Loading...
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/spinlock.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
23#include <linux/pagemap.h>
24#include <linux/kthread.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/tracepoint.h>
29#include <linux/device.h>
30#include <linux/memcontrol.h>
31#include "internal.h"
32
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38struct wb_completion {
39 atomic_t cnt;
40};
41
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60};
61
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87static inline struct inode *wb_inode(struct list_head *head)
88{
89 return list_entry(head, struct inode, i_io_list);
90}
91
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123}
124
125/**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166}
167
168static void wb_wakeup(struct bdi_writeback *wb)
169{
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174}
175
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178{
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190}
191
192/**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205{
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208}
209
210#ifdef CONFIG_CGROUP_WRITEBACK
211
212/* parameters for foreign inode detection, see wb_detach_inode() */
213#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227static struct workqueue_struct *isw_wq;
228
229void __inode_attach_wb(struct inode *inode, struct page *page)
230{
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257}
258
259/**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267static struct bdi_writeback *
268locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271{
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
284
285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
290
291 spin_unlock(&wb->list_lock);
292 wb_put(wb);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296}
297
298/**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307{
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310}
311
312struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318};
319
320static void inode_switch_wbs_work_fn(struct work_struct *work)
321{
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_io_list)) {
394 struct inode *pos;
395
396 inode_io_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432
433 atomic_dec(&isw_nr_in_flight);
434}
435
436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437{
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 queue_work(isw_wq, &isw->work);
444}
445
446/**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455{
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
485 inode->i_state |= I_WB_SWITCH;
486 __iget(inode);
487 spin_unlock(&inode->i_lock);
488
489 isw->inode = inode;
490
491 atomic_inc(&isw_nr_in_flight);
492
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506}
507
508/**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520{
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
526 wbc->wb = inode_to_wb(inode);
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
545}
546
547/**
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
583 */
584void wbc_detach_inode(struct writeback_control *wbc)
585{
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
590 int max_id;
591
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664}
665
666/**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678{
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
690 id = mem_cgroup_css_from_page(page)->id;
691
692 if (id == wbc->wb_id) {
693 wbc->wb_bytes += bytes;
694 return;
695 }
696
697 if (id == wbc->wb_lcand_id)
698 wbc->wb_lcand_bytes += bytes;
699
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc->wb_tcand_bytes)
702 wbc->wb_tcand_id = id;
703 if (id == wbc->wb_tcand_id)
704 wbc->wb_tcand_bytes += bytes;
705 else
706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707}
708EXPORT_SYMBOL_GPL(wbc_account_io);
709
710/**
711 * inode_congested - test whether an inode is congested
712 * @inode: inode to test for congestion (may be NULL)
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
714 *
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
717 *
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
721 * state is used.
722 *
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
725 */
726int inode_congested(struct inode *inode, int cong_bits)
727{
728 /*
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
731 */
732 if (inode && inode_to_wb_is_valid(inode)) {
733 struct bdi_writeback *wb;
734 bool locked, congested;
735
736 wb = unlocked_inode_to_wb_begin(inode, &locked);
737 congested = wb_congested(wb, cong_bits);
738 unlocked_inode_to_wb_end(inode, locked);
739 return congested;
740 }
741
742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743}
744EXPORT_SYMBOL_GPL(inode_congested);
745
746/**
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
750 *
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
753 * @wb->bdi.
754 */
755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756{
757 unsigned long this_bw = wb->avg_write_bandwidth;
758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759
760 if (nr_pages == LONG_MAX)
761 return LONG_MAX;
762
763 /*
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
767 */
768 if (!tot_bw || this_bw >= tot_bw)
769 return nr_pages;
770 else
771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772}
773
774/**
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
779 *
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
784 */
785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 struct wb_writeback_work *base_work,
787 bool skip_if_busy)
788{
789 struct bdi_writeback *last_wb = NULL;
790 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 struct bdi_writeback, bdi_node);
792
793 might_sleep();
794restart:
795 rcu_read_lock();
796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 struct wb_writeback_work fallback_work;
799 struct wb_writeback_work *work;
800 long nr_pages;
801
802 if (last_wb) {
803 wb_put(last_wb);
804 last_wb = NULL;
805 }
806
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb) &&
809 (base_work->sync_mode == WB_SYNC_NONE ||
810 list_empty(&wb->b_dirty_time)))
811 continue;
812 if (skip_if_busy && writeback_in_progress(wb))
813 continue;
814
815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 *work = *base_work;
820 work->nr_pages = nr_pages;
821 work->auto_free = 1;
822 wb_queue_work(wb, work);
823 continue;
824 }
825
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work = &fallback_work;
828 *work = *base_work;
829 work->nr_pages = nr_pages;
830 work->auto_free = 0;
831 work->done = &fallback_work_done;
832
833 wb_queue_work(wb, work);
834
835 /*
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
839 */
840 wb_get(wb);
841 last_wb = wb;
842
843 rcu_read_unlock();
844 wb_wait_for_completion(bdi, &fallback_work_done);
845 goto restart;
846 }
847 rcu_read_unlock();
848
849 if (last_wb)
850 wb_put(last_wb);
851}
852
853/**
854 * cgroup_writeback_umount - flush inode wb switches for umount
855 *
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
862 */
863void cgroup_writeback_umount(void)
864{
865 if (atomic_read(&isw_nr_in_flight)) {
866 synchronize_rcu();
867 flush_workqueue(isw_wq);
868 }
869}
870
871static int __init cgroup_writeback_init(void)
872{
873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 if (!isw_wq)
875 return -ENOMEM;
876 return 0;
877}
878fs_initcall(cgroup_writeback_init);
879
880#else /* CONFIG_CGROUP_WRITEBACK */
881
882static struct bdi_writeback *
883locked_inode_to_wb_and_lock_list(struct inode *inode)
884 __releases(&inode->i_lock)
885 __acquires(&wb->list_lock)
886{
887 struct bdi_writeback *wb = inode_to_wb(inode);
888
889 spin_unlock(&inode->i_lock);
890 spin_lock(&wb->list_lock);
891 return wb;
892}
893
894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 __acquires(&wb->list_lock)
896{
897 struct bdi_writeback *wb = inode_to_wb(inode);
898
899 spin_lock(&wb->list_lock);
900 return wb;
901}
902
903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904{
905 return nr_pages;
906}
907
908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 struct wb_writeback_work *base_work,
910 bool skip_if_busy)
911{
912 might_sleep();
913
914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 base_work->auto_free = 0;
916 wb_queue_work(&bdi->wb, base_work);
917 }
918}
919
920#endif /* CONFIG_CGROUP_WRITEBACK */
921
922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 bool range_cyclic, enum wb_reason reason)
924{
925 struct wb_writeback_work *work;
926
927 if (!wb_has_dirty_io(wb))
928 return;
929
930 /*
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
933 */
934 work = kzalloc(sizeof(*work),
935 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
936 if (!work) {
937 trace_writeback_nowork(wb);
938 wb_wakeup(wb);
939 return;
940 }
941
942 work->sync_mode = WB_SYNC_NONE;
943 work->nr_pages = nr_pages;
944 work->range_cyclic = range_cyclic;
945 work->reason = reason;
946 work->auto_free = 1;
947
948 wb_queue_work(wb, work);
949}
950
951/**
952 * wb_start_background_writeback - start background writeback
953 * @wb: bdi_writback to write from
954 *
955 * Description:
956 * This makes sure WB_SYNC_NONE background writeback happens. When
957 * this function returns, it is only guaranteed that for given wb
958 * some IO is happening if we are over background dirty threshold.
959 * Caller need not hold sb s_umount semaphore.
960 */
961void wb_start_background_writeback(struct bdi_writeback *wb)
962{
963 /*
964 * We just wake up the flusher thread. It will perform background
965 * writeback as soon as there is no other work to do.
966 */
967 trace_writeback_wake_background(wb);
968 wb_wakeup(wb);
969}
970
971/*
972 * Remove the inode from the writeback list it is on.
973 */
974void inode_io_list_del(struct inode *inode)
975{
976 struct bdi_writeback *wb;
977
978 wb = inode_to_wb_and_lock_list(inode);
979 inode_io_list_del_locked(inode, wb);
980 spin_unlock(&wb->list_lock);
981}
982
983/*
984 * mark an inode as under writeback on the sb
985 */
986void sb_mark_inode_writeback(struct inode *inode)
987{
988 struct super_block *sb = inode->i_sb;
989 unsigned long flags;
990
991 if (list_empty(&inode->i_wb_list)) {
992 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
993 if (list_empty(&inode->i_wb_list)) {
994 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
995 trace_sb_mark_inode_writeback(inode);
996 }
997 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
998 }
999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006 struct super_block *sb = inode->i_sb;
1007 unsigned long flags;
1008
1009 if (!list_empty(&inode->i_wb_list)) {
1010 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011 if (!list_empty(&inode->i_wb_list)) {
1012 list_del_init(&inode->i_wb_list);
1013 trace_sb_clear_inode_writeback(inode);
1014 }
1015 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016 }
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list. If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
1030 if (!list_empty(&wb->b_dirty)) {
1031 struct inode *tail;
1032
1033 tail = wb_inode(wb->b_dirty.next);
1034 if (time_before(inode->dirtied_when, tail->dirtied_when))
1035 inode->dirtied_when = jiffies;
1036 }
1037 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050 inode->i_state &= ~I_SYNC;
1051 /* If inode is clean an unused, put it into LRU now... */
1052 inode_add_lru(inode);
1053 /* Waiters must see I_SYNC cleared before being woken up */
1054 smp_mb();
1055 wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060 bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062 /*
1063 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064 * It _appears_ to be in the future, but is actually in distant past.
1065 * This test is necessary to prevent such wrapped-around relative times
1066 * from permanently stopping the whole bdi writeback.
1067 */
1068 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070 return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080 struct list_head *dispatch_queue,
1081 int flags,
1082 struct wb_writeback_work *work)
1083{
1084 unsigned long *older_than_this = NULL;
1085 unsigned long expire_time;
1086 LIST_HEAD(tmp);
1087 struct list_head *pos, *node;
1088 struct super_block *sb = NULL;
1089 struct inode *inode;
1090 int do_sb_sort = 0;
1091 int moved = 0;
1092
1093 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094 older_than_this = work->older_than_this;
1095 else if (!work->for_sync) {
1096 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097 older_than_this = &expire_time;
1098 }
1099 while (!list_empty(delaying_queue)) {
1100 inode = wb_inode(delaying_queue->prev);
1101 if (older_than_this &&
1102 inode_dirtied_after(inode, *older_than_this))
1103 break;
1104 list_move(&inode->i_io_list, &tmp);
1105 moved++;
1106 if (flags & EXPIRE_DIRTY_ATIME)
1107 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108 if (sb_is_blkdev_sb(inode->i_sb))
1109 continue;
1110 if (sb && sb != inode->i_sb)
1111 do_sb_sort = 1;
1112 sb = inode->i_sb;
1113 }
1114
1115 /* just one sb in list, splice to dispatch_queue and we're done */
1116 if (!do_sb_sort) {
1117 list_splice(&tmp, dispatch_queue);
1118 goto out;
1119 }
1120
1121 /* Move inodes from one superblock together */
1122 while (!list_empty(&tmp)) {
1123 sb = wb_inode(tmp.prev)->i_sb;
1124 list_for_each_prev_safe(pos, node, &tmp) {
1125 inode = wb_inode(pos);
1126 if (inode->i_sb == sb)
1127 list_move(&inode->i_io_list, dispatch_queue);
1128 }
1129 }
1130out:
1131 return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 * newly dirtied b_dirty b_io b_more_io
1138 * =============> gf edc BA
1139 * After
1140 * newly dirtied b_dirty b_io b_more_io
1141 * =============> g fBAedc
1142 * |
1143 * +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146{
1147 int moved;
1148
1149 assert_spin_locked(&wb->list_lock);
1150 list_splice_init(&wb->b_more_io, &wb->b_io);
1151 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153 EXPIRE_DIRTY_ATIME, work);
1154 if (moved)
1155 wb_io_lists_populated(wb);
1156 trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161 int ret;
1162
1163 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164 trace_writeback_write_inode_start(inode, wbc);
1165 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166 trace_writeback_write_inode(inode, wbc);
1167 return ret;
1168 }
1169 return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177 __releases(inode->i_lock)
1178 __acquires(inode->i_lock)
1179{
1180 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181 wait_queue_head_t *wqh;
1182
1183 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184 while (inode->i_state & I_SYNC) {
1185 spin_unlock(&inode->i_lock);
1186 __wait_on_bit(wqh, &wq, bit_wait,
1187 TASK_UNINTERRUPTIBLE);
1188 spin_lock(&inode->i_lock);
1189 }
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197 spin_lock(&inode->i_lock);
1198 __inode_wait_for_writeback(inode);
1199 spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208 __releases(inode->i_lock)
1209{
1210 DEFINE_WAIT(wait);
1211 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212 int sleep;
1213
1214 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215 sleep = inode->i_state & I_SYNC;
1216 spin_unlock(&inode->i_lock);
1217 if (sleep)
1218 schedule();
1219 finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback. Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231 struct writeback_control *wbc)
1232{
1233 if (inode->i_state & I_FREEING)
1234 return;
1235
1236 /*
1237 * Sync livelock prevention. Each inode is tagged and synced in one
1238 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1239 * the dirty time to prevent enqueue and sync it again.
1240 */
1241 if ((inode->i_state & I_DIRTY) &&
1242 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243 inode->dirtied_when = jiffies;
1244
1245 if (wbc->pages_skipped) {
1246 /*
1247 * writeback is not making progress due to locked
1248 * buffers. Skip this inode for now.
1249 */
1250 redirty_tail(inode, wb);
1251 return;
1252 }
1253
1254 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255 /*
1256 * We didn't write back all the pages. nfs_writepages()
1257 * sometimes bales out without doing anything.
1258 */
1259 if (wbc->nr_to_write <= 0) {
1260 /* Slice used up. Queue for next turn. */
1261 requeue_io(inode, wb);
1262 } else {
1263 /*
1264 * Writeback blocked by something other than
1265 * congestion. Delay the inode for some time to
1266 * avoid spinning on the CPU (100% iowait)
1267 * retrying writeback of the dirty page/inode
1268 * that cannot be performed immediately.
1269 */
1270 redirty_tail(inode, wb);
1271 }
1272 } else if (inode->i_state & I_DIRTY) {
1273 /*
1274 * Filesystems can dirty the inode during writeback operations,
1275 * such as delayed allocation during submission or metadata
1276 * updates after data IO completion.
1277 */
1278 redirty_tail(inode, wb);
1279 } else if (inode->i_state & I_DIRTY_TIME) {
1280 inode->dirtied_when = jiffies;
1281 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282 } else {
1283 /* The inode is clean. Remove from writeback lists. */
1284 inode_io_list_del_locked(inode, wb);
1285 }
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296 struct address_space *mapping = inode->i_mapping;
1297 long nr_to_write = wbc->nr_to_write;
1298 unsigned dirty;
1299 int ret;
1300
1301 WARN_ON(!(inode->i_state & I_SYNC));
1302
1303 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305 ret = do_writepages(mapping, wbc);
1306
1307 /*
1308 * Make sure to wait on the data before writing out the metadata.
1309 * This is important for filesystems that modify metadata on data
1310 * I/O completion. We don't do it for sync(2) writeback because it has a
1311 * separate, external IO completion path and ->sync_fs for guaranteeing
1312 * inode metadata is written back correctly.
1313 */
1314 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315 int err = filemap_fdatawait(mapping);
1316 if (ret == 0)
1317 ret = err;
1318 }
1319
1320 /*
1321 * Some filesystems may redirty the inode during the writeback
1322 * due to delalloc, clear dirty metadata flags right before
1323 * write_inode()
1324 */
1325 spin_lock(&inode->i_lock);
1326
1327 dirty = inode->i_state & I_DIRTY;
1328 if (inode->i_state & I_DIRTY_TIME) {
1329 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330 wbc->sync_mode == WB_SYNC_ALL ||
1331 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332 unlikely(time_after(jiffies,
1333 (inode->dirtied_time_when +
1334 dirtytime_expire_interval * HZ)))) {
1335 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336 trace_writeback_lazytime(inode);
1337 }
1338 } else
1339 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340 inode->i_state &= ~dirty;
1341
1342 /*
1343 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1344 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345 * either they see the I_DIRTY bits cleared or we see the dirtied
1346 * inode.
1347 *
1348 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349 * still has dirty pages. The flag is reinstated after smp_mb() if
1350 * necessary. This guarantees that either __mark_inode_dirty()
1351 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352 */
1353 smp_mb();
1354
1355 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356 inode->i_state |= I_DIRTY_PAGES;
1357
1358 spin_unlock(&inode->i_lock);
1359
1360 if (dirty & I_DIRTY_TIME)
1361 mark_inode_dirty_sync(inode);
1362 /* Don't write the inode if only I_DIRTY_PAGES was set */
1363 if (dirty & ~I_DIRTY_PAGES) {
1364 int err = write_inode(inode, wbc);
1365 if (ret == 0)
1366 ret = err;
1367 }
1368 trace_writeback_single_inode(inode, wbc, nr_to_write);
1369 return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381 struct writeback_control *wbc)
1382{
1383 struct bdi_writeback *wb;
1384 int ret = 0;
1385
1386 spin_lock(&inode->i_lock);
1387 if (!atomic_read(&inode->i_count))
1388 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389 else
1390 WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392 if (inode->i_state & I_SYNC) {
1393 if (wbc->sync_mode != WB_SYNC_ALL)
1394 goto out;
1395 /*
1396 * It's a data-integrity sync. We must wait. Since callers hold
1397 * inode reference or inode has I_WILL_FREE set, it cannot go
1398 * away under us.
1399 */
1400 __inode_wait_for_writeback(inode);
1401 }
1402 WARN_ON(inode->i_state & I_SYNC);
1403 /*
1404 * Skip inode if it is clean and we have no outstanding writeback in
1405 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406 * function since flusher thread may be doing for example sync in
1407 * parallel and if we move the inode, it could get skipped. So here we
1408 * make sure inode is on some writeback list and leave it there unless
1409 * we have completely cleaned the inode.
1410 */
1411 if (!(inode->i_state & I_DIRTY_ALL) &&
1412 (wbc->sync_mode != WB_SYNC_ALL ||
1413 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414 goto out;
1415 inode->i_state |= I_SYNC;
1416 wbc_attach_and_unlock_inode(wbc, inode);
1417
1418 ret = __writeback_single_inode(inode, wbc);
1419
1420 wbc_detach_inode(wbc);
1421
1422 wb = inode_to_wb_and_lock_list(inode);
1423 spin_lock(&inode->i_lock);
1424 /*
1425 * If inode is clean, remove it from writeback lists. Otherwise don't
1426 * touch it. See comment above for explanation.
1427 */
1428 if (!(inode->i_state & I_DIRTY_ALL))
1429 inode_io_list_del_locked(inode, wb);
1430 spin_unlock(&wb->list_lock);
1431 inode_sync_complete(inode);
1432out:
1433 spin_unlock(&inode->i_lock);
1434 return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438 struct wb_writeback_work *work)
1439{
1440 long pages;
1441
1442 /*
1443 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445 * here avoids calling into writeback_inodes_wb() more than once.
1446 *
1447 * The intended call sequence for WB_SYNC_ALL writeback is:
1448 *
1449 * wb_writeback()
1450 * writeback_sb_inodes() <== called only once
1451 * write_cache_pages() <== called once for each inode
1452 * (quickly) tag currently dirty pages
1453 * (maybe slowly) sync all tagged pages
1454 */
1455 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456 pages = LONG_MAX;
1457 else {
1458 pages = min(wb->avg_write_bandwidth / 2,
1459 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460 pages = min(pages, work->nr_pages);
1461 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462 MIN_WRITEBACK_PAGES);
1463 }
1464
1465 return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478 struct bdi_writeback *wb,
1479 struct wb_writeback_work *work)
1480{
1481 struct writeback_control wbc = {
1482 .sync_mode = work->sync_mode,
1483 .tagged_writepages = work->tagged_writepages,
1484 .for_kupdate = work->for_kupdate,
1485 .for_background = work->for_background,
1486 .for_sync = work->for_sync,
1487 .range_cyclic = work->range_cyclic,
1488 .range_start = 0,
1489 .range_end = LLONG_MAX,
1490 };
1491 unsigned long start_time = jiffies;
1492 long write_chunk;
1493 long wrote = 0; /* count both pages and inodes */
1494
1495 while (!list_empty(&wb->b_io)) {
1496 struct inode *inode = wb_inode(wb->b_io.prev);
1497 struct bdi_writeback *tmp_wb;
1498
1499 if (inode->i_sb != sb) {
1500 if (work->sb) {
1501 /*
1502 * We only want to write back data for this
1503 * superblock, move all inodes not belonging
1504 * to it back onto the dirty list.
1505 */
1506 redirty_tail(inode, wb);
1507 continue;
1508 }
1509
1510 /*
1511 * The inode belongs to a different superblock.
1512 * Bounce back to the caller to unpin this and
1513 * pin the next superblock.
1514 */
1515 break;
1516 }
1517
1518 /*
1519 * Don't bother with new inodes or inodes being freed, first
1520 * kind does not need periodic writeout yet, and for the latter
1521 * kind writeout is handled by the freer.
1522 */
1523 spin_lock(&inode->i_lock);
1524 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525 spin_unlock(&inode->i_lock);
1526 redirty_tail(inode, wb);
1527 continue;
1528 }
1529 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530 /*
1531 * If this inode is locked for writeback and we are not
1532 * doing writeback-for-data-integrity, move it to
1533 * b_more_io so that writeback can proceed with the
1534 * other inodes on s_io.
1535 *
1536 * We'll have another go at writing back this inode
1537 * when we completed a full scan of b_io.
1538 */
1539 spin_unlock(&inode->i_lock);
1540 requeue_io(inode, wb);
1541 trace_writeback_sb_inodes_requeue(inode);
1542 continue;
1543 }
1544 spin_unlock(&wb->list_lock);
1545
1546 /*
1547 * We already requeued the inode if it had I_SYNC set and we
1548 * are doing WB_SYNC_NONE writeback. So this catches only the
1549 * WB_SYNC_ALL case.
1550 */
1551 if (inode->i_state & I_SYNC) {
1552 /* Wait for I_SYNC. This function drops i_lock... */
1553 inode_sleep_on_writeback(inode);
1554 /* Inode may be gone, start again */
1555 spin_lock(&wb->list_lock);
1556 continue;
1557 }
1558 inode->i_state |= I_SYNC;
1559 wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561 write_chunk = writeback_chunk_size(wb, work);
1562 wbc.nr_to_write = write_chunk;
1563 wbc.pages_skipped = 0;
1564
1565 /*
1566 * We use I_SYNC to pin the inode in memory. While it is set
1567 * evict_inode() will wait so the inode cannot be freed.
1568 */
1569 __writeback_single_inode(inode, &wbc);
1570
1571 wbc_detach_inode(&wbc);
1572 work->nr_pages -= write_chunk - wbc.nr_to_write;
1573 wrote += write_chunk - wbc.nr_to_write;
1574
1575 if (need_resched()) {
1576 /*
1577 * We're trying to balance between building up a nice
1578 * long list of IOs to improve our merge rate, and
1579 * getting those IOs out quickly for anyone throttling
1580 * in balance_dirty_pages(). cond_resched() doesn't
1581 * unplug, so get our IOs out the door before we
1582 * give up the CPU.
1583 */
1584 blk_flush_plug(current);
1585 cond_resched();
1586 }
1587
1588 /*
1589 * Requeue @inode if still dirty. Be careful as @inode may
1590 * have been switched to another wb in the meantime.
1591 */
1592 tmp_wb = inode_to_wb_and_lock_list(inode);
1593 spin_lock(&inode->i_lock);
1594 if (!(inode->i_state & I_DIRTY_ALL))
1595 wrote++;
1596 requeue_inode(inode, tmp_wb, &wbc);
1597 inode_sync_complete(inode);
1598 spin_unlock(&inode->i_lock);
1599
1600 if (unlikely(tmp_wb != wb)) {
1601 spin_unlock(&tmp_wb->list_lock);
1602 spin_lock(&wb->list_lock);
1603 }
1604
1605 /*
1606 * bail out to wb_writeback() often enough to check
1607 * background threshold and other termination conditions.
1608 */
1609 if (wrote) {
1610 if (time_is_before_jiffies(start_time + HZ / 10UL))
1611 break;
1612 if (work->nr_pages <= 0)
1613 break;
1614 }
1615 }
1616 return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620 struct wb_writeback_work *work)
1621{
1622 unsigned long start_time = jiffies;
1623 long wrote = 0;
1624
1625 while (!list_empty(&wb->b_io)) {
1626 struct inode *inode = wb_inode(wb->b_io.prev);
1627 struct super_block *sb = inode->i_sb;
1628
1629 if (!trylock_super(sb)) {
1630 /*
1631 * trylock_super() may fail consistently due to
1632 * s_umount being grabbed by someone else. Don't use
1633 * requeue_io() to avoid busy retrying the inode/sb.
1634 */
1635 redirty_tail(inode, wb);
1636 continue;
1637 }
1638 wrote += writeback_sb_inodes(sb, wb, work);
1639 up_read(&sb->s_umount);
1640
1641 /* refer to the same tests at the end of writeback_sb_inodes */
1642 if (wrote) {
1643 if (time_is_before_jiffies(start_time + HZ / 10UL))
1644 break;
1645 if (work->nr_pages <= 0)
1646 break;
1647 }
1648 }
1649 /* Leave any unwritten inodes on b_io */
1650 return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654 enum wb_reason reason)
1655{
1656 struct wb_writeback_work work = {
1657 .nr_pages = nr_pages,
1658 .sync_mode = WB_SYNC_NONE,
1659 .range_cyclic = 1,
1660 .reason = reason,
1661 };
1662 struct blk_plug plug;
1663
1664 blk_start_plug(&plug);
1665 spin_lock(&wb->list_lock);
1666 if (list_empty(&wb->b_io))
1667 queue_io(wb, &work);
1668 __writeback_inodes_wb(wb, &work);
1669 spin_unlock(&wb->list_lock);
1670 blk_finish_plug(&plug);
1671
1672 return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space. So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval. But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write. So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691 struct wb_writeback_work *work)
1692{
1693 unsigned long wb_start = jiffies;
1694 long nr_pages = work->nr_pages;
1695 unsigned long oldest_jif;
1696 struct inode *inode;
1697 long progress;
1698 struct blk_plug plug;
1699
1700 oldest_jif = jiffies;
1701 work->older_than_this = &oldest_jif;
1702
1703 blk_start_plug(&plug);
1704 spin_lock(&wb->list_lock);
1705 for (;;) {
1706 /*
1707 * Stop writeback when nr_pages has been consumed
1708 */
1709 if (work->nr_pages <= 0)
1710 break;
1711
1712 /*
1713 * Background writeout and kupdate-style writeback may
1714 * run forever. Stop them if there is other work to do
1715 * so that e.g. sync can proceed. They'll be restarted
1716 * after the other works are all done.
1717 */
1718 if ((work->for_background || work->for_kupdate) &&
1719 !list_empty(&wb->work_list))
1720 break;
1721
1722 /*
1723 * For background writeout, stop when we are below the
1724 * background dirty threshold
1725 */
1726 if (work->for_background && !wb_over_bg_thresh(wb))
1727 break;
1728
1729 /*
1730 * Kupdate and background works are special and we want to
1731 * include all inodes that need writing. Livelock avoidance is
1732 * handled by these works yielding to any other work so we are
1733 * safe.
1734 */
1735 if (work->for_kupdate) {
1736 oldest_jif = jiffies -
1737 msecs_to_jiffies(dirty_expire_interval * 10);
1738 } else if (work->for_background)
1739 oldest_jif = jiffies;
1740
1741 trace_writeback_start(wb, work);
1742 if (list_empty(&wb->b_io))
1743 queue_io(wb, work);
1744 if (work->sb)
1745 progress = writeback_sb_inodes(work->sb, wb, work);
1746 else
1747 progress = __writeback_inodes_wb(wb, work);
1748 trace_writeback_written(wb, work);
1749
1750 wb_update_bandwidth(wb, wb_start);
1751
1752 /*
1753 * Did we write something? Try for more
1754 *
1755 * Dirty inodes are moved to b_io for writeback in batches.
1756 * The completion of the current batch does not necessarily
1757 * mean the overall work is done. So we keep looping as long
1758 * as made some progress on cleaning pages or inodes.
1759 */
1760 if (progress)
1761 continue;
1762 /*
1763 * No more inodes for IO, bail
1764 */
1765 if (list_empty(&wb->b_more_io))
1766 break;
1767 /*
1768 * Nothing written. Wait for some inode to
1769 * become available for writeback. Otherwise
1770 * we'll just busyloop.
1771 */
1772 trace_writeback_wait(wb, work);
1773 inode = wb_inode(wb->b_more_io.prev);
1774 spin_lock(&inode->i_lock);
1775 spin_unlock(&wb->list_lock);
1776 /* This function drops i_lock... */
1777 inode_sleep_on_writeback(inode);
1778 spin_lock(&wb->list_lock);
1779 }
1780 spin_unlock(&wb->list_lock);
1781 blk_finish_plug(&plug);
1782
1783 return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790{
1791 struct wb_writeback_work *work = NULL;
1792
1793 spin_lock_bh(&wb->work_lock);
1794 if (!list_empty(&wb->work_list)) {
1795 work = list_entry(wb->work_list.next,
1796 struct wb_writeback_work, list);
1797 list_del_init(&work->list);
1798 }
1799 spin_unlock_bh(&wb->work_lock);
1800 return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809 return global_node_page_state(NR_FILE_DIRTY) +
1810 global_node_page_state(NR_UNSTABLE_NFS) +
1811 get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816 if (wb_over_bg_thresh(wb)) {
1817
1818 struct wb_writeback_work work = {
1819 .nr_pages = LONG_MAX,
1820 .sync_mode = WB_SYNC_NONE,
1821 .for_background = 1,
1822 .range_cyclic = 1,
1823 .reason = WB_REASON_BACKGROUND,
1824 };
1825
1826 return wb_writeback(wb, &work);
1827 }
1828
1829 return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834 unsigned long expired;
1835 long nr_pages;
1836
1837 /*
1838 * When set to zero, disable periodic writeback
1839 */
1840 if (!dirty_writeback_interval)
1841 return 0;
1842
1843 expired = wb->last_old_flush +
1844 msecs_to_jiffies(dirty_writeback_interval * 10);
1845 if (time_before(jiffies, expired))
1846 return 0;
1847
1848 wb->last_old_flush = jiffies;
1849 nr_pages = get_nr_dirty_pages();
1850
1851 if (nr_pages) {
1852 struct wb_writeback_work work = {
1853 .nr_pages = nr_pages,
1854 .sync_mode = WB_SYNC_NONE,
1855 .for_kupdate = 1,
1856 .range_cyclic = 1,
1857 .reason = WB_REASON_PERIODIC,
1858 };
1859
1860 return wb_writeback(wb, &work);
1861 }
1862
1863 return 0;
1864}
1865
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
1871 struct wb_writeback_work *work;
1872 long wrote = 0;
1873
1874 set_bit(WB_writeback_running, &wb->state);
1875 while ((work = get_next_work_item(wb)) != NULL) {
1876 struct wb_completion *done = work->done;
1877
1878 trace_writeback_exec(wb, work);
1879
1880 wrote += wb_writeback(wb, work);
1881
1882 if (work->auto_free)
1883 kfree(work);
1884 if (done && atomic_dec_and_test(&done->cnt))
1885 wake_up_all(&wb->bdi->wb_waitq);
1886 }
1887
1888 /*
1889 * Check for periodic writeback, kupdated() style
1890 */
1891 wrote += wb_check_old_data_flush(wb);
1892 wrote += wb_check_background_flush(wb);
1893 clear_bit(WB_writeback_running, &wb->state);
1894
1895 return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905 struct bdi_writeback, dwork);
1906 long pages_written;
1907
1908 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909 current->flags |= PF_SWAPWRITE;
1910
1911 if (likely(!current_is_workqueue_rescuer() ||
1912 !test_bit(WB_registered, &wb->state))) {
1913 /*
1914 * The normal path. Keep writing back @wb until its
1915 * work_list is empty. Note that this path is also taken
1916 * if @wb is shutting down even when we're running off the
1917 * rescuer as work_list needs to be drained.
1918 */
1919 do {
1920 pages_written = wb_do_writeback(wb);
1921 trace_writeback_pages_written(pages_written);
1922 } while (!list_empty(&wb->work_list));
1923 } else {
1924 /*
1925 * bdi_wq can't get enough workers and we're running off
1926 * the emergency worker. Don't hog it. Hopefully, 1024 is
1927 * enough for efficient IO.
1928 */
1929 pages_written = writeback_inodes_wb(wb, 1024,
1930 WB_REASON_FORKER_THREAD);
1931 trace_writeback_pages_written(pages_written);
1932 }
1933
1934 if (!list_empty(&wb->work_list))
1935 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937 wb_wakeup_delayed(wb);
1938
1939 current->flags &= ~PF_SWAPWRITE;
1940}
1941
1942/*
1943 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1947{
1948 struct backing_dev_info *bdi;
1949
1950 /*
1951 * If we are expecting writeback progress we must submit plugged IO.
1952 */
1953 if (blk_needs_flush_plug(current))
1954 blk_schedule_flush_plug(current);
1955
1956 if (!nr_pages)
1957 nr_pages = get_nr_dirty_pages();
1958
1959 rcu_read_lock();
1960 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961 struct bdi_writeback *wb;
1962
1963 if (!bdi_has_dirty_io(bdi))
1964 continue;
1965
1966 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968 false, reason);
1969 }
1970 rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically. We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system. So instead we define a separate delayed work
1979 * function which gets called much more rarely. (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary. But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993 struct backing_dev_info *bdi;
1994
1995 rcu_read_lock();
1996 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997 struct bdi_writeback *wb;
1998
1999 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000 if (!list_empty(&wb->b_dirty_time))
2001 wb_wakeup(wb);
2002 }
2003 rcu_read_unlock();
2004 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010 return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015 void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017 int ret;
2018
2019 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020 if (ret == 0 && write)
2021 mod_delayed_work(system_wq, &dirtytime_work, 0);
2022 return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028 struct dentry *dentry;
2029 const char *name = "?";
2030
2031 dentry = d_find_alias(inode);
2032 if (dentry) {
2033 spin_lock(&dentry->d_lock);
2034 name = (const char *) dentry->d_name.name;
2035 }
2036 printk(KERN_DEBUG
2037 "%s(%d): dirtied inode %lu (%s) on %s\n",
2038 current->comm, task_pid_nr(current), inode->i_ino,
2039 name, inode->i_sb->s_id);
2040 if (dentry) {
2041 spin_unlock(&dentry->d_lock);
2042 dput(dentry);
2043 }
2044 }
2045}
2046
2047/**
2048 * __mark_inode_dirty - internal function
2049 * @inode: inode to mark
2050 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 * mark_inode_dirty_sync.
2053 *
2054 * Put the inode on the super block's dirty list.
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074 struct super_block *sb = inode->i_sb;
2075 int dirtytime;
2076
2077 trace_writeback_mark_inode_dirty(inode, flags);
2078
2079 /*
2080 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081 * dirty the inode itself
2082 */
2083 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084 trace_writeback_dirty_inode_start(inode, flags);
2085
2086 if (sb->s_op->dirty_inode)
2087 sb->s_op->dirty_inode(inode, flags);
2088
2089 trace_writeback_dirty_inode(inode, flags);
2090 }
2091 if (flags & I_DIRTY_INODE)
2092 flags &= ~I_DIRTY_TIME;
2093 dirtytime = flags & I_DIRTY_TIME;
2094
2095 /*
2096 * Paired with smp_mb() in __writeback_single_inode() for the
2097 * following lockless i_state test. See there for details.
2098 */
2099 smp_mb();
2100
2101 if (((inode->i_state & flags) == flags) ||
2102 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103 return;
2104
2105 if (unlikely(block_dump))
2106 block_dump___mark_inode_dirty(inode);
2107
2108 spin_lock(&inode->i_lock);
2109 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110 goto out_unlock_inode;
2111 if ((inode->i_state & flags) != flags) {
2112 const int was_dirty = inode->i_state & I_DIRTY;
2113
2114 inode_attach_wb(inode, NULL);
2115
2116 if (flags & I_DIRTY_INODE)
2117 inode->i_state &= ~I_DIRTY_TIME;
2118 inode->i_state |= flags;
2119
2120 /*
2121 * If the inode is being synced, just update its dirty state.
2122 * The unlocker will place the inode on the appropriate
2123 * superblock list, based upon its state.
2124 */
2125 if (inode->i_state & I_SYNC)
2126 goto out_unlock_inode;
2127
2128 /*
2129 * Only add valid (hashed) inodes to the superblock's
2130 * dirty list. Add blockdev inodes as well.
2131 */
2132 if (!S_ISBLK(inode->i_mode)) {
2133 if (inode_unhashed(inode))
2134 goto out_unlock_inode;
2135 }
2136 if (inode->i_state & I_FREEING)
2137 goto out_unlock_inode;
2138
2139 /*
2140 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141 * reposition it (that would break b_dirty time-ordering).
2142 */
2143 if (!was_dirty) {
2144 struct bdi_writeback *wb;
2145 struct list_head *dirty_list;
2146 bool wakeup_bdi = false;
2147
2148 wb = locked_inode_to_wb_and_lock_list(inode);
2149
2150 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151 !test_bit(WB_registered, &wb->state),
2152 "bdi-%s not registered\n", wb->bdi->name);
2153
2154 inode->dirtied_when = jiffies;
2155 if (dirtytime)
2156 inode->dirtied_time_when = jiffies;
2157
2158 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159 dirty_list = &wb->b_dirty;
2160 else
2161 dirty_list = &wb->b_dirty_time;
2162
2163 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164 dirty_list);
2165
2166 spin_unlock(&wb->list_lock);
2167 trace_writeback_dirty_inode_enqueue(inode);
2168
2169 /*
2170 * If this is the first dirty inode for this bdi,
2171 * we have to wake-up the corresponding bdi thread
2172 * to make sure background write-back happens
2173 * later.
2174 */
2175 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2176 wb_wakeup_delayed(wb);
2177 return;
2178 }
2179 }
2180out_unlock_inode:
2181 spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198 LIST_HEAD(sync_list);
2199
2200 /*
2201 * We need to be protected against the filesystem going from
2202 * r/o to r/w or vice versa.
2203 */
2204 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206 mutex_lock(&sb->s_sync_lock);
2207
2208 /*
2209 * Splice the writeback list onto a temporary list to avoid waiting on
2210 * inodes that have started writeback after this point.
2211 *
2212 * Use rcu_read_lock() to keep the inodes around until we have a
2213 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214 * the local list because inodes can be dropped from either by writeback
2215 * completion.
2216 */
2217 rcu_read_lock();
2218 spin_lock_irq(&sb->s_inode_wblist_lock);
2219 list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221 /*
2222 * Data integrity sync. Must wait for all pages under writeback, because
2223 * there may have been pages dirtied before our sync call, but which had
2224 * writeout started before we write it out. In which case, the inode
2225 * may not be on the dirty list, but we still have to wait for that
2226 * writeout.
2227 */
2228 while (!list_empty(&sync_list)) {
2229 struct inode *inode = list_first_entry(&sync_list, struct inode,
2230 i_wb_list);
2231 struct address_space *mapping = inode->i_mapping;
2232
2233 /*
2234 * Move each inode back to the wb list before we drop the lock
2235 * to preserve consistency between i_wb_list and the mapping
2236 * writeback tag. Writeback completion is responsible to remove
2237 * the inode from either list once the writeback tag is cleared.
2238 */
2239 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241 /*
2242 * The mapping can appear untagged while still on-list since we
2243 * do not have the mapping lock. Skip it here, wb completion
2244 * will remove it.
2245 */
2246 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247 continue;
2248
2249 spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251 spin_lock(&inode->i_lock);
2252 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253 spin_unlock(&inode->i_lock);
2254
2255 spin_lock_irq(&sb->s_inode_wblist_lock);
2256 continue;
2257 }
2258 __iget(inode);
2259 spin_unlock(&inode->i_lock);
2260 rcu_read_unlock();
2261
2262 /*
2263 * We keep the error status of individual mapping so that
2264 * applications can catch the writeback error using fsync(2).
2265 * See filemap_fdatawait_keep_errors() for details.
2266 */
2267 filemap_fdatawait_keep_errors(mapping);
2268
2269 cond_resched();
2270
2271 iput(inode);
2272
2273 rcu_read_lock();
2274 spin_lock_irq(&sb->s_inode_wblist_lock);
2275 }
2276 spin_unlock_irq(&sb->s_inode_wblist_lock);
2277 rcu_read_unlock();
2278 mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282 enum wb_reason reason, bool skip_if_busy)
2283{
2284 DEFINE_WB_COMPLETION_ONSTACK(done);
2285 struct wb_writeback_work work = {
2286 .sb = sb,
2287 .sync_mode = WB_SYNC_NONE,
2288 .tagged_writepages = 1,
2289 .done = &done,
2290 .nr_pages = nr,
2291 .reason = reason,
2292 };
2293 struct backing_dev_info *bdi = sb->s_bdi;
2294
2295 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296 return;
2297 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300 wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314 unsigned long nr,
2315 enum wb_reason reason)
2316{
2317 __writeback_inodes_sb_nr(sb, nr, reason, false);
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb - writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346 enum wb_reason reason)
2347{
2348 if (!down_read_trylock(&sb->s_umount))
2349 return false;
2350
2351 __writeback_inodes_sb_nr(sb, nr, reason, true);
2352 up_read(&sb->s_umount);
2353 return true;
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366{
2367 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb - sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380 DEFINE_WB_COMPLETION_ONSTACK(done);
2381 struct wb_writeback_work work = {
2382 .sb = sb,
2383 .sync_mode = WB_SYNC_ALL,
2384 .nr_pages = LONG_MAX,
2385 .range_cyclic = 0,
2386 .done = &done,
2387 .reason = WB_REASON_SYNC,
2388 .for_sync = 1,
2389 };
2390 struct backing_dev_info *bdi = sb->s_bdi;
2391
2392 /*
2393 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395 * bdi_has_dirty() need to be written out too.
2396 */
2397 if (bdi == &noop_backing_dev_info)
2398 return;
2399 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
2401 bdi_split_work_to_wbs(bdi, &work, false);
2402 wb_wait_for_completion(bdi, &done);
2403
2404 wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now - write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
2420 struct writeback_control wbc = {
2421 .nr_to_write = LONG_MAX,
2422 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423 .range_start = 0,
2424 .range_end = LLONG_MAX,
2425 };
2426
2427 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428 wbc.nr_to_write = 0;
2429
2430 might_sleep();
2431 return writeback_single_inode(inode, &wbc);
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk. It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448 return writeback_single_inode(inode, wbc);
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463 struct writeback_control wbc = {
2464 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465 .nr_to_write = 0, /* metadata-only */
2466 };
2467
2468 return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/spinlock.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
23#include <linux/pagemap.h>
24#include <linux/kthread.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/tracepoint.h>
29#include <linux/device.h>
30#include "internal.h"
31
32/*
33 * 4MB minimal write chunk size
34 */
35#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54};
55
56/**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63int writeback_in_progress(struct backing_dev_info *bdi)
64{
65 return test_bit(BDI_writeback_running, &bdi->state);
66}
67EXPORT_SYMBOL(writeback_in_progress);
68
69static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70{
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77}
78
79static inline struct inode *wb_inode(struct list_head *head)
80{
81 return list_entry(head, struct inode, i_wb_list);
82}
83
84/*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89#define CREATE_TRACE_POINTS
90#include <trace/events/writeback.h>
91
92EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93
94static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95{
96 spin_lock_bh(&bdi->wb_lock);
97 if (test_bit(BDI_registered, &bdi->state))
98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 spin_unlock_bh(&bdi->wb_lock);
100}
101
102static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104{
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 if (!test_bit(BDI_registered, &bdi->state)) {
109 if (work->done)
110 complete(work->done);
111 goto out_unlock;
112 }
113 list_add_tail(&work->list, &bdi->work_list);
114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115out_unlock:
116 spin_unlock_bh(&bdi->wb_lock);
117}
118
119static void
120__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 bool range_cyclic, enum wb_reason reason)
122{
123 struct wb_writeback_work *work;
124
125 /*
126 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 * wakeup the thread for old dirty data writeback
128 */
129 work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 if (!work) {
131 trace_writeback_nowork(bdi);
132 bdi_wakeup_thread(bdi);
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142}
143
144/**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
156void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158{
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160}
161
162/**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
172void bdi_start_background_writeback(struct backing_dev_info *bdi)
173{
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 bdi_wakeup_thread(bdi);
180}
181
182/*
183 * Remove the inode from the writeback list it is on.
184 */
185void inode_wb_list_del(struct inode *inode)
186{
187 struct backing_dev_info *bdi = inode_to_bdi(inode);
188
189 spin_lock(&bdi->wb.list_lock);
190 list_del_init(&inode->i_wb_list);
191 spin_unlock(&bdi->wb.list_lock);
192}
193
194/*
195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196 * furthest end of its superblock's dirty-inode list.
197 *
198 * Before stamping the inode's ->dirtied_when, we check to see whether it is
199 * already the most-recently-dirtied inode on the b_dirty list. If that is
200 * the case then the inode must have been redirtied while it was being written
201 * out and we don't reset its dirtied_when.
202 */
203static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204{
205 assert_spin_locked(&wb->list_lock);
206 if (!list_empty(&wb->b_dirty)) {
207 struct inode *tail;
208
209 tail = wb_inode(wb->b_dirty.next);
210 if (time_before(inode->dirtied_when, tail->dirtied_when))
211 inode->dirtied_when = jiffies;
212 }
213 list_move(&inode->i_wb_list, &wb->b_dirty);
214}
215
216/*
217 * requeue inode for re-scanning after bdi->b_io list is exhausted.
218 */
219static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220{
221 assert_spin_locked(&wb->list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
223}
224
225static void inode_sync_complete(struct inode *inode)
226{
227 inode->i_state &= ~I_SYNC;
228 /* If inode is clean an unused, put it into LRU now... */
229 inode_add_lru(inode);
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233}
234
235static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236{
237 bool ret = time_after(inode->dirtied_when, t);
238#ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246#endif
247 return ret;
248}
249
250/*
251 * Move expired (dirtied before work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
253 */
254static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
257{
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
264
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 list_move(&inode->i_wb_list, &tmp);
271 moved++;
272 if (sb_is_blkdev_sb(inode->i_sb))
273 continue;
274 if (sb && sb != inode->i_sb)
275 do_sb_sort = 1;
276 sb = inode->i_sb;
277 }
278
279 /* just one sb in list, splice to dispatch_queue and we're done */
280 if (!do_sb_sort) {
281 list_splice(&tmp, dispatch_queue);
282 goto out;
283 }
284
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp)) {
287 sb = wb_inode(tmp.prev)->i_sb;
288 list_for_each_prev_safe(pos, node, &tmp) {
289 inode = wb_inode(pos);
290 if (inode->i_sb == sb)
291 list_move(&inode->i_wb_list, dispatch_queue);
292 }
293 }
294out:
295 return moved;
296}
297
298/*
299 * Queue all expired dirty inodes for io, eldest first.
300 * Before
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
303 * After
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
306 * |
307 * +--> dequeue for IO
308 */
309static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310{
311 int moved;
312 assert_spin_locked(&wb->list_lock);
313 list_splice_init(&wb->b_more_io, &wb->b_io);
314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 trace_writeback_queue_io(wb, work, moved);
316}
317
318static int write_inode(struct inode *inode, struct writeback_control *wbc)
319{
320 int ret;
321
322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 trace_writeback_write_inode_start(inode, wbc);
324 ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 trace_writeback_write_inode(inode, wbc);
326 return ret;
327 }
328 return 0;
329}
330
331/*
332 * Wait for writeback on an inode to complete. Called with i_lock held.
333 * Caller must make sure inode cannot go away when we drop i_lock.
334 */
335static void __inode_wait_for_writeback(struct inode *inode)
336 __releases(inode->i_lock)
337 __acquires(inode->i_lock)
338{
339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 wait_queue_head_t *wqh;
341
342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 while (inode->i_state & I_SYNC) {
344 spin_unlock(&inode->i_lock);
345 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
346 spin_lock(&inode->i_lock);
347 }
348}
349
350/*
351 * Wait for writeback on an inode to complete. Caller must have inode pinned.
352 */
353void inode_wait_for_writeback(struct inode *inode)
354{
355 spin_lock(&inode->i_lock);
356 __inode_wait_for_writeback(inode);
357 spin_unlock(&inode->i_lock);
358}
359
360/*
361 * Sleep until I_SYNC is cleared. This function must be called with i_lock
362 * held and drops it. It is aimed for callers not holding any inode reference
363 * so once i_lock is dropped, inode can go away.
364 */
365static void inode_sleep_on_writeback(struct inode *inode)
366 __releases(inode->i_lock)
367{
368 DEFINE_WAIT(wait);
369 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
370 int sleep;
371
372 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
373 sleep = inode->i_state & I_SYNC;
374 spin_unlock(&inode->i_lock);
375 if (sleep)
376 schedule();
377 finish_wait(wqh, &wait);
378}
379
380/*
381 * Find proper writeback list for the inode depending on its current state and
382 * possibly also change of its state while we were doing writeback. Here we
383 * handle things such as livelock prevention or fairness of writeback among
384 * inodes. This function can be called only by flusher thread - noone else
385 * processes all inodes in writeback lists and requeueing inodes behind flusher
386 * thread's back can have unexpected consequences.
387 */
388static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
389 struct writeback_control *wbc)
390{
391 if (inode->i_state & I_FREEING)
392 return;
393
394 /*
395 * Sync livelock prevention. Each inode is tagged and synced in one
396 * shot. If still dirty, it will be redirty_tail()'ed below. Update
397 * the dirty time to prevent enqueue and sync it again.
398 */
399 if ((inode->i_state & I_DIRTY) &&
400 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
401 inode->dirtied_when = jiffies;
402
403 if (wbc->pages_skipped) {
404 /*
405 * writeback is not making progress due to locked
406 * buffers. Skip this inode for now.
407 */
408 redirty_tail(inode, wb);
409 return;
410 }
411
412 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
413 /*
414 * We didn't write back all the pages. nfs_writepages()
415 * sometimes bales out without doing anything.
416 */
417 if (wbc->nr_to_write <= 0) {
418 /* Slice used up. Queue for next turn. */
419 requeue_io(inode, wb);
420 } else {
421 /*
422 * Writeback blocked by something other than
423 * congestion. Delay the inode for some time to
424 * avoid spinning on the CPU (100% iowait)
425 * retrying writeback of the dirty page/inode
426 * that cannot be performed immediately.
427 */
428 redirty_tail(inode, wb);
429 }
430 } else if (inode->i_state & I_DIRTY) {
431 /*
432 * Filesystems can dirty the inode during writeback operations,
433 * such as delayed allocation during submission or metadata
434 * updates after data IO completion.
435 */
436 redirty_tail(inode, wb);
437 } else {
438 /* The inode is clean. Remove from writeback lists. */
439 list_del_init(&inode->i_wb_list);
440 }
441}
442
443/*
444 * Write out an inode and its dirty pages. Do not update the writeback list
445 * linkage. That is left to the caller. The caller is also responsible for
446 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
447 */
448static int
449__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
450{
451 struct address_space *mapping = inode->i_mapping;
452 long nr_to_write = wbc->nr_to_write;
453 unsigned dirty;
454 int ret;
455
456 WARN_ON(!(inode->i_state & I_SYNC));
457
458 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
459
460 ret = do_writepages(mapping, wbc);
461
462 /*
463 * Make sure to wait on the data before writing out the metadata.
464 * This is important for filesystems that modify metadata on data
465 * I/O completion. We don't do it for sync(2) writeback because it has a
466 * separate, external IO completion path and ->sync_fs for guaranteeing
467 * inode metadata is written back correctly.
468 */
469 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
470 int err = filemap_fdatawait(mapping);
471 if (ret == 0)
472 ret = err;
473 }
474
475 /*
476 * Some filesystems may redirty the inode during the writeback
477 * due to delalloc, clear dirty metadata flags right before
478 * write_inode()
479 */
480 spin_lock(&inode->i_lock);
481 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
482 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
483 inode->i_state &= ~I_DIRTY_PAGES;
484 dirty = inode->i_state & I_DIRTY;
485 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
486 spin_unlock(&inode->i_lock);
487 /* Don't write the inode if only I_DIRTY_PAGES was set */
488 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
489 int err = write_inode(inode, wbc);
490 if (ret == 0)
491 ret = err;
492 }
493 trace_writeback_single_inode(inode, wbc, nr_to_write);
494 return ret;
495}
496
497/*
498 * Write out an inode's dirty pages. Either the caller has an active reference
499 * on the inode or the inode has I_WILL_FREE set.
500 *
501 * This function is designed to be called for writing back one inode which
502 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
503 * and does more profound writeback list handling in writeback_sb_inodes().
504 */
505static int
506writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
507 struct writeback_control *wbc)
508{
509 int ret = 0;
510
511 spin_lock(&inode->i_lock);
512 if (!atomic_read(&inode->i_count))
513 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
514 else
515 WARN_ON(inode->i_state & I_WILL_FREE);
516
517 if (inode->i_state & I_SYNC) {
518 if (wbc->sync_mode != WB_SYNC_ALL)
519 goto out;
520 /*
521 * It's a data-integrity sync. We must wait. Since callers hold
522 * inode reference or inode has I_WILL_FREE set, it cannot go
523 * away under us.
524 */
525 __inode_wait_for_writeback(inode);
526 }
527 WARN_ON(inode->i_state & I_SYNC);
528 /*
529 * Skip inode if it is clean and we have no outstanding writeback in
530 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
531 * function since flusher thread may be doing for example sync in
532 * parallel and if we move the inode, it could get skipped. So here we
533 * make sure inode is on some writeback list and leave it there unless
534 * we have completely cleaned the inode.
535 */
536 if (!(inode->i_state & I_DIRTY) &&
537 (wbc->sync_mode != WB_SYNC_ALL ||
538 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
539 goto out;
540 inode->i_state |= I_SYNC;
541 spin_unlock(&inode->i_lock);
542
543 ret = __writeback_single_inode(inode, wbc);
544
545 spin_lock(&wb->list_lock);
546 spin_lock(&inode->i_lock);
547 /*
548 * If inode is clean, remove it from writeback lists. Otherwise don't
549 * touch it. See comment above for explanation.
550 */
551 if (!(inode->i_state & I_DIRTY))
552 list_del_init(&inode->i_wb_list);
553 spin_unlock(&wb->list_lock);
554 inode_sync_complete(inode);
555out:
556 spin_unlock(&inode->i_lock);
557 return ret;
558}
559
560static long writeback_chunk_size(struct backing_dev_info *bdi,
561 struct wb_writeback_work *work)
562{
563 long pages;
564
565 /*
566 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
567 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
568 * here avoids calling into writeback_inodes_wb() more than once.
569 *
570 * The intended call sequence for WB_SYNC_ALL writeback is:
571 *
572 * wb_writeback()
573 * writeback_sb_inodes() <== called only once
574 * write_cache_pages() <== called once for each inode
575 * (quickly) tag currently dirty pages
576 * (maybe slowly) sync all tagged pages
577 */
578 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
579 pages = LONG_MAX;
580 else {
581 pages = min(bdi->avg_write_bandwidth / 2,
582 global_dirty_limit / DIRTY_SCOPE);
583 pages = min(pages, work->nr_pages);
584 pages = round_down(pages + MIN_WRITEBACK_PAGES,
585 MIN_WRITEBACK_PAGES);
586 }
587
588 return pages;
589}
590
591/*
592 * Write a portion of b_io inodes which belong to @sb.
593 *
594 * Return the number of pages and/or inodes written.
595 */
596static long writeback_sb_inodes(struct super_block *sb,
597 struct bdi_writeback *wb,
598 struct wb_writeback_work *work)
599{
600 struct writeback_control wbc = {
601 .sync_mode = work->sync_mode,
602 .tagged_writepages = work->tagged_writepages,
603 .for_kupdate = work->for_kupdate,
604 .for_background = work->for_background,
605 .for_sync = work->for_sync,
606 .range_cyclic = work->range_cyclic,
607 .range_start = 0,
608 .range_end = LLONG_MAX,
609 };
610 unsigned long start_time = jiffies;
611 long write_chunk;
612 long wrote = 0; /* count both pages and inodes */
613
614 while (!list_empty(&wb->b_io)) {
615 struct inode *inode = wb_inode(wb->b_io.prev);
616
617 if (inode->i_sb != sb) {
618 if (work->sb) {
619 /*
620 * We only want to write back data for this
621 * superblock, move all inodes not belonging
622 * to it back onto the dirty list.
623 */
624 redirty_tail(inode, wb);
625 continue;
626 }
627
628 /*
629 * The inode belongs to a different superblock.
630 * Bounce back to the caller to unpin this and
631 * pin the next superblock.
632 */
633 break;
634 }
635
636 /*
637 * Don't bother with new inodes or inodes being freed, first
638 * kind does not need periodic writeout yet, and for the latter
639 * kind writeout is handled by the freer.
640 */
641 spin_lock(&inode->i_lock);
642 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 spin_unlock(&inode->i_lock);
644 redirty_tail(inode, wb);
645 continue;
646 }
647 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
648 /*
649 * If this inode is locked for writeback and we are not
650 * doing writeback-for-data-integrity, move it to
651 * b_more_io so that writeback can proceed with the
652 * other inodes on s_io.
653 *
654 * We'll have another go at writing back this inode
655 * when we completed a full scan of b_io.
656 */
657 spin_unlock(&inode->i_lock);
658 requeue_io(inode, wb);
659 trace_writeback_sb_inodes_requeue(inode);
660 continue;
661 }
662 spin_unlock(&wb->list_lock);
663
664 /*
665 * We already requeued the inode if it had I_SYNC set and we
666 * are doing WB_SYNC_NONE writeback. So this catches only the
667 * WB_SYNC_ALL case.
668 */
669 if (inode->i_state & I_SYNC) {
670 /* Wait for I_SYNC. This function drops i_lock... */
671 inode_sleep_on_writeback(inode);
672 /* Inode may be gone, start again */
673 spin_lock(&wb->list_lock);
674 continue;
675 }
676 inode->i_state |= I_SYNC;
677 spin_unlock(&inode->i_lock);
678
679 write_chunk = writeback_chunk_size(wb->bdi, work);
680 wbc.nr_to_write = write_chunk;
681 wbc.pages_skipped = 0;
682
683 /*
684 * We use I_SYNC to pin the inode in memory. While it is set
685 * evict_inode() will wait so the inode cannot be freed.
686 */
687 __writeback_single_inode(inode, &wbc);
688
689 work->nr_pages -= write_chunk - wbc.nr_to_write;
690 wrote += write_chunk - wbc.nr_to_write;
691 spin_lock(&wb->list_lock);
692 spin_lock(&inode->i_lock);
693 if (!(inode->i_state & I_DIRTY))
694 wrote++;
695 requeue_inode(inode, wb, &wbc);
696 inode_sync_complete(inode);
697 spin_unlock(&inode->i_lock);
698 cond_resched_lock(&wb->list_lock);
699 /*
700 * bail out to wb_writeback() often enough to check
701 * background threshold and other termination conditions.
702 */
703 if (wrote) {
704 if (time_is_before_jiffies(start_time + HZ / 10UL))
705 break;
706 if (work->nr_pages <= 0)
707 break;
708 }
709 }
710 return wrote;
711}
712
713static long __writeback_inodes_wb(struct bdi_writeback *wb,
714 struct wb_writeback_work *work)
715{
716 unsigned long start_time = jiffies;
717 long wrote = 0;
718
719 while (!list_empty(&wb->b_io)) {
720 struct inode *inode = wb_inode(wb->b_io.prev);
721 struct super_block *sb = inode->i_sb;
722
723 if (!grab_super_passive(sb)) {
724 /*
725 * grab_super_passive() may fail consistently due to
726 * s_umount being grabbed by someone else. Don't use
727 * requeue_io() to avoid busy retrying the inode/sb.
728 */
729 redirty_tail(inode, wb);
730 continue;
731 }
732 wrote += writeback_sb_inodes(sb, wb, work);
733 drop_super(sb);
734
735 /* refer to the same tests at the end of writeback_sb_inodes */
736 if (wrote) {
737 if (time_is_before_jiffies(start_time + HZ / 10UL))
738 break;
739 if (work->nr_pages <= 0)
740 break;
741 }
742 }
743 /* Leave any unwritten inodes on b_io */
744 return wrote;
745}
746
747static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
748 enum wb_reason reason)
749{
750 struct wb_writeback_work work = {
751 .nr_pages = nr_pages,
752 .sync_mode = WB_SYNC_NONE,
753 .range_cyclic = 1,
754 .reason = reason,
755 };
756
757 spin_lock(&wb->list_lock);
758 if (list_empty(&wb->b_io))
759 queue_io(wb, &work);
760 __writeback_inodes_wb(wb, &work);
761 spin_unlock(&wb->list_lock);
762
763 return nr_pages - work.nr_pages;
764}
765
766static bool over_bground_thresh(struct backing_dev_info *bdi)
767{
768 unsigned long background_thresh, dirty_thresh;
769
770 global_dirty_limits(&background_thresh, &dirty_thresh);
771
772 if (global_page_state(NR_FILE_DIRTY) +
773 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
774 return true;
775
776 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
777 bdi_dirty_limit(bdi, background_thresh))
778 return true;
779
780 return false;
781}
782
783/*
784 * Called under wb->list_lock. If there are multiple wb per bdi,
785 * only the flusher working on the first wb should do it.
786 */
787static void wb_update_bandwidth(struct bdi_writeback *wb,
788 unsigned long start_time)
789{
790 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
791}
792
793/*
794 * Explicit flushing or periodic writeback of "old" data.
795 *
796 * Define "old": the first time one of an inode's pages is dirtied, we mark the
797 * dirtying-time in the inode's address_space. So this periodic writeback code
798 * just walks the superblock inode list, writing back any inodes which are
799 * older than a specific point in time.
800 *
801 * Try to run once per dirty_writeback_interval. But if a writeback event
802 * takes longer than a dirty_writeback_interval interval, then leave a
803 * one-second gap.
804 *
805 * older_than_this takes precedence over nr_to_write. So we'll only write back
806 * all dirty pages if they are all attached to "old" mappings.
807 */
808static long wb_writeback(struct bdi_writeback *wb,
809 struct wb_writeback_work *work)
810{
811 unsigned long wb_start = jiffies;
812 long nr_pages = work->nr_pages;
813 unsigned long oldest_jif;
814 struct inode *inode;
815 long progress;
816
817 oldest_jif = jiffies;
818 work->older_than_this = &oldest_jif;
819
820 spin_lock(&wb->list_lock);
821 for (;;) {
822 /*
823 * Stop writeback when nr_pages has been consumed
824 */
825 if (work->nr_pages <= 0)
826 break;
827
828 /*
829 * Background writeout and kupdate-style writeback may
830 * run forever. Stop them if there is other work to do
831 * so that e.g. sync can proceed. They'll be restarted
832 * after the other works are all done.
833 */
834 if ((work->for_background || work->for_kupdate) &&
835 !list_empty(&wb->bdi->work_list))
836 break;
837
838 /*
839 * For background writeout, stop when we are below the
840 * background dirty threshold
841 */
842 if (work->for_background && !over_bground_thresh(wb->bdi))
843 break;
844
845 /*
846 * Kupdate and background works are special and we want to
847 * include all inodes that need writing. Livelock avoidance is
848 * handled by these works yielding to any other work so we are
849 * safe.
850 */
851 if (work->for_kupdate) {
852 oldest_jif = jiffies -
853 msecs_to_jiffies(dirty_expire_interval * 10);
854 } else if (work->for_background)
855 oldest_jif = jiffies;
856
857 trace_writeback_start(wb->bdi, work);
858 if (list_empty(&wb->b_io))
859 queue_io(wb, work);
860 if (work->sb)
861 progress = writeback_sb_inodes(work->sb, wb, work);
862 else
863 progress = __writeback_inodes_wb(wb, work);
864 trace_writeback_written(wb->bdi, work);
865
866 wb_update_bandwidth(wb, wb_start);
867
868 /*
869 * Did we write something? Try for more
870 *
871 * Dirty inodes are moved to b_io for writeback in batches.
872 * The completion of the current batch does not necessarily
873 * mean the overall work is done. So we keep looping as long
874 * as made some progress on cleaning pages or inodes.
875 */
876 if (progress)
877 continue;
878 /*
879 * No more inodes for IO, bail
880 */
881 if (list_empty(&wb->b_more_io))
882 break;
883 /*
884 * Nothing written. Wait for some inode to
885 * become available for writeback. Otherwise
886 * we'll just busyloop.
887 */
888 if (!list_empty(&wb->b_more_io)) {
889 trace_writeback_wait(wb->bdi, work);
890 inode = wb_inode(wb->b_more_io.prev);
891 spin_lock(&inode->i_lock);
892 spin_unlock(&wb->list_lock);
893 /* This function drops i_lock... */
894 inode_sleep_on_writeback(inode);
895 spin_lock(&wb->list_lock);
896 }
897 }
898 spin_unlock(&wb->list_lock);
899
900 return nr_pages - work->nr_pages;
901}
902
903/*
904 * Return the next wb_writeback_work struct that hasn't been processed yet.
905 */
906static struct wb_writeback_work *
907get_next_work_item(struct backing_dev_info *bdi)
908{
909 struct wb_writeback_work *work = NULL;
910
911 spin_lock_bh(&bdi->wb_lock);
912 if (!list_empty(&bdi->work_list)) {
913 work = list_entry(bdi->work_list.next,
914 struct wb_writeback_work, list);
915 list_del_init(&work->list);
916 }
917 spin_unlock_bh(&bdi->wb_lock);
918 return work;
919}
920
921/*
922 * Add in the number of potentially dirty inodes, because each inode
923 * write can dirty pagecache in the underlying blockdev.
924 */
925static unsigned long get_nr_dirty_pages(void)
926{
927 return global_page_state(NR_FILE_DIRTY) +
928 global_page_state(NR_UNSTABLE_NFS) +
929 get_nr_dirty_inodes();
930}
931
932static long wb_check_background_flush(struct bdi_writeback *wb)
933{
934 if (over_bground_thresh(wb->bdi)) {
935
936 struct wb_writeback_work work = {
937 .nr_pages = LONG_MAX,
938 .sync_mode = WB_SYNC_NONE,
939 .for_background = 1,
940 .range_cyclic = 1,
941 .reason = WB_REASON_BACKGROUND,
942 };
943
944 return wb_writeback(wb, &work);
945 }
946
947 return 0;
948}
949
950static long wb_check_old_data_flush(struct bdi_writeback *wb)
951{
952 unsigned long expired;
953 long nr_pages;
954
955 /*
956 * When set to zero, disable periodic writeback
957 */
958 if (!dirty_writeback_interval)
959 return 0;
960
961 expired = wb->last_old_flush +
962 msecs_to_jiffies(dirty_writeback_interval * 10);
963 if (time_before(jiffies, expired))
964 return 0;
965
966 wb->last_old_flush = jiffies;
967 nr_pages = get_nr_dirty_pages();
968
969 if (nr_pages) {
970 struct wb_writeback_work work = {
971 .nr_pages = nr_pages,
972 .sync_mode = WB_SYNC_NONE,
973 .for_kupdate = 1,
974 .range_cyclic = 1,
975 .reason = WB_REASON_PERIODIC,
976 };
977
978 return wb_writeback(wb, &work);
979 }
980
981 return 0;
982}
983
984/*
985 * Retrieve work items and do the writeback they describe
986 */
987static long wb_do_writeback(struct bdi_writeback *wb)
988{
989 struct backing_dev_info *bdi = wb->bdi;
990 struct wb_writeback_work *work;
991 long wrote = 0;
992
993 set_bit(BDI_writeback_running, &wb->bdi->state);
994 while ((work = get_next_work_item(bdi)) != NULL) {
995
996 trace_writeback_exec(bdi, work);
997
998 wrote += wb_writeback(wb, work);
999
1000 /*
1001 * Notify the caller of completion if this is a synchronous
1002 * work item, otherwise just free it.
1003 */
1004 if (work->done)
1005 complete(work->done);
1006 else
1007 kfree(work);
1008 }
1009
1010 /*
1011 * Check for periodic writeback, kupdated() style
1012 */
1013 wrote += wb_check_old_data_flush(wb);
1014 wrote += wb_check_background_flush(wb);
1015 clear_bit(BDI_writeback_running, &wb->bdi->state);
1016
1017 return wrote;
1018}
1019
1020/*
1021 * Handle writeback of dirty data for the device backed by this bdi. Also
1022 * reschedules periodically and does kupdated style flushing.
1023 */
1024void bdi_writeback_workfn(struct work_struct *work)
1025{
1026 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1027 struct bdi_writeback, dwork);
1028 struct backing_dev_info *bdi = wb->bdi;
1029 long pages_written;
1030
1031 set_worker_desc("flush-%s", dev_name(bdi->dev));
1032 current->flags |= PF_SWAPWRITE;
1033
1034 if (likely(!current_is_workqueue_rescuer() ||
1035 !test_bit(BDI_registered, &bdi->state))) {
1036 /*
1037 * The normal path. Keep writing back @bdi until its
1038 * work_list is empty. Note that this path is also taken
1039 * if @bdi is shutting down even when we're running off the
1040 * rescuer as work_list needs to be drained.
1041 */
1042 do {
1043 pages_written = wb_do_writeback(wb);
1044 trace_writeback_pages_written(pages_written);
1045 } while (!list_empty(&bdi->work_list));
1046 } else {
1047 /*
1048 * bdi_wq can't get enough workers and we're running off
1049 * the emergency worker. Don't hog it. Hopefully, 1024 is
1050 * enough for efficient IO.
1051 */
1052 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1053 WB_REASON_FORKER_THREAD);
1054 trace_writeback_pages_written(pages_written);
1055 }
1056
1057 if (!list_empty(&bdi->work_list))
1058 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1059 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1060 bdi_wakeup_thread_delayed(bdi);
1061
1062 current->flags &= ~PF_SWAPWRITE;
1063}
1064
1065/*
1066 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1067 * the whole world.
1068 */
1069void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1070{
1071 struct backing_dev_info *bdi;
1072
1073 if (!nr_pages)
1074 nr_pages = get_nr_dirty_pages();
1075
1076 rcu_read_lock();
1077 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1078 if (!bdi_has_dirty_io(bdi))
1079 continue;
1080 __bdi_start_writeback(bdi, nr_pages, false, reason);
1081 }
1082 rcu_read_unlock();
1083}
1084
1085static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1086{
1087 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1088 struct dentry *dentry;
1089 const char *name = "?";
1090
1091 dentry = d_find_alias(inode);
1092 if (dentry) {
1093 spin_lock(&dentry->d_lock);
1094 name = (const char *) dentry->d_name.name;
1095 }
1096 printk(KERN_DEBUG
1097 "%s(%d): dirtied inode %lu (%s) on %s\n",
1098 current->comm, task_pid_nr(current), inode->i_ino,
1099 name, inode->i_sb->s_id);
1100 if (dentry) {
1101 spin_unlock(&dentry->d_lock);
1102 dput(dentry);
1103 }
1104 }
1105}
1106
1107/**
1108 * __mark_inode_dirty - internal function
1109 * @inode: inode to mark
1110 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1111 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1112 * mark_inode_dirty_sync.
1113 *
1114 * Put the inode on the super block's dirty list.
1115 *
1116 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1117 * dirty list only if it is hashed or if it refers to a blockdev.
1118 * If it was not hashed, it will never be added to the dirty list
1119 * even if it is later hashed, as it will have been marked dirty already.
1120 *
1121 * In short, make sure you hash any inodes _before_ you start marking
1122 * them dirty.
1123 *
1124 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1125 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1126 * the kernel-internal blockdev inode represents the dirtying time of the
1127 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1128 * page->mapping->host, so the page-dirtying time is recorded in the internal
1129 * blockdev inode.
1130 */
1131void __mark_inode_dirty(struct inode *inode, int flags)
1132{
1133 struct super_block *sb = inode->i_sb;
1134 struct backing_dev_info *bdi = NULL;
1135
1136 /*
1137 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1138 * dirty the inode itself
1139 */
1140 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1141 trace_writeback_dirty_inode_start(inode, flags);
1142
1143 if (sb->s_op->dirty_inode)
1144 sb->s_op->dirty_inode(inode, flags);
1145
1146 trace_writeback_dirty_inode(inode, flags);
1147 }
1148
1149 /*
1150 * make sure that changes are seen by all cpus before we test i_state
1151 * -- mikulas
1152 */
1153 smp_mb();
1154
1155 /* avoid the locking if we can */
1156 if ((inode->i_state & flags) == flags)
1157 return;
1158
1159 if (unlikely(block_dump))
1160 block_dump___mark_inode_dirty(inode);
1161
1162 spin_lock(&inode->i_lock);
1163 if ((inode->i_state & flags) != flags) {
1164 const int was_dirty = inode->i_state & I_DIRTY;
1165
1166 inode->i_state |= flags;
1167
1168 /*
1169 * If the inode is being synced, just update its dirty state.
1170 * The unlocker will place the inode on the appropriate
1171 * superblock list, based upon its state.
1172 */
1173 if (inode->i_state & I_SYNC)
1174 goto out_unlock_inode;
1175
1176 /*
1177 * Only add valid (hashed) inodes to the superblock's
1178 * dirty list. Add blockdev inodes as well.
1179 */
1180 if (!S_ISBLK(inode->i_mode)) {
1181 if (inode_unhashed(inode))
1182 goto out_unlock_inode;
1183 }
1184 if (inode->i_state & I_FREEING)
1185 goto out_unlock_inode;
1186
1187 /*
1188 * If the inode was already on b_dirty/b_io/b_more_io, don't
1189 * reposition it (that would break b_dirty time-ordering).
1190 */
1191 if (!was_dirty) {
1192 bool wakeup_bdi = false;
1193 bdi = inode_to_bdi(inode);
1194
1195 spin_unlock(&inode->i_lock);
1196 spin_lock(&bdi->wb.list_lock);
1197 if (bdi_cap_writeback_dirty(bdi)) {
1198 WARN(!test_bit(BDI_registered, &bdi->state),
1199 "bdi-%s not registered\n", bdi->name);
1200
1201 /*
1202 * If this is the first dirty inode for this
1203 * bdi, we have to wake-up the corresponding
1204 * bdi thread to make sure background
1205 * write-back happens later.
1206 */
1207 if (!wb_has_dirty_io(&bdi->wb))
1208 wakeup_bdi = true;
1209 }
1210
1211 inode->dirtied_when = jiffies;
1212 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1213 spin_unlock(&bdi->wb.list_lock);
1214
1215 if (wakeup_bdi)
1216 bdi_wakeup_thread_delayed(bdi);
1217 return;
1218 }
1219 }
1220out_unlock_inode:
1221 spin_unlock(&inode->i_lock);
1222
1223}
1224EXPORT_SYMBOL(__mark_inode_dirty);
1225
1226static void wait_sb_inodes(struct super_block *sb)
1227{
1228 struct inode *inode, *old_inode = NULL;
1229
1230 /*
1231 * We need to be protected against the filesystem going from
1232 * r/o to r/w or vice versa.
1233 */
1234 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1235
1236 spin_lock(&inode_sb_list_lock);
1237
1238 /*
1239 * Data integrity sync. Must wait for all pages under writeback,
1240 * because there may have been pages dirtied before our sync
1241 * call, but which had writeout started before we write it out.
1242 * In which case, the inode may not be on the dirty list, but
1243 * we still have to wait for that writeout.
1244 */
1245 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1246 struct address_space *mapping = inode->i_mapping;
1247
1248 spin_lock(&inode->i_lock);
1249 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1250 (mapping->nrpages == 0)) {
1251 spin_unlock(&inode->i_lock);
1252 continue;
1253 }
1254 __iget(inode);
1255 spin_unlock(&inode->i_lock);
1256 spin_unlock(&inode_sb_list_lock);
1257
1258 /*
1259 * We hold a reference to 'inode' so it couldn't have been
1260 * removed from s_inodes list while we dropped the
1261 * inode_sb_list_lock. We cannot iput the inode now as we can
1262 * be holding the last reference and we cannot iput it under
1263 * inode_sb_list_lock. So we keep the reference and iput it
1264 * later.
1265 */
1266 iput(old_inode);
1267 old_inode = inode;
1268
1269 filemap_fdatawait(mapping);
1270
1271 cond_resched();
1272
1273 spin_lock(&inode_sb_list_lock);
1274 }
1275 spin_unlock(&inode_sb_list_lock);
1276 iput(old_inode);
1277}
1278
1279/**
1280 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1281 * @sb: the superblock
1282 * @nr: the number of pages to write
1283 * @reason: reason why some writeback work initiated
1284 *
1285 * Start writeback on some inodes on this super_block. No guarantees are made
1286 * on how many (if any) will be written, and this function does not wait
1287 * for IO completion of submitted IO.
1288 */
1289void writeback_inodes_sb_nr(struct super_block *sb,
1290 unsigned long nr,
1291 enum wb_reason reason)
1292{
1293 DECLARE_COMPLETION_ONSTACK(done);
1294 struct wb_writeback_work work = {
1295 .sb = sb,
1296 .sync_mode = WB_SYNC_NONE,
1297 .tagged_writepages = 1,
1298 .done = &done,
1299 .nr_pages = nr,
1300 .reason = reason,
1301 };
1302
1303 if (sb->s_bdi == &noop_backing_dev_info)
1304 return;
1305 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1306 bdi_queue_work(sb->s_bdi, &work);
1307 wait_for_completion(&done);
1308}
1309EXPORT_SYMBOL(writeback_inodes_sb_nr);
1310
1311/**
1312 * writeback_inodes_sb - writeback dirty inodes from given super_block
1313 * @sb: the superblock
1314 * @reason: reason why some writeback work was initiated
1315 *
1316 * Start writeback on some inodes on this super_block. No guarantees are made
1317 * on how many (if any) will be written, and this function does not wait
1318 * for IO completion of submitted IO.
1319 */
1320void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1321{
1322 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1323}
1324EXPORT_SYMBOL(writeback_inodes_sb);
1325
1326/**
1327 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1328 * @sb: the superblock
1329 * @nr: the number of pages to write
1330 * @reason: the reason of writeback
1331 *
1332 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1333 * Returns 1 if writeback was started, 0 if not.
1334 */
1335int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1336 unsigned long nr,
1337 enum wb_reason reason)
1338{
1339 if (writeback_in_progress(sb->s_bdi))
1340 return 1;
1341
1342 if (!down_read_trylock(&sb->s_umount))
1343 return 0;
1344
1345 writeback_inodes_sb_nr(sb, nr, reason);
1346 up_read(&sb->s_umount);
1347 return 1;
1348}
1349EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1350
1351/**
1352 * try_to_writeback_inodes_sb - try to start writeback if none underway
1353 * @sb: the superblock
1354 * @reason: reason why some writeback work was initiated
1355 *
1356 * Implement by try_to_writeback_inodes_sb_nr()
1357 * Returns 1 if writeback was started, 0 if not.
1358 */
1359int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1360{
1361 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1362}
1363EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1364
1365/**
1366 * sync_inodes_sb - sync sb inode pages
1367 * @sb: the superblock
1368 *
1369 * This function writes and waits on any dirty inode belonging to this
1370 * super_block.
1371 */
1372void sync_inodes_sb(struct super_block *sb)
1373{
1374 DECLARE_COMPLETION_ONSTACK(done);
1375 struct wb_writeback_work work = {
1376 .sb = sb,
1377 .sync_mode = WB_SYNC_ALL,
1378 .nr_pages = LONG_MAX,
1379 .range_cyclic = 0,
1380 .done = &done,
1381 .reason = WB_REASON_SYNC,
1382 .for_sync = 1,
1383 };
1384
1385 /* Nothing to do? */
1386 if (sb->s_bdi == &noop_backing_dev_info)
1387 return;
1388 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1389
1390 bdi_queue_work(sb->s_bdi, &work);
1391 wait_for_completion(&done);
1392
1393 wait_sb_inodes(sb);
1394}
1395EXPORT_SYMBOL(sync_inodes_sb);
1396
1397/**
1398 * write_inode_now - write an inode to disk
1399 * @inode: inode to write to disk
1400 * @sync: whether the write should be synchronous or not
1401 *
1402 * This function commits an inode to disk immediately if it is dirty. This is
1403 * primarily needed by knfsd.
1404 *
1405 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1406 */
1407int write_inode_now(struct inode *inode, int sync)
1408{
1409 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1410 struct writeback_control wbc = {
1411 .nr_to_write = LONG_MAX,
1412 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1413 .range_start = 0,
1414 .range_end = LLONG_MAX,
1415 };
1416
1417 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1418 wbc.nr_to_write = 0;
1419
1420 might_sleep();
1421 return writeback_single_inode(inode, wb, &wbc);
1422}
1423EXPORT_SYMBOL(write_inode_now);
1424
1425/**
1426 * sync_inode - write an inode and its pages to disk.
1427 * @inode: the inode to sync
1428 * @wbc: controls the writeback mode
1429 *
1430 * sync_inode() will write an inode and its pages to disk. It will also
1431 * correctly update the inode on its superblock's dirty inode lists and will
1432 * update inode->i_state.
1433 *
1434 * The caller must have a ref on the inode.
1435 */
1436int sync_inode(struct inode *inode, struct writeback_control *wbc)
1437{
1438 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1439}
1440EXPORT_SYMBOL(sync_inode);
1441
1442/**
1443 * sync_inode_metadata - write an inode to disk
1444 * @inode: the inode to sync
1445 * @wait: wait for I/O to complete.
1446 *
1447 * Write an inode to disk and adjust its dirty state after completion.
1448 *
1449 * Note: only writes the actual inode, no associated data or other metadata.
1450 */
1451int sync_inode_metadata(struct inode *inode, int wait)
1452{
1453 struct writeback_control wbc = {
1454 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1455 .nr_to_write = 0, /* metadata-only */
1456 };
1457
1458 return sync_inode(inode, &wbc);
1459}
1460EXPORT_SYMBOL(sync_inode_metadata);