Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Split out of fs/inode.c
  13 *		Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include <linux/memcontrol.h>
  31#include "internal.h"
  32
  33/*
  34 * 4MB minimal write chunk size
  35 */
  36#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  37
  38struct wb_completion {
  39	atomic_t		cnt;
  40};
  41
  42/*
  43 * Passed into wb_writeback(), essentially a subset of writeback_control
  44 */
  45struct wb_writeback_work {
  46	long nr_pages;
  47	struct super_block *sb;
  48	unsigned long *older_than_this;
  49	enum writeback_sync_modes sync_mode;
  50	unsigned int tagged_writepages:1;
  51	unsigned int for_kupdate:1;
  52	unsigned int range_cyclic:1;
  53	unsigned int for_background:1;
  54	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  55	unsigned int auto_free:1;	/* free on completion */
  56	enum wb_reason reason;		/* why was writeback initiated? */
  57
  58	struct list_head list;		/* pending work list */
  59	struct wb_completion *done;	/* set if the caller waits */
  60};
  61
  62/*
  63 * If one wants to wait for one or more wb_writeback_works, each work's
  64 * ->done should be set to a wb_completion defined using the following
  65 * macro.  Once all work items are issued with wb_queue_work(), the caller
  66 * can wait for the completion of all using wb_wait_for_completion().  Work
  67 * items which are waited upon aren't freed automatically on completion.
  68 */
  69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
  70	struct wb_completion cmpl = {					\
  71		.cnt		= ATOMIC_INIT(1),			\
  72	}
  73
  74
  75/*
  76 * If an inode is constantly having its pages dirtied, but then the
  77 * updates stop dirtytime_expire_interval seconds in the past, it's
  78 * possible for the worst case time between when an inode has its
  79 * timestamps updated and when they finally get written out to be two
  80 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  81 * seconds), which means most of the time inodes will have their
  82 * timestamps written to disk after 12 hours, but in the worst case a
  83 * few inodes might not their timestamps updated for 24 hours.
  84 */
  85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  86
  87static inline struct inode *wb_inode(struct list_head *head)
  88{
  89	return list_entry(head, struct inode, i_io_list);
  90}
  91
  92/*
  93 * Include the creation of the trace points after defining the
  94 * wb_writeback_work structure and inline functions so that the definition
  95 * remains local to this file.
  96 */
  97#define CREATE_TRACE_POINTS
  98#include <trace/events/writeback.h>
  99
 100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
 101
 102static bool wb_io_lists_populated(struct bdi_writeback *wb)
 103{
 104	if (wb_has_dirty_io(wb)) {
 105		return false;
 106	} else {
 107		set_bit(WB_has_dirty_io, &wb->state);
 108		WARN_ON_ONCE(!wb->avg_write_bandwidth);
 109		atomic_long_add(wb->avg_write_bandwidth,
 110				&wb->bdi->tot_write_bandwidth);
 111		return true;
 112	}
 113}
 114
 115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
 116{
 117	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 118	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 119		clear_bit(WB_has_dirty_io, &wb->state);
 120		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 121					&wb->bdi->tot_write_bandwidth) < 0);
 122	}
 123}
 124
 125/**
 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 127 * @inode: inode to be moved
 128 * @wb: target bdi_writeback
 129 * @head: one of @wb->b_{dirty|io|more_io}
 130 *
 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 132 * Returns %true if @inode is the first occupant of the !dirty_time IO
 133 * lists; otherwise, %false.
 134 */
 135static bool inode_io_list_move_locked(struct inode *inode,
 136				      struct bdi_writeback *wb,
 137				      struct list_head *head)
 138{
 139	assert_spin_locked(&wb->list_lock);
 
 
 140
 141	list_move(&inode->i_io_list, head);
 142
 143	/* dirty_time doesn't count as dirty_io until expiration */
 144	if (head != &wb->b_dirty_time)
 145		return wb_io_lists_populated(wb);
 146
 147	wb_io_lists_depopulated(wb);
 148	return false;
 149}
 150
 151/**
 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
 153 * @inode: inode to be removed
 154 * @wb: bdi_writeback @inode is being removed from
 155 *
 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
 157 * clear %WB_has_dirty_io if all are empty afterwards.
 158 */
 159static void inode_io_list_del_locked(struct inode *inode,
 160				     struct bdi_writeback *wb)
 161{
 162	assert_spin_locked(&wb->list_lock);
 163
 164	list_del_init(&inode->i_io_list);
 165	wb_io_lists_depopulated(wb);
 166}
 167
 168static void wb_wakeup(struct bdi_writeback *wb)
 169{
 170	spin_lock_bh(&wb->work_lock);
 171	if (test_bit(WB_registered, &wb->state))
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	spin_unlock_bh(&wb->work_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174}
 175
 176static void wb_queue_work(struct bdi_writeback *wb,
 177			  struct wb_writeback_work *work)
 178{
 179	trace_writeback_queue(wb, work);
 180
 181	spin_lock_bh(&wb->work_lock);
 182	if (!test_bit(WB_registered, &wb->state))
 183		goto out_unlock;
 184	if (work->done)
 185		atomic_inc(&work->done->cnt);
 186	list_add_tail(&work->list, &wb->work_list);
 187	mod_delayed_work(bdi_wq, &wb->dwork, 0);
 188out_unlock:
 189	spin_unlock_bh(&wb->work_lock);
 
 
 
 
 
 
 190}
 191
 192/**
 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 194 * @bdi: bdi work items were issued to
 195 * @done: target wb_completion
 196 *
 197 * Wait for one or more work items issued to @bdi with their ->done field
 198 * set to @done, which should have been defined with
 199 * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
 200 * work items are completed.  Work items which are waited upon aren't freed
 201 * automatically on completion.
 202 */
 203static void wb_wait_for_completion(struct backing_dev_info *bdi,
 204				   struct wb_completion *done)
 205{
 206	atomic_dec(&done->cnt);		/* put down the initial count */
 207	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
 208}
 209
 210#ifdef CONFIG_CGROUP_WRITEBACK
 211
 212/* parameters for foreign inode detection, see wb_detach_inode() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 214#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 215#define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
 216#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 217
 218#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 219#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 220					/* each slot's duration is 2s / 16 */
 221#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 222					/* if foreign slots >= 8, switch */
 223#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 224					/* one round can affect upto 5 slots */
 
 
 
 
 
 
 
 
 225
 226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 227static struct workqueue_struct *isw_wq;
 228
 229void __inode_attach_wb(struct inode *inode, struct page *page)
 230{
 231	struct backing_dev_info *bdi = inode_to_bdi(inode);
 232	struct bdi_writeback *wb = NULL;
 233
 234	if (inode_cgwb_enabled(inode)) {
 235		struct cgroup_subsys_state *memcg_css;
 236
 237		if (page) {
 238			memcg_css = mem_cgroup_css_from_page(page);
 239			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 240		} else {
 241			/* must pin memcg_css, see wb_get_create() */
 242			memcg_css = task_get_css(current, memory_cgrp_id);
 243			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 244			css_put(memcg_css);
 245		}
 246	}
 247
 248	if (!wb)
 249		wb = &bdi->wb;
 250
 251	/*
 252	 * There may be multiple instances of this function racing to
 253	 * update the same inode.  Use cmpxchg() to tell the winner.
 254	 */
 255	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 256		wb_put(wb);
 257}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259/**
 260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 261 * @inode: inode of interest with i_lock held
 262 *
 263 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 264 * held on entry and is released on return.  The returned wb is guaranteed
 265 * to stay @inode's associated wb until its list_lock is released.
 266 */
 267static struct bdi_writeback *
 268locked_inode_to_wb_and_lock_list(struct inode *inode)
 269	__releases(&inode->i_lock)
 270	__acquires(&wb->list_lock)
 271{
 272	while (true) {
 273		struct bdi_writeback *wb = inode_to_wb(inode);
 274
 275		/*
 276		 * inode_to_wb() association is protected by both
 277		 * @inode->i_lock and @wb->list_lock but list_lock nests
 278		 * outside i_lock.  Drop i_lock and verify that the
 279		 * association hasn't changed after acquiring list_lock.
 280		 */
 281		wb_get(wb);
 282		spin_unlock(&inode->i_lock);
 283		spin_lock(&wb->list_lock);
 284
 285		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 286		if (likely(wb == inode->i_wb)) {
 287			wb_put(wb);	/* @inode already has ref */
 288			return wb;
 289		}
 290
 291		spin_unlock(&wb->list_lock);
 292		wb_put(wb);
 293		cpu_relax();
 294		spin_lock(&inode->i_lock);
 295	}
 296}
 297
 298/**
 299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 300 * @inode: inode of interest
 301 *
 302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 303 * on entry.
 304 */
 305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 306	__acquires(&wb->list_lock)
 307{
 308	spin_lock(&inode->i_lock);
 309	return locked_inode_to_wb_and_lock_list(inode);
 310}
 311
 312struct inode_switch_wbs_context {
 313	struct inode		*inode;
 314	struct bdi_writeback	*new_wb;
 315
 316	struct rcu_head		rcu_head;
 317	struct work_struct	work;
 
 
 
 
 
 
 
 
 318};
 319
 320static void inode_switch_wbs_work_fn(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 321{
 322	struct inode_switch_wbs_context *isw =
 323		container_of(work, struct inode_switch_wbs_context, work);
 324	struct inode *inode = isw->inode;
 325	struct address_space *mapping = inode->i_mapping;
 326	struct bdi_writeback *old_wb = inode->i_wb;
 327	struct bdi_writeback *new_wb = isw->new_wb;
 328	struct radix_tree_iter iter;
 329	bool switched = false;
 330	void **slot;
 331
 332	/*
 333	 * By the time control reaches here, RCU grace period has passed
 334	 * since I_WB_SWITCH assertion and all wb stat update transactions
 335	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 336	 * synchronizing against mapping->tree_lock.
 337	 *
 338	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
 339	 * gives us exclusion against all wb related operations on @inode
 340	 * including IO list manipulations and stat updates.
 341	 */
 342	if (old_wb < new_wb) {
 343		spin_lock(&old_wb->list_lock);
 344		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 345	} else {
 346		spin_lock(&new_wb->list_lock);
 347		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 348	}
 349	spin_lock(&inode->i_lock);
 350	spin_lock_irq(&mapping->tree_lock);
 351
 352	/*
 353	 * Once I_FREEING is visible under i_lock, the eviction path owns
 354	 * the inode and we shouldn't modify ->i_io_list.
 355	 */
 356	if (unlikely(inode->i_state & I_FREEING))
 357		goto skip_switch;
 358
 
 
 359	/*
 360	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 361	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
 362	 * pages actually under underwriteback.
 363	 */
 364	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 365				   PAGECACHE_TAG_DIRTY) {
 366		struct page *page = radix_tree_deref_slot_protected(slot,
 367							&mapping->tree_lock);
 368		if (likely(page) && PageDirty(page)) {
 369			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
 370			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
 371		}
 372	}
 373
 374	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
 375				   PAGECACHE_TAG_WRITEBACK) {
 376		struct page *page = radix_tree_deref_slot_protected(slot,
 377							&mapping->tree_lock);
 378		if (likely(page)) {
 379			WARN_ON_ONCE(!PageWriteback(page));
 380			__dec_wb_stat(old_wb, WB_WRITEBACK);
 381			__inc_wb_stat(new_wb, WB_WRITEBACK);
 382		}
 
 
 383	}
 384
 385	wb_get(new_wb);
 386
 387	/*
 388	 * Transfer to @new_wb's IO list if necessary.  The specific list
 389	 * @inode was on is ignored and the inode is put on ->b_dirty which
 390	 * is always correct including from ->b_dirty_time.  The transfer
 391	 * preserves @inode->dirtied_when ordering.
 
 
 392	 */
 393	if (!list_empty(&inode->i_io_list)) {
 394		struct inode *pos;
 395
 396		inode_io_list_del_locked(inode, old_wb);
 397		inode->i_wb = new_wb;
 398		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 399			if (time_after_eq(inode->dirtied_when,
 400					  pos->dirtied_when))
 401				break;
 402		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
 
 
 
 
 
 
 
 
 403	} else {
 404		inode->i_wb = new_wb;
 405	}
 406
 407	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 408	inode->i_wb_frn_winner = 0;
 409	inode->i_wb_frn_avg_time = 0;
 410	inode->i_wb_frn_history = 0;
 411	switched = true;
 412skip_switch:
 413	/*
 414	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 415	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 416	 */
 417	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 418
 419	spin_unlock_irq(&mapping->tree_lock);
 420	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421	spin_unlock(&new_wb->list_lock);
 422	spin_unlock(&old_wb->list_lock);
 423
 424	if (switched) {
 
 
 425		wb_wakeup(new_wb);
 426		wb_put(old_wb);
 427	}
 428	wb_put(new_wb);
 429
 430	iput(inode);
 
 
 431	kfree(isw);
 432
 433	atomic_dec(&isw_nr_in_flight);
 434}
 435
 436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
 
 437{
 438	struct inode_switch_wbs_context *isw = container_of(rcu_head,
 439				struct inode_switch_wbs_context, rcu_head);
 
 
 
 
 
 
 
 
 440
 441	/* needs to grab bh-unsafe locks, bounce to work item */
 442	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
 443	queue_work(isw_wq, &isw->work);
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446/**
 447 * inode_switch_wbs - change the wb association of an inode
 448 * @inode: target inode
 449 * @new_wb_id: ID of the new wb
 450 *
 451 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 452 * switching is performed asynchronously and may fail silently.
 453 */
 454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 455{
 456	struct backing_dev_info *bdi = inode_to_bdi(inode);
 457	struct cgroup_subsys_state *memcg_css;
 458	struct inode_switch_wbs_context *isw;
 459
 460	/* noop if seems to be already in progress */
 461	if (inode->i_state & I_WB_SWITCH)
 462		return;
 463
 464	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
 
 
 
 
 465	if (!isw)
 466		return;
 467
 
 
 468	/* find and pin the new wb */
 469	rcu_read_lock();
 470	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 471	if (memcg_css)
 472		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 473	rcu_read_unlock();
 474	if (!isw->new_wb)
 475		goto out_free;
 476
 477	/* while holding I_WB_SWITCH, no one else can update the association */
 478	spin_lock(&inode->i_lock);
 479	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
 480	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
 481	    inode_to_wb(inode) == isw->new_wb) {
 482		spin_unlock(&inode->i_lock);
 483		goto out_free;
 484	}
 485	inode->i_state |= I_WB_SWITCH;
 486	__iget(inode);
 487	spin_unlock(&inode->i_lock);
 488
 489	isw->inode = inode;
 
 490
 491	atomic_inc(&isw_nr_in_flight);
 492
 493	/*
 494	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 495	 * the RCU protected stat update paths to grab the mapping's
 496	 * tree_lock so that stat transfer can synchronize against them.
 497	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 498	 */
 499	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
 
 500	return;
 501
 502out_free:
 
 503	if (isw->new_wb)
 504		wb_put(isw->new_wb);
 505	kfree(isw);
 506}
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508/**
 509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 510 * @wbc: writeback_control of interest
 511 * @inode: target inode
 512 *
 513 * @inode is locked and about to be written back under the control of @wbc.
 514 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 515 * writeback completion, wbc_detach_inode() should be called.  This is used
 516 * to track the cgroup writeback context.
 517 */
 518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 519				 struct inode *inode)
 520{
 521	if (!inode_cgwb_enabled(inode)) {
 522		spin_unlock(&inode->i_lock);
 523		return;
 524	}
 525
 526	wbc->wb = inode_to_wb(inode);
 527	wbc->inode = inode;
 528
 529	wbc->wb_id = wbc->wb->memcg_css->id;
 530	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 531	wbc->wb_tcand_id = 0;
 532	wbc->wb_bytes = 0;
 533	wbc->wb_lcand_bytes = 0;
 534	wbc->wb_tcand_bytes = 0;
 535
 536	wb_get(wbc->wb);
 537	spin_unlock(&inode->i_lock);
 538
 539	/*
 540	 * A dying wb indicates that the memcg-blkcg mapping has changed
 541	 * and a new wb is already serving the memcg.  Switch immediately.
 
 
 
 542	 */
 543	if (unlikely(wb_dying(wbc->wb)))
 544		inode_switch_wbs(inode, wbc->wb_id);
 545}
 
 546
 547/**
 548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 549 * @wbc: writeback_control of the just finished writeback
 550 *
 551 * To be called after a writeback attempt of an inode finishes and undoes
 552 * wbc_attach_and_unlock_inode().  Can be called under any context.
 553 *
 554 * As concurrent write sharing of an inode is expected to be very rare and
 555 * memcg only tracks page ownership on first-use basis severely confining
 556 * the usefulness of such sharing, cgroup writeback tracks ownership
 557 * per-inode.  While the support for concurrent write sharing of an inode
 558 * is deemed unnecessary, an inode being written to by different cgroups at
 559 * different points in time is a lot more common, and, more importantly,
 560 * charging only by first-use can too readily lead to grossly incorrect
 561 * behaviors (single foreign page can lead to gigabytes of writeback to be
 562 * incorrectly attributed).
 563 *
 564 * To resolve this issue, cgroup writeback detects the majority dirtier of
 565 * an inode and transfers the ownership to it.  To avoid unnnecessary
 566 * oscillation, the detection mechanism keeps track of history and gives
 567 * out the switch verdict only if the foreign usage pattern is stable over
 568 * a certain amount of time and/or writeback attempts.
 569 *
 570 * On each writeback attempt, @wbc tries to detect the majority writer
 571 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 572 * count from the majority voting, it also counts the bytes written for the
 573 * current wb and the last round's winner wb (max of last round's current
 574 * wb, the winner from two rounds ago, and the last round's majority
 575 * candidate).  Keeping track of the historical winner helps the algorithm
 576 * to semi-reliably detect the most active writer even when it's not the
 577 * absolute majority.
 578 *
 579 * Once the winner of the round is determined, whether the winner is
 580 * foreign or not and how much IO time the round consumed is recorded in
 581 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 582 * over a certain threshold, the switch verdict is given.
 583 */
 584void wbc_detach_inode(struct writeback_control *wbc)
 585{
 586	struct bdi_writeback *wb = wbc->wb;
 587	struct inode *inode = wbc->inode;
 588	unsigned long avg_time, max_bytes, max_time;
 589	u16 history;
 590	int max_id;
 591
 592	if (!wb)
 593		return;
 594
 595	history = inode->i_wb_frn_history;
 596	avg_time = inode->i_wb_frn_avg_time;
 597
 598	/* pick the winner of this round */
 599	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 600	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 601		max_id = wbc->wb_id;
 602		max_bytes = wbc->wb_bytes;
 603	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 604		max_id = wbc->wb_lcand_id;
 605		max_bytes = wbc->wb_lcand_bytes;
 606	} else {
 607		max_id = wbc->wb_tcand_id;
 608		max_bytes = wbc->wb_tcand_bytes;
 609	}
 610
 611	/*
 612	 * Calculate the amount of IO time the winner consumed and fold it
 613	 * into the running average kept per inode.  If the consumed IO
 614	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 615	 * deciding whether to switch or not.  This is to prevent one-off
 616	 * small dirtiers from skewing the verdict.
 617	 */
 618	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 619				wb->avg_write_bandwidth);
 620	if (avg_time)
 621		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 622			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 623	else
 624		avg_time = max_time;	/* immediate catch up on first run */
 625
 626	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 627		int slots;
 628
 629		/*
 630		 * The switch verdict is reached if foreign wb's consume
 631		 * more than a certain proportion of IO time in a
 632		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 633		 * history mask where each bit represents one sixteenth of
 634		 * the period.  Determine the number of slots to shift into
 635		 * history from @max_time.
 636		 */
 637		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 638			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 639		history <<= slots;
 640		if (wbc->wb_id != max_id)
 641			history |= (1U << slots) - 1;
 642
 
 
 
 643		/*
 644		 * Switch if the current wb isn't the consistent winner.
 645		 * If there are multiple closely competing dirtiers, the
 646		 * inode may switch across them repeatedly over time, which
 647		 * is okay.  The main goal is avoiding keeping an inode on
 648		 * the wrong wb for an extended period of time.
 649		 */
 650		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
 651			inode_switch_wbs(inode, max_id);
 652	}
 653
 654	/*
 655	 * Multiple instances of this function may race to update the
 656	 * following fields but we don't mind occassional inaccuracies.
 657	 */
 658	inode->i_wb_frn_winner = max_id;
 659	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 660	inode->i_wb_frn_history = history;
 661
 662	wb_put(wbc->wb);
 663	wbc->wb = NULL;
 664}
 
 665
 666/**
 667 * wbc_account_io - account IO issued during writeback
 668 * @wbc: writeback_control of the writeback in progress
 669 * @page: page being written out
 670 * @bytes: number of bytes being written out
 671 *
 672 * @bytes from @page are about to written out during the writeback
 673 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 674 * wbc_detach_inode().
 675 */
 676void wbc_account_io(struct writeback_control *wbc, struct page *page,
 677		    size_t bytes)
 678{
 
 
 679	int id;
 680
 681	/*
 682	 * pageout() path doesn't attach @wbc to the inode being written
 683	 * out.  This is intentional as we don't want the function to block
 684	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 685	 * regular writeback instead of writing things out itself.
 686	 */
 687	if (!wbc->wb)
 
 
 
 
 
 
 688		return;
 689
 690	id = mem_cgroup_css_from_page(page)->id;
 691
 692	if (id == wbc->wb_id) {
 693		wbc->wb_bytes += bytes;
 694		return;
 695	}
 696
 697	if (id == wbc->wb_lcand_id)
 698		wbc->wb_lcand_bytes += bytes;
 699
 700	/* Boyer-Moore majority vote algorithm */
 701	if (!wbc->wb_tcand_bytes)
 702		wbc->wb_tcand_id = id;
 703	if (id == wbc->wb_tcand_id)
 704		wbc->wb_tcand_bytes += bytes;
 705	else
 706		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 707}
 708EXPORT_SYMBOL_GPL(wbc_account_io);
 709
 710/**
 711 * inode_congested - test whether an inode is congested
 712 * @inode: inode to test for congestion (may be NULL)
 713 * @cong_bits: mask of WB_[a]sync_congested bits to test
 714 *
 715 * Tests whether @inode is congested.  @cong_bits is the mask of congestion
 716 * bits to test and the return value is the mask of set bits.
 717 *
 718 * If cgroup writeback is enabled for @inode, the congestion state is
 719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
 720 * associated with @inode is congested; otherwise, the root wb's congestion
 721 * state is used.
 722 *
 723 * @inode is allowed to be NULL as this function is often called on
 724 * mapping->host which is NULL for the swapper space.
 725 */
 726int inode_congested(struct inode *inode, int cong_bits)
 727{
 728	/*
 729	 * Once set, ->i_wb never becomes NULL while the inode is alive.
 730	 * Start transaction iff ->i_wb is visible.
 731	 */
 732	if (inode && inode_to_wb_is_valid(inode)) {
 733		struct bdi_writeback *wb;
 734		bool locked, congested;
 735
 736		wb = unlocked_inode_to_wb_begin(inode, &locked);
 737		congested = wb_congested(wb, cong_bits);
 738		unlocked_inode_to_wb_end(inode, locked);
 739		return congested;
 740	}
 741
 742	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
 743}
 744EXPORT_SYMBOL_GPL(inode_congested);
 745
 746/**
 747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 748 * @wb: target bdi_writeback to split @nr_pages to
 749 * @nr_pages: number of pages to write for the whole bdi
 750 *
 751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 753 * @wb->bdi.
 754 */
 755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 756{
 757	unsigned long this_bw = wb->avg_write_bandwidth;
 758	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 759
 760	if (nr_pages == LONG_MAX)
 761		return LONG_MAX;
 762
 763	/*
 764	 * This may be called on clean wb's and proportional distribution
 765	 * may not make sense, just use the original @nr_pages in those
 766	 * cases.  In general, we wanna err on the side of writing more.
 767	 */
 768	if (!tot_bw || this_bw >= tot_bw)
 769		return nr_pages;
 770	else
 771		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 772}
 773
 774/**
 775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 776 * @bdi: target backing_dev_info
 777 * @base_work: wb_writeback_work to issue
 778 * @skip_if_busy: skip wb's which already have writeback in progress
 779 *
 780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 781 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 782 * distributed to the busy wbs according to each wb's proportion in the
 783 * total active write bandwidth of @bdi.
 784 */
 785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 786				  struct wb_writeback_work *base_work,
 787				  bool skip_if_busy)
 788{
 789	struct bdi_writeback *last_wb = NULL;
 790	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 791					      struct bdi_writeback, bdi_node);
 792
 793	might_sleep();
 794restart:
 795	rcu_read_lock();
 796	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 797		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
 798		struct wb_writeback_work fallback_work;
 799		struct wb_writeback_work *work;
 800		long nr_pages;
 801
 802		if (last_wb) {
 803			wb_put(last_wb);
 804			last_wb = NULL;
 805		}
 806
 807		/* SYNC_ALL writes out I_DIRTY_TIME too */
 808		if (!wb_has_dirty_io(wb) &&
 809		    (base_work->sync_mode == WB_SYNC_NONE ||
 810		     list_empty(&wb->b_dirty_time)))
 811			continue;
 812		if (skip_if_busy && writeback_in_progress(wb))
 813			continue;
 814
 815		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 816
 817		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 818		if (work) {
 819			*work = *base_work;
 820			work->nr_pages = nr_pages;
 821			work->auto_free = 1;
 822			wb_queue_work(wb, work);
 823			continue;
 824		}
 825
 
 
 
 
 
 
 
 
 
 
 826		/* alloc failed, execute synchronously using on-stack fallback */
 827		work = &fallback_work;
 828		*work = *base_work;
 829		work->nr_pages = nr_pages;
 830		work->auto_free = 0;
 831		work->done = &fallback_work_done;
 832
 833		wb_queue_work(wb, work);
 834
 835		/*
 836		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
 837		 * continuing iteration from @wb after dropping and
 838		 * regrabbing rcu read lock.
 839		 */
 840		wb_get(wb);
 841		last_wb = wb;
 842
 843		rcu_read_unlock();
 844		wb_wait_for_completion(bdi, &fallback_work_done);
 845		goto restart;
 846	}
 847	rcu_read_unlock();
 848
 849	if (last_wb)
 850		wb_put(last_wb);
 851}
 852
 853/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854 * cgroup_writeback_umount - flush inode wb switches for umount
 855 *
 856 * This function is called when a super_block is about to be destroyed and
 857 * flushes in-flight inode wb switches.  An inode wb switch goes through
 858 * RCU and then workqueue, so the two need to be flushed in order to ensure
 859 * that all previously scheduled switches are finished.  As wb switches are
 860 * rare occurrences and synchronize_rcu() can take a while, perform
 861 * flushing iff wb switches are in flight.
 862 */
 863void cgroup_writeback_umount(void)
 864{
 
 
 
 
 
 
 865	if (atomic_read(&isw_nr_in_flight)) {
 866		synchronize_rcu();
 
 
 
 
 867		flush_workqueue(isw_wq);
 868	}
 869}
 870
 871static int __init cgroup_writeback_init(void)
 872{
 873	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
 874	if (!isw_wq)
 875		return -ENOMEM;
 876	return 0;
 877}
 878fs_initcall(cgroup_writeback_init);
 879
 880#else	/* CONFIG_CGROUP_WRITEBACK */
 881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882static struct bdi_writeback *
 883locked_inode_to_wb_and_lock_list(struct inode *inode)
 884	__releases(&inode->i_lock)
 885	__acquires(&wb->list_lock)
 886{
 887	struct bdi_writeback *wb = inode_to_wb(inode);
 888
 889	spin_unlock(&inode->i_lock);
 890	spin_lock(&wb->list_lock);
 891	return wb;
 892}
 893
 894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 895	__acquires(&wb->list_lock)
 896{
 897	struct bdi_writeback *wb = inode_to_wb(inode);
 898
 899	spin_lock(&wb->list_lock);
 900	return wb;
 901}
 902
 903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 904{
 905	return nr_pages;
 906}
 907
 908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 909				  struct wb_writeback_work *base_work,
 910				  bool skip_if_busy)
 911{
 912	might_sleep();
 913
 914	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
 915		base_work->auto_free = 0;
 916		wb_queue_work(&bdi->wb, base_work);
 917	}
 918}
 919
 920#endif	/* CONFIG_CGROUP_WRITEBACK */
 921
 922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
 923			bool range_cyclic, enum wb_reason reason)
 
 
 
 924{
 925	struct wb_writeback_work *work;
 
 
 926
 
 
 927	if (!wb_has_dirty_io(wb))
 928		return;
 929
 930	/*
 931	 * This is WB_SYNC_NONE writeback, so if allocation fails just
 932	 * wakeup the thread for old dirty data writeback
 
 
 
 
 933	 */
 934	work = kzalloc(sizeof(*work),
 935		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 936	if (!work) {
 937		trace_writeback_nowork(wb);
 938		wb_wakeup(wb);
 939		return;
 940	}
 941
 942	work->sync_mode	= WB_SYNC_NONE;
 943	work->nr_pages	= nr_pages;
 944	work->range_cyclic = range_cyclic;
 945	work->reason	= reason;
 946	work->auto_free	= 1;
 947
 948	wb_queue_work(wb, work);
 
 949}
 950
 951/**
 952 * wb_start_background_writeback - start background writeback
 953 * @wb: bdi_writback to write from
 954 *
 955 * Description:
 956 *   This makes sure WB_SYNC_NONE background writeback happens. When
 957 *   this function returns, it is only guaranteed that for given wb
 958 *   some IO is happening if we are over background dirty threshold.
 959 *   Caller need not hold sb s_umount semaphore.
 960 */
 961void wb_start_background_writeback(struct bdi_writeback *wb)
 962{
 963	/*
 964	 * We just wake up the flusher thread. It will perform background
 965	 * writeback as soon as there is no other work to do.
 966	 */
 967	trace_writeback_wake_background(wb);
 968	wb_wakeup(wb);
 969}
 970
 971/*
 972 * Remove the inode from the writeback list it is on.
 973 */
 974void inode_io_list_del(struct inode *inode)
 975{
 976	struct bdi_writeback *wb;
 977
 978	wb = inode_to_wb_and_lock_list(inode);
 979	inode_io_list_del_locked(inode, wb);
 
 
 
 
 
 
 980	spin_unlock(&wb->list_lock);
 981}
 
 982
 983/*
 984 * mark an inode as under writeback on the sb
 985 */
 986void sb_mark_inode_writeback(struct inode *inode)
 987{
 988	struct super_block *sb = inode->i_sb;
 989	unsigned long flags;
 990
 991	if (list_empty(&inode->i_wb_list)) {
 992		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
 993		if (list_empty(&inode->i_wb_list)) {
 994			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
 995			trace_sb_mark_inode_writeback(inode);
 996		}
 997		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
 998	}
 999}
1000
1001/*
1002 * clear an inode as under writeback on the sb
1003 */
1004void sb_clear_inode_writeback(struct inode *inode)
1005{
1006	struct super_block *sb = inode->i_sb;
1007	unsigned long flags;
1008
1009	if (!list_empty(&inode->i_wb_list)) {
1010		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011		if (!list_empty(&inode->i_wb_list)) {
1012			list_del_init(&inode->i_wb_list);
1013			trace_sb_clear_inode_writeback(inode);
1014		}
1015		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016	}
1017}
1018
1019/*
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1022 *
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1027 */
1028static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029{
 
 
 
 
 
 
 
 
 
 
 
 
 
1030	if (!list_empty(&wb->b_dirty)) {
1031		struct inode *tail;
1032
1033		tail = wb_inode(wb->b_dirty.next);
1034		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035			inode->dirtied_when = jiffies;
1036	}
1037	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038}
1039
 
 
 
 
 
 
 
1040/*
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042 */
1043static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044{
1045	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046}
1047
1048static void inode_sync_complete(struct inode *inode)
1049{
1050	inode->i_state &= ~I_SYNC;
1051	/* If inode is clean an unused, put it into LRU now... */
1052	inode_add_lru(inode);
1053	/* Waiters must see I_SYNC cleared before being woken up */
1054	smp_mb();
1055	wake_up_bit(&inode->i_state, __I_SYNC);
1056}
1057
1058static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059{
1060	bool ret = time_after(inode->dirtied_when, t);
1061#ifndef CONFIG_64BIT
1062	/*
1063	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064	 * It _appears_ to be in the future, but is actually in distant past.
1065	 * This test is necessary to prevent such wrapped-around relative times
1066	 * from permanently stopping the whole bdi writeback.
1067	 */
1068	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069#endif
1070	return ret;
1071}
1072
1073#define EXPIRE_DIRTY_ATIME 0x0001
1074
1075/*
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1078 */
1079static int move_expired_inodes(struct list_head *delaying_queue,
1080			       struct list_head *dispatch_queue,
1081			       int flags,
1082			       struct wb_writeback_work *work)
1083{
1084	unsigned long *older_than_this = NULL;
1085	unsigned long expire_time;
1086	LIST_HEAD(tmp);
1087	struct list_head *pos, *node;
1088	struct super_block *sb = NULL;
1089	struct inode *inode;
1090	int do_sb_sort = 0;
1091	int moved = 0;
1092
1093	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094		older_than_this = work->older_than_this;
1095	else if (!work->for_sync) {
1096		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097		older_than_this = &expire_time;
1098	}
1099	while (!list_empty(delaying_queue)) {
1100		inode = wb_inode(delaying_queue->prev);
1101		if (older_than_this &&
1102		    inode_dirtied_after(inode, *older_than_this))
1103			break;
 
1104		list_move(&inode->i_io_list, &tmp);
1105		moved++;
1106		if (flags & EXPIRE_DIRTY_ATIME)
1107			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108		if (sb_is_blkdev_sb(inode->i_sb))
1109			continue;
1110		if (sb && sb != inode->i_sb)
1111			do_sb_sort = 1;
1112		sb = inode->i_sb;
1113	}
1114
1115	/* just one sb in list, splice to dispatch_queue and we're done */
1116	if (!do_sb_sort) {
1117		list_splice(&tmp, dispatch_queue);
1118		goto out;
1119	}
1120
1121	/* Move inodes from one superblock together */
 
 
 
 
 
1122	while (!list_empty(&tmp)) {
1123		sb = wb_inode(tmp.prev)->i_sb;
1124		list_for_each_prev_safe(pos, node, &tmp) {
1125			inode = wb_inode(pos);
1126			if (inode->i_sb == sb)
1127				list_move(&inode->i_io_list, dispatch_queue);
1128		}
1129	}
1130out:
1131	return moved;
1132}
1133
1134/*
1135 * Queue all expired dirty inodes for io, eldest first.
1136 * Before
1137 *         newly dirtied     b_dirty    b_io    b_more_io
1138 *         =============>    gf         edc     BA
1139 * After
1140 *         newly dirtied     b_dirty    b_io    b_more_io
1141 *         =============>    g          fBAedc
1142 *                                           |
1143 *                                           +--> dequeue for IO
1144 */
1145static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
 
1146{
1147	int moved;
 
1148
1149	assert_spin_locked(&wb->list_lock);
1150	list_splice_init(&wb->b_more_io, &wb->b_io);
1151	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
 
 
1152	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153				     EXPIRE_DIRTY_ATIME, work);
1154	if (moved)
1155		wb_io_lists_populated(wb);
1156	trace_writeback_queue_io(wb, work, moved);
1157}
1158
1159static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160{
1161	int ret;
1162
1163	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164		trace_writeback_write_inode_start(inode, wbc);
1165		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166		trace_writeback_write_inode(inode, wbc);
1167		return ret;
1168	}
1169	return 0;
1170}
1171
1172/*
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1175 */
1176static void __inode_wait_for_writeback(struct inode *inode)
1177	__releases(inode->i_lock)
1178	__acquires(inode->i_lock)
1179{
1180	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181	wait_queue_head_t *wqh;
1182
1183	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184	while (inode->i_state & I_SYNC) {
1185		spin_unlock(&inode->i_lock);
1186		__wait_on_bit(wqh, &wq, bit_wait,
1187			      TASK_UNINTERRUPTIBLE);
1188		spin_lock(&inode->i_lock);
1189	}
1190}
1191
1192/*
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194 */
1195void inode_wait_for_writeback(struct inode *inode)
1196{
1197	spin_lock(&inode->i_lock);
1198	__inode_wait_for_writeback(inode);
1199	spin_unlock(&inode->i_lock);
1200}
1201
1202/*
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1206 */
1207static void inode_sleep_on_writeback(struct inode *inode)
1208	__releases(inode->i_lock)
1209{
1210	DEFINE_WAIT(wait);
1211	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212	int sleep;
1213
1214	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215	sleep = inode->i_state & I_SYNC;
1216	spin_unlock(&inode->i_lock);
1217	if (sleep)
1218		schedule();
1219	finish_wait(wqh, &wait);
1220}
1221
1222/*
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback.  Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1229 */
1230static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231			  struct writeback_control *wbc)
1232{
1233	if (inode->i_state & I_FREEING)
1234		return;
1235
1236	/*
1237	 * Sync livelock prevention. Each inode is tagged and synced in one
1238	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239	 * the dirty time to prevent enqueue and sync it again.
1240	 */
1241	if ((inode->i_state & I_DIRTY) &&
1242	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243		inode->dirtied_when = jiffies;
1244
1245	if (wbc->pages_skipped) {
1246		/*
1247		 * writeback is not making progress due to locked
1248		 * buffers. Skip this inode for now.
 
 
1249		 */
1250		redirty_tail(inode, wb);
 
 
 
1251		return;
1252	}
1253
1254	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255		/*
1256		 * We didn't write back all the pages.  nfs_writepages()
1257		 * sometimes bales out without doing anything.
1258		 */
1259		if (wbc->nr_to_write <= 0) {
1260			/* Slice used up. Queue for next turn. */
1261			requeue_io(inode, wb);
1262		} else {
1263			/*
1264			 * Writeback blocked by something other than
1265			 * congestion. Delay the inode for some time to
1266			 * avoid spinning on the CPU (100% iowait)
1267			 * retrying writeback of the dirty page/inode
1268			 * that cannot be performed immediately.
1269			 */
1270			redirty_tail(inode, wb);
1271		}
1272	} else if (inode->i_state & I_DIRTY) {
1273		/*
1274		 * Filesystems can dirty the inode during writeback operations,
1275		 * such as delayed allocation during submission or metadata
1276		 * updates after data IO completion.
1277		 */
1278		redirty_tail(inode, wb);
1279	} else if (inode->i_state & I_DIRTY_TIME) {
1280		inode->dirtied_when = jiffies;
1281		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
 
1282	} else {
1283		/* The inode is clean. Remove from writeback lists. */
1284		inode_io_list_del_locked(inode, wb);
1285	}
1286}
1287
1288/*
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
 
 
 
 
 
 
1292 */
1293static int
1294__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295{
1296	struct address_space *mapping = inode->i_mapping;
1297	long nr_to_write = wbc->nr_to_write;
1298	unsigned dirty;
1299	int ret;
1300
1301	WARN_ON(!(inode->i_state & I_SYNC));
1302
1303	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304
1305	ret = do_writepages(mapping, wbc);
1306
1307	/*
1308	 * Make sure to wait on the data before writing out the metadata.
1309	 * This is important for filesystems that modify metadata on data
1310	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312	 * inode metadata is written back correctly.
1313	 */
1314	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315		int err = filemap_fdatawait(mapping);
1316		if (ret == 0)
1317			ret = err;
1318	}
1319
1320	/*
1321	 * Some filesystems may redirty the inode during the writeback
1322	 * due to delalloc, clear dirty metadata flags right before
1323	 * write_inode()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	 */
1325	spin_lock(&inode->i_lock);
1326
1327	dirty = inode->i_state & I_DIRTY;
1328	if (inode->i_state & I_DIRTY_TIME) {
1329		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330		    wbc->sync_mode == WB_SYNC_ALL ||
1331		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332		    unlikely(time_after(jiffies,
1333					(inode->dirtied_time_when +
1334					 dirtytime_expire_interval * HZ)))) {
1335			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336			trace_writeback_lazytime(inode);
1337		}
1338	} else
1339		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340	inode->i_state &= ~dirty;
1341
1342	/*
1343	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346	 * inode.
1347	 *
1348	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350	 * necessary.  This guarantees that either __mark_inode_dirty()
1351	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352	 */
1353	smp_mb();
1354
1355	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356		inode->i_state |= I_DIRTY_PAGES;
 
 
 
 
 
 
 
1357
1358	spin_unlock(&inode->i_lock);
1359
1360	if (dirty & I_DIRTY_TIME)
1361		mark_inode_dirty_sync(inode);
1362	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363	if (dirty & ~I_DIRTY_PAGES) {
1364		int err = write_inode(inode, wbc);
1365		if (ret == 0)
1366			ret = err;
1367	}
 
1368	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369	return ret;
1370}
1371
1372/*
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
 
 
1375 *
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1379 */
1380static int writeback_single_inode(struct inode *inode,
1381				  struct writeback_control *wbc)
1382{
1383	struct bdi_writeback *wb;
1384	int ret = 0;
1385
1386	spin_lock(&inode->i_lock);
1387	if (!atomic_read(&inode->i_count))
1388		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389	else
1390		WARN_ON(inode->i_state & I_WILL_FREE);
1391
1392	if (inode->i_state & I_SYNC) {
1393		if (wbc->sync_mode != WB_SYNC_ALL)
1394			goto out;
1395		/*
1396		 * It's a data-integrity sync. We must wait. Since callers hold
1397		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398		 * away under us.
 
1399		 */
 
 
1400		__inode_wait_for_writeback(inode);
1401	}
1402	WARN_ON(inode->i_state & I_SYNC);
1403	/*
1404	 * Skip inode if it is clean and we have no outstanding writeback in
1405	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406	 * function since flusher thread may be doing for example sync in
1407	 * parallel and if we move the inode, it could get skipped. So here we
1408	 * make sure inode is on some writeback list and leave it there unless
1409	 * we have completely cleaned the inode.
1410	 */
1411	if (!(inode->i_state & I_DIRTY_ALL) &&
1412	    (wbc->sync_mode != WB_SYNC_ALL ||
1413	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414		goto out;
1415	inode->i_state |= I_SYNC;
1416	wbc_attach_and_unlock_inode(wbc, inode);
1417
1418	ret = __writeback_single_inode(inode, wbc);
1419
1420	wbc_detach_inode(wbc);
1421
1422	wb = inode_to_wb_and_lock_list(inode);
1423	spin_lock(&inode->i_lock);
1424	/*
1425	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426	 * touch it. See comment above for explanation.
1427	 */
1428	if (!(inode->i_state & I_DIRTY_ALL))
1429		inode_io_list_del_locked(inode, wb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430	spin_unlock(&wb->list_lock);
1431	inode_sync_complete(inode);
1432out:
1433	spin_unlock(&inode->i_lock);
1434	return ret;
1435}
1436
1437static long writeback_chunk_size(struct bdi_writeback *wb,
1438				 struct wb_writeback_work *work)
1439{
1440	long pages;
1441
1442	/*
1443	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445	 * here avoids calling into writeback_inodes_wb() more than once.
1446	 *
1447	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448	 *
1449	 *      wb_writeback()
1450	 *          writeback_sb_inodes()       <== called only once
1451	 *              write_cache_pages()     <== called once for each inode
1452	 *                   (quickly) tag currently dirty pages
1453	 *                   (maybe slowly) sync all tagged pages
1454	 */
1455	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456		pages = LONG_MAX;
1457	else {
1458		pages = min(wb->avg_write_bandwidth / 2,
1459			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460		pages = min(pages, work->nr_pages);
1461		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462				   MIN_WRITEBACK_PAGES);
1463	}
1464
1465	return pages;
1466}
1467
1468/*
1469 * Write a portion of b_io inodes which belong to @sb.
1470 *
1471 * Return the number of pages and/or inodes written.
1472 *
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1475 * IO for.
1476 */
1477static long writeback_sb_inodes(struct super_block *sb,
1478				struct bdi_writeback *wb,
1479				struct wb_writeback_work *work)
1480{
1481	struct writeback_control wbc = {
1482		.sync_mode		= work->sync_mode,
1483		.tagged_writepages	= work->tagged_writepages,
1484		.for_kupdate		= work->for_kupdate,
1485		.for_background		= work->for_background,
1486		.for_sync		= work->for_sync,
1487		.range_cyclic		= work->range_cyclic,
1488		.range_start		= 0,
1489		.range_end		= LLONG_MAX,
1490	};
1491	unsigned long start_time = jiffies;
1492	long write_chunk;
1493	long wrote = 0;  /* count both pages and inodes */
1494
1495	while (!list_empty(&wb->b_io)) {
1496		struct inode *inode = wb_inode(wb->b_io.prev);
1497		struct bdi_writeback *tmp_wb;
 
1498
1499		if (inode->i_sb != sb) {
1500			if (work->sb) {
1501				/*
1502				 * We only want to write back data for this
1503				 * superblock, move all inodes not belonging
1504				 * to it back onto the dirty list.
1505				 */
1506				redirty_tail(inode, wb);
1507				continue;
1508			}
1509
1510			/*
1511			 * The inode belongs to a different superblock.
1512			 * Bounce back to the caller to unpin this and
1513			 * pin the next superblock.
1514			 */
1515			break;
1516		}
1517
1518		/*
1519		 * Don't bother with new inodes or inodes being freed, first
1520		 * kind does not need periodic writeout yet, and for the latter
1521		 * kind writeout is handled by the freer.
1522		 */
1523		spin_lock(&inode->i_lock);
1524		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 
1525			spin_unlock(&inode->i_lock);
1526			redirty_tail(inode, wb);
1527			continue;
1528		}
1529		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530			/*
1531			 * If this inode is locked for writeback and we are not
1532			 * doing writeback-for-data-integrity, move it to
1533			 * b_more_io so that writeback can proceed with the
1534			 * other inodes on s_io.
1535			 *
1536			 * We'll have another go at writing back this inode
1537			 * when we completed a full scan of b_io.
1538			 */
1539			spin_unlock(&inode->i_lock);
1540			requeue_io(inode, wb);
 
1541			trace_writeback_sb_inodes_requeue(inode);
1542			continue;
1543		}
1544		spin_unlock(&wb->list_lock);
1545
1546		/*
1547		 * We already requeued the inode if it had I_SYNC set and we
1548		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549		 * WB_SYNC_ALL case.
1550		 */
1551		if (inode->i_state & I_SYNC) {
1552			/* Wait for I_SYNC. This function drops i_lock... */
1553			inode_sleep_on_writeback(inode);
1554			/* Inode may be gone, start again */
1555			spin_lock(&wb->list_lock);
1556			continue;
1557		}
1558		inode->i_state |= I_SYNC;
1559		wbc_attach_and_unlock_inode(&wbc, inode);
1560
1561		write_chunk = writeback_chunk_size(wb, work);
1562		wbc.nr_to_write = write_chunk;
1563		wbc.pages_skipped = 0;
1564
1565		/*
1566		 * We use I_SYNC to pin the inode in memory. While it is set
1567		 * evict_inode() will wait so the inode cannot be freed.
1568		 */
1569		__writeback_single_inode(inode, &wbc);
1570
1571		wbc_detach_inode(&wbc);
1572		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573		wrote += write_chunk - wbc.nr_to_write;
 
 
1574
1575		if (need_resched()) {
1576			/*
1577			 * We're trying to balance between building up a nice
1578			 * long list of IOs to improve our merge rate, and
1579			 * getting those IOs out quickly for anyone throttling
1580			 * in balance_dirty_pages().  cond_resched() doesn't
1581			 * unplug, so get our IOs out the door before we
1582			 * give up the CPU.
1583			 */
1584			blk_flush_plug(current);
1585			cond_resched();
1586		}
1587
1588		/*
1589		 * Requeue @inode if still dirty.  Be careful as @inode may
1590		 * have been switched to another wb in the meantime.
1591		 */
1592		tmp_wb = inode_to_wb_and_lock_list(inode);
1593		spin_lock(&inode->i_lock);
1594		if (!(inode->i_state & I_DIRTY_ALL))
1595			wrote++;
1596		requeue_inode(inode, tmp_wb, &wbc);
1597		inode_sync_complete(inode);
1598		spin_unlock(&inode->i_lock);
1599
1600		if (unlikely(tmp_wb != wb)) {
1601			spin_unlock(&tmp_wb->list_lock);
1602			spin_lock(&wb->list_lock);
1603		}
1604
1605		/*
1606		 * bail out to wb_writeback() often enough to check
1607		 * background threshold and other termination conditions.
1608		 */
1609		if (wrote) {
1610			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611				break;
1612			if (work->nr_pages <= 0)
1613				break;
1614		}
1615	}
1616	return wrote;
1617}
1618
1619static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620				  struct wb_writeback_work *work)
1621{
1622	unsigned long start_time = jiffies;
1623	long wrote = 0;
1624
1625	while (!list_empty(&wb->b_io)) {
1626		struct inode *inode = wb_inode(wb->b_io.prev);
1627		struct super_block *sb = inode->i_sb;
1628
1629		if (!trylock_super(sb)) {
1630			/*
1631			 * trylock_super() may fail consistently due to
1632			 * s_umount being grabbed by someone else. Don't use
1633			 * requeue_io() to avoid busy retrying the inode/sb.
1634			 */
1635			redirty_tail(inode, wb);
1636			continue;
1637		}
1638		wrote += writeback_sb_inodes(sb, wb, work);
1639		up_read(&sb->s_umount);
1640
1641		/* refer to the same tests at the end of writeback_sb_inodes */
1642		if (wrote) {
1643			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644				break;
1645			if (work->nr_pages <= 0)
1646				break;
1647		}
1648	}
1649	/* Leave any unwritten inodes on b_io */
1650	return wrote;
1651}
1652
1653static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654				enum wb_reason reason)
1655{
1656	struct wb_writeback_work work = {
1657		.nr_pages	= nr_pages,
1658		.sync_mode	= WB_SYNC_NONE,
1659		.range_cyclic	= 1,
1660		.reason		= reason,
1661	};
1662	struct blk_plug plug;
1663
1664	blk_start_plug(&plug);
1665	spin_lock(&wb->list_lock);
1666	if (list_empty(&wb->b_io))
1667		queue_io(wb, &work);
1668	__writeback_inodes_wb(wb, &work);
1669	spin_unlock(&wb->list_lock);
1670	blk_finish_plug(&plug);
1671
1672	return nr_pages - work.nr_pages;
1673}
1674
1675/*
1676 * Explicit flushing or periodic writeback of "old" data.
1677 *
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space.  So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1682 *
1683 * Try to run once per dirty_writeback_interval.  But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1685 * one-second gap.
1686 *
1687 * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1689 */
1690static long wb_writeback(struct bdi_writeback *wb,
1691			 struct wb_writeback_work *work)
1692{
1693	unsigned long wb_start = jiffies;
1694	long nr_pages = work->nr_pages;
1695	unsigned long oldest_jif;
1696	struct inode *inode;
1697	long progress;
1698	struct blk_plug plug;
1699
1700	oldest_jif = jiffies;
1701	work->older_than_this = &oldest_jif;
1702
1703	blk_start_plug(&plug);
1704	spin_lock(&wb->list_lock);
1705	for (;;) {
1706		/*
1707		 * Stop writeback when nr_pages has been consumed
1708		 */
1709		if (work->nr_pages <= 0)
1710			break;
1711
1712		/*
1713		 * Background writeout and kupdate-style writeback may
1714		 * run forever. Stop them if there is other work to do
1715		 * so that e.g. sync can proceed. They'll be restarted
1716		 * after the other works are all done.
1717		 */
1718		if ((work->for_background || work->for_kupdate) &&
1719		    !list_empty(&wb->work_list))
1720			break;
1721
1722		/*
1723		 * For background writeout, stop when we are below the
1724		 * background dirty threshold
1725		 */
1726		if (work->for_background && !wb_over_bg_thresh(wb))
1727			break;
1728
 
 
 
1729		/*
1730		 * Kupdate and background works are special and we want to
1731		 * include all inodes that need writing. Livelock avoidance is
1732		 * handled by these works yielding to any other work so we are
1733		 * safe.
1734		 */
1735		if (work->for_kupdate) {
1736			oldest_jif = jiffies -
1737				msecs_to_jiffies(dirty_expire_interval * 10);
1738		} else if (work->for_background)
1739			oldest_jif = jiffies;
1740
1741		trace_writeback_start(wb, work);
1742		if (list_empty(&wb->b_io))
1743			queue_io(wb, work);
1744		if (work->sb)
1745			progress = writeback_sb_inodes(work->sb, wb, work);
1746		else
1747			progress = __writeback_inodes_wb(wb, work);
1748		trace_writeback_written(wb, work);
1749
1750		wb_update_bandwidth(wb, wb_start);
1751
1752		/*
1753		 * Did we write something? Try for more
1754		 *
1755		 * Dirty inodes are moved to b_io for writeback in batches.
1756		 * The completion of the current batch does not necessarily
1757		 * mean the overall work is done. So we keep looping as long
1758		 * as made some progress on cleaning pages or inodes.
1759		 */
1760		if (progress)
 
1761			continue;
 
 
1762		/*
1763		 * No more inodes for IO, bail
1764		 */
1765		if (list_empty(&wb->b_more_io))
 
1766			break;
 
 
1767		/*
1768		 * Nothing written. Wait for some inode to
1769		 * become available for writeback. Otherwise
1770		 * we'll just busyloop.
1771		 */
1772		trace_writeback_wait(wb, work);
1773		inode = wb_inode(wb->b_more_io.prev);
1774		spin_lock(&inode->i_lock);
1775		spin_unlock(&wb->list_lock);
1776		/* This function drops i_lock... */
1777		inode_sleep_on_writeback(inode);
1778		spin_lock(&wb->list_lock);
1779	}
1780	spin_unlock(&wb->list_lock);
1781	blk_finish_plug(&plug);
1782
1783	return nr_pages - work->nr_pages;
1784}
1785
1786/*
1787 * Return the next wb_writeback_work struct that hasn't been processed yet.
1788 */
1789static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790{
1791	struct wb_writeback_work *work = NULL;
1792
1793	spin_lock_bh(&wb->work_lock);
1794	if (!list_empty(&wb->work_list)) {
1795		work = list_entry(wb->work_list.next,
1796				  struct wb_writeback_work, list);
1797		list_del_init(&work->list);
1798	}
1799	spin_unlock_bh(&wb->work_lock);
1800	return work;
1801}
1802
1803/*
1804 * Add in the number of potentially dirty inodes, because each inode
1805 * write can dirty pagecache in the underlying blockdev.
1806 */
1807static unsigned long get_nr_dirty_pages(void)
1808{
1809	return global_node_page_state(NR_FILE_DIRTY) +
1810		global_node_page_state(NR_UNSTABLE_NFS) +
1811		get_nr_dirty_inodes();
1812}
1813
1814static long wb_check_background_flush(struct bdi_writeback *wb)
1815{
1816	if (wb_over_bg_thresh(wb)) {
1817
1818		struct wb_writeback_work work = {
1819			.nr_pages	= LONG_MAX,
1820			.sync_mode	= WB_SYNC_NONE,
1821			.for_background	= 1,
1822			.range_cyclic	= 1,
1823			.reason		= WB_REASON_BACKGROUND,
1824		};
1825
1826		return wb_writeback(wb, &work);
1827	}
1828
1829	return 0;
1830}
1831
1832static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833{
1834	unsigned long expired;
1835	long nr_pages;
1836
1837	/*
1838	 * When set to zero, disable periodic writeback
1839	 */
1840	if (!dirty_writeback_interval)
1841		return 0;
1842
1843	expired = wb->last_old_flush +
1844			msecs_to_jiffies(dirty_writeback_interval * 10);
1845	if (time_before(jiffies, expired))
1846		return 0;
1847
1848	wb->last_old_flush = jiffies;
1849	nr_pages = get_nr_dirty_pages();
1850
1851	if (nr_pages) {
1852		struct wb_writeback_work work = {
1853			.nr_pages	= nr_pages,
1854			.sync_mode	= WB_SYNC_NONE,
1855			.for_kupdate	= 1,
1856			.range_cyclic	= 1,
1857			.reason		= WB_REASON_PERIODIC,
1858		};
1859
1860		return wb_writeback(wb, &work);
1861	}
1862
1863	return 0;
1864}
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866/*
1867 * Retrieve work items and do the writeback they describe
1868 */
1869static long wb_do_writeback(struct bdi_writeback *wb)
1870{
1871	struct wb_writeback_work *work;
1872	long wrote = 0;
1873
1874	set_bit(WB_writeback_running, &wb->state);
1875	while ((work = get_next_work_item(wb)) != NULL) {
1876		struct wb_completion *done = work->done;
1877
1878		trace_writeback_exec(wb, work);
1879
1880		wrote += wb_writeback(wb, work);
1881
1882		if (work->auto_free)
1883			kfree(work);
1884		if (done && atomic_dec_and_test(&done->cnt))
1885			wake_up_all(&wb->bdi->wb_waitq);
1886	}
1887
1888	/*
 
 
 
 
 
1889	 * Check for periodic writeback, kupdated() style
1890	 */
1891	wrote += wb_check_old_data_flush(wb);
1892	wrote += wb_check_background_flush(wb);
1893	clear_bit(WB_writeback_running, &wb->state);
1894
1895	return wrote;
1896}
1897
1898/*
1899 * Handle writeback of dirty data for the device backed by this bdi. Also
1900 * reschedules periodically and does kupdated style flushing.
1901 */
1902void wb_workfn(struct work_struct *work)
1903{
1904	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905						struct bdi_writeback, dwork);
1906	long pages_written;
1907
1908	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909	current->flags |= PF_SWAPWRITE;
1910
1911	if (likely(!current_is_workqueue_rescuer() ||
1912		   !test_bit(WB_registered, &wb->state))) {
1913		/*
1914		 * The normal path.  Keep writing back @wb until its
1915		 * work_list is empty.  Note that this path is also taken
1916		 * if @wb is shutting down even when we're running off the
1917		 * rescuer as work_list needs to be drained.
1918		 */
1919		do {
1920			pages_written = wb_do_writeback(wb);
1921			trace_writeback_pages_written(pages_written);
1922		} while (!list_empty(&wb->work_list));
1923	} else {
1924		/*
1925		 * bdi_wq can't get enough workers and we're running off
1926		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927		 * enough for efficient IO.
1928		 */
1929		pages_written = writeback_inodes_wb(wb, 1024,
1930						    WB_REASON_FORKER_THREAD);
1931		trace_writeback_pages_written(pages_written);
1932	}
1933
1934	if (!list_empty(&wb->work_list))
1935		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937		wb_wakeup_delayed(wb);
 
1938
1939	current->flags &= ~PF_SWAPWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940}
1941
1942/*
1943 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944 * the whole world.
1945 */
1946void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1947{
1948	struct backing_dev_info *bdi;
1949
1950	/*
1951	 * If we are expecting writeback progress we must submit plugged IO.
1952	 */
1953	if (blk_needs_flush_plug(current))
1954		blk_schedule_flush_plug(current);
1955
1956	if (!nr_pages)
1957		nr_pages = get_nr_dirty_pages();
1958
1959	rcu_read_lock();
1960	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961		struct bdi_writeback *wb;
1962
1963		if (!bdi_has_dirty_io(bdi))
1964			continue;
1965
1966		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968					   false, reason);
1969	}
1970	rcu_read_unlock();
1971}
1972
1973/*
1974 * Wake up bdi's periodically to make sure dirtytime inodes gets
1975 * written back periodically.  We deliberately do *not* check the
1976 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977 * kernel to be constantly waking up once there are any dirtytime
1978 * inodes on the system.  So instead we define a separate delayed work
1979 * function which gets called much more rarely.  (By default, only
1980 * once every 12 hours.)
1981 *
1982 * If there is any other write activity going on in the file system,
1983 * this function won't be necessary.  But if the only thing that has
1984 * happened on the file system is a dirtytime inode caused by an atime
1985 * update, we need this infrastructure below to make sure that inode
1986 * eventually gets pushed out to disk.
1987 */
1988static void wakeup_dirtytime_writeback(struct work_struct *w);
1989static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990
1991static void wakeup_dirtytime_writeback(struct work_struct *w)
1992{
1993	struct backing_dev_info *bdi;
1994
1995	rcu_read_lock();
1996	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997		struct bdi_writeback *wb;
1998
1999		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000			if (!list_empty(&wb->b_dirty_time))
2001				wb_wakeup(wb);
2002	}
2003	rcu_read_unlock();
2004	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005}
2006
2007static int __init start_dirtytime_writeback(void)
2008{
2009	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010	return 0;
2011}
2012__initcall(start_dirtytime_writeback);
2013
2014int dirtytime_interval_handler(struct ctl_table *table, int write,
2015			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016{
2017	int ret;
2018
2019	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020	if (ret == 0 && write)
2021		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022	return ret;
2023}
2024
2025static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026{
2027	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028		struct dentry *dentry;
2029		const char *name = "?";
2030
2031		dentry = d_find_alias(inode);
2032		if (dentry) {
2033			spin_lock(&dentry->d_lock);
2034			name = (const char *) dentry->d_name.name;
2035		}
2036		printk(KERN_DEBUG
2037		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038		       current->comm, task_pid_nr(current), inode->i_ino,
2039		       name, inode->i_sb->s_id);
2040		if (dentry) {
2041			spin_unlock(&dentry->d_lock);
2042			dput(dentry);
2043		}
2044	}
2045}
2046
2047/**
2048 *	__mark_inode_dirty -	internal function
2049 *	@inode: inode to mark
2050 *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051 *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052 *  	mark_inode_dirty_sync.
2053 *
2054 * Put the inode on the super block's dirty list.
 
 
 
2055 *
2056 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057 * dirty list only if it is hashed or if it refers to a blockdev.
2058 * If it was not hashed, it will never be added to the dirty list
2059 * even if it is later hashed, as it will have been marked dirty already.
2060 *
2061 * In short, make sure you hash any inodes _before_ you start marking
2062 * them dirty.
 
 
 
 
 
 
2063 *
2064 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066 * the kernel-internal blockdev inode represents the dirtying time of the
2067 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068 * page->mapping->host, so the page-dirtying time is recorded in the internal
2069 * blockdev inode.
2070 */
2071void __mark_inode_dirty(struct inode *inode, int flags)
2072{
2073#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074	struct super_block *sb = inode->i_sb;
2075	int dirtytime;
 
2076
2077	trace_writeback_mark_inode_dirty(inode, flags);
2078
2079	/*
2080	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081	 * dirty the inode itself
2082	 */
2083	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084		trace_writeback_dirty_inode_start(inode, flags);
 
 
 
 
 
 
 
 
2085
 
 
 
 
 
 
 
 
2086		if (sb->s_op->dirty_inode)
2087			sb->s_op->dirty_inode(inode, flags);
2088
2089		trace_writeback_dirty_inode(inode, flags);
2090	}
2091	if (flags & I_DIRTY_INODE)
2092		flags &= ~I_DIRTY_TIME;
2093	dirtytime = flags & I_DIRTY_TIME;
 
 
 
 
 
 
 
 
2094
2095	/*
2096	 * Paired with smp_mb() in __writeback_single_inode() for the
2097	 * following lockless i_state test.  See there for details.
2098	 */
2099	smp_mb();
2100
2101	if (((inode->i_state & flags) == flags) ||
2102	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103		return;
2104
2105	if (unlikely(block_dump))
2106		block_dump___mark_inode_dirty(inode);
2107
2108	spin_lock(&inode->i_lock);
2109	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110		goto out_unlock_inode;
2111	if ((inode->i_state & flags) != flags) {
2112		const int was_dirty = inode->i_state & I_DIRTY;
2113
2114		inode_attach_wb(inode, NULL);
2115
2116		if (flags & I_DIRTY_INODE)
2117			inode->i_state &= ~I_DIRTY_TIME;
2118		inode->i_state |= flags;
2119
2120		/*
2121		 * If the inode is being synced, just update its dirty state.
2122		 * The unlocker will place the inode on the appropriate
2123		 * superblock list, based upon its state.
 
2124		 */
2125		if (inode->i_state & I_SYNC)
2126			goto out_unlock_inode;
 
 
 
 
 
 
 
 
 
 
 
2127
2128		/*
2129		 * Only add valid (hashed) inodes to the superblock's
2130		 * dirty list.  Add blockdev inodes as well.
2131		 */
2132		if (!S_ISBLK(inode->i_mode)) {
2133			if (inode_unhashed(inode))
2134				goto out_unlock_inode;
2135		}
2136		if (inode->i_state & I_FREEING)
2137			goto out_unlock_inode;
2138
2139		/*
2140		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141		 * reposition it (that would break b_dirty time-ordering).
2142		 */
2143		if (!was_dirty) {
2144			struct bdi_writeback *wb;
2145			struct list_head *dirty_list;
2146			bool wakeup_bdi = false;
2147
2148			wb = locked_inode_to_wb_and_lock_list(inode);
2149
2150			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151			     !test_bit(WB_registered, &wb->state),
2152			     "bdi-%s not registered\n", wb->bdi->name);
2153
2154			inode->dirtied_when = jiffies;
2155			if (dirtytime)
2156				inode->dirtied_time_when = jiffies;
2157
2158			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159				dirty_list = &wb->b_dirty;
2160			else
2161				dirty_list = &wb->b_dirty_time;
2162
2163			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164							       dirty_list);
2165
2166			spin_unlock(&wb->list_lock);
 
2167			trace_writeback_dirty_inode_enqueue(inode);
2168
2169			/*
2170			 * If this is the first dirty inode for this bdi,
2171			 * we have to wake-up the corresponding bdi thread
2172			 * to make sure background write-back happens
2173			 * later.
2174			 */
2175			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
 
2176				wb_wakeup_delayed(wb);
2177			return;
2178		}
2179	}
2180out_unlock_inode:
 
 
2181	spin_unlock(&inode->i_lock);
2182
2183#undef I_DIRTY_INODE
2184}
2185EXPORT_SYMBOL(__mark_inode_dirty);
2186
2187/*
2188 * The @s_sync_lock is used to serialise concurrent sync operations
2189 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190 * Concurrent callers will block on the s_sync_lock rather than doing contending
2191 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192 * has been issued up to the time this function is enter is guaranteed to be
2193 * completed by the time we have gained the lock and waited for all IO that is
2194 * in progress regardless of the order callers are granted the lock.
2195 */
2196static void wait_sb_inodes(struct super_block *sb)
2197{
2198	LIST_HEAD(sync_list);
2199
2200	/*
2201	 * We need to be protected against the filesystem going from
2202	 * r/o to r/w or vice versa.
2203	 */
2204	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205
2206	mutex_lock(&sb->s_sync_lock);
2207
2208	/*
2209	 * Splice the writeback list onto a temporary list to avoid waiting on
2210	 * inodes that have started writeback after this point.
2211	 *
2212	 * Use rcu_read_lock() to keep the inodes around until we have a
2213	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214	 * the local list because inodes can be dropped from either by writeback
2215	 * completion.
2216	 */
2217	rcu_read_lock();
2218	spin_lock_irq(&sb->s_inode_wblist_lock);
2219	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220
2221	/*
2222	 * Data integrity sync. Must wait for all pages under writeback, because
2223	 * there may have been pages dirtied before our sync call, but which had
2224	 * writeout started before we write it out.  In which case, the inode
2225	 * may not be on the dirty list, but we still have to wait for that
2226	 * writeout.
2227	 */
2228	while (!list_empty(&sync_list)) {
2229		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230						       i_wb_list);
2231		struct address_space *mapping = inode->i_mapping;
2232
2233		/*
2234		 * Move each inode back to the wb list before we drop the lock
2235		 * to preserve consistency between i_wb_list and the mapping
2236		 * writeback tag. Writeback completion is responsible to remove
2237		 * the inode from either list once the writeback tag is cleared.
2238		 */
2239		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240
2241		/*
2242		 * The mapping can appear untagged while still on-list since we
2243		 * do not have the mapping lock. Skip it here, wb completion
2244		 * will remove it.
2245		 */
2246		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247			continue;
2248
2249		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250
2251		spin_lock(&inode->i_lock);
2252		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253			spin_unlock(&inode->i_lock);
2254
2255			spin_lock_irq(&sb->s_inode_wblist_lock);
2256			continue;
2257		}
2258		__iget(inode);
2259		spin_unlock(&inode->i_lock);
2260		rcu_read_unlock();
2261
2262		/*
2263		 * We keep the error status of individual mapping so that
2264		 * applications can catch the writeback error using fsync(2).
2265		 * See filemap_fdatawait_keep_errors() for details.
2266		 */
2267		filemap_fdatawait_keep_errors(mapping);
2268
2269		cond_resched();
2270
2271		iput(inode);
2272
2273		rcu_read_lock();
2274		spin_lock_irq(&sb->s_inode_wblist_lock);
2275	}
2276	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277	rcu_read_unlock();
2278	mutex_unlock(&sb->s_sync_lock);
2279}
2280
2281static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282				     enum wb_reason reason, bool skip_if_busy)
2283{
2284	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2285	struct wb_writeback_work work = {
2286		.sb			= sb,
2287		.sync_mode		= WB_SYNC_NONE,
2288		.tagged_writepages	= 1,
2289		.done			= &done,
2290		.nr_pages		= nr,
2291		.reason			= reason,
2292	};
2293	struct backing_dev_info *bdi = sb->s_bdi;
2294
2295	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296		return;
2297	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298
2299	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300	wb_wait_for_completion(bdi, &done);
2301}
2302
2303/**
2304 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305 * @sb: the superblock
2306 * @nr: the number of pages to write
2307 * @reason: reason why some writeback work initiated
2308 *
2309 * Start writeback on some inodes on this super_block. No guarantees are made
2310 * on how many (if any) will be written, and this function does not wait
2311 * for IO completion of submitted IO.
2312 */
2313void writeback_inodes_sb_nr(struct super_block *sb,
2314			    unsigned long nr,
2315			    enum wb_reason reason)
2316{
2317	__writeback_inodes_sb_nr(sb, nr, reason, false);
2318}
2319EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320
2321/**
2322 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323 * @sb: the superblock
2324 * @reason: reason why some writeback work was initiated
2325 *
2326 * Start writeback on some inodes on this super_block. No guarantees are made
2327 * on how many (if any) will be written, and this function does not wait
2328 * for IO completion of submitted IO.
2329 */
2330void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331{
2332	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333}
2334EXPORT_SYMBOL(writeback_inodes_sb);
2335
2336/**
2337 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: the reason of writeback
2341 *
2342 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343 * Returns 1 if writeback was started, 0 if not.
2344 */
2345bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346				   enum wb_reason reason)
2347{
2348	if (!down_read_trylock(&sb->s_umount))
2349		return false;
2350
2351	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352	up_read(&sb->s_umount);
2353	return true;
2354}
2355EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356
2357/**
2358 * try_to_writeback_inodes_sb - try to start writeback if none underway
2359 * @sb: the superblock
2360 * @reason: reason why some writeback work was initiated
2361 *
2362 * Implement by try_to_writeback_inodes_sb_nr()
2363 * Returns 1 if writeback was started, 0 if not.
2364 */
2365bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366{
2367	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368}
2369EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370
2371/**
2372 * sync_inodes_sb	-	sync sb inode pages
2373 * @sb: the superblock
2374 *
2375 * This function writes and waits on any dirty inode belonging to this
2376 * super_block.
2377 */
2378void sync_inodes_sb(struct super_block *sb)
2379{
2380	DEFINE_WB_COMPLETION_ONSTACK(done);
 
2381	struct wb_writeback_work work = {
2382		.sb		= sb,
2383		.sync_mode	= WB_SYNC_ALL,
2384		.nr_pages	= LONG_MAX,
2385		.range_cyclic	= 0,
2386		.done		= &done,
2387		.reason		= WB_REASON_SYNC,
2388		.for_sync	= 1,
2389	};
2390	struct backing_dev_info *bdi = sb->s_bdi;
2391
2392	/*
2393	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395	 * bdi_has_dirty() need to be written out too.
2396	 */
2397	if (bdi == &noop_backing_dev_info)
2398		return;
2399	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400
 
 
2401	bdi_split_work_to_wbs(bdi, &work, false);
2402	wb_wait_for_completion(bdi, &done);
 
2403
2404	wait_sb_inodes(sb);
2405}
2406EXPORT_SYMBOL(sync_inodes_sb);
2407
2408/**
2409 * write_inode_now	-	write an inode to disk
2410 * @inode: inode to write to disk
2411 * @sync: whether the write should be synchronous or not
2412 *
2413 * This function commits an inode to disk immediately if it is dirty. This is
2414 * primarily needed by knfsd.
2415 *
2416 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417 */
2418int write_inode_now(struct inode *inode, int sync)
2419{
2420	struct writeback_control wbc = {
2421		.nr_to_write = LONG_MAX,
2422		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423		.range_start = 0,
2424		.range_end = LLONG_MAX,
2425	};
2426
2427	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428		wbc.nr_to_write = 0;
2429
2430	might_sleep();
2431	return writeback_single_inode(inode, &wbc);
2432}
2433EXPORT_SYMBOL(write_inode_now);
2434
2435/**
2436 * sync_inode - write an inode and its pages to disk.
2437 * @inode: the inode to sync
2438 * @wbc: controls the writeback mode
2439 *
2440 * sync_inode() will write an inode and its pages to disk.  It will also
2441 * correctly update the inode on its superblock's dirty inode lists and will
2442 * update inode->i_state.
2443 *
2444 * The caller must have a ref on the inode.
2445 */
2446int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447{
2448	return writeback_single_inode(inode, wbc);
2449}
2450EXPORT_SYMBOL(sync_inode);
2451
2452/**
2453 * sync_inode_metadata - write an inode to disk
2454 * @inode: the inode to sync
2455 * @wait: wait for I/O to complete.
2456 *
2457 * Write an inode to disk and adjust its dirty state after completion.
2458 *
2459 * Note: only writes the actual inode, no associated data or other metadata.
2460 */
2461int sync_inode_metadata(struct inode *inode, int wait)
2462{
2463	struct writeback_control wbc = {
2464		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465		.nr_to_write = 0, /* metadata-only */
2466	};
2467
2468	return sync_inode(inode, &wbc);
2469}
2470EXPORT_SYMBOL(sync_inode_metadata);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/fs-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * Contains all the functions related to writing back and waiting
   8 * upon dirty inodes against superblocks, and writing back dirty
   9 * pages against inodes.  ie: data writeback.  Writeout of the
  10 * inode itself is not handled here.
  11 *
  12 * 10Apr2002	Andrew Morton
  13 *		Split out of fs/inode.c
  14 *		Additions for address_space-based writeback
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/export.h>
  19#include <linux/spinlock.h>
  20#include <linux/slab.h>
  21#include <linux/sched.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24#include <linux/pagemap.h>
  25#include <linux/kthread.h>
  26#include <linux/writeback.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/tracepoint.h>
  30#include <linux/device.h>
  31#include <linux/memcontrol.h>
  32#include "internal.h"
  33
  34/*
  35 * 4MB minimal write chunk size
  36 */
  37#define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
  38
 
 
 
 
  39/*
  40 * Passed into wb_writeback(), essentially a subset of writeback_control
  41 */
  42struct wb_writeback_work {
  43	long nr_pages;
  44	struct super_block *sb;
 
  45	enum writeback_sync_modes sync_mode;
  46	unsigned int tagged_writepages:1;
  47	unsigned int for_kupdate:1;
  48	unsigned int range_cyclic:1;
  49	unsigned int for_background:1;
  50	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
  51	unsigned int auto_free:1;	/* free on completion */
  52	enum wb_reason reason;		/* why was writeback initiated? */
  53
  54	struct list_head list;		/* pending work list */
  55	struct wb_completion *done;	/* set if the caller waits */
  56};
  57
  58/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  59 * If an inode is constantly having its pages dirtied, but then the
  60 * updates stop dirtytime_expire_interval seconds in the past, it's
  61 * possible for the worst case time between when an inode has its
  62 * timestamps updated and when they finally get written out to be two
  63 * dirtytime_expire_intervals.  We set the default to 12 hours (in
  64 * seconds), which means most of the time inodes will have their
  65 * timestamps written to disk after 12 hours, but in the worst case a
  66 * few inodes might not their timestamps updated for 24 hours.
  67 */
  68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
  69
  70static inline struct inode *wb_inode(struct list_head *head)
  71{
  72	return list_entry(head, struct inode, i_io_list);
  73}
  74
  75/*
  76 * Include the creation of the trace points after defining the
  77 * wb_writeback_work structure and inline functions so that the definition
  78 * remains local to this file.
  79 */
  80#define CREATE_TRACE_POINTS
  81#include <trace/events/writeback.h>
  82
  83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  84
  85static bool wb_io_lists_populated(struct bdi_writeback *wb)
  86{
  87	if (wb_has_dirty_io(wb)) {
  88		return false;
  89	} else {
  90		set_bit(WB_has_dirty_io, &wb->state);
  91		WARN_ON_ONCE(!wb->avg_write_bandwidth);
  92		atomic_long_add(wb->avg_write_bandwidth,
  93				&wb->bdi->tot_write_bandwidth);
  94		return true;
  95	}
  96}
  97
  98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
  99{
 100	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
 101	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
 102		clear_bit(WB_has_dirty_io, &wb->state);
 103		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
 104					&wb->bdi->tot_write_bandwidth) < 0);
 105	}
 106}
 107
 108/**
 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
 110 * @inode: inode to be moved
 111 * @wb: target bdi_writeback
 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
 113 *
 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
 115 * Returns %true if @inode is the first occupant of the !dirty_time IO
 116 * lists; otherwise, %false.
 117 */
 118static bool inode_io_list_move_locked(struct inode *inode,
 119				      struct bdi_writeback *wb,
 120				      struct list_head *head)
 121{
 122	assert_spin_locked(&wb->list_lock);
 123	assert_spin_locked(&inode->i_lock);
 124	WARN_ON_ONCE(inode->i_state & I_FREEING);
 125
 126	list_move(&inode->i_io_list, head);
 127
 128	/* dirty_time doesn't count as dirty_io until expiration */
 129	if (head != &wb->b_dirty_time)
 130		return wb_io_lists_populated(wb);
 131
 132	wb_io_lists_depopulated(wb);
 133	return false;
 134}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136static void wb_wakeup(struct bdi_writeback *wb)
 137{
 138	spin_lock_irq(&wb->work_lock);
 139	if (test_bit(WB_registered, &wb->state))
 140		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 141	spin_unlock_irq(&wb->work_lock);
 142}
 143
 144static void finish_writeback_work(struct bdi_writeback *wb,
 145				  struct wb_writeback_work *work)
 146{
 147	struct wb_completion *done = work->done;
 148
 149	if (work->auto_free)
 150		kfree(work);
 151	if (done) {
 152		wait_queue_head_t *waitq = done->waitq;
 153
 154		/* @done can't be accessed after the following dec */
 155		if (atomic_dec_and_test(&done->cnt))
 156			wake_up_all(waitq);
 157	}
 158}
 159
 160static void wb_queue_work(struct bdi_writeback *wb,
 161			  struct wb_writeback_work *work)
 162{
 163	trace_writeback_queue(wb, work);
 164
 
 
 
 165	if (work->done)
 166		atomic_inc(&work->done->cnt);
 167
 168	spin_lock_irq(&wb->work_lock);
 169
 170	if (test_bit(WB_registered, &wb->state)) {
 171		list_add_tail(&work->list, &wb->work_list);
 172		mod_delayed_work(bdi_wq, &wb->dwork, 0);
 173	} else
 174		finish_writeback_work(wb, work);
 175
 176	spin_unlock_irq(&wb->work_lock);
 177}
 178
 179/**
 180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
 
 181 * @done: target wb_completion
 182 *
 183 * Wait for one or more work items issued to @bdi with their ->done field
 184 * set to @done, which should have been initialized with
 185 * DEFINE_WB_COMPLETION().  This function returns after all such work items
 186 * are completed.  Work items which are waited upon aren't freed
 187 * automatically on completion.
 188 */
 189void wb_wait_for_completion(struct wb_completion *done)
 
 190{
 191	atomic_dec(&done->cnt);		/* put down the initial count */
 192	wait_event(*done->waitq, !atomic_read(&done->cnt));
 193}
 194
 195#ifdef CONFIG_CGROUP_WRITEBACK
 196
 197/*
 198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
 199 * how they're used.
 200 *
 201 * These paramters are inherently heuristical as the detection target
 202 * itself is fuzzy.  All we want to do is detaching an inode from the
 203 * current owner if it's being written to by some other cgroups too much.
 204 *
 205 * The current cgroup writeback is built on the assumption that multiple
 206 * cgroups writing to the same inode concurrently is very rare and a mode
 207 * of operation which isn't well supported.  As such, the goal is not
 208 * taking too long when a different cgroup takes over an inode while
 209 * avoiding too aggressive flip-flops from occasional foreign writes.
 210 *
 211 * We record, very roughly, 2s worth of IO time history and if more than
 212 * half of that is foreign, trigger the switch.  The recording is quantized
 213 * to 16 slots.  To avoid tiny writes from swinging the decision too much,
 214 * writes smaller than 1/8 of avg size are ignored.
 215 */
 216#define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
 217#define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
 218#define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
 219#define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
 220
 221#define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
 222#define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
 223					/* each slot's duration is 2s / 16 */
 224#define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
 225					/* if foreign slots >= 8, switch */
 226#define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
 227					/* one round can affect upto 5 slots */
 228#define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
 229
 230/*
 231 * Maximum inodes per isw.  A specific value has been chosen to make
 232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
 233 */
 234#define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
 235                                / sizeof(struct inode *))
 236
 237static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
 238static struct workqueue_struct *isw_wq;
 239
 240void __inode_attach_wb(struct inode *inode, struct folio *folio)
 241{
 242	struct backing_dev_info *bdi = inode_to_bdi(inode);
 243	struct bdi_writeback *wb = NULL;
 244
 245	if (inode_cgwb_enabled(inode)) {
 246		struct cgroup_subsys_state *memcg_css;
 247
 248		if (folio) {
 249			memcg_css = mem_cgroup_css_from_folio(folio);
 250			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 251		} else {
 252			/* must pin memcg_css, see wb_get_create() */
 253			memcg_css = task_get_css(current, memory_cgrp_id);
 254			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 255			css_put(memcg_css);
 256		}
 257	}
 258
 259	if (!wb)
 260		wb = &bdi->wb;
 261
 262	/*
 263	 * There may be multiple instances of this function racing to
 264	 * update the same inode.  Use cmpxchg() to tell the winner.
 265	 */
 266	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
 267		wb_put(wb);
 268}
 269EXPORT_SYMBOL_GPL(__inode_attach_wb);
 270
 271/**
 272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
 273 * @inode: inode of interest with i_lock held
 274 * @wb: target bdi_writeback
 275 *
 276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
 277 * list.  Only inodes attached to cgwb's are kept on this list.
 278 */
 279static void inode_cgwb_move_to_attached(struct inode *inode,
 280					struct bdi_writeback *wb)
 281{
 282	assert_spin_locked(&wb->list_lock);
 283	assert_spin_locked(&inode->i_lock);
 284	WARN_ON_ONCE(inode->i_state & I_FREEING);
 285
 286	inode->i_state &= ~I_SYNC_QUEUED;
 287	if (wb != &wb->bdi->wb)
 288		list_move(&inode->i_io_list, &wb->b_attached);
 289	else
 290		list_del_init(&inode->i_io_list);
 291	wb_io_lists_depopulated(wb);
 292}
 293
 294/**
 295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
 296 * @inode: inode of interest with i_lock held
 297 *
 298 * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
 299 * held on entry and is released on return.  The returned wb is guaranteed
 300 * to stay @inode's associated wb until its list_lock is released.
 301 */
 302static struct bdi_writeback *
 303locked_inode_to_wb_and_lock_list(struct inode *inode)
 304	__releases(&inode->i_lock)
 305	__acquires(&wb->list_lock)
 306{
 307	while (true) {
 308		struct bdi_writeback *wb = inode_to_wb(inode);
 309
 310		/*
 311		 * inode_to_wb() association is protected by both
 312		 * @inode->i_lock and @wb->list_lock but list_lock nests
 313		 * outside i_lock.  Drop i_lock and verify that the
 314		 * association hasn't changed after acquiring list_lock.
 315		 */
 316		wb_get(wb);
 317		spin_unlock(&inode->i_lock);
 318		spin_lock(&wb->list_lock);
 319
 320		/* i_wb may have changed inbetween, can't use inode_to_wb() */
 321		if (likely(wb == inode->i_wb)) {
 322			wb_put(wb);	/* @inode already has ref */
 323			return wb;
 324		}
 325
 326		spin_unlock(&wb->list_lock);
 327		wb_put(wb);
 328		cpu_relax();
 329		spin_lock(&inode->i_lock);
 330	}
 331}
 332
 333/**
 334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
 335 * @inode: inode of interest
 336 *
 337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
 338 * on entry.
 339 */
 340static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
 341	__acquires(&wb->list_lock)
 342{
 343	spin_lock(&inode->i_lock);
 344	return locked_inode_to_wb_and_lock_list(inode);
 345}
 346
 347struct inode_switch_wbs_context {
 348	struct rcu_work		work;
 
 349
 350	/*
 351	 * Multiple inodes can be switched at once.  The switching procedure
 352	 * consists of two parts, separated by a RCU grace period.  To make
 353	 * sure that the second part is executed for each inode gone through
 354	 * the first part, all inode pointers are placed into a NULL-terminated
 355	 * array embedded into struct inode_switch_wbs_context.  Otherwise
 356	 * an inode could be left in a non-consistent state.
 357	 */
 358	struct bdi_writeback	*new_wb;
 359	struct inode		*inodes[];
 360};
 361
 362static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 363{
 364	down_write(&bdi->wb_switch_rwsem);
 365}
 366
 367static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
 368{
 369	up_write(&bdi->wb_switch_rwsem);
 370}
 371
 372static bool inode_do_switch_wbs(struct inode *inode,
 373				struct bdi_writeback *old_wb,
 374				struct bdi_writeback *new_wb)
 375{
 
 
 
 376	struct address_space *mapping = inode->i_mapping;
 377	XA_STATE(xas, &mapping->i_pages, 0);
 378	struct folio *folio;
 
 379	bool switched = false;
 
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381	spin_lock(&inode->i_lock);
 382	xa_lock_irq(&mapping->i_pages);
 383
 384	/*
 385	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
 386	 * path owns the inode and we shouldn't modify ->i_io_list.
 387	 */
 388	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
 389		goto skip_switch;
 390
 391	trace_inode_switch_wbs(inode, old_wb, new_wb);
 392
 393	/*
 394	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
 395	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
 396	 * folios actually under writeback.
 397	 */
 398	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
 399		if (folio_test_dirty(folio)) {
 400			long nr = folio_nr_pages(folio);
 401			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
 402			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
 
 
 403		}
 404	}
 405
 406	xas_set(&xas, 0);
 407	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
 408		long nr = folio_nr_pages(folio);
 409		WARN_ON_ONCE(!folio_test_writeback(folio));
 410		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
 411		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
 412	}
 413
 414	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
 415		atomic_dec(&old_wb->writeback_inodes);
 416		atomic_inc(&new_wb->writeback_inodes);
 417	}
 418
 419	wb_get(new_wb);
 420
 421	/*
 422	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
 423	 * the specific list @inode was on is ignored and the @inode is put on
 424	 * ->b_dirty which is always correct including from ->b_dirty_time.
 425	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
 426	 * was clean, it means it was on the b_attached list, so move it onto
 427	 * the b_attached list of @new_wb.
 428	 */
 429	if (!list_empty(&inode->i_io_list)) {
 
 
 
 430		inode->i_wb = new_wb;
 431
 432		if (inode->i_state & I_DIRTY_ALL) {
 433			struct inode *pos;
 434
 435			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
 436				if (time_after_eq(inode->dirtied_when,
 437						  pos->dirtied_when))
 438					break;
 439			inode_io_list_move_locked(inode, new_wb,
 440						  pos->i_io_list.prev);
 441		} else {
 442			inode_cgwb_move_to_attached(inode, new_wb);
 443		}
 444	} else {
 445		inode->i_wb = new_wb;
 446	}
 447
 448	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
 449	inode->i_wb_frn_winner = 0;
 450	inode->i_wb_frn_avg_time = 0;
 451	inode->i_wb_frn_history = 0;
 452	switched = true;
 453skip_switch:
 454	/*
 455	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
 456	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
 457	 */
 458	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
 459
 460	xa_unlock_irq(&mapping->i_pages);
 461	spin_unlock(&inode->i_lock);
 462
 463	return switched;
 464}
 465
 466static void inode_switch_wbs_work_fn(struct work_struct *work)
 467{
 468	struct inode_switch_wbs_context *isw =
 469		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
 470	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
 471	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
 472	struct bdi_writeback *new_wb = isw->new_wb;
 473	unsigned long nr_switched = 0;
 474	struct inode **inodep;
 475
 476	/*
 477	 * If @inode switches cgwb membership while sync_inodes_sb() is
 478	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
 479	 */
 480	down_read(&bdi->wb_switch_rwsem);
 481
 482	/*
 483	 * By the time control reaches here, RCU grace period has passed
 484	 * since I_WB_SWITCH assertion and all wb stat update transactions
 485	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
 486	 * synchronizing against the i_pages lock.
 487	 *
 488	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
 489	 * gives us exclusion against all wb related operations on @inode
 490	 * including IO list manipulations and stat updates.
 491	 */
 492	if (old_wb < new_wb) {
 493		spin_lock(&old_wb->list_lock);
 494		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
 495	} else {
 496		spin_lock(&new_wb->list_lock);
 497		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
 498	}
 499
 500	for (inodep = isw->inodes; *inodep; inodep++) {
 501		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
 502		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
 503			nr_switched++;
 504	}
 505
 506	spin_unlock(&new_wb->list_lock);
 507	spin_unlock(&old_wb->list_lock);
 508
 509	up_read(&bdi->wb_switch_rwsem);
 510
 511	if (nr_switched) {
 512		wb_wakeup(new_wb);
 513		wb_put_many(old_wb, nr_switched);
 514	}
 
 515
 516	for (inodep = isw->inodes; *inodep; inodep++)
 517		iput(*inodep);
 518	wb_put(new_wb);
 519	kfree(isw);
 
 520	atomic_dec(&isw_nr_in_flight);
 521}
 522
 523static bool inode_prepare_wbs_switch(struct inode *inode,
 524				     struct bdi_writeback *new_wb)
 525{
 526	/*
 527	 * Paired with smp_mb() in cgroup_writeback_umount().
 528	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
 529	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
 530	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
 531	 */
 532	smp_mb();
 533
 534	if (IS_DAX(inode))
 535		return false;
 536
 537	/* while holding I_WB_SWITCH, no one else can update the association */
 538	spin_lock(&inode->i_lock);
 539	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
 540	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
 541	    inode_to_wb(inode) == new_wb) {
 542		spin_unlock(&inode->i_lock);
 543		return false;
 544	}
 545	inode->i_state |= I_WB_SWITCH;
 546	__iget(inode);
 547	spin_unlock(&inode->i_lock);
 548
 549	return true;
 550}
 551
 552/**
 553 * inode_switch_wbs - change the wb association of an inode
 554 * @inode: target inode
 555 * @new_wb_id: ID of the new wb
 556 *
 557 * Switch @inode's wb association to the wb identified by @new_wb_id.  The
 558 * switching is performed asynchronously and may fail silently.
 559 */
 560static void inode_switch_wbs(struct inode *inode, int new_wb_id)
 561{
 562	struct backing_dev_info *bdi = inode_to_bdi(inode);
 563	struct cgroup_subsys_state *memcg_css;
 564	struct inode_switch_wbs_context *isw;
 565
 566	/* noop if seems to be already in progress */
 567	if (inode->i_state & I_WB_SWITCH)
 568		return;
 569
 570	/* avoid queueing a new switch if too many are already in flight */
 571	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
 572		return;
 573
 574	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
 575	if (!isw)
 576		return;
 577
 578	atomic_inc(&isw_nr_in_flight);
 579
 580	/* find and pin the new wb */
 581	rcu_read_lock();
 582	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
 583	if (memcg_css && !css_tryget(memcg_css))
 584		memcg_css = NULL;
 585	rcu_read_unlock();
 586	if (!memcg_css)
 587		goto out_free;
 588
 589	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
 590	css_put(memcg_css);
 591	if (!isw->new_wb)
 
 
 
 592		goto out_free;
 
 
 
 
 593
 594	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
 595		goto out_free;
 596
 597	isw->inodes[0] = inode;
 598
 599	/*
 600	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 601	 * the RCU protected stat update paths to grab the i_page
 602	 * lock so that stat transfer can synchronize against them.
 603	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 604	 */
 605	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
 606	queue_rcu_work(isw_wq, &isw->work);
 607	return;
 608
 609out_free:
 610	atomic_dec(&isw_nr_in_flight);
 611	if (isw->new_wb)
 612		wb_put(isw->new_wb);
 613	kfree(isw);
 614}
 615
 616static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
 617				   struct list_head *list, int *nr)
 618{
 619	struct inode *inode;
 620
 621	list_for_each_entry(inode, list, i_io_list) {
 622		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
 623			continue;
 624
 625		isw->inodes[*nr] = inode;
 626		(*nr)++;
 627
 628		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
 629			return true;
 630	}
 631	return false;
 632}
 633
 634/**
 635 * cleanup_offline_cgwb - detach associated inodes
 636 * @wb: target wb
 637 *
 638 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
 639 * to eventually release the dying @wb.  Returns %true if not all inodes were
 640 * switched and the function has to be restarted.
 641 */
 642bool cleanup_offline_cgwb(struct bdi_writeback *wb)
 643{
 644	struct cgroup_subsys_state *memcg_css;
 645	struct inode_switch_wbs_context *isw;
 646	int nr;
 647	bool restart = false;
 648
 649	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
 650		      GFP_KERNEL);
 651	if (!isw)
 652		return restart;
 653
 654	atomic_inc(&isw_nr_in_flight);
 655
 656	for (memcg_css = wb->memcg_css->parent; memcg_css;
 657	     memcg_css = memcg_css->parent) {
 658		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
 659		if (isw->new_wb)
 660			break;
 661	}
 662	if (unlikely(!isw->new_wb))
 663		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
 664
 665	nr = 0;
 666	spin_lock(&wb->list_lock);
 667	/*
 668	 * In addition to the inodes that have completed writeback, also switch
 669	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
 670	 * inodes won't be written back for a long time when lazytime is
 671	 * enabled, and thus pinning the dying cgwbs. It won't break the
 672	 * bandwidth restrictions, as writeback of inode metadata is not
 673	 * accounted for.
 674	 */
 675	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
 676	if (!restart)
 677		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
 678	spin_unlock(&wb->list_lock);
 679
 680	/* no attached inodes? bail out */
 681	if (nr == 0) {
 682		atomic_dec(&isw_nr_in_flight);
 683		wb_put(isw->new_wb);
 684		kfree(isw);
 685		return restart;
 686	}
 687
 688	/*
 689	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
 690	 * the RCU protected stat update paths to grab the i_page
 691	 * lock so that stat transfer can synchronize against them.
 692	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
 693	 */
 694	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
 695	queue_rcu_work(isw_wq, &isw->work);
 696
 697	return restart;
 698}
 699
 700/**
 701 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
 702 * @wbc: writeback_control of interest
 703 * @inode: target inode
 704 *
 705 * @inode is locked and about to be written back under the control of @wbc.
 706 * Record @inode's writeback context into @wbc and unlock the i_lock.  On
 707 * writeback completion, wbc_detach_inode() should be called.  This is used
 708 * to track the cgroup writeback context.
 709 */
 710void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
 711				 struct inode *inode)
 712{
 713	if (!inode_cgwb_enabled(inode)) {
 714		spin_unlock(&inode->i_lock);
 715		return;
 716	}
 717
 718	wbc->wb = inode_to_wb(inode);
 719	wbc->inode = inode;
 720
 721	wbc->wb_id = wbc->wb->memcg_css->id;
 722	wbc->wb_lcand_id = inode->i_wb_frn_winner;
 723	wbc->wb_tcand_id = 0;
 724	wbc->wb_bytes = 0;
 725	wbc->wb_lcand_bytes = 0;
 726	wbc->wb_tcand_bytes = 0;
 727
 728	wb_get(wbc->wb);
 729	spin_unlock(&inode->i_lock);
 730
 731	/*
 732	 * A dying wb indicates that either the blkcg associated with the
 733	 * memcg changed or the associated memcg is dying.  In the first
 734	 * case, a replacement wb should already be available and we should
 735	 * refresh the wb immediately.  In the second case, trying to
 736	 * refresh will keep failing.
 737	 */
 738	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
 739		inode_switch_wbs(inode, wbc->wb_id);
 740}
 741EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
 742
 743/**
 744 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
 745 * @wbc: writeback_control of the just finished writeback
 746 *
 747 * To be called after a writeback attempt of an inode finishes and undoes
 748 * wbc_attach_and_unlock_inode().  Can be called under any context.
 749 *
 750 * As concurrent write sharing of an inode is expected to be very rare and
 751 * memcg only tracks page ownership on first-use basis severely confining
 752 * the usefulness of such sharing, cgroup writeback tracks ownership
 753 * per-inode.  While the support for concurrent write sharing of an inode
 754 * is deemed unnecessary, an inode being written to by different cgroups at
 755 * different points in time is a lot more common, and, more importantly,
 756 * charging only by first-use can too readily lead to grossly incorrect
 757 * behaviors (single foreign page can lead to gigabytes of writeback to be
 758 * incorrectly attributed).
 759 *
 760 * To resolve this issue, cgroup writeback detects the majority dirtier of
 761 * an inode and transfers the ownership to it.  To avoid unnecessary
 762 * oscillation, the detection mechanism keeps track of history and gives
 763 * out the switch verdict only if the foreign usage pattern is stable over
 764 * a certain amount of time and/or writeback attempts.
 765 *
 766 * On each writeback attempt, @wbc tries to detect the majority writer
 767 * using Boyer-Moore majority vote algorithm.  In addition to the byte
 768 * count from the majority voting, it also counts the bytes written for the
 769 * current wb and the last round's winner wb (max of last round's current
 770 * wb, the winner from two rounds ago, and the last round's majority
 771 * candidate).  Keeping track of the historical winner helps the algorithm
 772 * to semi-reliably detect the most active writer even when it's not the
 773 * absolute majority.
 774 *
 775 * Once the winner of the round is determined, whether the winner is
 776 * foreign or not and how much IO time the round consumed is recorded in
 777 * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
 778 * over a certain threshold, the switch verdict is given.
 779 */
 780void wbc_detach_inode(struct writeback_control *wbc)
 781{
 782	struct bdi_writeback *wb = wbc->wb;
 783	struct inode *inode = wbc->inode;
 784	unsigned long avg_time, max_bytes, max_time;
 785	u16 history;
 786	int max_id;
 787
 788	if (!wb)
 789		return;
 790
 791	history = inode->i_wb_frn_history;
 792	avg_time = inode->i_wb_frn_avg_time;
 793
 794	/* pick the winner of this round */
 795	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
 796	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
 797		max_id = wbc->wb_id;
 798		max_bytes = wbc->wb_bytes;
 799	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
 800		max_id = wbc->wb_lcand_id;
 801		max_bytes = wbc->wb_lcand_bytes;
 802	} else {
 803		max_id = wbc->wb_tcand_id;
 804		max_bytes = wbc->wb_tcand_bytes;
 805	}
 806
 807	/*
 808	 * Calculate the amount of IO time the winner consumed and fold it
 809	 * into the running average kept per inode.  If the consumed IO
 810	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
 811	 * deciding whether to switch or not.  This is to prevent one-off
 812	 * small dirtiers from skewing the verdict.
 813	 */
 814	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
 815				wb->avg_write_bandwidth);
 816	if (avg_time)
 817		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
 818			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
 819	else
 820		avg_time = max_time;	/* immediate catch up on first run */
 821
 822	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
 823		int slots;
 824
 825		/*
 826		 * The switch verdict is reached if foreign wb's consume
 827		 * more than a certain proportion of IO time in a
 828		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
 829		 * history mask where each bit represents one sixteenth of
 830		 * the period.  Determine the number of slots to shift into
 831		 * history from @max_time.
 832		 */
 833		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
 834			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
 835		history <<= slots;
 836		if (wbc->wb_id != max_id)
 837			history |= (1U << slots) - 1;
 838
 839		if (history)
 840			trace_inode_foreign_history(inode, wbc, history);
 841
 842		/*
 843		 * Switch if the current wb isn't the consistent winner.
 844		 * If there are multiple closely competing dirtiers, the
 845		 * inode may switch across them repeatedly over time, which
 846		 * is okay.  The main goal is avoiding keeping an inode on
 847		 * the wrong wb for an extended period of time.
 848		 */
 849		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
 850			inode_switch_wbs(inode, max_id);
 851	}
 852
 853	/*
 854	 * Multiple instances of this function may race to update the
 855	 * following fields but we don't mind occassional inaccuracies.
 856	 */
 857	inode->i_wb_frn_winner = max_id;
 858	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
 859	inode->i_wb_frn_history = history;
 860
 861	wb_put(wbc->wb);
 862	wbc->wb = NULL;
 863}
 864EXPORT_SYMBOL_GPL(wbc_detach_inode);
 865
 866/**
 867 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
 868 * @wbc: writeback_control of the writeback in progress
 869 * @page: page being written out
 870 * @bytes: number of bytes being written out
 871 *
 872 * @bytes from @page are about to written out during the writeback
 873 * controlled by @wbc.  Keep the book for foreign inode detection.  See
 874 * wbc_detach_inode().
 875 */
 876void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
 877			      size_t bytes)
 878{
 879	struct folio *folio;
 880	struct cgroup_subsys_state *css;
 881	int id;
 882
 883	/*
 884	 * pageout() path doesn't attach @wbc to the inode being written
 885	 * out.  This is intentional as we don't want the function to block
 886	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
 887	 * regular writeback instead of writing things out itself.
 888	 */
 889	if (!wbc->wb || wbc->no_cgroup_owner)
 890		return;
 891
 892	folio = page_folio(page);
 893	css = mem_cgroup_css_from_folio(folio);
 894	/* dead cgroups shouldn't contribute to inode ownership arbitration */
 895	if (!(css->flags & CSS_ONLINE))
 896		return;
 897
 898	id = css->id;
 899
 900	if (id == wbc->wb_id) {
 901		wbc->wb_bytes += bytes;
 902		return;
 903	}
 904
 905	if (id == wbc->wb_lcand_id)
 906		wbc->wb_lcand_bytes += bytes;
 907
 908	/* Boyer-Moore majority vote algorithm */
 909	if (!wbc->wb_tcand_bytes)
 910		wbc->wb_tcand_id = id;
 911	if (id == wbc->wb_tcand_id)
 912		wbc->wb_tcand_bytes += bytes;
 913	else
 914		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
 915}
 916EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917
 918/**
 919 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
 920 * @wb: target bdi_writeback to split @nr_pages to
 921 * @nr_pages: number of pages to write for the whole bdi
 922 *
 923 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
 924 * relation to the total write bandwidth of all wb's w/ dirty inodes on
 925 * @wb->bdi.
 926 */
 927static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
 928{
 929	unsigned long this_bw = wb->avg_write_bandwidth;
 930	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 931
 932	if (nr_pages == LONG_MAX)
 933		return LONG_MAX;
 934
 935	/*
 936	 * This may be called on clean wb's and proportional distribution
 937	 * may not make sense, just use the original @nr_pages in those
 938	 * cases.  In general, we wanna err on the side of writing more.
 939	 */
 940	if (!tot_bw || this_bw >= tot_bw)
 941		return nr_pages;
 942	else
 943		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
 944}
 945
 946/**
 947 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
 948 * @bdi: target backing_dev_info
 949 * @base_work: wb_writeback_work to issue
 950 * @skip_if_busy: skip wb's which already have writeback in progress
 951 *
 952 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
 953 * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
 954 * distributed to the busy wbs according to each wb's proportion in the
 955 * total active write bandwidth of @bdi.
 956 */
 957static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
 958				  struct wb_writeback_work *base_work,
 959				  bool skip_if_busy)
 960{
 961	struct bdi_writeback *last_wb = NULL;
 962	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
 963					      struct bdi_writeback, bdi_node);
 964
 965	might_sleep();
 966restart:
 967	rcu_read_lock();
 968	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
 969		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
 970		struct wb_writeback_work fallback_work;
 971		struct wb_writeback_work *work;
 972		long nr_pages;
 973
 974		if (last_wb) {
 975			wb_put(last_wb);
 976			last_wb = NULL;
 977		}
 978
 979		/* SYNC_ALL writes out I_DIRTY_TIME too */
 980		if (!wb_has_dirty_io(wb) &&
 981		    (base_work->sync_mode == WB_SYNC_NONE ||
 982		     list_empty(&wb->b_dirty_time)))
 983			continue;
 984		if (skip_if_busy && writeback_in_progress(wb))
 985			continue;
 986
 987		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
 988
 989		work = kmalloc(sizeof(*work), GFP_ATOMIC);
 990		if (work) {
 991			*work = *base_work;
 992			work->nr_pages = nr_pages;
 993			work->auto_free = 1;
 994			wb_queue_work(wb, work);
 995			continue;
 996		}
 997
 998		/*
 999		 * If wb_tryget fails, the wb has been shutdown, skip it.
1000		 *
1001		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1002		 * continuing iteration from @wb after dropping and
1003		 * regrabbing rcu read lock.
1004		 */
1005		if (!wb_tryget(wb))
1006			continue;
1007
1008		/* alloc failed, execute synchronously using on-stack fallback */
1009		work = &fallback_work;
1010		*work = *base_work;
1011		work->nr_pages = nr_pages;
1012		work->auto_free = 0;
1013		work->done = &fallback_work_done;
1014
1015		wb_queue_work(wb, work);
 
 
 
 
 
 
 
1016		last_wb = wb;
1017
1018		rcu_read_unlock();
1019		wb_wait_for_completion(&fallback_work_done);
1020		goto restart;
1021	}
1022	rcu_read_unlock();
1023
1024	if (last_wb)
1025		wb_put(last_wb);
1026}
1027
1028/**
1029 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1030 * @bdi_id: target bdi id
1031 * @memcg_id: target memcg css id
1032 * @reason: reason why some writeback work initiated
1033 * @done: target wb_completion
1034 *
1035 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1036 * with the specified parameters.
1037 */
1038int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1039			   enum wb_reason reason, struct wb_completion *done)
1040{
1041	struct backing_dev_info *bdi;
1042	struct cgroup_subsys_state *memcg_css;
1043	struct bdi_writeback *wb;
1044	struct wb_writeback_work *work;
1045	unsigned long dirty;
1046	int ret;
1047
1048	/* lookup bdi and memcg */
1049	bdi = bdi_get_by_id(bdi_id);
1050	if (!bdi)
1051		return -ENOENT;
1052
1053	rcu_read_lock();
1054	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1055	if (memcg_css && !css_tryget(memcg_css))
1056		memcg_css = NULL;
1057	rcu_read_unlock();
1058	if (!memcg_css) {
1059		ret = -ENOENT;
1060		goto out_bdi_put;
1061	}
1062
1063	/*
1064	 * And find the associated wb.  If the wb isn't there already
1065	 * there's nothing to flush, don't create one.
1066	 */
1067	wb = wb_get_lookup(bdi, memcg_css);
1068	if (!wb) {
1069		ret = -ENOENT;
1070		goto out_css_put;
1071	}
1072
1073	/*
1074	 * The caller is attempting to write out most of
1075	 * the currently dirty pages.  Let's take the current dirty page
1076	 * count and inflate it by 25% which should be large enough to
1077	 * flush out most dirty pages while avoiding getting livelocked by
1078	 * concurrent dirtiers.
1079	 *
1080	 * BTW the memcg stats are flushed periodically and this is best-effort
1081	 * estimation, so some potential error is ok.
1082	 */
1083	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1084	dirty = dirty * 10 / 8;
1085
1086	/* issue the writeback work */
1087	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1088	if (work) {
1089		work->nr_pages = dirty;
1090		work->sync_mode = WB_SYNC_NONE;
1091		work->range_cyclic = 1;
1092		work->reason = reason;
1093		work->done = done;
1094		work->auto_free = 1;
1095		wb_queue_work(wb, work);
1096		ret = 0;
1097	} else {
1098		ret = -ENOMEM;
1099	}
1100
1101	wb_put(wb);
1102out_css_put:
1103	css_put(memcg_css);
1104out_bdi_put:
1105	bdi_put(bdi);
1106	return ret;
1107}
1108
1109/**
1110 * cgroup_writeback_umount - flush inode wb switches for umount
1111 *
1112 * This function is called when a super_block is about to be destroyed and
1113 * flushes in-flight inode wb switches.  An inode wb switch goes through
1114 * RCU and then workqueue, so the two need to be flushed in order to ensure
1115 * that all previously scheduled switches are finished.  As wb switches are
1116 * rare occurrences and synchronize_rcu() can take a while, perform
1117 * flushing iff wb switches are in flight.
1118 */
1119void cgroup_writeback_umount(void)
1120{
1121	/*
1122	 * SB_ACTIVE should be reliably cleared before checking
1123	 * isw_nr_in_flight, see generic_shutdown_super().
1124	 */
1125	smp_mb();
1126
1127	if (atomic_read(&isw_nr_in_flight)) {
1128		/*
1129		 * Use rcu_barrier() to wait for all pending callbacks to
1130		 * ensure that all in-flight wb switches are in the workqueue.
1131		 */
1132		rcu_barrier();
1133		flush_workqueue(isw_wq);
1134	}
1135}
1136
1137static int __init cgroup_writeback_init(void)
1138{
1139	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1140	if (!isw_wq)
1141		return -ENOMEM;
1142	return 0;
1143}
1144fs_initcall(cgroup_writeback_init);
1145
1146#else	/* CONFIG_CGROUP_WRITEBACK */
1147
1148static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1149static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1150
1151static void inode_cgwb_move_to_attached(struct inode *inode,
1152					struct bdi_writeback *wb)
1153{
1154	assert_spin_locked(&wb->list_lock);
1155	assert_spin_locked(&inode->i_lock);
1156	WARN_ON_ONCE(inode->i_state & I_FREEING);
1157
1158	inode->i_state &= ~I_SYNC_QUEUED;
1159	list_del_init(&inode->i_io_list);
1160	wb_io_lists_depopulated(wb);
1161}
1162
1163static struct bdi_writeback *
1164locked_inode_to_wb_and_lock_list(struct inode *inode)
1165	__releases(&inode->i_lock)
1166	__acquires(&wb->list_lock)
1167{
1168	struct bdi_writeback *wb = inode_to_wb(inode);
1169
1170	spin_unlock(&inode->i_lock);
1171	spin_lock(&wb->list_lock);
1172	return wb;
1173}
1174
1175static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1176	__acquires(&wb->list_lock)
1177{
1178	struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180	spin_lock(&wb->list_lock);
1181	return wb;
1182}
1183
1184static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1185{
1186	return nr_pages;
1187}
1188
1189static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1190				  struct wb_writeback_work *base_work,
1191				  bool skip_if_busy)
1192{
1193	might_sleep();
1194
1195	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1196		base_work->auto_free = 0;
1197		wb_queue_work(&bdi->wb, base_work);
1198	}
1199}
1200
1201#endif	/* CONFIG_CGROUP_WRITEBACK */
1202
1203/*
1204 * Add in the number of potentially dirty inodes, because each inode
1205 * write can dirty pagecache in the underlying blockdev.
1206 */
1207static unsigned long get_nr_dirty_pages(void)
1208{
1209	return global_node_page_state(NR_FILE_DIRTY) +
1210		get_nr_dirty_inodes();
1211}
1212
1213static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1214{
1215	if (!wb_has_dirty_io(wb))
1216		return;
1217
1218	/*
1219	 * All callers of this function want to start writeback of all
1220	 * dirty pages. Places like vmscan can call this at a very
1221	 * high frequency, causing pointless allocations of tons of
1222	 * work items and keeping the flusher threads busy retrieving
1223	 * that work. Ensure that we only allow one of them pending and
1224	 * inflight at the time.
1225	 */
1226	if (test_bit(WB_start_all, &wb->state) ||
1227	    test_and_set_bit(WB_start_all, &wb->state))
 
 
 
1228		return;
 
 
 
 
 
 
 
1229
1230	wb->start_all_reason = reason;
1231	wb_wakeup(wb);
1232}
1233
1234/**
1235 * wb_start_background_writeback - start background writeback
1236 * @wb: bdi_writback to write from
1237 *
1238 * Description:
1239 *   This makes sure WB_SYNC_NONE background writeback happens. When
1240 *   this function returns, it is only guaranteed that for given wb
1241 *   some IO is happening if we are over background dirty threshold.
1242 *   Caller need not hold sb s_umount semaphore.
1243 */
1244void wb_start_background_writeback(struct bdi_writeback *wb)
1245{
1246	/*
1247	 * We just wake up the flusher thread. It will perform background
1248	 * writeback as soon as there is no other work to do.
1249	 */
1250	trace_writeback_wake_background(wb);
1251	wb_wakeup(wb);
1252}
1253
1254/*
1255 * Remove the inode from the writeback list it is on.
1256 */
1257void inode_io_list_del(struct inode *inode)
1258{
1259	struct bdi_writeback *wb;
1260
1261	wb = inode_to_wb_and_lock_list(inode);
1262	spin_lock(&inode->i_lock);
1263
1264	inode->i_state &= ~I_SYNC_QUEUED;
1265	list_del_init(&inode->i_io_list);
1266	wb_io_lists_depopulated(wb);
1267
1268	spin_unlock(&inode->i_lock);
1269	spin_unlock(&wb->list_lock);
1270}
1271EXPORT_SYMBOL(inode_io_list_del);
1272
1273/*
1274 * mark an inode as under writeback on the sb
1275 */
1276void sb_mark_inode_writeback(struct inode *inode)
1277{
1278	struct super_block *sb = inode->i_sb;
1279	unsigned long flags;
1280
1281	if (list_empty(&inode->i_wb_list)) {
1282		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1283		if (list_empty(&inode->i_wb_list)) {
1284			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1285			trace_sb_mark_inode_writeback(inode);
1286		}
1287		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1288	}
1289}
1290
1291/*
1292 * clear an inode as under writeback on the sb
1293 */
1294void sb_clear_inode_writeback(struct inode *inode)
1295{
1296	struct super_block *sb = inode->i_sb;
1297	unsigned long flags;
1298
1299	if (!list_empty(&inode->i_wb_list)) {
1300		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1301		if (!list_empty(&inode->i_wb_list)) {
1302			list_del_init(&inode->i_wb_list);
1303			trace_sb_clear_inode_writeback(inode);
1304		}
1305		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1306	}
1307}
1308
1309/*
1310 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1311 * furthest end of its superblock's dirty-inode list.
1312 *
1313 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1314 * already the most-recently-dirtied inode on the b_dirty list.  If that is
1315 * the case then the inode must have been redirtied while it was being written
1316 * out and we don't reset its dirtied_when.
1317 */
1318static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1319{
1320	assert_spin_locked(&inode->i_lock);
1321
1322	inode->i_state &= ~I_SYNC_QUEUED;
1323	/*
1324	 * When the inode is being freed just don't bother with dirty list
1325	 * tracking. Flush worker will ignore this inode anyway and it will
1326	 * trigger assertions in inode_io_list_move_locked().
1327	 */
1328	if (inode->i_state & I_FREEING) {
1329		list_del_init(&inode->i_io_list);
1330		wb_io_lists_depopulated(wb);
1331		return;
1332	}
1333	if (!list_empty(&wb->b_dirty)) {
1334		struct inode *tail;
1335
1336		tail = wb_inode(wb->b_dirty.next);
1337		if (time_before(inode->dirtied_when, tail->dirtied_when))
1338			inode->dirtied_when = jiffies;
1339	}
1340	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1341}
1342
1343static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344{
1345	spin_lock(&inode->i_lock);
1346	redirty_tail_locked(inode, wb);
1347	spin_unlock(&inode->i_lock);
1348}
1349
1350/*
1351 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1352 */
1353static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1354{
1355	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1356}
1357
1358static void inode_sync_complete(struct inode *inode)
1359{
1360	inode->i_state &= ~I_SYNC;
1361	/* If inode is clean an unused, put it into LRU now... */
1362	inode_add_lru(inode);
1363	/* Waiters must see I_SYNC cleared before being woken up */
1364	smp_mb();
1365	wake_up_bit(&inode->i_state, __I_SYNC);
1366}
1367
1368static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369{
1370	bool ret = time_after(inode->dirtied_when, t);
1371#ifndef CONFIG_64BIT
1372	/*
1373	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1374	 * It _appears_ to be in the future, but is actually in distant past.
1375	 * This test is necessary to prevent such wrapped-around relative times
1376	 * from permanently stopping the whole bdi writeback.
1377	 */
1378	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379#endif
1380	return ret;
1381}
1382
 
 
1383/*
1384 * Move expired (dirtied before dirtied_before) dirty inodes from
1385 * @delaying_queue to @dispatch_queue.
1386 */
1387static int move_expired_inodes(struct list_head *delaying_queue,
1388			       struct list_head *dispatch_queue,
1389			       unsigned long dirtied_before)
 
1390{
 
 
1391	LIST_HEAD(tmp);
1392	struct list_head *pos, *node;
1393	struct super_block *sb = NULL;
1394	struct inode *inode;
1395	int do_sb_sort = 0;
1396	int moved = 0;
1397
 
 
 
 
 
 
1398	while (!list_empty(delaying_queue)) {
1399		inode = wb_inode(delaying_queue->prev);
1400		if (inode_dirtied_after(inode, dirtied_before))
 
1401			break;
1402		spin_lock(&inode->i_lock);
1403		list_move(&inode->i_io_list, &tmp);
1404		moved++;
1405		inode->i_state |= I_SYNC_QUEUED;
1406		spin_unlock(&inode->i_lock);
1407		if (sb_is_blkdev_sb(inode->i_sb))
1408			continue;
1409		if (sb && sb != inode->i_sb)
1410			do_sb_sort = 1;
1411		sb = inode->i_sb;
1412	}
1413
1414	/* just one sb in list, splice to dispatch_queue and we're done */
1415	if (!do_sb_sort) {
1416		list_splice(&tmp, dispatch_queue);
1417		goto out;
1418	}
1419
1420	/*
1421	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1422	 * we don't take inode->i_lock here because it is just a pointless overhead.
1423	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1424	 * fully under our control.
1425	 */
1426	while (!list_empty(&tmp)) {
1427		sb = wb_inode(tmp.prev)->i_sb;
1428		list_for_each_prev_safe(pos, node, &tmp) {
1429			inode = wb_inode(pos);
1430			if (inode->i_sb == sb)
1431				list_move(&inode->i_io_list, dispatch_queue);
1432		}
1433	}
1434out:
1435	return moved;
1436}
1437
1438/*
1439 * Queue all expired dirty inodes for io, eldest first.
1440 * Before
1441 *         newly dirtied     b_dirty    b_io    b_more_io
1442 *         =============>    gf         edc     BA
1443 * After
1444 *         newly dirtied     b_dirty    b_io    b_more_io
1445 *         =============>    g          fBAedc
1446 *                                           |
1447 *                                           +--> dequeue for IO
1448 */
1449static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1450		     unsigned long dirtied_before)
1451{
1452	int moved;
1453	unsigned long time_expire_jif = dirtied_before;
1454
1455	assert_spin_locked(&wb->list_lock);
1456	list_splice_init(&wb->b_more_io, &wb->b_io);
1457	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1458	if (!work->for_sync)
1459		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1460	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1461				     time_expire_jif);
1462	if (moved)
1463		wb_io_lists_populated(wb);
1464	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1465}
1466
1467static int write_inode(struct inode *inode, struct writeback_control *wbc)
1468{
1469	int ret;
1470
1471	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1472		trace_writeback_write_inode_start(inode, wbc);
1473		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1474		trace_writeback_write_inode(inode, wbc);
1475		return ret;
1476	}
1477	return 0;
1478}
1479
1480/*
1481 * Wait for writeback on an inode to complete. Called with i_lock held.
1482 * Caller must make sure inode cannot go away when we drop i_lock.
1483 */
1484static void __inode_wait_for_writeback(struct inode *inode)
1485	__releases(inode->i_lock)
1486	__acquires(inode->i_lock)
1487{
1488	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1489	wait_queue_head_t *wqh;
1490
1491	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1492	while (inode->i_state & I_SYNC) {
1493		spin_unlock(&inode->i_lock);
1494		__wait_on_bit(wqh, &wq, bit_wait,
1495			      TASK_UNINTERRUPTIBLE);
1496		spin_lock(&inode->i_lock);
1497	}
1498}
1499
1500/*
1501 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1502 */
1503void inode_wait_for_writeback(struct inode *inode)
1504{
1505	spin_lock(&inode->i_lock);
1506	__inode_wait_for_writeback(inode);
1507	spin_unlock(&inode->i_lock);
1508}
1509
1510/*
1511 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1512 * held and drops it. It is aimed for callers not holding any inode reference
1513 * so once i_lock is dropped, inode can go away.
1514 */
1515static void inode_sleep_on_writeback(struct inode *inode)
1516	__releases(inode->i_lock)
1517{
1518	DEFINE_WAIT(wait);
1519	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1520	int sleep;
1521
1522	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1523	sleep = inode->i_state & I_SYNC;
1524	spin_unlock(&inode->i_lock);
1525	if (sleep)
1526		schedule();
1527	finish_wait(wqh, &wait);
1528}
1529
1530/*
1531 * Find proper writeback list for the inode depending on its current state and
1532 * possibly also change of its state while we were doing writeback.  Here we
1533 * handle things such as livelock prevention or fairness of writeback among
1534 * inodes. This function can be called only by flusher thread - noone else
1535 * processes all inodes in writeback lists and requeueing inodes behind flusher
1536 * thread's back can have unexpected consequences.
1537 */
1538static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1539			  struct writeback_control *wbc)
1540{
1541	if (inode->i_state & I_FREEING)
1542		return;
1543
1544	/*
1545	 * Sync livelock prevention. Each inode is tagged and synced in one
1546	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1547	 * the dirty time to prevent enqueue and sync it again.
1548	 */
1549	if ((inode->i_state & I_DIRTY) &&
1550	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1551		inode->dirtied_when = jiffies;
1552
1553	if (wbc->pages_skipped) {
1554		/*
1555		 * Writeback is not making progress due to locked buffers.
1556		 * Skip this inode for now. Although having skipped pages
1557		 * is odd for clean inodes, it can happen for some
1558		 * filesystems so handle that gracefully.
1559		 */
1560		if (inode->i_state & I_DIRTY_ALL)
1561			redirty_tail_locked(inode, wb);
1562		else
1563			inode_cgwb_move_to_attached(inode, wb);
1564		return;
1565	}
1566
1567	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1568		/*
1569		 * We didn't write back all the pages.  nfs_writepages()
1570		 * sometimes bales out without doing anything.
1571		 */
1572		if (wbc->nr_to_write <= 0) {
1573			/* Slice used up. Queue for next turn. */
1574			requeue_io(inode, wb);
1575		} else {
1576			/*
1577			 * Writeback blocked by something other than
1578			 * congestion. Delay the inode for some time to
1579			 * avoid spinning on the CPU (100% iowait)
1580			 * retrying writeback of the dirty page/inode
1581			 * that cannot be performed immediately.
1582			 */
1583			redirty_tail_locked(inode, wb);
1584		}
1585	} else if (inode->i_state & I_DIRTY) {
1586		/*
1587		 * Filesystems can dirty the inode during writeback operations,
1588		 * such as delayed allocation during submission or metadata
1589		 * updates after data IO completion.
1590		 */
1591		redirty_tail_locked(inode, wb);
1592	} else if (inode->i_state & I_DIRTY_TIME) {
1593		inode->dirtied_when = jiffies;
1594		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1595		inode->i_state &= ~I_SYNC_QUEUED;
1596	} else {
1597		/* The inode is clean. Remove from writeback lists. */
1598		inode_cgwb_move_to_attached(inode, wb);
1599	}
1600}
1601
1602/*
1603 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1604 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1605 *
1606 * This doesn't remove the inode from the writeback list it is on, except
1607 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1608 * expiration.  The caller is otherwise responsible for writeback list handling.
1609 *
1610 * The caller is also responsible for setting the I_SYNC flag beforehand and
1611 * calling inode_sync_complete() to clear it afterwards.
1612 */
1613static int
1614__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1615{
1616	struct address_space *mapping = inode->i_mapping;
1617	long nr_to_write = wbc->nr_to_write;
1618	unsigned dirty;
1619	int ret;
1620
1621	WARN_ON(!(inode->i_state & I_SYNC));
1622
1623	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1624
1625	ret = do_writepages(mapping, wbc);
1626
1627	/*
1628	 * Make sure to wait on the data before writing out the metadata.
1629	 * This is important for filesystems that modify metadata on data
1630	 * I/O completion. We don't do it for sync(2) writeback because it has a
1631	 * separate, external IO completion path and ->sync_fs for guaranteeing
1632	 * inode metadata is written back correctly.
1633	 */
1634	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1635		int err = filemap_fdatawait(mapping);
1636		if (ret == 0)
1637			ret = err;
1638	}
1639
1640	/*
1641	 * If the inode has dirty timestamps and we need to write them, call
1642	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1643	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1644	 */
1645	if ((inode->i_state & I_DIRTY_TIME) &&
1646	    (wbc->sync_mode == WB_SYNC_ALL ||
1647	     time_after(jiffies, inode->dirtied_time_when +
1648			dirtytime_expire_interval * HZ))) {
1649		trace_writeback_lazytime(inode);
1650		mark_inode_dirty_sync(inode);
1651	}
1652
1653	/*
1654	 * Get and clear the dirty flags from i_state.  This needs to be done
1655	 * after calling writepages because some filesystems may redirty the
1656	 * inode during writepages due to delalloc.  It also needs to be done
1657	 * after handling timestamp expiration, as that may dirty the inode too.
1658	 */
1659	spin_lock(&inode->i_lock);
 
1660	dirty = inode->i_state & I_DIRTY;
 
 
 
 
 
 
 
 
 
 
 
 
1661	inode->i_state &= ~dirty;
1662
1663	/*
1664	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1665	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1666	 * either they see the I_DIRTY bits cleared or we see the dirtied
1667	 * inode.
1668	 *
1669	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1670	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1671	 * necessary.  This guarantees that either __mark_inode_dirty()
1672	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1673	 */
1674	smp_mb();
1675
1676	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1677		inode->i_state |= I_DIRTY_PAGES;
1678	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1679		if (!(inode->i_state & I_DIRTY_PAGES)) {
1680			inode->i_state &= ~I_PINNING_NETFS_WB;
1681			wbc->unpinned_netfs_wb = true;
1682			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1683		}
1684	}
1685
1686	spin_unlock(&inode->i_lock);
1687
 
 
1688	/* Don't write the inode if only I_DIRTY_PAGES was set */
1689	if (dirty & ~I_DIRTY_PAGES) {
1690		int err = write_inode(inode, wbc);
1691		if (ret == 0)
1692			ret = err;
1693	}
1694	wbc->unpinned_netfs_wb = false;
1695	trace_writeback_single_inode(inode, wbc, nr_to_write);
1696	return ret;
1697}
1698
1699/*
1700 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1701 * the regular batched writeback done by the flusher threads in
1702 * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1703 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1704 *
1705 * To prevent the inode from going away, either the caller must have a reference
1706 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
 
1707 */
1708static int writeback_single_inode(struct inode *inode,
1709				  struct writeback_control *wbc)
1710{
1711	struct bdi_writeback *wb;
1712	int ret = 0;
1713
1714	spin_lock(&inode->i_lock);
1715	if (!atomic_read(&inode->i_count))
1716		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1717	else
1718		WARN_ON(inode->i_state & I_WILL_FREE);
1719
1720	if (inode->i_state & I_SYNC) {
 
 
1721		/*
1722		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1723		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1724		 * must wait for the existing writeback to complete, then do
1725		 * writeback again if there's anything left.
1726		 */
1727		if (wbc->sync_mode != WB_SYNC_ALL)
1728			goto out;
1729		__inode_wait_for_writeback(inode);
1730	}
1731	WARN_ON(inode->i_state & I_SYNC);
1732	/*
1733	 * If the inode is already fully clean, then there's nothing to do.
1734	 *
1735	 * For data-integrity syncs we also need to check whether any pages are
1736	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1737	 * there are any such pages, we'll need to wait for them.
 
1738	 */
1739	if (!(inode->i_state & I_DIRTY_ALL) &&
1740	    (wbc->sync_mode != WB_SYNC_ALL ||
1741	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1742		goto out;
1743	inode->i_state |= I_SYNC;
1744	wbc_attach_and_unlock_inode(wbc, inode);
1745
1746	ret = __writeback_single_inode(inode, wbc);
1747
1748	wbc_detach_inode(wbc);
1749
1750	wb = inode_to_wb_and_lock_list(inode);
1751	spin_lock(&inode->i_lock);
1752	/*
1753	 * If the inode is freeing, its i_io_list shoudn't be updated
1754	 * as it can be finally deleted at this moment.
1755	 */
1756	if (!(inode->i_state & I_FREEING)) {
1757		/*
1758		 * If the inode is now fully clean, then it can be safely
1759		 * removed from its writeback list (if any). Otherwise the
1760		 * flusher threads are responsible for the writeback lists.
1761		 */
1762		if (!(inode->i_state & I_DIRTY_ALL))
1763			inode_cgwb_move_to_attached(inode, wb);
1764		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1765			if ((inode->i_state & I_DIRTY))
1766				redirty_tail_locked(inode, wb);
1767			else if (inode->i_state & I_DIRTY_TIME) {
1768				inode->dirtied_when = jiffies;
1769				inode_io_list_move_locked(inode,
1770							  wb,
1771							  &wb->b_dirty_time);
1772			}
1773		}
1774	}
1775
1776	spin_unlock(&wb->list_lock);
1777	inode_sync_complete(inode);
1778out:
1779	spin_unlock(&inode->i_lock);
1780	return ret;
1781}
1782
1783static long writeback_chunk_size(struct bdi_writeback *wb,
1784				 struct wb_writeback_work *work)
1785{
1786	long pages;
1787
1788	/*
1789	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1790	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1791	 * here avoids calling into writeback_inodes_wb() more than once.
1792	 *
1793	 * The intended call sequence for WB_SYNC_ALL writeback is:
1794	 *
1795	 *      wb_writeback()
1796	 *          writeback_sb_inodes()       <== called only once
1797	 *              write_cache_pages()     <== called once for each inode
1798	 *                   (quickly) tag currently dirty pages
1799	 *                   (maybe slowly) sync all tagged pages
1800	 */
1801	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1802		pages = LONG_MAX;
1803	else {
1804		pages = min(wb->avg_write_bandwidth / 2,
1805			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1806		pages = min(pages, work->nr_pages);
1807		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1808				   MIN_WRITEBACK_PAGES);
1809	}
1810
1811	return pages;
1812}
1813
1814/*
1815 * Write a portion of b_io inodes which belong to @sb.
1816 *
1817 * Return the number of pages and/or inodes written.
1818 *
1819 * NOTE! This is called with wb->list_lock held, and will
1820 * unlock and relock that for each inode it ends up doing
1821 * IO for.
1822 */
1823static long writeback_sb_inodes(struct super_block *sb,
1824				struct bdi_writeback *wb,
1825				struct wb_writeback_work *work)
1826{
1827	struct writeback_control wbc = {
1828		.sync_mode		= work->sync_mode,
1829		.tagged_writepages	= work->tagged_writepages,
1830		.for_kupdate		= work->for_kupdate,
1831		.for_background		= work->for_background,
1832		.for_sync		= work->for_sync,
1833		.range_cyclic		= work->range_cyclic,
1834		.range_start		= 0,
1835		.range_end		= LLONG_MAX,
1836	};
1837	unsigned long start_time = jiffies;
1838	long write_chunk;
1839	long total_wrote = 0;  /* count both pages and inodes */
1840
1841	while (!list_empty(&wb->b_io)) {
1842		struct inode *inode = wb_inode(wb->b_io.prev);
1843		struct bdi_writeback *tmp_wb;
1844		long wrote;
1845
1846		if (inode->i_sb != sb) {
1847			if (work->sb) {
1848				/*
1849				 * We only want to write back data for this
1850				 * superblock, move all inodes not belonging
1851				 * to it back onto the dirty list.
1852				 */
1853				redirty_tail(inode, wb);
1854				continue;
1855			}
1856
1857			/*
1858			 * The inode belongs to a different superblock.
1859			 * Bounce back to the caller to unpin this and
1860			 * pin the next superblock.
1861			 */
1862			break;
1863		}
1864
1865		/*
1866		 * Don't bother with new inodes or inodes being freed, first
1867		 * kind does not need periodic writeout yet, and for the latter
1868		 * kind writeout is handled by the freer.
1869		 */
1870		spin_lock(&inode->i_lock);
1871		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1872			redirty_tail_locked(inode, wb);
1873			spin_unlock(&inode->i_lock);
 
1874			continue;
1875		}
1876		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1877			/*
1878			 * If this inode is locked for writeback and we are not
1879			 * doing writeback-for-data-integrity, move it to
1880			 * b_more_io so that writeback can proceed with the
1881			 * other inodes on s_io.
1882			 *
1883			 * We'll have another go at writing back this inode
1884			 * when we completed a full scan of b_io.
1885			 */
 
1886			requeue_io(inode, wb);
1887			spin_unlock(&inode->i_lock);
1888			trace_writeback_sb_inodes_requeue(inode);
1889			continue;
1890		}
1891		spin_unlock(&wb->list_lock);
1892
1893		/*
1894		 * We already requeued the inode if it had I_SYNC set and we
1895		 * are doing WB_SYNC_NONE writeback. So this catches only the
1896		 * WB_SYNC_ALL case.
1897		 */
1898		if (inode->i_state & I_SYNC) {
1899			/* Wait for I_SYNC. This function drops i_lock... */
1900			inode_sleep_on_writeback(inode);
1901			/* Inode may be gone, start again */
1902			spin_lock(&wb->list_lock);
1903			continue;
1904		}
1905		inode->i_state |= I_SYNC;
1906		wbc_attach_and_unlock_inode(&wbc, inode);
1907
1908		write_chunk = writeback_chunk_size(wb, work);
1909		wbc.nr_to_write = write_chunk;
1910		wbc.pages_skipped = 0;
1911
1912		/*
1913		 * We use I_SYNC to pin the inode in memory. While it is set
1914		 * evict_inode() will wait so the inode cannot be freed.
1915		 */
1916		__writeback_single_inode(inode, &wbc);
1917
1918		wbc_detach_inode(&wbc);
1919		work->nr_pages -= write_chunk - wbc.nr_to_write;
1920		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1921		wrote = wrote < 0 ? 0 : wrote;
1922		total_wrote += wrote;
1923
1924		if (need_resched()) {
1925			/*
1926			 * We're trying to balance between building up a nice
1927			 * long list of IOs to improve our merge rate, and
1928			 * getting those IOs out quickly for anyone throttling
1929			 * in balance_dirty_pages().  cond_resched() doesn't
1930			 * unplug, so get our IOs out the door before we
1931			 * give up the CPU.
1932			 */
1933			blk_flush_plug(current->plug, false);
1934			cond_resched();
1935		}
1936
1937		/*
1938		 * Requeue @inode if still dirty.  Be careful as @inode may
1939		 * have been switched to another wb in the meantime.
1940		 */
1941		tmp_wb = inode_to_wb_and_lock_list(inode);
1942		spin_lock(&inode->i_lock);
1943		if (!(inode->i_state & I_DIRTY_ALL))
1944			total_wrote++;
1945		requeue_inode(inode, tmp_wb, &wbc);
1946		inode_sync_complete(inode);
1947		spin_unlock(&inode->i_lock);
1948
1949		if (unlikely(tmp_wb != wb)) {
1950			spin_unlock(&tmp_wb->list_lock);
1951			spin_lock(&wb->list_lock);
1952		}
1953
1954		/*
1955		 * bail out to wb_writeback() often enough to check
1956		 * background threshold and other termination conditions.
1957		 */
1958		if (total_wrote) {
1959			if (time_is_before_jiffies(start_time + HZ / 10UL))
1960				break;
1961			if (work->nr_pages <= 0)
1962				break;
1963		}
1964	}
1965	return total_wrote;
1966}
1967
1968static long __writeback_inodes_wb(struct bdi_writeback *wb,
1969				  struct wb_writeback_work *work)
1970{
1971	unsigned long start_time = jiffies;
1972	long wrote = 0;
1973
1974	while (!list_empty(&wb->b_io)) {
1975		struct inode *inode = wb_inode(wb->b_io.prev);
1976		struct super_block *sb = inode->i_sb;
1977
1978		if (!super_trylock_shared(sb)) {
1979			/*
1980			 * super_trylock_shared() may fail consistently due to
1981			 * s_umount being grabbed by someone else. Don't use
1982			 * requeue_io() to avoid busy retrying the inode/sb.
1983			 */
1984			redirty_tail(inode, wb);
1985			continue;
1986		}
1987		wrote += writeback_sb_inodes(sb, wb, work);
1988		up_read(&sb->s_umount);
1989
1990		/* refer to the same tests at the end of writeback_sb_inodes */
1991		if (wrote) {
1992			if (time_is_before_jiffies(start_time + HZ / 10UL))
1993				break;
1994			if (work->nr_pages <= 0)
1995				break;
1996		}
1997	}
1998	/* Leave any unwritten inodes on b_io */
1999	return wrote;
2000}
2001
2002static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2003				enum wb_reason reason)
2004{
2005	struct wb_writeback_work work = {
2006		.nr_pages	= nr_pages,
2007		.sync_mode	= WB_SYNC_NONE,
2008		.range_cyclic	= 1,
2009		.reason		= reason,
2010	};
2011	struct blk_plug plug;
2012
2013	blk_start_plug(&plug);
2014	spin_lock(&wb->list_lock);
2015	if (list_empty(&wb->b_io))
2016		queue_io(wb, &work, jiffies);
2017	__writeback_inodes_wb(wb, &work);
2018	spin_unlock(&wb->list_lock);
2019	blk_finish_plug(&plug);
2020
2021	return nr_pages - work.nr_pages;
2022}
2023
2024/*
2025 * Explicit flushing or periodic writeback of "old" data.
2026 *
2027 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2028 * dirtying-time in the inode's address_space.  So this periodic writeback code
2029 * just walks the superblock inode list, writing back any inodes which are
2030 * older than a specific point in time.
2031 *
2032 * Try to run once per dirty_writeback_interval.  But if a writeback event
2033 * takes longer than a dirty_writeback_interval interval, then leave a
2034 * one-second gap.
2035 *
2036 * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2037 * all dirty pages if they are all attached to "old" mappings.
2038 */
2039static long wb_writeback(struct bdi_writeback *wb,
2040			 struct wb_writeback_work *work)
2041{
 
2042	long nr_pages = work->nr_pages;
2043	unsigned long dirtied_before = jiffies;
2044	struct inode *inode;
2045	long progress;
2046	struct blk_plug plug;
2047
 
 
 
2048	blk_start_plug(&plug);
 
2049	for (;;) {
2050		/*
2051		 * Stop writeback when nr_pages has been consumed
2052		 */
2053		if (work->nr_pages <= 0)
2054			break;
2055
2056		/*
2057		 * Background writeout and kupdate-style writeback may
2058		 * run forever. Stop them if there is other work to do
2059		 * so that e.g. sync can proceed. They'll be restarted
2060		 * after the other works are all done.
2061		 */
2062		if ((work->for_background || work->for_kupdate) &&
2063		    !list_empty(&wb->work_list))
2064			break;
2065
2066		/*
2067		 * For background writeout, stop when we are below the
2068		 * background dirty threshold
2069		 */
2070		if (work->for_background && !wb_over_bg_thresh(wb))
2071			break;
2072
2073
2074		spin_lock(&wb->list_lock);
2075
2076		/*
2077		 * Kupdate and background works are special and we want to
2078		 * include all inodes that need writing. Livelock avoidance is
2079		 * handled by these works yielding to any other work so we are
2080		 * safe.
2081		 */
2082		if (work->for_kupdate) {
2083			dirtied_before = jiffies -
2084				msecs_to_jiffies(dirty_expire_interval * 10);
2085		} else if (work->for_background)
2086			dirtied_before = jiffies;
2087
2088		trace_writeback_start(wb, work);
2089		if (list_empty(&wb->b_io))
2090			queue_io(wb, work, dirtied_before);
2091		if (work->sb)
2092			progress = writeback_sb_inodes(work->sb, wb, work);
2093		else
2094			progress = __writeback_inodes_wb(wb, work);
2095		trace_writeback_written(wb, work);
2096
 
 
2097		/*
2098		 * Did we write something? Try for more
2099		 *
2100		 * Dirty inodes are moved to b_io for writeback in batches.
2101		 * The completion of the current batch does not necessarily
2102		 * mean the overall work is done. So we keep looping as long
2103		 * as made some progress on cleaning pages or inodes.
2104		 */
2105		if (progress) {
2106			spin_unlock(&wb->list_lock);
2107			continue;
2108		}
2109
2110		/*
2111		 * No more inodes for IO, bail
2112		 */
2113		if (list_empty(&wb->b_more_io)) {
2114			spin_unlock(&wb->list_lock);
2115			break;
2116		}
2117
2118		/*
2119		 * Nothing written. Wait for some inode to
2120		 * become available for writeback. Otherwise
2121		 * we'll just busyloop.
2122		 */
2123		trace_writeback_wait(wb, work);
2124		inode = wb_inode(wb->b_more_io.prev);
2125		spin_lock(&inode->i_lock);
2126		spin_unlock(&wb->list_lock);
2127		/* This function drops i_lock... */
2128		inode_sleep_on_writeback(inode);
 
2129	}
 
2130	blk_finish_plug(&plug);
2131
2132	return nr_pages - work->nr_pages;
2133}
2134
2135/*
2136 * Return the next wb_writeback_work struct that hasn't been processed yet.
2137 */
2138static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2139{
2140	struct wb_writeback_work *work = NULL;
2141
2142	spin_lock_irq(&wb->work_lock);
2143	if (!list_empty(&wb->work_list)) {
2144		work = list_entry(wb->work_list.next,
2145				  struct wb_writeback_work, list);
2146		list_del_init(&work->list);
2147	}
2148	spin_unlock_irq(&wb->work_lock);
2149	return work;
2150}
2151
 
 
 
 
 
 
 
 
 
 
 
2152static long wb_check_background_flush(struct bdi_writeback *wb)
2153{
2154	if (wb_over_bg_thresh(wb)) {
2155
2156		struct wb_writeback_work work = {
2157			.nr_pages	= LONG_MAX,
2158			.sync_mode	= WB_SYNC_NONE,
2159			.for_background	= 1,
2160			.range_cyclic	= 1,
2161			.reason		= WB_REASON_BACKGROUND,
2162		};
2163
2164		return wb_writeback(wb, &work);
2165	}
2166
2167	return 0;
2168}
2169
2170static long wb_check_old_data_flush(struct bdi_writeback *wb)
2171{
2172	unsigned long expired;
2173	long nr_pages;
2174
2175	/*
2176	 * When set to zero, disable periodic writeback
2177	 */
2178	if (!dirty_writeback_interval)
2179		return 0;
2180
2181	expired = wb->last_old_flush +
2182			msecs_to_jiffies(dirty_writeback_interval * 10);
2183	if (time_before(jiffies, expired))
2184		return 0;
2185
2186	wb->last_old_flush = jiffies;
2187	nr_pages = get_nr_dirty_pages();
2188
2189	if (nr_pages) {
2190		struct wb_writeback_work work = {
2191			.nr_pages	= nr_pages,
2192			.sync_mode	= WB_SYNC_NONE,
2193			.for_kupdate	= 1,
2194			.range_cyclic	= 1,
2195			.reason		= WB_REASON_PERIODIC,
2196		};
2197
2198		return wb_writeback(wb, &work);
2199	}
2200
2201	return 0;
2202}
2203
2204static long wb_check_start_all(struct bdi_writeback *wb)
2205{
2206	long nr_pages;
2207
2208	if (!test_bit(WB_start_all, &wb->state))
2209		return 0;
2210
2211	nr_pages = get_nr_dirty_pages();
2212	if (nr_pages) {
2213		struct wb_writeback_work work = {
2214			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2215			.sync_mode	= WB_SYNC_NONE,
2216			.range_cyclic	= 1,
2217			.reason		= wb->start_all_reason,
2218		};
2219
2220		nr_pages = wb_writeback(wb, &work);
2221	}
2222
2223	clear_bit(WB_start_all, &wb->state);
2224	return nr_pages;
2225}
2226
2227
2228/*
2229 * Retrieve work items and do the writeback they describe
2230 */
2231static long wb_do_writeback(struct bdi_writeback *wb)
2232{
2233	struct wb_writeback_work *work;
2234	long wrote = 0;
2235
2236	set_bit(WB_writeback_running, &wb->state);
2237	while ((work = get_next_work_item(wb)) != NULL) {
 
 
2238		trace_writeback_exec(wb, work);
 
2239		wrote += wb_writeback(wb, work);
2240		finish_writeback_work(wb, work);
 
 
 
 
2241	}
2242
2243	/*
2244	 * Check for a flush-everything request
2245	 */
2246	wrote += wb_check_start_all(wb);
2247
2248	/*
2249	 * Check for periodic writeback, kupdated() style
2250	 */
2251	wrote += wb_check_old_data_flush(wb);
2252	wrote += wb_check_background_flush(wb);
2253	clear_bit(WB_writeback_running, &wb->state);
2254
2255	return wrote;
2256}
2257
2258/*
2259 * Handle writeback of dirty data for the device backed by this bdi. Also
2260 * reschedules periodically and does kupdated style flushing.
2261 */
2262void wb_workfn(struct work_struct *work)
2263{
2264	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2265						struct bdi_writeback, dwork);
2266	long pages_written;
2267
2268	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
 
2269
2270	if (likely(!current_is_workqueue_rescuer() ||
2271		   !test_bit(WB_registered, &wb->state))) {
2272		/*
2273		 * The normal path.  Keep writing back @wb until its
2274		 * work_list is empty.  Note that this path is also taken
2275		 * if @wb is shutting down even when we're running off the
2276		 * rescuer as work_list needs to be drained.
2277		 */
2278		do {
2279			pages_written = wb_do_writeback(wb);
2280			trace_writeback_pages_written(pages_written);
2281		} while (!list_empty(&wb->work_list));
2282	} else {
2283		/*
2284		 * bdi_wq can't get enough workers and we're running off
2285		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2286		 * enough for efficient IO.
2287		 */
2288		pages_written = writeback_inodes_wb(wb, 1024,
2289						    WB_REASON_FORKER_THREAD);
2290		trace_writeback_pages_written(pages_written);
2291	}
2292
2293	if (!list_empty(&wb->work_list))
2294		wb_wakeup(wb);
2295	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2296		wb_wakeup_delayed(wb);
2297}
2298
2299/*
2300 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2301 * write back the whole world.
2302 */
2303static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2304					 enum wb_reason reason)
2305{
2306	struct bdi_writeback *wb;
2307
2308	if (!bdi_has_dirty_io(bdi))
2309		return;
2310
2311	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2312		wb_start_writeback(wb, reason);
2313}
2314
2315void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2316				enum wb_reason reason)
2317{
2318	rcu_read_lock();
2319	__wakeup_flusher_threads_bdi(bdi, reason);
2320	rcu_read_unlock();
2321}
2322
2323/*
2324 * Wakeup the flusher threads to start writeback of all currently dirty pages
 
2325 */
2326void wakeup_flusher_threads(enum wb_reason reason)
2327{
2328	struct backing_dev_info *bdi;
2329
2330	/*
2331	 * If we are expecting writeback progress we must submit plugged IO.
2332	 */
2333	blk_flush_plug(current->plug, true);
 
 
 
 
2334
2335	rcu_read_lock();
2336	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2337		__wakeup_flusher_threads_bdi(bdi, reason);
 
 
 
 
 
 
 
 
2338	rcu_read_unlock();
2339}
2340
2341/*
2342 * Wake up bdi's periodically to make sure dirtytime inodes gets
2343 * written back periodically.  We deliberately do *not* check the
2344 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2345 * kernel to be constantly waking up once there are any dirtytime
2346 * inodes on the system.  So instead we define a separate delayed work
2347 * function which gets called much more rarely.  (By default, only
2348 * once every 12 hours.)
2349 *
2350 * If there is any other write activity going on in the file system,
2351 * this function won't be necessary.  But if the only thing that has
2352 * happened on the file system is a dirtytime inode caused by an atime
2353 * update, we need this infrastructure below to make sure that inode
2354 * eventually gets pushed out to disk.
2355 */
2356static void wakeup_dirtytime_writeback(struct work_struct *w);
2357static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2358
2359static void wakeup_dirtytime_writeback(struct work_struct *w)
2360{
2361	struct backing_dev_info *bdi;
2362
2363	rcu_read_lock();
2364	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2365		struct bdi_writeback *wb;
2366
2367		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2368			if (!list_empty(&wb->b_dirty_time))
2369				wb_wakeup(wb);
2370	}
2371	rcu_read_unlock();
2372	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2373}
2374
2375static int __init start_dirtytime_writeback(void)
2376{
2377	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2378	return 0;
2379}
2380__initcall(start_dirtytime_writeback);
2381
2382int dirtytime_interval_handler(struct ctl_table *table, int write,
2383			       void *buffer, size_t *lenp, loff_t *ppos)
2384{
2385	int ret;
2386
2387	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2388	if (ret == 0 && write)
2389		mod_delayed_work(system_wq, &dirtytime_work, 0);
2390	return ret;
2391}
2392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393/**
2394 * __mark_inode_dirty -	internal function to mark an inode dirty
 
 
 
 
2395 *
2396 * @inode: inode to mark
2397 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2398 *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2399 *	   with I_DIRTY_PAGES.
2400 *
2401 * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2402 * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
 
 
2403 *
2404 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2405 * instead of calling this directly.
2406 *
2407 * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2408 * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2409 * even if they are later hashed, as they will have been marked dirty already.
2410 *
2411 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2412 *
2413 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2414 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2415 * the kernel-internal blockdev inode represents the dirtying time of the
2416 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2417 * page->mapping->host, so the page-dirtying time is recorded in the internal
2418 * blockdev inode.
2419 */
2420void __mark_inode_dirty(struct inode *inode, int flags)
2421{
 
2422	struct super_block *sb = inode->i_sb;
2423	int dirtytime = 0;
2424	struct bdi_writeback *wb = NULL;
2425
2426	trace_writeback_mark_inode_dirty(inode, flags);
2427
2428	if (flags & I_DIRTY_INODE) {
2429		/*
2430		 * Inode timestamp update will piggback on this dirtying.
2431		 * We tell ->dirty_inode callback that timestamps need to
2432		 * be updated by setting I_DIRTY_TIME in flags.
2433		 */
2434		if (inode->i_state & I_DIRTY_TIME) {
2435			spin_lock(&inode->i_lock);
2436			if (inode->i_state & I_DIRTY_TIME) {
2437				inode->i_state &= ~I_DIRTY_TIME;
2438				flags |= I_DIRTY_TIME;
2439			}
2440			spin_unlock(&inode->i_lock);
2441		}
2442
2443		/*
2444		 * Notify the filesystem about the inode being dirtied, so that
2445		 * (if needed) it can update on-disk fields and journal the
2446		 * inode.  This is only needed when the inode itself is being
2447		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2448		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2449		 */
2450		trace_writeback_dirty_inode_start(inode, flags);
2451		if (sb->s_op->dirty_inode)
2452			sb->s_op->dirty_inode(inode,
2453				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2454		trace_writeback_dirty_inode(inode, flags);
2455
2456		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2457		flags &= ~I_DIRTY_TIME;
2458	} else {
2459		/*
2460		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2461		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2462		 * in one call to __mark_inode_dirty().)
2463		 */
2464		dirtytime = flags & I_DIRTY_TIME;
2465		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2466	}
2467
2468	/*
2469	 * Paired with smp_mb() in __writeback_single_inode() for the
2470	 * following lockless i_state test.  See there for details.
2471	 */
2472	smp_mb();
2473
2474	if ((inode->i_state & flags) == flags)
 
2475		return;
2476
 
 
 
2477	spin_lock(&inode->i_lock);
 
 
2478	if ((inode->i_state & flags) != flags) {
2479		const int was_dirty = inode->i_state & I_DIRTY;
2480
2481		inode_attach_wb(inode, NULL);
2482
 
 
2483		inode->i_state |= flags;
2484
2485		/*
2486		 * Grab inode's wb early because it requires dropping i_lock and we
2487		 * need to make sure following checks happen atomically with dirty
2488		 * list handling so that we don't move inodes under flush worker's
2489		 * hands.
2490		 */
2491		if (!was_dirty) {
2492			wb = locked_inode_to_wb_and_lock_list(inode);
2493			spin_lock(&inode->i_lock);
2494		}
2495
2496		/*
2497		 * If the inode is queued for writeback by flush worker, just
2498		 * update its dirty state. Once the flush worker is done with
2499		 * the inode it will place it on the appropriate superblock
2500		 * list, based upon its state.
2501		 */
2502		if (inode->i_state & I_SYNC_QUEUED)
2503			goto out_unlock;
2504
2505		/*
2506		 * Only add valid (hashed) inodes to the superblock's
2507		 * dirty list.  Add blockdev inodes as well.
2508		 */
2509		if (!S_ISBLK(inode->i_mode)) {
2510			if (inode_unhashed(inode))
2511				goto out_unlock;
2512		}
2513		if (inode->i_state & I_FREEING)
2514			goto out_unlock;
2515
2516		/*
2517		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2518		 * reposition it (that would break b_dirty time-ordering).
2519		 */
2520		if (!was_dirty) {
 
2521			struct list_head *dirty_list;
2522			bool wakeup_bdi = false;
2523
 
 
 
 
 
 
2524			inode->dirtied_when = jiffies;
2525			if (dirtytime)
2526				inode->dirtied_time_when = jiffies;
2527
2528			if (inode->i_state & I_DIRTY)
2529				dirty_list = &wb->b_dirty;
2530			else
2531				dirty_list = &wb->b_dirty_time;
2532
2533			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2534							       dirty_list);
2535
2536			spin_unlock(&wb->list_lock);
2537			spin_unlock(&inode->i_lock);
2538			trace_writeback_dirty_inode_enqueue(inode);
2539
2540			/*
2541			 * If this is the first dirty inode for this bdi,
2542			 * we have to wake-up the corresponding bdi thread
2543			 * to make sure background write-back happens
2544			 * later.
2545			 */
2546			if (wakeup_bdi &&
2547			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2548				wb_wakeup_delayed(wb);
2549			return;
2550		}
2551	}
2552out_unlock:
2553	if (wb)
2554		spin_unlock(&wb->list_lock);
2555	spin_unlock(&inode->i_lock);
 
 
2556}
2557EXPORT_SYMBOL(__mark_inode_dirty);
2558
2559/*
2560 * The @s_sync_lock is used to serialise concurrent sync operations
2561 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2562 * Concurrent callers will block on the s_sync_lock rather than doing contending
2563 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2564 * has been issued up to the time this function is enter is guaranteed to be
2565 * completed by the time we have gained the lock and waited for all IO that is
2566 * in progress regardless of the order callers are granted the lock.
2567 */
2568static void wait_sb_inodes(struct super_block *sb)
2569{
2570	LIST_HEAD(sync_list);
2571
2572	/*
2573	 * We need to be protected against the filesystem going from
2574	 * r/o to r/w or vice versa.
2575	 */
2576	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2577
2578	mutex_lock(&sb->s_sync_lock);
2579
2580	/*
2581	 * Splice the writeback list onto a temporary list to avoid waiting on
2582	 * inodes that have started writeback after this point.
2583	 *
2584	 * Use rcu_read_lock() to keep the inodes around until we have a
2585	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2586	 * the local list because inodes can be dropped from either by writeback
2587	 * completion.
2588	 */
2589	rcu_read_lock();
2590	spin_lock_irq(&sb->s_inode_wblist_lock);
2591	list_splice_init(&sb->s_inodes_wb, &sync_list);
2592
2593	/*
2594	 * Data integrity sync. Must wait for all pages under writeback, because
2595	 * there may have been pages dirtied before our sync call, but which had
2596	 * writeout started before we write it out.  In which case, the inode
2597	 * may not be on the dirty list, but we still have to wait for that
2598	 * writeout.
2599	 */
2600	while (!list_empty(&sync_list)) {
2601		struct inode *inode = list_first_entry(&sync_list, struct inode,
2602						       i_wb_list);
2603		struct address_space *mapping = inode->i_mapping;
2604
2605		/*
2606		 * Move each inode back to the wb list before we drop the lock
2607		 * to preserve consistency between i_wb_list and the mapping
2608		 * writeback tag. Writeback completion is responsible to remove
2609		 * the inode from either list once the writeback tag is cleared.
2610		 */
2611		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2612
2613		/*
2614		 * The mapping can appear untagged while still on-list since we
2615		 * do not have the mapping lock. Skip it here, wb completion
2616		 * will remove it.
2617		 */
2618		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2619			continue;
2620
2621		spin_unlock_irq(&sb->s_inode_wblist_lock);
2622
2623		spin_lock(&inode->i_lock);
2624		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2625			spin_unlock(&inode->i_lock);
2626
2627			spin_lock_irq(&sb->s_inode_wblist_lock);
2628			continue;
2629		}
2630		__iget(inode);
2631		spin_unlock(&inode->i_lock);
2632		rcu_read_unlock();
2633
2634		/*
2635		 * We keep the error status of individual mapping so that
2636		 * applications can catch the writeback error using fsync(2).
2637		 * See filemap_fdatawait_keep_errors() for details.
2638		 */
2639		filemap_fdatawait_keep_errors(mapping);
2640
2641		cond_resched();
2642
2643		iput(inode);
2644
2645		rcu_read_lock();
2646		spin_lock_irq(&sb->s_inode_wblist_lock);
2647	}
2648	spin_unlock_irq(&sb->s_inode_wblist_lock);
2649	rcu_read_unlock();
2650	mutex_unlock(&sb->s_sync_lock);
2651}
2652
2653static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2654				     enum wb_reason reason, bool skip_if_busy)
2655{
2656	struct backing_dev_info *bdi = sb->s_bdi;
2657	DEFINE_WB_COMPLETION(done, bdi);
2658	struct wb_writeback_work work = {
2659		.sb			= sb,
2660		.sync_mode		= WB_SYNC_NONE,
2661		.tagged_writepages	= 1,
2662		.done			= &done,
2663		.nr_pages		= nr,
2664		.reason			= reason,
2665	};
 
2666
2667	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2668		return;
2669	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2670
2671	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2672	wb_wait_for_completion(&done);
2673}
2674
2675/**
2676 * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2677 * @sb: the superblock
2678 * @nr: the number of pages to write
2679 * @reason: reason why some writeback work initiated
2680 *
2681 * Start writeback on some inodes on this super_block. No guarantees are made
2682 * on how many (if any) will be written, and this function does not wait
2683 * for IO completion of submitted IO.
2684 */
2685void writeback_inodes_sb_nr(struct super_block *sb,
2686			    unsigned long nr,
2687			    enum wb_reason reason)
2688{
2689	__writeback_inodes_sb_nr(sb, nr, reason, false);
2690}
2691EXPORT_SYMBOL(writeback_inodes_sb_nr);
2692
2693/**
2694 * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2695 * @sb: the superblock
2696 * @reason: reason why some writeback work was initiated
2697 *
2698 * Start writeback on some inodes on this super_block. No guarantees are made
2699 * on how many (if any) will be written, and this function does not wait
2700 * for IO completion of submitted IO.
2701 */
2702void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2703{
2704	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2705}
2706EXPORT_SYMBOL(writeback_inodes_sb);
2707
2708/**
2709 * try_to_writeback_inodes_sb - try to start writeback if none underway
2710 * @sb: the superblock
2711 * @reason: reason why some writeback work was initiated
 
2712 *
2713 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
 
2714 */
2715void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
 
2716{
2717	if (!down_read_trylock(&sb->s_umount))
2718		return;
2719
2720	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2721	up_read(&sb->s_umount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2722}
2723EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2724
2725/**
2726 * sync_inodes_sb	-	sync sb inode pages
2727 * @sb: the superblock
2728 *
2729 * This function writes and waits on any dirty inode belonging to this
2730 * super_block.
2731 */
2732void sync_inodes_sb(struct super_block *sb)
2733{
2734	struct backing_dev_info *bdi = sb->s_bdi;
2735	DEFINE_WB_COMPLETION(done, bdi);
2736	struct wb_writeback_work work = {
2737		.sb		= sb,
2738		.sync_mode	= WB_SYNC_ALL,
2739		.nr_pages	= LONG_MAX,
2740		.range_cyclic	= 0,
2741		.done		= &done,
2742		.reason		= WB_REASON_SYNC,
2743		.for_sync	= 1,
2744	};
 
2745
2746	/*
2747	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2748	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2749	 * bdi_has_dirty() need to be written out too.
2750	 */
2751	if (bdi == &noop_backing_dev_info)
2752		return;
2753	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2754
2755	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2756	bdi_down_write_wb_switch_rwsem(bdi);
2757	bdi_split_work_to_wbs(bdi, &work, false);
2758	wb_wait_for_completion(&done);
2759	bdi_up_write_wb_switch_rwsem(bdi);
2760
2761	wait_sb_inodes(sb);
2762}
2763EXPORT_SYMBOL(sync_inodes_sb);
2764
2765/**
2766 * write_inode_now	-	write an inode to disk
2767 * @inode: inode to write to disk
2768 * @sync: whether the write should be synchronous or not
2769 *
2770 * This function commits an inode to disk immediately if it is dirty. This is
2771 * primarily needed by knfsd.
2772 *
2773 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2774 */
2775int write_inode_now(struct inode *inode, int sync)
2776{
2777	struct writeback_control wbc = {
2778		.nr_to_write = LONG_MAX,
2779		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2780		.range_start = 0,
2781		.range_end = LLONG_MAX,
2782	};
2783
2784	if (!mapping_can_writeback(inode->i_mapping))
2785		wbc.nr_to_write = 0;
2786
2787	might_sleep();
2788	return writeback_single_inode(inode, &wbc);
2789}
2790EXPORT_SYMBOL(write_inode_now);
2791
2792/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2793 * sync_inode_metadata - write an inode to disk
2794 * @inode: the inode to sync
2795 * @wait: wait for I/O to complete.
2796 *
2797 * Write an inode to disk and adjust its dirty state after completion.
2798 *
2799 * Note: only writes the actual inode, no associated data or other metadata.
2800 */
2801int sync_inode_metadata(struct inode *inode, int wait)
2802{
2803	struct writeback_control wbc = {
2804		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2805		.nr_to_write = 0, /* metadata-only */
2806	};
2807
2808	return writeback_single_inode(inode, &wbc);
2809}
2810EXPORT_SYMBOL(sync_inode_metadata);