
 
 
1574
1575		if (need_resched()) {
1576			/*
1577			 * We're trying to balance between building up a nice
1578			 * long list of IOs to improve our merge rate, and
1579			 * getting those IOs out quickly for anyone throttling
1580			 * in balance_dirty_pages().  cond_resched() doesn't
1581			 * unplug, so get our IOs out the door before we
1582			 * give up the CPU.
1583			 */
1584			blk_flush_plug(current);
1585			cond_resched();
1586		}
1587
1588		/*
1589		 * Requeue @inode if still dirty.  Be careful as @inode may
1590		 * have been switched to another wb in the meantime.
1591		 */
1592		tmp_wb = inode_to_wb_and_lock_list(inode);
1593		spin_lock(&inode->i_lock);
1594		if (!(inode->i_state & I_DIRTY_ALL))
1595			wrote++;
1596		requeue_inode(inode, tmp_wb, &wbc);
1597		inode_sync_complete(inode);
1598		spin_unlock(&inode->i_lock);
1599
1600		if (unlikely(tmp_wb != wb)) {
1601			spin_unlock(&tmp_wb->list_lock);
1602			spin_lock(&wb->list_lock);
1603		}
1604
1605		/*
1606		 * bail out to wb_writeback() often enough to check
1607		 * background threshold and other termination conditions.
1608		 */
1609		if (wrote) {
1610			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611				break;
1612			if (work->nr_pages <= 0)
1613				break;
1614		}
1615	}
1616	return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620				  struct wb_writeback_work *work)
1621{
1622	unsigned long start_time = jiffies;
1623	long wrote = 0;
1624
1625	while (!list_empty(&wb->b_io)) {
1626		struct inode *inode = wb_inode(wb->b_io.prev);
1627		struct super_block *sb = inode->i_sb;
1628
1629		if (!trylock_super(sb)) {
1630			/*
1631			 * trylock_super() may fail consistently due to
1632			 * s_umount being grabbed by someone else. Don't use
1633			 * requeue_io() to avoid busy retrying the inode/sb.
1634			 */
1635			redirty_tail(inode, wb);
1636			continue;
1637		}
1638		wrote += writeback_sb_inodes(sb, wb, work);
1639		up_read(&sb->s_umount);
1640
1641		/* refer to the same tests at the end of writeback_sb_inodes */
1642		if (wrote) {
1643			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644				break;
1645			if (work->nr_pages <= 0)
1646				break;
1647		}
1648	}
1649	/* Leave any unwritten inodes on b_io */
1650	return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654				enum wb_reason reason)
1655{
1656	struct wb_writeback_work work = {
1657		.nr_pages	= nr_pages,
1658		.sync_mode	= WB_SYNC_NONE,
1659		.range_cyclic	= 1,
1660		.reason		= reason,
1661	};
1662	struct blk_plug plug;
1663
1664	blk_start_plug(&plug);
1665	spin_lock(&wb->list_lock);
1666	if (list_empty(&wb->b_io))
1667		queue_io(wb, &work);
1668	__writeback_inodes_wb(wb, &work);
1669	spin_unlock(&wb->list_lock);
1670	blk_finish_plug(&plug);
1671
1672	return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691			 struct wb_writeback_work *work)
1692{
1693	unsigned long wb_start = jiffies;
1694	long nr_pages = work->nr_pages;
1695	unsigned long oldest_jif;
1696	struct inode *inode;
1697	long progress;
1698	struct blk_plug plug;
1699
1700	oldest_jif = jiffies;
1701	work->older_than_this = &oldest_jif;
1702
1703	blk_start_plug(&plug);
1704	spin_lock(&wb->list_lock);
1705	for (;;) {
1706		/*
1707		 * Stop writeback when nr_pages has been consumed
1708		 */
1709		if (work->nr_pages <= 0)
1710			break;
1711
1712		/*
1713		 * Background writeout and kupdate-style writeback may
1714		 * run forever. Stop them if there is other work to do
1715		 * so that e.g. sync can proceed. They'll be restarted
1716		 * after the other works are all done.
1717		 */
1718		if ((work->for_background || work->for_kupdate) &&
1719		    !list_empty(&wb->work_list))
1720			break;
1721
1722		/*
1723		 * For background writeout, stop when we are below the
1724		 * background dirty threshold
1725		 */
1726		if (work->for_background && !wb_over_bg_thresh(wb))
1727			break;
1728
1729		/*
1730		 * Kupdate and background works are special and we want to
1731		 * include all inodes that need writing. Livelock avoidance is
1732		 * handled by these works yielding to any other work so we are
1733		 * safe.
1734		 */
1735		if (work->for_kupdate) {
1736			oldest_jif = jiffies -
1737				msecs_to_jiffies(dirty_expire_interval * 10);
1738		} else if (work->for_background)
1739			oldest_jif = jiffies;
1740
1741		trace_writeback_start(wb, work);
1742		if (list_empty(&wb->b_io))
1743			queue_io(wb, work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744		if (work->sb)
1745			progress = writeback_sb_inodes(work->sb, wb, work);
1746		else
1747			progress = __writeback_inodes_wb(wb, work);
1748		trace_writeback_written(wb, work);
1749
1750		wb_update_bandwidth(wb, wb_start);
1751
1752		/*
1753		 * Did we write something? Try for more
1754		 *
1755		 * Dirty inodes are moved to b_io for writeback in batches.
1756		 * The completion of the current batch does not necessarily
1757		 * mean the overall work is done. So we keep looping as long
1758		 * as made some progress on cleaning pages or inodes.
1759		 */
1760		if (progress)
 
1761			continue;
 
 
1762		/*
1763		 * No more inodes for IO, bail
1764		 */
1765		if (list_empty(&wb->b_more_io))
 
1766			break;
 
 
1767		/*
1768		 * Nothing written. Wait for some inode to
1769		 * become available for writeback. Otherwise
1770		 * we'll just busyloop.
1771		 */
1772		trace_writeback_wait(wb, work);
1773		inode = wb_inode(wb->b_more_io.prev);
1774		spin_lock(&inode->i_lock);
1775		spin_unlock(&wb->list_lock);
1776		/* This function drops i_lock... */
1777		inode_sleep_on_writeback(inode);
1778		spin_lock(&wb->list_lock);
1779	}
1780	spin_unlock(&wb->list_lock);
1781	blk_finish_plug(&plug);
1782
1783	return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790{
1791	struct wb_writeback_work *work = NULL;
1792
1793	spin_lock_bh(&wb->work_lock);
1794	if (!list_empty(&wb->work_list)) {
1795		work = list_entry(wb->work_list.next,
1796				  struct wb_writeback_work, list);
1797		list_del_init(&work->list);
1798	}
1799	spin_unlock_bh(&wb->work_lock);
1800	return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809	return global_node_page_state(NR_FILE_DIRTY) +
1810		global_node_page_state(NR_UNSTABLE_NFS) +
1811		get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816	if (wb_over_bg_thresh(wb)) {
1817
1818		struct wb_writeback_work work = {
1819			.nr_pages	= LONG_MAX,
1820			.sync_mode	= WB_SYNC_NONE,
1821			.for_background	= 1,
1822			.range_cyclic	= 1,
1823			.reason		= WB_REASON_BACKGROUND,
1824		};
1825
1826		return wb_writeback(wb, &work);
1827	}
1828
1829	return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834	unsigned long expired;
1835	long nr_pages;
1836
1837	/*
1838	 * When set to zero, disable periodic writeback
1839	 */
1840	if (!dirty_writeback_interval)
1841		return 0;
1842
1843	expired = wb->last_old_flush +
1844			msecs_to_jiffies(dirty_writeback_interval * 10);
1845	if (time_before(jiffies, expired))
1846		return 0;
1847
1848	wb->last_old_flush = jiffies;
1849	nr_pages = get_nr_dirty_pages();
1850
1851	if (nr_pages) {
1852		struct wb_writeback_work work = {
1853			.nr_pages	= nr_pages,
1854			.sync_mode	= WB_SYNC_NONE,
1855			.for_kupdate	= 1,
1856			.range_cyclic	= 1,
1857			.reason		= WB_REASON_PERIODIC,
1858		};
1859
1860		return wb_writeback(wb, &work);
1861	}
1862
1863	return 0;
1864}
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
1871	struct wb_writeback_work *work;
1872	long wrote = 0;
1873
1874	set_bit(WB_writeback_running, &wb->state);
1875	while ((work = get_next_work_item(wb)) != NULL) {
1876		struct wb_completion *done = work->done;
1877
1878		trace_writeback_exec(wb, work);
1879
1880		wrote += wb_writeback(wb, work);
1881
1882		if (work->auto_free)
1883			kfree(work);
1884		if (done && atomic_dec_and_test(&done->cnt))
1885			wake_up_all(&wb->bdi->wb_waitq);
1886	}
1887
1888	/*
 
 
 
 
 
1889	 * Check for periodic writeback, kupdated() style
1890	 */
1891	wrote += wb_check_old_data_flush(wb);
1892	wrote += wb_check_background_flush(wb);
1893	clear_bit(WB_writeback_running, &wb->state);
1894
1895	return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905						struct bdi_writeback, dwork);
1906	long pages_written;
1907
1908	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909	current->flags |= PF_SWAPWRITE;
1910
1911	if (likely(!current_is_workqueue_rescuer() ||
1912		   !test_bit(WB_registered, &wb->state))) {
1913		/*
1914		 * The normal path.  Keep writing back @wb until its
1915		 * work_list is empty.  Note that this path is also taken
1916		 * if @wb is shutting down even when we're running off the
1917		 * rescuer as work_list needs to be drained.
1918		 */
1919		do {
1920			pages_written = wb_do_writeback(wb);
1921			trace_writeback_pages_written(pages_written);
1922		} while (!list_empty(&wb->work_list));
1923	} else {
1924		/*
1925		 * bdi_wq can't get enough workers and we're running off
1926		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927		 * enough for efficient IO.
1928		 */
1929		pages_written = writeback_inodes_wb(wb, 1024,
1930						    WB_REASON_FORKER_THREAD);
1931		trace_writeback_pages_written(pages_written);
1932	}
1933
1934	if (!list_empty(&wb->work_list))
1935		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937		wb_wakeup_delayed(wb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938
1939	current->flags &= ~PF_SWAPWRITE;
 
 
 
 
 
1940}
1941
1942/*
1943 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1947{
1948	struct backing_dev_info *bdi;
1949
1950	/*
1951	 * If we are expecting writeback progress we must submit plugged IO.
1952	 */
1953	if (blk_needs_flush_plug(current))
1954		blk_schedule_flush_plug(current);
1955
1956	if (!nr_pages)
1957		nr_pages = get_nr_dirty_pages();
1958
1959	rcu_read_lock();
1960	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961		struct bdi_writeback *wb;
1962
1963		if (!bdi_has_dirty_io(bdi))
1964			continue;
1965
1966		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968					   false, reason);
1969	}
1970	rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically.  We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system.  So instead we define a separate delayed work
1979 * function which gets called much more rarely.  (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary.  But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993	struct backing_dev_info *bdi;
1994
1995	rcu_read_lock();
1996	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997		struct bdi_writeback *wb;
1998
1999		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000			if (!list_empty(&wb->b_dirty_time))
2001				wb_wakeup(wb);
2002	}
2003	rcu_read_unlock();
2004	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010	return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017	int ret;
2018
2019	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020	if (ret == 0 && write)
2021		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022	return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028		struct dentry *dentry;
2029		const char *name = "?";
2030
2031		dentry = d_find_alias(inode);
2032		if (dentry) {
2033			spin_lock(&dentry->d_lock);
2034			name = (const char *) dentry->d_name.name;
2035		}
2036		printk(KERN_DEBUG
2037		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038		       current->comm, task_pid_nr(current), inode->i_ino,
2039		       name, inode->i_sb->s_id);
2040		if (dentry) {
2041			spin_unlock(&dentry->d_lock);
2042			dput(dentry);
2043		}
2044	}
2045}
2046
2047/**
2048 *	__mark_inode_dirty -	internal function
2049 *	@inode: inode to mark
2050 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 *  	mark_inode_dirty_sync.
 
 
 
 
2053 *
2054 * Put the inode on the super block's dirty list.
 
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074	struct super_block *sb = inode->i_sb;
2075	int dirtytime;
 
2076
2077	trace_writeback_mark_inode_dirty(inode, flags);
2078
2079	/*
2080	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081	 * dirty the inode itself
2082	 */
2083	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084		trace_writeback_dirty_inode_start(inode, flags);
 
 
 
 
 
 
 
 
2085
 
 
 
 
 
 
 
 
2086		if (sb->s_op->dirty_inode)
2087			sb->s_op->dirty_inode(inode, flags);
2088
2089		trace_writeback_dirty_inode(inode, flags);
2090	}
2091	if (flags & I_DIRTY_INODE)
2092		flags &= ~I_DIRTY_TIME;
2093	dirtytime = flags & I_DIRTY_TIME;
 
 
 
 
 
 
 
 
2094
2095	/*
2096	 * Paired with smp_mb() in __writeback_single_inode() for the
2097	 * following lockless i_state test.  See there for details.
2098	 */
2099	smp_mb();
2100
2101	if (((inode->i_state & flags) == flags) ||
2102	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103		return;
2104
2105	if (unlikely(block_dump))
2106		block_dump___mark_inode_dirty(inode);
2107
2108	spin_lock(&inode->i_lock);
2109	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110		goto out_unlock_inode;
2111	if ((inode->i_state & flags) != flags) {
2112		const int was_dirty = inode->i_state & I_DIRTY;
2113
2114		inode_attach_wb(inode, NULL);
2115
2116		if (flags & I_DIRTY_INODE)
2117			inode->i_state &= ~I_DIRTY_TIME;
2118		inode->i_state |= flags;
2119
2120		/*
2121		 * If the inode is being synced, just update its dirty state.
2122		 * The unlocker will place the inode on the appropriate
2123		 * superblock list, based upon its state.
 
 
 
 
 
 
 
 
 
 
 
 
2124		 */
2125		if (inode->i_state & I_SYNC)
2126			goto out_unlock_inode;
2127
2128		/*
2129		 * Only add valid (hashed) inodes to the superblock's
2130		 * dirty list.  Add blockdev inodes as well.
2131		 */
2132		if (!S_ISBLK(inode->i_mode)) {
2133			if (inode_unhashed(inode))
2134				goto out_unlock_inode;
2135		}
2136		if (inode->i_state & I_FREEING)
2137			goto out_unlock_inode;
2138
2139		/*
2140		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141		 * reposition it (that would break b_dirty time-ordering).
2142		 */
2143		if (!was_dirty) {
2144			struct bdi_writeback *wb;
2145			struct list_head *dirty_list;
2146			bool wakeup_bdi = false;
2147
2148			wb = locked_inode_to_wb_and_lock_list(inode);
2149
2150			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151			     !test_bit(WB_registered, &wb->state),
2152			     "bdi-%s not registered\n", wb->bdi->name);
2153
2154			inode->dirtied_when = jiffies;
2155			if (dirtytime)
2156				inode->dirtied_time_when = jiffies;
2157
2158			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159				dirty_list = &wb->b_dirty;
2160			else
2161				dirty_list = &wb->b_dirty_time;
2162
2163			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164							       dirty_list);
2165
2166			spin_unlock(&wb->list_lock);
 
2167			trace_writeback_dirty_inode_enqueue(inode);
2168
2169			/*
2170			 * If this is the first dirty inode for this bdi,
2171			 * we have to wake-up the corresponding bdi thread
2172			 * to make sure background write-back happens
2173			 * later.
2174			 */
2175			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
 
2176				wb_wakeup_delayed(wb);
2177			return;
2178		}
2179	}
2180out_unlock_inode:
 
 
2181	spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198	LIST_HEAD(sync_list);
2199
2200	/*
2201	 * We need to be protected against the filesystem going from
2202	 * r/o to r/w or vice versa.
2203	 */
2204	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206	mutex_lock(&sb->s_sync_lock);
2207
2208	/*
2209	 * Splice the writeback list onto a temporary list to avoid waiting on
2210	 * inodes that have started writeback after this point.
2211	 *
2212	 * Use rcu_read_lock() to keep the inodes around until we have a
2213	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214	 * the local list because inodes can be dropped from either by writeback
2215	 * completion.
2216	 */
2217	rcu_read_lock();
2218	spin_lock_irq(&sb->s_inode_wblist_lock);
2219	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221	/*
2222	 * Data integrity sync. Must wait for all pages under writeback, because
2223	 * there may have been pages dirtied before our sync call, but which had
2224	 * writeout started before we write it out.  In which case, the inode
2225	 * may not be on the dirty list, but we still have to wait for that
2226	 * writeout.
2227	 */
2228	while (!list_empty(&sync_list)) {
2229		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230						       i_wb_list);
2231		struct address_space *mapping = inode->i_mapping;
2232
2233		/*
2234		 * Move each inode back to the wb list before we drop the lock
2235		 * to preserve consistency between i_wb_list and the mapping
2236		 * writeback tag. Writeback completion is responsible to remove
2237		 * the inode from either list once the writeback tag is cleared.
2238		 */
2239		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241		/*
2242		 * The mapping can appear untagged while still on-list since we
2243		 * do not have the mapping lock. Skip it here, wb completion
2244		 * will remove it.
2245		 */
2246		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247			continue;
2248
2249		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251		spin_lock(&inode->i_lock);
2252		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253			spin_unlock(&inode->i_lock);
2254
2255			spin_lock_irq(&sb->s_inode_wblist_lock);
2256			continue;
2257		}
2258		__iget(inode);
2259		spin_unlock(&inode->i_lock);
2260		rcu_read_unlock();
2261
2262		/*
2263		 * We keep the error status of individual mapping so that
2264		 * applications can catch the writeback error using fsync(2).
2265		 * See filemap_fdatawait_keep_errors() for details.
2266		 */
2267		filemap_fdatawait_keep_errors(mapping);
2268
2269		cond_resched();
2270
2271		iput(inode);
2272
2273		rcu_read_lock();
2274		spin_lock_irq(&sb->s_inode_wblist_lock);
2275	}
2276	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277	rcu_read_unlock();
2278	mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282				     enum wb_reason reason, bool skip_if_busy)
2283{
2284	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2285	struct wb_writeback_work work = {
2286		.sb			= sb,
2287		.sync_mode		= WB_SYNC_NONE,
2288		.tagged_writepages	= 1,
2289		.done			= &done,
2290		.nr_pages		= nr,
2291		.reason			= reason,
2292	};
2293	struct backing_dev_info *bdi = sb->s_bdi;
2294
2295	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296		return;
2297	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300	wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314			    unsigned long nr,
2315			    enum wb_reason reason)
2316{
2317	__writeback_inodes_sb_nr(sb, nr, reason, false);
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346				   enum wb_reason reason)
2347{
2348	if (!down_read_trylock(&sb->s_umount))
2349		return false;
2350
2351	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352	up_read(&sb->s_umount);
2353	return true;
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366{
2367	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb	-	sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2381	struct wb_writeback_work work = {
2382		.sb		= sb,
2383		.sync_mode	= WB_SYNC_ALL,
2384		.nr_pages	= LONG_MAX,
2385		.range_cyclic	= 0,
2386		.done		= &done,
2387		.reason		= WB_REASON_SYNC,
2388		.for_sync	= 1,
2389	};
2390	struct backing_dev_info *bdi = sb->s_bdi;
2391
2392	/*
2393	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395	 * bdi_has_dirty() need to be written out too.
2396	 */
2397	if (bdi == &noop_backing_dev_info)
2398		return;
2399	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
 
 
2401	bdi_split_work_to_wbs(bdi, &work, false);
2402	wb_wait_for_completion(bdi, &done);
 
2403
2404	wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now	-	write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
2420	struct writeback_control wbc = {
2421		.nr_to_write = LONG_MAX,
2422		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423		.range_start = 0,
2424		.range_end = LLONG_MAX,
2425	};
2426
2427	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428		wbc.nr_to_write = 0;
2429
2430	might_sleep();
2431	return writeback_single_inode(inode, &wbc);
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk.  It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448	return writeback_single_inode(inode, wbc);
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463	struct writeback_control wbc = {
2464		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465		.nr_to_write = 0, /* metadata-only */
2466	};
2467
2468	return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/fs-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains all the functions related to writing back and waiting
   8 * upon dirty inodes against superblocks, and writing back dirty
   9 * pages against inodes.  ie: data writeback.  Writeout of the
  10 * inode itself is not handled here.
  11 *
  12 * 10Apr2002	Andrew Morton
  13 *		Split out of fs/inode.c
  14 *		Additions for address_space-based writeback
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/export.h>
  19#include <linux/spinlock.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24#include <linux/pagemap.h>
  25#include <linux/kthread.h>
  26#include <linux/writeback.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/tracepoint.h>
  30#include <linux/device.h>
  31#include <linux/memcontrol.h>
  32#include "internal.h"
  33
  34/*
  35 * 4MB minimal write chunk size
  36 */
  37#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  38
 
 
 
 
  39/*
  40 * Passed into wb_writeback(), essentially a subset of writeback_control
  41 */
  42struct wb_writeback_work {
  43	long nr_pages;
  44	struct super_block *sb;
 
  45	enum writeback_sync_modes sync_mode;
  46	unsigned int tagged_writepages:1;
  47	unsigned int for_kupdate:1;
  48	unsigned int range_cyclic:1;
  49	unsigned int for_background:1;
  50	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  51	unsigned int auto_free:1;	/* free on completion */
  52	enum wb_reason reason;		/* why was writeback initiated? */
  53
  54	struct list_head list;		/* pending work list */
  55	struct wb_completion *done;	/* set if the caller waits */
  56};
  57
  58/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  59 * If an inode is constantly having its pages dirtied, but then the
  60 * updates stop dirtytime_expire_interval seconds in the past, it's
  61 * possible for the worst case time between when an inode has its
  62 * timestamps updated and when they finally get written out to be two
  63 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  64 * seconds), which means most of the time inodes will have their
  65 * timestamps written to disk after 12 hours, but in the worst case a
  66 * few inodes might not their timestamps updated for 24 hours.
  67 */
  68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  69
  70static inline struct inode *wb_inode(struct list_head *head)
  71{
  72	return list_entry(head, struct inode, i_io_list);
  73}
  74
  75/*
  76 * Include the creation of the trace points after defining the
  77 * wb_writeback_work structure and inline functions so that the definition
  78 * remains local to this file.
  79 */
  80#define CREATE_TRACE_POINTS
  81#include <trace/events/writeback.h>
  82
  83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  84
  85static bool wb_io_lists_populated(struct bdi_writeback *wb)
  86{
  87	if (wb_has_dirty_io(wb)) {
  88		return false;
  89	} else {
  90		set_bit(WB_has_dirty_io, &wb->state);
  91		WARN_ON_ONCE(!wb->avg_write_bandwidth);
  92		atomic_long_add(wb->avg_write_bandwidth,
  93				&wb->bdi->tot_write_bandwidth);
  94		return true;
  95	}
  96}
  97
  98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
  99{
 100	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 101	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 102		clear_bit(WB_has_dirty_io, &wb->state);
 103		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 104					&wb->bdi->tot_write_bandwidth) < 0);
 105	}
 106}
 107
 108/**
 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 110 * @inode: inode to be moved
 111 * @wb: target bdi_writeback
 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 113 *
 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 115 * Returns %true if @inode is the first occupant of the !dirty_time IO
 116 * lists; otherwise, %false.
 117 */
 118static bool inode_io_list_move_locked(struct inode *inode,
 119				      struct bdi_writeback *wb,
 120				      struct list_head *head)
 121{
 122	assert_spin_locked(&wb->list_lock);
 123	assert_spin_locked(&inode->i_lock);
 124	WARN_ON_ONCE(inode->i_state & I_FREEING);
 125
 126	list_move(&inode->i_io_list, head);
 127
 128	/* dirty_time doesn't count as dirty_io until expiration */
 129	if (head != &wb->b_dirty_time)
 130		return wb_io_lists_populated(wb);
 131
 132	wb_io_lists_depopulated(wb);
 133	return false;
 134}
 135
 136static void wb_wakeup(struct bdi_writeback *wb)
 137{
 138	spin_lock_irq(&wb->work_lock);
 139	if (test_bit(WB_registered, &wb->state))
 140		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 141	spin_unlock_irq(&wb->work_lock);
 142}
 143
 144/*
 145 * This function is used when the first inode for this wb is marked dirty. It
 146 * wakes-up the corresponding bdi thread which should then take care of the
 147 * periodic background write-out of dirty inodes. Since the write-out would
 148 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
 149 * set up a timer which wakes the bdi thread up later.
 150 *
 151 * Note, we wouldn't bother setting up the timer, but this function is on the
 152 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
 153 * by delaying the wake-up.
 154 *
 155 * We have to be careful not to postpone flush work if it is scheduled for
 156 * earlier. Thus we use queue_delayed_work().
 157 */
 158static void wb_wakeup_delayed(struct bdi_writeback *wb)
 
 159{
 160	unsigned long timeout;
 161
 162	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
 163	spin_lock_irq(&wb->work_lock);
 164	if (test_bit(WB_registered, &wb->state))
 165		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
 166	spin_unlock_irq(&wb->work_lock);
 167}
 168
 169static void finish_writeback_work(struct wb_writeback_work *work)
 170{
 171	struct wb_completion *done = work->done;
 172
 173	if (work->auto_free)
 174		kfree(work);
 175	if (done) {
 176		wait_queue_head_t *waitq = done->waitq;
 177
 178		/* @done can't be accessed after the following dec */
 179		if (atomic_dec_and_test(&done->cnt))
 180			wake_up_all(waitq);
 181	}
 182}
 183
 184static void wb_queue_work(struct bdi_writeback *wb,
 185			  struct wb_writeback_work *work)
 186{
 187	trace_writeback_queue(wb, work);
 188
 
 
 
 189	if (work->done)
 190		atomic_inc(&work->done->cnt);
 191
 192	spin_lock_irq(&wb->work_lock);
 193
 194	if (test_bit(WB_registered, &wb->state)) {
 195		list_add_tail(&work->list, &wb->work_list);
 196		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 197	} else
 198		finish_writeback_work(work);
 199
 200	spin_unlock_irq(&wb->work_lock);
 201}
 202
 203/**
 204 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 
 205 * @done: target wb_completion
 206 *
 207 * Wait for one or more work items issued to @bdi with their ->done field
 208 * set to @done, which should have been initialized with
 209 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 210 * are completed.  Work items which are waited upon aren't freed
 211 * automatically on completion.
 212 */
 213void wb_wait_for_completion(struct wb_completion *done)
 
 214{
 215	atomic_dec(&done->cnt);		/* put down the initial count */
 216	wait_event(*done->waitq, !atomic_read(&done->cnt));
 217}
 218
 219#ifdef CONFIG_CGROUP_WRITEBACK
 220
 221/*
 222 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 223 * how they're used.
 224 *
 225 * These paramters are inherently heuristical as the detection target
 226 * itself is fuzzy.  All we want to do is detaching an inode from the
 227 * current owner if it's being written to by some other cgroups too much.
 228 *
 229 * The current cgroup writeback is built on the assumption that multiple
 230 * cgroups writing to the same inode concurrently is very rare and a mode
 231 * of operation which isn't well supported.  As such, the goal is not
 232 * taking too long when a different cgroup takes over an inode while
 233 * avoiding too aggressive flip-flops from occasional foreign writes.
 234 *
 235 * We record, very roughly, 2s worth of IO time history and if more than
 236 * half of that is foreign, trigger the switch.  The recording is quantized
 237 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 238 * writes smaller than 1/8 of avg size are ignored.
 239 */
 240#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 241#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 242#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
 243#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 244
 245#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 246#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 247					/* each slot's duration is 2s / 16 */
 248#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 249					/* if foreign slots >= 8, switch */
 250#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 251					/* one round can affect upto 5 slots */
 252#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
 253
 254/*
 255 * Maximum inodes per isw.  A specific value has been chosen to make
 256 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
 257 */
 258#define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
 259                                / sizeof(struct inode *))
 260
 261static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 262static struct workqueue_struct *isw_wq;
 263
 264void __inode_attach_wb(struct inode *inode, struct folio *folio)
 265{
 266	struct backing_dev_info *bdi = inode_to_bdi(inode);
 267	struct bdi_writeback *wb = NULL;
 268
 269	if (inode_cgwb_enabled(inode)) {
 270		struct cgroup_subsys_state *memcg_css;
 271
 272		if (folio) {
 273			memcg_css = mem_cgroup_css_from_folio(folio);
 274			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 275		} else {
 276			/* must pin memcg_css, see wb_get_create() */
 277			memcg_css = task_get_css(current, memory_cgrp_id);
 278			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 279			css_put(memcg_css);
 280		}
 281	}
 282
 283	if (!wb)
 284		wb = &bdi->wb;
 285
 286	/*
 287	 * There may be multiple instances of this function racing to
 288	 * update the same inode.  Use cmpxchg() to tell the winner.
 289	 */
 290	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 291		wb_put(wb);
 292}
 293
 294/**
 295 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
 296 * @inode: inode of interest with i_lock held
 297 * @wb: target bdi_writeback
 298 *
 299 * Remove the inode from wb's io lists and if necessarily put onto b_attached
 300 * list.  Only inodes attached to cgwb's are kept on this list.
 301 */
 302static void inode_cgwb_move_to_attached(struct inode *inode,
 303					struct bdi_writeback *wb)
 304{
 305	assert_spin_locked(&wb->list_lock);
 306	assert_spin_locked(&inode->i_lock);
 307	WARN_ON_ONCE(inode->i_state & I_FREEING);
 308
 309	inode->i_state &= ~I_SYNC_QUEUED;
 310	if (wb != &wb->bdi->wb)
 311		list_move(&inode->i_io_list, &wb->b_attached);
 312	else
 313		list_del_init(&inode->i_io_list);
 314	wb_io_lists_depopulated(wb);
 315}
 316
 317/**
 318 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 319 * @inode: inode of interest with i_lock held
 320 *
 321 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 322 * held on entry and is released on return.  The returned wb is guaranteed
 323 * to stay @inode's associated wb until its list_lock is released.
 324 */
 325static struct bdi_writeback *
 326locked_inode_to_wb_and_lock_list(struct inode *inode)
 327	__releases(&inode->i_lock)
 328	__acquires(&wb->list_lock)
 329{
 330	while (true) {
 331		struct bdi_writeback *wb = inode_to_wb(inode);
 332
 333		/*
 334		 * inode_to_wb() association is protected by both
 335		 * @inode->i_lock and @wb->list_lock but list_lock nests
 336		 * outside i_lock.  Drop i_lock and verify that the
 337		 * association hasn't changed after acquiring list_lock.
 338		 */
 339		wb_get(wb);
 340		spin_unlock(&inode->i_lock);
 341		spin_lock(&wb->list_lock);
 342
 343		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 344		if (likely(wb == inode->i_wb)) {
 345			wb_put(wb);	/* @inode already has ref */
 346			return wb;
 347		}
 348
 349		spin_unlock(&wb->list_lock);
 350		wb_put(wb);
 351		cpu_relax();
 352		spin_lock(&inode->i_lock);
 353	}
 354}
 355
 356/**
 357 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 358 * @inode: inode of interest
 359 *
 360 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 361 * on entry.
 362 */
 363static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 364	__acquires(&wb->list_lock)
 365{
 366	spin_lock(&inode->i_lock);
 367	return locked_inode_to_wb_and_lock_list(inode);
 368}
 369
 370struct inode_switch_wbs_context {
 371	struct rcu_work		work;
 
 372
 373	/*
 374	 * Multiple inodes can be switched at once.  The switching procedure
 375	 * consists of two parts, separated by a RCU grace period.  To make
 376	 * sure that the second part is executed for each inode gone through
 377	 * the first part, all inode pointers are placed into a NULL-terminated
 378	 * array embedded into struct inode_switch_wbs_context.  Otherwise
 379	 * an inode could be left in a non-consistent state.
 380	 */
 381	struct bdi_writeback	*new_wb;
 382	struct inode		*inodes[];
 383};
 384
 385static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 386{
 387	down_write(&bdi->wb_switch_rwsem);
 388}
 389
 390static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 391{
 392	up_write(&bdi->wb_switch_rwsem);
 393}
 394
 395static bool inode_do_switch_wbs(struct inode *inode,
 396				struct bdi_writeback *old_wb,
 397				struct bdi_writeback *new_wb)
 398{
 
 
 
 399	struct address_space *mapping = inode->i_mapping;
 400	XA_STATE(xas, &mapping->i_pages, 0);
 401	struct folio *folio;
 
 402	bool switched = false;
 
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404	spin_lock(&inode->i_lock);
 405	xa_lock_irq(&mapping->i_pages);
 406
 407	/*
 408	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
 409	 * path owns the inode and we shouldn't modify ->i_io_list.
 410	 */
 411	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
 412		goto skip_switch;
 413
 414	trace_inode_switch_wbs(inode, old_wb, new_wb);
 415
 416	/*
 417	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 418	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
 419	 * folios actually under writeback.
 420	 */
 421	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
 422		if (folio_test_dirty(folio)) {
 423			long nr = folio_nr_pages(folio);
 424			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
 425			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
 
 
 426		}
 427	}
 428
 429	xas_set(&xas, 0);
 430	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
 431		long nr = folio_nr_pages(folio);
 432		WARN_ON_ONCE(!folio_test_writeback(folio));
 433		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
 434		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
 435	}
 436
 437	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
 438		atomic_dec(&old_wb->writeback_inodes);
 439		atomic_inc(&new_wb->writeback_inodes);
 440	}
 441
 442	wb_get(new_wb);
 443
 444	/*
 445	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
 446	 * the specific list @inode was on is ignored and the @inode is put on
 447	 * ->b_dirty which is always correct including from ->b_dirty_time.
 448	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
 449	 * was clean, it means it was on the b_attached list, so move it onto
 450	 * the b_attached list of @new_wb.
 451	 */
 452	if (!list_empty(&inode->i_io_list)) {
 
 
 
 453		inode->i_wb = new_wb;
 454
 455		if (inode->i_state & I_DIRTY_ALL) {
 456			struct inode *pos;
 457
 458			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 459				if (time_after_eq(inode->dirtied_when,
 460						  pos->dirtied_when))
 461					break;
 462			inode_io_list_move_locked(inode, new_wb,
 463						  pos->i_io_list.prev);
 464		} else {
 465			inode_cgwb_move_to_attached(inode, new_wb);
 466		}
 467	} else {
 468		inode->i_wb = new_wb;
 469	}
 470
 471	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 472	inode->i_wb_frn_winner = 0;
 473	inode->i_wb_frn_avg_time = 0;
 474	inode->i_wb_frn_history = 0;
 475	switched = true;
 476skip_switch:
 477	/*
 478	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 479	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 480	 */
 481	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 482
 483	xa_unlock_irq(&mapping->i_pages);
 484	spin_unlock(&inode->i_lock);
 485
 486	return switched;
 487}
 488
 489static void inode_switch_wbs_work_fn(struct work_struct *work)
 490{
 491	struct inode_switch_wbs_context *isw =
 492		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
 493	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
 494	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
 495	struct bdi_writeback *new_wb = isw->new_wb;
 496	unsigned long nr_switched = 0;
 497	struct inode **inodep;
 498
 499	/*
 500	 * If @inode switches cgwb membership while sync_inodes_sb() is
 501	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
 502	 */
 503	down_read(&bdi->wb_switch_rwsem);
 504
 505	/*
 506	 * By the time control reaches here, RCU grace period has passed
 507	 * since I_WB_SWITCH assertion and all wb stat update transactions
 508	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 509	 * synchronizing against the i_pages lock.
 510	 *
 511	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 512	 * gives us exclusion against all wb related operations on @inode
 513	 * including IO list manipulations and stat updates.
 514	 */
 515	if (old_wb < new_wb) {
 516		spin_lock(&old_wb->list_lock);
 517		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 518	} else {
 519		spin_lock(&new_wb->list_lock);
 520		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 521	}
 522
 523	for (inodep = isw->inodes; *inodep; inodep++) {
 524		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
 525		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
 526			nr_switched++;
 527	}
 528
 529	spin_unlock(&new_wb->list_lock);
 530	spin_unlock(&old_wb->list_lock);
 531
 532	up_read(&bdi->wb_switch_rwsem);
 533
 534	if (nr_switched) {
 535		wb_wakeup(new_wb);
 536		wb_put_many(old_wb, nr_switched);
 537	}
 
 538
 539	for (inodep = isw->inodes; *inodep; inodep++)
 540		iput(*inodep);
 541	wb_put(new_wb);
 542	kfree(isw);
 
 543	atomic_dec(&isw_nr_in_flight);
 544}
 545
 546static bool inode_prepare_wbs_switch(struct inode *inode,
 547				     struct bdi_writeback *new_wb)
 548{
 549	/*
 550	 * Paired with smp_mb() in cgroup_writeback_umount().
 551	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
 552	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
 553	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
 554	 */
 555	smp_mb();
 556
 557	if (IS_DAX(inode))
 558		return false;
 559
 560	/* while holding I_WB_SWITCH, no one else can update the association */
 561	spin_lock(&inode->i_lock);
 562	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 563	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
 564	    inode_to_wb(inode) == new_wb) {
 565		spin_unlock(&inode->i_lock);
 566		return false;
 567	}
 568	inode->i_state |= I_WB_SWITCH;
 569	__iget(inode);
 570	spin_unlock(&inode->i_lock);
 571
 572	return true;
 
 
 573}
 574
 575/**
 576 * inode_switch_wbs - change the wb association of an inode
 577 * @inode: target inode
 578 * @new_wb_id: ID of the new wb
 579 *
 580 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 581 * switching is performed asynchronously and may fail silently.
 582 */
 583static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 584{
 585	struct backing_dev_info *bdi = inode_to_bdi(inode);
 586	struct cgroup_subsys_state *memcg_css;
 587	struct inode_switch_wbs_context *isw;
 588
 589	/* noop if seems to be already in progress */
 590	if (inode->i_state & I_WB_SWITCH)
 591		return;
 592
 593	/* avoid queueing a new switch if too many are already in flight */
 594	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
 595		return;
 596
 597	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
 598	if (!isw)
 599		return;
 600
 601	atomic_inc(&isw_nr_in_flight);
 602
 603	/* find and pin the new wb */
 604	rcu_read_lock();
 605	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 606	if (memcg_css && !css_tryget(memcg_css))
 607		memcg_css = NULL;
 608	rcu_read_unlock();
 609	if (!memcg_css)
 610		goto out_free;
 611
 612	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 613	css_put(memcg_css);
 614	if (!isw->new_wb)
 
 
 
 615		goto out_free;
 
 
 
 
 616
 617	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
 618		goto out_free;
 619
 620	isw->inodes[0] = inode;
 621
 622	/*
 623	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 624	 * the RCU protected stat update paths to grab the i_page
 625	 * lock so that stat transfer can synchronize against them.
 626	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 627	 */
 628	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
 629	queue_rcu_work(isw_wq, &isw->work);
 630	return;
 631
 632out_free:
 633	atomic_dec(&isw_nr_in_flight);
 634	if (isw->new_wb)
 635		wb_put(isw->new_wb);
 636	kfree(isw);
 637}
 638
 639static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
 640				   struct list_head *list, int *nr)
 641{
 642	struct inode *inode;
 643
 644	list_for_each_entry(inode, list, i_io_list) {
 645		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
 646			continue;
 647
 648		isw->inodes[*nr] = inode;
 649		(*nr)++;
 650
 651		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
 652			return true;
 653	}
 654	return false;
 655}
 656
 657/**
 658 * cleanup_offline_cgwb - detach associated inodes
 659 * @wb: target wb
 660 *
 661 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
 662 * to eventually release the dying @wb.  Returns %true if not all inodes were
 663 * switched and the function has to be restarted.
 664 */
 665bool cleanup_offline_cgwb(struct bdi_writeback *wb)
 666{
 667	struct cgroup_subsys_state *memcg_css;
 668	struct inode_switch_wbs_context *isw;
 669	int nr;
 670	bool restart = false;
 671
 672	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
 673		      GFP_KERNEL);
 674	if (!isw)
 675		return restart;
 676
 677	atomic_inc(&isw_nr_in_flight);
 678
 679	for (memcg_css = wb->memcg_css->parent; memcg_css;
 680	     memcg_css = memcg_css->parent) {
 681		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
 682		if (isw->new_wb)
 683			break;
 684	}
 685	if (unlikely(!isw->new_wb))
 686		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
 687
 688	nr = 0;
 689	spin_lock(&wb->list_lock);
 690	/*
 691	 * In addition to the inodes that have completed writeback, also switch
 692	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
 693	 * inodes won't be written back for a long time when lazytime is
 694	 * enabled, and thus pinning the dying cgwbs. It won't break the
 695	 * bandwidth restrictions, as writeback of inode metadata is not
 696	 * accounted for.
 697	 */
 698	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
 699	if (!restart)
 700		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
 701	spin_unlock(&wb->list_lock);
 702
 703	/* no attached inodes? bail out */
 704	if (nr == 0) {
 705		atomic_dec(&isw_nr_in_flight);
 706		wb_put(isw->new_wb);
 707		kfree(isw);
 708		return restart;
 709	}
 710
 711	/*
 712	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 713	 * the RCU protected stat update paths to grab the i_page
 714	 * lock so that stat transfer can synchronize against them.
 715	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 716	 */
 717	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
 718	queue_rcu_work(isw_wq, &isw->work);
 719
 720	return restart;
 721}
 722
 723/**
 724 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 725 * @wbc: writeback_control of interest
 726 * @inode: target inode
 727 *
 728 * @inode is locked and about to be written back under the control of @wbc.
 729 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 730 * writeback completion, wbc_detach_inode() should be called.  This is used
 731 * to track the cgroup writeback context.
 732 */
 733static void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 734		struct inode *inode)
 735	__releases(&inode->i_lock)
 736{
 737	if (!inode_cgwb_enabled(inode)) {
 738		spin_unlock(&inode->i_lock);
 739		return;
 740	}
 741
 742	wbc->wb = inode_to_wb(inode);
 743	wbc->inode = inode;
 744
 745	wbc->wb_id = wbc->wb->memcg_css->id;
 746	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 747	wbc->wb_tcand_id = 0;
 748	wbc->wb_bytes = 0;
 749	wbc->wb_lcand_bytes = 0;
 750	wbc->wb_tcand_bytes = 0;
 751
 752	wb_get(wbc->wb);
 753	spin_unlock(&inode->i_lock);
 754
 755	/*
 756	 * A dying wb indicates that either the blkcg associated with the
 757	 * memcg changed or the associated memcg is dying.  In the first
 758	 * case, a replacement wb should already be available and we should
 759	 * refresh the wb immediately.  In the second case, trying to
 760	 * refresh will keep failing.
 761	 */
 762	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
 763		inode_switch_wbs(inode, wbc->wb_id);
 764}
 765
 766/**
 767 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
 768 * @wbc: writeback_control of interest
 769 * @inode: target inode
 770 *
 771 * This function is to be used by __filemap_fdatawrite_range(), which is an
 772 * alternative entry point into writeback code, and first ensures @inode is
 773 * associated with a bdi_writeback and attaches it to @wbc.
 774 */
 775void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
 776		struct inode *inode)
 777{
 778	spin_lock(&inode->i_lock);
 779	inode_attach_wb(inode, NULL);
 780	wbc_attach_and_unlock_inode(wbc, inode);
 781}
 782EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode);
 783
 784/**
 785 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 786 * @wbc: writeback_control of the just finished writeback
 787 *
 788 * To be called after a writeback attempt of an inode finishes and undoes
 789 * wbc_attach_and_unlock_inode().  Can be called under any context.
 790 *
 791 * As concurrent write sharing of an inode is expected to be very rare and
 792 * memcg only tracks page ownership on first-use basis severely confining
 793 * the usefulness of such sharing, cgroup writeback tracks ownership
 794 * per-inode.  While the support for concurrent write sharing of an inode
 795 * is deemed unnecessary, an inode being written to by different cgroups at
 796 * different points in time is a lot more common, and, more importantly,
 797 * charging only by first-use can too readily lead to grossly incorrect
 798 * behaviors (single foreign page can lead to gigabytes of writeback to be
 799 * incorrectly attributed).
 800 *
 801 * To resolve this issue, cgroup writeback detects the majority dirtier of
 802 * an inode and transfers the ownership to it.  To avoid unnecessary
 803 * oscillation, the detection mechanism keeps track of history and gives
 804 * out the switch verdict only if the foreign usage pattern is stable over
 805 * a certain amount of time and/or writeback attempts.
 806 *
 807 * On each writeback attempt, @wbc tries to detect the majority writer
 808 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 809 * count from the majority voting, it also counts the bytes written for the
 810 * current wb and the last round's winner wb (max of last round's current
 811 * wb, the winner from two rounds ago, and the last round's majority
 812 * candidate).  Keeping track of the historical winner helps the algorithm
 813 * to semi-reliably detect the most active writer even when it's not the
 814 * absolute majority.
 815 *
 816 * Once the winner of the round is determined, whether the winner is
 817 * foreign or not and how much IO time the round consumed is recorded in
 818 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 819 * over a certain threshold, the switch verdict is given.
 820 */
 821void wbc_detach_inode(struct writeback_control *wbc)
 822{
 823	struct bdi_writeback *wb = wbc->wb;
 824	struct inode *inode = wbc->inode;
 825	unsigned long avg_time, max_bytes, max_time;
 826	u16 history;
 827	int max_id;
 828
 829	if (!wb)
 830		return;
 831
 832	history = inode->i_wb_frn_history;
 833	avg_time = inode->i_wb_frn_avg_time;
 834
 835	/* pick the winner of this round */
 836	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 837	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 838		max_id = wbc->wb_id;
 839		max_bytes = wbc->wb_bytes;
 840	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 841		max_id = wbc->wb_lcand_id;
 842		max_bytes = wbc->wb_lcand_bytes;
 843	} else {
 844		max_id = wbc->wb_tcand_id;
 845		max_bytes = wbc->wb_tcand_bytes;
 846	}
 847
 848	/*
 849	 * Calculate the amount of IO time the winner consumed and fold it
 850	 * into the running average kept per inode.  If the consumed IO
 851	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 852	 * deciding whether to switch or not.  This is to prevent one-off
 853	 * small dirtiers from skewing the verdict.
 854	 */
 855	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 856				wb->avg_write_bandwidth);
 857	if (avg_time)
 858		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 859			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 860	else
 861		avg_time = max_time;	/* immediate catch up on first run */
 862
 863	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 864		int slots;
 865
 866		/*
 867		 * The switch verdict is reached if foreign wb's consume
 868		 * more than a certain proportion of IO time in a
 869		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 870		 * history mask where each bit represents one sixteenth of
 871		 * the period.  Determine the number of slots to shift into
 872		 * history from @max_time.
 873		 */
 874		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 875			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 876		history <<= slots;
 877		if (wbc->wb_id != max_id)
 878			history |= (1U << slots) - 1;
 879
 880		if (history)
 881			trace_inode_foreign_history(inode, wbc, history);
 882
 883		/*
 884		 * Switch if the current wb isn't the consistent winner.
 885		 * If there are multiple closely competing dirtiers, the
 886		 * inode may switch across them repeatedly over time, which
 887		 * is okay.  The main goal is avoiding keeping an inode on
 888		 * the wrong wb for an extended period of time.
 889		 */
 890		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
 891			inode_switch_wbs(inode, max_id);
 892	}
 893
 894	/*
 895	 * Multiple instances of this function may race to update the
 896	 * following fields but we don't mind occassional inaccuracies.
 897	 */
 898	inode->i_wb_frn_winner = max_id;
 899	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 900	inode->i_wb_frn_history = history;
 901
 902	wb_put(wbc->wb);
 903	wbc->wb = NULL;
 904}
 905EXPORT_SYMBOL_GPL(wbc_detach_inode);
 906
 907/**
 908 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
 909 * @wbc: writeback_control of the writeback in progress
 910 * @folio: folio being written out
 911 * @bytes: number of bytes being written out
 912 *
 913 * @bytes from @folio are about to written out during the writeback
 914 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 915 * wbc_detach_inode().
 916 */
 917void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
 918			      size_t bytes)
 919{
 920	struct cgroup_subsys_state *css;
 921	int id;
 922
 923	/*
 924	 * pageout() path doesn't attach @wbc to the inode being written
 925	 * out.  This is intentional as we don't want the function to block
 926	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 927	 * regular writeback instead of writing things out itself.
 928	 */
 929	if (!wbc->wb || wbc->no_cgroup_owner)
 930		return;
 931
 932	css = mem_cgroup_css_from_folio(folio);
 933	/* dead cgroups shouldn't contribute to inode ownership arbitration */
 934	if (!(css->flags & CSS_ONLINE))
 935		return;
 936
 937	id = css->id;
 938
 939	if (id == wbc->wb_id) {
 940		wbc->wb_bytes += bytes;
 941		return;
 942	}
 943
 944	if (id == wbc->wb_lcand_id)
 945		wbc->wb_lcand_bytes += bytes;
 946
 947	/* Boyer-Moore majority vote algorithm */
 948	if (!wbc->wb_tcand_bytes)
 949		wbc->wb_tcand_id = id;
 950	if (id == wbc->wb_tcand_id)
 951		wbc->wb_tcand_bytes += bytes;
 952	else
 953		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 954}
 955EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957/**
 958 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 959 * @wb: target bdi_writeback to split @nr_pages to
 960 * @nr_pages: number of pages to write for the whole bdi
 961 *
 962 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 963 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 964 * @wb->bdi.
 965 */
 966static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 967{
 968	unsigned long this_bw = wb->avg_write_bandwidth;
 969	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 970
 971	if (nr_pages == LONG_MAX)
 972		return LONG_MAX;
 973
 974	/*
 975	 * This may be called on clean wb's and proportional distribution
 976	 * may not make sense, just use the original @nr_pages in those
 977	 * cases.  In general, we wanna err on the side of writing more.
 978	 */
 979	if (!tot_bw || this_bw >= tot_bw)
 980		return nr_pages;
 981	else
 982		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 983}
 984
 985/**
 986 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 987 * @bdi: target backing_dev_info
 988 * @base_work: wb_writeback_work to issue
 989 * @skip_if_busy: skip wb's which already have writeback in progress
 990 *
 991 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 992 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 993 * distributed to the busy wbs according to each wb's proportion in the
 994 * total active write bandwidth of @bdi.
 995 */
 996static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 997				  struct wb_writeback_work *base_work,
 998				  bool skip_if_busy)
 999{
1000	struct bdi_writeback *last_wb = NULL;
1001	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
1002					      struct bdi_writeback, bdi_node);
1003
1004	might_sleep();
1005restart:
1006	rcu_read_lock();
1007	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1008		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1009		struct wb_writeback_work fallback_work;
1010		struct wb_writeback_work *work;
1011		long nr_pages;
1012
1013		if (last_wb) {
1014			wb_put(last_wb);
1015			last_wb = NULL;
1016		}
1017
1018		/* SYNC_ALL writes out I_DIRTY_TIME too */
1019		if (!wb_has_dirty_io(wb) &&
1020		    (base_work->sync_mode == WB_SYNC_NONE ||
1021		     list_empty(&wb->b_dirty_time)))
1022			continue;
1023		if (skip_if_busy && writeback_in_progress(wb))
1024			continue;
1025
1026		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1027
1028		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1029		if (work) {
1030			*work = *base_work;
1031			work->nr_pages = nr_pages;
1032			work->auto_free = 1;
1033			wb_queue_work(wb, work);
1034			continue;
1035		}
1036
1037		/*
1038		 * If wb_tryget fails, the wb has been shutdown, skip it.
1039		 *
1040		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1041		 * continuing iteration from @wb after dropping and
1042		 * regrabbing rcu read lock.
1043		 */
1044		if (!wb_tryget(wb))
1045			continue;
1046
1047		/* alloc failed, execute synchronously using on-stack fallback */
1048		work = &fallback_work;
1049		*work = *base_work;
1050		work->nr_pages = nr_pages;
1051		work->auto_free = 0;
1052		work->done = &fallback_work_done;
1053
1054		wb_queue_work(wb, work);
 
 
 
 
 
 
 
1055		last_wb = wb;
1056
1057		rcu_read_unlock();
1058		wb_wait_for_completion(&fallback_work_done);
1059		goto restart;
1060	}
1061	rcu_read_unlock();
1062
1063	if (last_wb)
1064		wb_put(last_wb);
1065}
1066
1067/**
1068 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1069 * @bdi_id: target bdi id
1070 * @memcg_id: target memcg css id
1071 * @reason: reason why some writeback work initiated
1072 * @done: target wb_completion
1073 *
1074 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1075 * with the specified parameters.
1076 */
1077int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1078			   enum wb_reason reason, struct wb_completion *done)
1079{
1080	struct backing_dev_info *bdi;
1081	struct cgroup_subsys_state *memcg_css;
1082	struct bdi_writeback *wb;
1083	struct wb_writeback_work *work;
1084	unsigned long dirty;
1085	int ret;
1086
1087	/* lookup bdi and memcg */
1088	bdi = bdi_get_by_id(bdi_id);
1089	if (!bdi)
1090		return -ENOENT;
1091
1092	rcu_read_lock();
1093	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1094	if (memcg_css && !css_tryget(memcg_css))
1095		memcg_css = NULL;
1096	rcu_read_unlock();
1097	if (!memcg_css) {
1098		ret = -ENOENT;
1099		goto out_bdi_put;
1100	}
1101
1102	/*
1103	 * And find the associated wb.  If the wb isn't there already
1104	 * there's nothing to flush, don't create one.
1105	 */
1106	wb = wb_get_lookup(bdi, memcg_css);
1107	if (!wb) {
1108		ret = -ENOENT;
1109		goto out_css_put;
1110	}
1111
1112	/*
1113	 * The caller is attempting to write out most of
1114	 * the currently dirty pages.  Let's take the current dirty page
1115	 * count and inflate it by 25% which should be large enough to
1116	 * flush out most dirty pages while avoiding getting livelocked by
1117	 * concurrent dirtiers.
1118	 *
1119	 * BTW the memcg stats are flushed periodically and this is best-effort
1120	 * estimation, so some potential error is ok.
1121	 */
1122	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1123	dirty = dirty * 10 / 8;
1124
1125	/* issue the writeback work */
1126	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1127	if (work) {
1128		work->nr_pages = dirty;
1129		work->sync_mode = WB_SYNC_NONE;
1130		work->range_cyclic = 1;
1131		work->reason = reason;
1132		work->done = done;
1133		work->auto_free = 1;
1134		wb_queue_work(wb, work);
1135		ret = 0;
1136	} else {
1137		ret = -ENOMEM;
1138	}
1139
1140	wb_put(wb);
1141out_css_put:
1142	css_put(memcg_css);
1143out_bdi_put:
1144	bdi_put(bdi);
1145	return ret;
1146}
1147
1148/**
1149 * cgroup_writeback_umount - flush inode wb switches for umount
1150 * @sb: target super_block
1151 *
1152 * This function is called when a super_block is about to be destroyed and
1153 * flushes in-flight inode wb switches.  An inode wb switch goes through
1154 * RCU and then workqueue, so the two need to be flushed in order to ensure
1155 * that all previously scheduled switches are finished.  As wb switches are
1156 * rare occurrences and synchronize_rcu() can take a while, perform
1157 * flushing iff wb switches are in flight.
1158 */
1159void cgroup_writeback_umount(struct super_block *sb)
1160{
1161
1162	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1163		return;
1164
1165	/*
1166	 * SB_ACTIVE should be reliably cleared before checking
1167	 * isw_nr_in_flight, see generic_shutdown_super().
1168	 */
1169	smp_mb();
1170
1171	if (atomic_read(&isw_nr_in_flight)) {
1172		/*
1173		 * Use rcu_barrier() to wait for all pending callbacks to
1174		 * ensure that all in-flight wb switches are in the workqueue.
1175		 */
1176		rcu_barrier();
1177		flush_workqueue(isw_wq);
1178	}
1179}
1180
1181static int __init cgroup_writeback_init(void)
1182{
1183	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1184	if (!isw_wq)
1185		return -ENOMEM;
1186	return 0;
1187}
1188fs_initcall(cgroup_writeback_init);
1189
1190#else	/* CONFIG_CGROUP_WRITEBACK */
1191
1192static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1193static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1194
1195static void inode_cgwb_move_to_attached(struct inode *inode,
1196					struct bdi_writeback *wb)
1197{
1198	assert_spin_locked(&wb->list_lock);
1199	assert_spin_locked(&inode->i_lock);
1200	WARN_ON_ONCE(inode->i_state & I_FREEING);
1201
1202	inode->i_state &= ~I_SYNC_QUEUED;
1203	list_del_init(&inode->i_io_list);
1204	wb_io_lists_depopulated(wb);
1205}
1206
1207static struct bdi_writeback *
1208locked_inode_to_wb_and_lock_list(struct inode *inode)
1209	__releases(&inode->i_lock)
1210	__acquires(&wb->list_lock)
1211{
1212	struct bdi_writeback *wb = inode_to_wb(inode);
1213
1214	spin_unlock(&inode->i_lock);
1215	spin_lock(&wb->list_lock);
1216	return wb;
1217}
1218
1219static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1220	__acquires(&wb->list_lock)
1221{
1222	struct bdi_writeback *wb = inode_to_wb(inode);
1223
1224	spin_lock(&wb->list_lock);
1225	return wb;
1226}
1227
1228static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1229{
1230	return nr_pages;
1231}
1232
1233static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1234				  struct wb_writeback_work *base_work,
1235				  bool skip_if_busy)
1236{
1237	might_sleep();
1238
1239	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1240		base_work->auto_free = 0;
1241		wb_queue_work(&bdi->wb, base_work);
1242	}
1243}
1244
1245static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
1246					       struct inode *inode)
1247	__releases(&inode->i_lock)
1248{
1249	spin_unlock(&inode->i_lock);
1250}
1251
1252#endif	/* CONFIG_CGROUP_WRITEBACK */
1253
1254/*
1255 * Add in the number of potentially dirty inodes, because each inode
1256 * write can dirty pagecache in the underlying blockdev.
1257 */
1258static unsigned long get_nr_dirty_pages(void)
1259{
1260	return global_node_page_state(NR_FILE_DIRTY) +
1261		get_nr_dirty_inodes();
1262}
1263
1264static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1265{
1266	if (!wb_has_dirty_io(wb))
1267		return;
1268
1269	/*
1270	 * All callers of this function want to start writeback of all
1271	 * dirty pages. Places like vmscan can call this at a very
1272	 * high frequency, causing pointless allocations of tons of
1273	 * work items and keeping the flusher threads busy retrieving
1274	 * that work. Ensure that we only allow one of them pending and
1275	 * inflight at the time.
1276	 */
1277	if (test_bit(WB_start_all, &wb->state) ||
1278	    test_and_set_bit(WB_start_all, &wb->state))
 
 
 
1279		return;
 
 
 
 
 
 
 
1280
1281	wb->start_all_reason = reason;
1282	wb_wakeup(wb);
1283}
1284
1285/**
1286 * wb_start_background_writeback - start background writeback
1287 * @wb: bdi_writback to write from
1288 *
1289 * Description:
1290 *   This makes sure WB_SYNC_NONE background writeback happens. When
1291 *   this function returns, it is only guaranteed that for given wb
1292 *   some IO is happening if we are over background dirty threshold.
1293 *   Caller need not hold sb s_umount semaphore.
1294 */
1295void wb_start_background_writeback(struct bdi_writeback *wb)
1296{
1297	/*
1298	 * We just wake up the flusher thread. It will perform background
1299	 * writeback as soon as there is no other work to do.
1300	 */
1301	trace_writeback_wake_background(wb);
1302	wb_wakeup(wb);
1303}
1304
1305/*
1306 * Remove the inode from the writeback list it is on.
1307 */
1308void inode_io_list_del(struct inode *inode)
1309{
1310	struct bdi_writeback *wb;
1311
1312	wb = inode_to_wb_and_lock_list(inode);
1313	spin_lock(&inode->i_lock);
1314
1315	inode->i_state &= ~I_SYNC_QUEUED;
1316	list_del_init(&inode->i_io_list);
1317	wb_io_lists_depopulated(wb);
1318
1319	spin_unlock(&inode->i_lock);
1320	spin_unlock(&wb->list_lock);
1321}
1322EXPORT_SYMBOL(inode_io_list_del);
1323
1324/*
1325 * mark an inode as under writeback on the sb
1326 */
1327void sb_mark_inode_writeback(struct inode *inode)
1328{
1329	struct super_block *sb = inode->i_sb;
1330	unsigned long flags;
1331
1332	if (list_empty(&inode->i_wb_list)) {
1333		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1334		if (list_empty(&inode->i_wb_list)) {
1335			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1336			trace_sb_mark_inode_writeback(inode);
1337		}
1338		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1339	}
1340}
1341
1342/*
1343 * clear an inode as under writeback on the sb
1344 */
1345void sb_clear_inode_writeback(struct inode *inode)
1346{
1347	struct super_block *sb = inode->i_sb;
1348	unsigned long flags;
1349
1350	if (!list_empty(&inode->i_wb_list)) {
1351		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1352		if (!list_empty(&inode->i_wb_list)) {
1353			list_del_init(&inode->i_wb_list);
1354			trace_sb_clear_inode_writeback(inode);
1355		}
1356		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1357	}
1358}
1359
1360/*
1361 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1362 * furthest end of its superblock's dirty-inode list.
1363 *
1364 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1365 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1366 * the case then the inode must have been redirtied while it was being written
1367 * out and we don't reset its dirtied_when.
1368 */
1369static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1370{
1371	assert_spin_locked(&inode->i_lock);
1372
1373	inode->i_state &= ~I_SYNC_QUEUED;
1374	/*
1375	 * When the inode is being freed just don't bother with dirty list
1376	 * tracking. Flush worker will ignore this inode anyway and it will
1377	 * trigger assertions in inode_io_list_move_locked().
1378	 */
1379	if (inode->i_state & I_FREEING) {
1380		list_del_init(&inode->i_io_list);
1381		wb_io_lists_depopulated(wb);
1382		return;
1383	}
1384	if (!list_empty(&wb->b_dirty)) {
1385		struct inode *tail;
1386
1387		tail = wb_inode(wb->b_dirty.next);
1388		if (time_before(inode->dirtied_when, tail->dirtied_when))
1389			inode->dirtied_when = jiffies;
1390	}
1391	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1392}
1393
1394static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1395{
1396	spin_lock(&inode->i_lock);
1397	redirty_tail_locked(inode, wb);
1398	spin_unlock(&inode->i_lock);
1399}
1400
1401/*
1402 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1403 */
1404static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1405{
1406	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1407}
1408
1409static void inode_sync_complete(struct inode *inode)
1410{
1411	assert_spin_locked(&inode->i_lock);
1412
1413	inode->i_state &= ~I_SYNC;
1414	/* If inode is clean an unused, put it into LRU now... */
1415	inode_add_lru(inode);
1416	/* Called with inode->i_lock which ensures memory ordering. */
1417	inode_wake_up_bit(inode, __I_SYNC);
 
1418}
1419
1420static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1421{
1422	bool ret = time_after(inode->dirtied_when, t);
1423#ifndef CONFIG_64BIT
1424	/*
1425	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1426	 * It _appears_ to be in the future, but is actually in distant past.
1427	 * This test is necessary to prevent such wrapped-around relative times
1428	 * from permanently stopping the whole bdi writeback.
1429	 */
1430	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1431#endif
1432	return ret;
1433}
1434
 
 
1435/*
1436 * Move expired (dirtied before dirtied_before) dirty inodes from
1437 * @delaying_queue to @dispatch_queue.
1438 */
1439static int move_expired_inodes(struct list_head *delaying_queue,
1440			       struct list_head *dispatch_queue,
1441			       unsigned long dirtied_before)
 
1442{
 
 
1443	LIST_HEAD(tmp);
1444	struct list_head *pos, *node;
1445	struct super_block *sb = NULL;
1446	struct inode *inode;
1447	int do_sb_sort = 0;
1448	int moved = 0;
1449
 
 
 
 
 
 
1450	while (!list_empty(delaying_queue)) {
1451		inode = wb_inode(delaying_queue->prev);
1452		if (inode_dirtied_after(inode, dirtied_before))
 
1453			break;
1454		spin_lock(&inode->i_lock);
1455		list_move(&inode->i_io_list, &tmp);
1456		moved++;
1457		inode->i_state |= I_SYNC_QUEUED;
1458		spin_unlock(&inode->i_lock);
1459		if (sb_is_blkdev_sb(inode->i_sb))
1460			continue;
1461		if (sb && sb != inode->i_sb)
1462			do_sb_sort = 1;
1463		sb = inode->i_sb;
1464	}
1465
1466	/* just one sb in list, splice to dispatch_queue and we're done */
1467	if (!do_sb_sort) {
1468		list_splice(&tmp, dispatch_queue);
1469		goto out;
1470	}
1471
1472	/*
1473	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1474	 * we don't take inode->i_lock here because it is just a pointless overhead.
1475	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1476	 * fully under our control.
1477	 */
1478	while (!list_empty(&tmp)) {
1479		sb = wb_inode(tmp.prev)->i_sb;
1480		list_for_each_prev_safe(pos, node, &tmp) {
1481			inode = wb_inode(pos);
1482			if (inode->i_sb == sb)
1483				list_move(&inode->i_io_list, dispatch_queue);
1484		}
1485	}
1486out:
1487	return moved;
1488}
1489
1490/*
1491 * Queue all expired dirty inodes for io, eldest first.
1492 * Before
1493 *         newly dirtied     b_dirty    b_io    b_more_io
1494 *         =============>    gf         edc     BA
1495 * After
1496 *         newly dirtied     b_dirty    b_io    b_more_io
1497 *         =============>    g          fBAedc
1498 *                                           |
1499 *                                           +--> dequeue for IO
1500 */
1501static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1502		     unsigned long dirtied_before)
1503{
1504	int moved;
1505	unsigned long time_expire_jif = dirtied_before;
1506
1507	assert_spin_locked(&wb->list_lock);
1508	list_splice_init(&wb->b_more_io, &wb->b_io);
1509	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1510	if (!work->for_sync)
1511		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1512	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1513				     time_expire_jif);
1514	if (moved)
1515		wb_io_lists_populated(wb);
1516	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1517}
1518
1519static int write_inode(struct inode *inode, struct writeback_control *wbc)
1520{
1521	int ret;
1522
1523	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1524		trace_writeback_write_inode_start(inode, wbc);
1525		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1526		trace_writeback_write_inode(inode, wbc);
1527		return ret;
1528	}
1529	return 0;
1530}
1531
1532/*
1533 * Wait for writeback on an inode to complete. Called with i_lock held.
1534 * Caller must make sure inode cannot go away when we drop i_lock.
1535 */
1536void inode_wait_for_writeback(struct inode *inode)
 
 
1537{
1538	struct wait_bit_queue_entry wqe;
1539	struct wait_queue_head *wq_head;
1540
1541	assert_spin_locked(&inode->i_lock);
1542
1543	if (!(inode->i_state & I_SYNC))
1544		return;
1545
1546	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1547	for (;;) {
1548		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1549		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1550		if (!(inode->i_state & I_SYNC))
1551			break;
1552		spin_unlock(&inode->i_lock);
1553		schedule();
 
1554		spin_lock(&inode->i_lock);
1555	}
1556	finish_wait(wq_head, &wqe.wq_entry);
 
 
 
 
 
 
 
 
 
1557}
1558
1559/*
1560 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1561 * held and drops it. It is aimed for callers not holding any inode reference
1562 * so once i_lock is dropped, inode can go away.
1563 */
1564static void inode_sleep_on_writeback(struct inode *inode)
1565	__releases(inode->i_lock)
1566{
1567	struct wait_bit_queue_entry wqe;
1568	struct wait_queue_head *wq_head;
1569	bool sleep;
1570
1571	assert_spin_locked(&inode->i_lock);
1572
1573	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1574	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1575	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1576	sleep = !!(inode->i_state & I_SYNC);
1577	spin_unlock(&inode->i_lock);
1578	if (sleep)
1579		schedule();
1580	finish_wait(wq_head, &wqe.wq_entry);
1581}
1582
1583/*
1584 * Find proper writeback list for the inode depending on its current state and
1585 * possibly also change of its state while we were doing writeback.  Here we
1586 * handle things such as livelock prevention or fairness of writeback among
1587 * inodes. This function can be called only by flusher thread - noone else
1588 * processes all inodes in writeback lists and requeueing inodes behind flusher
1589 * thread's back can have unexpected consequences.
1590 */
1591static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1592			  struct writeback_control *wbc,
1593			  unsigned long dirtied_before)
1594{
1595	if (inode->i_state & I_FREEING)
1596		return;
1597
1598	/*
1599	 * Sync livelock prevention. Each inode is tagged and synced in one
1600	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1601	 * the dirty time to prevent enqueue and sync it again.
1602	 */
1603	if ((inode->i_state & I_DIRTY) &&
1604	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1605		inode->dirtied_when = jiffies;
1606
1607	if (wbc->pages_skipped) {
1608		/*
1609		 * Writeback is not making progress due to locked buffers.
1610		 * Skip this inode for now. Although having skipped pages
1611		 * is odd for clean inodes, it can happen for some
1612		 * filesystems so handle that gracefully.
1613		 */
1614		if (inode->i_state & I_DIRTY_ALL)
1615			redirty_tail_locked(inode, wb);
1616		else
1617			inode_cgwb_move_to_attached(inode, wb);
1618		return;
1619	}
1620
1621	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1622		/*
1623		 * We didn't write back all the pages.  nfs_writepages()
1624		 * sometimes bales out without doing anything.
1625		 */
1626		if (wbc->nr_to_write <= 0 &&
1627		    !inode_dirtied_after(inode, dirtied_before)) {
1628			/* Slice used up. Queue for next turn. */
1629			requeue_io(inode, wb);
1630		} else {
1631			/*
1632			 * Writeback blocked by something other than
1633			 * congestion. Delay the inode for some time to
1634			 * avoid spinning on the CPU (100% iowait)
1635			 * retrying writeback of the dirty page/inode
1636			 * that cannot be performed immediately.
1637			 */
1638			redirty_tail_locked(inode, wb);
1639		}
1640	} else if (inode->i_state & I_DIRTY) {
1641		/*
1642		 * Filesystems can dirty the inode during writeback operations,
1643		 * such as delayed allocation during submission or metadata
1644		 * updates after data IO completion.
1645		 */
1646		redirty_tail_locked(inode, wb);
1647	} else if (inode->i_state & I_DIRTY_TIME) {
1648		inode->dirtied_when = jiffies;
1649		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1650		inode->i_state &= ~I_SYNC_QUEUED;
1651	} else {
1652		/* The inode is clean. Remove from writeback lists. */
1653		inode_cgwb_move_to_attached(inode, wb);
1654	}
1655}
1656
1657/*
1658 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1659 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1660 *
1661 * This doesn't remove the inode from the writeback list it is on, except
1662 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1663 * expiration.  The caller is otherwise responsible for writeback list handling.
1664 *
1665 * The caller is also responsible for setting the I_SYNC flag beforehand and
1666 * calling inode_sync_complete() to clear it afterwards.
1667 */
1668static int
1669__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1670{
1671	struct address_space *mapping = inode->i_mapping;
1672	long nr_to_write = wbc->nr_to_write;
1673	unsigned dirty;
1674	int ret;
1675
1676	WARN_ON(!(inode->i_state & I_SYNC));
1677
1678	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1679
1680	ret = do_writepages(mapping, wbc);
1681
1682	/*
1683	 * Make sure to wait on the data before writing out the metadata.
1684	 * This is important for filesystems that modify metadata on data
1685	 * I/O completion. We don't do it for sync(2) writeback because it has a
1686	 * separate, external IO completion path and ->sync_fs for guaranteeing
1687	 * inode metadata is written back correctly.
1688	 */
1689	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1690		int err = filemap_fdatawait(mapping);
1691		if (ret == 0)
1692			ret = err;
1693	}
1694
1695	/*
1696	 * If the inode has dirty timestamps and we need to write them, call
1697	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1698	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1699	 */
1700	if ((inode->i_state & I_DIRTY_TIME) &&
1701	    (wbc->sync_mode == WB_SYNC_ALL ||
1702	     time_after(jiffies, inode->dirtied_time_when +
1703			dirtytime_expire_interval * HZ))) {
1704		trace_writeback_lazytime(inode);
1705		mark_inode_dirty_sync(inode);
1706	}
1707
1708	/*
1709	 * Get and clear the dirty flags from i_state.  This needs to be done
1710	 * after calling writepages because some filesystems may redirty the
1711	 * inode during writepages due to delalloc.  It also needs to be done
1712	 * after handling timestamp expiration, as that may dirty the inode too.
1713	 */
1714	spin_lock(&inode->i_lock);
 
1715	dirty = inode->i_state & I_DIRTY;
 
 
 
 
 
 
 
 
 
 
 
 
1716	inode->i_state &= ~dirty;
1717
1718	/*
1719	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1720	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1721	 * either they see the I_DIRTY bits cleared or we see the dirtied
1722	 * inode.
1723	 *
1724	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1725	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1726	 * necessary.  This guarantees that either __mark_inode_dirty()
1727	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1728	 */
1729	smp_mb();
1730
1731	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1732		inode->i_state |= I_DIRTY_PAGES;
1733	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1734		if (!(inode->i_state & I_DIRTY_PAGES)) {
1735			inode->i_state &= ~I_PINNING_NETFS_WB;
1736			wbc->unpinned_netfs_wb = true;
1737			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1738		}
1739	}
1740
1741	spin_unlock(&inode->i_lock);
1742
 
 
1743	/* Don't write the inode if only I_DIRTY_PAGES was set */
1744	if (dirty & ~I_DIRTY_PAGES) {
1745		int err = write_inode(inode, wbc);
1746		if (ret == 0)
1747			ret = err;
1748	}
1749	wbc->unpinned_netfs_wb = false;
1750	trace_writeback_single_inode(inode, wbc, nr_to_write);
1751	return ret;
1752}
1753
1754/*
1755 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1756 * the regular batched writeback done by the flusher threads in
1757 * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1758 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1759 *
1760 * To prevent the inode from going away, either the caller must have a reference
1761 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
 
1762 */
1763static int writeback_single_inode(struct inode *inode,
1764				  struct writeback_control *wbc)
1765{
1766	struct bdi_writeback *wb;
1767	int ret = 0;
1768
1769	spin_lock(&inode->i_lock);
1770	if (!atomic_read(&inode->i_count))
1771		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1772	else
1773		WARN_ON(inode->i_state & I_WILL_FREE);
1774
1775	if (inode->i_state & I_SYNC) {
 
 
1776		/*
1777		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1778		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1779		 * must wait for the existing writeback to complete, then do
1780		 * writeback again if there's anything left.
1781		 */
1782		if (wbc->sync_mode != WB_SYNC_ALL)
1783			goto out;
1784		inode_wait_for_writeback(inode);
1785	}
1786	WARN_ON(inode->i_state & I_SYNC);
1787	/*
1788	 * If the inode is already fully clean, then there's nothing to do.
1789	 *
1790	 * For data-integrity syncs we also need to check whether any pages are
1791	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1792	 * there are any such pages, we'll need to wait for them.
 
1793	 */
1794	if (!(inode->i_state & I_DIRTY_ALL) &&
1795	    (wbc->sync_mode != WB_SYNC_ALL ||
1796	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1797		goto out;
1798	inode->i_state |= I_SYNC;
1799	wbc_attach_and_unlock_inode(wbc, inode);
1800
1801	ret = __writeback_single_inode(inode, wbc);
1802
1803	wbc_detach_inode(wbc);
1804
1805	wb = inode_to_wb_and_lock_list(inode);
1806	spin_lock(&inode->i_lock);
1807	/*
1808	 * If the inode is freeing, its i_io_list shoudn't be updated
1809	 * as it can be finally deleted at this moment.
1810	 */
1811	if (!(inode->i_state & I_FREEING)) {
1812		/*
1813		 * If the inode is now fully clean, then it can be safely
1814		 * removed from its writeback list (if any). Otherwise the
1815		 * flusher threads are responsible for the writeback lists.
1816		 */
1817		if (!(inode->i_state & I_DIRTY_ALL))
1818			inode_cgwb_move_to_attached(inode, wb);
1819		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1820			if ((inode->i_state & I_DIRTY))
1821				redirty_tail_locked(inode, wb);
1822			else if (inode->i_state & I_DIRTY_TIME) {
1823				inode->dirtied_when = jiffies;
1824				inode_io_list_move_locked(inode,
1825							  wb,
1826							  &wb->b_dirty_time);
1827			}
1828		}
1829	}
1830
1831	spin_unlock(&wb->list_lock);
1832	inode_sync_complete(inode);
1833out:
1834	spin_unlock(&inode->i_lock);
1835	return ret;
1836}
1837
1838static long writeback_chunk_size(struct bdi_writeback *wb,
1839				 struct wb_writeback_work *work)
1840{
1841	long pages;
1842
1843	/*
1844	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1845	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1846	 * here avoids calling into writeback_inodes_wb() more than once.
1847	 *
1848	 * The intended call sequence for WB_SYNC_ALL writeback is:
1849	 *
1850	 *      wb_writeback()
1851	 *          writeback_sb_inodes()       <== called only once
1852	 *              write_cache_pages()     <== called once for each inode
1853	 *                   (quickly) tag currently dirty pages
1854	 *                   (maybe slowly) sync all tagged pages
1855	 */
1856	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1857		pages = LONG_MAX;
1858	else {
1859		pages = min(wb->avg_write_bandwidth / 2,
1860			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1861		pages = min(pages, work->nr_pages);
1862		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1863				   MIN_WRITEBACK_PAGES);
1864	}
1865
1866	return pages;
1867}
1868
1869/*
1870 * Write a portion of b_io inodes which belong to @sb.
1871 *
1872 * Return the number of pages and/or inodes written.
1873 *
1874 * NOTE! This is called with wb->list_lock held, and will
1875 * unlock and relock that for each inode it ends up doing
1876 * IO for.
1877 */
1878static long writeback_sb_inodes(struct super_block *sb,
1879				struct bdi_writeback *wb,
1880				struct wb_writeback_work *work)
1881{
1882	struct writeback_control wbc = {
1883		.sync_mode		= work->sync_mode,
1884		.tagged_writepages	= work->tagged_writepages,
1885		.for_kupdate		= work->for_kupdate,
1886		.for_background		= work->for_background,
1887		.for_sync		= work->for_sync,
1888		.range_cyclic		= work->range_cyclic,
1889		.range_start		= 0,
1890		.range_end		= LLONG_MAX,
1891	};
1892	unsigned long start_time = jiffies;
1893	long write_chunk;
1894	long total_wrote = 0;  /* count both pages and inodes */
1895	unsigned long dirtied_before = jiffies;
1896
1897	if (work->for_kupdate)
1898		dirtied_before = jiffies -
1899			msecs_to_jiffies(dirty_expire_interval * 10);
1900
1901	while (!list_empty(&wb->b_io)) {
1902		struct inode *inode = wb_inode(wb->b_io.prev);
1903		struct bdi_writeback *tmp_wb;
1904		long wrote;
1905
1906		if (inode->i_sb != sb) {
1907			if (work->sb) {
1908				/*
1909				 * We only want to write back data for this
1910				 * superblock, move all inodes not belonging
1911				 * to it back onto the dirty list.
1912				 */
1913				redirty_tail(inode, wb);
1914				continue;
1915			}
1916
1917			/*
1918			 * The inode belongs to a different superblock.
1919			 * Bounce back to the caller to unpin this and
1920			 * pin the next superblock.
1921			 */
1922			break;
1923		}
1924
1925		/*
1926		 * Don't bother with new inodes or inodes being freed, first
1927		 * kind does not need periodic writeout yet, and for the latter
1928		 * kind writeout is handled by the freer.
1929		 */
1930		spin_lock(&inode->i_lock);
1931		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1932			redirty_tail_locked(inode, wb);
1933			spin_unlock(&inode->i_lock);
 
1934			continue;
1935		}
1936		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1937			/*
1938			 * If this inode is locked for writeback and we are not
1939			 * doing writeback-for-data-integrity, move it to
1940			 * b_more_io so that writeback can proceed with the
1941			 * other inodes on s_io.
1942			 *
1943			 * We'll have another go at writing back this inode
1944			 * when we completed a full scan of b_io.
1945			 */
 
1946			requeue_io(inode, wb);
1947			spin_unlock(&inode->i_lock);
1948			trace_writeback_sb_inodes_requeue(inode);
1949			continue;
1950		}
1951		spin_unlock(&wb->list_lock);
1952
1953		/*
1954		 * We already requeued the inode if it had I_SYNC set and we
1955		 * are doing WB_SYNC_NONE writeback. So this catches only the
1956		 * WB_SYNC_ALL case.
1957		 */
1958		if (inode->i_state & I_SYNC) {
1959			/* Wait for I_SYNC. This function drops i_lock... */
1960			inode_sleep_on_writeback(inode);
1961			/* Inode may be gone, start again */
1962			spin_lock(&wb->list_lock);
1963			continue;
1964		}
1965		inode->i_state |= I_SYNC;
1966		wbc_attach_and_unlock_inode(&wbc, inode);
1967
1968		write_chunk = writeback_chunk_size(wb, work);
1969		wbc.nr_to_write = write_chunk;
1970		wbc.pages_skipped = 0;
1971
1972		/*
1973		 * We use I_SYNC to pin the inode in memory. While it is set
1974		 * evict_inode() will wait so the inode cannot be freed.
1975		 */
1976		__writeback_single_inode(inode, &wbc);
1977
1978		wbc_detach_inode(&wbc);
1979		work->nr_pages -= write_chunk - wbc.nr_to_write;
1980		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1981		wrote = wrote < 0 ? 0 : wrote;
1982		total_wrote += wrote;
1983
1984		if (need_resched()) {
1985			/*
1986			 * We're trying to balance between building up a nice
1987			 * long list of IOs to improve our merge rate, and
1988			 * getting those IOs out quickly for anyone throttling
1989			 * in balance_dirty_pages().  cond_resched() doesn't
1990			 * unplug, so get our IOs out the door before we
1991			 * give up the CPU.
1992			 */
1993			blk_flush_plug(current->plug, false);
1994			cond_resched();
1995		}
1996
1997		/*
1998		 * Requeue @inode if still dirty.  Be careful as @inode may
1999		 * have been switched to another wb in the meantime.
2000		 */
2001		tmp_wb = inode_to_wb_and_lock_list(inode);
2002		spin_lock(&inode->i_lock);
2003		if (!(inode->i_state & I_DIRTY_ALL))
2004			total_wrote++;
2005		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
2006		inode_sync_complete(inode);
2007		spin_unlock(&inode->i_lock);
2008
2009		if (unlikely(tmp_wb != wb)) {
2010			spin_unlock(&tmp_wb->list_lock);
2011			spin_lock(&wb->list_lock);
2012		}
2013
2014		/*
2015		 * bail out to wb_writeback() often enough to check
2016		 * background threshold and other termination conditions.
2017		 */
2018		if (total_wrote) {
2019			if (time_is_before_jiffies(start_time + HZ / 10UL))
2020				break;
2021			if (work->nr_pages <= 0)
2022				break;
2023		}
2024	}
2025	return total_wrote;
2026}
2027
2028static long __writeback_inodes_wb(struct bdi_writeback *wb,
2029				  struct wb_writeback_work *work)
2030{
2031	unsigned long start_time = jiffies;
2032	long wrote = 0;
2033
2034	while (!list_empty(&wb->b_io)) {
2035		struct inode *inode = wb_inode(wb->b_io.prev);
2036		struct super_block *sb = inode->i_sb;
2037
2038		if (!super_trylock_shared(sb)) {
2039			/*
2040			 * super_trylock_shared() may fail consistently due to
2041			 * s_umount being grabbed by someone else. Don't use
2042			 * requeue_io() to avoid busy retrying the inode/sb.
2043			 */
2044			redirty_tail(inode, wb);
2045			continue;
2046		}
2047		wrote += writeback_sb_inodes(sb, wb, work);
2048		up_read(&sb->s_umount);
2049
2050		/* refer to the same tests at the end of writeback_sb_inodes */
2051		if (wrote) {
2052			if (time_is_before_jiffies(start_time + HZ / 10UL))
2053				break;
2054			if (work->nr_pages <= 0)
2055				break;
2056		}
2057	}
2058	/* Leave any unwritten inodes on b_io */
2059	return wrote;
2060}
2061
2062static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2063				enum wb_reason reason)
2064{
2065	struct wb_writeback_work work = {
2066		.nr_pages	= nr_pages,
2067		.sync_mode	= WB_SYNC_NONE,
2068		.range_cyclic	= 1,
2069		.reason		= reason,
2070	};
2071	struct blk_plug plug;
2072
2073	blk_start_plug(&plug);
2074	spin_lock(&wb->list_lock);
2075	if (list_empty(&wb->b_io))
2076		queue_io(wb, &work, jiffies);
2077	__writeback_inodes_wb(wb, &work);
2078	spin_unlock(&wb->list_lock);
2079	blk_finish_plug(&plug);
2080
2081	return nr_pages - work.nr_pages;
2082}
2083
2084/*
2085 * Explicit flushing or periodic writeback of "old" data.
2086 *
2087 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2088 * dirtying-time in the inode's address_space.  So this periodic writeback code
2089 * just walks the superblock inode list, writing back any inodes which are
2090 * older than a specific point in time.
2091 *
2092 * Try to run once per dirty_writeback_interval.  But if a writeback event
2093 * takes longer than a dirty_writeback_interval interval, then leave a
2094 * one-second gap.
2095 *
2096 * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2097 * all dirty pages if they are all attached to "old" mappings.
2098 */
2099static long wb_writeback(struct bdi_writeback *wb,
2100			 struct wb_writeback_work *work)
2101{
 
2102	long nr_pages = work->nr_pages;
2103	unsigned long dirtied_before = jiffies;
2104	struct inode *inode;
2105	long progress;
2106	struct blk_plug plug;
2107	bool queued = false;
 
 
2108
2109	blk_start_plug(&plug);
 
2110	for (;;) {
2111		/*
2112		 * Stop writeback when nr_pages has been consumed
2113		 */
2114		if (work->nr_pages <= 0)
2115			break;
2116
2117		/*
2118		 * Background writeout and kupdate-style writeback may
2119		 * run forever. Stop them if there is other work to do
2120		 * so that e.g. sync can proceed. They'll be restarted
2121		 * after the other works are all done.
2122		 */
2123		if ((work->for_background || work->for_kupdate) &&
2124		    !list_empty(&wb->work_list))
2125			break;
2126
2127		/*
2128		 * For background writeout, stop when we are below the
2129		 * background dirty threshold
2130		 */
2131		if (work->for_background && !wb_over_bg_thresh(wb))
2132			break;
2133
2134
2135		spin_lock(&wb->list_lock);
 
 
 
 
 
 
 
 
 
2136
2137		trace_writeback_start(wb, work);
2138		if (list_empty(&wb->b_io)) {
2139			/*
2140			 * Kupdate and background works are special and we want
2141			 * to include all inodes that need writing. Livelock
2142			 * avoidance is handled by these works yielding to any
2143			 * other work so we are safe.
2144			 */
2145			if (work->for_kupdate) {
2146				dirtied_before = jiffies -
2147					msecs_to_jiffies(dirty_expire_interval *
2148							 10);
2149			} else if (work->for_background)
2150				dirtied_before = jiffies;
2151
2152			queue_io(wb, work, dirtied_before);
2153			queued = true;
2154		}
2155		if (work->sb)
2156			progress = writeback_sb_inodes(work->sb, wb, work);
2157		else
2158			progress = __writeback_inodes_wb(wb, work);
2159		trace_writeback_written(wb, work);
2160
 
 
2161		/*
2162		 * Did we write something? Try for more
2163		 *
2164		 * Dirty inodes are moved to b_io for writeback in batches.
2165		 * The completion of the current batch does not necessarily
2166		 * mean the overall work is done. So we keep looping as long
2167		 * as made some progress on cleaning pages or inodes.
2168		 */
2169		if (progress || !queued) {
2170			spin_unlock(&wb->list_lock);
2171			continue;
2172		}
2173
2174		/*
2175		 * No more inodes for IO, bail
2176		 */
2177		if (list_empty(&wb->b_more_io)) {
2178			spin_unlock(&wb->list_lock);
2179			break;
2180		}
2181
2182		/*
2183		 * Nothing written. Wait for some inode to
2184		 * become available for writeback. Otherwise
2185		 * we'll just busyloop.
2186		 */
2187		trace_writeback_wait(wb, work);
2188		inode = wb_inode(wb->b_more_io.prev);
2189		spin_lock(&inode->i_lock);
2190		spin_unlock(&wb->list_lock);
2191		/* This function drops i_lock... */
2192		inode_sleep_on_writeback(inode);
 
2193	}
 
2194	blk_finish_plug(&plug);
2195
2196	return nr_pages - work->nr_pages;
2197}
2198
2199/*
2200 * Return the next wb_writeback_work struct that hasn't been processed yet.
2201 */
2202static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2203{
2204	struct wb_writeback_work *work = NULL;
2205
2206	spin_lock_irq(&wb->work_lock);
2207	if (!list_empty(&wb->work_list)) {
2208		work = list_entry(wb->work_list.next,
2209				  struct wb_writeback_work, list);
2210		list_del_init(&work->list);
2211	}
2212	spin_unlock_irq(&wb->work_lock);
2213	return work;
2214}
2215
 
 
 
 
 
 
 
 
 
 
 
2216static long wb_check_background_flush(struct bdi_writeback *wb)
2217{
2218	if (wb_over_bg_thresh(wb)) {
2219
2220		struct wb_writeback_work work = {
2221			.nr_pages	= LONG_MAX,
2222			.sync_mode	= WB_SYNC_NONE,
2223			.for_background	= 1,
2224			.range_cyclic	= 1,
2225			.reason		= WB_REASON_BACKGROUND,
2226		};
2227
2228		return wb_writeback(wb, &work);
2229	}
2230
2231	return 0;
2232}
2233
2234static long wb_check_old_data_flush(struct bdi_writeback *wb)
2235{
2236	unsigned long expired;
2237	long nr_pages;
2238
2239	/*
2240	 * When set to zero, disable periodic writeback
2241	 */
2242	if (!dirty_writeback_interval)
2243		return 0;
2244
2245	expired = wb->last_old_flush +
2246			msecs_to_jiffies(dirty_writeback_interval * 10);
2247	if (time_before(jiffies, expired))
2248		return 0;
2249
2250	wb->last_old_flush = jiffies;
2251	nr_pages = get_nr_dirty_pages();
2252
2253	if (nr_pages) {
2254		struct wb_writeback_work work = {
2255			.nr_pages	= nr_pages,
2256			.sync_mode	= WB_SYNC_NONE,
2257			.for_kupdate	= 1,
2258			.range_cyclic	= 1,
2259			.reason		= WB_REASON_PERIODIC,
2260		};
2261
2262		return wb_writeback(wb, &work);
2263	}
2264
2265	return 0;
2266}
2267
2268static long wb_check_start_all(struct bdi_writeback *wb)
2269{
2270	long nr_pages;
2271
2272	if (!test_bit(WB_start_all, &wb->state))
2273		return 0;
2274
2275	nr_pages = get_nr_dirty_pages();
2276	if (nr_pages) {
2277		struct wb_writeback_work work = {
2278			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2279			.sync_mode	= WB_SYNC_NONE,
2280			.range_cyclic	= 1,
2281			.reason		= wb->start_all_reason,
2282		};
2283
2284		nr_pages = wb_writeback(wb, &work);
2285	}
2286
2287	clear_bit(WB_start_all, &wb->state);
2288	return nr_pages;
2289}
2290
2291
2292/*
2293 * Retrieve work items and do the writeback they describe
2294 */
2295static long wb_do_writeback(struct bdi_writeback *wb)
2296{
2297	struct wb_writeback_work *work;
2298	long wrote = 0;
2299
2300	set_bit(WB_writeback_running, &wb->state);
2301	while ((work = get_next_work_item(wb)) != NULL) {
 
 
2302		trace_writeback_exec(wb, work);
 
2303		wrote += wb_writeback(wb, work);
2304		finish_writeback_work(work);
 
 
 
 
2305	}
2306
2307	/*
2308	 * Check for a flush-everything request
2309	 */
2310	wrote += wb_check_start_all(wb);
2311
2312	/*
2313	 * Check for periodic writeback, kupdated() style
2314	 */
2315	wrote += wb_check_old_data_flush(wb);
2316	wrote += wb_check_background_flush(wb);
2317	clear_bit(WB_writeback_running, &wb->state);
2318
2319	return wrote;
2320}
2321
2322/*
2323 * Handle writeback of dirty data for the device backed by this bdi. Also
2324 * reschedules periodically and does kupdated style flushing.
2325 */
2326void wb_workfn(struct work_struct *work)
2327{
2328	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2329						struct bdi_writeback, dwork);
2330	long pages_written;
2331
2332	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
 
2333
2334	if (likely(!current_is_workqueue_rescuer() ||
2335		   !test_bit(WB_registered, &wb->state))) {
2336		/*
2337		 * The normal path.  Keep writing back @wb until its
2338		 * work_list is empty.  Note that this path is also taken
2339		 * if @wb is shutting down even when we're running off the
2340		 * rescuer as work_list needs to be drained.
2341		 */
2342		do {
2343			pages_written = wb_do_writeback(wb);
2344			trace_writeback_pages_written(pages_written);
2345		} while (!list_empty(&wb->work_list));
2346	} else {
2347		/*
2348		 * bdi_wq can't get enough workers and we're running off
2349		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2350		 * enough for efficient IO.
2351		 */
2352		pages_written = writeback_inodes_wb(wb, 1024,
2353						    WB_REASON_FORKER_THREAD);
2354		trace_writeback_pages_written(pages_written);
2355	}
2356
2357	if (!list_empty(&wb->work_list))
2358		wb_wakeup(wb);
2359	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2360		wb_wakeup_delayed(wb);
2361}
2362
2363/*
2364 * Start writeback of all dirty pages on this bdi.
2365 */
2366static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2367					 enum wb_reason reason)
2368{
2369	struct bdi_writeback *wb;
2370
2371	if (!bdi_has_dirty_io(bdi))
2372		return;
2373
2374	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2375		wb_start_writeback(wb, reason);
2376}
2377
2378void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2379				enum wb_reason reason)
2380{
2381	rcu_read_lock();
2382	__wakeup_flusher_threads_bdi(bdi, reason);
2383	rcu_read_unlock();
2384}
2385
2386/*
2387 * Wakeup the flusher threads to start writeback of all currently dirty pages
 
2388 */
2389void wakeup_flusher_threads(enum wb_reason reason)
2390{
2391	struct backing_dev_info *bdi;
2392
2393	/*
2394	 * If we are expecting writeback progress we must submit plugged IO.
2395	 */
2396	blk_flush_plug(current->plug, true);
 
 
 
 
2397
2398	rcu_read_lock();
2399	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2400		__wakeup_flusher_threads_bdi(bdi, reason);
 
 
 
 
 
 
 
 
2401	rcu_read_unlock();
2402}
2403
2404/*
2405 * Wake up bdi's periodically to make sure dirtytime inodes gets
2406 * written back periodically.  We deliberately do *not* check the
2407 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2408 * kernel to be constantly waking up once there are any dirtytime
2409 * inodes on the system.  So instead we define a separate delayed work
2410 * function which gets called much more rarely.  (By default, only
2411 * once every 12 hours.)
2412 *
2413 * If there is any other write activity going on in the file system,
2414 * this function won't be necessary.  But if the only thing that has
2415 * happened on the file system is a dirtytime inode caused by an atime
2416 * update, we need this infrastructure below to make sure that inode
2417 * eventually gets pushed out to disk.
2418 */
2419static void wakeup_dirtytime_writeback(struct work_struct *w);
2420static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2421
2422static void wakeup_dirtytime_writeback(struct work_struct *w)
2423{
2424	struct backing_dev_info *bdi;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2428		struct bdi_writeback *wb;
2429
2430		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2431			if (!list_empty(&wb->b_dirty_time))
2432				wb_wakeup(wb);
2433	}
2434	rcu_read_unlock();
2435	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2436}
2437
2438static int __init start_dirtytime_writeback(void)
2439{
2440	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2441	return 0;
2442}
2443__initcall(start_dirtytime_writeback);
2444
2445int dirtytime_interval_handler(const struct ctl_table *table, int write,
2446			       void *buffer, size_t *lenp, loff_t *ppos)
2447{
2448	int ret;
2449
2450	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2451	if (ret == 0 && write)
2452		mod_delayed_work(system_wq, &dirtytime_work, 0);
2453	return ret;
2454}
2455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456/**
2457 * __mark_inode_dirty -	internal function to mark an inode dirty
2458 *
2459 * @inode: inode to mark
2460 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2461 *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2462 *	   with I_DIRTY_PAGES.
2463 *
2464 * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2465 * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2466 *
2467 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2468 * instead of calling this directly.
2469 *
2470 * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2471 * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2472 * even if they are later hashed, as they will have been marked dirty already.
 
2473 *
2474 * In short, ensure you hash any inodes _before_ you start marking them dirty.
 
2475 *
2476 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2477 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2478 * the kernel-internal blockdev inode represents the dirtying time of the
2479 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2480 * page->mapping->host, so the page-dirtying time is recorded in the internal
2481 * blockdev inode.
2482 */
2483void __mark_inode_dirty(struct inode *inode, int flags)
2484{
 
2485	struct super_block *sb = inode->i_sb;
2486	int dirtytime = 0;
2487	struct bdi_writeback *wb = NULL;
2488
2489	trace_writeback_mark_inode_dirty(inode, flags);
2490
2491	if (flags & I_DIRTY_INODE) {
2492		/*
2493		 * Inode timestamp update will piggback on this dirtying.
2494		 * We tell ->dirty_inode callback that timestamps need to
2495		 * be updated by setting I_DIRTY_TIME in flags.
2496		 */
2497		if (inode->i_state & I_DIRTY_TIME) {
2498			spin_lock(&inode->i_lock);
2499			if (inode->i_state & I_DIRTY_TIME) {
2500				inode->i_state &= ~I_DIRTY_TIME;
2501				flags |= I_DIRTY_TIME;
2502			}
2503			spin_unlock(&inode->i_lock);
2504		}
2505
2506		/*
2507		 * Notify the filesystem about the inode being dirtied, so that
2508		 * (if needed) it can update on-disk fields and journal the
2509		 * inode.  This is only needed when the inode itself is being
2510		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2511		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2512		 */
2513		trace_writeback_dirty_inode_start(inode, flags);
2514		if (sb->s_op->dirty_inode)
2515			sb->s_op->dirty_inode(inode,
2516				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2517		trace_writeback_dirty_inode(inode, flags);
2518
2519		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2520		flags &= ~I_DIRTY_TIME;
2521	} else {
2522		/*
2523		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2524		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2525		 * in one call to __mark_inode_dirty().)
2526		 */
2527		dirtytime = flags & I_DIRTY_TIME;
2528		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2529	}
2530
2531	/*
2532	 * Paired with smp_mb() in __writeback_single_inode() for the
2533	 * following lockless i_state test.  See there for details.
2534	 */
2535	smp_mb();
2536
2537	if ((inode->i_state & flags) == flags)
 
2538		return;
2539
 
 
 
2540	spin_lock(&inode->i_lock);
 
 
2541	if ((inode->i_state & flags) != flags) {
2542		const int was_dirty = inode->i_state & I_DIRTY;
2543
2544		inode_attach_wb(inode, NULL);
2545
 
 
2546		inode->i_state |= flags;
2547
2548		/*
2549		 * Grab inode's wb early because it requires dropping i_lock and we
2550		 * need to make sure following checks happen atomically with dirty
2551		 * list handling so that we don't move inodes under flush worker's
2552		 * hands.
2553		 */
2554		if (!was_dirty) {
2555			wb = locked_inode_to_wb_and_lock_list(inode);
2556			spin_lock(&inode->i_lock);
2557		}
2558
2559		/*
2560		 * If the inode is queued for writeback by flush worker, just
2561		 * update its dirty state. Once the flush worker is done with
2562		 * the inode it will place it on the appropriate superblock
2563		 * list, based upon its state.
2564		 */
2565		if (inode->i_state & I_SYNC_QUEUED)
2566			goto out_unlock;
2567
2568		/*
2569		 * Only add valid (hashed) inodes to the superblock's
2570		 * dirty list.  Add blockdev inodes as well.
2571		 */
2572		if (!S_ISBLK(inode->i_mode)) {
2573			if (inode_unhashed(inode))
2574				goto out_unlock;
2575		}
2576		if (inode->i_state & I_FREEING)
2577			goto out_unlock;
2578
2579		/*
2580		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2581		 * reposition it (that would break b_dirty time-ordering).
2582		 */
2583		if (!was_dirty) {
 
2584			struct list_head *dirty_list;
2585			bool wakeup_bdi = false;
2586
 
 
 
 
 
 
2587			inode->dirtied_when = jiffies;
2588			if (dirtytime)
2589				inode->dirtied_time_when = jiffies;
2590
2591			if (inode->i_state & I_DIRTY)
2592				dirty_list = &wb->b_dirty;
2593			else
2594				dirty_list = &wb->b_dirty_time;
2595
2596			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2597							       dirty_list);
2598
2599			spin_unlock(&wb->list_lock);
2600			spin_unlock(&inode->i_lock);
2601			trace_writeback_dirty_inode_enqueue(inode);
2602
2603			/*
2604			 * If this is the first dirty inode for this bdi,
2605			 * we have to wake-up the corresponding bdi thread
2606			 * to make sure background write-back happens
2607			 * later.
2608			 */
2609			if (wakeup_bdi &&
2610			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2611				wb_wakeup_delayed(wb);
2612			return;
2613		}
2614	}
2615out_unlock:
2616	if (wb)
2617		spin_unlock(&wb->list_lock);
2618	spin_unlock(&inode->i_lock);
 
 
2619}
2620EXPORT_SYMBOL(__mark_inode_dirty);
2621
2622/*
2623 * The @s_sync_lock is used to serialise concurrent sync operations
2624 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2625 * Concurrent callers will block on the s_sync_lock rather than doing contending
2626 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2627 * has been issued up to the time this function is enter is guaranteed to be
2628 * completed by the time we have gained the lock and waited for all IO that is
2629 * in progress regardless of the order callers are granted the lock.
2630 */
2631static void wait_sb_inodes(struct super_block *sb)
2632{
2633	LIST_HEAD(sync_list);
2634
2635	/*
2636	 * We need to be protected against the filesystem going from
2637	 * r/o to r/w or vice versa.
2638	 */
2639	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2640
2641	mutex_lock(&sb->s_sync_lock);
2642
2643	/*
2644	 * Splice the writeback list onto a temporary list to avoid waiting on
2645	 * inodes that have started writeback after this point.
2646	 *
2647	 * Use rcu_read_lock() to keep the inodes around until we have a
2648	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2649	 * the local list because inodes can be dropped from either by writeback
2650	 * completion.
2651	 */
2652	rcu_read_lock();
2653	spin_lock_irq(&sb->s_inode_wblist_lock);
2654	list_splice_init(&sb->s_inodes_wb, &sync_list);
2655
2656	/*
2657	 * Data integrity sync. Must wait for all pages under writeback, because
2658	 * there may have been pages dirtied before our sync call, but which had
2659	 * writeout started before we write it out.  In which case, the inode
2660	 * may not be on the dirty list, but we still have to wait for that
2661	 * writeout.
2662	 */
2663	while (!list_empty(&sync_list)) {
2664		struct inode *inode = list_first_entry(&sync_list, struct inode,
2665						       i_wb_list);
2666		struct address_space *mapping = inode->i_mapping;
2667
2668		/*
2669		 * Move each inode back to the wb list before we drop the lock
2670		 * to preserve consistency between i_wb_list and the mapping
2671		 * writeback tag. Writeback completion is responsible to remove
2672		 * the inode from either list once the writeback tag is cleared.
2673		 */
2674		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2675
2676		/*
2677		 * The mapping can appear untagged while still on-list since we
2678		 * do not have the mapping lock. Skip it here, wb completion
2679		 * will remove it.
2680		 */
2681		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2682			continue;
2683
2684		spin_unlock_irq(&sb->s_inode_wblist_lock);
2685
2686		spin_lock(&inode->i_lock);
2687		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2688			spin_unlock(&inode->i_lock);
2689
2690			spin_lock_irq(&sb->s_inode_wblist_lock);
2691			continue;
2692		}
2693		__iget(inode);
2694		spin_unlock(&inode->i_lock);
2695		rcu_read_unlock();
2696
2697		/*
2698		 * We keep the error status of individual mapping so that
2699		 * applications can catch the writeback error using fsync(2).
2700		 * See filemap_fdatawait_keep_errors() for details.
2701		 */
2702		filemap_fdatawait_keep_errors(mapping);
2703
2704		cond_resched();
2705
2706		iput(inode);
2707
2708		rcu_read_lock();
2709		spin_lock_irq(&sb->s_inode_wblist_lock);
2710	}
2711	spin_unlock_irq(&sb->s_inode_wblist_lock);
2712	rcu_read_unlock();
2713	mutex_unlock(&sb->s_sync_lock);
2714}
2715
2716static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2717				     enum wb_reason reason, bool skip_if_busy)
2718{
2719	struct backing_dev_info *bdi = sb->s_bdi;
2720	DEFINE_WB_COMPLETION(done, bdi);
2721	struct wb_writeback_work work = {
2722		.sb			= sb,
2723		.sync_mode		= WB_SYNC_NONE,
2724		.tagged_writepages	= 1,
2725		.done			= &done,
2726		.nr_pages		= nr,
2727		.reason			= reason,
2728	};
 
2729
2730	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2731		return;
2732	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2733
2734	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2735	wb_wait_for_completion(&done);
2736}
2737
2738/**
2739 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2740 * @sb: the superblock
2741 * @nr: the number of pages to write
2742 * @reason: reason why some writeback work initiated
2743 *
2744 * Start writeback on some inodes on this super_block. No guarantees are made
2745 * on how many (if any) will be written, and this function does not wait
2746 * for IO completion of submitted IO.
2747 */
2748void writeback_inodes_sb_nr(struct super_block *sb,
2749			    unsigned long nr,
2750			    enum wb_reason reason)
2751{
2752	__writeback_inodes_sb_nr(sb, nr, reason, false);
2753}
2754EXPORT_SYMBOL(writeback_inodes_sb_nr);
2755
2756/**
2757 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2758 * @sb: the superblock
2759 * @reason: reason why some writeback work was initiated
2760 *
2761 * Start writeback on some inodes on this super_block. No guarantees are made
2762 * on how many (if any) will be written, and this function does not wait
2763 * for IO completion of submitted IO.
2764 */
2765void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2766{
2767	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2768}
2769EXPORT_SYMBOL(writeback_inodes_sb);
2770
2771/**
2772 * try_to_writeback_inodes_sb - try to start writeback if none underway
2773 * @sb: the superblock
2774 * @reason: reason why some writeback work was initiated
 
2775 *
2776 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
 
2777 */
2778void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
 
2779{
2780	if (!down_read_trylock(&sb->s_umount))
2781		return;
2782
2783	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2784	up_read(&sb->s_umount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785}
2786EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2787
2788/**
2789 * sync_inodes_sb	-	sync sb inode pages
2790 * @sb: the superblock
2791 *
2792 * This function writes and waits on any dirty inode belonging to this
2793 * super_block.
2794 */
2795void sync_inodes_sb(struct super_block *sb)
2796{
2797	struct backing_dev_info *bdi = sb->s_bdi;
2798	DEFINE_WB_COMPLETION(done, bdi);
2799	struct wb_writeback_work work = {
2800		.sb		= sb,
2801		.sync_mode	= WB_SYNC_ALL,
2802		.nr_pages	= LONG_MAX,
2803		.range_cyclic	= 0,
2804		.done		= &done,
2805		.reason		= WB_REASON_SYNC,
2806		.for_sync	= 1,
2807	};
 
2808
2809	/*
2810	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2811	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2812	 * bdi_has_dirty() need to be written out too.
2813	 */
2814	if (bdi == &noop_backing_dev_info)
2815		return;
2816	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2817
2818	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2819	bdi_down_write_wb_switch_rwsem(bdi);
2820	bdi_split_work_to_wbs(bdi, &work, false);
2821	wb_wait_for_completion(&done);
2822	bdi_up_write_wb_switch_rwsem(bdi);
2823
2824	wait_sb_inodes(sb);
2825}
2826EXPORT_SYMBOL(sync_inodes_sb);
2827
2828/**
2829 * write_inode_now	-	write an inode to disk
2830 * @inode: inode to write to disk
2831 * @sync: whether the write should be synchronous or not
2832 *
2833 * This function commits an inode to disk immediately if it is dirty. This is
2834 * primarily needed by knfsd.
2835 *
2836 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2837 */
2838int write_inode_now(struct inode *inode, int sync)
2839{
2840	struct writeback_control wbc = {
2841		.nr_to_write = LONG_MAX,
2842		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2843		.range_start = 0,
2844		.range_end = LLONG_MAX,
2845	};
2846
2847	if (!mapping_can_writeback(inode->i_mapping))
2848		wbc.nr_to_write = 0;
2849
2850	might_sleep();
2851	return writeback_single_inode(inode, &wbc);
2852}
2853EXPORT_SYMBOL(write_inode_now);
2854
2855/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856 * sync_inode_metadata - write an inode to disk
2857 * @inode: the inode to sync
2858 * @wait: wait for I/O to complete.
2859 *
2860 * Write an inode to disk and adjust its dirty state after completion.
2861 *
2862 * Note: only writes the actual inode, no associated data or other metadata.
2863 */
2864int sync_inode_metadata(struct inode *inode, int wait)
2865{
2866	struct writeback_control wbc = {
2867		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2868		.nr_to_write = 0, /* metadata-only */
2869	};
2870
2871	return writeback_single_inode(inode, &wbc);
2872}
2873EXPORT_SYMBOL(sync_inode_metadata);