Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 174}
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 181	spin_lock_bh(&wb->work_lock);
 182	if (!test_bit(WB_registered, &wb->state))
 183		goto out_unlock;
 184	if (work->done)
 185		atomic_inc(&work->done->cnt);
 186	list_add_tail(&work->list, &wb->work_list);
 187	mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 
 
 
 
 
 
 189	spin_unlock_bh(&wb->work_lock);
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204				   struct wb_completion *done)
 205{
 206	atomic_dec(&done->cnt);		/* put down the initial count */
 207	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 217
 218#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220					/* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 222					/* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224					/* one round can affect upto 5 slots */
 
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231	struct backing_dev_info *bdi = inode_to_bdi(inode);
 232	struct bdi_writeback *wb = NULL;
 233
 234	if (inode_cgwb_enabled(inode)) {
 235		struct cgroup_subsys_state *memcg_css;
 236
 237		if (page) {
 238			memcg_css = mem_cgroup_css_from_page(page);
 239			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240		} else {
 241			/* must pin memcg_css, see wb_get_create() */
 242			memcg_css = task_get_css(current, memory_cgrp_id);
 243			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244			css_put(memcg_css);
 245		}
 246	}
 247
 248	if (!wb)
 249		wb = &bdi->wb;
 250
 251	/*
 252	 * There may be multiple instances of this function racing to
 253	 * update the same inode.  Use cmpxchg() to tell the winner.
 254	 */
 255	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256		wb_put(wb);
 257}
 
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269	__releases(&inode->i_lock)
 270	__acquires(&wb->list_lock)
 271{
 272	while (true) {
 273		struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275		/*
 276		 * inode_to_wb() association is protected by both
 277		 * @inode->i_lock and @wb->list_lock but list_lock nests
 278		 * outside i_lock.  Drop i_lock and verify that the
 279		 * association hasn't changed after acquiring list_lock.
 280		 */
 281		wb_get(wb);
 282		spin_unlock(&inode->i_lock);
 283		spin_lock(&wb->list_lock);
 284
 285		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 286		if (likely(wb == inode->i_wb)) {
 287			wb_put(wb);	/* @inode already has ref */
 288			return wb;
 289		}
 290
 291		spin_unlock(&wb->list_lock);
 292		wb_put(wb);
 293		cpu_relax();
 294		spin_lock(&inode->i_lock);
 295	}
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306	__acquires(&wb->list_lock)
 307{
 308	spin_lock(&inode->i_lock);
 309	return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313	struct inode		*inode;
 314	struct bdi_writeback	*new_wb;
 315
 316	struct rcu_head		rcu_head;
 317	struct work_struct	work;
 318};
 319
 
 
 
 
 
 
 
 
 
 
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 321{
 322	struct inode_switch_wbs_context *isw =
 323		container_of(work, struct inode_switch_wbs_context, work);
 324	struct inode *inode = isw->inode;
 
 325	struct address_space *mapping = inode->i_mapping;
 326	struct bdi_writeback *old_wb = inode->i_wb;
 327	struct bdi_writeback *new_wb = isw->new_wb;
 328	struct radix_tree_iter iter;
 
 329	bool switched = false;
 330	void **slot;
 
 
 
 
 
 331
 332	/*
 333	 * By the time control reaches here, RCU grace period has passed
 334	 * since I_WB_SWITCH assertion and all wb stat update transactions
 335	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336	 * synchronizing against mapping->tree_lock.
 337	 *
 338	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339	 * gives us exclusion against all wb related operations on @inode
 340	 * including IO list manipulations and stat updates.
 341	 */
 342	if (old_wb < new_wb) {
 343		spin_lock(&old_wb->list_lock);
 344		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345	} else {
 346		spin_lock(&new_wb->list_lock);
 347		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348	}
 349	spin_lock(&inode->i_lock);
 350	spin_lock_irq(&mapping->tree_lock);
 351
 352	/*
 353	 * Once I_FREEING is visible under i_lock, the eviction path owns
 354	 * the inode and we shouldn't modify ->i_io_list.
 355	 */
 356	if (unlikely(inode->i_state & I_FREEING))
 357		goto skip_switch;
 358
 
 
 359	/*
 360	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362	 * pages actually under underwriteback.
 363	 */
 364	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365				   PAGECACHE_TAG_DIRTY) {
 366		struct page *page = radix_tree_deref_slot_protected(slot,
 367							&mapping->tree_lock);
 368		if (likely(page) && PageDirty(page)) {
 369			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371		}
 372	}
 373
 374	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375				   PAGECACHE_TAG_WRITEBACK) {
 376		struct page *page = radix_tree_deref_slot_protected(slot,
 377							&mapping->tree_lock);
 378		if (likely(page)) {
 379			WARN_ON_ONCE(!PageWriteback(page));
 380			__dec_wb_stat(old_wb, WB_WRITEBACK);
 381			__inc_wb_stat(new_wb, WB_WRITEBACK);
 382		}
 383	}
 384
 385	wb_get(new_wb);
 386
 387	/*
 388	 * Transfer to @new_wb's IO list if necessary.  The specific list
 389	 * @inode was on is ignored and the inode is put on ->b_dirty which
 390	 * is always correct including from ->b_dirty_time.  The transfer
 391	 * preserves @inode->dirtied_when ordering.
 392	 */
 393	if (!list_empty(&inode->i_io_list)) {
 394		struct inode *pos;
 395
 396		inode_io_list_del_locked(inode, old_wb);
 397		inode->i_wb = new_wb;
 398		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399			if (time_after_eq(inode->dirtied_when,
 400					  pos->dirtied_when))
 401				break;
 402		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 403	} else {
 404		inode->i_wb = new_wb;
 405	}
 406
 407	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408	inode->i_wb_frn_winner = 0;
 409	inode->i_wb_frn_avg_time = 0;
 410	inode->i_wb_frn_history = 0;
 411	switched = true;
 412skip_switch:
 413	/*
 414	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416	 */
 417	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419	spin_unlock_irq(&mapping->tree_lock);
 420	spin_unlock(&inode->i_lock);
 421	spin_unlock(&new_wb->list_lock);
 422	spin_unlock(&old_wb->list_lock);
 423
 
 
 424	if (switched) {
 425		wb_wakeup(new_wb);
 426		wb_put(old_wb);
 427	}
 428	wb_put(new_wb);
 429
 430	iput(inode);
 431	kfree(isw);
 432
 433	atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 437{
 438	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439				struct inode_switch_wbs_context, rcu_head);
 440
 441	/* needs to grab bh-unsafe locks, bounce to work item */
 442	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443	queue_work(isw_wq, &isw->work);
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456	struct backing_dev_info *bdi = inode_to_bdi(inode);
 457	struct cgroup_subsys_state *memcg_css;
 458	struct inode_switch_wbs_context *isw;
 459
 460	/* noop if seems to be already in progress */
 461	if (inode->i_state & I_WB_SWITCH)
 462		return;
 463
 
 
 
 
 464	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 465	if (!isw)
 466		return;
 467
 468	/* find and pin the new wb */
 469	rcu_read_lock();
 470	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471	if (memcg_css)
 472		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473	rcu_read_unlock();
 474	if (!isw->new_wb)
 475		goto out_free;
 476
 477	/* while holding I_WB_SWITCH, no one else can update the association */
 478	spin_lock(&inode->i_lock);
 479	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481	    inode_to_wb(inode) == isw->new_wb) {
 482		spin_unlock(&inode->i_lock);
 483		goto out_free;
 484	}
 485	inode->i_state |= I_WB_SWITCH;
 486	__iget(inode);
 487	spin_unlock(&inode->i_lock);
 488
 489	isw->inode = inode;
 490
 491	atomic_inc(&isw_nr_in_flight);
 492
 493	/*
 494	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495	 * the RCU protected stat update paths to grab the mapping's
 496	 * tree_lock so that stat transfer can synchronize against them.
 497	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498	 */
 499	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 
 
 500	return;
 501
 502out_free:
 503	if (isw->new_wb)
 504		wb_put(isw->new_wb);
 505	kfree(isw);
 506}
 507
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519				 struct inode *inode)
 520{
 521	if (!inode_cgwb_enabled(inode)) {
 522		spin_unlock(&inode->i_lock);
 523		return;
 524	}
 525
 526	wbc->wb = inode_to_wb(inode);
 527	wbc->inode = inode;
 528
 529	wbc->wb_id = wbc->wb->memcg_css->id;
 530	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531	wbc->wb_tcand_id = 0;
 532	wbc->wb_bytes = 0;
 533	wbc->wb_lcand_bytes = 0;
 534	wbc->wb_tcand_bytes = 0;
 535
 536	wb_get(wbc->wb);
 537	spin_unlock(&inode->i_lock);
 538
 539	/*
 540	 * A dying wb indicates that the memcg-blkcg mapping has changed
 541	 * and a new wb is already serving the memcg.  Switch immediately.
 
 
 
 542	 */
 543	if (unlikely(wb_dying(wbc->wb)))
 544		inode_switch_wbs(inode, wbc->wb_id);
 545}
 
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586	struct bdi_writeback *wb = wbc->wb;
 587	struct inode *inode = wbc->inode;
 588	unsigned long avg_time, max_bytes, max_time;
 589	u16 history;
 590	int max_id;
 591
 592	if (!wb)
 593		return;
 594
 595	history = inode->i_wb_frn_history;
 596	avg_time = inode->i_wb_frn_avg_time;
 597
 598	/* pick the winner of this round */
 599	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601		max_id = wbc->wb_id;
 602		max_bytes = wbc->wb_bytes;
 603	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604		max_id = wbc->wb_lcand_id;
 605		max_bytes = wbc->wb_lcand_bytes;
 606	} else {
 607		max_id = wbc->wb_tcand_id;
 608		max_bytes = wbc->wb_tcand_bytes;
 609	}
 610
 611	/*
 612	 * Calculate the amount of IO time the winner consumed and fold it
 613	 * into the running average kept per inode.  If the consumed IO
 614	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615	 * deciding whether to switch or not.  This is to prevent one-off
 616	 * small dirtiers from skewing the verdict.
 617	 */
 618	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619				wb->avg_write_bandwidth);
 620	if (avg_time)
 621		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623	else
 624		avg_time = max_time;	/* immediate catch up on first run */
 625
 626	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627		int slots;
 628
 629		/*
 630		 * The switch verdict is reached if foreign wb's consume
 631		 * more than a certain proportion of IO time in a
 632		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633		 * history mask where each bit represents one sixteenth of
 634		 * the period.  Determine the number of slots to shift into
 635		 * history from @max_time.
 636		 */
 637		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639		history <<= slots;
 640		if (wbc->wb_id != max_id)
 641			history |= (1U << slots) - 1;
 642
 
 
 
 643		/*
 644		 * Switch if the current wb isn't the consistent winner.
 645		 * If there are multiple closely competing dirtiers, the
 646		 * inode may switch across them repeatedly over time, which
 647		 * is okay.  The main goal is avoiding keeping an inode on
 648		 * the wrong wb for an extended period of time.
 649		 */
 650		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651			inode_switch_wbs(inode, max_id);
 652	}
 653
 654	/*
 655	 * Multiple instances of this function may race to update the
 656	 * following fields but we don't mind occassional inaccuracies.
 657	 */
 658	inode->i_wb_frn_winner = max_id;
 659	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660	inode->i_wb_frn_history = history;
 661
 662	wb_put(wbc->wb);
 663	wbc->wb = NULL;
 664}
 
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677		    size_t bytes)
 678{
 
 679	int id;
 680
 681	/*
 682	 * pageout() path doesn't attach @wbc to the inode being written
 683	 * out.  This is intentional as we don't want the function to block
 684	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685	 * regular writeback instead of writing things out itself.
 686	 */
 687	if (!wbc->wb)
 
 
 
 
 
 688		return;
 689
 690	id = mem_cgroup_css_from_page(page)->id;
 691
 692	if (id == wbc->wb_id) {
 693		wbc->wb_bytes += bytes;
 694		return;
 695	}
 696
 697	if (id == wbc->wb_lcand_id)
 698		wbc->wb_lcand_bytes += bytes;
 699
 700	/* Boyer-Moore majority vote algorithm */
 701	if (!wbc->wb_tcand_bytes)
 702		wbc->wb_tcand_id = id;
 703	if (id == wbc->wb_tcand_id)
 704		wbc->wb_tcand_bytes += bytes;
 705	else
 706		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728	/*
 729	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 730	 * Start transaction iff ->i_wb is visible.
 731	 */
 732	if (inode && inode_to_wb_is_valid(inode)) {
 733		struct bdi_writeback *wb;
 734		bool locked, congested;
 
 735
 736		wb = unlocked_inode_to_wb_begin(inode, &locked);
 737		congested = wb_congested(wb, cong_bits);
 738		unlocked_inode_to_wb_end(inode, locked);
 739		return congested;
 740	}
 741
 742	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757	unsigned long this_bw = wb->avg_write_bandwidth;
 758	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760	if (nr_pages == LONG_MAX)
 761		return LONG_MAX;
 762
 763	/*
 764	 * This may be called on clean wb's and proportional distribution
 765	 * may not make sense, just use the original @nr_pages in those
 766	 * cases.  In general, we wanna err on the side of writing more.
 767	 */
 768	if (!tot_bw || this_bw >= tot_bw)
 769		return nr_pages;
 770	else
 771		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786				  struct wb_writeback_work *base_work,
 787				  bool skip_if_busy)
 788{
 789	struct bdi_writeback *last_wb = NULL;
 790	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791					      struct bdi_writeback, bdi_node);
 792
 793	might_sleep();
 794restart:
 795	rcu_read_lock();
 796	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798		struct wb_writeback_work fallback_work;
 799		struct wb_writeback_work *work;
 800		long nr_pages;
 801
 802		if (last_wb) {
 803			wb_put(last_wb);
 804			last_wb = NULL;
 805		}
 806
 807		/* SYNC_ALL writes out I_DIRTY_TIME too */
 808		if (!wb_has_dirty_io(wb) &&
 809		    (base_work->sync_mode == WB_SYNC_NONE ||
 810		     list_empty(&wb->b_dirty_time)))
 811			continue;
 812		if (skip_if_busy && writeback_in_progress(wb))
 813			continue;
 814
 815		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818		if (work) {
 819			*work = *base_work;
 820			work->nr_pages = nr_pages;
 821			work->auto_free = 1;
 822			wb_queue_work(wb, work);
 823			continue;
 824		}
 825
 826		/* alloc failed, execute synchronously using on-stack fallback */
 827		work = &fallback_work;
 828		*work = *base_work;
 829		work->nr_pages = nr_pages;
 830		work->auto_free = 0;
 831		work->done = &fallback_work_done;
 832
 833		wb_queue_work(wb, work);
 834
 835		/*
 836		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837		 * continuing iteration from @wb after dropping and
 838		 * regrabbing rcu read lock.
 839		 */
 840		wb_get(wb);
 841		last_wb = wb;
 842
 843		rcu_read_unlock();
 844		wb_wait_for_completion(bdi, &fallback_work_done);
 845		goto restart;
 846	}
 847	rcu_read_unlock();
 848
 849	if (last_wb)
 850		wb_put(last_wb);
 851}
 852
 853/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 865	if (atomic_read(&isw_nr_in_flight)) {
 866		synchronize_rcu();
 
 
 
 
 867		flush_workqueue(isw_wq);
 868	}
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874	if (!isw_wq)
 875		return -ENOMEM;
 876	return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else	/* CONFIG_CGROUP_WRITEBACK */
 881
 
 
 
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884	__releases(&inode->i_lock)
 885	__acquires(&wb->list_lock)
 886{
 887	struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889	spin_unlock(&inode->i_lock);
 890	spin_lock(&wb->list_lock);
 891	return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895	__acquires(&wb->list_lock)
 896{
 897	struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899	spin_lock(&wb->list_lock);
 900	return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905	return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909				  struct wb_writeback_work *base_work,
 910				  bool skip_if_busy)
 911{
 912	might_sleep();
 913
 914	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915		base_work->auto_free = 0;
 916		wb_queue_work(&bdi->wb, base_work);
 917	}
 918}
 919
 920#endif	/* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923			bool range_cyclic, enum wb_reason reason)
 
 
 
 924{
 925	struct wb_writeback_work *work;
 
 
 
 926
 
 
 927	if (!wb_has_dirty_io(wb))
 928		return;
 929
 930	/*
 931	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 932	 * wakeup the thread for old dirty data writeback
 
 
 
 
 933	 */
 934	work = kzalloc(sizeof(*work),
 935		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936	if (!work) {
 937		trace_writeback_nowork(wb);
 938		wb_wakeup(wb);
 939		return;
 940	}
 941
 942	work->sync_mode	= WB_SYNC_NONE;
 943	work->nr_pages	= nr_pages;
 944	work->range_cyclic = range_cyclic;
 945	work->reason	= reason;
 946	work->auto_free	= 1;
 947
 948	wb_queue_work(wb, work);
 
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963	/*
 964	 * We just wake up the flusher thread. It will perform background
 965	 * writeback as soon as there is no other work to do.
 966	 */
 967	trace_writeback_wake_background(wb);
 968	wb_wakeup(wb);
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976	struct bdi_writeback *wb;
 977
 978	wb = inode_to_wb_and_lock_list(inode);
 979	inode_io_list_del_locked(inode, wb);
 980	spin_unlock(&wb->list_lock);
 981}
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988	struct super_block *sb = inode->i_sb;
 989	unsigned long flags;
 990
 991	if (list_empty(&inode->i_wb_list)) {
 992		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993		if (list_empty(&inode->i_wb_list)) {
 994			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995			trace_sb_mark_inode_writeback(inode);
 996		}
 997		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998	}
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (!list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (!list_empty(&inode->i_wb_list)) {
1012			list_del_init(&inode->i_wb_list);
1013			trace_sb_clear_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
1030	if (!list_empty(&wb->b_dirty)) {
1031		struct inode *tail;
1032
1033		tail = wb_inode(wb->b_dirty.next);
1034		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035			inode->dirtied_when = jiffies;
1036	}
1037	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050	inode->i_state &= ~I_SYNC;
1051	/* If inode is clean an unused, put it into LRU now... */
1052	inode_add_lru(inode);
1053	/* Waiters must see I_SYNC cleared before being woken up */
1054	smp_mb();
1055	wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060	bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062	/*
1063	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064	 * It _appears_ to be in the future, but is actually in distant past.
1065	 * This test is necessary to prevent such wrapped-around relative times
1066	 * from permanently stopping the whole bdi writeback.
1067	 */
1068	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070	return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080			       struct list_head *dispatch_queue,
1081			       int flags,
1082			       struct wb_writeback_work *work)
1083{
1084	unsigned long *older_than_this = NULL;
1085	unsigned long expire_time;
1086	LIST_HEAD(tmp);
1087	struct list_head *pos, *node;
1088	struct super_block *sb = NULL;
1089	struct inode *inode;
1090	int do_sb_sort = 0;
1091	int moved = 0;
1092
1093	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094		older_than_this = work->older_than_this;
1095	else if (!work->for_sync) {
1096		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097		older_than_this = &expire_time;
1098	}
1099	while (!list_empty(delaying_queue)) {
1100		inode = wb_inode(delaying_queue->prev);
1101		if (older_than_this &&
1102		    inode_dirtied_after(inode, *older_than_this))
1103			break;
1104		list_move(&inode->i_io_list, &tmp);
1105		moved++;
1106		if (flags & EXPIRE_DIRTY_ATIME)
1107			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108		if (sb_is_blkdev_sb(inode->i_sb))
1109			continue;
1110		if (sb && sb != inode->i_sb)
1111			do_sb_sort = 1;
1112		sb = inode->i_sb;
1113	}
1114
1115	/* just one sb in list, splice to dispatch_queue and we're done */
1116	if (!do_sb_sort) {
1117		list_splice(&tmp, dispatch_queue);
1118		goto out;
1119	}
1120
1121	/* Move inodes from one superblock together */
1122	while (!list_empty(&tmp)) {
1123		sb = wb_inode(tmp.prev)->i_sb;
1124		list_for_each_prev_safe(pos, node, &tmp) {
1125			inode = wb_inode(pos);
1126			if (inode->i_sb == sb)
1127				list_move(&inode->i_io_list, dispatch_queue);
1128		}
1129	}
1130out:
1131	return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146{
1147	int moved;
1148
1149	assert_spin_locked(&wb->list_lock);
1150	list_splice_init(&wb->b_more_io, &wb->b_io);
1151	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153				     EXPIRE_DIRTY_ATIME, work);
1154	if (moved)
1155		wb_io_lists_populated(wb);
1156	trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161	int ret;
1162
1163	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164		trace_writeback_write_inode_start(inode, wbc);
1165		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166		trace_writeback_write_inode(inode, wbc);
1167		return ret;
1168	}
1169	return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177	__releases(inode->i_lock)
1178	__acquires(inode->i_lock)
1179{
1180	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181	wait_queue_head_t *wqh;
1182
1183	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184	while (inode->i_state & I_SYNC) {
1185		spin_unlock(&inode->i_lock);
1186		__wait_on_bit(wqh, &wq, bit_wait,
1187			      TASK_UNINTERRUPTIBLE);
1188		spin_lock(&inode->i_lock);
1189	}
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197	spin_lock(&inode->i_lock);
1198	__inode_wait_for_writeback(inode);
1199	spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208	__releases(inode->i_lock)
1209{
1210	DEFINE_WAIT(wait);
1211	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212	int sleep;
1213
1214	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215	sleep = inode->i_state & I_SYNC;
1216	spin_unlock(&inode->i_lock);
1217	if (sleep)
1218		schedule();
1219	finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231			  struct writeback_control *wbc)
1232{
1233	if (inode->i_state & I_FREEING)
1234		return;
1235
1236	/*
1237	 * Sync livelock prevention. Each inode is tagged and synced in one
1238	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239	 * the dirty time to prevent enqueue and sync it again.
1240	 */
1241	if ((inode->i_state & I_DIRTY) &&
1242	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243		inode->dirtied_when = jiffies;
1244
1245	if (wbc->pages_skipped) {
1246		/*
1247		 * writeback is not making progress due to locked
1248		 * buffers. Skip this inode for now.
1249		 */
1250		redirty_tail(inode, wb);
1251		return;
1252	}
1253
1254	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255		/*
1256		 * We didn't write back all the pages.  nfs_writepages()
1257		 * sometimes bales out without doing anything.
1258		 */
1259		if (wbc->nr_to_write <= 0) {
1260			/* Slice used up. Queue for next turn. */
1261			requeue_io(inode, wb);
1262		} else {
1263			/*
1264			 * Writeback blocked by something other than
1265			 * congestion. Delay the inode for some time to
1266			 * avoid spinning on the CPU (100% iowait)
1267			 * retrying writeback of the dirty page/inode
1268			 * that cannot be performed immediately.
1269			 */
1270			redirty_tail(inode, wb);
1271		}
1272	} else if (inode->i_state & I_DIRTY) {
1273		/*
1274		 * Filesystems can dirty the inode during writeback operations,
1275		 * such as delayed allocation during submission or metadata
1276		 * updates after data IO completion.
1277		 */
1278		redirty_tail(inode, wb);
1279	} else if (inode->i_state & I_DIRTY_TIME) {
1280		inode->dirtied_when = jiffies;
1281		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282	} else {
1283		/* The inode is clean. Remove from writeback lists. */
1284		inode_io_list_del_locked(inode, wb);
1285	}
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296	struct address_space *mapping = inode->i_mapping;
1297	long nr_to_write = wbc->nr_to_write;
1298	unsigned dirty;
1299	int ret;
1300
1301	WARN_ON(!(inode->i_state & I_SYNC));
1302
1303	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305	ret = do_writepages(mapping, wbc);
1306
1307	/*
1308	 * Make sure to wait on the data before writing out the metadata.
1309	 * This is important for filesystems that modify metadata on data
1310	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312	 * inode metadata is written back correctly.
1313	 */
1314	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315		int err = filemap_fdatawait(mapping);
1316		if (ret == 0)
1317			ret = err;
1318	}
1319
1320	/*
1321	 * Some filesystems may redirty the inode during the writeback
1322	 * due to delalloc, clear dirty metadata flags right before
1323	 * write_inode()
1324	 */
1325	spin_lock(&inode->i_lock);
1326
1327	dirty = inode->i_state & I_DIRTY;
1328	if (inode->i_state & I_DIRTY_TIME) {
1329		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330		    wbc->sync_mode == WB_SYNC_ALL ||
1331		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332		    unlikely(time_after(jiffies,
1333					(inode->dirtied_time_when +
1334					 dirtytime_expire_interval * HZ)))) {
1335			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336			trace_writeback_lazytime(inode);
1337		}
1338	} else
1339		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340	inode->i_state &= ~dirty;
1341
1342	/*
1343	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346	 * inode.
1347	 *
1348	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350	 * necessary.  This guarantees that either __mark_inode_dirty()
1351	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352	 */
1353	smp_mb();
1354
1355	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356		inode->i_state |= I_DIRTY_PAGES;
1357
1358	spin_unlock(&inode->i_lock);
1359
1360	if (dirty & I_DIRTY_TIME)
1361		mark_inode_dirty_sync(inode);
1362	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363	if (dirty & ~I_DIRTY_PAGES) {
1364		int err = write_inode(inode, wbc);
1365		if (ret == 0)
1366			ret = err;
1367	}
1368	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369	return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381				  struct writeback_control *wbc)
1382{
1383	struct bdi_writeback *wb;
1384	int ret = 0;
1385
1386	spin_lock(&inode->i_lock);
1387	if (!atomic_read(&inode->i_count))
1388		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389	else
1390		WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392	if (inode->i_state & I_SYNC) {
1393		if (wbc->sync_mode != WB_SYNC_ALL)
1394			goto out;
1395		/*
1396		 * It's a data-integrity sync. We must wait. Since callers hold
1397		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398		 * away under us.
1399		 */
1400		__inode_wait_for_writeback(inode);
1401	}
1402	WARN_ON(inode->i_state & I_SYNC);
1403	/*
1404	 * Skip inode if it is clean and we have no outstanding writeback in
1405	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406	 * function since flusher thread may be doing for example sync in
1407	 * parallel and if we move the inode, it could get skipped. So here we
1408	 * make sure inode is on some writeback list and leave it there unless
1409	 * we have completely cleaned the inode.
1410	 */
1411	if (!(inode->i_state & I_DIRTY_ALL) &&
1412	    (wbc->sync_mode != WB_SYNC_ALL ||
1413	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414		goto out;
1415	inode->i_state |= I_SYNC;
1416	wbc_attach_and_unlock_inode(wbc, inode);
1417
1418	ret = __writeback_single_inode(inode, wbc);
1419
1420	wbc_detach_inode(wbc);
1421
1422	wb = inode_to_wb_and_lock_list(inode);
1423	spin_lock(&inode->i_lock);
1424	/*
1425	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426	 * touch it. See comment above for explanation.
1427	 */
1428	if (!(inode->i_state & I_DIRTY_ALL))
1429		inode_io_list_del_locked(inode, wb);
1430	spin_unlock(&wb->list_lock);
1431	inode_sync_complete(inode);
1432out:
1433	spin_unlock(&inode->i_lock);
1434	return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438				 struct wb_writeback_work *work)
1439{
1440	long pages;
1441
1442	/*
1443	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445	 * here avoids calling into writeback_inodes_wb() more than once.
1446	 *
1447	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448	 *
1449	 *      wb_writeback()
1450	 *          writeback_sb_inodes()       <== called only once
1451	 *              write_cache_pages()     <== called once for each inode
1452	 *                   (quickly) tag currently dirty pages
1453	 *                   (maybe slowly) sync all tagged pages
1454	 */
1455	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456		pages = LONG_MAX;
1457	else {
1458		pages = min(wb->avg_write_bandwidth / 2,
1459			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460		pages = min(pages, work->nr_pages);
1461		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462				   MIN_WRITEBACK_PAGES);
1463	}
1464
1465	return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478				struct bdi_writeback *wb,
1479				struct wb_writeback_work *work)
1480{
1481	struct writeback_control wbc = {
1482		.sync_mode		= work->sync_mode,
1483		.tagged_writepages	= work->tagged_writepages,
1484		.for_kupdate		= work->for_kupdate,
1485		.for_background		= work->for_background,
1486		.for_sync		= work->for_sync,
1487		.range_cyclic		= work->range_cyclic,
1488		.range_start		= 0,
1489		.range_end		= LLONG_MAX,
1490	};
1491	unsigned long start_time = jiffies;
1492	long write_chunk;
1493	long wrote = 0;  /* count both pages and inodes */
1494
1495	while (!list_empty(&wb->b_io)) {
1496		struct inode *inode = wb_inode(wb->b_io.prev);
1497		struct bdi_writeback *tmp_wb;
1498
1499		if (inode->i_sb != sb) {
1500			if (work->sb) {
1501				/*
1502				 * We only want to write back data for this
1503				 * superblock, move all inodes not belonging
1504				 * to it back onto the dirty list.
1505				 */
1506				redirty_tail(inode, wb);
1507				continue;
1508			}
1509
1510			/*
1511			 * The inode belongs to a different superblock.
1512			 * Bounce back to the caller to unpin this and
1513			 * pin the next superblock.
1514			 */
1515			break;
1516		}
1517
1518		/*
1519		 * Don't bother with new inodes or inodes being freed, first
1520		 * kind does not need periodic writeout yet, and for the latter
1521		 * kind writeout is handled by the freer.
1522		 */
1523		spin_lock(&inode->i_lock);
1524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525			spin_unlock(&inode->i_lock);
1526			redirty_tail(inode, wb);
1527			continue;
1528		}
1529		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530			/*
1531			 * If this inode is locked for writeback and we are not
1532			 * doing writeback-for-data-integrity, move it to
1533			 * b_more_io so that writeback can proceed with the
1534			 * other inodes on s_io.
1535			 *
1536			 * We'll have another go at writing back this inode
1537			 * when we completed a full scan of b_io.
1538			 */
1539			spin_unlock(&inode->i_lock);
1540			requeue_io(inode, wb);
1541			trace_writeback_sb_inodes_requeue(inode);
1542			continue;
1543		}
1544		spin_unlock(&wb->list_lock);
1545
1546		/*
1547		 * We already requeued the inode if it had I_SYNC set and we
1548		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549		 * WB_SYNC_ALL case.
1550		 */
1551		if (inode->i_state & I_SYNC) {
1552			/* Wait for I_SYNC. This function drops i_lock... */
1553			inode_sleep_on_writeback(inode);
1554			/* Inode may be gone, start again */
1555			spin_lock(&wb->list_lock);
1556			continue;
1557		}
1558		inode->i_state |= I_SYNC;
1559		wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561		write_chunk = writeback_chunk_size(wb, work);
1562		wbc.nr_to_write = write_chunk;
1563		wbc.pages_skipped = 0;
1564
1565		/*
1566		 * We use I_SYNC to pin the inode in memory. While it is set
1567		 * evict_inode() will wait so the inode cannot be freed.
1568		 */
1569		__writeback_single_inode(inode, &wbc);
1570
1571		wbc_detach_inode(&wbc);
1572		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573		wrote += write_chunk - wbc.nr_to_write;
1574
1575		if (need_resched()) {
1576			/*
1577			 * We're trying to balance between building up a nice
1578			 * long list of IOs to improve our merge rate, and
1579			 * getting those IOs out quickly for anyone throttling
1580			 * in balance_dirty_pages().  cond_resched() doesn't
1581			 * unplug, so get our IOs out the door before we
1582			 * give up the CPU.
1583			 */
1584			blk_flush_plug(current);
1585			cond_resched();
1586		}
1587
1588		/*
1589		 * Requeue @inode if still dirty.  Be careful as @inode may
1590		 * have been switched to another wb in the meantime.
1591		 */
1592		tmp_wb = inode_to_wb_and_lock_list(inode);
1593		spin_lock(&inode->i_lock);
1594		if (!(inode->i_state & I_DIRTY_ALL))
1595			wrote++;
1596		requeue_inode(inode, tmp_wb, &wbc);
1597		inode_sync_complete(inode);
1598		spin_unlock(&inode->i_lock);
1599
1600		if (unlikely(tmp_wb != wb)) {
1601			spin_unlock(&tmp_wb->list_lock);
1602			spin_lock(&wb->list_lock);
1603		}
1604
1605		/*
1606		 * bail out to wb_writeback() often enough to check
1607		 * background threshold and other termination conditions.
1608		 */
1609		if (wrote) {
1610			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611				break;
1612			if (work->nr_pages <= 0)
1613				break;
1614		}
1615	}
1616	return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620				  struct wb_writeback_work *work)
1621{
1622	unsigned long start_time = jiffies;
1623	long wrote = 0;
1624
1625	while (!list_empty(&wb->b_io)) {
1626		struct inode *inode = wb_inode(wb->b_io.prev);
1627		struct super_block *sb = inode->i_sb;
1628
1629		if (!trylock_super(sb)) {
1630			/*
1631			 * trylock_super() may fail consistently due to
1632			 * s_umount being grabbed by someone else. Don't use
1633			 * requeue_io() to avoid busy retrying the inode/sb.
1634			 */
1635			redirty_tail(inode, wb);
1636			continue;
1637		}
1638		wrote += writeback_sb_inodes(sb, wb, work);
1639		up_read(&sb->s_umount);
1640
1641		/* refer to the same tests at the end of writeback_sb_inodes */
1642		if (wrote) {
1643			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644				break;
1645			if (work->nr_pages <= 0)
1646				break;
1647		}
1648	}
1649	/* Leave any unwritten inodes on b_io */
1650	return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654				enum wb_reason reason)
1655{
1656	struct wb_writeback_work work = {
1657		.nr_pages	= nr_pages,
1658		.sync_mode	= WB_SYNC_NONE,
1659		.range_cyclic	= 1,
1660		.reason		= reason,
1661	};
1662	struct blk_plug plug;
1663
1664	blk_start_plug(&plug);
1665	spin_lock(&wb->list_lock);
1666	if (list_empty(&wb->b_io))
1667		queue_io(wb, &work);
1668	__writeback_inodes_wb(wb, &work);
1669	spin_unlock(&wb->list_lock);
1670	blk_finish_plug(&plug);
1671
1672	return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691			 struct wb_writeback_work *work)
1692{
1693	unsigned long wb_start = jiffies;
1694	long nr_pages = work->nr_pages;
1695	unsigned long oldest_jif;
1696	struct inode *inode;
1697	long progress;
1698	struct blk_plug plug;
1699
1700	oldest_jif = jiffies;
1701	work->older_than_this = &oldest_jif;
1702
1703	blk_start_plug(&plug);
1704	spin_lock(&wb->list_lock);
1705	for (;;) {
1706		/*
1707		 * Stop writeback when nr_pages has been consumed
1708		 */
1709		if (work->nr_pages <= 0)
1710			break;
1711
1712		/*
1713		 * Background writeout and kupdate-style writeback may
1714		 * run forever. Stop them if there is other work to do
1715		 * so that e.g. sync can proceed. They'll be restarted
1716		 * after the other works are all done.
1717		 */
1718		if ((work->for_background || work->for_kupdate) &&
1719		    !list_empty(&wb->work_list))
1720			break;
1721
1722		/*
1723		 * For background writeout, stop when we are below the
1724		 * background dirty threshold
1725		 */
1726		if (work->for_background && !wb_over_bg_thresh(wb))
1727			break;
1728
1729		/*
1730		 * Kupdate and background works are special and we want to
1731		 * include all inodes that need writing. Livelock avoidance is
1732		 * handled by these works yielding to any other work so we are
1733		 * safe.
1734		 */
1735		if (work->for_kupdate) {
1736			oldest_jif = jiffies -
1737				msecs_to_jiffies(dirty_expire_interval * 10);
1738		} else if (work->for_background)
1739			oldest_jif = jiffies;
1740
1741		trace_writeback_start(wb, work);
1742		if (list_empty(&wb->b_io))
1743			queue_io(wb, work);
1744		if (work->sb)
1745			progress = writeback_sb_inodes(work->sb, wb, work);
1746		else
1747			progress = __writeback_inodes_wb(wb, work);
1748		trace_writeback_written(wb, work);
1749
1750		wb_update_bandwidth(wb, wb_start);
1751
1752		/*
1753		 * Did we write something? Try for more
1754		 *
1755		 * Dirty inodes are moved to b_io for writeback in batches.
1756		 * The completion of the current batch does not necessarily
1757		 * mean the overall work is done. So we keep looping as long
1758		 * as made some progress on cleaning pages or inodes.
1759		 */
1760		if (progress)
1761			continue;
1762		/*
1763		 * No more inodes for IO, bail
1764		 */
1765		if (list_empty(&wb->b_more_io))
1766			break;
1767		/*
1768		 * Nothing written. Wait for some inode to
1769		 * become available for writeback. Otherwise
1770		 * we'll just busyloop.
1771		 */
1772		trace_writeback_wait(wb, work);
1773		inode = wb_inode(wb->b_more_io.prev);
1774		spin_lock(&inode->i_lock);
1775		spin_unlock(&wb->list_lock);
1776		/* This function drops i_lock... */
1777		inode_sleep_on_writeback(inode);
1778		spin_lock(&wb->list_lock);
1779	}
1780	spin_unlock(&wb->list_lock);
1781	blk_finish_plug(&plug);
1782
1783	return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790{
1791	struct wb_writeback_work *work = NULL;
1792
1793	spin_lock_bh(&wb->work_lock);
1794	if (!list_empty(&wb->work_list)) {
1795		work = list_entry(wb->work_list.next,
1796				  struct wb_writeback_work, list);
1797		list_del_init(&work->list);
1798	}
1799	spin_unlock_bh(&wb->work_lock);
1800	return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809	return global_node_page_state(NR_FILE_DIRTY) +
1810		global_node_page_state(NR_UNSTABLE_NFS) +
1811		get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816	if (wb_over_bg_thresh(wb)) {
1817
1818		struct wb_writeback_work work = {
1819			.nr_pages	= LONG_MAX,
1820			.sync_mode	= WB_SYNC_NONE,
1821			.for_background	= 1,
1822			.range_cyclic	= 1,
1823			.reason		= WB_REASON_BACKGROUND,
1824		};
1825
1826		return wb_writeback(wb, &work);
1827	}
1828
1829	return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834	unsigned long expired;
1835	long nr_pages;
1836
1837	/*
1838	 * When set to zero, disable periodic writeback
1839	 */
1840	if (!dirty_writeback_interval)
1841		return 0;
1842
1843	expired = wb->last_old_flush +
1844			msecs_to_jiffies(dirty_writeback_interval * 10);
1845	if (time_before(jiffies, expired))
1846		return 0;
1847
1848	wb->last_old_flush = jiffies;
1849	nr_pages = get_nr_dirty_pages();
1850
1851	if (nr_pages) {
1852		struct wb_writeback_work work = {
1853			.nr_pages	= nr_pages,
1854			.sync_mode	= WB_SYNC_NONE,
1855			.for_kupdate	= 1,
1856			.range_cyclic	= 1,
1857			.reason		= WB_REASON_PERIODIC,
1858		};
1859
1860		return wb_writeback(wb, &work);
1861	}
1862
1863	return 0;
1864}
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
1871	struct wb_writeback_work *work;
1872	long wrote = 0;
1873
1874	set_bit(WB_writeback_running, &wb->state);
1875	while ((work = get_next_work_item(wb)) != NULL) {
1876		struct wb_completion *done = work->done;
1877
1878		trace_writeback_exec(wb, work);
1879
1880		wrote += wb_writeback(wb, work);
1881
1882		if (work->auto_free)
1883			kfree(work);
1884		if (done && atomic_dec_and_test(&done->cnt))
1885			wake_up_all(&wb->bdi->wb_waitq);
1886	}
1887
1888	/*
 
 
 
 
 
1889	 * Check for periodic writeback, kupdated() style
1890	 */
1891	wrote += wb_check_old_data_flush(wb);
1892	wrote += wb_check_background_flush(wb);
1893	clear_bit(WB_writeback_running, &wb->state);
1894
1895	return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905						struct bdi_writeback, dwork);
1906	long pages_written;
1907
1908	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909	current->flags |= PF_SWAPWRITE;
1910
1911	if (likely(!current_is_workqueue_rescuer() ||
1912		   !test_bit(WB_registered, &wb->state))) {
1913		/*
1914		 * The normal path.  Keep writing back @wb until its
1915		 * work_list is empty.  Note that this path is also taken
1916		 * if @wb is shutting down even when we're running off the
1917		 * rescuer as work_list needs to be drained.
1918		 */
1919		do {
1920			pages_written = wb_do_writeback(wb);
1921			trace_writeback_pages_written(pages_written);
1922		} while (!list_empty(&wb->work_list));
1923	} else {
1924		/*
1925		 * bdi_wq can't get enough workers and we're running off
1926		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927		 * enough for efficient IO.
1928		 */
1929		pages_written = writeback_inodes_wb(wb, 1024,
1930						    WB_REASON_FORKER_THREAD);
1931		trace_writeback_pages_written(pages_written);
1932	}
1933
1934	if (!list_empty(&wb->work_list))
1935		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937		wb_wakeup_delayed(wb);
1938
1939	current->flags &= ~PF_SWAPWRITE;
1940}
1941
1942/*
1943 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947{
1948	struct backing_dev_info *bdi;
1949
1950	/*
1951	 * If we are expecting writeback progress we must submit plugged IO.
1952	 */
1953	if (blk_needs_flush_plug(current))
1954		blk_schedule_flush_plug(current);
1955
1956	if (!nr_pages)
1957		nr_pages = get_nr_dirty_pages();
1958
1959	rcu_read_lock();
1960	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961		struct bdi_writeback *wb;
1962
1963		if (!bdi_has_dirty_io(bdi))
1964			continue;
1965
1966		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968					   false, reason);
1969	}
1970	rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically.  We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system.  So instead we define a separate delayed work
1979 * function which gets called much more rarely.  (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary.  But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993	struct backing_dev_info *bdi;
1994
1995	rcu_read_lock();
1996	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997		struct bdi_writeback *wb;
1998
1999		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000			if (!list_empty(&wb->b_dirty_time))
2001				wb_wakeup(wb);
2002	}
2003	rcu_read_unlock();
2004	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010	return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017	int ret;
2018
2019	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020	if (ret == 0 && write)
2021		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022	return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028		struct dentry *dentry;
2029		const char *name = "?";
2030
2031		dentry = d_find_alias(inode);
2032		if (dentry) {
2033			spin_lock(&dentry->d_lock);
2034			name = (const char *) dentry->d_name.name;
2035		}
2036		printk(KERN_DEBUG
2037		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038		       current->comm, task_pid_nr(current), inode->i_ino,
2039		       name, inode->i_sb->s_id);
2040		if (dentry) {
2041			spin_unlock(&dentry->d_lock);
2042			dput(dentry);
2043		}
2044	}
2045}
2046
2047/**
2048 *	__mark_inode_dirty -	internal function
2049 *	@inode: inode to mark
2050 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 *  	mark_inode_dirty_sync.
 
 
2053 *
2054 * Put the inode on the super block's dirty list.
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074	struct super_block *sb = inode->i_sb;
2075	int dirtytime;
2076
2077	trace_writeback_mark_inode_dirty(inode, flags);
2078
2079	/*
2080	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081	 * dirty the inode itself
2082	 */
2083	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084		trace_writeback_dirty_inode_start(inode, flags);
2085
2086		if (sb->s_op->dirty_inode)
2087			sb->s_op->dirty_inode(inode, flags);
2088
2089		trace_writeback_dirty_inode(inode, flags);
2090	}
2091	if (flags & I_DIRTY_INODE)
2092		flags &= ~I_DIRTY_TIME;
2093	dirtytime = flags & I_DIRTY_TIME;
2094
2095	/*
2096	 * Paired with smp_mb() in __writeback_single_inode() for the
2097	 * following lockless i_state test.  See there for details.
2098	 */
2099	smp_mb();
2100
2101	if (((inode->i_state & flags) == flags) ||
2102	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103		return;
2104
2105	if (unlikely(block_dump))
2106		block_dump___mark_inode_dirty(inode);
2107
2108	spin_lock(&inode->i_lock);
2109	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110		goto out_unlock_inode;
2111	if ((inode->i_state & flags) != flags) {
2112		const int was_dirty = inode->i_state & I_DIRTY;
2113
2114		inode_attach_wb(inode, NULL);
2115
2116		if (flags & I_DIRTY_INODE)
2117			inode->i_state &= ~I_DIRTY_TIME;
2118		inode->i_state |= flags;
2119
2120		/*
2121		 * If the inode is being synced, just update its dirty state.
2122		 * The unlocker will place the inode on the appropriate
2123		 * superblock list, based upon its state.
2124		 */
2125		if (inode->i_state & I_SYNC)
2126			goto out_unlock_inode;
2127
2128		/*
2129		 * Only add valid (hashed) inodes to the superblock's
2130		 * dirty list.  Add blockdev inodes as well.
2131		 */
2132		if (!S_ISBLK(inode->i_mode)) {
2133			if (inode_unhashed(inode))
2134				goto out_unlock_inode;
2135		}
2136		if (inode->i_state & I_FREEING)
2137			goto out_unlock_inode;
2138
2139		/*
2140		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141		 * reposition it (that would break b_dirty time-ordering).
2142		 */
2143		if (!was_dirty) {
2144			struct bdi_writeback *wb;
2145			struct list_head *dirty_list;
2146			bool wakeup_bdi = false;
2147
2148			wb = locked_inode_to_wb_and_lock_list(inode);
2149
2150			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151			     !test_bit(WB_registered, &wb->state),
2152			     "bdi-%s not registered\n", wb->bdi->name);
2153
2154			inode->dirtied_when = jiffies;
2155			if (dirtytime)
2156				inode->dirtied_time_when = jiffies;
2157
2158			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159				dirty_list = &wb->b_dirty;
2160			else
2161				dirty_list = &wb->b_dirty_time;
2162
2163			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164							       dirty_list);
2165
2166			spin_unlock(&wb->list_lock);
2167			trace_writeback_dirty_inode_enqueue(inode);
2168
2169			/*
2170			 * If this is the first dirty inode for this bdi,
2171			 * we have to wake-up the corresponding bdi thread
2172			 * to make sure background write-back happens
2173			 * later.
2174			 */
2175			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2176				wb_wakeup_delayed(wb);
2177			return;
2178		}
2179	}
2180out_unlock_inode:
2181	spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198	LIST_HEAD(sync_list);
2199
2200	/*
2201	 * We need to be protected against the filesystem going from
2202	 * r/o to r/w or vice versa.
2203	 */
2204	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206	mutex_lock(&sb->s_sync_lock);
2207
2208	/*
2209	 * Splice the writeback list onto a temporary list to avoid waiting on
2210	 * inodes that have started writeback after this point.
2211	 *
2212	 * Use rcu_read_lock() to keep the inodes around until we have a
2213	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214	 * the local list because inodes can be dropped from either by writeback
2215	 * completion.
2216	 */
2217	rcu_read_lock();
2218	spin_lock_irq(&sb->s_inode_wblist_lock);
2219	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221	/*
2222	 * Data integrity sync. Must wait for all pages under writeback, because
2223	 * there may have been pages dirtied before our sync call, but which had
2224	 * writeout started before we write it out.  In which case, the inode
2225	 * may not be on the dirty list, but we still have to wait for that
2226	 * writeout.
2227	 */
2228	while (!list_empty(&sync_list)) {
2229		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230						       i_wb_list);
2231		struct address_space *mapping = inode->i_mapping;
2232
2233		/*
2234		 * Move each inode back to the wb list before we drop the lock
2235		 * to preserve consistency between i_wb_list and the mapping
2236		 * writeback tag. Writeback completion is responsible to remove
2237		 * the inode from either list once the writeback tag is cleared.
2238		 */
2239		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241		/*
2242		 * The mapping can appear untagged while still on-list since we
2243		 * do not have the mapping lock. Skip it here, wb completion
2244		 * will remove it.
2245		 */
2246		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247			continue;
2248
2249		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251		spin_lock(&inode->i_lock);
2252		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253			spin_unlock(&inode->i_lock);
2254
2255			spin_lock_irq(&sb->s_inode_wblist_lock);
2256			continue;
2257		}
2258		__iget(inode);
2259		spin_unlock(&inode->i_lock);
2260		rcu_read_unlock();
2261
2262		/*
2263		 * We keep the error status of individual mapping so that
2264		 * applications can catch the writeback error using fsync(2).
2265		 * See filemap_fdatawait_keep_errors() for details.
2266		 */
2267		filemap_fdatawait_keep_errors(mapping);
2268
2269		cond_resched();
2270
2271		iput(inode);
2272
2273		rcu_read_lock();
2274		spin_lock_irq(&sb->s_inode_wblist_lock);
2275	}
2276	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277	rcu_read_unlock();
2278	mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282				     enum wb_reason reason, bool skip_if_busy)
2283{
2284	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2285	struct wb_writeback_work work = {
2286		.sb			= sb,
2287		.sync_mode		= WB_SYNC_NONE,
2288		.tagged_writepages	= 1,
2289		.done			= &done,
2290		.nr_pages		= nr,
2291		.reason			= reason,
2292	};
2293	struct backing_dev_info *bdi = sb->s_bdi;
2294
2295	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296		return;
2297	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300	wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314			    unsigned long nr,
2315			    enum wb_reason reason)
2316{
2317	__writeback_inodes_sb_nr(sb, nr, reason, false);
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346				   enum wb_reason reason)
2347{
2348	if (!down_read_trylock(&sb->s_umount))
2349		return false;
2350
2351	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352	up_read(&sb->s_umount);
2353	return true;
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366{
2367	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb	-	sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2381	struct wb_writeback_work work = {
2382		.sb		= sb,
2383		.sync_mode	= WB_SYNC_ALL,
2384		.nr_pages	= LONG_MAX,
2385		.range_cyclic	= 0,
2386		.done		= &done,
2387		.reason		= WB_REASON_SYNC,
2388		.for_sync	= 1,
2389	};
2390	struct backing_dev_info *bdi = sb->s_bdi;
2391
2392	/*
2393	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395	 * bdi_has_dirty() need to be written out too.
2396	 */
2397	if (bdi == &noop_backing_dev_info)
2398		return;
2399	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
 
 
2401	bdi_split_work_to_wbs(bdi, &work, false);
2402	wb_wait_for_completion(bdi, &done);
 
2403
2404	wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now	-	write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
2420	struct writeback_control wbc = {
2421		.nr_to_write = LONG_MAX,
2422		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423		.range_start = 0,
2424		.range_end = LLONG_MAX,
2425	};
2426
2427	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428		wbc.nr_to_write = 0;
2429
2430	might_sleep();
2431	return writeback_single_inode(inode, &wbc);
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk.  It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448	return writeback_single_inode(inode, wbc);
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463	struct writeback_control wbc = {
2464		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465		.nr_to_write = 0, /* metadata-only */
2466	};
2467
2468	return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/fs-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains all the functions related to writing back and waiting
   8 * upon dirty inodes against superblocks, and writing back dirty
   9 * pages against inodes.  ie: data writeback.  Writeout of the
  10 * inode itself is not handled here.
  11 *
  12 * 10Apr2002	Andrew Morton
  13 *		Split out of fs/inode.c
  14 *		Additions for address_space-based writeback
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/export.h>
  19#include <linux/spinlock.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24#include <linux/pagemap.h>
  25#include <linux/kthread.h>
  26#include <linux/writeback.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/tracepoint.h>
  30#include <linux/device.h>
  31#include <linux/memcontrol.h>
  32#include "internal.h"
  33
  34/*
  35 * 4MB minimal write chunk size
  36 */
  37#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  38
 
 
 
 
  39/*
  40 * Passed into wb_writeback(), essentially a subset of writeback_control
  41 */
  42struct wb_writeback_work {
  43	long nr_pages;
  44	struct super_block *sb;
  45	unsigned long *older_than_this;
  46	enum writeback_sync_modes sync_mode;
  47	unsigned int tagged_writepages:1;
  48	unsigned int for_kupdate:1;
  49	unsigned int range_cyclic:1;
  50	unsigned int for_background:1;
  51	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  52	unsigned int auto_free:1;	/* free on completion */
  53	enum wb_reason reason;		/* why was writeback initiated? */
  54
  55	struct list_head list;		/* pending work list */
  56	struct wb_completion *done;	/* set if the caller waits */
  57};
  58
  59/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 * If an inode is constantly having its pages dirtied, but then the
  61 * updates stop dirtytime_expire_interval seconds in the past, it's
  62 * possible for the worst case time between when an inode has its
  63 * timestamps updated and when they finally get written out to be two
  64 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  65 * seconds), which means most of the time inodes will have their
  66 * timestamps written to disk after 12 hours, but in the worst case a
  67 * few inodes might not their timestamps updated for 24 hours.
  68 */
  69unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  70
  71static inline struct inode *wb_inode(struct list_head *head)
  72{
  73	return list_entry(head, struct inode, i_io_list);
  74}
  75
  76/*
  77 * Include the creation of the trace points after defining the
  78 * wb_writeback_work structure and inline functions so that the definition
  79 * remains local to this file.
  80 */
  81#define CREATE_TRACE_POINTS
  82#include <trace/events/writeback.h>
  83
  84EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  85
  86static bool wb_io_lists_populated(struct bdi_writeback *wb)
  87{
  88	if (wb_has_dirty_io(wb)) {
  89		return false;
  90	} else {
  91		set_bit(WB_has_dirty_io, &wb->state);
  92		WARN_ON_ONCE(!wb->avg_write_bandwidth);
  93		atomic_long_add(wb->avg_write_bandwidth,
  94				&wb->bdi->tot_write_bandwidth);
  95		return true;
  96	}
  97}
  98
  99static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 100{
 101	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 102	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 103		clear_bit(WB_has_dirty_io, &wb->state);
 104		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 105					&wb->bdi->tot_write_bandwidth) < 0);
 106	}
 107}
 108
 109/**
 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 111 * @inode: inode to be moved
 112 * @wb: target bdi_writeback
 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 114 *
 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 116 * Returns %true if @inode is the first occupant of the !dirty_time IO
 117 * lists; otherwise, %false.
 118 */
 119static bool inode_io_list_move_locked(struct inode *inode,
 120				      struct bdi_writeback *wb,
 121				      struct list_head *head)
 122{
 123	assert_spin_locked(&wb->list_lock);
 124
 125	list_move(&inode->i_io_list, head);
 126
 127	/* dirty_time doesn't count as dirty_io until expiration */
 128	if (head != &wb->b_dirty_time)
 129		return wb_io_lists_populated(wb);
 130
 131	wb_io_lists_depopulated(wb);
 132	return false;
 133}
 134
 135/**
 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 137 * @inode: inode to be removed
 138 * @wb: bdi_writeback @inode is being removed from
 139 *
 140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 141 * clear %WB_has_dirty_io if all are empty afterwards.
 142 */
 143static void inode_io_list_del_locked(struct inode *inode,
 144				     struct bdi_writeback *wb)
 145{
 146	assert_spin_locked(&wb->list_lock);
 147
 148	list_del_init(&inode->i_io_list);
 149	wb_io_lists_depopulated(wb);
 150}
 151
 152static void wb_wakeup(struct bdi_writeback *wb)
 153{
 154	spin_lock_bh(&wb->work_lock);
 155	if (test_bit(WB_registered, &wb->state))
 156		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 157	spin_unlock_bh(&wb->work_lock);
 158}
 159
 160static void finish_writeback_work(struct bdi_writeback *wb,
 161				  struct wb_writeback_work *work)
 162{
 163	struct wb_completion *done = work->done;
 164
 165	if (work->auto_free)
 166		kfree(work);
 167	if (done) {
 168		wait_queue_head_t *waitq = done->waitq;
 169
 170		/* @done can't be accessed after the following dec */
 171		if (atomic_dec_and_test(&done->cnt))
 172			wake_up_all(waitq);
 173	}
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 
 
 
 181	if (work->done)
 182		atomic_inc(&work->done->cnt);
 183
 184	spin_lock_bh(&wb->work_lock);
 185
 186	if (test_bit(WB_registered, &wb->state)) {
 187		list_add_tail(&work->list, &wb->work_list);
 188		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 189	} else
 190		finish_writeback_work(wb, work);
 191
 192	spin_unlock_bh(&wb->work_lock);
 193}
 194
 195/**
 196 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 
 197 * @done: target wb_completion
 198 *
 199 * Wait for one or more work items issued to @bdi with their ->done field
 200 * set to @done, which should have been initialized with
 201 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 202 * are completed.  Work items which are waited upon aren't freed
 203 * automatically on completion.
 204 */
 205void wb_wait_for_completion(struct wb_completion *done)
 
 206{
 207	atomic_dec(&done->cnt);		/* put down the initial count */
 208	wait_event(*done->waitq, !atomic_read(&done->cnt));
 209}
 210
 211#ifdef CONFIG_CGROUP_WRITEBACK
 212
 213/*
 214 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 215 * how they're used.
 216 *
 217 * These paramters are inherently heuristical as the detection target
 218 * itself is fuzzy.  All we want to do is detaching an inode from the
 219 * current owner if it's being written to by some other cgroups too much.
 220 *
 221 * The current cgroup writeback is built on the assumption that multiple
 222 * cgroups writing to the same inode concurrently is very rare and a mode
 223 * of operation which isn't well supported.  As such, the goal is not
 224 * taking too long when a different cgroup takes over an inode while
 225 * avoiding too aggressive flip-flops from occasional foreign writes.
 226 *
 227 * We record, very roughly, 2s worth of IO time history and if more than
 228 * half of that is foreign, trigger the switch.  The recording is quantized
 229 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 230 * writes smaller than 1/8 of avg size are ignored.
 231 */
 232#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 233#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 234#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
 235#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 236
 237#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 238#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 239					/* each slot's duration is 2s / 16 */
 240#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 241					/* if foreign slots >= 8, switch */
 242#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 243					/* one round can affect upto 5 slots */
 244#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
 245
 246static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 247static struct workqueue_struct *isw_wq;
 248
 249void __inode_attach_wb(struct inode *inode, struct page *page)
 250{
 251	struct backing_dev_info *bdi = inode_to_bdi(inode);
 252	struct bdi_writeback *wb = NULL;
 253
 254	if (inode_cgwb_enabled(inode)) {
 255		struct cgroup_subsys_state *memcg_css;
 256
 257		if (page) {
 258			memcg_css = mem_cgroup_css_from_page(page);
 259			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 260		} else {
 261			/* must pin memcg_css, see wb_get_create() */
 262			memcg_css = task_get_css(current, memory_cgrp_id);
 263			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 264			css_put(memcg_css);
 265		}
 266	}
 267
 268	if (!wb)
 269		wb = &bdi->wb;
 270
 271	/*
 272	 * There may be multiple instances of this function racing to
 273	 * update the same inode.  Use cmpxchg() to tell the winner.
 274	 */
 275	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 276		wb_put(wb);
 277}
 278EXPORT_SYMBOL_GPL(__inode_attach_wb);
 279
 280/**
 281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 282 * @inode: inode of interest with i_lock held
 283 *
 284 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 285 * held on entry and is released on return.  The returned wb is guaranteed
 286 * to stay @inode's associated wb until its list_lock is released.
 287 */
 288static struct bdi_writeback *
 289locked_inode_to_wb_and_lock_list(struct inode *inode)
 290	__releases(&inode->i_lock)
 291	__acquires(&wb->list_lock)
 292{
 293	while (true) {
 294		struct bdi_writeback *wb = inode_to_wb(inode);
 295
 296		/*
 297		 * inode_to_wb() association is protected by both
 298		 * @inode->i_lock and @wb->list_lock but list_lock nests
 299		 * outside i_lock.  Drop i_lock and verify that the
 300		 * association hasn't changed after acquiring list_lock.
 301		 */
 302		wb_get(wb);
 303		spin_unlock(&inode->i_lock);
 304		spin_lock(&wb->list_lock);
 305
 306		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 307		if (likely(wb == inode->i_wb)) {
 308			wb_put(wb);	/* @inode already has ref */
 309			return wb;
 310		}
 311
 312		spin_unlock(&wb->list_lock);
 313		wb_put(wb);
 314		cpu_relax();
 315		spin_lock(&inode->i_lock);
 316	}
 317}
 318
 319/**
 320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 321 * @inode: inode of interest
 322 *
 323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 324 * on entry.
 325 */
 326static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 327	__acquires(&wb->list_lock)
 328{
 329	spin_lock(&inode->i_lock);
 330	return locked_inode_to_wb_and_lock_list(inode);
 331}
 332
 333struct inode_switch_wbs_context {
 334	struct inode		*inode;
 335	struct bdi_writeback	*new_wb;
 336
 337	struct rcu_head		rcu_head;
 338	struct work_struct	work;
 339};
 340
 341static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 342{
 343	down_write(&bdi->wb_switch_rwsem);
 344}
 345
 346static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 347{
 348	up_write(&bdi->wb_switch_rwsem);
 349}
 350
 351static void inode_switch_wbs_work_fn(struct work_struct *work)
 352{
 353	struct inode_switch_wbs_context *isw =
 354		container_of(work, struct inode_switch_wbs_context, work);
 355	struct inode *inode = isw->inode;
 356	struct backing_dev_info *bdi = inode_to_bdi(inode);
 357	struct address_space *mapping = inode->i_mapping;
 358	struct bdi_writeback *old_wb = inode->i_wb;
 359	struct bdi_writeback *new_wb = isw->new_wb;
 360	XA_STATE(xas, &mapping->i_pages, 0);
 361	struct page *page;
 362	bool switched = false;
 363
 364	/*
 365	 * If @inode switches cgwb membership while sync_inodes_sb() is
 366	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
 367	 */
 368	down_read(&bdi->wb_switch_rwsem);
 369
 370	/*
 371	 * By the time control reaches here, RCU grace period has passed
 372	 * since I_WB_SWITCH assertion and all wb stat update transactions
 373	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 374	 * synchronizing against the i_pages lock.
 375	 *
 376	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 377	 * gives us exclusion against all wb related operations on @inode
 378	 * including IO list manipulations and stat updates.
 379	 */
 380	if (old_wb < new_wb) {
 381		spin_lock(&old_wb->list_lock);
 382		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 383	} else {
 384		spin_lock(&new_wb->list_lock);
 385		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 386	}
 387	spin_lock(&inode->i_lock);
 388	xa_lock_irq(&mapping->i_pages);
 389
 390	/*
 391	 * Once I_FREEING is visible under i_lock, the eviction path owns
 392	 * the inode and we shouldn't modify ->i_io_list.
 393	 */
 394	if (unlikely(inode->i_state & I_FREEING))
 395		goto skip_switch;
 396
 397	trace_inode_switch_wbs(inode, old_wb, new_wb);
 398
 399	/*
 400	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 401	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 402	 * pages actually under writeback.
 403	 */
 404	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
 405		if (PageDirty(page)) {
 406			dec_wb_stat(old_wb, WB_RECLAIMABLE);
 407			inc_wb_stat(new_wb, WB_RECLAIMABLE);
 
 
 
 408		}
 409	}
 410
 411	xas_set(&xas, 0);
 412	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
 413		WARN_ON_ONCE(!PageWriteback(page));
 414		dec_wb_stat(old_wb, WB_WRITEBACK);
 415		inc_wb_stat(new_wb, WB_WRITEBACK);
 
 
 
 
 416	}
 417
 418	wb_get(new_wb);
 419
 420	/*
 421	 * Transfer to @new_wb's IO list if necessary.  The specific list
 422	 * @inode was on is ignored and the inode is put on ->b_dirty which
 423	 * is always correct including from ->b_dirty_time.  The transfer
 424	 * preserves @inode->dirtied_when ordering.
 425	 */
 426	if (!list_empty(&inode->i_io_list)) {
 427		struct inode *pos;
 428
 429		inode_io_list_del_locked(inode, old_wb);
 430		inode->i_wb = new_wb;
 431		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 432			if (time_after_eq(inode->dirtied_when,
 433					  pos->dirtied_when))
 434				break;
 435		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 436	} else {
 437		inode->i_wb = new_wb;
 438	}
 439
 440	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 441	inode->i_wb_frn_winner = 0;
 442	inode->i_wb_frn_avg_time = 0;
 443	inode->i_wb_frn_history = 0;
 444	switched = true;
 445skip_switch:
 446	/*
 447	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 448	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 449	 */
 450	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 451
 452	xa_unlock_irq(&mapping->i_pages);
 453	spin_unlock(&inode->i_lock);
 454	spin_unlock(&new_wb->list_lock);
 455	spin_unlock(&old_wb->list_lock);
 456
 457	up_read(&bdi->wb_switch_rwsem);
 458
 459	if (switched) {
 460		wb_wakeup(new_wb);
 461		wb_put(old_wb);
 462	}
 463	wb_put(new_wb);
 464
 465	iput(inode);
 466	kfree(isw);
 467
 468	atomic_dec(&isw_nr_in_flight);
 469}
 470
 471static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 472{
 473	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 474				struct inode_switch_wbs_context, rcu_head);
 475
 476	/* needs to grab bh-unsafe locks, bounce to work item */
 477	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 478	queue_work(isw_wq, &isw->work);
 479}
 480
 481/**
 482 * inode_switch_wbs - change the wb association of an inode
 483 * @inode: target inode
 484 * @new_wb_id: ID of the new wb
 485 *
 486 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 487 * switching is performed asynchronously and may fail silently.
 488 */
 489static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 490{
 491	struct backing_dev_info *bdi = inode_to_bdi(inode);
 492	struct cgroup_subsys_state *memcg_css;
 493	struct inode_switch_wbs_context *isw;
 494
 495	/* noop if seems to be already in progress */
 496	if (inode->i_state & I_WB_SWITCH)
 497		return;
 498
 499	/* avoid queueing a new switch if too many are already in flight */
 500	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
 501		return;
 502
 503	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 504	if (!isw)
 505		return;
 506
 507	/* find and pin the new wb */
 508	rcu_read_lock();
 509	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 510	if (memcg_css)
 511		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 512	rcu_read_unlock();
 513	if (!isw->new_wb)
 514		goto out_free;
 515
 516	/* while holding I_WB_SWITCH, no one else can update the association */
 517	spin_lock(&inode->i_lock);
 518	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 519	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 520	    inode_to_wb(inode) == isw->new_wb) {
 521		spin_unlock(&inode->i_lock);
 522		goto out_free;
 523	}
 524	inode->i_state |= I_WB_SWITCH;
 525	__iget(inode);
 526	spin_unlock(&inode->i_lock);
 527
 528	isw->inode = inode;
 529
 
 
 530	/*
 531	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 532	 * the RCU protected stat update paths to grab the i_page
 533	 * lock so that stat transfer can synchronize against them.
 534	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 535	 */
 536	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 537
 538	atomic_inc(&isw_nr_in_flight);
 539	return;
 540
 541out_free:
 542	if (isw->new_wb)
 543		wb_put(isw->new_wb);
 544	kfree(isw);
 545}
 546
 547/**
 548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 549 * @wbc: writeback_control of interest
 550 * @inode: target inode
 551 *
 552 * @inode is locked and about to be written back under the control of @wbc.
 553 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 554 * writeback completion, wbc_detach_inode() should be called.  This is used
 555 * to track the cgroup writeback context.
 556 */
 557void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 558				 struct inode *inode)
 559{
 560	if (!inode_cgwb_enabled(inode)) {
 561		spin_unlock(&inode->i_lock);
 562		return;
 563	}
 564
 565	wbc->wb = inode_to_wb(inode);
 566	wbc->inode = inode;
 567
 568	wbc->wb_id = wbc->wb->memcg_css->id;
 569	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 570	wbc->wb_tcand_id = 0;
 571	wbc->wb_bytes = 0;
 572	wbc->wb_lcand_bytes = 0;
 573	wbc->wb_tcand_bytes = 0;
 574
 575	wb_get(wbc->wb);
 576	spin_unlock(&inode->i_lock);
 577
 578	/*
 579	 * A dying wb indicates that either the blkcg associated with the
 580	 * memcg changed or the associated memcg is dying.  In the first
 581	 * case, a replacement wb should already be available and we should
 582	 * refresh the wb immediately.  In the second case, trying to
 583	 * refresh will keep failing.
 584	 */
 585	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
 586		inode_switch_wbs(inode, wbc->wb_id);
 587}
 588EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
 589
 590/**
 591 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 592 * @wbc: writeback_control of the just finished writeback
 593 *
 594 * To be called after a writeback attempt of an inode finishes and undoes
 595 * wbc_attach_and_unlock_inode().  Can be called under any context.
 596 *
 597 * As concurrent write sharing of an inode is expected to be very rare and
 598 * memcg only tracks page ownership on first-use basis severely confining
 599 * the usefulness of such sharing, cgroup writeback tracks ownership
 600 * per-inode.  While the support for concurrent write sharing of an inode
 601 * is deemed unnecessary, an inode being written to by different cgroups at
 602 * different points in time is a lot more common, and, more importantly,
 603 * charging only by first-use can too readily lead to grossly incorrect
 604 * behaviors (single foreign page can lead to gigabytes of writeback to be
 605 * incorrectly attributed).
 606 *
 607 * To resolve this issue, cgroup writeback detects the majority dirtier of
 608 * an inode and transfers the ownership to it.  To avoid unnnecessary
 609 * oscillation, the detection mechanism keeps track of history and gives
 610 * out the switch verdict only if the foreign usage pattern is stable over
 611 * a certain amount of time and/or writeback attempts.
 612 *
 613 * On each writeback attempt, @wbc tries to detect the majority writer
 614 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 615 * count from the majority voting, it also counts the bytes written for the
 616 * current wb and the last round's winner wb (max of last round's current
 617 * wb, the winner from two rounds ago, and the last round's majority
 618 * candidate).  Keeping track of the historical winner helps the algorithm
 619 * to semi-reliably detect the most active writer even when it's not the
 620 * absolute majority.
 621 *
 622 * Once the winner of the round is determined, whether the winner is
 623 * foreign or not and how much IO time the round consumed is recorded in
 624 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 625 * over a certain threshold, the switch verdict is given.
 626 */
 627void wbc_detach_inode(struct writeback_control *wbc)
 628{
 629	struct bdi_writeback *wb = wbc->wb;
 630	struct inode *inode = wbc->inode;
 631	unsigned long avg_time, max_bytes, max_time;
 632	u16 history;
 633	int max_id;
 634
 635	if (!wb)
 636		return;
 637
 638	history = inode->i_wb_frn_history;
 639	avg_time = inode->i_wb_frn_avg_time;
 640
 641	/* pick the winner of this round */
 642	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 643	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 644		max_id = wbc->wb_id;
 645		max_bytes = wbc->wb_bytes;
 646	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 647		max_id = wbc->wb_lcand_id;
 648		max_bytes = wbc->wb_lcand_bytes;
 649	} else {
 650		max_id = wbc->wb_tcand_id;
 651		max_bytes = wbc->wb_tcand_bytes;
 652	}
 653
 654	/*
 655	 * Calculate the amount of IO time the winner consumed and fold it
 656	 * into the running average kept per inode.  If the consumed IO
 657	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 658	 * deciding whether to switch or not.  This is to prevent one-off
 659	 * small dirtiers from skewing the verdict.
 660	 */
 661	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 662				wb->avg_write_bandwidth);
 663	if (avg_time)
 664		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 665			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 666	else
 667		avg_time = max_time;	/* immediate catch up on first run */
 668
 669	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 670		int slots;
 671
 672		/*
 673		 * The switch verdict is reached if foreign wb's consume
 674		 * more than a certain proportion of IO time in a
 675		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 676		 * history mask where each bit represents one sixteenth of
 677		 * the period.  Determine the number of slots to shift into
 678		 * history from @max_time.
 679		 */
 680		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 681			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 682		history <<= slots;
 683		if (wbc->wb_id != max_id)
 684			history |= (1U << slots) - 1;
 685
 686		if (history)
 687			trace_inode_foreign_history(inode, wbc, history);
 688
 689		/*
 690		 * Switch if the current wb isn't the consistent winner.
 691		 * If there are multiple closely competing dirtiers, the
 692		 * inode may switch across them repeatedly over time, which
 693		 * is okay.  The main goal is avoiding keeping an inode on
 694		 * the wrong wb for an extended period of time.
 695		 */
 696		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 697			inode_switch_wbs(inode, max_id);
 698	}
 699
 700	/*
 701	 * Multiple instances of this function may race to update the
 702	 * following fields but we don't mind occassional inaccuracies.
 703	 */
 704	inode->i_wb_frn_winner = max_id;
 705	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 706	inode->i_wb_frn_history = history;
 707
 708	wb_put(wbc->wb);
 709	wbc->wb = NULL;
 710}
 711EXPORT_SYMBOL_GPL(wbc_detach_inode);
 712
 713/**
 714 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
 715 * @wbc: writeback_control of the writeback in progress
 716 * @page: page being written out
 717 * @bytes: number of bytes being written out
 718 *
 719 * @bytes from @page are about to written out during the writeback
 720 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 721 * wbc_detach_inode().
 722 */
 723void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
 724			      size_t bytes)
 725{
 726	struct cgroup_subsys_state *css;
 727	int id;
 728
 729	/*
 730	 * pageout() path doesn't attach @wbc to the inode being written
 731	 * out.  This is intentional as we don't want the function to block
 732	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 733	 * regular writeback instead of writing things out itself.
 734	 */
 735	if (!wbc->wb || wbc->no_cgroup_owner)
 736		return;
 737
 738	css = mem_cgroup_css_from_page(page);
 739	/* dead cgroups shouldn't contribute to inode ownership arbitration */
 740	if (!(css->flags & CSS_ONLINE))
 741		return;
 742
 743	id = css->id;
 744
 745	if (id == wbc->wb_id) {
 746		wbc->wb_bytes += bytes;
 747		return;
 748	}
 749
 750	if (id == wbc->wb_lcand_id)
 751		wbc->wb_lcand_bytes += bytes;
 752
 753	/* Boyer-Moore majority vote algorithm */
 754	if (!wbc->wb_tcand_bytes)
 755		wbc->wb_tcand_id = id;
 756	if (id == wbc->wb_tcand_id)
 757		wbc->wb_tcand_bytes += bytes;
 758	else
 759		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 760}
 761EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
 762
 763/**
 764 * inode_congested - test whether an inode is congested
 765 * @inode: inode to test for congestion (may be NULL)
 766 * @cong_bits: mask of WB_[a]sync_congested bits to test
 767 *
 768 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 769 * bits to test and the return value is the mask of set bits.
 770 *
 771 * If cgroup writeback is enabled for @inode, the congestion state is
 772 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 773 * associated with @inode is congested; otherwise, the root wb's congestion
 774 * state is used.
 775 *
 776 * @inode is allowed to be NULL as this function is often called on
 777 * mapping->host which is NULL for the swapper space.
 778 */
 779int inode_congested(struct inode *inode, int cong_bits)
 780{
 781	/*
 782	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 783	 * Start transaction iff ->i_wb is visible.
 784	 */
 785	if (inode && inode_to_wb_is_valid(inode)) {
 786		struct bdi_writeback *wb;
 787		struct wb_lock_cookie lock_cookie = {};
 788		bool congested;
 789
 790		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
 791		congested = wb_congested(wb, cong_bits);
 792		unlocked_inode_to_wb_end(inode, &lock_cookie);
 793		return congested;
 794	}
 795
 796	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 797}
 798EXPORT_SYMBOL_GPL(inode_congested);
 799
 800/**
 801 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 802 * @wb: target bdi_writeback to split @nr_pages to
 803 * @nr_pages: number of pages to write for the whole bdi
 804 *
 805 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 806 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 807 * @wb->bdi.
 808 */
 809static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 810{
 811	unsigned long this_bw = wb->avg_write_bandwidth;
 812	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 813
 814	if (nr_pages == LONG_MAX)
 815		return LONG_MAX;
 816
 817	/*
 818	 * This may be called on clean wb's and proportional distribution
 819	 * may not make sense, just use the original @nr_pages in those
 820	 * cases.  In general, we wanna err on the side of writing more.
 821	 */
 822	if (!tot_bw || this_bw >= tot_bw)
 823		return nr_pages;
 824	else
 825		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 826}
 827
 828/**
 829 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 830 * @bdi: target backing_dev_info
 831 * @base_work: wb_writeback_work to issue
 832 * @skip_if_busy: skip wb's which already have writeback in progress
 833 *
 834 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 835 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 836 * distributed to the busy wbs according to each wb's proportion in the
 837 * total active write bandwidth of @bdi.
 838 */
 839static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 840				  struct wb_writeback_work *base_work,
 841				  bool skip_if_busy)
 842{
 843	struct bdi_writeback *last_wb = NULL;
 844	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 845					      struct bdi_writeback, bdi_node);
 846
 847	might_sleep();
 848restart:
 849	rcu_read_lock();
 850	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 851		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
 852		struct wb_writeback_work fallback_work;
 853		struct wb_writeback_work *work;
 854		long nr_pages;
 855
 856		if (last_wb) {
 857			wb_put(last_wb);
 858			last_wb = NULL;
 859		}
 860
 861		/* SYNC_ALL writes out I_DIRTY_TIME too */
 862		if (!wb_has_dirty_io(wb) &&
 863		    (base_work->sync_mode == WB_SYNC_NONE ||
 864		     list_empty(&wb->b_dirty_time)))
 865			continue;
 866		if (skip_if_busy && writeback_in_progress(wb))
 867			continue;
 868
 869		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 870
 871		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 872		if (work) {
 873			*work = *base_work;
 874			work->nr_pages = nr_pages;
 875			work->auto_free = 1;
 876			wb_queue_work(wb, work);
 877			continue;
 878		}
 879
 880		/* alloc failed, execute synchronously using on-stack fallback */
 881		work = &fallback_work;
 882		*work = *base_work;
 883		work->nr_pages = nr_pages;
 884		work->auto_free = 0;
 885		work->done = &fallback_work_done;
 886
 887		wb_queue_work(wb, work);
 888
 889		/*
 890		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 891		 * continuing iteration from @wb after dropping and
 892		 * regrabbing rcu read lock.
 893		 */
 894		wb_get(wb);
 895		last_wb = wb;
 896
 897		rcu_read_unlock();
 898		wb_wait_for_completion(&fallback_work_done);
 899		goto restart;
 900	}
 901	rcu_read_unlock();
 902
 903	if (last_wb)
 904		wb_put(last_wb);
 905}
 906
 907/**
 908 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
 909 * @bdi_id: target bdi id
 910 * @memcg_id: target memcg css id
 911 * @nr: number of pages to write, 0 for best-effort dirty flushing
 912 * @reason: reason why some writeback work initiated
 913 * @done: target wb_completion
 914 *
 915 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
 916 * with the specified parameters.
 917 */
 918int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
 919			   enum wb_reason reason, struct wb_completion *done)
 920{
 921	struct backing_dev_info *bdi;
 922	struct cgroup_subsys_state *memcg_css;
 923	struct bdi_writeback *wb;
 924	struct wb_writeback_work *work;
 925	int ret;
 926
 927	/* lookup bdi and memcg */
 928	bdi = bdi_get_by_id(bdi_id);
 929	if (!bdi)
 930		return -ENOENT;
 931
 932	rcu_read_lock();
 933	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
 934	if (memcg_css && !css_tryget(memcg_css))
 935		memcg_css = NULL;
 936	rcu_read_unlock();
 937	if (!memcg_css) {
 938		ret = -ENOENT;
 939		goto out_bdi_put;
 940	}
 941
 942	/*
 943	 * And find the associated wb.  If the wb isn't there already
 944	 * there's nothing to flush, don't create one.
 945	 */
 946	wb = wb_get_lookup(bdi, memcg_css);
 947	if (!wb) {
 948		ret = -ENOENT;
 949		goto out_css_put;
 950	}
 951
 952	/*
 953	 * If @nr is zero, the caller is attempting to write out most of
 954	 * the currently dirty pages.  Let's take the current dirty page
 955	 * count and inflate it by 25% which should be large enough to
 956	 * flush out most dirty pages while avoiding getting livelocked by
 957	 * concurrent dirtiers.
 958	 */
 959	if (!nr) {
 960		unsigned long filepages, headroom, dirty, writeback;
 961
 962		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
 963				      &writeback);
 964		nr = dirty * 10 / 8;
 965	}
 966
 967	/* issue the writeback work */
 968	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
 969	if (work) {
 970		work->nr_pages = nr;
 971		work->sync_mode = WB_SYNC_NONE;
 972		work->range_cyclic = 1;
 973		work->reason = reason;
 974		work->done = done;
 975		work->auto_free = 1;
 976		wb_queue_work(wb, work);
 977		ret = 0;
 978	} else {
 979		ret = -ENOMEM;
 980	}
 981
 982	wb_put(wb);
 983out_css_put:
 984	css_put(memcg_css);
 985out_bdi_put:
 986	bdi_put(bdi);
 987	return ret;
 988}
 989
 990/**
 991 * cgroup_writeback_umount - flush inode wb switches for umount
 992 *
 993 * This function is called when a super_block is about to be destroyed and
 994 * flushes in-flight inode wb switches.  An inode wb switch goes through
 995 * RCU and then workqueue, so the two need to be flushed in order to ensure
 996 * that all previously scheduled switches are finished.  As wb switches are
 997 * rare occurrences and synchronize_rcu() can take a while, perform
 998 * flushing iff wb switches are in flight.
 999 */
1000void cgroup_writeback_umount(void)
1001{
1002	if (atomic_read(&isw_nr_in_flight)) {
1003		/*
1004		 * Use rcu_barrier() to wait for all pending callbacks to
1005		 * ensure that all in-flight wb switches are in the workqueue.
1006		 */
1007		rcu_barrier();
1008		flush_workqueue(isw_wq);
1009	}
1010}
1011
1012static int __init cgroup_writeback_init(void)
1013{
1014	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1015	if (!isw_wq)
1016		return -ENOMEM;
1017	return 0;
1018}
1019fs_initcall(cgroup_writeback_init);
1020
1021#else	/* CONFIG_CGROUP_WRITEBACK */
1022
1023static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1024static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025
1026static struct bdi_writeback *
1027locked_inode_to_wb_and_lock_list(struct inode *inode)
1028	__releases(&inode->i_lock)
1029	__acquires(&wb->list_lock)
1030{
1031	struct bdi_writeback *wb = inode_to_wb(inode);
1032
1033	spin_unlock(&inode->i_lock);
1034	spin_lock(&wb->list_lock);
1035	return wb;
1036}
1037
1038static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1039	__acquires(&wb->list_lock)
1040{
1041	struct bdi_writeback *wb = inode_to_wb(inode);
1042
1043	spin_lock(&wb->list_lock);
1044	return wb;
1045}
1046
1047static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1048{
1049	return nr_pages;
1050}
1051
1052static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1053				  struct wb_writeback_work *base_work,
1054				  bool skip_if_busy)
1055{
1056	might_sleep();
1057
1058	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1059		base_work->auto_free = 0;
1060		wb_queue_work(&bdi->wb, base_work);
1061	}
1062}
1063
1064#endif	/* CONFIG_CGROUP_WRITEBACK */
1065
1066/*
1067 * Add in the number of potentially dirty inodes, because each inode
1068 * write can dirty pagecache in the underlying blockdev.
1069 */
1070static unsigned long get_nr_dirty_pages(void)
1071{
1072	return global_node_page_state(NR_FILE_DIRTY) +
1073		global_node_page_state(NR_UNSTABLE_NFS) +
1074		get_nr_dirty_inodes();
1075}
1076
1077static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1078{
1079	if (!wb_has_dirty_io(wb))
1080		return;
1081
1082	/*
1083	 * All callers of this function want to start writeback of all
1084	 * dirty pages. Places like vmscan can call this at a very
1085	 * high frequency, causing pointless allocations of tons of
1086	 * work items and keeping the flusher threads busy retrieving
1087	 * that work. Ensure that we only allow one of them pending and
1088	 * inflight at the time.
1089	 */
1090	if (test_bit(WB_start_all, &wb->state) ||
1091	    test_and_set_bit(WB_start_all, &wb->state))
 
 
 
1092		return;
 
 
 
 
 
 
 
1093
1094	wb->start_all_reason = reason;
1095	wb_wakeup(wb);
1096}
1097
1098/**
1099 * wb_start_background_writeback - start background writeback
1100 * @wb: bdi_writback to write from
1101 *
1102 * Description:
1103 *   This makes sure WB_SYNC_NONE background writeback happens. When
1104 *   this function returns, it is only guaranteed that for given wb
1105 *   some IO is happening if we are over background dirty threshold.
1106 *   Caller need not hold sb s_umount semaphore.
1107 */
1108void wb_start_background_writeback(struct bdi_writeback *wb)
1109{
1110	/*
1111	 * We just wake up the flusher thread. It will perform background
1112	 * writeback as soon as there is no other work to do.
1113	 */
1114	trace_writeback_wake_background(wb);
1115	wb_wakeup(wb);
1116}
1117
1118/*
1119 * Remove the inode from the writeback list it is on.
1120 */
1121void inode_io_list_del(struct inode *inode)
1122{
1123	struct bdi_writeback *wb;
1124
1125	wb = inode_to_wb_and_lock_list(inode);
1126	inode_io_list_del_locked(inode, wb);
1127	spin_unlock(&wb->list_lock);
1128}
1129
1130/*
1131 * mark an inode as under writeback on the sb
1132 */
1133void sb_mark_inode_writeback(struct inode *inode)
1134{
1135	struct super_block *sb = inode->i_sb;
1136	unsigned long flags;
1137
1138	if (list_empty(&inode->i_wb_list)) {
1139		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1140		if (list_empty(&inode->i_wb_list)) {
1141			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1142			trace_sb_mark_inode_writeback(inode);
1143		}
1144		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1145	}
1146}
1147
1148/*
1149 * clear an inode as under writeback on the sb
1150 */
1151void sb_clear_inode_writeback(struct inode *inode)
1152{
1153	struct super_block *sb = inode->i_sb;
1154	unsigned long flags;
1155
1156	if (!list_empty(&inode->i_wb_list)) {
1157		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1158		if (!list_empty(&inode->i_wb_list)) {
1159			list_del_init(&inode->i_wb_list);
1160			trace_sb_clear_inode_writeback(inode);
1161		}
1162		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1163	}
1164}
1165
1166/*
1167 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1168 * furthest end of its superblock's dirty-inode list.
1169 *
1170 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1171 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1172 * the case then the inode must have been redirtied while it was being written
1173 * out and we don't reset its dirtied_when.
1174 */
1175static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1176{
1177	if (!list_empty(&wb->b_dirty)) {
1178		struct inode *tail;
1179
1180		tail = wb_inode(wb->b_dirty.next);
1181		if (time_before(inode->dirtied_when, tail->dirtied_when))
1182			inode->dirtied_when = jiffies;
1183	}
1184	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1185}
1186
1187/*
1188 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1189 */
1190static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1191{
1192	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1193}
1194
1195static void inode_sync_complete(struct inode *inode)
1196{
1197	inode->i_state &= ~I_SYNC;
1198	/* If inode is clean an unused, put it into LRU now... */
1199	inode_add_lru(inode);
1200	/* Waiters must see I_SYNC cleared before being woken up */
1201	smp_mb();
1202	wake_up_bit(&inode->i_state, __I_SYNC);
1203}
1204
1205static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1206{
1207	bool ret = time_after(inode->dirtied_when, t);
1208#ifndef CONFIG_64BIT
1209	/*
1210	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1211	 * It _appears_ to be in the future, but is actually in distant past.
1212	 * This test is necessary to prevent such wrapped-around relative times
1213	 * from permanently stopping the whole bdi writeback.
1214	 */
1215	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1216#endif
1217	return ret;
1218}
1219
1220#define EXPIRE_DIRTY_ATIME 0x0001
1221
1222/*
1223 * Move expired (dirtied before work->older_than_this) dirty inodes from
1224 * @delaying_queue to @dispatch_queue.
1225 */
1226static int move_expired_inodes(struct list_head *delaying_queue,
1227			       struct list_head *dispatch_queue,
1228			       int flags,
1229			       struct wb_writeback_work *work)
1230{
1231	unsigned long *older_than_this = NULL;
1232	unsigned long expire_time;
1233	LIST_HEAD(tmp);
1234	struct list_head *pos, *node;
1235	struct super_block *sb = NULL;
1236	struct inode *inode;
1237	int do_sb_sort = 0;
1238	int moved = 0;
1239
1240	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1241		older_than_this = work->older_than_this;
1242	else if (!work->for_sync) {
1243		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1244		older_than_this = &expire_time;
1245	}
1246	while (!list_empty(delaying_queue)) {
1247		inode = wb_inode(delaying_queue->prev);
1248		if (older_than_this &&
1249		    inode_dirtied_after(inode, *older_than_this))
1250			break;
1251		list_move(&inode->i_io_list, &tmp);
1252		moved++;
1253		if (flags & EXPIRE_DIRTY_ATIME)
1254			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1255		if (sb_is_blkdev_sb(inode->i_sb))
1256			continue;
1257		if (sb && sb != inode->i_sb)
1258			do_sb_sort = 1;
1259		sb = inode->i_sb;
1260	}
1261
1262	/* just one sb in list, splice to dispatch_queue and we're done */
1263	if (!do_sb_sort) {
1264		list_splice(&tmp, dispatch_queue);
1265		goto out;
1266	}
1267
1268	/* Move inodes from one superblock together */
1269	while (!list_empty(&tmp)) {
1270		sb = wb_inode(tmp.prev)->i_sb;
1271		list_for_each_prev_safe(pos, node, &tmp) {
1272			inode = wb_inode(pos);
1273			if (inode->i_sb == sb)
1274				list_move(&inode->i_io_list, dispatch_queue);
1275		}
1276	}
1277out:
1278	return moved;
1279}
1280
1281/*
1282 * Queue all expired dirty inodes for io, eldest first.
1283 * Before
1284 *         newly dirtied     b_dirty    b_io    b_more_io
1285 *         =============>    gf         edc     BA
1286 * After
1287 *         newly dirtied     b_dirty    b_io    b_more_io
1288 *         =============>    g          fBAedc
1289 *                                           |
1290 *                                           +--> dequeue for IO
1291 */
1292static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1293{
1294	int moved;
1295
1296	assert_spin_locked(&wb->list_lock);
1297	list_splice_init(&wb->b_more_io, &wb->b_io);
1298	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1299	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1300				     EXPIRE_DIRTY_ATIME, work);
1301	if (moved)
1302		wb_io_lists_populated(wb);
1303	trace_writeback_queue_io(wb, work, moved);
1304}
1305
1306static int write_inode(struct inode *inode, struct writeback_control *wbc)
1307{
1308	int ret;
1309
1310	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1311		trace_writeback_write_inode_start(inode, wbc);
1312		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1313		trace_writeback_write_inode(inode, wbc);
1314		return ret;
1315	}
1316	return 0;
1317}
1318
1319/*
1320 * Wait for writeback on an inode to complete. Called with i_lock held.
1321 * Caller must make sure inode cannot go away when we drop i_lock.
1322 */
1323static void __inode_wait_for_writeback(struct inode *inode)
1324	__releases(inode->i_lock)
1325	__acquires(inode->i_lock)
1326{
1327	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1328	wait_queue_head_t *wqh;
1329
1330	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1331	while (inode->i_state & I_SYNC) {
1332		spin_unlock(&inode->i_lock);
1333		__wait_on_bit(wqh, &wq, bit_wait,
1334			      TASK_UNINTERRUPTIBLE);
1335		spin_lock(&inode->i_lock);
1336	}
1337}
1338
1339/*
1340 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1341 */
1342void inode_wait_for_writeback(struct inode *inode)
1343{
1344	spin_lock(&inode->i_lock);
1345	__inode_wait_for_writeback(inode);
1346	spin_unlock(&inode->i_lock);
1347}
1348
1349/*
1350 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1351 * held and drops it. It is aimed for callers not holding any inode reference
1352 * so once i_lock is dropped, inode can go away.
1353 */
1354static void inode_sleep_on_writeback(struct inode *inode)
1355	__releases(inode->i_lock)
1356{
1357	DEFINE_WAIT(wait);
1358	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1359	int sleep;
1360
1361	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1362	sleep = inode->i_state & I_SYNC;
1363	spin_unlock(&inode->i_lock);
1364	if (sleep)
1365		schedule();
1366	finish_wait(wqh, &wait);
1367}
1368
1369/*
1370 * Find proper writeback list for the inode depending on its current state and
1371 * possibly also change of its state while we were doing writeback.  Here we
1372 * handle things such as livelock prevention or fairness of writeback among
1373 * inodes. This function can be called only by flusher thread - noone else
1374 * processes all inodes in writeback lists and requeueing inodes behind flusher
1375 * thread's back can have unexpected consequences.
1376 */
1377static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1378			  struct writeback_control *wbc)
1379{
1380	if (inode->i_state & I_FREEING)
1381		return;
1382
1383	/*
1384	 * Sync livelock prevention. Each inode is tagged and synced in one
1385	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1386	 * the dirty time to prevent enqueue and sync it again.
1387	 */
1388	if ((inode->i_state & I_DIRTY) &&
1389	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1390		inode->dirtied_when = jiffies;
1391
1392	if (wbc->pages_skipped) {
1393		/*
1394		 * writeback is not making progress due to locked
1395		 * buffers. Skip this inode for now.
1396		 */
1397		redirty_tail(inode, wb);
1398		return;
1399	}
1400
1401	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1402		/*
1403		 * We didn't write back all the pages.  nfs_writepages()
1404		 * sometimes bales out without doing anything.
1405		 */
1406		if (wbc->nr_to_write <= 0) {
1407			/* Slice used up. Queue for next turn. */
1408			requeue_io(inode, wb);
1409		} else {
1410			/*
1411			 * Writeback blocked by something other than
1412			 * congestion. Delay the inode for some time to
1413			 * avoid spinning on the CPU (100% iowait)
1414			 * retrying writeback of the dirty page/inode
1415			 * that cannot be performed immediately.
1416			 */
1417			redirty_tail(inode, wb);
1418		}
1419	} else if (inode->i_state & I_DIRTY) {
1420		/*
1421		 * Filesystems can dirty the inode during writeback operations,
1422		 * such as delayed allocation during submission or metadata
1423		 * updates after data IO completion.
1424		 */
1425		redirty_tail(inode, wb);
1426	} else if (inode->i_state & I_DIRTY_TIME) {
1427		inode->dirtied_when = jiffies;
1428		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1429	} else {
1430		/* The inode is clean. Remove from writeback lists. */
1431		inode_io_list_del_locked(inode, wb);
1432	}
1433}
1434
1435/*
1436 * Write out an inode and its dirty pages. Do not update the writeback list
1437 * linkage. That is left to the caller. The caller is also responsible for
1438 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1439 */
1440static int
1441__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1442{
1443	struct address_space *mapping = inode->i_mapping;
1444	long nr_to_write = wbc->nr_to_write;
1445	unsigned dirty;
1446	int ret;
1447
1448	WARN_ON(!(inode->i_state & I_SYNC));
1449
1450	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1451
1452	ret = do_writepages(mapping, wbc);
1453
1454	/*
1455	 * Make sure to wait on the data before writing out the metadata.
1456	 * This is important for filesystems that modify metadata on data
1457	 * I/O completion. We don't do it for sync(2) writeback because it has a
1458	 * separate, external IO completion path and ->sync_fs for guaranteeing
1459	 * inode metadata is written back correctly.
1460	 */
1461	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1462		int err = filemap_fdatawait(mapping);
1463		if (ret == 0)
1464			ret = err;
1465	}
1466
1467	/*
1468	 * Some filesystems may redirty the inode during the writeback
1469	 * due to delalloc, clear dirty metadata flags right before
1470	 * write_inode()
1471	 */
1472	spin_lock(&inode->i_lock);
1473
1474	dirty = inode->i_state & I_DIRTY;
1475	if (inode->i_state & I_DIRTY_TIME) {
1476		if ((dirty & I_DIRTY_INODE) ||
1477		    wbc->sync_mode == WB_SYNC_ALL ||
1478		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1479		    unlikely(time_after(jiffies,
1480					(inode->dirtied_time_when +
1481					 dirtytime_expire_interval * HZ)))) {
1482			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1483			trace_writeback_lazytime(inode);
1484		}
1485	} else
1486		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1487	inode->i_state &= ~dirty;
1488
1489	/*
1490	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1491	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1492	 * either they see the I_DIRTY bits cleared or we see the dirtied
1493	 * inode.
1494	 *
1495	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1496	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1497	 * necessary.  This guarantees that either __mark_inode_dirty()
1498	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1499	 */
1500	smp_mb();
1501
1502	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1503		inode->i_state |= I_DIRTY_PAGES;
1504
1505	spin_unlock(&inode->i_lock);
1506
1507	if (dirty & I_DIRTY_TIME)
1508		mark_inode_dirty_sync(inode);
1509	/* Don't write the inode if only I_DIRTY_PAGES was set */
1510	if (dirty & ~I_DIRTY_PAGES) {
1511		int err = write_inode(inode, wbc);
1512		if (ret == 0)
1513			ret = err;
1514	}
1515	trace_writeback_single_inode(inode, wbc, nr_to_write);
1516	return ret;
1517}
1518
1519/*
1520 * Write out an inode's dirty pages. Either the caller has an active reference
1521 * on the inode or the inode has I_WILL_FREE set.
1522 *
1523 * This function is designed to be called for writing back one inode which
1524 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1525 * and does more profound writeback list handling in writeback_sb_inodes().
1526 */
1527static int writeback_single_inode(struct inode *inode,
1528				  struct writeback_control *wbc)
1529{
1530	struct bdi_writeback *wb;
1531	int ret = 0;
1532
1533	spin_lock(&inode->i_lock);
1534	if (!atomic_read(&inode->i_count))
1535		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1536	else
1537		WARN_ON(inode->i_state & I_WILL_FREE);
1538
1539	if (inode->i_state & I_SYNC) {
1540		if (wbc->sync_mode != WB_SYNC_ALL)
1541			goto out;
1542		/*
1543		 * It's a data-integrity sync. We must wait. Since callers hold
1544		 * inode reference or inode has I_WILL_FREE set, it cannot go
1545		 * away under us.
1546		 */
1547		__inode_wait_for_writeback(inode);
1548	}
1549	WARN_ON(inode->i_state & I_SYNC);
1550	/*
1551	 * Skip inode if it is clean and we have no outstanding writeback in
1552	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1553	 * function since flusher thread may be doing for example sync in
1554	 * parallel and if we move the inode, it could get skipped. So here we
1555	 * make sure inode is on some writeback list and leave it there unless
1556	 * we have completely cleaned the inode.
1557	 */
1558	if (!(inode->i_state & I_DIRTY_ALL) &&
1559	    (wbc->sync_mode != WB_SYNC_ALL ||
1560	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1561		goto out;
1562	inode->i_state |= I_SYNC;
1563	wbc_attach_and_unlock_inode(wbc, inode);
1564
1565	ret = __writeback_single_inode(inode, wbc);
1566
1567	wbc_detach_inode(wbc);
1568
1569	wb = inode_to_wb_and_lock_list(inode);
1570	spin_lock(&inode->i_lock);
1571	/*
1572	 * If inode is clean, remove it from writeback lists. Otherwise don't
1573	 * touch it. See comment above for explanation.
1574	 */
1575	if (!(inode->i_state & I_DIRTY_ALL))
1576		inode_io_list_del_locked(inode, wb);
1577	spin_unlock(&wb->list_lock);
1578	inode_sync_complete(inode);
1579out:
1580	spin_unlock(&inode->i_lock);
1581	return ret;
1582}
1583
1584static long writeback_chunk_size(struct bdi_writeback *wb,
1585				 struct wb_writeback_work *work)
1586{
1587	long pages;
1588
1589	/*
1590	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1591	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1592	 * here avoids calling into writeback_inodes_wb() more than once.
1593	 *
1594	 * The intended call sequence for WB_SYNC_ALL writeback is:
1595	 *
1596	 *      wb_writeback()
1597	 *          writeback_sb_inodes()       <== called only once
1598	 *              write_cache_pages()     <== called once for each inode
1599	 *                   (quickly) tag currently dirty pages
1600	 *                   (maybe slowly) sync all tagged pages
1601	 */
1602	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1603		pages = LONG_MAX;
1604	else {
1605		pages = min(wb->avg_write_bandwidth / 2,
1606			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1607		pages = min(pages, work->nr_pages);
1608		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1609				   MIN_WRITEBACK_PAGES);
1610	}
1611
1612	return pages;
1613}
1614
1615/*
1616 * Write a portion of b_io inodes which belong to @sb.
1617 *
1618 * Return the number of pages and/or inodes written.
1619 *
1620 * NOTE! This is called with wb->list_lock held, and will
1621 * unlock and relock that for each inode it ends up doing
1622 * IO for.
1623 */
1624static long writeback_sb_inodes(struct super_block *sb,
1625				struct bdi_writeback *wb,
1626				struct wb_writeback_work *work)
1627{
1628	struct writeback_control wbc = {
1629		.sync_mode		= work->sync_mode,
1630		.tagged_writepages	= work->tagged_writepages,
1631		.for_kupdate		= work->for_kupdate,
1632		.for_background		= work->for_background,
1633		.for_sync		= work->for_sync,
1634		.range_cyclic		= work->range_cyclic,
1635		.range_start		= 0,
1636		.range_end		= LLONG_MAX,
1637	};
1638	unsigned long start_time = jiffies;
1639	long write_chunk;
1640	long wrote = 0;  /* count both pages and inodes */
1641
1642	while (!list_empty(&wb->b_io)) {
1643		struct inode *inode = wb_inode(wb->b_io.prev);
1644		struct bdi_writeback *tmp_wb;
1645
1646		if (inode->i_sb != sb) {
1647			if (work->sb) {
1648				/*
1649				 * We only want to write back data for this
1650				 * superblock, move all inodes not belonging
1651				 * to it back onto the dirty list.
1652				 */
1653				redirty_tail(inode, wb);
1654				continue;
1655			}
1656
1657			/*
1658			 * The inode belongs to a different superblock.
1659			 * Bounce back to the caller to unpin this and
1660			 * pin the next superblock.
1661			 */
1662			break;
1663		}
1664
1665		/*
1666		 * Don't bother with new inodes or inodes being freed, first
1667		 * kind does not need periodic writeout yet, and for the latter
1668		 * kind writeout is handled by the freer.
1669		 */
1670		spin_lock(&inode->i_lock);
1671		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1672			spin_unlock(&inode->i_lock);
1673			redirty_tail(inode, wb);
1674			continue;
1675		}
1676		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1677			/*
1678			 * If this inode is locked for writeback and we are not
1679			 * doing writeback-for-data-integrity, move it to
1680			 * b_more_io so that writeback can proceed with the
1681			 * other inodes on s_io.
1682			 *
1683			 * We'll have another go at writing back this inode
1684			 * when we completed a full scan of b_io.
1685			 */
1686			spin_unlock(&inode->i_lock);
1687			requeue_io(inode, wb);
1688			trace_writeback_sb_inodes_requeue(inode);
1689			continue;
1690		}
1691		spin_unlock(&wb->list_lock);
1692
1693		/*
1694		 * We already requeued the inode if it had I_SYNC set and we
1695		 * are doing WB_SYNC_NONE writeback. So this catches only the
1696		 * WB_SYNC_ALL case.
1697		 */
1698		if (inode->i_state & I_SYNC) {
1699			/* Wait for I_SYNC. This function drops i_lock... */
1700			inode_sleep_on_writeback(inode);
1701			/* Inode may be gone, start again */
1702			spin_lock(&wb->list_lock);
1703			continue;
1704		}
1705		inode->i_state |= I_SYNC;
1706		wbc_attach_and_unlock_inode(&wbc, inode);
1707
1708		write_chunk = writeback_chunk_size(wb, work);
1709		wbc.nr_to_write = write_chunk;
1710		wbc.pages_skipped = 0;
1711
1712		/*
1713		 * We use I_SYNC to pin the inode in memory. While it is set
1714		 * evict_inode() will wait so the inode cannot be freed.
1715		 */
1716		__writeback_single_inode(inode, &wbc);
1717
1718		wbc_detach_inode(&wbc);
1719		work->nr_pages -= write_chunk - wbc.nr_to_write;
1720		wrote += write_chunk - wbc.nr_to_write;
1721
1722		if (need_resched()) {
1723			/*
1724			 * We're trying to balance between building up a nice
1725			 * long list of IOs to improve our merge rate, and
1726			 * getting those IOs out quickly for anyone throttling
1727			 * in balance_dirty_pages().  cond_resched() doesn't
1728			 * unplug, so get our IOs out the door before we
1729			 * give up the CPU.
1730			 */
1731			blk_flush_plug(current);
1732			cond_resched();
1733		}
1734
1735		/*
1736		 * Requeue @inode if still dirty.  Be careful as @inode may
1737		 * have been switched to another wb in the meantime.
1738		 */
1739		tmp_wb = inode_to_wb_and_lock_list(inode);
1740		spin_lock(&inode->i_lock);
1741		if (!(inode->i_state & I_DIRTY_ALL))
1742			wrote++;
1743		requeue_inode(inode, tmp_wb, &wbc);
1744		inode_sync_complete(inode);
1745		spin_unlock(&inode->i_lock);
1746
1747		if (unlikely(tmp_wb != wb)) {
1748			spin_unlock(&tmp_wb->list_lock);
1749			spin_lock(&wb->list_lock);
1750		}
1751
1752		/*
1753		 * bail out to wb_writeback() often enough to check
1754		 * background threshold and other termination conditions.
1755		 */
1756		if (wrote) {
1757			if (time_is_before_jiffies(start_time + HZ / 10UL))
1758				break;
1759			if (work->nr_pages <= 0)
1760				break;
1761		}
1762	}
1763	return wrote;
1764}
1765
1766static long __writeback_inodes_wb(struct bdi_writeback *wb,
1767				  struct wb_writeback_work *work)
1768{
1769	unsigned long start_time = jiffies;
1770	long wrote = 0;
1771
1772	while (!list_empty(&wb->b_io)) {
1773		struct inode *inode = wb_inode(wb->b_io.prev);
1774		struct super_block *sb = inode->i_sb;
1775
1776		if (!trylock_super(sb)) {
1777			/*
1778			 * trylock_super() may fail consistently due to
1779			 * s_umount being grabbed by someone else. Don't use
1780			 * requeue_io() to avoid busy retrying the inode/sb.
1781			 */
1782			redirty_tail(inode, wb);
1783			continue;
1784		}
1785		wrote += writeback_sb_inodes(sb, wb, work);
1786		up_read(&sb->s_umount);
1787
1788		/* refer to the same tests at the end of writeback_sb_inodes */
1789		if (wrote) {
1790			if (time_is_before_jiffies(start_time + HZ / 10UL))
1791				break;
1792			if (work->nr_pages <= 0)
1793				break;
1794		}
1795	}
1796	/* Leave any unwritten inodes on b_io */
1797	return wrote;
1798}
1799
1800static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1801				enum wb_reason reason)
1802{
1803	struct wb_writeback_work work = {
1804		.nr_pages	= nr_pages,
1805		.sync_mode	= WB_SYNC_NONE,
1806		.range_cyclic	= 1,
1807		.reason		= reason,
1808	};
1809	struct blk_plug plug;
1810
1811	blk_start_plug(&plug);
1812	spin_lock(&wb->list_lock);
1813	if (list_empty(&wb->b_io))
1814		queue_io(wb, &work);
1815	__writeback_inodes_wb(wb, &work);
1816	spin_unlock(&wb->list_lock);
1817	blk_finish_plug(&plug);
1818
1819	return nr_pages - work.nr_pages;
1820}
1821
1822/*
1823 * Explicit flushing or periodic writeback of "old" data.
1824 *
1825 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1826 * dirtying-time in the inode's address_space.  So this periodic writeback code
1827 * just walks the superblock inode list, writing back any inodes which are
1828 * older than a specific point in time.
1829 *
1830 * Try to run once per dirty_writeback_interval.  But if a writeback event
1831 * takes longer than a dirty_writeback_interval interval, then leave a
1832 * one-second gap.
1833 *
1834 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1835 * all dirty pages if they are all attached to "old" mappings.
1836 */
1837static long wb_writeback(struct bdi_writeback *wb,
1838			 struct wb_writeback_work *work)
1839{
1840	unsigned long wb_start = jiffies;
1841	long nr_pages = work->nr_pages;
1842	unsigned long oldest_jif;
1843	struct inode *inode;
1844	long progress;
1845	struct blk_plug plug;
1846
1847	oldest_jif = jiffies;
1848	work->older_than_this = &oldest_jif;
1849
1850	blk_start_plug(&plug);
1851	spin_lock(&wb->list_lock);
1852	for (;;) {
1853		/*
1854		 * Stop writeback when nr_pages has been consumed
1855		 */
1856		if (work->nr_pages <= 0)
1857			break;
1858
1859		/*
1860		 * Background writeout and kupdate-style writeback may
1861		 * run forever. Stop them if there is other work to do
1862		 * so that e.g. sync can proceed. They'll be restarted
1863		 * after the other works are all done.
1864		 */
1865		if ((work->for_background || work->for_kupdate) &&
1866		    !list_empty(&wb->work_list))
1867			break;
1868
1869		/*
1870		 * For background writeout, stop when we are below the
1871		 * background dirty threshold
1872		 */
1873		if (work->for_background && !wb_over_bg_thresh(wb))
1874			break;
1875
1876		/*
1877		 * Kupdate and background works are special and we want to
1878		 * include all inodes that need writing. Livelock avoidance is
1879		 * handled by these works yielding to any other work so we are
1880		 * safe.
1881		 */
1882		if (work->for_kupdate) {
1883			oldest_jif = jiffies -
1884				msecs_to_jiffies(dirty_expire_interval * 10);
1885		} else if (work->for_background)
1886			oldest_jif = jiffies;
1887
1888		trace_writeback_start(wb, work);
1889		if (list_empty(&wb->b_io))
1890			queue_io(wb, work);
1891		if (work->sb)
1892			progress = writeback_sb_inodes(work->sb, wb, work);
1893		else
1894			progress = __writeback_inodes_wb(wb, work);
1895		trace_writeback_written(wb, work);
1896
1897		wb_update_bandwidth(wb, wb_start);
1898
1899		/*
1900		 * Did we write something? Try for more
1901		 *
1902		 * Dirty inodes are moved to b_io for writeback in batches.
1903		 * The completion of the current batch does not necessarily
1904		 * mean the overall work is done. So we keep looping as long
1905		 * as made some progress on cleaning pages or inodes.
1906		 */
1907		if (progress)
1908			continue;
1909		/*
1910		 * No more inodes for IO, bail
1911		 */
1912		if (list_empty(&wb->b_more_io))
1913			break;
1914		/*
1915		 * Nothing written. Wait for some inode to
1916		 * become available for writeback. Otherwise
1917		 * we'll just busyloop.
1918		 */
1919		trace_writeback_wait(wb, work);
1920		inode = wb_inode(wb->b_more_io.prev);
1921		spin_lock(&inode->i_lock);
1922		spin_unlock(&wb->list_lock);
1923		/* This function drops i_lock... */
1924		inode_sleep_on_writeback(inode);
1925		spin_lock(&wb->list_lock);
1926	}
1927	spin_unlock(&wb->list_lock);
1928	blk_finish_plug(&plug);
1929
1930	return nr_pages - work->nr_pages;
1931}
1932
1933/*
1934 * Return the next wb_writeback_work struct that hasn't been processed yet.
1935 */
1936static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1937{
1938	struct wb_writeback_work *work = NULL;
1939
1940	spin_lock_bh(&wb->work_lock);
1941	if (!list_empty(&wb->work_list)) {
1942		work = list_entry(wb->work_list.next,
1943				  struct wb_writeback_work, list);
1944		list_del_init(&work->list);
1945	}
1946	spin_unlock_bh(&wb->work_lock);
1947	return work;
1948}
1949
 
 
 
 
 
 
 
 
 
 
 
1950static long wb_check_background_flush(struct bdi_writeback *wb)
1951{
1952	if (wb_over_bg_thresh(wb)) {
1953
1954		struct wb_writeback_work work = {
1955			.nr_pages	= LONG_MAX,
1956			.sync_mode	= WB_SYNC_NONE,
1957			.for_background	= 1,
1958			.range_cyclic	= 1,
1959			.reason		= WB_REASON_BACKGROUND,
1960		};
1961
1962		return wb_writeback(wb, &work);
1963	}
1964
1965	return 0;
1966}
1967
1968static long wb_check_old_data_flush(struct bdi_writeback *wb)
1969{
1970	unsigned long expired;
1971	long nr_pages;
1972
1973	/*
1974	 * When set to zero, disable periodic writeback
1975	 */
1976	if (!dirty_writeback_interval)
1977		return 0;
1978
1979	expired = wb->last_old_flush +
1980			msecs_to_jiffies(dirty_writeback_interval * 10);
1981	if (time_before(jiffies, expired))
1982		return 0;
1983
1984	wb->last_old_flush = jiffies;
1985	nr_pages = get_nr_dirty_pages();
1986
1987	if (nr_pages) {
1988		struct wb_writeback_work work = {
1989			.nr_pages	= nr_pages,
1990			.sync_mode	= WB_SYNC_NONE,
1991			.for_kupdate	= 1,
1992			.range_cyclic	= 1,
1993			.reason		= WB_REASON_PERIODIC,
1994		};
1995
1996		return wb_writeback(wb, &work);
1997	}
1998
1999	return 0;
2000}
2001
2002static long wb_check_start_all(struct bdi_writeback *wb)
2003{
2004	long nr_pages;
2005
2006	if (!test_bit(WB_start_all, &wb->state))
2007		return 0;
2008
2009	nr_pages = get_nr_dirty_pages();
2010	if (nr_pages) {
2011		struct wb_writeback_work work = {
2012			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2013			.sync_mode	= WB_SYNC_NONE,
2014			.range_cyclic	= 1,
2015			.reason		= wb->start_all_reason,
2016		};
2017
2018		nr_pages = wb_writeback(wb, &work);
2019	}
2020
2021	clear_bit(WB_start_all, &wb->state);
2022	return nr_pages;
2023}
2024
2025
2026/*
2027 * Retrieve work items and do the writeback they describe
2028 */
2029static long wb_do_writeback(struct bdi_writeback *wb)
2030{
2031	struct wb_writeback_work *work;
2032	long wrote = 0;
2033
2034	set_bit(WB_writeback_running, &wb->state);
2035	while ((work = get_next_work_item(wb)) != NULL) {
 
 
2036		trace_writeback_exec(wb, work);
 
2037		wrote += wb_writeback(wb, work);
2038		finish_writeback_work(wb, work);
 
 
 
 
2039	}
2040
2041	/*
2042	 * Check for a flush-everything request
2043	 */
2044	wrote += wb_check_start_all(wb);
2045
2046	/*
2047	 * Check for periodic writeback, kupdated() style
2048	 */
2049	wrote += wb_check_old_data_flush(wb);
2050	wrote += wb_check_background_flush(wb);
2051	clear_bit(WB_writeback_running, &wb->state);
2052
2053	return wrote;
2054}
2055
2056/*
2057 * Handle writeback of dirty data for the device backed by this bdi. Also
2058 * reschedules periodically and does kupdated style flushing.
2059 */
2060void wb_workfn(struct work_struct *work)
2061{
2062	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2063						struct bdi_writeback, dwork);
2064	long pages_written;
2065
2066	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2067	current->flags |= PF_SWAPWRITE;
2068
2069	if (likely(!current_is_workqueue_rescuer() ||
2070		   !test_bit(WB_registered, &wb->state))) {
2071		/*
2072		 * The normal path.  Keep writing back @wb until its
2073		 * work_list is empty.  Note that this path is also taken
2074		 * if @wb is shutting down even when we're running off the
2075		 * rescuer as work_list needs to be drained.
2076		 */
2077		do {
2078			pages_written = wb_do_writeback(wb);
2079			trace_writeback_pages_written(pages_written);
2080		} while (!list_empty(&wb->work_list));
2081	} else {
2082		/*
2083		 * bdi_wq can't get enough workers and we're running off
2084		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2085		 * enough for efficient IO.
2086		 */
2087		pages_written = writeback_inodes_wb(wb, 1024,
2088						    WB_REASON_FORKER_THREAD);
2089		trace_writeback_pages_written(pages_written);
2090	}
2091
2092	if (!list_empty(&wb->work_list))
2093		wb_wakeup(wb);
2094	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2095		wb_wakeup_delayed(wb);
2096
2097	current->flags &= ~PF_SWAPWRITE;
2098}
2099
2100/*
2101 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2102 * write back the whole world.
2103 */
2104static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2105					 enum wb_reason reason)
2106{
2107	struct bdi_writeback *wb;
2108
2109	if (!bdi_has_dirty_io(bdi))
2110		return;
2111
2112	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2113		wb_start_writeback(wb, reason);
2114}
2115
2116void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2117				enum wb_reason reason)
2118{
2119	rcu_read_lock();
2120	__wakeup_flusher_threads_bdi(bdi, reason);
2121	rcu_read_unlock();
2122}
2123
2124/*
2125 * Wakeup the flusher threads to start writeback of all currently dirty pages
2126 */
2127void wakeup_flusher_threads(enum wb_reason reason)
2128{
2129	struct backing_dev_info *bdi;
2130
2131	/*
2132	 * If we are expecting writeback progress we must submit plugged IO.
2133	 */
2134	if (blk_needs_flush_plug(current))
2135		blk_schedule_flush_plug(current);
2136
 
 
 
2137	rcu_read_lock();
2138	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2139		__wakeup_flusher_threads_bdi(bdi, reason);
 
 
 
 
 
 
 
 
2140	rcu_read_unlock();
2141}
2142
2143/*
2144 * Wake up bdi's periodically to make sure dirtytime inodes gets
2145 * written back periodically.  We deliberately do *not* check the
2146 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2147 * kernel to be constantly waking up once there are any dirtytime
2148 * inodes on the system.  So instead we define a separate delayed work
2149 * function which gets called much more rarely.  (By default, only
2150 * once every 12 hours.)
2151 *
2152 * If there is any other write activity going on in the file system,
2153 * this function won't be necessary.  But if the only thing that has
2154 * happened on the file system is a dirtytime inode caused by an atime
2155 * update, we need this infrastructure below to make sure that inode
2156 * eventually gets pushed out to disk.
2157 */
2158static void wakeup_dirtytime_writeback(struct work_struct *w);
2159static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2160
2161static void wakeup_dirtytime_writeback(struct work_struct *w)
2162{
2163	struct backing_dev_info *bdi;
2164
2165	rcu_read_lock();
2166	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2167		struct bdi_writeback *wb;
2168
2169		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2170			if (!list_empty(&wb->b_dirty_time))
2171				wb_wakeup(wb);
2172	}
2173	rcu_read_unlock();
2174	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2175}
2176
2177static int __init start_dirtytime_writeback(void)
2178{
2179	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2180	return 0;
2181}
2182__initcall(start_dirtytime_writeback);
2183
2184int dirtytime_interval_handler(struct ctl_table *table, int write,
2185			       void __user *buffer, size_t *lenp, loff_t *ppos)
2186{
2187	int ret;
2188
2189	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2190	if (ret == 0 && write)
2191		mod_delayed_work(system_wq, &dirtytime_work, 0);
2192	return ret;
2193}
2194
2195static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2196{
2197	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2198		struct dentry *dentry;
2199		const char *name = "?";
2200
2201		dentry = d_find_alias(inode);
2202		if (dentry) {
2203			spin_lock(&dentry->d_lock);
2204			name = (const char *) dentry->d_name.name;
2205		}
2206		printk(KERN_DEBUG
2207		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2208		       current->comm, task_pid_nr(current), inode->i_ino,
2209		       name, inode->i_sb->s_id);
2210		if (dentry) {
2211			spin_unlock(&dentry->d_lock);
2212			dput(dentry);
2213		}
2214	}
2215}
2216
2217/**
2218 * __mark_inode_dirty -	internal function
2219 *
2220 * @inode: inode to mark
2221 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2222 *
2223 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2224 * mark_inode_dirty_sync.
2225 *
2226 * Put the inode on the super block's dirty list.
2227 *
2228 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2229 * dirty list only if it is hashed or if it refers to a blockdev.
2230 * If it was not hashed, it will never be added to the dirty list
2231 * even if it is later hashed, as it will have been marked dirty already.
2232 *
2233 * In short, make sure you hash any inodes _before_ you start marking
2234 * them dirty.
2235 *
2236 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2237 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2238 * the kernel-internal blockdev inode represents the dirtying time of the
2239 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2240 * page->mapping->host, so the page-dirtying time is recorded in the internal
2241 * blockdev inode.
2242 */
2243void __mark_inode_dirty(struct inode *inode, int flags)
2244{
 
2245	struct super_block *sb = inode->i_sb;
2246	int dirtytime;
2247
2248	trace_writeback_mark_inode_dirty(inode, flags);
2249
2250	/*
2251	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2252	 * dirty the inode itself
2253	 */
2254	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2255		trace_writeback_dirty_inode_start(inode, flags);
2256
2257		if (sb->s_op->dirty_inode)
2258			sb->s_op->dirty_inode(inode, flags);
2259
2260		trace_writeback_dirty_inode(inode, flags);
2261	}
2262	if (flags & I_DIRTY_INODE)
2263		flags &= ~I_DIRTY_TIME;
2264	dirtytime = flags & I_DIRTY_TIME;
2265
2266	/*
2267	 * Paired with smp_mb() in __writeback_single_inode() for the
2268	 * following lockless i_state test.  See there for details.
2269	 */
2270	smp_mb();
2271
2272	if (((inode->i_state & flags) == flags) ||
2273	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2274		return;
2275
2276	if (unlikely(block_dump))
2277		block_dump___mark_inode_dirty(inode);
2278
2279	spin_lock(&inode->i_lock);
2280	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2281		goto out_unlock_inode;
2282	if ((inode->i_state & flags) != flags) {
2283		const int was_dirty = inode->i_state & I_DIRTY;
2284
2285		inode_attach_wb(inode, NULL);
2286
2287		if (flags & I_DIRTY_INODE)
2288			inode->i_state &= ~I_DIRTY_TIME;
2289		inode->i_state |= flags;
2290
2291		/*
2292		 * If the inode is being synced, just update its dirty state.
2293		 * The unlocker will place the inode on the appropriate
2294		 * superblock list, based upon its state.
2295		 */
2296		if (inode->i_state & I_SYNC)
2297			goto out_unlock_inode;
2298
2299		/*
2300		 * Only add valid (hashed) inodes to the superblock's
2301		 * dirty list.  Add blockdev inodes as well.
2302		 */
2303		if (!S_ISBLK(inode->i_mode)) {
2304			if (inode_unhashed(inode))
2305				goto out_unlock_inode;
2306		}
2307		if (inode->i_state & I_FREEING)
2308			goto out_unlock_inode;
2309
2310		/*
2311		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2312		 * reposition it (that would break b_dirty time-ordering).
2313		 */
2314		if (!was_dirty) {
2315			struct bdi_writeback *wb;
2316			struct list_head *dirty_list;
2317			bool wakeup_bdi = false;
2318
2319			wb = locked_inode_to_wb_and_lock_list(inode);
2320
2321			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2322			     !test_bit(WB_registered, &wb->state),
2323			     "bdi-%s not registered\n", wb->bdi->name);
2324
2325			inode->dirtied_when = jiffies;
2326			if (dirtytime)
2327				inode->dirtied_time_when = jiffies;
2328
2329			if (inode->i_state & I_DIRTY)
2330				dirty_list = &wb->b_dirty;
2331			else
2332				dirty_list = &wb->b_dirty_time;
2333
2334			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2335							       dirty_list);
2336
2337			spin_unlock(&wb->list_lock);
2338			trace_writeback_dirty_inode_enqueue(inode);
2339
2340			/*
2341			 * If this is the first dirty inode for this bdi,
2342			 * we have to wake-up the corresponding bdi thread
2343			 * to make sure background write-back happens
2344			 * later.
2345			 */
2346			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2347				wb_wakeup_delayed(wb);
2348			return;
2349		}
2350	}
2351out_unlock_inode:
2352	spin_unlock(&inode->i_lock);
 
 
2353}
2354EXPORT_SYMBOL(__mark_inode_dirty);
2355
2356/*
2357 * The @s_sync_lock is used to serialise concurrent sync operations
2358 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2359 * Concurrent callers will block on the s_sync_lock rather than doing contending
2360 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2361 * has been issued up to the time this function is enter is guaranteed to be
2362 * completed by the time we have gained the lock and waited for all IO that is
2363 * in progress regardless of the order callers are granted the lock.
2364 */
2365static void wait_sb_inodes(struct super_block *sb)
2366{
2367	LIST_HEAD(sync_list);
2368
2369	/*
2370	 * We need to be protected against the filesystem going from
2371	 * r/o to r/w or vice versa.
2372	 */
2373	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374
2375	mutex_lock(&sb->s_sync_lock);
2376
2377	/*
2378	 * Splice the writeback list onto a temporary list to avoid waiting on
2379	 * inodes that have started writeback after this point.
2380	 *
2381	 * Use rcu_read_lock() to keep the inodes around until we have a
2382	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2383	 * the local list because inodes can be dropped from either by writeback
2384	 * completion.
2385	 */
2386	rcu_read_lock();
2387	spin_lock_irq(&sb->s_inode_wblist_lock);
2388	list_splice_init(&sb->s_inodes_wb, &sync_list);
2389
2390	/*
2391	 * Data integrity sync. Must wait for all pages under writeback, because
2392	 * there may have been pages dirtied before our sync call, but which had
2393	 * writeout started before we write it out.  In which case, the inode
2394	 * may not be on the dirty list, but we still have to wait for that
2395	 * writeout.
2396	 */
2397	while (!list_empty(&sync_list)) {
2398		struct inode *inode = list_first_entry(&sync_list, struct inode,
2399						       i_wb_list);
2400		struct address_space *mapping = inode->i_mapping;
2401
2402		/*
2403		 * Move each inode back to the wb list before we drop the lock
2404		 * to preserve consistency between i_wb_list and the mapping
2405		 * writeback tag. Writeback completion is responsible to remove
2406		 * the inode from either list once the writeback tag is cleared.
2407		 */
2408		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2409
2410		/*
2411		 * The mapping can appear untagged while still on-list since we
2412		 * do not have the mapping lock. Skip it here, wb completion
2413		 * will remove it.
2414		 */
2415		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2416			continue;
2417
2418		spin_unlock_irq(&sb->s_inode_wblist_lock);
2419
2420		spin_lock(&inode->i_lock);
2421		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2422			spin_unlock(&inode->i_lock);
2423
2424			spin_lock_irq(&sb->s_inode_wblist_lock);
2425			continue;
2426		}
2427		__iget(inode);
2428		spin_unlock(&inode->i_lock);
2429		rcu_read_unlock();
2430
2431		/*
2432		 * We keep the error status of individual mapping so that
2433		 * applications can catch the writeback error using fsync(2).
2434		 * See filemap_fdatawait_keep_errors() for details.
2435		 */
2436		filemap_fdatawait_keep_errors(mapping);
2437
2438		cond_resched();
2439
2440		iput(inode);
2441
2442		rcu_read_lock();
2443		spin_lock_irq(&sb->s_inode_wblist_lock);
2444	}
2445	spin_unlock_irq(&sb->s_inode_wblist_lock);
2446	rcu_read_unlock();
2447	mutex_unlock(&sb->s_sync_lock);
2448}
2449
2450static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2451				     enum wb_reason reason, bool skip_if_busy)
2452{
2453	struct backing_dev_info *bdi = sb->s_bdi;
2454	DEFINE_WB_COMPLETION(done, bdi);
2455	struct wb_writeback_work work = {
2456		.sb			= sb,
2457		.sync_mode		= WB_SYNC_NONE,
2458		.tagged_writepages	= 1,
2459		.done			= &done,
2460		.nr_pages		= nr,
2461		.reason			= reason,
2462	};
 
2463
2464	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2465		return;
2466	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2467
2468	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2469	wb_wait_for_completion(&done);
2470}
2471
2472/**
2473 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2474 * @sb: the superblock
2475 * @nr: the number of pages to write
2476 * @reason: reason why some writeback work initiated
2477 *
2478 * Start writeback on some inodes on this super_block. No guarantees are made
2479 * on how many (if any) will be written, and this function does not wait
2480 * for IO completion of submitted IO.
2481 */
2482void writeback_inodes_sb_nr(struct super_block *sb,
2483			    unsigned long nr,
2484			    enum wb_reason reason)
2485{
2486	__writeback_inodes_sb_nr(sb, nr, reason, false);
2487}
2488EXPORT_SYMBOL(writeback_inodes_sb_nr);
2489
2490/**
2491 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2492 * @sb: the superblock
2493 * @reason: reason why some writeback work was initiated
2494 *
2495 * Start writeback on some inodes on this super_block. No guarantees are made
2496 * on how many (if any) will be written, and this function does not wait
2497 * for IO completion of submitted IO.
2498 */
2499void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2500{
2501	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2502}
2503EXPORT_SYMBOL(writeback_inodes_sb);
2504
2505/**
2506 * try_to_writeback_inodes_sb - try to start writeback if none underway
2507 * @sb: the superblock
2508 * @reason: reason why some writeback work was initiated
 
2509 *
2510 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
 
2511 */
2512void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
 
2513{
2514	if (!down_read_trylock(&sb->s_umount))
2515		return;
2516
2517	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2518	up_read(&sb->s_umount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519}
2520EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2521
2522/**
2523 * sync_inodes_sb	-	sync sb inode pages
2524 * @sb: the superblock
2525 *
2526 * This function writes and waits on any dirty inode belonging to this
2527 * super_block.
2528 */
2529void sync_inodes_sb(struct super_block *sb)
2530{
2531	struct backing_dev_info *bdi = sb->s_bdi;
2532	DEFINE_WB_COMPLETION(done, bdi);
2533	struct wb_writeback_work work = {
2534		.sb		= sb,
2535		.sync_mode	= WB_SYNC_ALL,
2536		.nr_pages	= LONG_MAX,
2537		.range_cyclic	= 0,
2538		.done		= &done,
2539		.reason		= WB_REASON_SYNC,
2540		.for_sync	= 1,
2541	};
 
2542
2543	/*
2544	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2545	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2546	 * bdi_has_dirty() need to be written out too.
2547	 */
2548	if (bdi == &noop_backing_dev_info)
2549		return;
2550	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2551
2552	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2553	bdi_down_write_wb_switch_rwsem(bdi);
2554	bdi_split_work_to_wbs(bdi, &work, false);
2555	wb_wait_for_completion(&done);
2556	bdi_up_write_wb_switch_rwsem(bdi);
2557
2558	wait_sb_inodes(sb);
2559}
2560EXPORT_SYMBOL(sync_inodes_sb);
2561
2562/**
2563 * write_inode_now	-	write an inode to disk
2564 * @inode: inode to write to disk
2565 * @sync: whether the write should be synchronous or not
2566 *
2567 * This function commits an inode to disk immediately if it is dirty. This is
2568 * primarily needed by knfsd.
2569 *
2570 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2571 */
2572int write_inode_now(struct inode *inode, int sync)
2573{
2574	struct writeback_control wbc = {
2575		.nr_to_write = LONG_MAX,
2576		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2577		.range_start = 0,
2578		.range_end = LLONG_MAX,
2579	};
2580
2581	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2582		wbc.nr_to_write = 0;
2583
2584	might_sleep();
2585	return writeback_single_inode(inode, &wbc);
2586}
2587EXPORT_SYMBOL(write_inode_now);
2588
2589/**
2590 * sync_inode - write an inode and its pages to disk.
2591 * @inode: the inode to sync
2592 * @wbc: controls the writeback mode
2593 *
2594 * sync_inode() will write an inode and its pages to disk.  It will also
2595 * correctly update the inode on its superblock's dirty inode lists and will
2596 * update inode->i_state.
2597 *
2598 * The caller must have a ref on the inode.
2599 */
2600int sync_inode(struct inode *inode, struct writeback_control *wbc)
2601{
2602	return writeback_single_inode(inode, wbc);
2603}
2604EXPORT_SYMBOL(sync_inode);
2605
2606/**
2607 * sync_inode_metadata - write an inode to disk
2608 * @inode: the inode to sync
2609 * @wait: wait for I/O to complete.
2610 *
2611 * Write an inode to disk and adjust its dirty state after completion.
2612 *
2613 * Note: only writes the actual inode, no associated data or other metadata.
2614 */
2615int sync_inode_metadata(struct inode *inode, int wait)
2616{
2617	struct writeback_control wbc = {
2618		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2619		.nr_to_write = 0, /* metadata-only */
2620	};
2621
2622	return sync_inode(inode, &wbc);
2623}
2624EXPORT_SYMBOL(sync_inode_metadata);