Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
 
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
 
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 181	spin_lock_bh(&wb->work_lock);
 182	if (!test_bit(WB_registered, &wb->state))
 183		goto out_unlock;
 184	if (work->done)
 185		atomic_inc(&work->done->cnt);
 186	list_add_tail(&work->list, &wb->work_list);
 187	mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 189	spin_unlock_bh(&wb->work_lock);
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204				   struct wb_completion *done)
 205{
 206	atomic_dec(&done->cnt);		/* put down the initial count */
 207	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 213#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 217
 218#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220					/* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 222					/* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224					/* one round can affect upto 5 slots */
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231	struct backing_dev_info *bdi = inode_to_bdi(inode);
 232	struct bdi_writeback *wb = NULL;
 233
 234	if (inode_cgwb_enabled(inode)) {
 235		struct cgroup_subsys_state *memcg_css;
 236
 237		if (page) {
 238			memcg_css = mem_cgroup_css_from_page(page);
 239			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240		} else {
 241			/* must pin memcg_css, see wb_get_create() */
 242			memcg_css = task_get_css(current, memory_cgrp_id);
 243			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244			css_put(memcg_css);
 245		}
 246	}
 247
 248	if (!wb)
 249		wb = &bdi->wb;
 250
 251	/*
 252	 * There may be multiple instances of this function racing to
 253	 * update the same inode.  Use cmpxchg() to tell the winner.
 254	 */
 255	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256		wb_put(wb);
 257}
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269	__releases(&inode->i_lock)
 270	__acquires(&wb->list_lock)
 271{
 272	while (true) {
 273		struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275		/*
 276		 * inode_to_wb() association is protected by both
 277		 * @inode->i_lock and @wb->list_lock but list_lock nests
 278		 * outside i_lock.  Drop i_lock and verify that the
 279		 * association hasn't changed after acquiring list_lock.
 280		 */
 281		wb_get(wb);
 282		spin_unlock(&inode->i_lock);
 283		spin_lock(&wb->list_lock);
 284
 285		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 286		if (likely(wb == inode->i_wb)) {
 287			wb_put(wb);	/* @inode already has ref */
 288			return wb;
 289		}
 290
 291		spin_unlock(&wb->list_lock);
 292		wb_put(wb);
 293		cpu_relax();
 294		spin_lock(&inode->i_lock);
 295	}
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306	__acquires(&wb->list_lock)
 307{
 308	spin_lock(&inode->i_lock);
 309	return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313	struct inode		*inode;
 314	struct bdi_writeback	*new_wb;
 315
 316	struct rcu_head		rcu_head;
 317	struct work_struct	work;
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 321{
 322	struct inode_switch_wbs_context *isw =
 323		container_of(work, struct inode_switch_wbs_context, work);
 324	struct inode *inode = isw->inode;
 325	struct address_space *mapping = inode->i_mapping;
 326	struct bdi_writeback *old_wb = inode->i_wb;
 327	struct bdi_writeback *new_wb = isw->new_wb;
 328	struct radix_tree_iter iter;
 329	bool switched = false;
 330	void **slot;
 331
 332	/*
 333	 * By the time control reaches here, RCU grace period has passed
 334	 * since I_WB_SWITCH assertion and all wb stat update transactions
 335	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336	 * synchronizing against mapping->tree_lock.
 337	 *
 338	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339	 * gives us exclusion against all wb related operations on @inode
 340	 * including IO list manipulations and stat updates.
 341	 */
 342	if (old_wb < new_wb) {
 343		spin_lock(&old_wb->list_lock);
 344		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345	} else {
 346		spin_lock(&new_wb->list_lock);
 347		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348	}
 349	spin_lock(&inode->i_lock);
 350	spin_lock_irq(&mapping->tree_lock);
 351
 352	/*
 353	 * Once I_FREEING is visible under i_lock, the eviction path owns
 354	 * the inode and we shouldn't modify ->i_io_list.
 355	 */
 356	if (unlikely(inode->i_state & I_FREEING))
 357		goto skip_switch;
 358
 359	/*
 360	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362	 * pages actually under underwriteback.
 363	 */
 364	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365				   PAGECACHE_TAG_DIRTY) {
 366		struct page *page = radix_tree_deref_slot_protected(slot,
 367							&mapping->tree_lock);
 368		if (likely(page) && PageDirty(page)) {
 369			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371		}
 372	}
 373
 374	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375				   PAGECACHE_TAG_WRITEBACK) {
 376		struct page *page = radix_tree_deref_slot_protected(slot,
 377							&mapping->tree_lock);
 378		if (likely(page)) {
 379			WARN_ON_ONCE(!PageWriteback(page));
 380			__dec_wb_stat(old_wb, WB_WRITEBACK);
 381			__inc_wb_stat(new_wb, WB_WRITEBACK);
 382		}
 383	}
 384
 385	wb_get(new_wb);
 386
 387	/*
 388	 * Transfer to @new_wb's IO list if necessary.  The specific list
 389	 * @inode was on is ignored and the inode is put on ->b_dirty which
 390	 * is always correct including from ->b_dirty_time.  The transfer
 391	 * preserves @inode->dirtied_when ordering.
 392	 */
 393	if (!list_empty(&inode->i_io_list)) {
 394		struct inode *pos;
 395
 396		inode_io_list_del_locked(inode, old_wb);
 397		inode->i_wb = new_wb;
 398		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399			if (time_after_eq(inode->dirtied_when,
 400					  pos->dirtied_when))
 401				break;
 402		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 403	} else {
 404		inode->i_wb = new_wb;
 405	}
 406
 407	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408	inode->i_wb_frn_winner = 0;
 409	inode->i_wb_frn_avg_time = 0;
 410	inode->i_wb_frn_history = 0;
 411	switched = true;
 412skip_switch:
 413	/*
 414	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416	 */
 417	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419	spin_unlock_irq(&mapping->tree_lock);
 420	spin_unlock(&inode->i_lock);
 421	spin_unlock(&new_wb->list_lock);
 422	spin_unlock(&old_wb->list_lock);
 423
 424	if (switched) {
 425		wb_wakeup(new_wb);
 426		wb_put(old_wb);
 427	}
 428	wb_put(new_wb);
 429
 430	iput(inode);
 431	kfree(isw);
 432
 433	atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 437{
 438	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439				struct inode_switch_wbs_context, rcu_head);
 440
 441	/* needs to grab bh-unsafe locks, bounce to work item */
 442	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443	queue_work(isw_wq, &isw->work);
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456	struct backing_dev_info *bdi = inode_to_bdi(inode);
 457	struct cgroup_subsys_state *memcg_css;
 458	struct inode_switch_wbs_context *isw;
 459
 460	/* noop if seems to be already in progress */
 461	if (inode->i_state & I_WB_SWITCH)
 462		return;
 463
 464	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 465	if (!isw)
 466		return;
 467
 468	/* find and pin the new wb */
 469	rcu_read_lock();
 470	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471	if (memcg_css)
 472		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473	rcu_read_unlock();
 474	if (!isw->new_wb)
 475		goto out_free;
 476
 477	/* while holding I_WB_SWITCH, no one else can update the association */
 478	spin_lock(&inode->i_lock);
 479	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481	    inode_to_wb(inode) == isw->new_wb) {
 482		spin_unlock(&inode->i_lock);
 483		goto out_free;
 484	}
 485	inode->i_state |= I_WB_SWITCH;
 486	__iget(inode);
 487	spin_unlock(&inode->i_lock);
 488
 489	isw->inode = inode;
 490
 491	atomic_inc(&isw_nr_in_flight);
 492
 493	/*
 494	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495	 * the RCU protected stat update paths to grab the mapping's
 496	 * tree_lock so that stat transfer can synchronize against them.
 497	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498	 */
 499	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 500	return;
 501
 502out_free:
 503	if (isw->new_wb)
 504		wb_put(isw->new_wb);
 505	kfree(isw);
 506}
 507
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519				 struct inode *inode)
 520{
 521	if (!inode_cgwb_enabled(inode)) {
 522		spin_unlock(&inode->i_lock);
 523		return;
 524	}
 525
 526	wbc->wb = inode_to_wb(inode);
 527	wbc->inode = inode;
 528
 529	wbc->wb_id = wbc->wb->memcg_css->id;
 530	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531	wbc->wb_tcand_id = 0;
 532	wbc->wb_bytes = 0;
 533	wbc->wb_lcand_bytes = 0;
 534	wbc->wb_tcand_bytes = 0;
 535
 536	wb_get(wbc->wb);
 537	spin_unlock(&inode->i_lock);
 538
 539	/*
 540	 * A dying wb indicates that the memcg-blkcg mapping has changed
 541	 * and a new wb is already serving the memcg.  Switch immediately.
 542	 */
 543	if (unlikely(wb_dying(wbc->wb)))
 544		inode_switch_wbs(inode, wbc->wb_id);
 545}
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586	struct bdi_writeback *wb = wbc->wb;
 587	struct inode *inode = wbc->inode;
 588	unsigned long avg_time, max_bytes, max_time;
 589	u16 history;
 590	int max_id;
 591
 592	if (!wb)
 593		return;
 594
 595	history = inode->i_wb_frn_history;
 596	avg_time = inode->i_wb_frn_avg_time;
 597
 598	/* pick the winner of this round */
 599	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601		max_id = wbc->wb_id;
 602		max_bytes = wbc->wb_bytes;
 603	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604		max_id = wbc->wb_lcand_id;
 605		max_bytes = wbc->wb_lcand_bytes;
 606	} else {
 607		max_id = wbc->wb_tcand_id;
 608		max_bytes = wbc->wb_tcand_bytes;
 609	}
 610
 611	/*
 612	 * Calculate the amount of IO time the winner consumed and fold it
 613	 * into the running average kept per inode.  If the consumed IO
 614	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615	 * deciding whether to switch or not.  This is to prevent one-off
 616	 * small dirtiers from skewing the verdict.
 617	 */
 618	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619				wb->avg_write_bandwidth);
 620	if (avg_time)
 621		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623	else
 624		avg_time = max_time;	/* immediate catch up on first run */
 625
 626	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627		int slots;
 628
 629		/*
 630		 * The switch verdict is reached if foreign wb's consume
 631		 * more than a certain proportion of IO time in a
 632		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633		 * history mask where each bit represents one sixteenth of
 634		 * the period.  Determine the number of slots to shift into
 635		 * history from @max_time.
 636		 */
 637		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639		history <<= slots;
 640		if (wbc->wb_id != max_id)
 641			history |= (1U << slots) - 1;
 642
 643		/*
 644		 * Switch if the current wb isn't the consistent winner.
 645		 * If there are multiple closely competing dirtiers, the
 646		 * inode may switch across them repeatedly over time, which
 647		 * is okay.  The main goal is avoiding keeping an inode on
 648		 * the wrong wb for an extended period of time.
 649		 */
 650		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651			inode_switch_wbs(inode, max_id);
 652	}
 653
 654	/*
 655	 * Multiple instances of this function may race to update the
 656	 * following fields but we don't mind occassional inaccuracies.
 657	 */
 658	inode->i_wb_frn_winner = max_id;
 659	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660	inode->i_wb_frn_history = history;
 661
 662	wb_put(wbc->wb);
 663	wbc->wb = NULL;
 664}
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677		    size_t bytes)
 678{
 679	int id;
 680
 681	/*
 682	 * pageout() path doesn't attach @wbc to the inode being written
 683	 * out.  This is intentional as we don't want the function to block
 684	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685	 * regular writeback instead of writing things out itself.
 686	 */
 687	if (!wbc->wb)
 688		return;
 689
 690	id = mem_cgroup_css_from_page(page)->id;
 691
 692	if (id == wbc->wb_id) {
 693		wbc->wb_bytes += bytes;
 694		return;
 695	}
 696
 697	if (id == wbc->wb_lcand_id)
 698		wbc->wb_lcand_bytes += bytes;
 699
 700	/* Boyer-Moore majority vote algorithm */
 701	if (!wbc->wb_tcand_bytes)
 702		wbc->wb_tcand_id = id;
 703	if (id == wbc->wb_tcand_id)
 704		wbc->wb_tcand_bytes += bytes;
 705	else
 706		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728	/*
 729	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 730	 * Start transaction iff ->i_wb is visible.
 731	 */
 732	if (inode && inode_to_wb_is_valid(inode)) {
 733		struct bdi_writeback *wb;
 734		bool locked, congested;
 735
 736		wb = unlocked_inode_to_wb_begin(inode, &locked);
 737		congested = wb_congested(wb, cong_bits);
 738		unlocked_inode_to_wb_end(inode, locked);
 739		return congested;
 740	}
 741
 742	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757	unsigned long this_bw = wb->avg_write_bandwidth;
 758	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760	if (nr_pages == LONG_MAX)
 761		return LONG_MAX;
 762
 763	/*
 764	 * This may be called on clean wb's and proportional distribution
 765	 * may not make sense, just use the original @nr_pages in those
 766	 * cases.  In general, we wanna err on the side of writing more.
 767	 */
 768	if (!tot_bw || this_bw >= tot_bw)
 769		return nr_pages;
 770	else
 771		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786				  struct wb_writeback_work *base_work,
 787				  bool skip_if_busy)
 788{
 789	struct bdi_writeback *last_wb = NULL;
 790	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791					      struct bdi_writeback, bdi_node);
 792
 793	might_sleep();
 794restart:
 795	rcu_read_lock();
 796	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798		struct wb_writeback_work fallback_work;
 799		struct wb_writeback_work *work;
 800		long nr_pages;
 801
 802		if (last_wb) {
 803			wb_put(last_wb);
 804			last_wb = NULL;
 805		}
 806
 807		/* SYNC_ALL writes out I_DIRTY_TIME too */
 808		if (!wb_has_dirty_io(wb) &&
 809		    (base_work->sync_mode == WB_SYNC_NONE ||
 810		     list_empty(&wb->b_dirty_time)))
 811			continue;
 812		if (skip_if_busy && writeback_in_progress(wb))
 813			continue;
 814
 815		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818		if (work) {
 819			*work = *base_work;
 820			work->nr_pages = nr_pages;
 821			work->auto_free = 1;
 822			wb_queue_work(wb, work);
 823			continue;
 824		}
 825
 826		/* alloc failed, execute synchronously using on-stack fallback */
 827		work = &fallback_work;
 828		*work = *base_work;
 829		work->nr_pages = nr_pages;
 830		work->auto_free = 0;
 831		work->done = &fallback_work_done;
 832
 833		wb_queue_work(wb, work);
 834
 835		/*
 836		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837		 * continuing iteration from @wb after dropping and
 838		 * regrabbing rcu read lock.
 839		 */
 840		wb_get(wb);
 841		last_wb = wb;
 842
 843		rcu_read_unlock();
 844		wb_wait_for_completion(bdi, &fallback_work_done);
 845		goto restart;
 846	}
 847	rcu_read_unlock();
 848
 849	if (last_wb)
 850		wb_put(last_wb);
 851}
 852
 853/**
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 865	if (atomic_read(&isw_nr_in_flight)) {
 866		synchronize_rcu();
 867		flush_workqueue(isw_wq);
 868	}
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874	if (!isw_wq)
 875		return -ENOMEM;
 876	return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else	/* CONFIG_CGROUP_WRITEBACK */
 881
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884	__releases(&inode->i_lock)
 885	__acquires(&wb->list_lock)
 886{
 887	struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889	spin_unlock(&inode->i_lock);
 890	spin_lock(&wb->list_lock);
 891	return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895	__acquires(&wb->list_lock)
 896{
 897	struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899	spin_lock(&wb->list_lock);
 900	return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905	return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909				  struct wb_writeback_work *base_work,
 910				  bool skip_if_busy)
 911{
 912	might_sleep();
 913
 914	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915		base_work->auto_free = 0;
 916		wb_queue_work(&bdi->wb, base_work);
 917	}
 918}
 919
 920#endif	/* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923			bool range_cyclic, enum wb_reason reason)
 924{
 925	struct wb_writeback_work *work;
 926
 927	if (!wb_has_dirty_io(wb))
 928		return;
 929
 930	/*
 931	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 932	 * wakeup the thread for old dirty data writeback
 933	 */
 934	work = kzalloc(sizeof(*work),
 935		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936	if (!work) {
 937		trace_writeback_nowork(wb);
 938		wb_wakeup(wb);
 
 
 939		return;
 940	}
 941
 942	work->sync_mode	= WB_SYNC_NONE;
 943	work->nr_pages	= nr_pages;
 944	work->range_cyclic = range_cyclic;
 945	work->reason	= reason;
 946	work->auto_free	= 1;
 947
 948	wb_queue_work(wb, work);
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963	/*
 964	 * We just wake up the flusher thread. It will perform background
 965	 * writeback as soon as there is no other work to do.
 966	 */
 967	trace_writeback_wake_background(wb);
 968	wb_wakeup(wb);
 
 
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976	struct bdi_writeback *wb;
 977
 978	wb = inode_to_wb_and_lock_list(inode);
 979	inode_io_list_del_locked(inode, wb);
 980	spin_unlock(&wb->list_lock);
 981}
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988	struct super_block *sb = inode->i_sb;
 989	unsigned long flags;
 990
 991	if (list_empty(&inode->i_wb_list)) {
 992		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993		if (list_empty(&inode->i_wb_list)) {
 994			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995			trace_sb_mark_inode_writeback(inode);
 996		}
 997		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998	}
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (!list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (!list_empty(&inode->i_wb_list)) {
1012			list_del_init(&inode->i_wb_list);
1013			trace_sb_clear_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
 
1030	if (!list_empty(&wb->b_dirty)) {
1031		struct inode *tail;
1032
1033		tail = wb_inode(wb->b_dirty.next);
1034		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035			inode->dirtied_when = jiffies;
1036	}
1037	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
 
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050	inode->i_state &= ~I_SYNC;
1051	/* If inode is clean an unused, put it into LRU now... */
1052	inode_add_lru(inode);
1053	/* Waiters must see I_SYNC cleared before being woken up */
 
1054	smp_mb();
1055	wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060	bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062	/*
1063	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064	 * It _appears_ to be in the future, but is actually in distant past.
1065	 * This test is necessary to prevent such wrapped-around relative times
1066	 * from permanently stopping the whole bdi writeback.
1067	 */
1068	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070	return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080			       struct list_head *dispatch_queue,
1081			       int flags,
1082			       struct wb_writeback_work *work)
1083{
1084	unsigned long *older_than_this = NULL;
1085	unsigned long expire_time;
1086	LIST_HEAD(tmp);
1087	struct list_head *pos, *node;
1088	struct super_block *sb = NULL;
1089	struct inode *inode;
1090	int do_sb_sort = 0;
1091	int moved = 0;
1092
1093	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094		older_than_this = work->older_than_this;
1095	else if (!work->for_sync) {
1096		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097		older_than_this = &expire_time;
1098	}
1099	while (!list_empty(delaying_queue)) {
1100		inode = wb_inode(delaying_queue->prev);
1101		if (older_than_this &&
1102		    inode_dirtied_after(inode, *older_than_this))
1103			break;
1104		list_move(&inode->i_io_list, &tmp);
1105		moved++;
1106		if (flags & EXPIRE_DIRTY_ATIME)
1107			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108		if (sb_is_blkdev_sb(inode->i_sb))
1109			continue;
1110		if (sb && sb != inode->i_sb)
1111			do_sb_sort = 1;
1112		sb = inode->i_sb;
 
 
1113	}
1114
1115	/* just one sb in list, splice to dispatch_queue and we're done */
1116	if (!do_sb_sort) {
1117		list_splice(&tmp, dispatch_queue);
1118		goto out;
1119	}
1120
1121	/* Move inodes from one superblock together */
1122	while (!list_empty(&tmp)) {
1123		sb = wb_inode(tmp.prev)->i_sb;
1124		list_for_each_prev_safe(pos, node, &tmp) {
1125			inode = wb_inode(pos);
1126			if (inode->i_sb == sb)
1127				list_move(&inode->i_io_list, dispatch_queue);
1128		}
1129	}
1130out:
1131	return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146{
1147	int moved;
1148
1149	assert_spin_locked(&wb->list_lock);
1150	list_splice_init(&wb->b_more_io, &wb->b_io);
1151	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153				     EXPIRE_DIRTY_ATIME, work);
1154	if (moved)
1155		wb_io_lists_populated(wb);
1156	trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161	int ret;
1162
1163	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164		trace_writeback_write_inode_start(inode, wbc);
1165		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166		trace_writeback_write_inode(inode, wbc);
1167		return ret;
1168	}
1169	return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177	__releases(inode->i_lock)
1178	__acquires(inode->i_lock)
1179{
1180	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181	wait_queue_head_t *wqh;
1182
1183	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184	while (inode->i_state & I_SYNC) {
1185		spin_unlock(&inode->i_lock);
1186		__wait_on_bit(wqh, &wq, bit_wait,
1187			      TASK_UNINTERRUPTIBLE);
 
1188		spin_lock(&inode->i_lock);
1189	}
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 
 
 
 
 
 
 
 
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197	spin_lock(&inode->i_lock);
1198	__inode_wait_for_writeback(inode);
1199	spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208	__releases(inode->i_lock)
1209{
1210	DEFINE_WAIT(wait);
1211	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212	int sleep;
1213
1214	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215	sleep = inode->i_state & I_SYNC;
1216	spin_unlock(&inode->i_lock);
1217	if (sleep)
1218		schedule();
1219	finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231			  struct writeback_control *wbc)
1232{
1233	if (inode->i_state & I_FREEING)
1234		return;
 
 
1235
1236	/*
1237	 * Sync livelock prevention. Each inode is tagged and synced in one
1238	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239	 * the dirty time to prevent enqueue and sync it again.
1240	 */
1241	if ((inode->i_state & I_DIRTY) &&
1242	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243		inode->dirtied_when = jiffies;
1244
1245	if (wbc->pages_skipped) {
1246		/*
1247		 * writeback is not making progress due to locked
1248		 * buffers. Skip this inode for now.
1249		 */
1250		redirty_tail(inode, wb);
1251		return;
1252	}
1253
1254	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255		/*
1256		 * We didn't write back all the pages.  nfs_writepages()
1257		 * sometimes bales out without doing anything.
 
 
 
 
1258		 */
1259		if (wbc->nr_to_write <= 0) {
1260			/* Slice used up. Queue for next turn. */
1261			requeue_io(inode, wb);
1262		} else {
1263			/*
1264			 * Writeback blocked by something other than
1265			 * congestion. Delay the inode for some time to
1266			 * avoid spinning on the CPU (100% iowait)
1267			 * retrying writeback of the dirty page/inode
1268			 * that cannot be performed immediately.
1269			 */
1270			redirty_tail(inode, wb);
1271		}
1272	} else if (inode->i_state & I_DIRTY) {
1273		/*
1274		 * Filesystems can dirty the inode during writeback operations,
1275		 * such as delayed allocation during submission or metadata
1276		 * updates after data IO completion.
1277		 */
1278		redirty_tail(inode, wb);
1279	} else if (inode->i_state & I_DIRTY_TIME) {
1280		inode->dirtied_when = jiffies;
1281		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282	} else {
1283		/* The inode is clean. Remove from writeback lists. */
1284		inode_io_list_del_locked(inode, wb);
1285	}
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296	struct address_space *mapping = inode->i_mapping;
1297	long nr_to_write = wbc->nr_to_write;
1298	unsigned dirty;
1299	int ret;
1300
1301	WARN_ON(!(inode->i_state & I_SYNC));
1302
1303	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
 
 
1304
1305	ret = do_writepages(mapping, wbc);
1306
1307	/*
1308	 * Make sure to wait on the data before writing out the metadata.
1309	 * This is important for filesystems that modify metadata on data
1310	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312	 * inode metadata is written back correctly.
1313	 */
1314	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315		int err = filemap_fdatawait(mapping);
1316		if (ret == 0)
1317			ret = err;
1318	}
1319
1320	/*
1321	 * Some filesystems may redirty the inode during the writeback
1322	 * due to delalloc, clear dirty metadata flags right before
1323	 * write_inode()
1324	 */
1325	spin_lock(&inode->i_lock);
1326
1327	dirty = inode->i_state & I_DIRTY;
1328	if (inode->i_state & I_DIRTY_TIME) {
1329		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330		    wbc->sync_mode == WB_SYNC_ALL ||
1331		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332		    unlikely(time_after(jiffies,
1333					(inode->dirtied_time_when +
1334					 dirtytime_expire_interval * HZ)))) {
1335			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336			trace_writeback_lazytime(inode);
1337		}
1338	} else
1339		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340	inode->i_state &= ~dirty;
1341
1342	/*
1343	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346	 * inode.
1347	 *
1348	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350	 * necessary.  This guarantees that either __mark_inode_dirty()
1351	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352	 */
1353	smp_mb();
1354
1355	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356		inode->i_state |= I_DIRTY_PAGES;
1357
1358	spin_unlock(&inode->i_lock);
1359
1360	if (dirty & I_DIRTY_TIME)
1361		mark_inode_dirty_sync(inode);
1362	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363	if (dirty & ~I_DIRTY_PAGES) {
1364		int err = write_inode(inode, wbc);
1365		if (ret == 0)
1366			ret = err;
1367	}
1368	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369	return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381				  struct writeback_control *wbc)
1382{
1383	struct bdi_writeback *wb;
1384	int ret = 0;
1385
 
1386	spin_lock(&inode->i_lock);
1387	if (!atomic_read(&inode->i_count))
1388		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389	else
1390		WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392	if (inode->i_state & I_SYNC) {
1393		if (wbc->sync_mode != WB_SYNC_ALL)
1394			goto out;
1395		/*
1396		 * It's a data-integrity sync. We must wait. Since callers hold
1397		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398		 * away under us.
1399		 */
1400		__inode_wait_for_writeback(inode);
1401	}
1402	WARN_ON(inode->i_state & I_SYNC);
1403	/*
1404	 * Skip inode if it is clean and we have no outstanding writeback in
1405	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406	 * function since flusher thread may be doing for example sync in
1407	 * parallel and if we move the inode, it could get skipped. So here we
1408	 * make sure inode is on some writeback list and leave it there unless
1409	 * we have completely cleaned the inode.
1410	 */
1411	if (!(inode->i_state & I_DIRTY_ALL) &&
1412	    (wbc->sync_mode != WB_SYNC_ALL ||
1413	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414		goto out;
1415	inode->i_state |= I_SYNC;
1416	wbc_attach_and_unlock_inode(wbc, inode);
1417
1418	ret = __writeback_single_inode(inode, wbc);
1419
1420	wbc_detach_inode(wbc);
1421
1422	wb = inode_to_wb_and_lock_list(inode);
1423	spin_lock(&inode->i_lock);
1424	/*
1425	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426	 * touch it. See comment above for explanation.
1427	 */
1428	if (!(inode->i_state & I_DIRTY_ALL))
1429		inode_io_list_del_locked(inode, wb);
1430	spin_unlock(&wb->list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431	inode_sync_complete(inode);
1432out:
1433	spin_unlock(&inode->i_lock);
1434	return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438				 struct wb_writeback_work *work)
1439{
1440	long pages;
1441
1442	/*
1443	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445	 * here avoids calling into writeback_inodes_wb() more than once.
1446	 *
1447	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448	 *
1449	 *      wb_writeback()
1450	 *          writeback_sb_inodes()       <== called only once
1451	 *              write_cache_pages()     <== called once for each inode
1452	 *                   (quickly) tag currently dirty pages
1453	 *                   (maybe slowly) sync all tagged pages
1454	 */
1455	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456		pages = LONG_MAX;
1457	else {
1458		pages = min(wb->avg_write_bandwidth / 2,
1459			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460		pages = min(pages, work->nr_pages);
1461		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462				   MIN_WRITEBACK_PAGES);
1463	}
1464
1465	return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
 
 
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478				struct bdi_writeback *wb,
1479				struct wb_writeback_work *work)
1480{
1481	struct writeback_control wbc = {
1482		.sync_mode		= work->sync_mode,
1483		.tagged_writepages	= work->tagged_writepages,
1484		.for_kupdate		= work->for_kupdate,
1485		.for_background		= work->for_background,
1486		.for_sync		= work->for_sync,
1487		.range_cyclic		= work->range_cyclic,
1488		.range_start		= 0,
1489		.range_end		= LLONG_MAX,
1490	};
1491	unsigned long start_time = jiffies;
1492	long write_chunk;
1493	long wrote = 0;  /* count both pages and inodes */
1494
1495	while (!list_empty(&wb->b_io)) {
1496		struct inode *inode = wb_inode(wb->b_io.prev);
1497		struct bdi_writeback *tmp_wb;
1498
1499		if (inode->i_sb != sb) {
1500			if (work->sb) {
1501				/*
1502				 * We only want to write back data for this
1503				 * superblock, move all inodes not belonging
1504				 * to it back onto the dirty list.
1505				 */
1506				redirty_tail(inode, wb);
1507				continue;
1508			}
1509
1510			/*
1511			 * The inode belongs to a different superblock.
1512			 * Bounce back to the caller to unpin this and
1513			 * pin the next superblock.
1514			 */
1515			break;
1516		}
1517
1518		/*
1519		 * Don't bother with new inodes or inodes being freed, first
1520		 * kind does not need periodic writeout yet, and for the latter
1521		 * kind writeout is handled by the freer.
1522		 */
1523		spin_lock(&inode->i_lock);
1524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525			spin_unlock(&inode->i_lock);
1526			redirty_tail(inode, wb);
1527			continue;
1528		}
1529		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530			/*
1531			 * If this inode is locked for writeback and we are not
1532			 * doing writeback-for-data-integrity, move it to
1533			 * b_more_io so that writeback can proceed with the
1534			 * other inodes on s_io.
1535			 *
1536			 * We'll have another go at writing back this inode
1537			 * when we completed a full scan of b_io.
1538			 */
1539			spin_unlock(&inode->i_lock);
1540			requeue_io(inode, wb);
1541			trace_writeback_sb_inodes_requeue(inode);
1542			continue;
1543		}
1544		spin_unlock(&wb->list_lock);
1545
1546		/*
1547		 * We already requeued the inode if it had I_SYNC set and we
1548		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549		 * WB_SYNC_ALL case.
1550		 */
1551		if (inode->i_state & I_SYNC) {
1552			/* Wait for I_SYNC. This function drops i_lock... */
1553			inode_sleep_on_writeback(inode);
1554			/* Inode may be gone, start again */
1555			spin_lock(&wb->list_lock);
1556			continue;
1557		}
1558		inode->i_state |= I_SYNC;
1559		wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561		write_chunk = writeback_chunk_size(wb, work);
1562		wbc.nr_to_write = write_chunk;
1563		wbc.pages_skipped = 0;
1564
1565		/*
1566		 * We use I_SYNC to pin the inode in memory. While it is set
1567		 * evict_inode() will wait so the inode cannot be freed.
1568		 */
1569		__writeback_single_inode(inode, &wbc);
1570
1571		wbc_detach_inode(&wbc);
1572		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573		wrote += write_chunk - wbc.nr_to_write;
1574
1575		if (need_resched()) {
 
1576			/*
1577			 * We're trying to balance between building up a nice
1578			 * long list of IOs to improve our merge rate, and
1579			 * getting those IOs out quickly for anyone throttling
1580			 * in balance_dirty_pages().  cond_resched() doesn't
1581			 * unplug, so get our IOs out the door before we
1582			 * give up the CPU.
1583			 */
1584			blk_flush_plug(current);
1585			cond_resched();
1586		}
1587
1588		/*
1589		 * Requeue @inode if still dirty.  Be careful as @inode may
1590		 * have been switched to another wb in the meantime.
1591		 */
1592		tmp_wb = inode_to_wb_and_lock_list(inode);
1593		spin_lock(&inode->i_lock);
1594		if (!(inode->i_state & I_DIRTY_ALL))
1595			wrote++;
1596		requeue_inode(inode, tmp_wb, &wbc);
1597		inode_sync_complete(inode);
1598		spin_unlock(&inode->i_lock);
1599
1600		if (unlikely(tmp_wb != wb)) {
1601			spin_unlock(&tmp_wb->list_lock);
1602			spin_lock(&wb->list_lock);
1603		}
1604
1605		/*
1606		 * bail out to wb_writeback() often enough to check
1607		 * background threshold and other termination conditions.
1608		 */
1609		if (wrote) {
1610			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611				break;
1612			if (work->nr_pages <= 0)
1613				break;
1614		}
1615	}
1616	return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620				  struct wb_writeback_work *work)
1621{
1622	unsigned long start_time = jiffies;
1623	long wrote = 0;
1624
1625	while (!list_empty(&wb->b_io)) {
1626		struct inode *inode = wb_inode(wb->b_io.prev);
1627		struct super_block *sb = inode->i_sb;
1628
1629		if (!trylock_super(sb)) {
1630			/*
1631			 * trylock_super() may fail consistently due to
1632			 * s_umount being grabbed by someone else. Don't use
1633			 * requeue_io() to avoid busy retrying the inode/sb.
1634			 */
1635			redirty_tail(inode, wb);
1636			continue;
1637		}
1638		wrote += writeback_sb_inodes(sb, wb, work);
1639		up_read(&sb->s_umount);
1640
1641		/* refer to the same tests at the end of writeback_sb_inodes */
1642		if (wrote) {
1643			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644				break;
1645			if (work->nr_pages <= 0)
1646				break;
1647		}
1648	}
1649	/* Leave any unwritten inodes on b_io */
1650	return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654				enum wb_reason reason)
1655{
1656	struct wb_writeback_work work = {
1657		.nr_pages	= nr_pages,
1658		.sync_mode	= WB_SYNC_NONE,
1659		.range_cyclic	= 1,
1660		.reason		= reason,
1661	};
1662	struct blk_plug plug;
1663
1664	blk_start_plug(&plug);
1665	spin_lock(&wb->list_lock);
1666	if (list_empty(&wb->b_io))
1667		queue_io(wb, &work);
1668	__writeback_inodes_wb(wb, &work);
1669	spin_unlock(&wb->list_lock);
1670	blk_finish_plug(&plug);
1671
1672	return nr_pages - work.nr_pages;
1673}
1674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691			 struct wb_writeback_work *work)
1692{
1693	unsigned long wb_start = jiffies;
1694	long nr_pages = work->nr_pages;
1695	unsigned long oldest_jif;
1696	struct inode *inode;
1697	long progress;
1698	struct blk_plug plug;
1699
1700	oldest_jif = jiffies;
1701	work->older_than_this = &oldest_jif;
1702
1703	blk_start_plug(&plug);
1704	spin_lock(&wb->list_lock);
1705	for (;;) {
1706		/*
1707		 * Stop writeback when nr_pages has been consumed
1708		 */
1709		if (work->nr_pages <= 0)
1710			break;
1711
1712		/*
1713		 * Background writeout and kupdate-style writeback may
1714		 * run forever. Stop them if there is other work to do
1715		 * so that e.g. sync can proceed. They'll be restarted
1716		 * after the other works are all done.
1717		 */
1718		if ((work->for_background || work->for_kupdate) &&
1719		    !list_empty(&wb->work_list))
1720			break;
1721
1722		/*
1723		 * For background writeout, stop when we are below the
1724		 * background dirty threshold
1725		 */
1726		if (work->for_background && !wb_over_bg_thresh(wb))
1727			break;
1728
1729		/*
1730		 * Kupdate and background works are special and we want to
1731		 * include all inodes that need writing. Livelock avoidance is
1732		 * handled by these works yielding to any other work so we are
1733		 * safe.
1734		 */
1735		if (work->for_kupdate) {
1736			oldest_jif = jiffies -
1737				msecs_to_jiffies(dirty_expire_interval * 10);
1738		} else if (work->for_background)
1739			oldest_jif = jiffies;
1740
1741		trace_writeback_start(wb, work);
1742		if (list_empty(&wb->b_io))
1743			queue_io(wb, work);
1744		if (work->sb)
1745			progress = writeback_sb_inodes(work->sb, wb, work);
1746		else
1747			progress = __writeback_inodes_wb(wb, work);
1748		trace_writeback_written(wb, work);
1749
1750		wb_update_bandwidth(wb, wb_start);
1751
1752		/*
1753		 * Did we write something? Try for more
1754		 *
1755		 * Dirty inodes are moved to b_io for writeback in batches.
1756		 * The completion of the current batch does not necessarily
1757		 * mean the overall work is done. So we keep looping as long
1758		 * as made some progress on cleaning pages or inodes.
1759		 */
1760		if (progress)
1761			continue;
1762		/*
1763		 * No more inodes for IO, bail
1764		 */
1765		if (list_empty(&wb->b_more_io))
1766			break;
1767		/*
1768		 * Nothing written. Wait for some inode to
1769		 * become available for writeback. Otherwise
1770		 * we'll just busyloop.
1771		 */
1772		trace_writeback_wait(wb, work);
1773		inode = wb_inode(wb->b_more_io.prev);
1774		spin_lock(&inode->i_lock);
1775		spin_unlock(&wb->list_lock);
1776		/* This function drops i_lock... */
1777		inode_sleep_on_writeback(inode);
1778		spin_lock(&wb->list_lock);
1779	}
1780	spin_unlock(&wb->list_lock);
1781	blk_finish_plug(&plug);
1782
1783	return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
 
1790{
1791	struct wb_writeback_work *work = NULL;
1792
1793	spin_lock_bh(&wb->work_lock);
1794	if (!list_empty(&wb->work_list)) {
1795		work = list_entry(wb->work_list.next,
1796				  struct wb_writeback_work, list);
1797		list_del_init(&work->list);
1798	}
1799	spin_unlock_bh(&wb->work_lock);
1800	return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809	return global_node_page_state(NR_FILE_DIRTY) +
1810		global_node_page_state(NR_UNSTABLE_NFS) +
1811		get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816	if (wb_over_bg_thresh(wb)) {
1817
1818		struct wb_writeback_work work = {
1819			.nr_pages	= LONG_MAX,
1820			.sync_mode	= WB_SYNC_NONE,
1821			.for_background	= 1,
1822			.range_cyclic	= 1,
1823			.reason		= WB_REASON_BACKGROUND,
1824		};
1825
1826		return wb_writeback(wb, &work);
1827	}
1828
1829	return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834	unsigned long expired;
1835	long nr_pages;
1836
1837	/*
1838	 * When set to zero, disable periodic writeback
1839	 */
1840	if (!dirty_writeback_interval)
1841		return 0;
1842
1843	expired = wb->last_old_flush +
1844			msecs_to_jiffies(dirty_writeback_interval * 10);
1845	if (time_before(jiffies, expired))
1846		return 0;
1847
1848	wb->last_old_flush = jiffies;
1849	nr_pages = get_nr_dirty_pages();
1850
1851	if (nr_pages) {
1852		struct wb_writeback_work work = {
1853			.nr_pages	= nr_pages,
1854			.sync_mode	= WB_SYNC_NONE,
1855			.for_kupdate	= 1,
1856			.range_cyclic	= 1,
1857			.reason		= WB_REASON_PERIODIC,
1858		};
1859
1860		return wb_writeback(wb, &work);
1861	}
1862
1863	return 0;
1864}
1865
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
 
1871	struct wb_writeback_work *work;
1872	long wrote = 0;
1873
1874	set_bit(WB_writeback_running, &wb->state);
1875	while ((work = get_next_work_item(wb)) != NULL) {
1876		struct wb_completion *done = work->done;
 
 
 
 
 
1877
1878		trace_writeback_exec(wb, work);
1879
1880		wrote += wb_writeback(wb, work);
1881
1882		if (work->auto_free)
 
 
 
 
 
 
1883			kfree(work);
1884		if (done && atomic_dec_and_test(&done->cnt))
1885			wake_up_all(&wb->bdi->wb_waitq);
1886	}
1887
1888	/*
1889	 * Check for periodic writeback, kupdated() style
1890	 */
1891	wrote += wb_check_old_data_flush(wb);
1892	wrote += wb_check_background_flush(wb);
1893	clear_bit(WB_writeback_running, &wb->state);
1894
1895	return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905						struct bdi_writeback, dwork);
1906	long pages_written;
1907
1908	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909	current->flags |= PF_SWAPWRITE;
 
 
1910
1911	if (likely(!current_is_workqueue_rescuer() ||
1912		   !test_bit(WB_registered, &wb->state))) {
1913		/*
1914		 * The normal path.  Keep writing back @wb until its
1915		 * work_list is empty.  Note that this path is also taken
1916		 * if @wb is shutting down even when we're running off the
1917		 * rescuer as work_list needs to be drained.
1918		 */
1919		do {
1920			pages_written = wb_do_writeback(wb);
1921			trace_writeback_pages_written(pages_written);
1922		} while (!list_empty(&wb->work_list));
1923	} else {
1924		/*
1925		 * bdi_wq can't get enough workers and we're running off
1926		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927		 * enough for efficient IO.
1928		 */
1929		pages_written = writeback_inodes_wb(wb, 1024,
1930						    WB_REASON_FORKER_THREAD);
 
 
1931		trace_writeback_pages_written(pages_written);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1932	}
1933
1934	if (!list_empty(&wb->work_list))
1935		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937		wb_wakeup_delayed(wb);
1938
1939	current->flags &= ~PF_SWAPWRITE;
 
1940}
1941
 
1942/*
1943 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1947{
1948	struct backing_dev_info *bdi;
1949
1950	/*
1951	 * If we are expecting writeback progress we must submit plugged IO.
1952	 */
1953	if (blk_needs_flush_plug(current))
1954		blk_schedule_flush_plug(current);
1955
1956	if (!nr_pages)
1957		nr_pages = get_nr_dirty_pages();
1958
1959	rcu_read_lock();
1960	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961		struct bdi_writeback *wb;
1962
1963		if (!bdi_has_dirty_io(bdi))
1964			continue;
1965
1966		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968					   false, reason);
1969	}
1970	rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically.  We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system.  So instead we define a separate delayed work
1979 * function which gets called much more rarely.  (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary.  But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993	struct backing_dev_info *bdi;
1994
1995	rcu_read_lock();
1996	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997		struct bdi_writeback *wb;
1998
1999		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000			if (!list_empty(&wb->b_dirty_time))
2001				wb_wakeup(wb);
2002	}
2003	rcu_read_unlock();
2004	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010	return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017	int ret;
2018
2019	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020	if (ret == 0 && write)
2021		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022	return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028		struct dentry *dentry;
2029		const char *name = "?";
2030
2031		dentry = d_find_alias(inode);
2032		if (dentry) {
2033			spin_lock(&dentry->d_lock);
2034			name = (const char *) dentry->d_name.name;
2035		}
2036		printk(KERN_DEBUG
2037		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038		       current->comm, task_pid_nr(current), inode->i_ino,
2039		       name, inode->i_sb->s_id);
2040		if (dentry) {
2041			spin_unlock(&dentry->d_lock);
2042			dput(dentry);
2043		}
2044	}
2045}
2046
2047/**
2048 *	__mark_inode_dirty -	internal function
2049 *	@inode: inode to mark
2050 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 *  	mark_inode_dirty_sync.
2053 *
2054 * Put the inode on the super block's dirty list.
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074	struct super_block *sb = inode->i_sb;
2075	int dirtytime;
2076
2077	trace_writeback_mark_inode_dirty(inode, flags);
2078
2079	/*
2080	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081	 * dirty the inode itself
2082	 */
2083	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084		trace_writeback_dirty_inode_start(inode, flags);
2085
2086		if (sb->s_op->dirty_inode)
2087			sb->s_op->dirty_inode(inode, flags);
2088
2089		trace_writeback_dirty_inode(inode, flags);
2090	}
2091	if (flags & I_DIRTY_INODE)
2092		flags &= ~I_DIRTY_TIME;
2093	dirtytime = flags & I_DIRTY_TIME;
2094
2095	/*
2096	 * Paired with smp_mb() in __writeback_single_inode() for the
2097	 * following lockless i_state test.  See there for details.
2098	 */
2099	smp_mb();
2100
2101	if (((inode->i_state & flags) == flags) ||
2102	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103		return;
2104
2105	if (unlikely(block_dump))
2106		block_dump___mark_inode_dirty(inode);
2107
2108	spin_lock(&inode->i_lock);
2109	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110		goto out_unlock_inode;
2111	if ((inode->i_state & flags) != flags) {
2112		const int was_dirty = inode->i_state & I_DIRTY;
2113
2114		inode_attach_wb(inode, NULL);
2115
2116		if (flags & I_DIRTY_INODE)
2117			inode->i_state &= ~I_DIRTY_TIME;
2118		inode->i_state |= flags;
2119
2120		/*
2121		 * If the inode is being synced, just update its dirty state.
2122		 * The unlocker will place the inode on the appropriate
2123		 * superblock list, based upon its state.
2124		 */
2125		if (inode->i_state & I_SYNC)
2126			goto out_unlock_inode;
2127
2128		/*
2129		 * Only add valid (hashed) inodes to the superblock's
2130		 * dirty list.  Add blockdev inodes as well.
2131		 */
2132		if (!S_ISBLK(inode->i_mode)) {
2133			if (inode_unhashed(inode))
2134				goto out_unlock_inode;
2135		}
2136		if (inode->i_state & I_FREEING)
2137			goto out_unlock_inode;
2138
2139		/*
2140		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141		 * reposition it (that would break b_dirty time-ordering).
2142		 */
2143		if (!was_dirty) {
2144			struct bdi_writeback *wb;
2145			struct list_head *dirty_list;
2146			bool wakeup_bdi = false;
 
2147
2148			wb = locked_inode_to_wb_and_lock_list(inode);
 
 
2149
2150			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151			     !test_bit(WB_registered, &wb->state),
2152			     "bdi-%s not registered\n", wb->bdi->name);
 
 
 
 
 
 
2153
 
 
2154			inode->dirtied_when = jiffies;
2155			if (dirtytime)
2156				inode->dirtied_time_when = jiffies;
2157
2158			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159				dirty_list = &wb->b_dirty;
2160			else
2161				dirty_list = &wb->b_dirty_time;
2162
2163			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164							       dirty_list);
2165
2166			spin_unlock(&wb->list_lock);
2167			trace_writeback_dirty_inode_enqueue(inode);
2168
2169			/*
2170			 * If this is the first dirty inode for this bdi,
2171			 * we have to wake-up the corresponding bdi thread
2172			 * to make sure background write-back happens
2173			 * later.
2174			 */
2175			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2176				wb_wakeup_delayed(wb);
2177			return;
2178		}
2179	}
2180out_unlock_inode:
2181	spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
 
 
 
 
 
 
 
 
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198	LIST_HEAD(sync_list);
2199
2200	/*
2201	 * We need to be protected against the filesystem going from
2202	 * r/o to r/w or vice versa.
2203	 */
2204	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206	mutex_lock(&sb->s_sync_lock);
2207
2208	/*
2209	 * Splice the writeback list onto a temporary list to avoid waiting on
2210	 * inodes that have started writeback after this point.
2211	 *
2212	 * Use rcu_read_lock() to keep the inodes around until we have a
2213	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214	 * the local list because inodes can be dropped from either by writeback
2215	 * completion.
2216	 */
2217	rcu_read_lock();
2218	spin_lock_irq(&sb->s_inode_wblist_lock);
2219	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221	/*
2222	 * Data integrity sync. Must wait for all pages under writeback, because
2223	 * there may have been pages dirtied before our sync call, but which had
2224	 * writeout started before we write it out.  In which case, the inode
2225	 * may not be on the dirty list, but we still have to wait for that
2226	 * writeout.
2227	 */
2228	while (!list_empty(&sync_list)) {
2229		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230						       i_wb_list);
2231		struct address_space *mapping = inode->i_mapping;
2232
2233		/*
2234		 * Move each inode back to the wb list before we drop the lock
2235		 * to preserve consistency between i_wb_list and the mapping
2236		 * writeback tag. Writeback completion is responsible to remove
2237		 * the inode from either list once the writeback tag is cleared.
2238		 */
2239		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241		/*
2242		 * The mapping can appear untagged while still on-list since we
2243		 * do not have the mapping lock. Skip it here, wb completion
2244		 * will remove it.
2245		 */
2246		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247			continue;
2248
2249		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251		spin_lock(&inode->i_lock);
2252		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
 
2253			spin_unlock(&inode->i_lock);
2254
2255			spin_lock_irq(&sb->s_inode_wblist_lock);
2256			continue;
2257		}
2258		__iget(inode);
2259		spin_unlock(&inode->i_lock);
2260		rcu_read_unlock();
2261
2262		/*
2263		 * We keep the error status of individual mapping so that
2264		 * applications can catch the writeback error using fsync(2).
2265		 * See filemap_fdatawait_keep_errors() for details.
 
 
 
2266		 */
2267		filemap_fdatawait_keep_errors(mapping);
 
2268
2269		cond_resched();
2270
2271		iput(inode);
2272
2273		rcu_read_lock();
2274		spin_lock_irq(&sb->s_inode_wblist_lock);
2275	}
2276	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277	rcu_read_unlock();
2278	mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282				     enum wb_reason reason, bool skip_if_busy)
2283{
2284	DEFINE_WB_COMPLETION_ONSTACK(done);
2285	struct wb_writeback_work work = {
2286		.sb			= sb,
2287		.sync_mode		= WB_SYNC_NONE,
2288		.tagged_writepages	= 1,
2289		.done			= &done,
2290		.nr_pages		= nr,
2291		.reason			= reason,
2292	};
2293	struct backing_dev_info *bdi = sb->s_bdi;
2294
2295	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296		return;
2297	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300	wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314			    unsigned long nr,
2315			    enum wb_reason reason)
2316{
2317	__writeback_inodes_sb_nr(sb, nr, reason, false);
 
 
 
 
 
 
 
 
 
 
 
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346				   enum wb_reason reason)
2347{
2348	if (!down_read_trylock(&sb->s_umount))
2349		return false;
2350
2351	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352	up_read(&sb->s_umount);
2353	return true;
 
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
 
2366{
2367	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
 
 
 
 
 
 
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb	-	sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380	DEFINE_WB_COMPLETION_ONSTACK(done);
2381	struct wb_writeback_work work = {
2382		.sb		= sb,
2383		.sync_mode	= WB_SYNC_ALL,
2384		.nr_pages	= LONG_MAX,
2385		.range_cyclic	= 0,
2386		.done		= &done,
2387		.reason		= WB_REASON_SYNC,
2388		.for_sync	= 1,
2389	};
2390	struct backing_dev_info *bdi = sb->s_bdi;
2391
2392	/*
2393	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395	 * bdi_has_dirty() need to be written out too.
2396	 */
2397	if (bdi == &noop_backing_dev_info)
2398		return;
2399	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
2401	bdi_split_work_to_wbs(bdi, &work, false);
2402	wb_wait_for_completion(bdi, &done);
2403
2404	wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now	-	write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
 
 
2420	struct writeback_control wbc = {
2421		.nr_to_write = LONG_MAX,
2422		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423		.range_start = 0,
2424		.range_end = LLONG_MAX,
2425	};
2426
2427	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428		wbc.nr_to_write = 0;
2429
2430	might_sleep();
2431	return writeback_single_inode(inode, &wbc);
 
 
 
 
 
 
 
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk.  It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448	return writeback_single_inode(inode, wbc);
 
 
 
 
 
 
 
 
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463	struct writeback_control wbc = {
2464		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465		.nr_to_write = 0, /* metadata-only */
2466	};
2467
2468	return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
v3.1
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
 
  23#include <linux/kthread.h>
  24#include <linux/freezer.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/buffer_head.h>
  29#include <linux/tracepoint.h>
 
 
  30#include "internal.h"
  31
  32/*
 
 
 
 
 
 
 
 
 
  33 * Passed into wb_writeback(), essentially a subset of writeback_control
  34 */
  35struct wb_writeback_work {
  36	long nr_pages;
  37	struct super_block *sb;
  38	unsigned long *older_than_this;
  39	enum writeback_sync_modes sync_mode;
  40	unsigned int tagged_writepages:1;
  41	unsigned int for_kupdate:1;
  42	unsigned int range_cyclic:1;
  43	unsigned int for_background:1;
 
 
 
  44
  45	struct list_head list;		/* pending work list */
  46	struct completion *done;	/* set if the caller waits */
  47};
  48
  49/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50 * Include the creation of the trace points after defining the
  51 * wb_writeback_work structure so that the definition remains local to this
  52 * file.
  53 */
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/writeback.h>
  56
  57/*
  58 * We don't actually have pdflush, but this one is exported though /proc...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59 */
  60int nr_pdflush_threads;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62/**
  63 * writeback_in_progress - determine whether there is writeback in progress
  64 * @bdi: the device's backing_dev_info structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65 *
  66 * Determine whether there is writeback waiting to be handled against a
  67 * backing device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68 */
  69int writeback_in_progress(struct backing_dev_info *bdi)
 
  70{
  71	return test_bit(BDI_writeback_running, &bdi->state);
 
  72}
  73
  74static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
 
 
 
 
 
 
 
 
  75{
  76	struct super_block *sb = inode->i_sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78	if (strcmp(sb->s_type->name, "bdev") == 0)
  79		return inode->i_mapping->backing_dev_info;
 
 
  80
  81	return sb->s_bdi;
 
 
  82}
  83
  84static inline struct inode *wb_inode(struct list_head *head)
 
 
 
 
 
 
 
 
  85{
  86	return list_entry(head, struct inode, i_wb_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87}
  88
  89/* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
  90static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
 
 
 
 
 
 
 
 
 
 
  91{
  92	if (bdi->wb.task) {
  93		wake_up_process(bdi->wb.task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95		/*
  96		 * The bdi thread isn't there, wake up the forker thread which
  97		 * will create and run it.
 
  98		 */
  99		wake_up_process(default_backing_dev_info.wb.task);
 
 
 
 
 
 100	}
 
 
 
 
 101}
 102
 103static void bdi_queue_work(struct backing_dev_info *bdi,
 104			   struct wb_writeback_work *work)
 
 
 
 
 
 
 
 
 
 105{
 106	trace_writeback_queue(bdi, work);
 
 
 
 
 107
 108	spin_lock_bh(&bdi->wb_lock);
 109	list_add_tail(&work->list, &bdi->work_list);
 110	if (!bdi->wb.task)
 111		trace_writeback_nothread(bdi, work);
 112	bdi_wakeup_flusher(bdi);
 113	spin_unlock_bh(&bdi->wb_lock);
 114}
 
 115
 116static void
 117__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
 118		      bool range_cyclic)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119{
 120	struct wb_writeback_work *work;
 121
 
 
 
 122	/*
 123	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 124	 * wakeup the thread for old dirty data writeback
 125	 */
 126	work = kzalloc(sizeof(*work), GFP_ATOMIC);
 
 127	if (!work) {
 128		if (bdi->wb.task) {
 129			trace_writeback_nowork(bdi);
 130			wake_up_process(bdi->wb.task);
 131		}
 132		return;
 133	}
 134
 135	work->sync_mode	= WB_SYNC_NONE;
 136	work->nr_pages	= nr_pages;
 137	work->range_cyclic = range_cyclic;
 
 
 138
 139	bdi_queue_work(bdi, work);
 140}
 141
 142/**
 143 * bdi_start_writeback - start writeback
 144 * @bdi: the backing device to write from
 145 * @nr_pages: the number of pages to write
 146 *
 147 * Description:
 148 *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
 149 *   started when this function returns, we make no guarantees on
 150 *   completion. Caller need not hold sb s_umount semaphore.
 151 *
 152 */
 153void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
 154{
 155	__bdi_start_writeback(bdi, nr_pages, true);
 156}
 157
 158/**
 159 * bdi_start_background_writeback - start background writeback
 160 * @bdi: the backing device to write from
 161 *
 162 * Description:
 163 *   This makes sure WB_SYNC_NONE background writeback happens. When
 164 *   this function returns, it is only guaranteed that for given BDI
 165 *   some IO is happening if we are over background dirty threshold.
 166 *   Caller need not hold sb s_umount semaphore.
 167 */
 168void bdi_start_background_writeback(struct backing_dev_info *bdi)
 169{
 170	/*
 171	 * We just wake up the flusher thread. It will perform background
 172	 * writeback as soon as there is no other work to do.
 173	 */
 174	trace_writeback_wake_background(bdi);
 175	spin_lock_bh(&bdi->wb_lock);
 176	bdi_wakeup_flusher(bdi);
 177	spin_unlock_bh(&bdi->wb_lock);
 178}
 179
 180/*
 181 * Remove the inode from the writeback list it is on.
 182 */
 183void inode_wb_list_del(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 184{
 185	struct backing_dev_info *bdi = inode_to_bdi(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186
 187	spin_lock(&bdi->wb.list_lock);
 188	list_del_init(&inode->i_wb_list);
 189	spin_unlock(&bdi->wb.list_lock);
 
 
 
 
 
 190}
 191
 192/*
 193 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 194 * furthest end of its superblock's dirty-inode list.
 195 *
 196 * Before stamping the inode's ->dirtied_when, we check to see whether it is
 197 * already the most-recently-dirtied inode on the b_dirty list.  If that is
 198 * the case then the inode must have been redirtied while it was being written
 199 * out and we don't reset its dirtied_when.
 200 */
 201static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
 202{
 203	assert_spin_locked(&wb->list_lock);
 204	if (!list_empty(&wb->b_dirty)) {
 205		struct inode *tail;
 206
 207		tail = wb_inode(wb->b_dirty.next);
 208		if (time_before(inode->dirtied_when, tail->dirtied_when))
 209			inode->dirtied_when = jiffies;
 210	}
 211	list_move(&inode->i_wb_list, &wb->b_dirty);
 212}
 213
 214/*
 215 * requeue inode for re-scanning after bdi->b_io list is exhausted.
 216 */
 217static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
 218{
 219	assert_spin_locked(&wb->list_lock);
 220	list_move(&inode->i_wb_list, &wb->b_more_io);
 221}
 222
 223static void inode_sync_complete(struct inode *inode)
 224{
 225	/*
 226	 * Prevent speculative execution through
 227	 * spin_unlock(&wb->list_lock);
 228	 */
 229
 230	smp_mb();
 231	wake_up_bit(&inode->i_state, __I_SYNC);
 232}
 233
 234static bool inode_dirtied_after(struct inode *inode, unsigned long t)
 235{
 236	bool ret = time_after(inode->dirtied_when, t);
 237#ifndef CONFIG_64BIT
 238	/*
 239	 * For inodes being constantly redirtied, dirtied_when can get stuck.
 240	 * It _appears_ to be in the future, but is actually in distant past.
 241	 * This test is necessary to prevent such wrapped-around relative times
 242	 * from permanently stopping the whole bdi writeback.
 243	 */
 244	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
 245#endif
 246	return ret;
 247}
 248
 
 
 249/*
 250 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
 
 251 */
 252static int move_expired_inodes(struct list_head *delaying_queue,
 253			       struct list_head *dispatch_queue,
 254			       unsigned long *older_than_this)
 
 255{
 
 
 256	LIST_HEAD(tmp);
 257	struct list_head *pos, *node;
 258	struct super_block *sb = NULL;
 259	struct inode *inode;
 260	int do_sb_sort = 0;
 261	int moved = 0;
 262
 
 
 
 
 
 
 263	while (!list_empty(delaying_queue)) {
 264		inode = wb_inode(delaying_queue->prev);
 265		if (older_than_this &&
 266		    inode_dirtied_after(inode, *older_than_this))
 267			break;
 
 
 
 
 
 
 268		if (sb && sb != inode->i_sb)
 269			do_sb_sort = 1;
 270		sb = inode->i_sb;
 271		list_move(&inode->i_wb_list, &tmp);
 272		moved++;
 273	}
 274
 275	/* just one sb in list, splice to dispatch_queue and we're done */
 276	if (!do_sb_sort) {
 277		list_splice(&tmp, dispatch_queue);
 278		goto out;
 279	}
 280
 281	/* Move inodes from one superblock together */
 282	while (!list_empty(&tmp)) {
 283		sb = wb_inode(tmp.prev)->i_sb;
 284		list_for_each_prev_safe(pos, node, &tmp) {
 285			inode = wb_inode(pos);
 286			if (inode->i_sb == sb)
 287				list_move(&inode->i_wb_list, dispatch_queue);
 288		}
 289	}
 290out:
 291	return moved;
 292}
 293
 294/*
 295 * Queue all expired dirty inodes for io, eldest first.
 296 * Before
 297 *         newly dirtied     b_dirty    b_io    b_more_io
 298 *         =============>    gf         edc     BA
 299 * After
 300 *         newly dirtied     b_dirty    b_io    b_more_io
 301 *         =============>    g          fBAedc
 302 *                                           |
 303 *                                           +--> dequeue for IO
 304 */
 305static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
 306{
 307	int moved;
 
 308	assert_spin_locked(&wb->list_lock);
 309	list_splice_init(&wb->b_more_io, &wb->b_io);
 310	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
 311	trace_writeback_queue_io(wb, older_than_this, moved);
 
 
 
 
 312}
 313
 314static int write_inode(struct inode *inode, struct writeback_control *wbc)
 315{
 316	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
 317		return inode->i_sb->s_op->write_inode(inode, wbc);
 
 
 
 
 
 
 318	return 0;
 319}
 320
 321/*
 322 * Wait for writeback on an inode to complete.
 
 323 */
 324static void inode_wait_for_writeback(struct inode *inode,
 325				     struct bdi_writeback *wb)
 
 326{
 327	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
 328	wait_queue_head_t *wqh;
 329
 330	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
 331	while (inode->i_state & I_SYNC) {
 332		spin_unlock(&inode->i_lock);
 333		spin_unlock(&wb->list_lock);
 334		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
 335		spin_lock(&wb->list_lock);
 336		spin_lock(&inode->i_lock);
 337	}
 338}
 339
 340/*
 341 * Write out an inode's dirty pages.  Called under wb->list_lock and
 342 * inode->i_lock.  Either the caller has an active reference on the inode or
 343 * the inode has I_WILL_FREE set.
 344 *
 345 * If `wait' is set, wait on the writeout.
 346 *
 347 * The whole writeout design is quite complex and fragile.  We want to avoid
 348 * starvation of particular inodes when others are being redirtied, prevent
 349 * livelocks, etc.
 350 */
 351static int
 352writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
 353		       struct writeback_control *wbc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354{
 355	struct address_space *mapping = inode->i_mapping;
 356	long nr_to_write = wbc->nr_to_write;
 357	unsigned dirty;
 358	int ret;
 359
 360	assert_spin_locked(&wb->list_lock);
 361	assert_spin_locked(&inode->i_lock);
 
 
 
 
 
 
 362
 363	if (!atomic_read(&inode->i_count))
 364		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
 365	else
 366		WARN_ON(inode->i_state & I_WILL_FREE);
 
 
 
 
 367
 368	if (inode->i_state & I_SYNC) {
 369		/*
 370		 * If this inode is locked for writeback and we are not doing
 371		 * writeback-for-data-integrity, move it to b_more_io so that
 372		 * writeback can proceed with the other inodes on s_io.
 373		 *
 374		 * We'll have another go at writing back this inode when we
 375		 * completed a full scan of b_io.
 376		 */
 377		if (wbc->sync_mode != WB_SYNC_ALL) {
 
 378			requeue_io(inode, wb);
 379			trace_writeback_single_inode_requeue(inode, wbc,
 380							     nr_to_write);
 381			return 0;
 
 
 
 
 
 
 382		}
 383
 384		/*
 385		 * It's a data-integrity sync.  We must wait.
 
 
 386		 */
 387		inode_wait_for_writeback(inode, wb);
 
 
 
 
 
 
 388	}
 
 389
 390	BUG_ON(inode->i_state & I_SYNC);
 
 
 
 
 
 
 
 
 
 
 
 391
 392	/* Set I_SYNC, reset I_DIRTY_PAGES */
 393	inode->i_state |= I_SYNC;
 394	inode->i_state &= ~I_DIRTY_PAGES;
 395	spin_unlock(&inode->i_lock);
 396	spin_unlock(&wb->list_lock);
 397
 398	ret = do_writepages(mapping, wbc);
 399
 400	/*
 401	 * Make sure to wait on the data before writing out the metadata.
 402	 * This is important for filesystems that modify metadata on data
 403	 * I/O completion.
 
 
 404	 */
 405	if (wbc->sync_mode == WB_SYNC_ALL) {
 406		int err = filemap_fdatawait(mapping);
 407		if (ret == 0)
 408			ret = err;
 409	}
 410
 411	/*
 412	 * Some filesystems may redirty the inode during the writeback
 413	 * due to delalloc, clear dirty metadata flags right before
 414	 * write_inode()
 415	 */
 416	spin_lock(&inode->i_lock);
 
 417	dirty = inode->i_state & I_DIRTY;
 418	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419	spin_unlock(&inode->i_lock);
 
 
 
 420	/* Don't write the inode if only I_DIRTY_PAGES was set */
 421	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
 422		int err = write_inode(inode, wbc);
 423		if (ret == 0)
 424			ret = err;
 425	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426
 427	spin_lock(&wb->list_lock);
 428	spin_lock(&inode->i_lock);
 429	inode->i_state &= ~I_SYNC;
 430	if (!(inode->i_state & I_FREEING)) {
 
 
 
 
 
 
 431		/*
 432		 * Sync livelock prevention. Each inode is tagged and synced in
 433		 * one shot. If still dirty, it will be redirty_tail()'ed below.
 434		 * Update the dirty time to prevent enqueue and sync it again.
 435		 */
 436		if ((inode->i_state & I_DIRTY) &&
 437		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
 438			inode->dirtied_when = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
 441			/*
 442			 * We didn't write back all the pages.  nfs_writepages()
 443			 * sometimes bales out without doing anything.
 444			 */
 445			inode->i_state |= I_DIRTY_PAGES;
 446			if (wbc->nr_to_write <= 0) {
 447				/*
 448				 * slice used up: queue for next turn
 449				 */
 450				requeue_io(inode, wb);
 451			} else {
 452				/*
 453				 * Writeback blocked by something other than
 454				 * congestion. Delay the inode for some time to
 455				 * avoid spinning on the CPU (100% iowait)
 456				 * retrying writeback of the dirty page/inode
 457				 * that cannot be performed immediately.
 458				 */
 459				redirty_tail(inode, wb);
 460			}
 461		} else if (inode->i_state & I_DIRTY) {
 462			/*
 463			 * Filesystems can dirty the inode during writeback
 464			 * operations, such as delayed allocation during
 465			 * submission or metadata updates after data IO
 466			 * completion.
 467			 */
 468			redirty_tail(inode, wb);
 469		} else {
 470			/*
 471			 * The inode is clean.  At this point we either have
 472			 * a reference to the inode or it's on it's way out.
 473			 * No need to add it back to the LRU.
 474			 */
 475			list_del_init(&inode->i_wb_list);
 476		}
 477	}
 478	inode_sync_complete(inode);
 479	trace_writeback_single_inode(inode, wbc, nr_to_write);
 
 480	return ret;
 481}
 482
 483static long writeback_chunk_size(struct backing_dev_info *bdi,
 484				 struct wb_writeback_work *work)
 485{
 486	long pages;
 487
 488	/*
 489	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
 490	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
 491	 * here avoids calling into writeback_inodes_wb() more than once.
 492	 *
 493	 * The intended call sequence for WB_SYNC_ALL writeback is:
 494	 *
 495	 *      wb_writeback()
 496	 *          writeback_sb_inodes()       <== called only once
 497	 *              write_cache_pages()     <== called once for each inode
 498	 *                   (quickly) tag currently dirty pages
 499	 *                   (maybe slowly) sync all tagged pages
 500	 */
 501	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
 502		pages = LONG_MAX;
 503	else {
 504		pages = min(bdi->avg_write_bandwidth / 2,
 505			    global_dirty_limit / DIRTY_SCOPE);
 506		pages = min(pages, work->nr_pages);
 507		pages = round_down(pages + MIN_WRITEBACK_PAGES,
 508				   MIN_WRITEBACK_PAGES);
 509	}
 510
 511	return pages;
 512}
 513
 514/*
 515 * Write a portion of b_io inodes which belong to @sb.
 516 *
 517 * If @only_this_sb is true, then find and write all such
 518 * inodes. Otherwise write only ones which go sequentially
 519 * in reverse order.
 520 *
 521 * Return the number of pages and/or inodes written.
 
 
 522 */
 523static long writeback_sb_inodes(struct super_block *sb,
 524				struct bdi_writeback *wb,
 525				struct wb_writeback_work *work)
 526{
 527	struct writeback_control wbc = {
 528		.sync_mode		= work->sync_mode,
 529		.tagged_writepages	= work->tagged_writepages,
 530		.for_kupdate		= work->for_kupdate,
 531		.for_background		= work->for_background,
 
 532		.range_cyclic		= work->range_cyclic,
 533		.range_start		= 0,
 534		.range_end		= LLONG_MAX,
 535	};
 536	unsigned long start_time = jiffies;
 537	long write_chunk;
 538	long wrote = 0;  /* count both pages and inodes */
 539
 540	while (!list_empty(&wb->b_io)) {
 541		struct inode *inode = wb_inode(wb->b_io.prev);
 
 542
 543		if (inode->i_sb != sb) {
 544			if (work->sb) {
 545				/*
 546				 * We only want to write back data for this
 547				 * superblock, move all inodes not belonging
 548				 * to it back onto the dirty list.
 549				 */
 550				redirty_tail(inode, wb);
 551				continue;
 552			}
 553
 554			/*
 555			 * The inode belongs to a different superblock.
 556			 * Bounce back to the caller to unpin this and
 557			 * pin the next superblock.
 558			 */
 559			break;
 560		}
 561
 562		/*
 563		 * Don't bother with new inodes or inodes beeing freed, first
 564		 * kind does not need peridic writeout yet, and for the latter
 565		 * kind writeout is handled by the freer.
 566		 */
 567		spin_lock(&inode->i_lock);
 568		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 569			spin_unlock(&inode->i_lock);
 570			redirty_tail(inode, wb);
 571			continue;
 572		}
 573		__iget(inode);
 574		write_chunk = writeback_chunk_size(wb->bdi, work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575		wbc.nr_to_write = write_chunk;
 576		wbc.pages_skipped = 0;
 577
 578		writeback_single_inode(inode, wb, &wbc);
 
 
 
 
 579
 
 580		work->nr_pages -= write_chunk - wbc.nr_to_write;
 581		wrote += write_chunk - wbc.nr_to_write;
 582		if (!(inode->i_state & I_DIRTY))
 583			wrote++;
 584		if (wbc.pages_skipped) {
 585			/*
 586			 * writeback is not making progress due to locked
 587			 * buffers.  Skip this inode for now.
 
 
 
 
 588			 */
 589			redirty_tail(inode, wb);
 
 590		}
 
 
 
 
 
 
 
 
 
 
 
 591		spin_unlock(&inode->i_lock);
 592		spin_unlock(&wb->list_lock);
 593		iput(inode);
 594		cond_resched();
 595		spin_lock(&wb->list_lock);
 
 
 596		/*
 597		 * bail out to wb_writeback() often enough to check
 598		 * background threshold and other termination conditions.
 599		 */
 600		if (wrote) {
 601			if (time_is_before_jiffies(start_time + HZ / 10UL))
 602				break;
 603			if (work->nr_pages <= 0)
 604				break;
 605		}
 606	}
 607	return wrote;
 608}
 609
 610static long __writeback_inodes_wb(struct bdi_writeback *wb,
 611				  struct wb_writeback_work *work)
 612{
 613	unsigned long start_time = jiffies;
 614	long wrote = 0;
 615
 616	while (!list_empty(&wb->b_io)) {
 617		struct inode *inode = wb_inode(wb->b_io.prev);
 618		struct super_block *sb = inode->i_sb;
 619
 620		if (!grab_super_passive(sb)) {
 621			/*
 622			 * grab_super_passive() may fail consistently due to
 623			 * s_umount being grabbed by someone else. Don't use
 624			 * requeue_io() to avoid busy retrying the inode/sb.
 625			 */
 626			redirty_tail(inode, wb);
 627			continue;
 628		}
 629		wrote += writeback_sb_inodes(sb, wb, work);
 630		drop_super(sb);
 631
 632		/* refer to the same tests at the end of writeback_sb_inodes */
 633		if (wrote) {
 634			if (time_is_before_jiffies(start_time + HZ / 10UL))
 635				break;
 636			if (work->nr_pages <= 0)
 637				break;
 638		}
 639	}
 640	/* Leave any unwritten inodes on b_io */
 641	return wrote;
 642}
 643
 644long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages)
 
 645{
 646	struct wb_writeback_work work = {
 647		.nr_pages	= nr_pages,
 648		.sync_mode	= WB_SYNC_NONE,
 649		.range_cyclic	= 1,
 
 650	};
 
 651
 
 652	spin_lock(&wb->list_lock);
 653	if (list_empty(&wb->b_io))
 654		queue_io(wb, NULL);
 655	__writeback_inodes_wb(wb, &work);
 656	spin_unlock(&wb->list_lock);
 
 657
 658	return nr_pages - work.nr_pages;
 659}
 660
 661static inline bool over_bground_thresh(void)
 662{
 663	unsigned long background_thresh, dirty_thresh;
 664
 665	global_dirty_limits(&background_thresh, &dirty_thresh);
 666
 667	return (global_page_state(NR_FILE_DIRTY) +
 668		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
 669}
 670
 671/*
 672 * Called under wb->list_lock. If there are multiple wb per bdi,
 673 * only the flusher working on the first wb should do it.
 674 */
 675static void wb_update_bandwidth(struct bdi_writeback *wb,
 676				unsigned long start_time)
 677{
 678	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, start_time);
 679}
 680
 681/*
 682 * Explicit flushing or periodic writeback of "old" data.
 683 *
 684 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 685 * dirtying-time in the inode's address_space.  So this periodic writeback code
 686 * just walks the superblock inode list, writing back any inodes which are
 687 * older than a specific point in time.
 688 *
 689 * Try to run once per dirty_writeback_interval.  But if a writeback event
 690 * takes longer than a dirty_writeback_interval interval, then leave a
 691 * one-second gap.
 692 *
 693 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 694 * all dirty pages if they are all attached to "old" mappings.
 695 */
 696static long wb_writeback(struct bdi_writeback *wb,
 697			 struct wb_writeback_work *work)
 698{
 699	unsigned long wb_start = jiffies;
 700	long nr_pages = work->nr_pages;
 701	unsigned long oldest_jif;
 702	struct inode *inode;
 703	long progress;
 
 704
 705	oldest_jif = jiffies;
 706	work->older_than_this = &oldest_jif;
 707
 
 708	spin_lock(&wb->list_lock);
 709	for (;;) {
 710		/*
 711		 * Stop writeback when nr_pages has been consumed
 712		 */
 713		if (work->nr_pages <= 0)
 714			break;
 715
 716		/*
 717		 * Background writeout and kupdate-style writeback may
 718		 * run forever. Stop them if there is other work to do
 719		 * so that e.g. sync can proceed. They'll be restarted
 720		 * after the other works are all done.
 721		 */
 722		if ((work->for_background || work->for_kupdate) &&
 723		    !list_empty(&wb->bdi->work_list))
 724			break;
 725
 726		/*
 727		 * For background writeout, stop when we are below the
 728		 * background dirty threshold
 729		 */
 730		if (work->for_background && !over_bground_thresh())
 731			break;
 732
 
 
 
 
 
 
 733		if (work->for_kupdate) {
 734			oldest_jif = jiffies -
 735				msecs_to_jiffies(dirty_expire_interval * 10);
 736			work->older_than_this = &oldest_jif;
 737		}
 738
 739		trace_writeback_start(wb->bdi, work);
 740		if (list_empty(&wb->b_io))
 741			queue_io(wb, work->older_than_this);
 742		if (work->sb)
 743			progress = writeback_sb_inodes(work->sb, wb, work);
 744		else
 745			progress = __writeback_inodes_wb(wb, work);
 746		trace_writeback_written(wb->bdi, work);
 747
 748		wb_update_bandwidth(wb, wb_start);
 749
 750		/*
 751		 * Did we write something? Try for more
 752		 *
 753		 * Dirty inodes are moved to b_io for writeback in batches.
 754		 * The completion of the current batch does not necessarily
 755		 * mean the overall work is done. So we keep looping as long
 756		 * as made some progress on cleaning pages or inodes.
 757		 */
 758		if (progress)
 759			continue;
 760		/*
 761		 * No more inodes for IO, bail
 762		 */
 763		if (list_empty(&wb->b_more_io))
 764			break;
 765		/*
 766		 * Nothing written. Wait for some inode to
 767		 * become available for writeback. Otherwise
 768		 * we'll just busyloop.
 769		 */
 770		if (!list_empty(&wb->b_more_io))  {
 771			trace_writeback_wait(wb->bdi, work);
 772			inode = wb_inode(wb->b_more_io.prev);
 773			spin_lock(&inode->i_lock);
 774			inode_wait_for_writeback(inode, wb);
 775			spin_unlock(&inode->i_lock);
 776		}
 777	}
 778	spin_unlock(&wb->list_lock);
 
 779
 780	return nr_pages - work->nr_pages;
 781}
 782
 783/*
 784 * Return the next wb_writeback_work struct that hasn't been processed yet.
 785 */
 786static struct wb_writeback_work *
 787get_next_work_item(struct backing_dev_info *bdi)
 788{
 789	struct wb_writeback_work *work = NULL;
 790
 791	spin_lock_bh(&bdi->wb_lock);
 792	if (!list_empty(&bdi->work_list)) {
 793		work = list_entry(bdi->work_list.next,
 794				  struct wb_writeback_work, list);
 795		list_del_init(&work->list);
 796	}
 797	spin_unlock_bh(&bdi->wb_lock);
 798	return work;
 799}
 800
 801/*
 802 * Add in the number of potentially dirty inodes, because each inode
 803 * write can dirty pagecache in the underlying blockdev.
 804 */
 805static unsigned long get_nr_dirty_pages(void)
 806{
 807	return global_page_state(NR_FILE_DIRTY) +
 808		global_page_state(NR_UNSTABLE_NFS) +
 809		get_nr_dirty_inodes();
 810}
 811
 812static long wb_check_background_flush(struct bdi_writeback *wb)
 813{
 814	if (over_bground_thresh()) {
 815
 816		struct wb_writeback_work work = {
 817			.nr_pages	= LONG_MAX,
 818			.sync_mode	= WB_SYNC_NONE,
 819			.for_background	= 1,
 820			.range_cyclic	= 1,
 
 821		};
 822
 823		return wb_writeback(wb, &work);
 824	}
 825
 826	return 0;
 827}
 828
 829static long wb_check_old_data_flush(struct bdi_writeback *wb)
 830{
 831	unsigned long expired;
 832	long nr_pages;
 833
 834	/*
 835	 * When set to zero, disable periodic writeback
 836	 */
 837	if (!dirty_writeback_interval)
 838		return 0;
 839
 840	expired = wb->last_old_flush +
 841			msecs_to_jiffies(dirty_writeback_interval * 10);
 842	if (time_before(jiffies, expired))
 843		return 0;
 844
 845	wb->last_old_flush = jiffies;
 846	nr_pages = get_nr_dirty_pages();
 847
 848	if (nr_pages) {
 849		struct wb_writeback_work work = {
 850			.nr_pages	= nr_pages,
 851			.sync_mode	= WB_SYNC_NONE,
 852			.for_kupdate	= 1,
 853			.range_cyclic	= 1,
 
 854		};
 855
 856		return wb_writeback(wb, &work);
 857	}
 858
 859	return 0;
 860}
 861
 862/*
 863 * Retrieve work items and do the writeback they describe
 864 */
 865long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
 866{
 867	struct backing_dev_info *bdi = wb->bdi;
 868	struct wb_writeback_work *work;
 869	long wrote = 0;
 870
 871	set_bit(BDI_writeback_running, &wb->bdi->state);
 872	while ((work = get_next_work_item(bdi)) != NULL) {
 873		/*
 874		 * Override sync mode, in case we must wait for completion
 875		 * because this thread is exiting now.
 876		 */
 877		if (force_wait)
 878			work->sync_mode = WB_SYNC_ALL;
 879
 880		trace_writeback_exec(bdi, work);
 881
 882		wrote += wb_writeback(wb, work);
 883
 884		/*
 885		 * Notify the caller of completion if this is a synchronous
 886		 * work item, otherwise just free it.
 887		 */
 888		if (work->done)
 889			complete(work->done);
 890		else
 891			kfree(work);
 
 
 892	}
 893
 894	/*
 895	 * Check for periodic writeback, kupdated() style
 896	 */
 897	wrote += wb_check_old_data_flush(wb);
 898	wrote += wb_check_background_flush(wb);
 899	clear_bit(BDI_writeback_running, &wb->bdi->state);
 900
 901	return wrote;
 902}
 903
 904/*
 905 * Handle writeback of dirty data for the device backed by this bdi. Also
 906 * wakes up periodically and does kupdated style flushing.
 907 */
 908int bdi_writeback_thread(void *data)
 909{
 910	struct bdi_writeback *wb = data;
 911	struct backing_dev_info *bdi = wb->bdi;
 912	long pages_written;
 913
 
 914	current->flags |= PF_SWAPWRITE;
 915	set_freezable();
 916	wb->last_active = jiffies;
 917
 918	/*
 919	 * Our parent may run at a different priority, just set us to normal
 920	 */
 921	set_user_nice(current, 0);
 922
 923	trace_writeback_thread_start(bdi);
 924
 925	while (!kthread_should_stop()) {
 
 
 
 
 
 926		/*
 927		 * Remove own delayed wake-up timer, since we are already awake
 928		 * and we'll take care of the preriodic write-back.
 
 929		 */
 930		del_timer(&wb->wakeup_timer);
 931
 932		pages_written = wb_do_writeback(wb, 0);
 933
 934		trace_writeback_pages_written(pages_written);
 935
 936		if (pages_written)
 937			wb->last_active = jiffies;
 938
 939		set_current_state(TASK_INTERRUPTIBLE);
 940		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
 941			__set_current_state(TASK_RUNNING);
 942			continue;
 943		}
 944
 945		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
 946			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
 947		else {
 948			/*
 949			 * We have nothing to do, so can go sleep without any
 950			 * timeout and save power. When a work is queued or
 951			 * something is made dirty - we will be woken up.
 952			 */
 953			schedule();
 954		}
 955
 956		try_to_freeze();
 957	}
 958
 959	/* Flush any work that raced with us exiting */
 960	if (!list_empty(&bdi->work_list))
 961		wb_do_writeback(wb, 1);
 
 962
 963	trace_writeback_thread_stop(bdi);
 964	return 0;
 965}
 966
 967
 968/*
 969 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 970 * the whole world.
 971 */
 972void wakeup_flusher_threads(long nr_pages)
 973{
 974	struct backing_dev_info *bdi;
 975
 976	if (!nr_pages) {
 977		nr_pages = global_page_state(NR_FILE_DIRTY) +
 978				global_page_state(NR_UNSTABLE_NFS);
 979	}
 
 
 
 
 980
 981	rcu_read_lock();
 982	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
 
 
 983		if (!bdi_has_dirty_io(bdi))
 984			continue;
 985		__bdi_start_writeback(bdi, nr_pages, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	}
 987	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988}
 989
 990static noinline void block_dump___mark_inode_dirty(struct inode *inode)
 991{
 992	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
 993		struct dentry *dentry;
 994		const char *name = "?";
 995
 996		dentry = d_find_alias(inode);
 997		if (dentry) {
 998			spin_lock(&dentry->d_lock);
 999			name = (const char *) dentry->d_name.name;
1000		}
1001		printk(KERN_DEBUG
1002		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1003		       current->comm, task_pid_nr(current), inode->i_ino,
1004		       name, inode->i_sb->s_id);
1005		if (dentry) {
1006			spin_unlock(&dentry->d_lock);
1007			dput(dentry);
1008		}
1009	}
1010}
1011
1012/**
1013 *	__mark_inode_dirty -	internal function
1014 *	@inode: inode to mark
1015 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1016 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1017 *  	mark_inode_dirty_sync.
1018 *
1019 * Put the inode on the super block's dirty list.
1020 *
1021 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1022 * dirty list only if it is hashed or if it refers to a blockdev.
1023 * If it was not hashed, it will never be added to the dirty list
1024 * even if it is later hashed, as it will have been marked dirty already.
1025 *
1026 * In short, make sure you hash any inodes _before_ you start marking
1027 * them dirty.
1028 *
1029 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1030 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1031 * the kernel-internal blockdev inode represents the dirtying time of the
1032 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1033 * page->mapping->host, so the page-dirtying time is recorded in the internal
1034 * blockdev inode.
1035 */
1036void __mark_inode_dirty(struct inode *inode, int flags)
1037{
 
1038	struct super_block *sb = inode->i_sb;
1039	struct backing_dev_info *bdi = NULL;
 
 
1040
1041	/*
1042	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1043	 * dirty the inode itself
1044	 */
1045	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
 
 
1046		if (sb->s_op->dirty_inode)
1047			sb->s_op->dirty_inode(inode, flags);
 
 
1048	}
 
 
 
1049
1050	/*
1051	 * make sure that changes are seen by all cpus before we test i_state
1052	 * -- mikulas
1053	 */
1054	smp_mb();
1055
1056	/* avoid the locking if we can */
1057	if ((inode->i_state & flags) == flags)
1058		return;
1059
1060	if (unlikely(block_dump))
1061		block_dump___mark_inode_dirty(inode);
1062
1063	spin_lock(&inode->i_lock);
 
 
1064	if ((inode->i_state & flags) != flags) {
1065		const int was_dirty = inode->i_state & I_DIRTY;
1066
 
 
 
 
1067		inode->i_state |= flags;
1068
1069		/*
1070		 * If the inode is being synced, just update its dirty state.
1071		 * The unlocker will place the inode on the appropriate
1072		 * superblock list, based upon its state.
1073		 */
1074		if (inode->i_state & I_SYNC)
1075			goto out_unlock_inode;
1076
1077		/*
1078		 * Only add valid (hashed) inodes to the superblock's
1079		 * dirty list.  Add blockdev inodes as well.
1080		 */
1081		if (!S_ISBLK(inode->i_mode)) {
1082			if (inode_unhashed(inode))
1083				goto out_unlock_inode;
1084		}
1085		if (inode->i_state & I_FREEING)
1086			goto out_unlock_inode;
1087
1088		/*
1089		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1090		 * reposition it (that would break b_dirty time-ordering).
1091		 */
1092		if (!was_dirty) {
 
 
1093			bool wakeup_bdi = false;
1094			bdi = inode_to_bdi(inode);
1095
1096			if (bdi_cap_writeback_dirty(bdi)) {
1097				WARN(!test_bit(BDI_registered, &bdi->state),
1098				     "bdi-%s not registered\n", bdi->name);
1099
1100				/*
1101				 * If this is the first dirty inode for this
1102				 * bdi, we have to wake-up the corresponding
1103				 * bdi thread to make sure background
1104				 * write-back happens later.
1105				 */
1106				if (!wb_has_dirty_io(&bdi->wb))
1107					wakeup_bdi = true;
1108			}
1109
1110			spin_unlock(&inode->i_lock);
1111			spin_lock(&bdi->wb.list_lock);
1112			inode->dirtied_when = jiffies;
1113			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1114			spin_unlock(&bdi->wb.list_lock);
 
 
 
 
 
1115
1116			if (wakeup_bdi)
1117				bdi_wakeup_thread_delayed(bdi);
 
 
 
 
 
 
 
 
 
 
 
 
1118			return;
1119		}
1120	}
1121out_unlock_inode:
1122	spin_unlock(&inode->i_lock);
1123
 
1124}
1125EXPORT_SYMBOL(__mark_inode_dirty);
1126
1127/*
1128 * Write out a superblock's list of dirty inodes.  A wait will be performed
1129 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1130 *
1131 * If older_than_this is non-NULL, then only write out inodes which
1132 * had their first dirtying at a time earlier than *older_than_this.
1133 *
1134 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1135 * This function assumes that the blockdev superblock's inodes are backed by
1136 * a variety of queues, so all inodes are searched.  For other superblocks,
1137 * assume that all inodes are backed by the same queue.
1138 *
1139 * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1140 * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1141 * on the writer throttling path, and we get decent balancing between many
1142 * throttled threads: we don't want them all piling up on inode_sync_wait.
1143 */
1144static void wait_sb_inodes(struct super_block *sb)
1145{
1146	struct inode *inode, *old_inode = NULL;
1147
1148	/*
1149	 * We need to be protected against the filesystem going from
1150	 * r/o to r/w or vice versa.
1151	 */
1152	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1153
1154	spin_lock(&inode_sb_list_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1155
1156	/*
1157	 * Data integrity sync. Must wait for all pages under writeback,
1158	 * because there may have been pages dirtied before our sync
1159	 * call, but which had writeout started before we write it out.
1160	 * In which case, the inode may not be on the dirty list, but
1161	 * we still have to wait for that writeout.
1162	 */
1163	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
 
 
1164		struct address_space *mapping = inode->i_mapping;
1165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166		spin_lock(&inode->i_lock);
1167		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1168		    (mapping->nrpages == 0)) {
1169			spin_unlock(&inode->i_lock);
 
 
1170			continue;
1171		}
1172		__iget(inode);
1173		spin_unlock(&inode->i_lock);
1174		spin_unlock(&inode_sb_list_lock);
1175
1176		/*
1177		 * We hold a reference to 'inode' so it couldn't have been
1178		 * removed from s_inodes list while we dropped the
1179		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1180		 * be holding the last reference and we cannot iput it under
1181		 * inode_sb_list_lock. So we keep the reference and iput it
1182		 * later.
1183		 */
1184		iput(old_inode);
1185		old_inode = inode;
1186
1187		filemap_fdatawait(mapping);
1188
1189		cond_resched();
1190
1191		spin_lock(&inode_sb_list_lock);
 
1192	}
1193	spin_unlock(&inode_sb_list_lock);
1194	iput(old_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195}
1196
1197/**
1198 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1199 * @sb: the superblock
1200 * @nr: the number of pages to write
 
1201 *
1202 * Start writeback on some inodes on this super_block. No guarantees are made
1203 * on how many (if any) will be written, and this function does not wait
1204 * for IO completion of submitted IO.
1205 */
1206void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
 
 
1207{
1208	DECLARE_COMPLETION_ONSTACK(done);
1209	struct wb_writeback_work work = {
1210		.sb			= sb,
1211		.sync_mode		= WB_SYNC_NONE,
1212		.tagged_writepages	= 1,
1213		.done			= &done,
1214		.nr_pages		= nr,
1215	};
1216
1217	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1218	bdi_queue_work(sb->s_bdi, &work);
1219	wait_for_completion(&done);
1220}
1221EXPORT_SYMBOL(writeback_inodes_sb_nr);
1222
1223/**
1224 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1225 * @sb: the superblock
 
1226 *
1227 * Start writeback on some inodes on this super_block. No guarantees are made
1228 * on how many (if any) will be written, and this function does not wait
1229 * for IO completion of submitted IO.
1230 */
1231void writeback_inodes_sb(struct super_block *sb)
1232{
1233	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1234}
1235EXPORT_SYMBOL(writeback_inodes_sb);
1236
1237/**
1238 * writeback_inodes_sb_if_idle	-	start writeback if none underway
1239 * @sb: the superblock
 
 
1240 *
1241 * Invoke writeback_inodes_sb if no writeback is currently underway.
1242 * Returns 1 if writeback was started, 0 if not.
1243 */
1244int writeback_inodes_sb_if_idle(struct super_block *sb)
 
1245{
1246	if (!writeback_in_progress(sb->s_bdi)) {
1247		down_read(&sb->s_umount);
1248		writeback_inodes_sb(sb);
1249		up_read(&sb->s_umount);
1250		return 1;
1251	} else
1252		return 0;
1253}
1254EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1255
1256/**
1257 * writeback_inodes_sb_if_idle	-	start writeback if none underway
1258 * @sb: the superblock
1259 * @nr: the number of pages to write
1260 *
1261 * Invoke writeback_inodes_sb if no writeback is currently underway.
1262 * Returns 1 if writeback was started, 0 if not.
1263 */
1264int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1265				   unsigned long nr)
1266{
1267	if (!writeback_in_progress(sb->s_bdi)) {
1268		down_read(&sb->s_umount);
1269		writeback_inodes_sb_nr(sb, nr);
1270		up_read(&sb->s_umount);
1271		return 1;
1272	} else
1273		return 0;
1274}
1275EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1276
1277/**
1278 * sync_inodes_sb	-	sync sb inode pages
1279 * @sb: the superblock
1280 *
1281 * This function writes and waits on any dirty inode belonging to this
1282 * super_block.
1283 */
1284void sync_inodes_sb(struct super_block *sb)
1285{
1286	DECLARE_COMPLETION_ONSTACK(done);
1287	struct wb_writeback_work work = {
1288		.sb		= sb,
1289		.sync_mode	= WB_SYNC_ALL,
1290		.nr_pages	= LONG_MAX,
1291		.range_cyclic	= 0,
1292		.done		= &done,
 
 
1293	};
 
1294
 
 
 
 
 
 
 
1295	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1296
1297	bdi_queue_work(sb->s_bdi, &work);
1298	wait_for_completion(&done);
1299
1300	wait_sb_inodes(sb);
1301}
1302EXPORT_SYMBOL(sync_inodes_sb);
1303
1304/**
1305 * write_inode_now	-	write an inode to disk
1306 * @inode: inode to write to disk
1307 * @sync: whether the write should be synchronous or not
1308 *
1309 * This function commits an inode to disk immediately if it is dirty. This is
1310 * primarily needed by knfsd.
1311 *
1312 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1313 */
1314int write_inode_now(struct inode *inode, int sync)
1315{
1316	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1317	int ret;
1318	struct writeback_control wbc = {
1319		.nr_to_write = LONG_MAX,
1320		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1321		.range_start = 0,
1322		.range_end = LLONG_MAX,
1323	};
1324
1325	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1326		wbc.nr_to_write = 0;
1327
1328	might_sleep();
1329	spin_lock(&wb->list_lock);
1330	spin_lock(&inode->i_lock);
1331	ret = writeback_single_inode(inode, wb, &wbc);
1332	spin_unlock(&inode->i_lock);
1333	spin_unlock(&wb->list_lock);
1334	if (sync)
1335		inode_sync_wait(inode);
1336	return ret;
1337}
1338EXPORT_SYMBOL(write_inode_now);
1339
1340/**
1341 * sync_inode - write an inode and its pages to disk.
1342 * @inode: the inode to sync
1343 * @wbc: controls the writeback mode
1344 *
1345 * sync_inode() will write an inode and its pages to disk.  It will also
1346 * correctly update the inode on its superblock's dirty inode lists and will
1347 * update inode->i_state.
1348 *
1349 * The caller must have a ref on the inode.
1350 */
1351int sync_inode(struct inode *inode, struct writeback_control *wbc)
1352{
1353	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1354	int ret;
1355
1356	spin_lock(&wb->list_lock);
1357	spin_lock(&inode->i_lock);
1358	ret = writeback_single_inode(inode, wb, wbc);
1359	spin_unlock(&inode->i_lock);
1360	spin_unlock(&wb->list_lock);
1361	return ret;
1362}
1363EXPORT_SYMBOL(sync_inode);
1364
1365/**
1366 * sync_inode_metadata - write an inode to disk
1367 * @inode: the inode to sync
1368 * @wait: wait for I/O to complete.
1369 *
1370 * Write an inode to disk and adjust its dirty state after completion.
1371 *
1372 * Note: only writes the actual inode, no associated data or other metadata.
1373 */
1374int sync_inode_metadata(struct inode *inode, int wait)
1375{
1376	struct writeback_control wbc = {
1377		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1378		.nr_to_write = 0, /* metadata-only */
1379	};
1380
1381	return sync_inode(inode, &wbc);
1382}
1383EXPORT_SYMBOL(sync_inode_metadata);