Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 174}
 175
 
 
 
 
 
 
 
 
 
 
 
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 181	spin_lock_bh(&wb->work_lock);
 182	if (!test_bit(WB_registered, &wb->state))
 183		goto out_unlock;
 184	if (work->done)
 185		atomic_inc(&work->done->cnt);
 186	list_add_tail(&work->list, &wb->work_list);
 187	mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 
 
 
 
 
 
 189	spin_unlock_bh(&wb->work_lock);
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204				   struct wb_completion *done)
 205{
 206	atomic_dec(&done->cnt);		/* put down the initial count */
 207	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 213#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 217
 218#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220					/* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 222					/* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224					/* one round can affect upto 5 slots */
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231	struct backing_dev_info *bdi = inode_to_bdi(inode);
 232	struct bdi_writeback *wb = NULL;
 233
 234	if (inode_cgwb_enabled(inode)) {
 235		struct cgroup_subsys_state *memcg_css;
 236
 237		if (page) {
 238			memcg_css = mem_cgroup_css_from_page(page);
 239			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240		} else {
 241			/* must pin memcg_css, see wb_get_create() */
 242			memcg_css = task_get_css(current, memory_cgrp_id);
 243			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244			css_put(memcg_css);
 245		}
 246	}
 247
 248	if (!wb)
 249		wb = &bdi->wb;
 250
 251	/*
 252	 * There may be multiple instances of this function racing to
 253	 * update the same inode.  Use cmpxchg() to tell the winner.
 254	 */
 255	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256		wb_put(wb);
 257}
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269	__releases(&inode->i_lock)
 270	__acquires(&wb->list_lock)
 271{
 272	while (true) {
 273		struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275		/*
 276		 * inode_to_wb() association is protected by both
 277		 * @inode->i_lock and @wb->list_lock but list_lock nests
 278		 * outside i_lock.  Drop i_lock and verify that the
 279		 * association hasn't changed after acquiring list_lock.
 280		 */
 281		wb_get(wb);
 282		spin_unlock(&inode->i_lock);
 283		spin_lock(&wb->list_lock);
 284
 285		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 286		if (likely(wb == inode->i_wb)) {
 287			wb_put(wb);	/* @inode already has ref */
 288			return wb;
 289		}
 290
 291		spin_unlock(&wb->list_lock);
 292		wb_put(wb);
 293		cpu_relax();
 294		spin_lock(&inode->i_lock);
 295	}
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306	__acquires(&wb->list_lock)
 307{
 308	spin_lock(&inode->i_lock);
 309	return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313	struct inode		*inode;
 314	struct bdi_writeback	*new_wb;
 315
 316	struct rcu_head		rcu_head;
 317	struct work_struct	work;
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 321{
 322	struct inode_switch_wbs_context *isw =
 323		container_of(work, struct inode_switch_wbs_context, work);
 324	struct inode *inode = isw->inode;
 325	struct address_space *mapping = inode->i_mapping;
 326	struct bdi_writeback *old_wb = inode->i_wb;
 327	struct bdi_writeback *new_wb = isw->new_wb;
 328	struct radix_tree_iter iter;
 329	bool switched = false;
 330	void **slot;
 331
 332	/*
 333	 * By the time control reaches here, RCU grace period has passed
 334	 * since I_WB_SWITCH assertion and all wb stat update transactions
 335	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336	 * synchronizing against mapping->tree_lock.
 337	 *
 338	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339	 * gives us exclusion against all wb related operations on @inode
 340	 * including IO list manipulations and stat updates.
 341	 */
 342	if (old_wb < new_wb) {
 343		spin_lock(&old_wb->list_lock);
 344		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345	} else {
 346		spin_lock(&new_wb->list_lock);
 347		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348	}
 349	spin_lock(&inode->i_lock);
 350	spin_lock_irq(&mapping->tree_lock);
 351
 352	/*
 353	 * Once I_FREEING is visible under i_lock, the eviction path owns
 354	 * the inode and we shouldn't modify ->i_io_list.
 355	 */
 356	if (unlikely(inode->i_state & I_FREEING))
 357		goto skip_switch;
 358
 359	/*
 360	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362	 * pages actually under underwriteback.
 363	 */
 364	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365				   PAGECACHE_TAG_DIRTY) {
 366		struct page *page = radix_tree_deref_slot_protected(slot,
 367							&mapping->tree_lock);
 368		if (likely(page) && PageDirty(page)) {
 369			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371		}
 372	}
 373
 374	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375				   PAGECACHE_TAG_WRITEBACK) {
 376		struct page *page = radix_tree_deref_slot_protected(slot,
 377							&mapping->tree_lock);
 378		if (likely(page)) {
 379			WARN_ON_ONCE(!PageWriteback(page));
 380			__dec_wb_stat(old_wb, WB_WRITEBACK);
 381			__inc_wb_stat(new_wb, WB_WRITEBACK);
 382		}
 383	}
 384
 385	wb_get(new_wb);
 386
 387	/*
 388	 * Transfer to @new_wb's IO list if necessary.  The specific list
 389	 * @inode was on is ignored and the inode is put on ->b_dirty which
 390	 * is always correct including from ->b_dirty_time.  The transfer
 391	 * preserves @inode->dirtied_when ordering.
 392	 */
 393	if (!list_empty(&inode->i_io_list)) {
 394		struct inode *pos;
 395
 396		inode_io_list_del_locked(inode, old_wb);
 397		inode->i_wb = new_wb;
 398		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399			if (time_after_eq(inode->dirtied_when,
 400					  pos->dirtied_when))
 401				break;
 402		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 403	} else {
 404		inode->i_wb = new_wb;
 405	}
 406
 407	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408	inode->i_wb_frn_winner = 0;
 409	inode->i_wb_frn_avg_time = 0;
 410	inode->i_wb_frn_history = 0;
 411	switched = true;
 412skip_switch:
 413	/*
 414	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416	 */
 417	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419	spin_unlock_irq(&mapping->tree_lock);
 420	spin_unlock(&inode->i_lock);
 421	spin_unlock(&new_wb->list_lock);
 422	spin_unlock(&old_wb->list_lock);
 423
 424	if (switched) {
 425		wb_wakeup(new_wb);
 426		wb_put(old_wb);
 427	}
 428	wb_put(new_wb);
 429
 430	iput(inode);
 431	kfree(isw);
 432
 433	atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 437{
 438	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439				struct inode_switch_wbs_context, rcu_head);
 440
 441	/* needs to grab bh-unsafe locks, bounce to work item */
 442	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443	queue_work(isw_wq, &isw->work);
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456	struct backing_dev_info *bdi = inode_to_bdi(inode);
 457	struct cgroup_subsys_state *memcg_css;
 458	struct inode_switch_wbs_context *isw;
 459
 460	/* noop if seems to be already in progress */
 461	if (inode->i_state & I_WB_SWITCH)
 462		return;
 463
 464	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 465	if (!isw)
 466		return;
 467
 468	/* find and pin the new wb */
 469	rcu_read_lock();
 470	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471	if (memcg_css)
 472		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473	rcu_read_unlock();
 474	if (!isw->new_wb)
 475		goto out_free;
 476
 477	/* while holding I_WB_SWITCH, no one else can update the association */
 478	spin_lock(&inode->i_lock);
 479	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481	    inode_to_wb(inode) == isw->new_wb) {
 482		spin_unlock(&inode->i_lock);
 483		goto out_free;
 484	}
 485	inode->i_state |= I_WB_SWITCH;
 486	__iget(inode);
 487	spin_unlock(&inode->i_lock);
 488
 489	isw->inode = inode;
 490
 491	atomic_inc(&isw_nr_in_flight);
 492
 493	/*
 494	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495	 * the RCU protected stat update paths to grab the mapping's
 496	 * tree_lock so that stat transfer can synchronize against them.
 497	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498	 */
 499	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 500	return;
 501
 502out_free:
 503	if (isw->new_wb)
 504		wb_put(isw->new_wb);
 505	kfree(isw);
 506}
 507
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519				 struct inode *inode)
 520{
 521	if (!inode_cgwb_enabled(inode)) {
 522		spin_unlock(&inode->i_lock);
 523		return;
 524	}
 525
 526	wbc->wb = inode_to_wb(inode);
 527	wbc->inode = inode;
 528
 529	wbc->wb_id = wbc->wb->memcg_css->id;
 530	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531	wbc->wb_tcand_id = 0;
 532	wbc->wb_bytes = 0;
 533	wbc->wb_lcand_bytes = 0;
 534	wbc->wb_tcand_bytes = 0;
 535
 536	wb_get(wbc->wb);
 537	spin_unlock(&inode->i_lock);
 538
 539	/*
 540	 * A dying wb indicates that the memcg-blkcg mapping has changed
 541	 * and a new wb is already serving the memcg.  Switch immediately.
 542	 */
 543	if (unlikely(wb_dying(wbc->wb)))
 544		inode_switch_wbs(inode, wbc->wb_id);
 545}
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586	struct bdi_writeback *wb = wbc->wb;
 587	struct inode *inode = wbc->inode;
 588	unsigned long avg_time, max_bytes, max_time;
 589	u16 history;
 590	int max_id;
 591
 592	if (!wb)
 593		return;
 594
 595	history = inode->i_wb_frn_history;
 596	avg_time = inode->i_wb_frn_avg_time;
 597
 598	/* pick the winner of this round */
 599	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601		max_id = wbc->wb_id;
 602		max_bytes = wbc->wb_bytes;
 603	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604		max_id = wbc->wb_lcand_id;
 605		max_bytes = wbc->wb_lcand_bytes;
 606	} else {
 607		max_id = wbc->wb_tcand_id;
 608		max_bytes = wbc->wb_tcand_bytes;
 609	}
 610
 611	/*
 612	 * Calculate the amount of IO time the winner consumed and fold it
 613	 * into the running average kept per inode.  If the consumed IO
 614	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615	 * deciding whether to switch or not.  This is to prevent one-off
 616	 * small dirtiers from skewing the verdict.
 617	 */
 618	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619				wb->avg_write_bandwidth);
 620	if (avg_time)
 621		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623	else
 624		avg_time = max_time;	/* immediate catch up on first run */
 625
 626	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627		int slots;
 628
 629		/*
 630		 * The switch verdict is reached if foreign wb's consume
 631		 * more than a certain proportion of IO time in a
 632		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633		 * history mask where each bit represents one sixteenth of
 634		 * the period.  Determine the number of slots to shift into
 635		 * history from @max_time.
 636		 */
 637		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639		history <<= slots;
 640		if (wbc->wb_id != max_id)
 641			history |= (1U << slots) - 1;
 642
 643		/*
 644		 * Switch if the current wb isn't the consistent winner.
 645		 * If there are multiple closely competing dirtiers, the
 646		 * inode may switch across them repeatedly over time, which
 647		 * is okay.  The main goal is avoiding keeping an inode on
 648		 * the wrong wb for an extended period of time.
 649		 */
 650		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651			inode_switch_wbs(inode, max_id);
 652	}
 653
 654	/*
 655	 * Multiple instances of this function may race to update the
 656	 * following fields but we don't mind occassional inaccuracies.
 657	 */
 658	inode->i_wb_frn_winner = max_id;
 659	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660	inode->i_wb_frn_history = history;
 661
 662	wb_put(wbc->wb);
 663	wbc->wb = NULL;
 664}
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677		    size_t bytes)
 678{
 679	int id;
 680
 681	/*
 682	 * pageout() path doesn't attach @wbc to the inode being written
 683	 * out.  This is intentional as we don't want the function to block
 684	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685	 * regular writeback instead of writing things out itself.
 686	 */
 687	if (!wbc->wb)
 688		return;
 689
 690	id = mem_cgroup_css_from_page(page)->id;
 691
 692	if (id == wbc->wb_id) {
 693		wbc->wb_bytes += bytes;
 694		return;
 695	}
 696
 697	if (id == wbc->wb_lcand_id)
 698		wbc->wb_lcand_bytes += bytes;
 699
 700	/* Boyer-Moore majority vote algorithm */
 701	if (!wbc->wb_tcand_bytes)
 702		wbc->wb_tcand_id = id;
 703	if (id == wbc->wb_tcand_id)
 704		wbc->wb_tcand_bytes += bytes;
 705	else
 706		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728	/*
 729	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 730	 * Start transaction iff ->i_wb is visible.
 731	 */
 732	if (inode && inode_to_wb_is_valid(inode)) {
 733		struct bdi_writeback *wb;
 734		bool locked, congested;
 
 735
 736		wb = unlocked_inode_to_wb_begin(inode, &locked);
 737		congested = wb_congested(wb, cong_bits);
 738		unlocked_inode_to_wb_end(inode, locked);
 739		return congested;
 740	}
 741
 742	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757	unsigned long this_bw = wb->avg_write_bandwidth;
 758	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760	if (nr_pages == LONG_MAX)
 761		return LONG_MAX;
 762
 763	/*
 764	 * This may be called on clean wb's and proportional distribution
 765	 * may not make sense, just use the original @nr_pages in those
 766	 * cases.  In general, we wanna err on the side of writing more.
 767	 */
 768	if (!tot_bw || this_bw >= tot_bw)
 769		return nr_pages;
 770	else
 771		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786				  struct wb_writeback_work *base_work,
 787				  bool skip_if_busy)
 788{
 789	struct bdi_writeback *last_wb = NULL;
 790	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791					      struct bdi_writeback, bdi_node);
 792
 793	might_sleep();
 794restart:
 795	rcu_read_lock();
 796	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798		struct wb_writeback_work fallback_work;
 799		struct wb_writeback_work *work;
 800		long nr_pages;
 801
 802		if (last_wb) {
 803			wb_put(last_wb);
 804			last_wb = NULL;
 805		}
 806
 807		/* SYNC_ALL writes out I_DIRTY_TIME too */
 808		if (!wb_has_dirty_io(wb) &&
 809		    (base_work->sync_mode == WB_SYNC_NONE ||
 810		     list_empty(&wb->b_dirty_time)))
 811			continue;
 812		if (skip_if_busy && writeback_in_progress(wb))
 813			continue;
 814
 815		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818		if (work) {
 819			*work = *base_work;
 820			work->nr_pages = nr_pages;
 821			work->auto_free = 1;
 822			wb_queue_work(wb, work);
 823			continue;
 824		}
 825
 826		/* alloc failed, execute synchronously using on-stack fallback */
 827		work = &fallback_work;
 828		*work = *base_work;
 829		work->nr_pages = nr_pages;
 830		work->auto_free = 0;
 831		work->done = &fallback_work_done;
 832
 833		wb_queue_work(wb, work);
 834
 835		/*
 836		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837		 * continuing iteration from @wb after dropping and
 838		 * regrabbing rcu read lock.
 839		 */
 840		wb_get(wb);
 841		last_wb = wb;
 842
 843		rcu_read_unlock();
 844		wb_wait_for_completion(bdi, &fallback_work_done);
 845		goto restart;
 846	}
 847	rcu_read_unlock();
 848
 849	if (last_wb)
 850		wb_put(last_wb);
 851}
 852
 853/**
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 865	if (atomic_read(&isw_nr_in_flight)) {
 866		synchronize_rcu();
 867		flush_workqueue(isw_wq);
 868	}
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874	if (!isw_wq)
 875		return -ENOMEM;
 876	return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else	/* CONFIG_CGROUP_WRITEBACK */
 881
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884	__releases(&inode->i_lock)
 885	__acquires(&wb->list_lock)
 886{
 887	struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889	spin_unlock(&inode->i_lock);
 890	spin_lock(&wb->list_lock);
 891	return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895	__acquires(&wb->list_lock)
 896{
 897	struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899	spin_lock(&wb->list_lock);
 900	return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905	return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909				  struct wb_writeback_work *base_work,
 910				  bool skip_if_busy)
 911{
 912	might_sleep();
 913
 914	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915		base_work->auto_free = 0;
 916		wb_queue_work(&bdi->wb, base_work);
 917	}
 918}
 919
 920#endif	/* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923			bool range_cyclic, enum wb_reason reason)
 
 
 
 924{
 925	struct wb_writeback_work *work;
 
 
 
 926
 
 
 927	if (!wb_has_dirty_io(wb))
 928		return;
 929
 930	/*
 931	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 932	 * wakeup the thread for old dirty data writeback
 
 
 
 
 933	 */
 934	work = kzalloc(sizeof(*work),
 935		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936	if (!work) {
 937		trace_writeback_nowork(wb);
 938		wb_wakeup(wb);
 939		return;
 940	}
 941
 942	work->sync_mode	= WB_SYNC_NONE;
 943	work->nr_pages	= nr_pages;
 944	work->range_cyclic = range_cyclic;
 945	work->reason	= reason;
 946	work->auto_free	= 1;
 947
 948	wb_queue_work(wb, work);
 
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963	/*
 964	 * We just wake up the flusher thread. It will perform background
 965	 * writeback as soon as there is no other work to do.
 966	 */
 967	trace_writeback_wake_background(wb);
 968	wb_wakeup(wb);
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976	struct bdi_writeback *wb;
 977
 978	wb = inode_to_wb_and_lock_list(inode);
 979	inode_io_list_del_locked(inode, wb);
 980	spin_unlock(&wb->list_lock);
 981}
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988	struct super_block *sb = inode->i_sb;
 989	unsigned long flags;
 990
 991	if (list_empty(&inode->i_wb_list)) {
 992		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993		if (list_empty(&inode->i_wb_list)) {
 994			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995			trace_sb_mark_inode_writeback(inode);
 996		}
 997		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998	}
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (!list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (!list_empty(&inode->i_wb_list)) {
1012			list_del_init(&inode->i_wb_list);
1013			trace_sb_clear_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
1030	if (!list_empty(&wb->b_dirty)) {
1031		struct inode *tail;
1032
1033		tail = wb_inode(wb->b_dirty.next);
1034		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035			inode->dirtied_when = jiffies;
1036	}
1037	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050	inode->i_state &= ~I_SYNC;
1051	/* If inode is clean an unused, put it into LRU now... */
1052	inode_add_lru(inode);
1053	/* Waiters must see I_SYNC cleared before being woken up */
1054	smp_mb();
1055	wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060	bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062	/*
1063	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064	 * It _appears_ to be in the future, but is actually in distant past.
1065	 * This test is necessary to prevent such wrapped-around relative times
1066	 * from permanently stopping the whole bdi writeback.
1067	 */
1068	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070	return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080			       struct list_head *dispatch_queue,
1081			       int flags,
1082			       struct wb_writeback_work *work)
1083{
1084	unsigned long *older_than_this = NULL;
1085	unsigned long expire_time;
1086	LIST_HEAD(tmp);
1087	struct list_head *pos, *node;
1088	struct super_block *sb = NULL;
1089	struct inode *inode;
1090	int do_sb_sort = 0;
1091	int moved = 0;
1092
1093	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094		older_than_this = work->older_than_this;
1095	else if (!work->for_sync) {
1096		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097		older_than_this = &expire_time;
1098	}
1099	while (!list_empty(delaying_queue)) {
1100		inode = wb_inode(delaying_queue->prev);
1101		if (older_than_this &&
1102		    inode_dirtied_after(inode, *older_than_this))
1103			break;
1104		list_move(&inode->i_io_list, &tmp);
1105		moved++;
1106		if (flags & EXPIRE_DIRTY_ATIME)
1107			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108		if (sb_is_blkdev_sb(inode->i_sb))
1109			continue;
1110		if (sb && sb != inode->i_sb)
1111			do_sb_sort = 1;
1112		sb = inode->i_sb;
1113	}
1114
1115	/* just one sb in list, splice to dispatch_queue and we're done */
1116	if (!do_sb_sort) {
1117		list_splice(&tmp, dispatch_queue);
1118		goto out;
1119	}
1120
1121	/* Move inodes from one superblock together */
1122	while (!list_empty(&tmp)) {
1123		sb = wb_inode(tmp.prev)->i_sb;
1124		list_for_each_prev_safe(pos, node, &tmp) {
1125			inode = wb_inode(pos);
1126			if (inode->i_sb == sb)
1127				list_move(&inode->i_io_list, dispatch_queue);
1128		}
1129	}
1130out:
1131	return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146{
1147	int moved;
1148
1149	assert_spin_locked(&wb->list_lock);
1150	list_splice_init(&wb->b_more_io, &wb->b_io);
1151	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153				     EXPIRE_DIRTY_ATIME, work);
1154	if (moved)
1155		wb_io_lists_populated(wb);
1156	trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161	int ret;
1162
1163	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164		trace_writeback_write_inode_start(inode, wbc);
1165		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166		trace_writeback_write_inode(inode, wbc);
1167		return ret;
1168	}
1169	return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177	__releases(inode->i_lock)
1178	__acquires(inode->i_lock)
1179{
1180	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181	wait_queue_head_t *wqh;
1182
1183	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184	while (inode->i_state & I_SYNC) {
1185		spin_unlock(&inode->i_lock);
1186		__wait_on_bit(wqh, &wq, bit_wait,
1187			      TASK_UNINTERRUPTIBLE);
1188		spin_lock(&inode->i_lock);
1189	}
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197	spin_lock(&inode->i_lock);
1198	__inode_wait_for_writeback(inode);
1199	spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208	__releases(inode->i_lock)
1209{
1210	DEFINE_WAIT(wait);
1211	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212	int sleep;
1213
1214	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215	sleep = inode->i_state & I_SYNC;
1216	spin_unlock(&inode->i_lock);
1217	if (sleep)
1218		schedule();
1219	finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231			  struct writeback_control *wbc)
1232{
1233	if (inode->i_state & I_FREEING)
1234		return;
1235
1236	/*
1237	 * Sync livelock prevention. Each inode is tagged and synced in one
1238	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239	 * the dirty time to prevent enqueue and sync it again.
1240	 */
1241	if ((inode->i_state & I_DIRTY) &&
1242	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243		inode->dirtied_when = jiffies;
1244
1245	if (wbc->pages_skipped) {
1246		/*
1247		 * writeback is not making progress due to locked
1248		 * buffers. Skip this inode for now.
1249		 */
1250		redirty_tail(inode, wb);
1251		return;
1252	}
1253
1254	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255		/*
1256		 * We didn't write back all the pages.  nfs_writepages()
1257		 * sometimes bales out without doing anything.
1258		 */
1259		if (wbc->nr_to_write <= 0) {
1260			/* Slice used up. Queue for next turn. */
1261			requeue_io(inode, wb);
1262		} else {
1263			/*
1264			 * Writeback blocked by something other than
1265			 * congestion. Delay the inode for some time to
1266			 * avoid spinning on the CPU (100% iowait)
1267			 * retrying writeback of the dirty page/inode
1268			 * that cannot be performed immediately.
1269			 */
1270			redirty_tail(inode, wb);
1271		}
1272	} else if (inode->i_state & I_DIRTY) {
1273		/*
1274		 * Filesystems can dirty the inode during writeback operations,
1275		 * such as delayed allocation during submission or metadata
1276		 * updates after data IO completion.
1277		 */
1278		redirty_tail(inode, wb);
1279	} else if (inode->i_state & I_DIRTY_TIME) {
1280		inode->dirtied_when = jiffies;
1281		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282	} else {
1283		/* The inode is clean. Remove from writeback lists. */
1284		inode_io_list_del_locked(inode, wb);
1285	}
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296	struct address_space *mapping = inode->i_mapping;
1297	long nr_to_write = wbc->nr_to_write;
1298	unsigned dirty;
1299	int ret;
1300
1301	WARN_ON(!(inode->i_state & I_SYNC));
1302
1303	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305	ret = do_writepages(mapping, wbc);
1306
1307	/*
1308	 * Make sure to wait on the data before writing out the metadata.
1309	 * This is important for filesystems that modify metadata on data
1310	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312	 * inode metadata is written back correctly.
1313	 */
1314	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315		int err = filemap_fdatawait(mapping);
1316		if (ret == 0)
1317			ret = err;
1318	}
1319
1320	/*
1321	 * Some filesystems may redirty the inode during the writeback
1322	 * due to delalloc, clear dirty metadata flags right before
1323	 * write_inode()
1324	 */
1325	spin_lock(&inode->i_lock);
1326
1327	dirty = inode->i_state & I_DIRTY;
1328	if (inode->i_state & I_DIRTY_TIME) {
1329		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330		    wbc->sync_mode == WB_SYNC_ALL ||
1331		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332		    unlikely(time_after(jiffies,
1333					(inode->dirtied_time_when +
1334					 dirtytime_expire_interval * HZ)))) {
1335			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336			trace_writeback_lazytime(inode);
1337		}
1338	} else
1339		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340	inode->i_state &= ~dirty;
1341
1342	/*
1343	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346	 * inode.
1347	 *
1348	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350	 * necessary.  This guarantees that either __mark_inode_dirty()
1351	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352	 */
1353	smp_mb();
1354
1355	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356		inode->i_state |= I_DIRTY_PAGES;
1357
1358	spin_unlock(&inode->i_lock);
1359
1360	if (dirty & I_DIRTY_TIME)
1361		mark_inode_dirty_sync(inode);
1362	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363	if (dirty & ~I_DIRTY_PAGES) {
1364		int err = write_inode(inode, wbc);
1365		if (ret == 0)
1366			ret = err;
1367	}
1368	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369	return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381				  struct writeback_control *wbc)
1382{
1383	struct bdi_writeback *wb;
1384	int ret = 0;
1385
1386	spin_lock(&inode->i_lock);
1387	if (!atomic_read(&inode->i_count))
1388		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389	else
1390		WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392	if (inode->i_state & I_SYNC) {
1393		if (wbc->sync_mode != WB_SYNC_ALL)
1394			goto out;
1395		/*
1396		 * It's a data-integrity sync. We must wait. Since callers hold
1397		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398		 * away under us.
1399		 */
1400		__inode_wait_for_writeback(inode);
1401	}
1402	WARN_ON(inode->i_state & I_SYNC);
1403	/*
1404	 * Skip inode if it is clean and we have no outstanding writeback in
1405	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406	 * function since flusher thread may be doing for example sync in
1407	 * parallel and if we move the inode, it could get skipped. So here we
1408	 * make sure inode is on some writeback list and leave it there unless
1409	 * we have completely cleaned the inode.
1410	 */
1411	if (!(inode->i_state & I_DIRTY_ALL) &&
1412	    (wbc->sync_mode != WB_SYNC_ALL ||
1413	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414		goto out;
1415	inode->i_state |= I_SYNC;
1416	wbc_attach_and_unlock_inode(wbc, inode);
1417
1418	ret = __writeback_single_inode(inode, wbc);
1419
1420	wbc_detach_inode(wbc);
1421
1422	wb = inode_to_wb_and_lock_list(inode);
1423	spin_lock(&inode->i_lock);
1424	/*
1425	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426	 * touch it. See comment above for explanation.
1427	 */
1428	if (!(inode->i_state & I_DIRTY_ALL))
1429		inode_io_list_del_locked(inode, wb);
1430	spin_unlock(&wb->list_lock);
1431	inode_sync_complete(inode);
1432out:
1433	spin_unlock(&inode->i_lock);
1434	return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438				 struct wb_writeback_work *work)
1439{
1440	long pages;
1441
1442	/*
1443	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445	 * here avoids calling into writeback_inodes_wb() more than once.
1446	 *
1447	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448	 *
1449	 *      wb_writeback()
1450	 *          writeback_sb_inodes()       <== called only once
1451	 *              write_cache_pages()     <== called once for each inode
1452	 *                   (quickly) tag currently dirty pages
1453	 *                   (maybe slowly) sync all tagged pages
1454	 */
1455	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456		pages = LONG_MAX;
1457	else {
1458		pages = min(wb->avg_write_bandwidth / 2,
1459			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460		pages = min(pages, work->nr_pages);
1461		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462				   MIN_WRITEBACK_PAGES);
1463	}
1464
1465	return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478				struct bdi_writeback *wb,
1479				struct wb_writeback_work *work)
1480{
1481	struct writeback_control wbc = {
1482		.sync_mode		= work->sync_mode,
1483		.tagged_writepages	= work->tagged_writepages,
1484		.for_kupdate		= work->for_kupdate,
1485		.for_background		= work->for_background,
1486		.for_sync		= work->for_sync,
1487		.range_cyclic		= work->range_cyclic,
1488		.range_start		= 0,
1489		.range_end		= LLONG_MAX,
1490	};
1491	unsigned long start_time = jiffies;
1492	long write_chunk;
1493	long wrote = 0;  /* count both pages and inodes */
1494
1495	while (!list_empty(&wb->b_io)) {
1496		struct inode *inode = wb_inode(wb->b_io.prev);
1497		struct bdi_writeback *tmp_wb;
1498
1499		if (inode->i_sb != sb) {
1500			if (work->sb) {
1501				/*
1502				 * We only want to write back data for this
1503				 * superblock, move all inodes not belonging
1504				 * to it back onto the dirty list.
1505				 */
1506				redirty_tail(inode, wb);
1507				continue;
1508			}
1509
1510			/*
1511			 * The inode belongs to a different superblock.
1512			 * Bounce back to the caller to unpin this and
1513			 * pin the next superblock.
1514			 */
1515			break;
1516		}
1517
1518		/*
1519		 * Don't bother with new inodes or inodes being freed, first
1520		 * kind does not need periodic writeout yet, and for the latter
1521		 * kind writeout is handled by the freer.
1522		 */
1523		spin_lock(&inode->i_lock);
1524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525			spin_unlock(&inode->i_lock);
1526			redirty_tail(inode, wb);
1527			continue;
1528		}
1529		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530			/*
1531			 * If this inode is locked for writeback and we are not
1532			 * doing writeback-for-data-integrity, move it to
1533			 * b_more_io so that writeback can proceed with the
1534			 * other inodes on s_io.
1535			 *
1536			 * We'll have another go at writing back this inode
1537			 * when we completed a full scan of b_io.
1538			 */
1539			spin_unlock(&inode->i_lock);
1540			requeue_io(inode, wb);
1541			trace_writeback_sb_inodes_requeue(inode);
1542			continue;
1543		}
1544		spin_unlock(&wb->list_lock);
1545
1546		/*
1547		 * We already requeued the inode if it had I_SYNC set and we
1548		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549		 * WB_SYNC_ALL case.
1550		 */
1551		if (inode->i_state & I_SYNC) {
1552			/* Wait for I_SYNC. This function drops i_lock... */
1553			inode_sleep_on_writeback(inode);
1554			/* Inode may be gone, start again */
1555			spin_lock(&wb->list_lock);
1556			continue;
1557		}
1558		inode->i_state |= I_SYNC;
1559		wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561		write_chunk = writeback_chunk_size(wb, work);
1562		wbc.nr_to_write = write_chunk;
1563		wbc.pages_skipped = 0;
1564
1565		/*
1566		 * We use I_SYNC to pin the inode in memory. While it is set
1567		 * evict_inode() will wait so the inode cannot be freed.
1568		 */
1569		__writeback_single_inode(inode, &wbc);
1570
1571		wbc_detach_inode(&wbc);
1572		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573		wrote += write_chunk - wbc.nr_to_write;
1574
1575		if (need_resched()) {
1576			/*
1577			 * We're trying to balance between building up a nice
1578			 * long list of IOs to improve our merge rate, and
1579			 * getting those IOs out quickly for anyone throttling
1580			 * in balance_dirty_pages().  cond_resched() doesn't
1581			 * unplug, so get our IOs out the door before we
1582			 * give up the CPU.
1583			 */
1584			blk_flush_plug(current);
1585			cond_resched();
1586		}
1587
1588		/*
1589		 * Requeue @inode if still dirty.  Be careful as @inode may
1590		 * have been switched to another wb in the meantime.
1591		 */
1592		tmp_wb = inode_to_wb_and_lock_list(inode);
1593		spin_lock(&inode->i_lock);
1594		if (!(inode->i_state & I_DIRTY_ALL))
1595			wrote++;
1596		requeue_inode(inode, tmp_wb, &wbc);
1597		inode_sync_complete(inode);
1598		spin_unlock(&inode->i_lock);
1599
1600		if (unlikely(tmp_wb != wb)) {
1601			spin_unlock(&tmp_wb->list_lock);
1602			spin_lock(&wb->list_lock);
1603		}
1604
1605		/*
1606		 * bail out to wb_writeback() often enough to check
1607		 * background threshold and other termination conditions.
1608		 */
1609		if (wrote) {
1610			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611				break;
1612			if (work->nr_pages <= 0)
1613				break;
1614		}
1615	}
1616	return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620				  struct wb_writeback_work *work)
1621{
1622	unsigned long start_time = jiffies;
1623	long wrote = 0;
1624
1625	while (!list_empty(&wb->b_io)) {
1626		struct inode *inode = wb_inode(wb->b_io.prev);
1627		struct super_block *sb = inode->i_sb;
1628
1629		if (!trylock_super(sb)) {
1630			/*
1631			 * trylock_super() may fail consistently due to
1632			 * s_umount being grabbed by someone else. Don't use
1633			 * requeue_io() to avoid busy retrying the inode/sb.
1634			 */
1635			redirty_tail(inode, wb);
1636			continue;
1637		}
1638		wrote += writeback_sb_inodes(sb, wb, work);
1639		up_read(&sb->s_umount);
1640
1641		/* refer to the same tests at the end of writeback_sb_inodes */
1642		if (wrote) {
1643			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644				break;
1645			if (work->nr_pages <= 0)
1646				break;
1647		}
1648	}
1649	/* Leave any unwritten inodes on b_io */
1650	return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654				enum wb_reason reason)
1655{
1656	struct wb_writeback_work work = {
1657		.nr_pages	= nr_pages,
1658		.sync_mode	= WB_SYNC_NONE,
1659		.range_cyclic	= 1,
1660		.reason		= reason,
1661	};
1662	struct blk_plug plug;
1663
1664	blk_start_plug(&plug);
1665	spin_lock(&wb->list_lock);
1666	if (list_empty(&wb->b_io))
1667		queue_io(wb, &work);
1668	__writeback_inodes_wb(wb, &work);
1669	spin_unlock(&wb->list_lock);
1670	blk_finish_plug(&plug);
1671
1672	return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691			 struct wb_writeback_work *work)
1692{
1693	unsigned long wb_start = jiffies;
1694	long nr_pages = work->nr_pages;
1695	unsigned long oldest_jif;
1696	struct inode *inode;
1697	long progress;
1698	struct blk_plug plug;
1699
1700	oldest_jif = jiffies;
1701	work->older_than_this = &oldest_jif;
1702
1703	blk_start_plug(&plug);
1704	spin_lock(&wb->list_lock);
1705	for (;;) {
1706		/*
1707		 * Stop writeback when nr_pages has been consumed
1708		 */
1709		if (work->nr_pages <= 0)
1710			break;
1711
1712		/*
1713		 * Background writeout and kupdate-style writeback may
1714		 * run forever. Stop them if there is other work to do
1715		 * so that e.g. sync can proceed. They'll be restarted
1716		 * after the other works are all done.
1717		 */
1718		if ((work->for_background || work->for_kupdate) &&
1719		    !list_empty(&wb->work_list))
1720			break;
1721
1722		/*
1723		 * For background writeout, stop when we are below the
1724		 * background dirty threshold
1725		 */
1726		if (work->for_background && !wb_over_bg_thresh(wb))
1727			break;
1728
1729		/*
1730		 * Kupdate and background works are special and we want to
1731		 * include all inodes that need writing. Livelock avoidance is
1732		 * handled by these works yielding to any other work so we are
1733		 * safe.
1734		 */
1735		if (work->for_kupdate) {
1736			oldest_jif = jiffies -
1737				msecs_to_jiffies(dirty_expire_interval * 10);
1738		} else if (work->for_background)
1739			oldest_jif = jiffies;
1740
1741		trace_writeback_start(wb, work);
1742		if (list_empty(&wb->b_io))
1743			queue_io(wb, work);
1744		if (work->sb)
1745			progress = writeback_sb_inodes(work->sb, wb, work);
1746		else
1747			progress = __writeback_inodes_wb(wb, work);
1748		trace_writeback_written(wb, work);
1749
1750		wb_update_bandwidth(wb, wb_start);
1751
1752		/*
1753		 * Did we write something? Try for more
1754		 *
1755		 * Dirty inodes are moved to b_io for writeback in batches.
1756		 * The completion of the current batch does not necessarily
1757		 * mean the overall work is done. So we keep looping as long
1758		 * as made some progress on cleaning pages or inodes.
1759		 */
1760		if (progress)
1761			continue;
1762		/*
1763		 * No more inodes for IO, bail
1764		 */
1765		if (list_empty(&wb->b_more_io))
1766			break;
1767		/*
1768		 * Nothing written. Wait for some inode to
1769		 * become available for writeback. Otherwise
1770		 * we'll just busyloop.
1771		 */
1772		trace_writeback_wait(wb, work);
1773		inode = wb_inode(wb->b_more_io.prev);
1774		spin_lock(&inode->i_lock);
1775		spin_unlock(&wb->list_lock);
1776		/* This function drops i_lock... */
1777		inode_sleep_on_writeback(inode);
1778		spin_lock(&wb->list_lock);
1779	}
1780	spin_unlock(&wb->list_lock);
1781	blk_finish_plug(&plug);
1782
1783	return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790{
1791	struct wb_writeback_work *work = NULL;
1792
1793	spin_lock_bh(&wb->work_lock);
1794	if (!list_empty(&wb->work_list)) {
1795		work = list_entry(wb->work_list.next,
1796				  struct wb_writeback_work, list);
1797		list_del_init(&work->list);
1798	}
1799	spin_unlock_bh(&wb->work_lock);
1800	return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809	return global_node_page_state(NR_FILE_DIRTY) +
1810		global_node_page_state(NR_UNSTABLE_NFS) +
1811		get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816	if (wb_over_bg_thresh(wb)) {
1817
1818		struct wb_writeback_work work = {
1819			.nr_pages	= LONG_MAX,
1820			.sync_mode	= WB_SYNC_NONE,
1821			.for_background	= 1,
1822			.range_cyclic	= 1,
1823			.reason		= WB_REASON_BACKGROUND,
1824		};
1825
1826		return wb_writeback(wb, &work);
1827	}
1828
1829	return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834	unsigned long expired;
1835	long nr_pages;
1836
1837	/*
1838	 * When set to zero, disable periodic writeback
1839	 */
1840	if (!dirty_writeback_interval)
1841		return 0;
1842
1843	expired = wb->last_old_flush +
1844			msecs_to_jiffies(dirty_writeback_interval * 10);
1845	if (time_before(jiffies, expired))
1846		return 0;
1847
1848	wb->last_old_flush = jiffies;
1849	nr_pages = get_nr_dirty_pages();
1850
1851	if (nr_pages) {
1852		struct wb_writeback_work work = {
1853			.nr_pages	= nr_pages,
1854			.sync_mode	= WB_SYNC_NONE,
1855			.for_kupdate	= 1,
1856			.range_cyclic	= 1,
1857			.reason		= WB_REASON_PERIODIC,
1858		};
1859
1860		return wb_writeback(wb, &work);
1861	}
1862
1863	return 0;
1864}
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
1871	struct wb_writeback_work *work;
1872	long wrote = 0;
1873
1874	set_bit(WB_writeback_running, &wb->state);
1875	while ((work = get_next_work_item(wb)) != NULL) {
1876		struct wb_completion *done = work->done;
1877
1878		trace_writeback_exec(wb, work);
1879
1880		wrote += wb_writeback(wb, work);
1881
1882		if (work->auto_free)
1883			kfree(work);
1884		if (done && atomic_dec_and_test(&done->cnt))
1885			wake_up_all(&wb->bdi->wb_waitq);
1886	}
1887
1888	/*
 
 
 
 
 
1889	 * Check for periodic writeback, kupdated() style
1890	 */
1891	wrote += wb_check_old_data_flush(wb);
1892	wrote += wb_check_background_flush(wb);
1893	clear_bit(WB_writeback_running, &wb->state);
1894
1895	return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905						struct bdi_writeback, dwork);
1906	long pages_written;
1907
1908	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909	current->flags |= PF_SWAPWRITE;
1910
1911	if (likely(!current_is_workqueue_rescuer() ||
1912		   !test_bit(WB_registered, &wb->state))) {
1913		/*
1914		 * The normal path.  Keep writing back @wb until its
1915		 * work_list is empty.  Note that this path is also taken
1916		 * if @wb is shutting down even when we're running off the
1917		 * rescuer as work_list needs to be drained.
1918		 */
1919		do {
1920			pages_written = wb_do_writeback(wb);
1921			trace_writeback_pages_written(pages_written);
1922		} while (!list_empty(&wb->work_list));
1923	} else {
1924		/*
1925		 * bdi_wq can't get enough workers and we're running off
1926		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927		 * enough for efficient IO.
1928		 */
1929		pages_written = writeback_inodes_wb(wb, 1024,
1930						    WB_REASON_FORKER_THREAD);
1931		trace_writeback_pages_written(pages_written);
1932	}
1933
1934	if (!list_empty(&wb->work_list))
1935		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937		wb_wakeup_delayed(wb);
1938
1939	current->flags &= ~PF_SWAPWRITE;
1940}
1941
1942/*
1943 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947{
1948	struct backing_dev_info *bdi;
1949
1950	/*
1951	 * If we are expecting writeback progress we must submit plugged IO.
1952	 */
1953	if (blk_needs_flush_plug(current))
1954		blk_schedule_flush_plug(current);
1955
1956	if (!nr_pages)
1957		nr_pages = get_nr_dirty_pages();
1958
1959	rcu_read_lock();
1960	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961		struct bdi_writeback *wb;
1962
1963		if (!bdi_has_dirty_io(bdi))
1964			continue;
1965
1966		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968					   false, reason);
1969	}
1970	rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically.  We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system.  So instead we define a separate delayed work
1979 * function which gets called much more rarely.  (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary.  But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993	struct backing_dev_info *bdi;
1994
1995	rcu_read_lock();
1996	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997		struct bdi_writeback *wb;
1998
1999		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000			if (!list_empty(&wb->b_dirty_time))
2001				wb_wakeup(wb);
2002	}
2003	rcu_read_unlock();
2004	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010	return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017	int ret;
2018
2019	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020	if (ret == 0 && write)
2021		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022	return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028		struct dentry *dentry;
2029		const char *name = "?";
2030
2031		dentry = d_find_alias(inode);
2032		if (dentry) {
2033			spin_lock(&dentry->d_lock);
2034			name = (const char *) dentry->d_name.name;
2035		}
2036		printk(KERN_DEBUG
2037		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038		       current->comm, task_pid_nr(current), inode->i_ino,
2039		       name, inode->i_sb->s_id);
2040		if (dentry) {
2041			spin_unlock(&dentry->d_lock);
2042			dput(dentry);
2043		}
2044	}
2045}
2046
2047/**
2048 *	__mark_inode_dirty -	internal function
2049 *	@inode: inode to mark
2050 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 *  	mark_inode_dirty_sync.
 
 
2053 *
2054 * Put the inode on the super block's dirty list.
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074	struct super_block *sb = inode->i_sb;
2075	int dirtytime;
2076
2077	trace_writeback_mark_inode_dirty(inode, flags);
2078
2079	/*
2080	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081	 * dirty the inode itself
2082	 */
2083	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084		trace_writeback_dirty_inode_start(inode, flags);
2085
2086		if (sb->s_op->dirty_inode)
2087			sb->s_op->dirty_inode(inode, flags);
2088
2089		trace_writeback_dirty_inode(inode, flags);
2090	}
2091	if (flags & I_DIRTY_INODE)
2092		flags &= ~I_DIRTY_TIME;
2093	dirtytime = flags & I_DIRTY_TIME;
2094
2095	/*
2096	 * Paired with smp_mb() in __writeback_single_inode() for the
2097	 * following lockless i_state test.  See there for details.
2098	 */
2099	smp_mb();
2100
2101	if (((inode->i_state & flags) == flags) ||
2102	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103		return;
2104
2105	if (unlikely(block_dump))
2106		block_dump___mark_inode_dirty(inode);
2107
2108	spin_lock(&inode->i_lock);
2109	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110		goto out_unlock_inode;
2111	if ((inode->i_state & flags) != flags) {
2112		const int was_dirty = inode->i_state & I_DIRTY;
2113
2114		inode_attach_wb(inode, NULL);
2115
2116		if (flags & I_DIRTY_INODE)
2117			inode->i_state &= ~I_DIRTY_TIME;
2118		inode->i_state |= flags;
2119
2120		/*
2121		 * If the inode is being synced, just update its dirty state.
2122		 * The unlocker will place the inode on the appropriate
2123		 * superblock list, based upon its state.
2124		 */
2125		if (inode->i_state & I_SYNC)
2126			goto out_unlock_inode;
2127
2128		/*
2129		 * Only add valid (hashed) inodes to the superblock's
2130		 * dirty list.  Add blockdev inodes as well.
2131		 */
2132		if (!S_ISBLK(inode->i_mode)) {
2133			if (inode_unhashed(inode))
2134				goto out_unlock_inode;
2135		}
2136		if (inode->i_state & I_FREEING)
2137			goto out_unlock_inode;
2138
2139		/*
2140		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141		 * reposition it (that would break b_dirty time-ordering).
2142		 */
2143		if (!was_dirty) {
2144			struct bdi_writeback *wb;
2145			struct list_head *dirty_list;
2146			bool wakeup_bdi = false;
2147
2148			wb = locked_inode_to_wb_and_lock_list(inode);
2149
2150			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151			     !test_bit(WB_registered, &wb->state),
2152			     "bdi-%s not registered\n", wb->bdi->name);
2153
2154			inode->dirtied_when = jiffies;
2155			if (dirtytime)
2156				inode->dirtied_time_when = jiffies;
2157
2158			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159				dirty_list = &wb->b_dirty;
2160			else
2161				dirty_list = &wb->b_dirty_time;
2162
2163			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164							       dirty_list);
2165
2166			spin_unlock(&wb->list_lock);
2167			trace_writeback_dirty_inode_enqueue(inode);
2168
2169			/*
2170			 * If this is the first dirty inode for this bdi,
2171			 * we have to wake-up the corresponding bdi thread
2172			 * to make sure background write-back happens
2173			 * later.
2174			 */
2175			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2176				wb_wakeup_delayed(wb);
2177			return;
2178		}
2179	}
2180out_unlock_inode:
2181	spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198	LIST_HEAD(sync_list);
2199
2200	/*
2201	 * We need to be protected against the filesystem going from
2202	 * r/o to r/w or vice versa.
2203	 */
2204	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206	mutex_lock(&sb->s_sync_lock);
2207
2208	/*
2209	 * Splice the writeback list onto a temporary list to avoid waiting on
2210	 * inodes that have started writeback after this point.
2211	 *
2212	 * Use rcu_read_lock() to keep the inodes around until we have a
2213	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214	 * the local list because inodes can be dropped from either by writeback
2215	 * completion.
2216	 */
2217	rcu_read_lock();
2218	spin_lock_irq(&sb->s_inode_wblist_lock);
2219	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221	/*
2222	 * Data integrity sync. Must wait for all pages under writeback, because
2223	 * there may have been pages dirtied before our sync call, but which had
2224	 * writeout started before we write it out.  In which case, the inode
2225	 * may not be on the dirty list, but we still have to wait for that
2226	 * writeout.
2227	 */
2228	while (!list_empty(&sync_list)) {
2229		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230						       i_wb_list);
2231		struct address_space *mapping = inode->i_mapping;
2232
2233		/*
2234		 * Move each inode back to the wb list before we drop the lock
2235		 * to preserve consistency between i_wb_list and the mapping
2236		 * writeback tag. Writeback completion is responsible to remove
2237		 * the inode from either list once the writeback tag is cleared.
2238		 */
2239		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241		/*
2242		 * The mapping can appear untagged while still on-list since we
2243		 * do not have the mapping lock. Skip it here, wb completion
2244		 * will remove it.
2245		 */
2246		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247			continue;
2248
2249		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251		spin_lock(&inode->i_lock);
2252		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253			spin_unlock(&inode->i_lock);
2254
2255			spin_lock_irq(&sb->s_inode_wblist_lock);
2256			continue;
2257		}
2258		__iget(inode);
2259		spin_unlock(&inode->i_lock);
2260		rcu_read_unlock();
2261
2262		/*
2263		 * We keep the error status of individual mapping so that
2264		 * applications can catch the writeback error using fsync(2).
2265		 * See filemap_fdatawait_keep_errors() for details.
2266		 */
2267		filemap_fdatawait_keep_errors(mapping);
2268
2269		cond_resched();
2270
2271		iput(inode);
2272
2273		rcu_read_lock();
2274		spin_lock_irq(&sb->s_inode_wblist_lock);
2275	}
2276	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277	rcu_read_unlock();
2278	mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282				     enum wb_reason reason, bool skip_if_busy)
2283{
2284	DEFINE_WB_COMPLETION_ONSTACK(done);
2285	struct wb_writeback_work work = {
2286		.sb			= sb,
2287		.sync_mode		= WB_SYNC_NONE,
2288		.tagged_writepages	= 1,
2289		.done			= &done,
2290		.nr_pages		= nr,
2291		.reason			= reason,
2292	};
2293	struct backing_dev_info *bdi = sb->s_bdi;
2294
2295	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296		return;
2297	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300	wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314			    unsigned long nr,
2315			    enum wb_reason reason)
2316{
2317	__writeback_inodes_sb_nr(sb, nr, reason, false);
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346				   enum wb_reason reason)
2347{
2348	if (!down_read_trylock(&sb->s_umount))
2349		return false;
2350
2351	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352	up_read(&sb->s_umount);
2353	return true;
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366{
2367	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb	-	sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380	DEFINE_WB_COMPLETION_ONSTACK(done);
2381	struct wb_writeback_work work = {
2382		.sb		= sb,
2383		.sync_mode	= WB_SYNC_ALL,
2384		.nr_pages	= LONG_MAX,
2385		.range_cyclic	= 0,
2386		.done		= &done,
2387		.reason		= WB_REASON_SYNC,
2388		.for_sync	= 1,
2389	};
2390	struct backing_dev_info *bdi = sb->s_bdi;
2391
2392	/*
2393	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395	 * bdi_has_dirty() need to be written out too.
2396	 */
2397	if (bdi == &noop_backing_dev_info)
2398		return;
2399	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
2401	bdi_split_work_to_wbs(bdi, &work, false);
2402	wb_wait_for_completion(bdi, &done);
2403
2404	wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now	-	write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
2420	struct writeback_control wbc = {
2421		.nr_to_write = LONG_MAX,
2422		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423		.range_start = 0,
2424		.range_end = LLONG_MAX,
2425	};
2426
2427	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428		wbc.nr_to_write = 0;
2429
2430	might_sleep();
2431	return writeback_single_inode(inode, &wbc);
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk.  It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448	return writeback_single_inode(inode, wbc);
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463	struct writeback_control wbc = {
2464		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465		.nr_to_write = 0, /* metadata-only */
2466	};
2467
2468	return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
v4.17
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 174}
 175
 176static void finish_writeback_work(struct bdi_writeback *wb,
 177				  struct wb_writeback_work *work)
 178{
 179	struct wb_completion *done = work->done;
 180
 181	if (work->auto_free)
 182		kfree(work);
 183	if (done && atomic_dec_and_test(&done->cnt))
 184		wake_up_all(&wb->bdi->wb_waitq);
 185}
 186
 187static void wb_queue_work(struct bdi_writeback *wb,
 188			  struct wb_writeback_work *work)
 189{
 190	trace_writeback_queue(wb, work);
 191
 
 
 
 192	if (work->done)
 193		atomic_inc(&work->done->cnt);
 194
 195	spin_lock_bh(&wb->work_lock);
 196
 197	if (test_bit(WB_registered, &wb->state)) {
 198		list_add_tail(&work->list, &wb->work_list);
 199		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 200	} else
 201		finish_writeback_work(wb, work);
 202
 203	spin_unlock_bh(&wb->work_lock);
 204}
 205
 206/**
 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 208 * @bdi: bdi work items were issued to
 209 * @done: target wb_completion
 210 *
 211 * Wait for one or more work items issued to @bdi with their ->done field
 212 * set to @done, which should have been defined with
 213 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 214 * work items are completed.  Work items which are waited upon aren't freed
 215 * automatically on completion.
 216 */
 217static void wb_wait_for_completion(struct backing_dev_info *bdi,
 218				   struct wb_completion *done)
 219{
 220	atomic_dec(&done->cnt);		/* put down the initial count */
 221	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 222}
 223
 224#ifdef CONFIG_CGROUP_WRITEBACK
 225
 226/* parameters for foreign inode detection, see wb_detach_inode() */
 227#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 228#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 229#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 230#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 231
 232#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 233#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 234					/* each slot's duration is 2s / 16 */
 235#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 236					/* if foreign slots >= 8, switch */
 237#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 238					/* one round can affect upto 5 slots */
 239
 240static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 241static struct workqueue_struct *isw_wq;
 242
 243void __inode_attach_wb(struct inode *inode, struct page *page)
 244{
 245	struct backing_dev_info *bdi = inode_to_bdi(inode);
 246	struct bdi_writeback *wb = NULL;
 247
 248	if (inode_cgwb_enabled(inode)) {
 249		struct cgroup_subsys_state *memcg_css;
 250
 251		if (page) {
 252			memcg_css = mem_cgroup_css_from_page(page);
 253			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 254		} else {
 255			/* must pin memcg_css, see wb_get_create() */
 256			memcg_css = task_get_css(current, memory_cgrp_id);
 257			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 258			css_put(memcg_css);
 259		}
 260	}
 261
 262	if (!wb)
 263		wb = &bdi->wb;
 264
 265	/*
 266	 * There may be multiple instances of this function racing to
 267	 * update the same inode.  Use cmpxchg() to tell the winner.
 268	 */
 269	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 270		wb_put(wb);
 271}
 272
 273/**
 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 275 * @inode: inode of interest with i_lock held
 276 *
 277 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 278 * held on entry and is released on return.  The returned wb is guaranteed
 279 * to stay @inode's associated wb until its list_lock is released.
 280 */
 281static struct bdi_writeback *
 282locked_inode_to_wb_and_lock_list(struct inode *inode)
 283	__releases(&inode->i_lock)
 284	__acquires(&wb->list_lock)
 285{
 286	while (true) {
 287		struct bdi_writeback *wb = inode_to_wb(inode);
 288
 289		/*
 290		 * inode_to_wb() association is protected by both
 291		 * @inode->i_lock and @wb->list_lock but list_lock nests
 292		 * outside i_lock.  Drop i_lock and verify that the
 293		 * association hasn't changed after acquiring list_lock.
 294		 */
 295		wb_get(wb);
 296		spin_unlock(&inode->i_lock);
 297		spin_lock(&wb->list_lock);
 298
 299		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 300		if (likely(wb == inode->i_wb)) {
 301			wb_put(wb);	/* @inode already has ref */
 302			return wb;
 303		}
 304
 305		spin_unlock(&wb->list_lock);
 306		wb_put(wb);
 307		cpu_relax();
 308		spin_lock(&inode->i_lock);
 309	}
 310}
 311
 312/**
 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 314 * @inode: inode of interest
 315 *
 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 317 * on entry.
 318 */
 319static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 320	__acquires(&wb->list_lock)
 321{
 322	spin_lock(&inode->i_lock);
 323	return locked_inode_to_wb_and_lock_list(inode);
 324}
 325
 326struct inode_switch_wbs_context {
 327	struct inode		*inode;
 328	struct bdi_writeback	*new_wb;
 329
 330	struct rcu_head		rcu_head;
 331	struct work_struct	work;
 332};
 333
 334static void inode_switch_wbs_work_fn(struct work_struct *work)
 335{
 336	struct inode_switch_wbs_context *isw =
 337		container_of(work, struct inode_switch_wbs_context, work);
 338	struct inode *inode = isw->inode;
 339	struct address_space *mapping = inode->i_mapping;
 340	struct bdi_writeback *old_wb = inode->i_wb;
 341	struct bdi_writeback *new_wb = isw->new_wb;
 342	struct radix_tree_iter iter;
 343	bool switched = false;
 344	void **slot;
 345
 346	/*
 347	 * By the time control reaches here, RCU grace period has passed
 348	 * since I_WB_SWITCH assertion and all wb stat update transactions
 349	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 350	 * synchronizing against the i_pages lock.
 351	 *
 352	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 353	 * gives us exclusion against all wb related operations on @inode
 354	 * including IO list manipulations and stat updates.
 355	 */
 356	if (old_wb < new_wb) {
 357		spin_lock(&old_wb->list_lock);
 358		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 359	} else {
 360		spin_lock(&new_wb->list_lock);
 361		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 362	}
 363	spin_lock(&inode->i_lock);
 364	xa_lock_irq(&mapping->i_pages);
 365
 366	/*
 367	 * Once I_FREEING is visible under i_lock, the eviction path owns
 368	 * the inode and we shouldn't modify ->i_io_list.
 369	 */
 370	if (unlikely(inode->i_state & I_FREEING))
 371		goto skip_switch;
 372
 373	/*
 374	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 375	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 376	 * pages actually under writeback.
 377	 */
 378	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
 379				   PAGECACHE_TAG_DIRTY) {
 380		struct page *page = radix_tree_deref_slot_protected(slot,
 381						&mapping->i_pages.xa_lock);
 382		if (likely(page) && PageDirty(page)) {
 383			dec_wb_stat(old_wb, WB_RECLAIMABLE);
 384			inc_wb_stat(new_wb, WB_RECLAIMABLE);
 385		}
 386	}
 387
 388	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
 389				   PAGECACHE_TAG_WRITEBACK) {
 390		struct page *page = radix_tree_deref_slot_protected(slot,
 391						&mapping->i_pages.xa_lock);
 392		if (likely(page)) {
 393			WARN_ON_ONCE(!PageWriteback(page));
 394			dec_wb_stat(old_wb, WB_WRITEBACK);
 395			inc_wb_stat(new_wb, WB_WRITEBACK);
 396		}
 397	}
 398
 399	wb_get(new_wb);
 400
 401	/*
 402	 * Transfer to @new_wb's IO list if necessary.  The specific list
 403	 * @inode was on is ignored and the inode is put on ->b_dirty which
 404	 * is always correct including from ->b_dirty_time.  The transfer
 405	 * preserves @inode->dirtied_when ordering.
 406	 */
 407	if (!list_empty(&inode->i_io_list)) {
 408		struct inode *pos;
 409
 410		inode_io_list_del_locked(inode, old_wb);
 411		inode->i_wb = new_wb;
 412		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 413			if (time_after_eq(inode->dirtied_when,
 414					  pos->dirtied_when))
 415				break;
 416		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 417	} else {
 418		inode->i_wb = new_wb;
 419	}
 420
 421	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 422	inode->i_wb_frn_winner = 0;
 423	inode->i_wb_frn_avg_time = 0;
 424	inode->i_wb_frn_history = 0;
 425	switched = true;
 426skip_switch:
 427	/*
 428	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 429	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 430	 */
 431	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 432
 433	xa_unlock_irq(&mapping->i_pages);
 434	spin_unlock(&inode->i_lock);
 435	spin_unlock(&new_wb->list_lock);
 436	spin_unlock(&old_wb->list_lock);
 437
 438	if (switched) {
 439		wb_wakeup(new_wb);
 440		wb_put(old_wb);
 441	}
 442	wb_put(new_wb);
 443
 444	iput(inode);
 445	kfree(isw);
 446
 447	atomic_dec(&isw_nr_in_flight);
 448}
 449
 450static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 451{
 452	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 453				struct inode_switch_wbs_context, rcu_head);
 454
 455	/* needs to grab bh-unsafe locks, bounce to work item */
 456	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 457	queue_work(isw_wq, &isw->work);
 458}
 459
 460/**
 461 * inode_switch_wbs - change the wb association of an inode
 462 * @inode: target inode
 463 * @new_wb_id: ID of the new wb
 464 *
 465 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 466 * switching is performed asynchronously and may fail silently.
 467 */
 468static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 469{
 470	struct backing_dev_info *bdi = inode_to_bdi(inode);
 471	struct cgroup_subsys_state *memcg_css;
 472	struct inode_switch_wbs_context *isw;
 473
 474	/* noop if seems to be already in progress */
 475	if (inode->i_state & I_WB_SWITCH)
 476		return;
 477
 478	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 479	if (!isw)
 480		return;
 481
 482	/* find and pin the new wb */
 483	rcu_read_lock();
 484	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 485	if (memcg_css)
 486		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 487	rcu_read_unlock();
 488	if (!isw->new_wb)
 489		goto out_free;
 490
 491	/* while holding I_WB_SWITCH, no one else can update the association */
 492	spin_lock(&inode->i_lock);
 493	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 494	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 495	    inode_to_wb(inode) == isw->new_wb) {
 496		spin_unlock(&inode->i_lock);
 497		goto out_free;
 498	}
 499	inode->i_state |= I_WB_SWITCH;
 500	__iget(inode);
 501	spin_unlock(&inode->i_lock);
 502
 503	isw->inode = inode;
 504
 505	atomic_inc(&isw_nr_in_flight);
 506
 507	/*
 508	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 509	 * the RCU protected stat update paths to grab the i_page
 510	 * lock so that stat transfer can synchronize against them.
 511	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 512	 */
 513	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 514	return;
 515
 516out_free:
 517	if (isw->new_wb)
 518		wb_put(isw->new_wb);
 519	kfree(isw);
 520}
 521
 522/**
 523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 524 * @wbc: writeback_control of interest
 525 * @inode: target inode
 526 *
 527 * @inode is locked and about to be written back under the control of @wbc.
 528 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 529 * writeback completion, wbc_detach_inode() should be called.  This is used
 530 * to track the cgroup writeback context.
 531 */
 532void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 533				 struct inode *inode)
 534{
 535	if (!inode_cgwb_enabled(inode)) {
 536		spin_unlock(&inode->i_lock);
 537		return;
 538	}
 539
 540	wbc->wb = inode_to_wb(inode);
 541	wbc->inode = inode;
 542
 543	wbc->wb_id = wbc->wb->memcg_css->id;
 544	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 545	wbc->wb_tcand_id = 0;
 546	wbc->wb_bytes = 0;
 547	wbc->wb_lcand_bytes = 0;
 548	wbc->wb_tcand_bytes = 0;
 549
 550	wb_get(wbc->wb);
 551	spin_unlock(&inode->i_lock);
 552
 553	/*
 554	 * A dying wb indicates that the memcg-blkcg mapping has changed
 555	 * and a new wb is already serving the memcg.  Switch immediately.
 556	 */
 557	if (unlikely(wb_dying(wbc->wb)))
 558		inode_switch_wbs(inode, wbc->wb_id);
 559}
 560
 561/**
 562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 563 * @wbc: writeback_control of the just finished writeback
 564 *
 565 * To be called after a writeback attempt of an inode finishes and undoes
 566 * wbc_attach_and_unlock_inode().  Can be called under any context.
 567 *
 568 * As concurrent write sharing of an inode is expected to be very rare and
 569 * memcg only tracks page ownership on first-use basis severely confining
 570 * the usefulness of such sharing, cgroup writeback tracks ownership
 571 * per-inode.  While the support for concurrent write sharing of an inode
 572 * is deemed unnecessary, an inode being written to by different cgroups at
 573 * different points in time is a lot more common, and, more importantly,
 574 * charging only by first-use can too readily lead to grossly incorrect
 575 * behaviors (single foreign page can lead to gigabytes of writeback to be
 576 * incorrectly attributed).
 577 *
 578 * To resolve this issue, cgroup writeback detects the majority dirtier of
 579 * an inode and transfers the ownership to it.  To avoid unnnecessary
 580 * oscillation, the detection mechanism keeps track of history and gives
 581 * out the switch verdict only if the foreign usage pattern is stable over
 582 * a certain amount of time and/or writeback attempts.
 583 *
 584 * On each writeback attempt, @wbc tries to detect the majority writer
 585 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 586 * count from the majority voting, it also counts the bytes written for the
 587 * current wb and the last round's winner wb (max of last round's current
 588 * wb, the winner from two rounds ago, and the last round's majority
 589 * candidate).  Keeping track of the historical winner helps the algorithm
 590 * to semi-reliably detect the most active writer even when it's not the
 591 * absolute majority.
 592 *
 593 * Once the winner of the round is determined, whether the winner is
 594 * foreign or not and how much IO time the round consumed is recorded in
 595 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 596 * over a certain threshold, the switch verdict is given.
 597 */
 598void wbc_detach_inode(struct writeback_control *wbc)
 599{
 600	struct bdi_writeback *wb = wbc->wb;
 601	struct inode *inode = wbc->inode;
 602	unsigned long avg_time, max_bytes, max_time;
 603	u16 history;
 604	int max_id;
 605
 606	if (!wb)
 607		return;
 608
 609	history = inode->i_wb_frn_history;
 610	avg_time = inode->i_wb_frn_avg_time;
 611
 612	/* pick the winner of this round */
 613	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 614	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 615		max_id = wbc->wb_id;
 616		max_bytes = wbc->wb_bytes;
 617	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 618		max_id = wbc->wb_lcand_id;
 619		max_bytes = wbc->wb_lcand_bytes;
 620	} else {
 621		max_id = wbc->wb_tcand_id;
 622		max_bytes = wbc->wb_tcand_bytes;
 623	}
 624
 625	/*
 626	 * Calculate the amount of IO time the winner consumed and fold it
 627	 * into the running average kept per inode.  If the consumed IO
 628	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 629	 * deciding whether to switch or not.  This is to prevent one-off
 630	 * small dirtiers from skewing the verdict.
 631	 */
 632	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 633				wb->avg_write_bandwidth);
 634	if (avg_time)
 635		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 636			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 637	else
 638		avg_time = max_time;	/* immediate catch up on first run */
 639
 640	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 641		int slots;
 642
 643		/*
 644		 * The switch verdict is reached if foreign wb's consume
 645		 * more than a certain proportion of IO time in a
 646		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 647		 * history mask where each bit represents one sixteenth of
 648		 * the period.  Determine the number of slots to shift into
 649		 * history from @max_time.
 650		 */
 651		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 652			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 653		history <<= slots;
 654		if (wbc->wb_id != max_id)
 655			history |= (1U << slots) - 1;
 656
 657		/*
 658		 * Switch if the current wb isn't the consistent winner.
 659		 * If there are multiple closely competing dirtiers, the
 660		 * inode may switch across them repeatedly over time, which
 661		 * is okay.  The main goal is avoiding keeping an inode on
 662		 * the wrong wb for an extended period of time.
 663		 */
 664		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 665			inode_switch_wbs(inode, max_id);
 666	}
 667
 668	/*
 669	 * Multiple instances of this function may race to update the
 670	 * following fields but we don't mind occassional inaccuracies.
 671	 */
 672	inode->i_wb_frn_winner = max_id;
 673	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 674	inode->i_wb_frn_history = history;
 675
 676	wb_put(wbc->wb);
 677	wbc->wb = NULL;
 678}
 679
 680/**
 681 * wbc_account_io - account IO issued during writeback
 682 * @wbc: writeback_control of the writeback in progress
 683 * @page: page being written out
 684 * @bytes: number of bytes being written out
 685 *
 686 * @bytes from @page are about to written out during the writeback
 687 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 688 * wbc_detach_inode().
 689 */
 690void wbc_account_io(struct writeback_control *wbc, struct page *page,
 691		    size_t bytes)
 692{
 693	int id;
 694
 695	/*
 696	 * pageout() path doesn't attach @wbc to the inode being written
 697	 * out.  This is intentional as we don't want the function to block
 698	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 699	 * regular writeback instead of writing things out itself.
 700	 */
 701	if (!wbc->wb)
 702		return;
 703
 704	id = mem_cgroup_css_from_page(page)->id;
 705
 706	if (id == wbc->wb_id) {
 707		wbc->wb_bytes += bytes;
 708		return;
 709	}
 710
 711	if (id == wbc->wb_lcand_id)
 712		wbc->wb_lcand_bytes += bytes;
 713
 714	/* Boyer-Moore majority vote algorithm */
 715	if (!wbc->wb_tcand_bytes)
 716		wbc->wb_tcand_id = id;
 717	if (id == wbc->wb_tcand_id)
 718		wbc->wb_tcand_bytes += bytes;
 719	else
 720		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 721}
 722EXPORT_SYMBOL_GPL(wbc_account_io);
 723
 724/**
 725 * inode_congested - test whether an inode is congested
 726 * @inode: inode to test for congestion (may be NULL)
 727 * @cong_bits: mask of WB_[a]sync_congested bits to test
 728 *
 729 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 730 * bits to test and the return value is the mask of set bits.
 731 *
 732 * If cgroup writeback is enabled for @inode, the congestion state is
 733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 734 * associated with @inode is congested; otherwise, the root wb's congestion
 735 * state is used.
 736 *
 737 * @inode is allowed to be NULL as this function is often called on
 738 * mapping->host which is NULL for the swapper space.
 739 */
 740int inode_congested(struct inode *inode, int cong_bits)
 741{
 742	/*
 743	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 744	 * Start transaction iff ->i_wb is visible.
 745	 */
 746	if (inode && inode_to_wb_is_valid(inode)) {
 747		struct bdi_writeback *wb;
 748		struct wb_lock_cookie lock_cookie = {};
 749		bool congested;
 750
 751		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
 752		congested = wb_congested(wb, cong_bits);
 753		unlocked_inode_to_wb_end(inode, &lock_cookie);
 754		return congested;
 755	}
 756
 757	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 758}
 759EXPORT_SYMBOL_GPL(inode_congested);
 760
 761/**
 762 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 763 * @wb: target bdi_writeback to split @nr_pages to
 764 * @nr_pages: number of pages to write for the whole bdi
 765 *
 766 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 767 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 768 * @wb->bdi.
 769 */
 770static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 771{
 772	unsigned long this_bw = wb->avg_write_bandwidth;
 773	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 774
 775	if (nr_pages == LONG_MAX)
 776		return LONG_MAX;
 777
 778	/*
 779	 * This may be called on clean wb's and proportional distribution
 780	 * may not make sense, just use the original @nr_pages in those
 781	 * cases.  In general, we wanna err on the side of writing more.
 782	 */
 783	if (!tot_bw || this_bw >= tot_bw)
 784		return nr_pages;
 785	else
 786		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 787}
 788
 789/**
 790 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 791 * @bdi: target backing_dev_info
 792 * @base_work: wb_writeback_work to issue
 793 * @skip_if_busy: skip wb's which already have writeback in progress
 794 *
 795 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 796 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 797 * distributed to the busy wbs according to each wb's proportion in the
 798 * total active write bandwidth of @bdi.
 799 */
 800static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 801				  struct wb_writeback_work *base_work,
 802				  bool skip_if_busy)
 803{
 804	struct bdi_writeback *last_wb = NULL;
 805	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 806					      struct bdi_writeback, bdi_node);
 807
 808	might_sleep();
 809restart:
 810	rcu_read_lock();
 811	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 812		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 813		struct wb_writeback_work fallback_work;
 814		struct wb_writeback_work *work;
 815		long nr_pages;
 816
 817		if (last_wb) {
 818			wb_put(last_wb);
 819			last_wb = NULL;
 820		}
 821
 822		/* SYNC_ALL writes out I_DIRTY_TIME too */
 823		if (!wb_has_dirty_io(wb) &&
 824		    (base_work->sync_mode == WB_SYNC_NONE ||
 825		     list_empty(&wb->b_dirty_time)))
 826			continue;
 827		if (skip_if_busy && writeback_in_progress(wb))
 828			continue;
 829
 830		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 831
 832		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 833		if (work) {
 834			*work = *base_work;
 835			work->nr_pages = nr_pages;
 836			work->auto_free = 1;
 837			wb_queue_work(wb, work);
 838			continue;
 839		}
 840
 841		/* alloc failed, execute synchronously using on-stack fallback */
 842		work = &fallback_work;
 843		*work = *base_work;
 844		work->nr_pages = nr_pages;
 845		work->auto_free = 0;
 846		work->done = &fallback_work_done;
 847
 848		wb_queue_work(wb, work);
 849
 850		/*
 851		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 852		 * continuing iteration from @wb after dropping and
 853		 * regrabbing rcu read lock.
 854		 */
 855		wb_get(wb);
 856		last_wb = wb;
 857
 858		rcu_read_unlock();
 859		wb_wait_for_completion(bdi, &fallback_work_done);
 860		goto restart;
 861	}
 862	rcu_read_unlock();
 863
 864	if (last_wb)
 865		wb_put(last_wb);
 866}
 867
 868/**
 869 * cgroup_writeback_umount - flush inode wb switches for umount
 870 *
 871 * This function is called when a super_block is about to be destroyed and
 872 * flushes in-flight inode wb switches.  An inode wb switch goes through
 873 * RCU and then workqueue, so the two need to be flushed in order to ensure
 874 * that all previously scheduled switches are finished.  As wb switches are
 875 * rare occurrences and synchronize_rcu() can take a while, perform
 876 * flushing iff wb switches are in flight.
 877 */
 878void cgroup_writeback_umount(void)
 879{
 880	if (atomic_read(&isw_nr_in_flight)) {
 881		synchronize_rcu();
 882		flush_workqueue(isw_wq);
 883	}
 884}
 885
 886static int __init cgroup_writeback_init(void)
 887{
 888	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 889	if (!isw_wq)
 890		return -ENOMEM;
 891	return 0;
 892}
 893fs_initcall(cgroup_writeback_init);
 894
 895#else	/* CONFIG_CGROUP_WRITEBACK */
 896
 897static struct bdi_writeback *
 898locked_inode_to_wb_and_lock_list(struct inode *inode)
 899	__releases(&inode->i_lock)
 900	__acquires(&wb->list_lock)
 901{
 902	struct bdi_writeback *wb = inode_to_wb(inode);
 903
 904	spin_unlock(&inode->i_lock);
 905	spin_lock(&wb->list_lock);
 906	return wb;
 907}
 908
 909static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 910	__acquires(&wb->list_lock)
 911{
 912	struct bdi_writeback *wb = inode_to_wb(inode);
 913
 914	spin_lock(&wb->list_lock);
 915	return wb;
 916}
 917
 918static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 919{
 920	return nr_pages;
 921}
 922
 923static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 924				  struct wb_writeback_work *base_work,
 925				  bool skip_if_busy)
 926{
 927	might_sleep();
 928
 929	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 930		base_work->auto_free = 0;
 931		wb_queue_work(&bdi->wb, base_work);
 932	}
 933}
 934
 935#endif	/* CONFIG_CGROUP_WRITEBACK */
 936
 937/*
 938 * Add in the number of potentially dirty inodes, because each inode
 939 * write can dirty pagecache in the underlying blockdev.
 940 */
 941static unsigned long get_nr_dirty_pages(void)
 942{
 943	return global_node_page_state(NR_FILE_DIRTY) +
 944		global_node_page_state(NR_UNSTABLE_NFS) +
 945		get_nr_dirty_inodes();
 946}
 947
 948static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
 949{
 950	if (!wb_has_dirty_io(wb))
 951		return;
 952
 953	/*
 954	 * All callers of this function want to start writeback of all
 955	 * dirty pages. Places like vmscan can call this at a very
 956	 * high frequency, causing pointless allocations of tons of
 957	 * work items and keeping the flusher threads busy retrieving
 958	 * that work. Ensure that we only allow one of them pending and
 959	 * inflight at the time.
 960	 */
 961	if (test_bit(WB_start_all, &wb->state) ||
 962	    test_and_set_bit(WB_start_all, &wb->state))
 
 
 
 963		return;
 
 
 
 
 
 
 
 964
 965	wb->start_all_reason = reason;
 966	wb_wakeup(wb);
 967}
 968
 969/**
 970 * wb_start_background_writeback - start background writeback
 971 * @wb: bdi_writback to write from
 972 *
 973 * Description:
 974 *   This makes sure WB_SYNC_NONE background writeback happens. When
 975 *   this function returns, it is only guaranteed that for given wb
 976 *   some IO is happening if we are over background dirty threshold.
 977 *   Caller need not hold sb s_umount semaphore.
 978 */
 979void wb_start_background_writeback(struct bdi_writeback *wb)
 980{
 981	/*
 982	 * We just wake up the flusher thread. It will perform background
 983	 * writeback as soon as there is no other work to do.
 984	 */
 985	trace_writeback_wake_background(wb);
 986	wb_wakeup(wb);
 987}
 988
 989/*
 990 * Remove the inode from the writeback list it is on.
 991 */
 992void inode_io_list_del(struct inode *inode)
 993{
 994	struct bdi_writeback *wb;
 995
 996	wb = inode_to_wb_and_lock_list(inode);
 997	inode_io_list_del_locked(inode, wb);
 998	spin_unlock(&wb->list_lock);
 999}
1000
1001/*
1002 * mark an inode as under writeback on the sb
1003 */
1004void sb_mark_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (list_empty(&inode->i_wb_list)) {
1012			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1013			trace_sb_mark_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * clear an inode as under writeback on the sb
1021 */
1022void sb_clear_inode_writeback(struct inode *inode)
1023{
1024	struct super_block *sb = inode->i_sb;
1025	unsigned long flags;
1026
1027	if (!list_empty(&inode->i_wb_list)) {
1028		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1029		if (!list_empty(&inode->i_wb_list)) {
1030			list_del_init(&inode->i_wb_list);
1031			trace_sb_clear_inode_writeback(inode);
1032		}
1033		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1034	}
1035}
1036
1037/*
1038 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1039 * furthest end of its superblock's dirty-inode list.
1040 *
1041 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1042 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1043 * the case then the inode must have been redirtied while it was being written
1044 * out and we don't reset its dirtied_when.
1045 */
1046static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1047{
1048	if (!list_empty(&wb->b_dirty)) {
1049		struct inode *tail;
1050
1051		tail = wb_inode(wb->b_dirty.next);
1052		if (time_before(inode->dirtied_when, tail->dirtied_when))
1053			inode->dirtied_when = jiffies;
1054	}
1055	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1056}
1057
1058/*
1059 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1060 */
1061static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1062{
1063	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1064}
1065
1066static void inode_sync_complete(struct inode *inode)
1067{
1068	inode->i_state &= ~I_SYNC;
1069	/* If inode is clean an unused, put it into LRU now... */
1070	inode_add_lru(inode);
1071	/* Waiters must see I_SYNC cleared before being woken up */
1072	smp_mb();
1073	wake_up_bit(&inode->i_state, __I_SYNC);
1074}
1075
1076static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1077{
1078	bool ret = time_after(inode->dirtied_when, t);
1079#ifndef CONFIG_64BIT
1080	/*
1081	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1082	 * It _appears_ to be in the future, but is actually in distant past.
1083	 * This test is necessary to prevent such wrapped-around relative times
1084	 * from permanently stopping the whole bdi writeback.
1085	 */
1086	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1087#endif
1088	return ret;
1089}
1090
1091#define EXPIRE_DIRTY_ATIME 0x0001
1092
1093/*
1094 * Move expired (dirtied before work->older_than_this) dirty inodes from
1095 * @delaying_queue to @dispatch_queue.
1096 */
1097static int move_expired_inodes(struct list_head *delaying_queue,
1098			       struct list_head *dispatch_queue,
1099			       int flags,
1100			       struct wb_writeback_work *work)
1101{
1102	unsigned long *older_than_this = NULL;
1103	unsigned long expire_time;
1104	LIST_HEAD(tmp);
1105	struct list_head *pos, *node;
1106	struct super_block *sb = NULL;
1107	struct inode *inode;
1108	int do_sb_sort = 0;
1109	int moved = 0;
1110
1111	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1112		older_than_this = work->older_than_this;
1113	else if (!work->for_sync) {
1114		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1115		older_than_this = &expire_time;
1116	}
1117	while (!list_empty(delaying_queue)) {
1118		inode = wb_inode(delaying_queue->prev);
1119		if (older_than_this &&
1120		    inode_dirtied_after(inode, *older_than_this))
1121			break;
1122		list_move(&inode->i_io_list, &tmp);
1123		moved++;
1124		if (flags & EXPIRE_DIRTY_ATIME)
1125			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1126		if (sb_is_blkdev_sb(inode->i_sb))
1127			continue;
1128		if (sb && sb != inode->i_sb)
1129			do_sb_sort = 1;
1130		sb = inode->i_sb;
1131	}
1132
1133	/* just one sb in list, splice to dispatch_queue and we're done */
1134	if (!do_sb_sort) {
1135		list_splice(&tmp, dispatch_queue);
1136		goto out;
1137	}
1138
1139	/* Move inodes from one superblock together */
1140	while (!list_empty(&tmp)) {
1141		sb = wb_inode(tmp.prev)->i_sb;
1142		list_for_each_prev_safe(pos, node, &tmp) {
1143			inode = wb_inode(pos);
1144			if (inode->i_sb == sb)
1145				list_move(&inode->i_io_list, dispatch_queue);
1146		}
1147	}
1148out:
1149	return moved;
1150}
1151
1152/*
1153 * Queue all expired dirty inodes for io, eldest first.
1154 * Before
1155 *         newly dirtied     b_dirty    b_io    b_more_io
1156 *         =============>    gf         edc     BA
1157 * After
1158 *         newly dirtied     b_dirty    b_io    b_more_io
1159 *         =============>    g          fBAedc
1160 *                                           |
1161 *                                           +--> dequeue for IO
1162 */
1163static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1164{
1165	int moved;
1166
1167	assert_spin_locked(&wb->list_lock);
1168	list_splice_init(&wb->b_more_io, &wb->b_io);
1169	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1170	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1171				     EXPIRE_DIRTY_ATIME, work);
1172	if (moved)
1173		wb_io_lists_populated(wb);
1174	trace_writeback_queue_io(wb, work, moved);
1175}
1176
1177static int write_inode(struct inode *inode, struct writeback_control *wbc)
1178{
1179	int ret;
1180
1181	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1182		trace_writeback_write_inode_start(inode, wbc);
1183		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1184		trace_writeback_write_inode(inode, wbc);
1185		return ret;
1186	}
1187	return 0;
1188}
1189
1190/*
1191 * Wait for writeback on an inode to complete. Called with i_lock held.
1192 * Caller must make sure inode cannot go away when we drop i_lock.
1193 */
1194static void __inode_wait_for_writeback(struct inode *inode)
1195	__releases(inode->i_lock)
1196	__acquires(inode->i_lock)
1197{
1198	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1199	wait_queue_head_t *wqh;
1200
1201	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1202	while (inode->i_state & I_SYNC) {
1203		spin_unlock(&inode->i_lock);
1204		__wait_on_bit(wqh, &wq, bit_wait,
1205			      TASK_UNINTERRUPTIBLE);
1206		spin_lock(&inode->i_lock);
1207	}
1208}
1209
1210/*
1211 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1212 */
1213void inode_wait_for_writeback(struct inode *inode)
1214{
1215	spin_lock(&inode->i_lock);
1216	__inode_wait_for_writeback(inode);
1217	spin_unlock(&inode->i_lock);
1218}
1219
1220/*
1221 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1222 * held and drops it. It is aimed for callers not holding any inode reference
1223 * so once i_lock is dropped, inode can go away.
1224 */
1225static void inode_sleep_on_writeback(struct inode *inode)
1226	__releases(inode->i_lock)
1227{
1228	DEFINE_WAIT(wait);
1229	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1230	int sleep;
1231
1232	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1233	sleep = inode->i_state & I_SYNC;
1234	spin_unlock(&inode->i_lock);
1235	if (sleep)
1236		schedule();
1237	finish_wait(wqh, &wait);
1238}
1239
1240/*
1241 * Find proper writeback list for the inode depending on its current state and
1242 * possibly also change of its state while we were doing writeback.  Here we
1243 * handle things such as livelock prevention or fairness of writeback among
1244 * inodes. This function can be called only by flusher thread - noone else
1245 * processes all inodes in writeback lists and requeueing inodes behind flusher
1246 * thread's back can have unexpected consequences.
1247 */
1248static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1249			  struct writeback_control *wbc)
1250{
1251	if (inode->i_state & I_FREEING)
1252		return;
1253
1254	/*
1255	 * Sync livelock prevention. Each inode is tagged and synced in one
1256	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1257	 * the dirty time to prevent enqueue and sync it again.
1258	 */
1259	if ((inode->i_state & I_DIRTY) &&
1260	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1261		inode->dirtied_when = jiffies;
1262
1263	if (wbc->pages_skipped) {
1264		/*
1265		 * writeback is not making progress due to locked
1266		 * buffers. Skip this inode for now.
1267		 */
1268		redirty_tail(inode, wb);
1269		return;
1270	}
1271
1272	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1273		/*
1274		 * We didn't write back all the pages.  nfs_writepages()
1275		 * sometimes bales out without doing anything.
1276		 */
1277		if (wbc->nr_to_write <= 0) {
1278			/* Slice used up. Queue for next turn. */
1279			requeue_io(inode, wb);
1280		} else {
1281			/*
1282			 * Writeback blocked by something other than
1283			 * congestion. Delay the inode for some time to
1284			 * avoid spinning on the CPU (100% iowait)
1285			 * retrying writeback of the dirty page/inode
1286			 * that cannot be performed immediately.
1287			 */
1288			redirty_tail(inode, wb);
1289		}
1290	} else if (inode->i_state & I_DIRTY) {
1291		/*
1292		 * Filesystems can dirty the inode during writeback operations,
1293		 * such as delayed allocation during submission or metadata
1294		 * updates after data IO completion.
1295		 */
1296		redirty_tail(inode, wb);
1297	} else if (inode->i_state & I_DIRTY_TIME) {
1298		inode->dirtied_when = jiffies;
1299		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1300	} else {
1301		/* The inode is clean. Remove from writeback lists. */
1302		inode_io_list_del_locked(inode, wb);
1303	}
1304}
1305
1306/*
1307 * Write out an inode and its dirty pages. Do not update the writeback list
1308 * linkage. That is left to the caller. The caller is also responsible for
1309 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1310 */
1311static int
1312__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1313{
1314	struct address_space *mapping = inode->i_mapping;
1315	long nr_to_write = wbc->nr_to_write;
1316	unsigned dirty;
1317	int ret;
1318
1319	WARN_ON(!(inode->i_state & I_SYNC));
1320
1321	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1322
1323	ret = do_writepages(mapping, wbc);
1324
1325	/*
1326	 * Make sure to wait on the data before writing out the metadata.
1327	 * This is important for filesystems that modify metadata on data
1328	 * I/O completion. We don't do it for sync(2) writeback because it has a
1329	 * separate, external IO completion path and ->sync_fs for guaranteeing
1330	 * inode metadata is written back correctly.
1331	 */
1332	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1333		int err = filemap_fdatawait(mapping);
1334		if (ret == 0)
1335			ret = err;
1336	}
1337
1338	/*
1339	 * Some filesystems may redirty the inode during the writeback
1340	 * due to delalloc, clear dirty metadata flags right before
1341	 * write_inode()
1342	 */
1343	spin_lock(&inode->i_lock);
1344
1345	dirty = inode->i_state & I_DIRTY;
1346	if (inode->i_state & I_DIRTY_TIME) {
1347		if ((dirty & I_DIRTY_INODE) ||
1348		    wbc->sync_mode == WB_SYNC_ALL ||
1349		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1350		    unlikely(time_after(jiffies,
1351					(inode->dirtied_time_when +
1352					 dirtytime_expire_interval * HZ)))) {
1353			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1354			trace_writeback_lazytime(inode);
1355		}
1356	} else
1357		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1358	inode->i_state &= ~dirty;
1359
1360	/*
1361	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1362	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1363	 * either they see the I_DIRTY bits cleared or we see the dirtied
1364	 * inode.
1365	 *
1366	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1367	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1368	 * necessary.  This guarantees that either __mark_inode_dirty()
1369	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1370	 */
1371	smp_mb();
1372
1373	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1374		inode->i_state |= I_DIRTY_PAGES;
1375
1376	spin_unlock(&inode->i_lock);
1377
1378	if (dirty & I_DIRTY_TIME)
1379		mark_inode_dirty_sync(inode);
1380	/* Don't write the inode if only I_DIRTY_PAGES was set */
1381	if (dirty & ~I_DIRTY_PAGES) {
1382		int err = write_inode(inode, wbc);
1383		if (ret == 0)
1384			ret = err;
1385	}
1386	trace_writeback_single_inode(inode, wbc, nr_to_write);
1387	return ret;
1388}
1389
1390/*
1391 * Write out an inode's dirty pages. Either the caller has an active reference
1392 * on the inode or the inode has I_WILL_FREE set.
1393 *
1394 * This function is designed to be called for writing back one inode which
1395 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1396 * and does more profound writeback list handling in writeback_sb_inodes().
1397 */
1398static int writeback_single_inode(struct inode *inode,
1399				  struct writeback_control *wbc)
1400{
1401	struct bdi_writeback *wb;
1402	int ret = 0;
1403
1404	spin_lock(&inode->i_lock);
1405	if (!atomic_read(&inode->i_count))
1406		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1407	else
1408		WARN_ON(inode->i_state & I_WILL_FREE);
1409
1410	if (inode->i_state & I_SYNC) {
1411		if (wbc->sync_mode != WB_SYNC_ALL)
1412			goto out;
1413		/*
1414		 * It's a data-integrity sync. We must wait. Since callers hold
1415		 * inode reference or inode has I_WILL_FREE set, it cannot go
1416		 * away under us.
1417		 */
1418		__inode_wait_for_writeback(inode);
1419	}
1420	WARN_ON(inode->i_state & I_SYNC);
1421	/*
1422	 * Skip inode if it is clean and we have no outstanding writeback in
1423	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1424	 * function since flusher thread may be doing for example sync in
1425	 * parallel and if we move the inode, it could get skipped. So here we
1426	 * make sure inode is on some writeback list and leave it there unless
1427	 * we have completely cleaned the inode.
1428	 */
1429	if (!(inode->i_state & I_DIRTY_ALL) &&
1430	    (wbc->sync_mode != WB_SYNC_ALL ||
1431	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1432		goto out;
1433	inode->i_state |= I_SYNC;
1434	wbc_attach_and_unlock_inode(wbc, inode);
1435
1436	ret = __writeback_single_inode(inode, wbc);
1437
1438	wbc_detach_inode(wbc);
1439
1440	wb = inode_to_wb_and_lock_list(inode);
1441	spin_lock(&inode->i_lock);
1442	/*
1443	 * If inode is clean, remove it from writeback lists. Otherwise don't
1444	 * touch it. See comment above for explanation.
1445	 */
1446	if (!(inode->i_state & I_DIRTY_ALL))
1447		inode_io_list_del_locked(inode, wb);
1448	spin_unlock(&wb->list_lock);
1449	inode_sync_complete(inode);
1450out:
1451	spin_unlock(&inode->i_lock);
1452	return ret;
1453}
1454
1455static long writeback_chunk_size(struct bdi_writeback *wb,
1456				 struct wb_writeback_work *work)
1457{
1458	long pages;
1459
1460	/*
1461	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1462	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1463	 * here avoids calling into writeback_inodes_wb() more than once.
1464	 *
1465	 * The intended call sequence for WB_SYNC_ALL writeback is:
1466	 *
1467	 *      wb_writeback()
1468	 *          writeback_sb_inodes()       <== called only once
1469	 *              write_cache_pages()     <== called once for each inode
1470	 *                   (quickly) tag currently dirty pages
1471	 *                   (maybe slowly) sync all tagged pages
1472	 */
1473	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1474		pages = LONG_MAX;
1475	else {
1476		pages = min(wb->avg_write_bandwidth / 2,
1477			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1478		pages = min(pages, work->nr_pages);
1479		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1480				   MIN_WRITEBACK_PAGES);
1481	}
1482
1483	return pages;
1484}
1485
1486/*
1487 * Write a portion of b_io inodes which belong to @sb.
1488 *
1489 * Return the number of pages and/or inodes written.
1490 *
1491 * NOTE! This is called with wb->list_lock held, and will
1492 * unlock and relock that for each inode it ends up doing
1493 * IO for.
1494 */
1495static long writeback_sb_inodes(struct super_block *sb,
1496				struct bdi_writeback *wb,
1497				struct wb_writeback_work *work)
1498{
1499	struct writeback_control wbc = {
1500		.sync_mode		= work->sync_mode,
1501		.tagged_writepages	= work->tagged_writepages,
1502		.for_kupdate		= work->for_kupdate,
1503		.for_background		= work->for_background,
1504		.for_sync		= work->for_sync,
1505		.range_cyclic		= work->range_cyclic,
1506		.range_start		= 0,
1507		.range_end		= LLONG_MAX,
1508	};
1509	unsigned long start_time = jiffies;
1510	long write_chunk;
1511	long wrote = 0;  /* count both pages and inodes */
1512
1513	while (!list_empty(&wb->b_io)) {
1514		struct inode *inode = wb_inode(wb->b_io.prev);
1515		struct bdi_writeback *tmp_wb;
1516
1517		if (inode->i_sb != sb) {
1518			if (work->sb) {
1519				/*
1520				 * We only want to write back data for this
1521				 * superblock, move all inodes not belonging
1522				 * to it back onto the dirty list.
1523				 */
1524				redirty_tail(inode, wb);
1525				continue;
1526			}
1527
1528			/*
1529			 * The inode belongs to a different superblock.
1530			 * Bounce back to the caller to unpin this and
1531			 * pin the next superblock.
1532			 */
1533			break;
1534		}
1535
1536		/*
1537		 * Don't bother with new inodes or inodes being freed, first
1538		 * kind does not need periodic writeout yet, and for the latter
1539		 * kind writeout is handled by the freer.
1540		 */
1541		spin_lock(&inode->i_lock);
1542		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1543			spin_unlock(&inode->i_lock);
1544			redirty_tail(inode, wb);
1545			continue;
1546		}
1547		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1548			/*
1549			 * If this inode is locked for writeback and we are not
1550			 * doing writeback-for-data-integrity, move it to
1551			 * b_more_io so that writeback can proceed with the
1552			 * other inodes on s_io.
1553			 *
1554			 * We'll have another go at writing back this inode
1555			 * when we completed a full scan of b_io.
1556			 */
1557			spin_unlock(&inode->i_lock);
1558			requeue_io(inode, wb);
1559			trace_writeback_sb_inodes_requeue(inode);
1560			continue;
1561		}
1562		spin_unlock(&wb->list_lock);
1563
1564		/*
1565		 * We already requeued the inode if it had I_SYNC set and we
1566		 * are doing WB_SYNC_NONE writeback. So this catches only the
1567		 * WB_SYNC_ALL case.
1568		 */
1569		if (inode->i_state & I_SYNC) {
1570			/* Wait for I_SYNC. This function drops i_lock... */
1571			inode_sleep_on_writeback(inode);
1572			/* Inode may be gone, start again */
1573			spin_lock(&wb->list_lock);
1574			continue;
1575		}
1576		inode->i_state |= I_SYNC;
1577		wbc_attach_and_unlock_inode(&wbc, inode);
1578
1579		write_chunk = writeback_chunk_size(wb, work);
1580		wbc.nr_to_write = write_chunk;
1581		wbc.pages_skipped = 0;
1582
1583		/*
1584		 * We use I_SYNC to pin the inode in memory. While it is set
1585		 * evict_inode() will wait so the inode cannot be freed.
1586		 */
1587		__writeback_single_inode(inode, &wbc);
1588
1589		wbc_detach_inode(&wbc);
1590		work->nr_pages -= write_chunk - wbc.nr_to_write;
1591		wrote += write_chunk - wbc.nr_to_write;
1592
1593		if (need_resched()) {
1594			/*
1595			 * We're trying to balance between building up a nice
1596			 * long list of IOs to improve our merge rate, and
1597			 * getting those IOs out quickly for anyone throttling
1598			 * in balance_dirty_pages().  cond_resched() doesn't
1599			 * unplug, so get our IOs out the door before we
1600			 * give up the CPU.
1601			 */
1602			blk_flush_plug(current);
1603			cond_resched();
1604		}
1605
1606		/*
1607		 * Requeue @inode if still dirty.  Be careful as @inode may
1608		 * have been switched to another wb in the meantime.
1609		 */
1610		tmp_wb = inode_to_wb_and_lock_list(inode);
1611		spin_lock(&inode->i_lock);
1612		if (!(inode->i_state & I_DIRTY_ALL))
1613			wrote++;
1614		requeue_inode(inode, tmp_wb, &wbc);
1615		inode_sync_complete(inode);
1616		spin_unlock(&inode->i_lock);
1617
1618		if (unlikely(tmp_wb != wb)) {
1619			spin_unlock(&tmp_wb->list_lock);
1620			spin_lock(&wb->list_lock);
1621		}
1622
1623		/*
1624		 * bail out to wb_writeback() often enough to check
1625		 * background threshold and other termination conditions.
1626		 */
1627		if (wrote) {
1628			if (time_is_before_jiffies(start_time + HZ / 10UL))
1629				break;
1630			if (work->nr_pages <= 0)
1631				break;
1632		}
1633	}
1634	return wrote;
1635}
1636
1637static long __writeback_inodes_wb(struct bdi_writeback *wb,
1638				  struct wb_writeback_work *work)
1639{
1640	unsigned long start_time = jiffies;
1641	long wrote = 0;
1642
1643	while (!list_empty(&wb->b_io)) {
1644		struct inode *inode = wb_inode(wb->b_io.prev);
1645		struct super_block *sb = inode->i_sb;
1646
1647		if (!trylock_super(sb)) {
1648			/*
1649			 * trylock_super() may fail consistently due to
1650			 * s_umount being grabbed by someone else. Don't use
1651			 * requeue_io() to avoid busy retrying the inode/sb.
1652			 */
1653			redirty_tail(inode, wb);
1654			continue;
1655		}
1656		wrote += writeback_sb_inodes(sb, wb, work);
1657		up_read(&sb->s_umount);
1658
1659		/* refer to the same tests at the end of writeback_sb_inodes */
1660		if (wrote) {
1661			if (time_is_before_jiffies(start_time + HZ / 10UL))
1662				break;
1663			if (work->nr_pages <= 0)
1664				break;
1665		}
1666	}
1667	/* Leave any unwritten inodes on b_io */
1668	return wrote;
1669}
1670
1671static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1672				enum wb_reason reason)
1673{
1674	struct wb_writeback_work work = {
1675		.nr_pages	= nr_pages,
1676		.sync_mode	= WB_SYNC_NONE,
1677		.range_cyclic	= 1,
1678		.reason		= reason,
1679	};
1680	struct blk_plug plug;
1681
1682	blk_start_plug(&plug);
1683	spin_lock(&wb->list_lock);
1684	if (list_empty(&wb->b_io))
1685		queue_io(wb, &work);
1686	__writeback_inodes_wb(wb, &work);
1687	spin_unlock(&wb->list_lock);
1688	blk_finish_plug(&plug);
1689
1690	return nr_pages - work.nr_pages;
1691}
1692
1693/*
1694 * Explicit flushing or periodic writeback of "old" data.
1695 *
1696 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1697 * dirtying-time in the inode's address_space.  So this periodic writeback code
1698 * just walks the superblock inode list, writing back any inodes which are
1699 * older than a specific point in time.
1700 *
1701 * Try to run once per dirty_writeback_interval.  But if a writeback event
1702 * takes longer than a dirty_writeback_interval interval, then leave a
1703 * one-second gap.
1704 *
1705 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1706 * all dirty pages if they are all attached to "old" mappings.
1707 */
1708static long wb_writeback(struct bdi_writeback *wb,
1709			 struct wb_writeback_work *work)
1710{
1711	unsigned long wb_start = jiffies;
1712	long nr_pages = work->nr_pages;
1713	unsigned long oldest_jif;
1714	struct inode *inode;
1715	long progress;
1716	struct blk_plug plug;
1717
1718	oldest_jif = jiffies;
1719	work->older_than_this = &oldest_jif;
1720
1721	blk_start_plug(&plug);
1722	spin_lock(&wb->list_lock);
1723	for (;;) {
1724		/*
1725		 * Stop writeback when nr_pages has been consumed
1726		 */
1727		if (work->nr_pages <= 0)
1728			break;
1729
1730		/*
1731		 * Background writeout and kupdate-style writeback may
1732		 * run forever. Stop them if there is other work to do
1733		 * so that e.g. sync can proceed. They'll be restarted
1734		 * after the other works are all done.
1735		 */
1736		if ((work->for_background || work->for_kupdate) &&
1737		    !list_empty(&wb->work_list))
1738			break;
1739
1740		/*
1741		 * For background writeout, stop when we are below the
1742		 * background dirty threshold
1743		 */
1744		if (work->for_background && !wb_over_bg_thresh(wb))
1745			break;
1746
1747		/*
1748		 * Kupdate and background works are special and we want to
1749		 * include all inodes that need writing. Livelock avoidance is
1750		 * handled by these works yielding to any other work so we are
1751		 * safe.
1752		 */
1753		if (work->for_kupdate) {
1754			oldest_jif = jiffies -
1755				msecs_to_jiffies(dirty_expire_interval * 10);
1756		} else if (work->for_background)
1757			oldest_jif = jiffies;
1758
1759		trace_writeback_start(wb, work);
1760		if (list_empty(&wb->b_io))
1761			queue_io(wb, work);
1762		if (work->sb)
1763			progress = writeback_sb_inodes(work->sb, wb, work);
1764		else
1765			progress = __writeback_inodes_wb(wb, work);
1766		trace_writeback_written(wb, work);
1767
1768		wb_update_bandwidth(wb, wb_start);
1769
1770		/*
1771		 * Did we write something? Try for more
1772		 *
1773		 * Dirty inodes are moved to b_io for writeback in batches.
1774		 * The completion of the current batch does not necessarily
1775		 * mean the overall work is done. So we keep looping as long
1776		 * as made some progress on cleaning pages or inodes.
1777		 */
1778		if (progress)
1779			continue;
1780		/*
1781		 * No more inodes for IO, bail
1782		 */
1783		if (list_empty(&wb->b_more_io))
1784			break;
1785		/*
1786		 * Nothing written. Wait for some inode to
1787		 * become available for writeback. Otherwise
1788		 * we'll just busyloop.
1789		 */
1790		trace_writeback_wait(wb, work);
1791		inode = wb_inode(wb->b_more_io.prev);
1792		spin_lock(&inode->i_lock);
1793		spin_unlock(&wb->list_lock);
1794		/* This function drops i_lock... */
1795		inode_sleep_on_writeback(inode);
1796		spin_lock(&wb->list_lock);
1797	}
1798	spin_unlock(&wb->list_lock);
1799	blk_finish_plug(&plug);
1800
1801	return nr_pages - work->nr_pages;
1802}
1803
1804/*
1805 * Return the next wb_writeback_work struct that hasn't been processed yet.
1806 */
1807static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1808{
1809	struct wb_writeback_work *work = NULL;
1810
1811	spin_lock_bh(&wb->work_lock);
1812	if (!list_empty(&wb->work_list)) {
1813		work = list_entry(wb->work_list.next,
1814				  struct wb_writeback_work, list);
1815		list_del_init(&work->list);
1816	}
1817	spin_unlock_bh(&wb->work_lock);
1818	return work;
1819}
1820
 
 
 
 
 
 
 
 
 
 
 
1821static long wb_check_background_flush(struct bdi_writeback *wb)
1822{
1823	if (wb_over_bg_thresh(wb)) {
1824
1825		struct wb_writeback_work work = {
1826			.nr_pages	= LONG_MAX,
1827			.sync_mode	= WB_SYNC_NONE,
1828			.for_background	= 1,
1829			.range_cyclic	= 1,
1830			.reason		= WB_REASON_BACKGROUND,
1831		};
1832
1833		return wb_writeback(wb, &work);
1834	}
1835
1836	return 0;
1837}
1838
1839static long wb_check_old_data_flush(struct bdi_writeback *wb)
1840{
1841	unsigned long expired;
1842	long nr_pages;
1843
1844	/*
1845	 * When set to zero, disable periodic writeback
1846	 */
1847	if (!dirty_writeback_interval)
1848		return 0;
1849
1850	expired = wb->last_old_flush +
1851			msecs_to_jiffies(dirty_writeback_interval * 10);
1852	if (time_before(jiffies, expired))
1853		return 0;
1854
1855	wb->last_old_flush = jiffies;
1856	nr_pages = get_nr_dirty_pages();
1857
1858	if (nr_pages) {
1859		struct wb_writeback_work work = {
1860			.nr_pages	= nr_pages,
1861			.sync_mode	= WB_SYNC_NONE,
1862			.for_kupdate	= 1,
1863			.range_cyclic	= 1,
1864			.reason		= WB_REASON_PERIODIC,
1865		};
1866
1867		return wb_writeback(wb, &work);
1868	}
1869
1870	return 0;
1871}
1872
1873static long wb_check_start_all(struct bdi_writeback *wb)
1874{
1875	long nr_pages;
1876
1877	if (!test_bit(WB_start_all, &wb->state))
1878		return 0;
1879
1880	nr_pages = get_nr_dirty_pages();
1881	if (nr_pages) {
1882		struct wb_writeback_work work = {
1883			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1884			.sync_mode	= WB_SYNC_NONE,
1885			.range_cyclic	= 1,
1886			.reason		= wb->start_all_reason,
1887		};
1888
1889		nr_pages = wb_writeback(wb, &work);
1890	}
1891
1892	clear_bit(WB_start_all, &wb->state);
1893	return nr_pages;
1894}
1895
1896
1897/*
1898 * Retrieve work items and do the writeback they describe
1899 */
1900static long wb_do_writeback(struct bdi_writeback *wb)
1901{
1902	struct wb_writeback_work *work;
1903	long wrote = 0;
1904
1905	set_bit(WB_writeback_running, &wb->state);
1906	while ((work = get_next_work_item(wb)) != NULL) {
 
 
1907		trace_writeback_exec(wb, work);
 
1908		wrote += wb_writeback(wb, work);
1909		finish_writeback_work(wb, work);
 
 
 
 
1910	}
1911
1912	/*
1913	 * Check for a flush-everything request
1914	 */
1915	wrote += wb_check_start_all(wb);
1916
1917	/*
1918	 * Check for periodic writeback, kupdated() style
1919	 */
1920	wrote += wb_check_old_data_flush(wb);
1921	wrote += wb_check_background_flush(wb);
1922	clear_bit(WB_writeback_running, &wb->state);
1923
1924	return wrote;
1925}
1926
1927/*
1928 * Handle writeback of dirty data for the device backed by this bdi. Also
1929 * reschedules periodically and does kupdated style flushing.
1930 */
1931void wb_workfn(struct work_struct *work)
1932{
1933	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1934						struct bdi_writeback, dwork);
1935	long pages_written;
1936
1937	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1938	current->flags |= PF_SWAPWRITE;
1939
1940	if (likely(!current_is_workqueue_rescuer() ||
1941		   !test_bit(WB_registered, &wb->state))) {
1942		/*
1943		 * The normal path.  Keep writing back @wb until its
1944		 * work_list is empty.  Note that this path is also taken
1945		 * if @wb is shutting down even when we're running off the
1946		 * rescuer as work_list needs to be drained.
1947		 */
1948		do {
1949			pages_written = wb_do_writeback(wb);
1950			trace_writeback_pages_written(pages_written);
1951		} while (!list_empty(&wb->work_list));
1952	} else {
1953		/*
1954		 * bdi_wq can't get enough workers and we're running off
1955		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1956		 * enough for efficient IO.
1957		 */
1958		pages_written = writeback_inodes_wb(wb, 1024,
1959						    WB_REASON_FORKER_THREAD);
1960		trace_writeback_pages_written(pages_written);
1961	}
1962
1963	if (!list_empty(&wb->work_list))
1964		wb_wakeup(wb);
1965	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1966		wb_wakeup_delayed(wb);
1967
1968	current->flags &= ~PF_SWAPWRITE;
1969}
1970
1971/*
1972 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1973 * write back the whole world.
1974 */
1975static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1976					 enum wb_reason reason)
1977{
1978	struct bdi_writeback *wb;
1979
1980	if (!bdi_has_dirty_io(bdi))
1981		return;
1982
1983	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1984		wb_start_writeback(wb, reason);
1985}
1986
1987void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1988				enum wb_reason reason)
1989{
1990	rcu_read_lock();
1991	__wakeup_flusher_threads_bdi(bdi, reason);
1992	rcu_read_unlock();
1993}
1994
1995/*
1996 * Wakeup the flusher threads to start writeback of all currently dirty pages
1997 */
1998void wakeup_flusher_threads(enum wb_reason reason)
1999{
2000	struct backing_dev_info *bdi;
2001
2002	/*
2003	 * If we are expecting writeback progress we must submit plugged IO.
2004	 */
2005	if (blk_needs_flush_plug(current))
2006		blk_schedule_flush_plug(current);
2007
 
 
 
2008	rcu_read_lock();
2009	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2010		__wakeup_flusher_threads_bdi(bdi, reason);
 
 
 
 
 
 
 
 
2011	rcu_read_unlock();
2012}
2013
2014/*
2015 * Wake up bdi's periodically to make sure dirtytime inodes gets
2016 * written back periodically.  We deliberately do *not* check the
2017 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2018 * kernel to be constantly waking up once there are any dirtytime
2019 * inodes on the system.  So instead we define a separate delayed work
2020 * function which gets called much more rarely.  (By default, only
2021 * once every 12 hours.)
2022 *
2023 * If there is any other write activity going on in the file system,
2024 * this function won't be necessary.  But if the only thing that has
2025 * happened on the file system is a dirtytime inode caused by an atime
2026 * update, we need this infrastructure below to make sure that inode
2027 * eventually gets pushed out to disk.
2028 */
2029static void wakeup_dirtytime_writeback(struct work_struct *w);
2030static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2031
2032static void wakeup_dirtytime_writeback(struct work_struct *w)
2033{
2034	struct backing_dev_info *bdi;
2035
2036	rcu_read_lock();
2037	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2038		struct bdi_writeback *wb;
2039
2040		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2041			if (!list_empty(&wb->b_dirty_time))
2042				wb_wakeup(wb);
2043	}
2044	rcu_read_unlock();
2045	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2046}
2047
2048static int __init start_dirtytime_writeback(void)
2049{
2050	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2051	return 0;
2052}
2053__initcall(start_dirtytime_writeback);
2054
2055int dirtytime_interval_handler(struct ctl_table *table, int write,
2056			       void __user *buffer, size_t *lenp, loff_t *ppos)
2057{
2058	int ret;
2059
2060	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2061	if (ret == 0 && write)
2062		mod_delayed_work(system_wq, &dirtytime_work, 0);
2063	return ret;
2064}
2065
2066static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2067{
2068	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2069		struct dentry *dentry;
2070		const char *name = "?";
2071
2072		dentry = d_find_alias(inode);
2073		if (dentry) {
2074			spin_lock(&dentry->d_lock);
2075			name = (const char *) dentry->d_name.name;
2076		}
2077		printk(KERN_DEBUG
2078		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2079		       current->comm, task_pid_nr(current), inode->i_ino,
2080		       name, inode->i_sb->s_id);
2081		if (dentry) {
2082			spin_unlock(&dentry->d_lock);
2083			dput(dentry);
2084		}
2085	}
2086}
2087
2088/**
2089 * __mark_inode_dirty -	internal function
2090 *
2091 * @inode: inode to mark
2092 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2093 *
2094 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2095 * mark_inode_dirty_sync.
2096 *
2097 * Put the inode on the super block's dirty list.
2098 *
2099 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2100 * dirty list only if it is hashed or if it refers to a blockdev.
2101 * If it was not hashed, it will never be added to the dirty list
2102 * even if it is later hashed, as it will have been marked dirty already.
2103 *
2104 * In short, make sure you hash any inodes _before_ you start marking
2105 * them dirty.
2106 *
2107 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2108 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2109 * the kernel-internal blockdev inode represents the dirtying time of the
2110 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2111 * page->mapping->host, so the page-dirtying time is recorded in the internal
2112 * blockdev inode.
2113 */
2114void __mark_inode_dirty(struct inode *inode, int flags)
2115{
 
2116	struct super_block *sb = inode->i_sb;
2117	int dirtytime;
2118
2119	trace_writeback_mark_inode_dirty(inode, flags);
2120
2121	/*
2122	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2123	 * dirty the inode itself
2124	 */
2125	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2126		trace_writeback_dirty_inode_start(inode, flags);
2127
2128		if (sb->s_op->dirty_inode)
2129			sb->s_op->dirty_inode(inode, flags);
2130
2131		trace_writeback_dirty_inode(inode, flags);
2132	}
2133	if (flags & I_DIRTY_INODE)
2134		flags &= ~I_DIRTY_TIME;
2135	dirtytime = flags & I_DIRTY_TIME;
2136
2137	/*
2138	 * Paired with smp_mb() in __writeback_single_inode() for the
2139	 * following lockless i_state test.  See there for details.
2140	 */
2141	smp_mb();
2142
2143	if (((inode->i_state & flags) == flags) ||
2144	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2145		return;
2146
2147	if (unlikely(block_dump))
2148		block_dump___mark_inode_dirty(inode);
2149
2150	spin_lock(&inode->i_lock);
2151	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2152		goto out_unlock_inode;
2153	if ((inode->i_state & flags) != flags) {
2154		const int was_dirty = inode->i_state & I_DIRTY;
2155
2156		inode_attach_wb(inode, NULL);
2157
2158		if (flags & I_DIRTY_INODE)
2159			inode->i_state &= ~I_DIRTY_TIME;
2160		inode->i_state |= flags;
2161
2162		/*
2163		 * If the inode is being synced, just update its dirty state.
2164		 * The unlocker will place the inode on the appropriate
2165		 * superblock list, based upon its state.
2166		 */
2167		if (inode->i_state & I_SYNC)
2168			goto out_unlock_inode;
2169
2170		/*
2171		 * Only add valid (hashed) inodes to the superblock's
2172		 * dirty list.  Add blockdev inodes as well.
2173		 */
2174		if (!S_ISBLK(inode->i_mode)) {
2175			if (inode_unhashed(inode))
2176				goto out_unlock_inode;
2177		}
2178		if (inode->i_state & I_FREEING)
2179			goto out_unlock_inode;
2180
2181		/*
2182		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2183		 * reposition it (that would break b_dirty time-ordering).
2184		 */
2185		if (!was_dirty) {
2186			struct bdi_writeback *wb;
2187			struct list_head *dirty_list;
2188			bool wakeup_bdi = false;
2189
2190			wb = locked_inode_to_wb_and_lock_list(inode);
2191
2192			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2193			     !test_bit(WB_registered, &wb->state),
2194			     "bdi-%s not registered\n", wb->bdi->name);
2195
2196			inode->dirtied_when = jiffies;
2197			if (dirtytime)
2198				inode->dirtied_time_when = jiffies;
2199
2200			if (inode->i_state & I_DIRTY)
2201				dirty_list = &wb->b_dirty;
2202			else
2203				dirty_list = &wb->b_dirty_time;
2204
2205			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2206							       dirty_list);
2207
2208			spin_unlock(&wb->list_lock);
2209			trace_writeback_dirty_inode_enqueue(inode);
2210
2211			/*
2212			 * If this is the first dirty inode for this bdi,
2213			 * we have to wake-up the corresponding bdi thread
2214			 * to make sure background write-back happens
2215			 * later.
2216			 */
2217			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2218				wb_wakeup_delayed(wb);
2219			return;
2220		}
2221	}
2222out_unlock_inode:
2223	spin_unlock(&inode->i_lock);
 
 
2224}
2225EXPORT_SYMBOL(__mark_inode_dirty);
2226
2227/*
2228 * The @s_sync_lock is used to serialise concurrent sync operations
2229 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2230 * Concurrent callers will block on the s_sync_lock rather than doing contending
2231 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2232 * has been issued up to the time this function is enter is guaranteed to be
2233 * completed by the time we have gained the lock and waited for all IO that is
2234 * in progress regardless of the order callers are granted the lock.
2235 */
2236static void wait_sb_inodes(struct super_block *sb)
2237{
2238	LIST_HEAD(sync_list);
2239
2240	/*
2241	 * We need to be protected against the filesystem going from
2242	 * r/o to r/w or vice versa.
2243	 */
2244	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2245
2246	mutex_lock(&sb->s_sync_lock);
2247
2248	/*
2249	 * Splice the writeback list onto a temporary list to avoid waiting on
2250	 * inodes that have started writeback after this point.
2251	 *
2252	 * Use rcu_read_lock() to keep the inodes around until we have a
2253	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2254	 * the local list because inodes can be dropped from either by writeback
2255	 * completion.
2256	 */
2257	rcu_read_lock();
2258	spin_lock_irq(&sb->s_inode_wblist_lock);
2259	list_splice_init(&sb->s_inodes_wb, &sync_list);
2260
2261	/*
2262	 * Data integrity sync. Must wait for all pages under writeback, because
2263	 * there may have been pages dirtied before our sync call, but which had
2264	 * writeout started before we write it out.  In which case, the inode
2265	 * may not be on the dirty list, but we still have to wait for that
2266	 * writeout.
2267	 */
2268	while (!list_empty(&sync_list)) {
2269		struct inode *inode = list_first_entry(&sync_list, struct inode,
2270						       i_wb_list);
2271		struct address_space *mapping = inode->i_mapping;
2272
2273		/*
2274		 * Move each inode back to the wb list before we drop the lock
2275		 * to preserve consistency between i_wb_list and the mapping
2276		 * writeback tag. Writeback completion is responsible to remove
2277		 * the inode from either list once the writeback tag is cleared.
2278		 */
2279		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2280
2281		/*
2282		 * The mapping can appear untagged while still on-list since we
2283		 * do not have the mapping lock. Skip it here, wb completion
2284		 * will remove it.
2285		 */
2286		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2287			continue;
2288
2289		spin_unlock_irq(&sb->s_inode_wblist_lock);
2290
2291		spin_lock(&inode->i_lock);
2292		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2293			spin_unlock(&inode->i_lock);
2294
2295			spin_lock_irq(&sb->s_inode_wblist_lock);
2296			continue;
2297		}
2298		__iget(inode);
2299		spin_unlock(&inode->i_lock);
2300		rcu_read_unlock();
2301
2302		/*
2303		 * We keep the error status of individual mapping so that
2304		 * applications can catch the writeback error using fsync(2).
2305		 * See filemap_fdatawait_keep_errors() for details.
2306		 */
2307		filemap_fdatawait_keep_errors(mapping);
2308
2309		cond_resched();
2310
2311		iput(inode);
2312
2313		rcu_read_lock();
2314		spin_lock_irq(&sb->s_inode_wblist_lock);
2315	}
2316	spin_unlock_irq(&sb->s_inode_wblist_lock);
2317	rcu_read_unlock();
2318	mutex_unlock(&sb->s_sync_lock);
2319}
2320
2321static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2322				     enum wb_reason reason, bool skip_if_busy)
2323{
2324	DEFINE_WB_COMPLETION_ONSTACK(done);
2325	struct wb_writeback_work work = {
2326		.sb			= sb,
2327		.sync_mode		= WB_SYNC_NONE,
2328		.tagged_writepages	= 1,
2329		.done			= &done,
2330		.nr_pages		= nr,
2331		.reason			= reason,
2332	};
2333	struct backing_dev_info *bdi = sb->s_bdi;
2334
2335	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2336		return;
2337	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2338
2339	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2340	wb_wait_for_completion(bdi, &done);
2341}
2342
2343/**
2344 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2345 * @sb: the superblock
2346 * @nr: the number of pages to write
2347 * @reason: reason why some writeback work initiated
2348 *
2349 * Start writeback on some inodes on this super_block. No guarantees are made
2350 * on how many (if any) will be written, and this function does not wait
2351 * for IO completion of submitted IO.
2352 */
2353void writeback_inodes_sb_nr(struct super_block *sb,
2354			    unsigned long nr,
2355			    enum wb_reason reason)
2356{
2357	__writeback_inodes_sb_nr(sb, nr, reason, false);
2358}
2359EXPORT_SYMBOL(writeback_inodes_sb_nr);
2360
2361/**
2362 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2363 * @sb: the superblock
2364 * @reason: reason why some writeback work was initiated
2365 *
2366 * Start writeback on some inodes on this super_block. No guarantees are made
2367 * on how many (if any) will be written, and this function does not wait
2368 * for IO completion of submitted IO.
2369 */
2370void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2371{
2372	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2373}
2374EXPORT_SYMBOL(writeback_inodes_sb);
2375
2376/**
2377 * try_to_writeback_inodes_sb - try to start writeback if none underway
2378 * @sb: the superblock
2379 * @reason: reason why some writeback work was initiated
 
2380 *
2381 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
 
2382 */
2383void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
 
2384{
2385	if (!down_read_trylock(&sb->s_umount))
2386		return;
2387
2388	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2389	up_read(&sb->s_umount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390}
2391EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2392
2393/**
2394 * sync_inodes_sb	-	sync sb inode pages
2395 * @sb: the superblock
2396 *
2397 * This function writes and waits on any dirty inode belonging to this
2398 * super_block.
2399 */
2400void sync_inodes_sb(struct super_block *sb)
2401{
2402	DEFINE_WB_COMPLETION_ONSTACK(done);
2403	struct wb_writeback_work work = {
2404		.sb		= sb,
2405		.sync_mode	= WB_SYNC_ALL,
2406		.nr_pages	= LONG_MAX,
2407		.range_cyclic	= 0,
2408		.done		= &done,
2409		.reason		= WB_REASON_SYNC,
2410		.for_sync	= 1,
2411	};
2412	struct backing_dev_info *bdi = sb->s_bdi;
2413
2414	/*
2415	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2416	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2417	 * bdi_has_dirty() need to be written out too.
2418	 */
2419	if (bdi == &noop_backing_dev_info)
2420		return;
2421	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2422
2423	bdi_split_work_to_wbs(bdi, &work, false);
2424	wb_wait_for_completion(bdi, &done);
2425
2426	wait_sb_inodes(sb);
2427}
2428EXPORT_SYMBOL(sync_inodes_sb);
2429
2430/**
2431 * write_inode_now	-	write an inode to disk
2432 * @inode: inode to write to disk
2433 * @sync: whether the write should be synchronous or not
2434 *
2435 * This function commits an inode to disk immediately if it is dirty. This is
2436 * primarily needed by knfsd.
2437 *
2438 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2439 */
2440int write_inode_now(struct inode *inode, int sync)
2441{
2442	struct writeback_control wbc = {
2443		.nr_to_write = LONG_MAX,
2444		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2445		.range_start = 0,
2446		.range_end = LLONG_MAX,
2447	};
2448
2449	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2450		wbc.nr_to_write = 0;
2451
2452	might_sleep();
2453	return writeback_single_inode(inode, &wbc);
2454}
2455EXPORT_SYMBOL(write_inode_now);
2456
2457/**
2458 * sync_inode - write an inode and its pages to disk.
2459 * @inode: the inode to sync
2460 * @wbc: controls the writeback mode
2461 *
2462 * sync_inode() will write an inode and its pages to disk.  It will also
2463 * correctly update the inode on its superblock's dirty inode lists and will
2464 * update inode->i_state.
2465 *
2466 * The caller must have a ref on the inode.
2467 */
2468int sync_inode(struct inode *inode, struct writeback_control *wbc)
2469{
2470	return writeback_single_inode(inode, wbc);
2471}
2472EXPORT_SYMBOL(sync_inode);
2473
2474/**
2475 * sync_inode_metadata - write an inode to disk
2476 * @inode: the inode to sync
2477 * @wait: wait for I/O to complete.
2478 *
2479 * Write an inode to disk and adjust its dirty state after completion.
2480 *
2481 * Note: only writes the actual inode, no associated data or other metadata.
2482 */
2483int sync_inode_metadata(struct inode *inode, int wait)
2484{
2485	struct writeback_control wbc = {
2486		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2487		.nr_to_write = 0, /* metadata-only */
2488	};
2489
2490	return sync_inode(inode, &wbc);
2491}
2492EXPORT_SYMBOL(sync_inode_metadata);