Loading...
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_crit(rdev, fmt, ...) \
38 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_err(rdev, fmt, ...) \
40 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_warn(rdev, fmt, ...) \
42 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_info(rdev, fmt, ...) \
44 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_dbg(rdev, fmt, ...) \
46 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48static DEFINE_MUTEX(regulator_list_mutex);
49static LIST_HEAD(regulator_list);
50static LIST_HEAD(regulator_map_list);
51static bool has_full_constraints;
52static bool board_wants_dummy_regulator;
53
54#ifdef CONFIG_DEBUG_FS
55static struct dentry *debugfs_root;
56#endif
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76 struct device *dev;
77 struct list_head list;
78 int uA_load;
79 int min_uV;
80 int max_uV;
81 char *supply_name;
82 struct device_attribute dev_attr;
83 struct regulator_dev *rdev;
84#ifdef CONFIG_DEBUG_FS
85 struct dentry *debugfs;
86#endif
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
110}
111
112/* gets the regulator for a given consumer device */
113static struct regulator *get_device_regulator(struct device *dev)
114{
115 struct regulator *regulator = NULL;
116 struct regulator_dev *rdev;
117
118 mutex_lock(®ulator_list_mutex);
119 list_for_each_entry(rdev, ®ulator_list, list) {
120 mutex_lock(&rdev->mutex);
121 list_for_each_entry(regulator, &rdev->consumer_list, list) {
122 if (regulator->dev == dev) {
123 mutex_unlock(&rdev->mutex);
124 mutex_unlock(®ulator_list_mutex);
125 return regulator;
126 }
127 }
128 mutex_unlock(&rdev->mutex);
129 }
130 mutex_unlock(®ulator_list_mutex);
131 return NULL;
132}
133
134/* Platform voltage constraint check */
135static int regulator_check_voltage(struct regulator_dev *rdev,
136 int *min_uV, int *max_uV)
137{
138 BUG_ON(*min_uV > *max_uV);
139
140 if (!rdev->constraints) {
141 rdev_err(rdev, "no constraints\n");
142 return -ENODEV;
143 }
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145 rdev_err(rdev, "operation not allowed\n");
146 return -EPERM;
147 }
148
149 if (*max_uV > rdev->constraints->max_uV)
150 *max_uV = rdev->constraints->max_uV;
151 if (*min_uV < rdev->constraints->min_uV)
152 *min_uV = rdev->constraints->min_uV;
153
154 if (*min_uV > *max_uV) {
155 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156 *min_uV, *max_uV);
157 return -EINVAL;
158 }
159
160 return 0;
161}
162
163/* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
165 */
166static int regulator_check_consumers(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168{
169 struct regulator *regulator;
170
171 list_for_each_entry(regulator, &rdev->consumer_list, list) {
172 /*
173 * Assume consumers that didn't say anything are OK
174 * with anything in the constraint range.
175 */
176 if (!regulator->min_uV && !regulator->max_uV)
177 continue;
178
179 if (*max_uV > regulator->max_uV)
180 *max_uV = regulator->max_uV;
181 if (*min_uV < regulator->min_uV)
182 *min_uV = regulator->min_uV;
183 }
184
185 if (*min_uV > *max_uV)
186 return -EINVAL;
187
188 return 0;
189}
190
191/* current constraint check */
192static int regulator_check_current_limit(struct regulator_dev *rdev,
193 int *min_uA, int *max_uA)
194{
195 BUG_ON(*min_uA > *max_uA);
196
197 if (!rdev->constraints) {
198 rdev_err(rdev, "no constraints\n");
199 return -ENODEV;
200 }
201 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202 rdev_err(rdev, "operation not allowed\n");
203 return -EPERM;
204 }
205
206 if (*max_uA > rdev->constraints->max_uA)
207 *max_uA = rdev->constraints->max_uA;
208 if (*min_uA < rdev->constraints->min_uA)
209 *min_uA = rdev->constraints->min_uA;
210
211 if (*min_uA > *max_uA) {
212 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213 *min_uA, *max_uA);
214 return -EINVAL;
215 }
216
217 return 0;
218}
219
220/* operating mode constraint check */
221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222{
223 switch (*mode) {
224 case REGULATOR_MODE_FAST:
225 case REGULATOR_MODE_NORMAL:
226 case REGULATOR_MODE_IDLE:
227 case REGULATOR_MODE_STANDBY:
228 break;
229 default:
230 rdev_err(rdev, "invalid mode %x specified\n", *mode);
231 return -EINVAL;
232 }
233
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
241 }
242
243 /* The modes are bitmasks, the most power hungry modes having
244 * the lowest values. If the requested mode isn't supported
245 * try higher modes. */
246 while (*mode) {
247 if (rdev->constraints->valid_modes_mask & *mode)
248 return 0;
249 *mode /= 2;
250 }
251
252 return -EINVAL;
253}
254
255/* dynamic regulator mode switching constraint check */
256static int regulator_check_drms(struct regulator_dev *rdev)
257{
258 if (!rdev->constraints) {
259 rdev_err(rdev, "no constraints\n");
260 return -ENODEV;
261 }
262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263 rdev_err(rdev, "operation not allowed\n");
264 return -EPERM;
265 }
266 return 0;
267}
268
269static ssize_t device_requested_uA_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct regulator *regulator;
273
274 regulator = get_device_regulator(dev);
275 if (regulator == NULL)
276 return 0;
277
278 return sprintf(buf, "%d\n", regulator->uA_load);
279}
280
281static ssize_t regulator_uV_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct regulator_dev *rdev = dev_get_drvdata(dev);
285 ssize_t ret;
286
287 mutex_lock(&rdev->mutex);
288 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289 mutex_unlock(&rdev->mutex);
290
291 return ret;
292}
293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294
295static ssize_t regulator_uA_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
297{
298 struct regulator_dev *rdev = dev_get_drvdata(dev);
299
300 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301}
302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303
304static ssize_t regulator_name_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306{
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308
309 return sprintf(buf, "%s\n", rdev_get_name(rdev));
310}
311
312static ssize_t regulator_print_opmode(char *buf, int mode)
313{
314 switch (mode) {
315 case REGULATOR_MODE_FAST:
316 return sprintf(buf, "fast\n");
317 case REGULATOR_MODE_NORMAL:
318 return sprintf(buf, "normal\n");
319 case REGULATOR_MODE_IDLE:
320 return sprintf(buf, "idle\n");
321 case REGULATOR_MODE_STANDBY:
322 return sprintf(buf, "standby\n");
323 }
324 return sprintf(buf, "unknown\n");
325}
326
327static ssize_t regulator_opmode_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329{
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333}
334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335
336static ssize_t regulator_print_state(char *buf, int state)
337{
338 if (state > 0)
339 return sprintf(buf, "enabled\n");
340 else if (state == 0)
341 return sprintf(buf, "disabled\n");
342 else
343 return sprintf(buf, "unknown\n");
344}
345
346static ssize_t regulator_state_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348{
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350 ssize_t ret;
351
352 mutex_lock(&rdev->mutex);
353 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354 mutex_unlock(&rdev->mutex);
355
356 return ret;
357}
358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359
360static ssize_t regulator_status_show(struct device *dev,
361 struct device_attribute *attr, char *buf)
362{
363 struct regulator_dev *rdev = dev_get_drvdata(dev);
364 int status;
365 char *label;
366
367 status = rdev->desc->ops->get_status(rdev);
368 if (status < 0)
369 return status;
370
371 switch (status) {
372 case REGULATOR_STATUS_OFF:
373 label = "off";
374 break;
375 case REGULATOR_STATUS_ON:
376 label = "on";
377 break;
378 case REGULATOR_STATUS_ERROR:
379 label = "error";
380 break;
381 case REGULATOR_STATUS_FAST:
382 label = "fast";
383 break;
384 case REGULATOR_STATUS_NORMAL:
385 label = "normal";
386 break;
387 case REGULATOR_STATUS_IDLE:
388 label = "idle";
389 break;
390 case REGULATOR_STATUS_STANDBY:
391 label = "standby";
392 break;
393 default:
394 return -ERANGE;
395 }
396
397 return sprintf(buf, "%s\n", label);
398}
399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400
401static ssize_t regulator_min_uA_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406 if (!rdev->constraints)
407 return sprintf(buf, "constraint not defined\n");
408
409 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410}
411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412
413static ssize_t regulator_max_uA_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415{
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418 if (!rdev->constraints)
419 return sprintf(buf, "constraint not defined\n");
420
421 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422}
423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424
425static ssize_t regulator_min_uV_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430 if (!rdev->constraints)
431 return sprintf(buf, "constraint not defined\n");
432
433 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434}
435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436
437static ssize_t regulator_max_uV_show(struct device *dev,
438 struct device_attribute *attr, char *buf)
439{
440 struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442 if (!rdev->constraints)
443 return sprintf(buf, "constraint not defined\n");
444
445 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446}
447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448
449static ssize_t regulator_total_uA_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
451{
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 struct regulator *regulator;
454 int uA = 0;
455
456 mutex_lock(&rdev->mutex);
457 list_for_each_entry(regulator, &rdev->consumer_list, list)
458 uA += regulator->uA_load;
459 mutex_unlock(&rdev->mutex);
460 return sprintf(buf, "%d\n", uA);
461}
462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463
464static ssize_t regulator_num_users_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466{
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
468 return sprintf(buf, "%d\n", rdev->use_count);
469}
470
471static ssize_t regulator_type_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473{
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476 switch (rdev->desc->type) {
477 case REGULATOR_VOLTAGE:
478 return sprintf(buf, "voltage\n");
479 case REGULATOR_CURRENT:
480 return sprintf(buf, "current\n");
481 }
482 return sprintf(buf, "unknown\n");
483}
484
485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
487{
488 struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491}
492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493 regulator_suspend_mem_uV_show, NULL);
494
495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
497{
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501}
502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503 regulator_suspend_disk_uV_show, NULL);
504
505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506 struct device_attribute *attr, char *buf)
507{
508 struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511}
512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513 regulator_suspend_standby_uV_show, NULL);
514
515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
517{
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520 return regulator_print_opmode(buf,
521 rdev->constraints->state_mem.mode);
522}
523static DEVICE_ATTR(suspend_mem_mode, 0444,
524 regulator_suspend_mem_mode_show, NULL);
525
526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528{
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_disk.mode);
533}
534static DEVICE_ATTR(suspend_disk_mode, 0444,
535 regulator_suspend_disk_mode_show, NULL);
536
537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539{
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_standby.mode);
544}
545static DEVICE_ATTR(suspend_standby_mode, 0444,
546 regulator_suspend_standby_mode_show, NULL);
547
548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550{
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 return regulator_print_state(buf,
554 rdev->constraints->state_mem.enabled);
555}
556static DEVICE_ATTR(suspend_mem_state, 0444,
557 regulator_suspend_mem_state_show, NULL);
558
559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561{
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return regulator_print_state(buf,
565 rdev->constraints->state_disk.enabled);
566}
567static DEVICE_ATTR(suspend_disk_state, 0444,
568 regulator_suspend_disk_state_show, NULL);
569
570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572{
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_state(buf,
576 rdev->constraints->state_standby.enabled);
577}
578static DEVICE_ATTR(suspend_standby_state, 0444,
579 regulator_suspend_standby_state_show, NULL);
580
581
582/*
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
585 */
586static struct device_attribute regulator_dev_attrs[] = {
587 __ATTR(name, 0444, regulator_name_show, NULL),
588 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
589 __ATTR(type, 0444, regulator_type_show, NULL),
590 __ATTR_NULL,
591};
592
593static void regulator_dev_release(struct device *dev)
594{
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 kfree(rdev);
597}
598
599static struct class regulator_class = {
600 .name = "regulator",
601 .dev_release = regulator_dev_release,
602 .dev_attrs = regulator_dev_attrs,
603};
604
605/* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607static void drms_uA_update(struct regulator_dev *rdev)
608{
609 struct regulator *sibling;
610 int current_uA = 0, output_uV, input_uV, err;
611 unsigned int mode;
612
613 err = regulator_check_drms(rdev);
614 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615 (!rdev->desc->ops->get_voltage &&
616 !rdev->desc->ops->get_voltage_sel) ||
617 !rdev->desc->ops->set_mode)
618 return;
619
620 /* get output voltage */
621 output_uV = _regulator_get_voltage(rdev);
622 if (output_uV <= 0)
623 return;
624
625 /* get input voltage */
626 input_uV = 0;
627 if (rdev->supply)
628 input_uV = _regulator_get_voltage(rdev);
629 if (input_uV <= 0)
630 input_uV = rdev->constraints->input_uV;
631 if (input_uV <= 0)
632 return;
633
634 /* calc total requested load */
635 list_for_each_entry(sibling, &rdev->consumer_list, list)
636 current_uA += sibling->uA_load;
637
638 /* now get the optimum mode for our new total regulator load */
639 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640 output_uV, current_uA);
641
642 /* check the new mode is allowed */
643 err = regulator_mode_constrain(rdev, &mode);
644 if (err == 0)
645 rdev->desc->ops->set_mode(rdev, mode);
646}
647
648static int suspend_set_state(struct regulator_dev *rdev,
649 struct regulator_state *rstate)
650{
651 int ret = 0;
652 bool can_set_state;
653
654 can_set_state = rdev->desc->ops->set_suspend_enable &&
655 rdev->desc->ops->set_suspend_disable;
656
657 /* If we have no suspend mode configration don't set anything;
658 * only warn if the driver actually makes the suspend mode
659 * configurable.
660 */
661 if (!rstate->enabled && !rstate->disabled) {
662 if (can_set_state)
663 rdev_warn(rdev, "No configuration\n");
664 return 0;
665 }
666
667 if (rstate->enabled && rstate->disabled) {
668 rdev_err(rdev, "invalid configuration\n");
669 return -EINVAL;
670 }
671
672 if (!can_set_state) {
673 rdev_err(rdev, "no way to set suspend state\n");
674 return -EINVAL;
675 }
676
677 if (rstate->enabled)
678 ret = rdev->desc->ops->set_suspend_enable(rdev);
679 else
680 ret = rdev->desc->ops->set_suspend_disable(rdev);
681 if (ret < 0) {
682 rdev_err(rdev, "failed to enabled/disable\n");
683 return ret;
684 }
685
686 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688 if (ret < 0) {
689 rdev_err(rdev, "failed to set voltage\n");
690 return ret;
691 }
692 }
693
694 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696 if (ret < 0) {
697 rdev_err(rdev, "failed to set mode\n");
698 return ret;
699 }
700 }
701 return ret;
702}
703
704/* locks held by caller */
705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706{
707 if (!rdev->constraints)
708 return -EINVAL;
709
710 switch (state) {
711 case PM_SUSPEND_STANDBY:
712 return suspend_set_state(rdev,
713 &rdev->constraints->state_standby);
714 case PM_SUSPEND_MEM:
715 return suspend_set_state(rdev,
716 &rdev->constraints->state_mem);
717 case PM_SUSPEND_MAX:
718 return suspend_set_state(rdev,
719 &rdev->constraints->state_disk);
720 default:
721 return -EINVAL;
722 }
723}
724
725static void print_constraints(struct regulator_dev *rdev)
726{
727 struct regulation_constraints *constraints = rdev->constraints;
728 char buf[80] = "";
729 int count = 0;
730 int ret;
731
732 if (constraints->min_uV && constraints->max_uV) {
733 if (constraints->min_uV == constraints->max_uV)
734 count += sprintf(buf + count, "%d mV ",
735 constraints->min_uV / 1000);
736 else
737 count += sprintf(buf + count, "%d <--> %d mV ",
738 constraints->min_uV / 1000,
739 constraints->max_uV / 1000);
740 }
741
742 if (!constraints->min_uV ||
743 constraints->min_uV != constraints->max_uV) {
744 ret = _regulator_get_voltage(rdev);
745 if (ret > 0)
746 count += sprintf(buf + count, "at %d mV ", ret / 1000);
747 }
748
749 if (constraints->uV_offset)
750 count += sprintf(buf, "%dmV offset ",
751 constraints->uV_offset / 1000);
752
753 if (constraints->min_uA && constraints->max_uA) {
754 if (constraints->min_uA == constraints->max_uA)
755 count += sprintf(buf + count, "%d mA ",
756 constraints->min_uA / 1000);
757 else
758 count += sprintf(buf + count, "%d <--> %d mA ",
759 constraints->min_uA / 1000,
760 constraints->max_uA / 1000);
761 }
762
763 if (!constraints->min_uA ||
764 constraints->min_uA != constraints->max_uA) {
765 ret = _regulator_get_current_limit(rdev);
766 if (ret > 0)
767 count += sprintf(buf + count, "at %d mA ", ret / 1000);
768 }
769
770 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771 count += sprintf(buf + count, "fast ");
772 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773 count += sprintf(buf + count, "normal ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775 count += sprintf(buf + count, "idle ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777 count += sprintf(buf + count, "standby");
778
779 rdev_info(rdev, "%s\n", buf);
780}
781
782static int machine_constraints_voltage(struct regulator_dev *rdev,
783 struct regulation_constraints *constraints)
784{
785 struct regulator_ops *ops = rdev->desc->ops;
786 int ret;
787
788 /* do we need to apply the constraint voltage */
789 if (rdev->constraints->apply_uV &&
790 rdev->constraints->min_uV == rdev->constraints->max_uV) {
791 ret = _regulator_do_set_voltage(rdev,
792 rdev->constraints->min_uV,
793 rdev->constraints->max_uV);
794 if (ret < 0) {
795 rdev_err(rdev, "failed to apply %duV constraint\n",
796 rdev->constraints->min_uV);
797 return ret;
798 }
799 }
800
801 /* constrain machine-level voltage specs to fit
802 * the actual range supported by this regulator.
803 */
804 if (ops->list_voltage && rdev->desc->n_voltages) {
805 int count = rdev->desc->n_voltages;
806 int i;
807 int min_uV = INT_MAX;
808 int max_uV = INT_MIN;
809 int cmin = constraints->min_uV;
810 int cmax = constraints->max_uV;
811
812 /* it's safe to autoconfigure fixed-voltage supplies
813 and the constraints are used by list_voltage. */
814 if (count == 1 && !cmin) {
815 cmin = 1;
816 cmax = INT_MAX;
817 constraints->min_uV = cmin;
818 constraints->max_uV = cmax;
819 }
820
821 /* voltage constraints are optional */
822 if ((cmin == 0) && (cmax == 0))
823 return 0;
824
825 /* else require explicit machine-level constraints */
826 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827 rdev_err(rdev, "invalid voltage constraints\n");
828 return -EINVAL;
829 }
830
831 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 for (i = 0; i < count; i++) {
833 int value;
834
835 value = ops->list_voltage(rdev, i);
836 if (value <= 0)
837 continue;
838
839 /* maybe adjust [min_uV..max_uV] */
840 if (value >= cmin && value < min_uV)
841 min_uV = value;
842 if (value <= cmax && value > max_uV)
843 max_uV = value;
844 }
845
846 /* final: [min_uV..max_uV] valid iff constraints valid */
847 if (max_uV < min_uV) {
848 rdev_err(rdev, "unsupportable voltage constraints\n");
849 return -EINVAL;
850 }
851
852 /* use regulator's subset of machine constraints */
853 if (constraints->min_uV < min_uV) {
854 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855 constraints->min_uV, min_uV);
856 constraints->min_uV = min_uV;
857 }
858 if (constraints->max_uV > max_uV) {
859 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860 constraints->max_uV, max_uV);
861 constraints->max_uV = max_uV;
862 }
863 }
864
865 return 0;
866}
867
868/**
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
872 *
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
877 * set_mode.
878 */
879static int set_machine_constraints(struct regulator_dev *rdev,
880 const struct regulation_constraints *constraints)
881{
882 int ret = 0;
883 struct regulator_ops *ops = rdev->desc->ops;
884
885 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886 GFP_KERNEL);
887 if (!rdev->constraints)
888 return -ENOMEM;
889
890 ret = machine_constraints_voltage(rdev, rdev->constraints);
891 if (ret != 0)
892 goto out;
893
894 /* do we need to setup our suspend state */
895 if (constraints->initial_state) {
896 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897 if (ret < 0) {
898 rdev_err(rdev, "failed to set suspend state\n");
899 goto out;
900 }
901 }
902
903 if (constraints->initial_mode) {
904 if (!ops->set_mode) {
905 rdev_err(rdev, "no set_mode operation\n");
906 ret = -EINVAL;
907 goto out;
908 }
909
910 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911 if (ret < 0) {
912 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913 goto out;
914 }
915 }
916
917 /* If the constraints say the regulator should be on at this point
918 * and we have control then make sure it is enabled.
919 */
920 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921 ops->enable) {
922 ret = ops->enable(rdev);
923 if (ret < 0) {
924 rdev_err(rdev, "failed to enable\n");
925 goto out;
926 }
927 }
928
929 print_constraints(rdev);
930 return 0;
931out:
932 kfree(rdev->constraints);
933 rdev->constraints = NULL;
934 return ret;
935}
936
937/**
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
941 *
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
945 */
946static int set_supply(struct regulator_dev *rdev,
947 struct regulator_dev *supply_rdev)
948{
949 int err;
950
951 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952
953 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954 if (IS_ERR(rdev->supply)) {
955 err = PTR_ERR(rdev->supply);
956 rdev->supply = NULL;
957 return err;
958 }
959
960 return 0;
961}
962
963/**
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev: regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply: symbolic name for supply
969 *
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices. Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
974 *
975 * Only one of consumer_dev and consumer_dev_name may be specified.
976 */
977static int set_consumer_device_supply(struct regulator_dev *rdev,
978 struct device *consumer_dev, const char *consumer_dev_name,
979 const char *supply)
980{
981 struct regulator_map *node;
982 int has_dev;
983
984 if (consumer_dev && consumer_dev_name)
985 return -EINVAL;
986
987 if (!consumer_dev_name && consumer_dev)
988 consumer_dev_name = dev_name(consumer_dev);
989
990 if (supply == NULL)
991 return -EINVAL;
992
993 if (consumer_dev_name != NULL)
994 has_dev = 1;
995 else
996 has_dev = 0;
997
998 list_for_each_entry(node, ®ulator_map_list, list) {
999 if (node->dev_name && consumer_dev_name) {
1000 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001 continue;
1002 } else if (node->dev_name || consumer_dev_name) {
1003 continue;
1004 }
1005
1006 if (strcmp(node->supply, supply) != 0)
1007 continue;
1008
1009 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010 dev_name(&node->regulator->dev),
1011 node->regulator->desc->name,
1012 supply,
1013 dev_name(&rdev->dev), rdev_get_name(rdev));
1014 return -EBUSY;
1015 }
1016
1017 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018 if (node == NULL)
1019 return -ENOMEM;
1020
1021 node->regulator = rdev;
1022 node->supply = supply;
1023
1024 if (has_dev) {
1025 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026 if (node->dev_name == NULL) {
1027 kfree(node);
1028 return -ENOMEM;
1029 }
1030 }
1031
1032 list_add(&node->list, ®ulator_map_list);
1033 return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038 struct regulator_map *node, *n;
1039
1040 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1041 if (rdev == node->regulator) {
1042 list_del(&node->list);
1043 kfree(node->dev_name);
1044 kfree(node);
1045 }
1046 }
1047}
1048
1049#define REG_STR_SIZE 64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052 struct device *dev,
1053 const char *supply_name)
1054{
1055 struct regulator *regulator;
1056 char buf[REG_STR_SIZE];
1057 int err, size;
1058
1059 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060 if (regulator == NULL)
1061 return NULL;
1062
1063 mutex_lock(&rdev->mutex);
1064 regulator->rdev = rdev;
1065 list_add(®ulator->list, &rdev->consumer_list);
1066
1067 if (dev) {
1068 /* create a 'requested_microamps_name' sysfs entry */
1069 size = scnprintf(buf, REG_STR_SIZE,
1070 "microamps_requested_%s-%s",
1071 dev_name(dev), supply_name);
1072 if (size >= REG_STR_SIZE)
1073 goto overflow_err;
1074
1075 regulator->dev = dev;
1076 sysfs_attr_init(®ulator->dev_attr.attr);
1077 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078 if (regulator->dev_attr.attr.name == NULL)
1079 goto attr_name_err;
1080
1081 regulator->dev_attr.attr.mode = 0444;
1082 regulator->dev_attr.show = device_requested_uA_show;
1083 err = device_create_file(dev, ®ulator->dev_attr);
1084 if (err < 0) {
1085 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086 goto attr_name_err;
1087 }
1088
1089 /* also add a link to the device sysfs entry */
1090 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091 dev->kobj.name, supply_name);
1092 if (size >= REG_STR_SIZE)
1093 goto attr_err;
1094
1095 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096 if (regulator->supply_name == NULL)
1097 goto attr_err;
1098
1099 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100 buf);
1101 if (err) {
1102 rdev_warn(rdev, "could not add device link %s err %d\n",
1103 dev->kobj.name, err);
1104 goto link_name_err;
1105 }
1106 } else {
1107 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108 if (regulator->supply_name == NULL)
1109 goto attr_err;
1110 }
1111
1112#ifdef CONFIG_DEBUG_FS
1113 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114 rdev->debugfs);
1115 if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116 rdev_warn(rdev, "Failed to create debugfs directory\n");
1117 regulator->debugfs = NULL;
1118 } else {
1119 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120 ®ulator->uA_load);
1121 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122 ®ulator->min_uV);
1123 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124 ®ulator->max_uV);
1125 }
1126#endif
1127
1128 mutex_unlock(&rdev->mutex);
1129 return regulator;
1130link_name_err:
1131 kfree(regulator->supply_name);
1132attr_err:
1133 device_remove_file(regulator->dev, ®ulator->dev_attr);
1134attr_name_err:
1135 kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137 list_del(®ulator->list);
1138 kfree(regulator);
1139 mutex_unlock(&rdev->mutex);
1140 return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145 if (!rdev->desc->ops->enable_time)
1146 return 0;
1147 return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152 int exclusive)
1153{
1154 struct regulator_dev *rdev;
1155 struct regulator_map *map;
1156 struct regulator *regulator = ERR_PTR(-ENODEV);
1157 const char *devname = NULL;
1158 int ret;
1159
1160 if (id == NULL) {
1161 pr_err("get() with no identifier\n");
1162 return regulator;
1163 }
1164
1165 if (dev)
1166 devname = dev_name(dev);
1167
1168 mutex_lock(®ulator_list_mutex);
1169
1170 list_for_each_entry(map, ®ulator_map_list, list) {
1171 /* If the mapping has a device set up it must match */
1172 if (map->dev_name &&
1173 (!devname || strcmp(map->dev_name, devname)))
1174 continue;
1175
1176 if (strcmp(map->supply, id) == 0) {
1177 rdev = map->regulator;
1178 goto found;
1179 }
1180 }
1181
1182 if (board_wants_dummy_regulator) {
1183 rdev = dummy_regulator_rdev;
1184 goto found;
1185 }
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188 if (!devname)
1189 devname = "deviceless";
1190
1191 /* If the board didn't flag that it was fully constrained then
1192 * substitute in a dummy regulator so consumers can continue.
1193 */
1194 if (!has_full_constraints) {
1195 pr_warn("%s supply %s not found, using dummy regulator\n",
1196 devname, id);
1197 rdev = dummy_regulator_rdev;
1198 goto found;
1199 }
1200#endif
1201
1202 mutex_unlock(®ulator_list_mutex);
1203 return regulator;
1204
1205found:
1206 if (rdev->exclusive) {
1207 regulator = ERR_PTR(-EPERM);
1208 goto out;
1209 }
1210
1211 if (exclusive && rdev->open_count) {
1212 regulator = ERR_PTR(-EBUSY);
1213 goto out;
1214 }
1215
1216 if (!try_module_get(rdev->owner))
1217 goto out;
1218
1219 regulator = create_regulator(rdev, dev, id);
1220 if (regulator == NULL) {
1221 regulator = ERR_PTR(-ENOMEM);
1222 module_put(rdev->owner);
1223 }
1224
1225 rdev->open_count++;
1226 if (exclusive) {
1227 rdev->exclusive = 1;
1228
1229 ret = _regulator_is_enabled(rdev);
1230 if (ret > 0)
1231 rdev->use_count = 1;
1232 else
1233 rdev->use_count = 0;
1234 }
1235
1236out:
1237 mutex_unlock(®ulator_list_mutex);
1238
1239 return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged. It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257 return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno. Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged. It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284 return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1295 */
1296void regulator_put(struct regulator *regulator)
1297{
1298 struct regulator_dev *rdev;
1299
1300 if (regulator == NULL || IS_ERR(regulator))
1301 return;
1302
1303 mutex_lock(®ulator_list_mutex);
1304 rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307 debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310 /* remove any sysfs entries */
1311 if (regulator->dev) {
1312 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313 device_remove_file(regulator->dev, ®ulator->dev_attr);
1314 kfree(regulator->dev_attr.attr.name);
1315 }
1316 kfree(regulator->supply_name);
1317 list_del(®ulator->list);
1318 kfree(regulator);
1319
1320 rdev->open_count--;
1321 rdev->exclusive = 0;
1322
1323 module_put(rdev->owner);
1324 mutex_unlock(®ulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
1329{
1330 if (!rdev->constraints)
1331 return 0;
1332
1333 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334 return 1;
1335 else
1336 return 0;
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342 int ret, delay;
1343
1344 /* check voltage and requested load before enabling */
1345 if (rdev->constraints &&
1346 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347 drms_uA_update(rdev);
1348
1349 if (rdev->use_count == 0) {
1350 /* The regulator may on if it's not switchable or left on */
1351 ret = _regulator_is_enabled(rdev);
1352 if (ret == -EINVAL || ret == 0) {
1353 if (!_regulator_can_change_status(rdev))
1354 return -EPERM;
1355
1356 if (!rdev->desc->ops->enable)
1357 return -EINVAL;
1358
1359 /* Query before enabling in case configuration
1360 * dependent. */
1361 ret = _regulator_get_enable_time(rdev);
1362 if (ret >= 0) {
1363 delay = ret;
1364 } else {
1365 rdev_warn(rdev, "enable_time() failed: %d\n",
1366 ret);
1367 delay = 0;
1368 }
1369
1370 trace_regulator_enable(rdev_get_name(rdev));
1371
1372 /* Allow the regulator to ramp; it would be useful
1373 * to extend this for bulk operations so that the
1374 * regulators can ramp together. */
1375 ret = rdev->desc->ops->enable(rdev);
1376 if (ret < 0)
1377 return ret;
1378
1379 trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381 if (delay >= 1000) {
1382 mdelay(delay / 1000);
1383 udelay(delay % 1000);
1384 } else if (delay) {
1385 udelay(delay);
1386 }
1387
1388 trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390 } else if (ret < 0) {
1391 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392 return ret;
1393 }
1394 /* Fallthrough on positive return values - already enabled */
1395 }
1396
1397 rdev->use_count++;
1398
1399 return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value. Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415 struct regulator_dev *rdev = regulator->rdev;
1416 int ret = 0;
1417
1418 if (rdev->supply) {
1419 ret = regulator_enable(rdev->supply);
1420 if (ret != 0)
1421 return ret;
1422 }
1423
1424 mutex_lock(&rdev->mutex);
1425 ret = _regulator_enable(rdev);
1426 mutex_unlock(&rdev->mutex);
1427
1428 if (ret != 0)
1429 regulator_disable(rdev->supply);
1430
1431 return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438 int ret = 0;
1439
1440 if (WARN(rdev->use_count <= 0,
1441 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442 return -EIO;
1443
1444 /* are we the last user and permitted to disable ? */
1445 if (rdev->use_count == 1 &&
1446 (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448 /* we are last user */
1449 if (_regulator_can_change_status(rdev) &&
1450 rdev->desc->ops->disable) {
1451 trace_regulator_disable(rdev_get_name(rdev));
1452
1453 ret = rdev->desc->ops->disable(rdev);
1454 if (ret < 0) {
1455 rdev_err(rdev, "failed to disable\n");
1456 return ret;
1457 }
1458
1459 trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462 NULL);
1463 }
1464
1465 rdev->use_count = 0;
1466 } else if (rdev->use_count > 1) {
1467
1468 if (rdev->constraints &&
1469 (rdev->constraints->valid_ops_mask &
1470 REGULATOR_CHANGE_DRMS))
1471 drms_uA_update(rdev);
1472
1473 rdev->use_count--;
1474 }
1475
1476 return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current. Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493 struct regulator_dev *rdev = regulator->rdev;
1494 int ret = 0;
1495
1496 mutex_lock(&rdev->mutex);
1497 ret = _regulator_disable(rdev);
1498 mutex_unlock(&rdev->mutex);
1499
1500 if (ret == 0 && rdev->supply)
1501 regulator_disable(rdev->supply);
1502
1503 return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510 int ret = 0;
1511
1512 /* force disable */
1513 if (rdev->desc->ops->disable) {
1514 /* ah well, who wants to live forever... */
1515 ret = rdev->desc->ops->disable(rdev);
1516 if (ret < 0) {
1517 rdev_err(rdev, "failed to force disable\n");
1518 return ret;
1519 }
1520 /* notify other consumers that power has been forced off */
1521 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522 REGULATOR_EVENT_DISABLE, NULL);
1523 }
1524
1525 return ret;
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539 struct regulator_dev *rdev = regulator->rdev;
1540 int ret;
1541
1542 mutex_lock(&rdev->mutex);
1543 regulator->uA_load = 0;
1544 ret = _regulator_force_disable(regulator->rdev);
1545 mutex_unlock(&rdev->mutex);
1546
1547 if (rdev->supply)
1548 while (rdev->open_count--)
1549 regulator_disable(rdev->supply);
1550
1551 return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
1557 /* If we don't know then assume that the regulator is always on */
1558 if (!rdev->desc->ops->is_enabled)
1559 return 1;
1560
1561 return rdev->desc->ops->is_enabled(rdev);
1562}
1563
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578 int ret;
1579
1580 mutex_lock(®ulator->rdev->mutex);
1581 ret = _regulator_is_enabled(regulator->rdev);
1582 mutex_unlock(®ulator->rdev->mutex);
1583
1584 return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno. Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598 struct regulator_dev *rdev = regulator->rdev;
1599
1600 return rdev->desc->n_voltages ? : -EINVAL;
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616 struct regulator_dev *rdev = regulator->rdev;
1617 struct regulator_ops *ops = rdev->desc->ops;
1618 int ret;
1619
1620 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621 return -EINVAL;
1622
1623 mutex_lock(&rdev->mutex);
1624 ret = ops->list_voltage(rdev, selector);
1625 mutex_unlock(&rdev->mutex);
1626
1627 if (ret > 0) {
1628 if (ret < rdev->constraints->min_uV)
1629 ret = 0;
1630 else if (ret > rdev->constraints->max_uV)
1631 ret = 0;
1632 }
1633
1634 return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648 int min_uV, int max_uV)
1649{
1650 int i, voltages, ret;
1651
1652 ret = regulator_count_voltages(regulator);
1653 if (ret < 0)
1654 return ret;
1655 voltages = ret;
1656
1657 for (i = 0; i < voltages; i++) {
1658 ret = regulator_list_voltage(regulator, i);
1659
1660 if (ret >= min_uV && ret <= max_uV)
1661 return 1;
1662 }
1663
1664 return 0;
1665}
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668 int min_uV, int max_uV)
1669{
1670 int ret;
1671 int delay = 0;
1672 unsigned int selector;
1673
1674 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676 min_uV += rdev->constraints->uV_offset;
1677 max_uV += rdev->constraints->uV_offset;
1678
1679 if (rdev->desc->ops->set_voltage) {
1680 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681 &selector);
1682
1683 if (rdev->desc->ops->list_voltage)
1684 selector = rdev->desc->ops->list_voltage(rdev,
1685 selector);
1686 else
1687 selector = -1;
1688 } else if (rdev->desc->ops->set_voltage_sel) {
1689 int best_val = INT_MAX;
1690 int i;
1691
1692 selector = 0;
1693
1694 /* Find the smallest voltage that falls within the specified
1695 * range.
1696 */
1697 for (i = 0; i < rdev->desc->n_voltages; i++) {
1698 ret = rdev->desc->ops->list_voltage(rdev, i);
1699 if (ret < 0)
1700 continue;
1701
1702 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703 best_val = ret;
1704 selector = i;
1705 }
1706 }
1707
1708 /*
1709 * If we can't obtain the old selector there is not enough
1710 * info to call set_voltage_time_sel().
1711 */
1712 if (rdev->desc->ops->set_voltage_time_sel &&
1713 rdev->desc->ops->get_voltage_sel) {
1714 unsigned int old_selector = 0;
1715
1716 ret = rdev->desc->ops->get_voltage_sel(rdev);
1717 if (ret < 0)
1718 return ret;
1719 old_selector = ret;
1720 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721 old_selector, selector);
1722 }
1723
1724 if (best_val != INT_MAX) {
1725 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726 selector = best_val;
1727 } else {
1728 ret = -EINVAL;
1729 }
1730 } else {
1731 ret = -EINVAL;
1732 }
1733
1734 /* Insert any necessary delays */
1735 if (delay >= 1000) {
1736 mdelay(delay / 1000);
1737 udelay(delay % 1000);
1738 } else if (delay) {
1739 udelay(delay);
1740 }
1741
1742 if (ret == 0)
1743 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744 NULL);
1745
1746 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747
1748 return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771 struct regulator_dev *rdev = regulator->rdev;
1772 int ret = 0;
1773
1774 mutex_lock(&rdev->mutex);
1775
1776 /* If we're setting the same range as last time the change
1777 * should be a noop (some cpufreq implementations use the same
1778 * voltage for multiple frequencies, for example).
1779 */
1780 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781 goto out;
1782
1783 /* sanity check */
1784 if (!rdev->desc->ops->set_voltage &&
1785 !rdev->desc->ops->set_voltage_sel) {
1786 ret = -EINVAL;
1787 goto out;
1788 }
1789
1790 /* constraints check */
1791 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792 if (ret < 0)
1793 goto out;
1794 regulator->min_uV = min_uV;
1795 regulator->max_uV = max_uV;
1796
1797 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798 if (ret < 0)
1799 goto out;
1800
1801 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1802
1803out:
1804 mutex_unlock(&rdev->mutex);
1805 return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820 int old_uV, int new_uV)
1821{
1822 struct regulator_dev *rdev = regulator->rdev;
1823 struct regulator_ops *ops = rdev->desc->ops;
1824 int old_sel = -1;
1825 int new_sel = -1;
1826 int voltage;
1827 int i;
1828
1829 /* Currently requires operations to do this */
1830 if (!ops->list_voltage || !ops->set_voltage_time_sel
1831 || !rdev->desc->n_voltages)
1832 return -EINVAL;
1833
1834 for (i = 0; i < rdev->desc->n_voltages; i++) {
1835 /* We only look for exact voltage matches here */
1836 voltage = regulator_list_voltage(regulator, i);
1837 if (voltage < 0)
1838 return -EINVAL;
1839 if (voltage == 0)
1840 continue;
1841 if (voltage == old_uV)
1842 old_sel = i;
1843 if (voltage == new_uV)
1844 new_sel = i;
1845 }
1846
1847 if (old_sel < 0 || new_sel < 0)
1848 return -EINVAL;
1849
1850 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage. This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864 struct regulator_dev *rdev = regulator->rdev;
1865 int ret, min_uV, max_uV;
1866
1867 mutex_lock(&rdev->mutex);
1868
1869 if (!rdev->desc->ops->set_voltage &&
1870 !rdev->desc->ops->set_voltage_sel) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874
1875 /* This is only going to work if we've had a voltage configured. */
1876 if (!regulator->min_uV && !regulator->max_uV) {
1877 ret = -EINVAL;
1878 goto out;
1879 }
1880
1881 min_uV = regulator->min_uV;
1882 max_uV = regulator->max_uV;
1883
1884 /* This should be a paranoia check... */
1885 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886 if (ret < 0)
1887 goto out;
1888
1889 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890 if (ret < 0)
1891 goto out;
1892
1893 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896 mutex_unlock(&rdev->mutex);
1897 return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903 int sel, ret;
1904
1905 if (rdev->desc->ops->get_voltage_sel) {
1906 sel = rdev->desc->ops->get_voltage_sel(rdev);
1907 if (sel < 0)
1908 return sel;
1909 ret = rdev->desc->ops->list_voltage(rdev, sel);
1910 } else if (rdev->desc->ops->get_voltage) {
1911 ret = rdev->desc->ops->get_voltage(rdev);
1912 } else {
1913 return -EINVAL;
1914 }
1915
1916 if (ret < 0)
1917 return ret;
1918 return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932 int ret;
1933
1934 mutex_lock(®ulator->rdev->mutex);
1935
1936 ret = _regulator_get_voltage(regulator->rdev);
1937
1938 mutex_unlock(®ulator->rdev->mutex);
1939
1940 return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961 int min_uA, int max_uA)
1962{
1963 struct regulator_dev *rdev = regulator->rdev;
1964 int ret;
1965
1966 mutex_lock(&rdev->mutex);
1967
1968 /* sanity check */
1969 if (!rdev->desc->ops->set_current_limit) {
1970 ret = -EINVAL;
1971 goto out;
1972 }
1973
1974 /* constraints check */
1975 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976 if (ret < 0)
1977 goto out;
1978
1979 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981 mutex_unlock(&rdev->mutex);
1982 return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988 int ret;
1989
1990 mutex_lock(&rdev->mutex);
1991
1992 /* sanity check */
1993 if (!rdev->desc->ops->get_current_limit) {
1994 ret = -EINVAL;
1995 goto out;
1996 }
1997
1998 ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000 mutex_unlock(&rdev->mutex);
2001 return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015 return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032 struct regulator_dev *rdev = regulator->rdev;
2033 int ret;
2034 int regulator_curr_mode;
2035
2036 mutex_lock(&rdev->mutex);
2037
2038 /* sanity check */
2039 if (!rdev->desc->ops->set_mode) {
2040 ret = -EINVAL;
2041 goto out;
2042 }
2043
2044 /* return if the same mode is requested */
2045 if (rdev->desc->ops->get_mode) {
2046 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047 if (regulator_curr_mode == mode) {
2048 ret = 0;
2049 goto out;
2050 }
2051 }
2052
2053 /* constraints check */
2054 ret = regulator_mode_constrain(rdev, &mode);
2055 if (ret < 0)
2056 goto out;
2057
2058 ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060 mutex_unlock(&rdev->mutex);
2061 return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067 int ret;
2068
2069 mutex_lock(&rdev->mutex);
2070
2071 /* sanity check */
2072 if (!rdev->desc->ops->get_mode) {
2073 ret = -EINVAL;
2074 goto out;
2075 }
2076
2077 ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079 mutex_unlock(&rdev->mutex);
2080 return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091 return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 * o Device is opened / closed.
2111 * o Device I/O is about to begin or has just finished.
2112 * o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123 struct regulator_dev *rdev = regulator->rdev;
2124 struct regulator *consumer;
2125 int ret, output_uV, input_uV, total_uA_load = 0;
2126 unsigned int mode;
2127
2128 mutex_lock(&rdev->mutex);
2129
2130 /*
2131 * first check to see if we can set modes at all, otherwise just
2132 * tell the consumer everything is OK.
2133 */
2134 regulator->uA_load = uA_load;
2135 ret = regulator_check_drms(rdev);
2136 if (ret < 0) {
2137 ret = 0;
2138 goto out;
2139 }
2140
2141 if (!rdev->desc->ops->get_optimum_mode)
2142 goto out;
2143
2144 /*
2145 * we can actually do this so any errors are indicators of
2146 * potential real failure.
2147 */
2148 ret = -EINVAL;
2149
2150 /* get output voltage */
2151 output_uV = _regulator_get_voltage(rdev);
2152 if (output_uV <= 0) {
2153 rdev_err(rdev, "invalid output voltage found\n");
2154 goto out;
2155 }
2156
2157 /* get input voltage */
2158 input_uV = 0;
2159 if (rdev->supply)
2160 input_uV = regulator_get_voltage(rdev->supply);
2161 if (input_uV <= 0)
2162 input_uV = rdev->constraints->input_uV;
2163 if (input_uV <= 0) {
2164 rdev_err(rdev, "invalid input voltage found\n");
2165 goto out;
2166 }
2167
2168 /* calc total requested load for this regulator */
2169 list_for_each_entry(consumer, &rdev->consumer_list, list)
2170 total_uA_load += consumer->uA_load;
2171
2172 mode = rdev->desc->ops->get_optimum_mode(rdev,
2173 input_uV, output_uV,
2174 total_uA_load);
2175 ret = regulator_mode_constrain(rdev, &mode);
2176 if (ret < 0) {
2177 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178 total_uA_load, input_uV, output_uV);
2179 goto out;
2180 }
2181
2182 ret = rdev->desc->ops->set_mode(rdev, mode);
2183 if (ret < 0) {
2184 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185 goto out;
2186 }
2187 ret = mode;
2188out:
2189 mutex_unlock(&rdev->mutex);
2190 return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202 struct notifier_block *nb)
2203{
2204 return blocking_notifier_chain_register(®ulator->rdev->notifier,
2205 nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217 struct notifier_block *nb)
2218{
2219 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
2220 nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228 unsigned long event, void *data)
2229{
2230 /* call rdev chain first */
2231 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev: Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers: Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation. If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249 struct regulator_bulk_data *consumers)
2250{
2251 int i;
2252 int ret;
2253
2254 for (i = 0; i < num_consumers; i++)
2255 consumers[i].consumer = NULL;
2256
2257 for (i = 0; i < num_consumers; i++) {
2258 consumers[i].consumer = regulator_get(dev,
2259 consumers[i].supply);
2260 if (IS_ERR(consumers[i].consumer)) {
2261 ret = PTR_ERR(consumers[i].consumer);
2262 dev_err(dev, "Failed to get supply '%s': %d\n",
2263 consumers[i].supply, ret);
2264 consumers[i].consumer = NULL;
2265 goto err;
2266 }
2267 }
2268
2269 return 0;
2270
2271err:
2272 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273 regulator_put(consumers[i].consumer);
2274
2275 return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281 struct regulator_bulk_data *bulk = data;
2282
2283 bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers: Consumer data; clients are stored here.
2291 * @return 0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call. If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299 struct regulator_bulk_data *consumers)
2300{
2301 LIST_HEAD(async_domain);
2302 int i;
2303 int ret = 0;
2304
2305 for (i = 0; i < num_consumers; i++)
2306 async_schedule_domain(regulator_bulk_enable_async,
2307 &consumers[i], &async_domain);
2308
2309 async_synchronize_full_domain(&async_domain);
2310
2311 /* If any consumer failed we need to unwind any that succeeded */
2312 for (i = 0; i < num_consumers; i++) {
2313 if (consumers[i].ret != 0) {
2314 ret = consumers[i].ret;
2315 goto err;
2316 }
2317 }
2318
2319 return 0;
2320
2321err:
2322 for (i = 0; i < num_consumers; i++)
2323 if (consumers[i].ret == 0)
2324 regulator_disable(consumers[i].consumer);
2325 else
2326 pr_err("Failed to enable %s: %d\n",
2327 consumers[i].supply, consumers[i].ret);
2328
2329 return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers: Consumer data; clients are stored here.
2338 * @return 0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call. If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346 struct regulator_bulk_data *consumers)
2347{
2348 int i;
2349 int ret;
2350
2351 for (i = 0; i < num_consumers; i++) {
2352 ret = regulator_disable(consumers[i].consumer);
2353 if (ret != 0)
2354 goto err;
2355 }
2356
2357 return 0;
2358
2359err:
2360 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361 for (--i; i >= 0; --i)
2362 regulator_enable(consumers[i].consumer);
2363
2364 return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers: Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378 struct regulator_bulk_data *consumers)
2379{
2380 int i;
2381
2382 for (i = 0; i < num_consumers; i++) {
2383 regulator_put(consumers[i].consumer);
2384 consumers[i].consumer = NULL;
2385 }
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400 unsigned long event, void *data)
2401{
2402 _notifier_call_chain(rdev, event, data);
2403 return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417 switch (mode) {
2418 case REGULATOR_MODE_FAST:
2419 return REGULATOR_STATUS_FAST;
2420 case REGULATOR_MODE_NORMAL:
2421 return REGULATOR_STATUS_NORMAL;
2422 case REGULATOR_MODE_IDLE:
2423 return REGULATOR_STATUS_IDLE;
2424 case REGULATOR_STATUS_STANDBY:
2425 return REGULATOR_STATUS_STANDBY;
2426 default:
2427 return 0;
2428 }
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
2437{
2438 struct device *dev = &rdev->dev;
2439 struct regulator_ops *ops = rdev->desc->ops;
2440 int status = 0;
2441
2442 /* some attributes need specific methods to be displayed */
2443 if (ops->get_voltage || ops->get_voltage_sel) {
2444 status = device_create_file(dev, &dev_attr_microvolts);
2445 if (status < 0)
2446 return status;
2447 }
2448 if (ops->get_current_limit) {
2449 status = device_create_file(dev, &dev_attr_microamps);
2450 if (status < 0)
2451 return status;
2452 }
2453 if (ops->get_mode) {
2454 status = device_create_file(dev, &dev_attr_opmode);
2455 if (status < 0)
2456 return status;
2457 }
2458 if (ops->is_enabled) {
2459 status = device_create_file(dev, &dev_attr_state);
2460 if (status < 0)
2461 return status;
2462 }
2463 if (ops->get_status) {
2464 status = device_create_file(dev, &dev_attr_status);
2465 if (status < 0)
2466 return status;
2467 }
2468
2469 /* some attributes are type-specific */
2470 if (rdev->desc->type == REGULATOR_CURRENT) {
2471 status = device_create_file(dev, &dev_attr_requested_microamps);
2472 if (status < 0)
2473 return status;
2474 }
2475
2476 /* all the other attributes exist to support constraints;
2477 * don't show them if there are no constraints, or if the
2478 * relevant supporting methods are missing.
2479 */
2480 if (!rdev->constraints)
2481 return status;
2482
2483 /* constraints need specific supporting methods */
2484 if (ops->set_voltage || ops->set_voltage_sel) {
2485 status = device_create_file(dev, &dev_attr_min_microvolts);
2486 if (status < 0)
2487 return status;
2488 status = device_create_file(dev, &dev_attr_max_microvolts);
2489 if (status < 0)
2490 return status;
2491 }
2492 if (ops->set_current_limit) {
2493 status = device_create_file(dev, &dev_attr_min_microamps);
2494 if (status < 0)
2495 return status;
2496 status = device_create_file(dev, &dev_attr_max_microamps);
2497 if (status < 0)
2498 return status;
2499 }
2500
2501 /* suspend mode constraints need multiple supporting methods */
2502 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503 return status;
2504
2505 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506 if (status < 0)
2507 return status;
2508 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509 if (status < 0)
2510 return status;
2511 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512 if (status < 0)
2513 return status;
2514
2515 if (ops->set_suspend_voltage) {
2516 status = device_create_file(dev,
2517 &dev_attr_suspend_standby_microvolts);
2518 if (status < 0)
2519 return status;
2520 status = device_create_file(dev,
2521 &dev_attr_suspend_mem_microvolts);
2522 if (status < 0)
2523 return status;
2524 status = device_create_file(dev,
2525 &dev_attr_suspend_disk_microvolts);
2526 if (status < 0)
2527 return status;
2528 }
2529
2530 if (ops->set_suspend_mode) {
2531 status = device_create_file(dev,
2532 &dev_attr_suspend_standby_mode);
2533 if (status < 0)
2534 return status;
2535 status = device_create_file(dev,
2536 &dev_attr_suspend_mem_mode);
2537 if (status < 0)
2538 return status;
2539 status = device_create_file(dev,
2540 &dev_attr_suspend_disk_mode);
2541 if (status < 0)
2542 return status;
2543 }
2544
2545 return status;
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553 rdev_warn(rdev, "Failed to create debugfs directory\n");
2554 rdev->debugfs = NULL;
2555 return;
2556 }
2557
2558 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559 &rdev->use_count);
2560 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561 &rdev->open_count);
2562#endif
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576 struct device *dev, const struct regulator_init_data *init_data,
2577 void *driver_data)
2578{
2579 static atomic_t regulator_no = ATOMIC_INIT(0);
2580 struct regulator_dev *rdev;
2581 int ret, i;
2582
2583 if (regulator_desc == NULL)
2584 return ERR_PTR(-EINVAL);
2585
2586 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587 return ERR_PTR(-EINVAL);
2588
2589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590 regulator_desc->type != REGULATOR_CURRENT)
2591 return ERR_PTR(-EINVAL);
2592
2593 if (!init_data)
2594 return ERR_PTR(-EINVAL);
2595
2596 /* Only one of each should be implemented */
2597 WARN_ON(regulator_desc->ops->get_voltage &&
2598 regulator_desc->ops->get_voltage_sel);
2599 WARN_ON(regulator_desc->ops->set_voltage &&
2600 regulator_desc->ops->set_voltage_sel);
2601
2602 /* If we're using selectors we must implement list_voltage. */
2603 if (regulator_desc->ops->get_voltage_sel &&
2604 !regulator_desc->ops->list_voltage) {
2605 return ERR_PTR(-EINVAL);
2606 }
2607 if (regulator_desc->ops->set_voltage_sel &&
2608 !regulator_desc->ops->list_voltage) {
2609 return ERR_PTR(-EINVAL);
2610 }
2611
2612 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613 if (rdev == NULL)
2614 return ERR_PTR(-ENOMEM);
2615
2616 mutex_lock(®ulator_list_mutex);
2617
2618 mutex_init(&rdev->mutex);
2619 rdev->reg_data = driver_data;
2620 rdev->owner = regulator_desc->owner;
2621 rdev->desc = regulator_desc;
2622 INIT_LIST_HEAD(&rdev->consumer_list);
2623 INIT_LIST_HEAD(&rdev->list);
2624 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2625
2626 /* preform any regulator specific init */
2627 if (init_data->regulator_init) {
2628 ret = init_data->regulator_init(rdev->reg_data);
2629 if (ret < 0)
2630 goto clean;
2631 }
2632
2633 /* register with sysfs */
2634 rdev->dev.class = ®ulator_class;
2635 rdev->dev.parent = dev;
2636 dev_set_name(&rdev->dev, "regulator.%d",
2637 atomic_inc_return(®ulator_no) - 1);
2638 ret = device_register(&rdev->dev);
2639 if (ret != 0) {
2640 put_device(&rdev->dev);
2641 goto clean;
2642 }
2643
2644 dev_set_drvdata(&rdev->dev, rdev);
2645
2646 /* set regulator constraints */
2647 ret = set_machine_constraints(rdev, &init_data->constraints);
2648 if (ret < 0)
2649 goto scrub;
2650
2651 /* add attributes supported by this regulator */
2652 ret = add_regulator_attributes(rdev);
2653 if (ret < 0)
2654 goto scrub;
2655
2656 if (init_data->supply_regulator) {
2657 struct regulator_dev *r;
2658 int found = 0;
2659
2660 list_for_each_entry(r, ®ulator_list, list) {
2661 if (strcmp(rdev_get_name(r),
2662 init_data->supply_regulator) == 0) {
2663 found = 1;
2664 break;
2665 }
2666 }
2667
2668 if (!found) {
2669 dev_err(dev, "Failed to find supply %s\n",
2670 init_data->supply_regulator);
2671 ret = -ENODEV;
2672 goto scrub;
2673 }
2674
2675 ret = set_supply(rdev, r);
2676 if (ret < 0)
2677 goto scrub;
2678 }
2679
2680 /* add consumers devices */
2681 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682 ret = set_consumer_device_supply(rdev,
2683 init_data->consumer_supplies[i].dev,
2684 init_data->consumer_supplies[i].dev_name,
2685 init_data->consumer_supplies[i].supply);
2686 if (ret < 0) {
2687 dev_err(dev, "Failed to set supply %s\n",
2688 init_data->consumer_supplies[i].supply);
2689 goto unset_supplies;
2690 }
2691 }
2692
2693 list_add(&rdev->list, ®ulator_list);
2694
2695 rdev_init_debugfs(rdev);
2696out:
2697 mutex_unlock(®ulator_list_mutex);
2698 return rdev;
2699
2700unset_supplies:
2701 unset_regulator_supplies(rdev);
2702
2703scrub:
2704 kfree(rdev->constraints);
2705 device_unregister(&rdev->dev);
2706 /* device core frees rdev */
2707 rdev = ERR_PTR(ret);
2708 goto out;
2709
2710clean:
2711 kfree(rdev);
2712 rdev = ERR_PTR(ret);
2713 goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725 if (rdev == NULL)
2726 return;
2727
2728 mutex_lock(®ulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730 debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732 WARN_ON(rdev->open_count);
2733 unset_regulator_supplies(rdev);
2734 list_del(&rdev->list);
2735 if (rdev->supply)
2736 regulator_put(rdev->supply);
2737 device_unregister(&rdev->dev);
2738 kfree(rdev->constraints);
2739 mutex_unlock(®ulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752 struct regulator_dev *rdev;
2753 int ret = 0;
2754
2755 /* ON is handled by regulator active state */
2756 if (state == PM_SUSPEND_ON)
2757 return -EINVAL;
2758
2759 mutex_lock(®ulator_list_mutex);
2760 list_for_each_entry(rdev, ®ulator_list, list) {
2761
2762 mutex_lock(&rdev->mutex);
2763 ret = suspend_prepare(rdev, state);
2764 mutex_unlock(&rdev->mutex);
2765
2766 if (ret < 0) {
2767 rdev_err(rdev, "failed to prepare\n");
2768 goto out;
2769 }
2770 }
2771out:
2772 mutex_unlock(®ulator_list_mutex);
2773 return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785 struct regulator_dev *rdev;
2786 int ret = 0, error;
2787
2788 mutex_lock(®ulator_list_mutex);
2789 list_for_each_entry(rdev, ®ulator_list, list) {
2790 struct regulator_ops *ops = rdev->desc->ops;
2791
2792 mutex_lock(&rdev->mutex);
2793 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2794 ops->enable) {
2795 error = ops->enable(rdev);
2796 if (error)
2797 ret = error;
2798 } else {
2799 if (!has_full_constraints)
2800 goto unlock;
2801 if (!ops->disable)
2802 goto unlock;
2803 if (ops->is_enabled && !ops->is_enabled(rdev))
2804 goto unlock;
2805
2806 error = ops->disable(rdev);
2807 if (error)
2808 ret = error;
2809 }
2810unlock:
2811 mutex_unlock(&rdev->mutex);
2812 }
2813 mutex_unlock(®ulator_list_mutex);
2814 return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831 has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured. This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847 board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860 return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873 return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884 regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894 return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900 return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906 return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
2910static int __init regulator_init(void)
2911{
2912 int ret;
2913
2914 ret = class_register(®ulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917 debugfs_root = debugfs_create_dir("regulator", NULL);
2918 if (IS_ERR(debugfs_root) || !debugfs_root) {
2919 pr_warn("regulator: Failed to create debugfs directory\n");
2920 debugfs_root = NULL;
2921 }
2922#endif
2923
2924 regulator_dummy_init();
2925
2926 return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934 struct regulator_dev *rdev;
2935 struct regulator_ops *ops;
2936 struct regulation_constraints *c;
2937 int enabled, ret;
2938
2939 mutex_lock(®ulator_list_mutex);
2940
2941 /* If we have a full configuration then disable any regulators
2942 * which are not in use or always_on. This will become the
2943 * default behaviour in the future.
2944 */
2945 list_for_each_entry(rdev, ®ulator_list, list) {
2946 ops = rdev->desc->ops;
2947 c = rdev->constraints;
2948
2949 if (!ops->disable || (c && c->always_on))
2950 continue;
2951
2952 mutex_lock(&rdev->mutex);
2953
2954 if (rdev->use_count)
2955 goto unlock;
2956
2957 /* If we can't read the status assume it's on. */
2958 if (ops->is_enabled)
2959 enabled = ops->is_enabled(rdev);
2960 else
2961 enabled = 1;
2962
2963 if (!enabled)
2964 goto unlock;
2965
2966 if (has_full_constraints) {
2967 /* We log since this may kill the system if it
2968 * goes wrong. */
2969 rdev_info(rdev, "disabling\n");
2970 ret = ops->disable(rdev);
2971 if (ret != 0) {
2972 rdev_err(rdev, "couldn't disable: %d\n", ret);
2973 }
2974 } else {
2975 /* The intention is that in future we will
2976 * assume that full constraints are provided
2977 * so warn even if we aren't going to do
2978 * anything here.
2979 */
2980 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981 }
2982
2983unlock:
2984 mutex_unlock(&rdev->mutex);
2985 }
2986
2987 mutex_unlock(®ulator_list_mutex);
2988
2989 return 0;
2990}
2991late_initcall(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST) {
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs)) {
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 regulator->debugfs = NULL;
1919 }
1920 }
1921
1922 if (regulator->debugfs) {
1923 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924 ®ulator->uA_load);
1925 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1927 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1929 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930 regulator, &constraint_flags_fops);
1931 }
1932
1933 /*
1934 * Check now if the regulator is an always on regulator - if
1935 * it is then we don't need to do nearly so much work for
1936 * enable/disable calls.
1937 */
1938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 _regulator_is_enabled(rdev))
1940 regulator->always_on = true;
1941
1942 return regulator;
1943}
1944
1945static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946{
1947 if (rdev->constraints && rdev->constraints->enable_time)
1948 return rdev->constraints->enable_time;
1949 if (rdev->desc->ops->enable_time)
1950 return rdev->desc->ops->enable_time(rdev);
1951 return rdev->desc->enable_time;
1952}
1953
1954static struct regulator_supply_alias *regulator_find_supply_alias(
1955 struct device *dev, const char *supply)
1956{
1957 struct regulator_supply_alias *map;
1958
1959 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1960 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 return map;
1962
1963 return NULL;
1964}
1965
1966static void regulator_supply_alias(struct device **dev, const char **supply)
1967{
1968 struct regulator_supply_alias *map;
1969
1970 map = regulator_find_supply_alias(*dev, *supply);
1971 if (map) {
1972 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 *supply, map->alias_supply,
1974 dev_name(map->alias_dev));
1975 *dev = map->alias_dev;
1976 *supply = map->alias_supply;
1977 }
1978}
1979
1980static int regulator_match(struct device *dev, const void *data)
1981{
1982 struct regulator_dev *r = dev_to_rdev(dev);
1983
1984 return strcmp(rdev_get_name(r), data) == 0;
1985}
1986
1987static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988{
1989 struct device *dev;
1990
1991 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1992
1993 return dev ? dev_to_rdev(dev) : NULL;
1994}
1995
1996/**
1997 * regulator_dev_lookup - lookup a regulator device.
1998 * @dev: device for regulator "consumer".
1999 * @supply: Supply name or regulator ID.
2000 *
2001 * If successful, returns a struct regulator_dev that corresponds to the name
2002 * @supply and with the embedded struct device refcount incremented by one.
2003 * The refcount must be dropped by calling put_device().
2004 * On failure one of the following ERR-PTR-encoded values is returned:
2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006 * in the future.
2007 */
2008static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 const char *supply)
2010{
2011 struct regulator_dev *r = NULL;
2012 struct device_node *node;
2013 struct regulator_map *map;
2014 const char *devname = NULL;
2015
2016 regulator_supply_alias(&dev, &supply);
2017
2018 /* first do a dt based lookup */
2019 if (dev && dev->of_node) {
2020 node = of_get_regulator(dev, supply);
2021 if (node) {
2022 r = of_find_regulator_by_node(node);
2023 of_node_put(node);
2024 if (r)
2025 return r;
2026
2027 /*
2028 * We have a node, but there is no device.
2029 * assume it has not registered yet.
2030 */
2031 return ERR_PTR(-EPROBE_DEFER);
2032 }
2033 }
2034
2035 /* if not found, try doing it non-dt way */
2036 if (dev)
2037 devname = dev_name(dev);
2038
2039 mutex_lock(®ulator_list_mutex);
2040 list_for_each_entry(map, ®ulator_map_list, list) {
2041 /* If the mapping has a device set up it must match */
2042 if (map->dev_name &&
2043 (!devname || strcmp(map->dev_name, devname)))
2044 continue;
2045
2046 if (strcmp(map->supply, supply) == 0 &&
2047 get_device(&map->regulator->dev)) {
2048 r = map->regulator;
2049 break;
2050 }
2051 }
2052 mutex_unlock(®ulator_list_mutex);
2053
2054 if (r)
2055 return r;
2056
2057 r = regulator_lookup_by_name(supply);
2058 if (r)
2059 return r;
2060
2061 return ERR_PTR(-ENODEV);
2062}
2063
2064static int regulator_resolve_supply(struct regulator_dev *rdev)
2065{
2066 struct regulator_dev *r;
2067 struct device *dev = rdev->dev.parent;
2068 struct ww_acquire_ctx ww_ctx;
2069 int ret = 0;
2070
2071 /* No supply to resolve? */
2072 if (!rdev->supply_name)
2073 return 0;
2074
2075 /* Supply already resolved? (fast-path without locking contention) */
2076 if (rdev->supply)
2077 return 0;
2078
2079 r = regulator_dev_lookup(dev, rdev->supply_name);
2080 if (IS_ERR(r)) {
2081 ret = PTR_ERR(r);
2082
2083 /* Did the lookup explicitly defer for us? */
2084 if (ret == -EPROBE_DEFER)
2085 goto out;
2086
2087 if (have_full_constraints()) {
2088 r = dummy_regulator_rdev;
2089 get_device(&r->dev);
2090 } else {
2091 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 rdev->supply_name, rdev->desc->name);
2093 ret = -EPROBE_DEFER;
2094 goto out;
2095 }
2096 }
2097
2098 if (r == rdev) {
2099 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 rdev->desc->name, rdev->supply_name);
2101 if (!have_full_constraints()) {
2102 ret = -EINVAL;
2103 goto out;
2104 }
2105 r = dummy_regulator_rdev;
2106 get_device(&r->dev);
2107 }
2108
2109 /*
2110 * If the supply's parent device is not the same as the
2111 * regulator's parent device, then ensure the parent device
2112 * is bound before we resolve the supply, in case the parent
2113 * device get probe deferred and unregisters the supply.
2114 */
2115 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 if (!device_is_bound(r->dev.parent)) {
2117 put_device(&r->dev);
2118 ret = -EPROBE_DEFER;
2119 goto out;
2120 }
2121 }
2122
2123 /* Recursively resolve the supply of the supply */
2124 ret = regulator_resolve_supply(r);
2125 if (ret < 0) {
2126 put_device(&r->dev);
2127 goto out;
2128 }
2129
2130 /*
2131 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 * between rdev->supply null check and setting rdev->supply in
2133 * set_supply() from concurrent tasks.
2134 */
2135 regulator_lock_two(rdev, r, &ww_ctx);
2136
2137 /* Supply just resolved by a concurrent task? */
2138 if (rdev->supply) {
2139 regulator_unlock_two(rdev, r, &ww_ctx);
2140 put_device(&r->dev);
2141 goto out;
2142 }
2143
2144 ret = set_supply(rdev, r);
2145 if (ret < 0) {
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147 put_device(&r->dev);
2148 goto out;
2149 }
2150
2151 regulator_unlock_two(rdev, r, &ww_ctx);
2152
2153 /*
2154 * In set_machine_constraints() we may have turned this regulator on
2155 * but we couldn't propagate to the supply if it hadn't been resolved
2156 * yet. Do it now.
2157 */
2158 if (rdev->use_count) {
2159 ret = regulator_enable(rdev->supply);
2160 if (ret < 0) {
2161 _regulator_put(rdev->supply);
2162 rdev->supply = NULL;
2163 goto out;
2164 }
2165 }
2166
2167out:
2168 return ret;
2169}
2170
2171/* Internal regulator request function */
2172struct regulator *_regulator_get(struct device *dev, const char *id,
2173 enum regulator_get_type get_type)
2174{
2175 struct regulator_dev *rdev;
2176 struct regulator *regulator;
2177 struct device_link *link;
2178 int ret;
2179
2180 if (get_type >= MAX_GET_TYPE) {
2181 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 if (id == NULL) {
2186 pr_err("get() with no identifier\n");
2187 return ERR_PTR(-EINVAL);
2188 }
2189
2190 rdev = regulator_dev_lookup(dev, id);
2191 if (IS_ERR(rdev)) {
2192 ret = PTR_ERR(rdev);
2193
2194 /*
2195 * If regulator_dev_lookup() fails with error other
2196 * than -ENODEV our job here is done, we simply return it.
2197 */
2198 if (ret != -ENODEV)
2199 return ERR_PTR(ret);
2200
2201 if (!have_full_constraints()) {
2202 dev_warn(dev,
2203 "incomplete constraints, dummy supplies not allowed\n");
2204 return ERR_PTR(-ENODEV);
2205 }
2206
2207 switch (get_type) {
2208 case NORMAL_GET:
2209 /*
2210 * Assume that a regulator is physically present and
2211 * enabled, even if it isn't hooked up, and just
2212 * provide a dummy.
2213 */
2214 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 rdev = dummy_regulator_rdev;
2216 get_device(&rdev->dev);
2217 break;
2218
2219 case EXCLUSIVE_GET:
2220 dev_warn(dev,
2221 "dummy supplies not allowed for exclusive requests\n");
2222 fallthrough;
2223
2224 default:
2225 return ERR_PTR(-ENODEV);
2226 }
2227 }
2228
2229 if (rdev->exclusive) {
2230 regulator = ERR_PTR(-EPERM);
2231 put_device(&rdev->dev);
2232 return regulator;
2233 }
2234
2235 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 regulator = ERR_PTR(-EBUSY);
2237 put_device(&rdev->dev);
2238 return regulator;
2239 }
2240
2241 mutex_lock(®ulator_list_mutex);
2242 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 mutex_unlock(®ulator_list_mutex);
2244
2245 if (ret != 0) {
2246 regulator = ERR_PTR(-EPROBE_DEFER);
2247 put_device(&rdev->dev);
2248 return regulator;
2249 }
2250
2251 ret = regulator_resolve_supply(rdev);
2252 if (ret < 0) {
2253 regulator = ERR_PTR(ret);
2254 put_device(&rdev->dev);
2255 return regulator;
2256 }
2257
2258 if (!try_module_get(rdev->owner)) {
2259 regulator = ERR_PTR(-EPROBE_DEFER);
2260 put_device(&rdev->dev);
2261 return regulator;
2262 }
2263
2264 regulator_lock(rdev);
2265 regulator = create_regulator(rdev, dev, id);
2266 regulator_unlock(rdev);
2267 if (regulator == NULL) {
2268 regulator = ERR_PTR(-ENOMEM);
2269 module_put(rdev->owner);
2270 put_device(&rdev->dev);
2271 return regulator;
2272 }
2273
2274 rdev->open_count++;
2275 if (get_type == EXCLUSIVE_GET) {
2276 rdev->exclusive = 1;
2277
2278 ret = _regulator_is_enabled(rdev);
2279 if (ret > 0) {
2280 rdev->use_count = 1;
2281 regulator->enable_count = 1;
2282
2283 /* Propagate the regulator state to its supply */
2284 if (rdev->supply) {
2285 ret = regulator_enable(rdev->supply);
2286 if (ret < 0) {
2287 destroy_regulator(regulator);
2288 module_put(rdev->owner);
2289 put_device(&rdev->dev);
2290 return ERR_PTR(ret);
2291 }
2292 }
2293 } else {
2294 rdev->use_count = 0;
2295 regulator->enable_count = 0;
2296 }
2297 }
2298
2299 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300 if (!IS_ERR_OR_NULL(link))
2301 regulator->device_link = true;
2302
2303 return regulator;
2304}
2305
2306/**
2307 * regulator_get - lookup and obtain a reference to a regulator.
2308 * @dev: device for regulator "consumer"
2309 * @id: Supply name or regulator ID.
2310 *
2311 * Returns a struct regulator corresponding to the regulator producer,
2312 * or IS_ERR() condition containing errno.
2313 *
2314 * Use of supply names configured via set_consumer_device_supply() is
2315 * strongly encouraged. It is recommended that the supply name used
2316 * should match the name used for the supply and/or the relevant
2317 * device pins in the datasheet.
2318 */
2319struct regulator *regulator_get(struct device *dev, const char *id)
2320{
2321 return _regulator_get(dev, id, NORMAL_GET);
2322}
2323EXPORT_SYMBOL_GPL(regulator_get);
2324
2325/**
2326 * regulator_get_exclusive - obtain exclusive access to a regulator.
2327 * @dev: device for regulator "consumer"
2328 * @id: Supply name or regulator ID.
2329 *
2330 * Returns a struct regulator corresponding to the regulator producer,
2331 * or IS_ERR() condition containing errno. Other consumers will be
2332 * unable to obtain this regulator while this reference is held and the
2333 * use count for the regulator will be initialised to reflect the current
2334 * state of the regulator.
2335 *
2336 * This is intended for use by consumers which cannot tolerate shared
2337 * use of the regulator such as those which need to force the
2338 * regulator off for correct operation of the hardware they are
2339 * controlling.
2340 *
2341 * Use of supply names configured via set_consumer_device_supply() is
2342 * strongly encouraged. It is recommended that the supply name used
2343 * should match the name used for the supply and/or the relevant
2344 * device pins in the datasheet.
2345 */
2346struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2347{
2348 return _regulator_get(dev, id, EXCLUSIVE_GET);
2349}
2350EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2351
2352/**
2353 * regulator_get_optional - obtain optional access to a regulator.
2354 * @dev: device for regulator "consumer"
2355 * @id: Supply name or regulator ID.
2356 *
2357 * Returns a struct regulator corresponding to the regulator producer,
2358 * or IS_ERR() condition containing errno.
2359 *
2360 * This is intended for use by consumers for devices which can have
2361 * some supplies unconnected in normal use, such as some MMC devices.
2362 * It can allow the regulator core to provide stub supplies for other
2363 * supplies requested using normal regulator_get() calls without
2364 * disrupting the operation of drivers that can handle absent
2365 * supplies.
2366 *
2367 * Use of supply names configured via set_consumer_device_supply() is
2368 * strongly encouraged. It is recommended that the supply name used
2369 * should match the name used for the supply and/or the relevant
2370 * device pins in the datasheet.
2371 */
2372struct regulator *regulator_get_optional(struct device *dev, const char *id)
2373{
2374 return _regulator_get(dev, id, OPTIONAL_GET);
2375}
2376EXPORT_SYMBOL_GPL(regulator_get_optional);
2377
2378static void destroy_regulator(struct regulator *regulator)
2379{
2380 struct regulator_dev *rdev = regulator->rdev;
2381
2382 debugfs_remove_recursive(regulator->debugfs);
2383
2384 if (regulator->dev) {
2385 if (regulator->device_link)
2386 device_link_remove(regulator->dev, &rdev->dev);
2387
2388 /* remove any sysfs entries */
2389 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2390 }
2391
2392 regulator_lock(rdev);
2393 list_del(®ulator->list);
2394
2395 rdev->open_count--;
2396 rdev->exclusive = 0;
2397 regulator_unlock(rdev);
2398
2399 kfree_const(regulator->supply_name);
2400 kfree(regulator);
2401}
2402
2403/* regulator_list_mutex lock held by regulator_put() */
2404static void _regulator_put(struct regulator *regulator)
2405{
2406 struct regulator_dev *rdev;
2407
2408 if (IS_ERR_OR_NULL(regulator))
2409 return;
2410
2411 lockdep_assert_held_once(®ulator_list_mutex);
2412
2413 /* Docs say you must disable before calling regulator_put() */
2414 WARN_ON(regulator->enable_count);
2415
2416 rdev = regulator->rdev;
2417
2418 destroy_regulator(regulator);
2419
2420 module_put(rdev->owner);
2421 put_device(&rdev->dev);
2422}
2423
2424/**
2425 * regulator_put - "free" the regulator source
2426 * @regulator: regulator source
2427 *
2428 * Note: drivers must ensure that all regulator_enable calls made on this
2429 * regulator source are balanced by regulator_disable calls prior to calling
2430 * this function.
2431 */
2432void regulator_put(struct regulator *regulator)
2433{
2434 mutex_lock(®ulator_list_mutex);
2435 _regulator_put(regulator);
2436 mutex_unlock(®ulator_list_mutex);
2437}
2438EXPORT_SYMBOL_GPL(regulator_put);
2439
2440/**
2441 * regulator_register_supply_alias - Provide device alias for supply lookup
2442 *
2443 * @dev: device that will be given as the regulator "consumer"
2444 * @id: Supply name or regulator ID
2445 * @alias_dev: device that should be used to lookup the supply
2446 * @alias_id: Supply name or regulator ID that should be used to lookup the
2447 * supply
2448 *
2449 * All lookups for id on dev will instead be conducted for alias_id on
2450 * alias_dev.
2451 */
2452int regulator_register_supply_alias(struct device *dev, const char *id,
2453 struct device *alias_dev,
2454 const char *alias_id)
2455{
2456 struct regulator_supply_alias *map;
2457
2458 map = regulator_find_supply_alias(dev, id);
2459 if (map)
2460 return -EEXIST;
2461
2462 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463 if (!map)
2464 return -ENOMEM;
2465
2466 map->src_dev = dev;
2467 map->src_supply = id;
2468 map->alias_dev = alias_dev;
2469 map->alias_supply = alias_id;
2470
2471 list_add(&map->list, ®ulator_supply_alias_list);
2472
2473 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474 id, dev_name(dev), alias_id, dev_name(alias_dev));
2475
2476 return 0;
2477}
2478EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2479
2480/**
2481 * regulator_unregister_supply_alias - Remove device alias
2482 *
2483 * @dev: device that will be given as the regulator "consumer"
2484 * @id: Supply name or regulator ID
2485 *
2486 * Remove a lookup alias if one exists for id on dev.
2487 */
2488void regulator_unregister_supply_alias(struct device *dev, const char *id)
2489{
2490 struct regulator_supply_alias *map;
2491
2492 map = regulator_find_supply_alias(dev, id);
2493 if (map) {
2494 list_del(&map->list);
2495 kfree(map);
2496 }
2497}
2498EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2499
2500/**
2501 * regulator_bulk_register_supply_alias - register multiple aliases
2502 *
2503 * @dev: device that will be given as the regulator "consumer"
2504 * @id: List of supply names or regulator IDs
2505 * @alias_dev: device that should be used to lookup the supply
2506 * @alias_id: List of supply names or regulator IDs that should be used to
2507 * lookup the supply
2508 * @num_id: Number of aliases to register
2509 *
2510 * @return 0 on success, an errno on failure.
2511 *
2512 * This helper function allows drivers to register several supply
2513 * aliases in one operation. If any of the aliases cannot be
2514 * registered any aliases that were registered will be removed
2515 * before returning to the caller.
2516 */
2517int regulator_bulk_register_supply_alias(struct device *dev,
2518 const char *const *id,
2519 struct device *alias_dev,
2520 const char *const *alias_id,
2521 int num_id)
2522{
2523 int i;
2524 int ret;
2525
2526 for (i = 0; i < num_id; ++i) {
2527 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528 alias_id[i]);
2529 if (ret < 0)
2530 goto err;
2531 }
2532
2533 return 0;
2534
2535err:
2536 dev_err(dev,
2537 "Failed to create supply alias %s,%s -> %s,%s\n",
2538 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2539
2540 while (--i >= 0)
2541 regulator_unregister_supply_alias(dev, id[i]);
2542
2543 return ret;
2544}
2545EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2546
2547/**
2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2549 *
2550 * @dev: device that will be given as the regulator "consumer"
2551 * @id: List of supply names or regulator IDs
2552 * @num_id: Number of aliases to unregister
2553 *
2554 * This helper function allows drivers to unregister several supply
2555 * aliases in one operation.
2556 */
2557void regulator_bulk_unregister_supply_alias(struct device *dev,
2558 const char *const *id,
2559 int num_id)
2560{
2561 int i;
2562
2563 for (i = 0; i < num_id; ++i)
2564 regulator_unregister_supply_alias(dev, id[i]);
2565}
2566EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2567
2568
2569/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571 const struct regulator_config *config)
2572{
2573 struct regulator_enable_gpio *pin, *new_pin;
2574 struct gpio_desc *gpiod;
2575
2576 gpiod = config->ena_gpiod;
2577 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2578
2579 mutex_lock(®ulator_list_mutex);
2580
2581 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2582 if (pin->gpiod == gpiod) {
2583 rdev_dbg(rdev, "GPIO is already used\n");
2584 goto update_ena_gpio_to_rdev;
2585 }
2586 }
2587
2588 if (new_pin == NULL) {
2589 mutex_unlock(®ulator_list_mutex);
2590 return -ENOMEM;
2591 }
2592
2593 pin = new_pin;
2594 new_pin = NULL;
2595
2596 pin->gpiod = gpiod;
2597 list_add(&pin->list, ®ulator_ena_gpio_list);
2598
2599update_ena_gpio_to_rdev:
2600 pin->request_count++;
2601 rdev->ena_pin = pin;
2602
2603 mutex_unlock(®ulator_list_mutex);
2604 kfree(new_pin);
2605
2606 return 0;
2607}
2608
2609static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2610{
2611 struct regulator_enable_gpio *pin, *n;
2612
2613 if (!rdev->ena_pin)
2614 return;
2615
2616 /* Free the GPIO only in case of no use */
2617 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2618 if (pin != rdev->ena_pin)
2619 continue;
2620
2621 if (--pin->request_count)
2622 break;
2623
2624 gpiod_put(pin->gpiod);
2625 list_del(&pin->list);
2626 kfree(pin);
2627 break;
2628 }
2629
2630 rdev->ena_pin = NULL;
2631}
2632
2633/**
2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635 * @rdev: regulator_dev structure
2636 * @enable: enable GPIO at initial use?
2637 *
2638 * GPIO is enabled in case of initial use. (enable_count is 0)
2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2640 */
2641static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2642{
2643 struct regulator_enable_gpio *pin = rdev->ena_pin;
2644
2645 if (!pin)
2646 return -EINVAL;
2647
2648 if (enable) {
2649 /* Enable GPIO at initial use */
2650 if (pin->enable_count == 0)
2651 gpiod_set_value_cansleep(pin->gpiod, 1);
2652
2653 pin->enable_count++;
2654 } else {
2655 if (pin->enable_count > 1) {
2656 pin->enable_count--;
2657 return 0;
2658 }
2659
2660 /* Disable GPIO if not used */
2661 if (pin->enable_count <= 1) {
2662 gpiod_set_value_cansleep(pin->gpiod, 0);
2663 pin->enable_count = 0;
2664 }
2665 }
2666
2667 return 0;
2668}
2669
2670/**
2671 * _regulator_delay_helper - a delay helper function
2672 * @delay: time to delay in microseconds
2673 *
2674 * Delay for the requested amount of time as per the guidelines in:
2675 *
2676 * Documentation/timers/timers-howto.rst
2677 *
2678 * The assumption here is that these regulator operations will never used in
2679 * atomic context and therefore sleeping functions can be used.
2680 */
2681static void _regulator_delay_helper(unsigned int delay)
2682{
2683 unsigned int ms = delay / 1000;
2684 unsigned int us = delay % 1000;
2685
2686 if (ms > 0) {
2687 /*
2688 * For small enough values, handle super-millisecond
2689 * delays in the usleep_range() call below.
2690 */
2691 if (ms < 20)
2692 us += ms * 1000;
2693 else
2694 msleep(ms);
2695 }
2696
2697 /*
2698 * Give the scheduler some room to coalesce with any other
2699 * wakeup sources. For delays shorter than 10 us, don't even
2700 * bother setting up high-resolution timers and just busy-
2701 * loop.
2702 */
2703 if (us >= 10)
2704 usleep_range(us, us + 100);
2705 else
2706 udelay(us);
2707}
2708
2709/**
2710 * _regulator_check_status_enabled
2711 *
2712 * A helper function to check if the regulator status can be interpreted
2713 * as 'regulator is enabled'.
2714 * @rdev: the regulator device to check
2715 *
2716 * Return:
2717 * * 1 - if status shows regulator is in enabled state
2718 * * 0 - if not enabled state
2719 * * Error Value - as received from ops->get_status()
2720 */
2721static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2722{
2723 int ret = rdev->desc->ops->get_status(rdev);
2724
2725 if (ret < 0) {
2726 rdev_info(rdev, "get_status returned error: %d\n", ret);
2727 return ret;
2728 }
2729
2730 switch (ret) {
2731 case REGULATOR_STATUS_OFF:
2732 case REGULATOR_STATUS_ERROR:
2733 case REGULATOR_STATUS_UNDEFINED:
2734 return 0;
2735 default:
2736 return 1;
2737 }
2738}
2739
2740static int _regulator_do_enable(struct regulator_dev *rdev)
2741{
2742 int ret, delay;
2743
2744 /* Query before enabling in case configuration dependent. */
2745 ret = _regulator_get_enable_time(rdev);
2746 if (ret >= 0) {
2747 delay = ret;
2748 } else {
2749 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750 delay = 0;
2751 }
2752
2753 trace_regulator_enable(rdev_get_name(rdev));
2754
2755 if (rdev->desc->off_on_delay) {
2756 /* if needed, keep a distance of off_on_delay from last time
2757 * this regulator was disabled.
2758 */
2759 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2761
2762 if (remaining > 0)
2763 _regulator_delay_helper(remaining);
2764 }
2765
2766 if (rdev->ena_pin) {
2767 if (!rdev->ena_gpio_state) {
2768 ret = regulator_ena_gpio_ctrl(rdev, true);
2769 if (ret < 0)
2770 return ret;
2771 rdev->ena_gpio_state = 1;
2772 }
2773 } else if (rdev->desc->ops->enable) {
2774 ret = rdev->desc->ops->enable(rdev);
2775 if (ret < 0)
2776 return ret;
2777 } else {
2778 return -EINVAL;
2779 }
2780
2781 /* Allow the regulator to ramp; it would be useful to extend
2782 * this for bulk operations so that the regulators can ramp
2783 * together.
2784 */
2785 trace_regulator_enable_delay(rdev_get_name(rdev));
2786
2787 /* If poll_enabled_time is set, poll upto the delay calculated
2788 * above, delaying poll_enabled_time uS to check if the regulator
2789 * actually got enabled.
2790 * If the regulator isn't enabled after our delay helper has expired,
2791 * return -ETIMEDOUT.
2792 */
2793 if (rdev->desc->poll_enabled_time) {
2794 int time_remaining = delay;
2795
2796 while (time_remaining > 0) {
2797 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2798
2799 if (rdev->desc->ops->get_status) {
2800 ret = _regulator_check_status_enabled(rdev);
2801 if (ret < 0)
2802 return ret;
2803 else if (ret)
2804 break;
2805 } else if (rdev->desc->ops->is_enabled(rdev))
2806 break;
2807
2808 time_remaining -= rdev->desc->poll_enabled_time;
2809 }
2810
2811 if (time_remaining <= 0) {
2812 rdev_err(rdev, "Enabled check timed out\n");
2813 return -ETIMEDOUT;
2814 }
2815 } else {
2816 _regulator_delay_helper(delay);
2817 }
2818
2819 trace_regulator_enable_complete(rdev_get_name(rdev));
2820
2821 return 0;
2822}
2823
2824/**
2825 * _regulator_handle_consumer_enable - handle that a consumer enabled
2826 * @regulator: regulator source
2827 *
2828 * Some things on a regulator consumer (like the contribution towards total
2829 * load on the regulator) only have an effect when the consumer wants the
2830 * regulator enabled. Explained in example with two consumers of the same
2831 * regulator:
2832 * consumer A: set_load(100); => total load = 0
2833 * consumer A: regulator_enable(); => total load = 100
2834 * consumer B: set_load(1000); => total load = 100
2835 * consumer B: regulator_enable(); => total load = 1100
2836 * consumer A: regulator_disable(); => total_load = 1000
2837 *
2838 * This function (together with _regulator_handle_consumer_disable) is
2839 * responsible for keeping track of the refcount for a given regulator consumer
2840 * and applying / unapplying these things.
2841 *
2842 * Returns 0 upon no error; -error upon error.
2843 */
2844static int _regulator_handle_consumer_enable(struct regulator *regulator)
2845{
2846 int ret;
2847 struct regulator_dev *rdev = regulator->rdev;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 regulator->enable_count++;
2852 if (regulator->uA_load && regulator->enable_count == 1) {
2853 ret = drms_uA_update(rdev);
2854 if (ret)
2855 regulator->enable_count--;
2856 return ret;
2857 }
2858
2859 return 0;
2860}
2861
2862/**
2863 * _regulator_handle_consumer_disable - handle that a consumer disabled
2864 * @regulator: regulator source
2865 *
2866 * The opposite of _regulator_handle_consumer_enable().
2867 *
2868 * Returns 0 upon no error; -error upon error.
2869 */
2870static int _regulator_handle_consumer_disable(struct regulator *regulator)
2871{
2872 struct regulator_dev *rdev = regulator->rdev;
2873
2874 lockdep_assert_held_once(&rdev->mutex.base);
2875
2876 if (!regulator->enable_count) {
2877 rdev_err(rdev, "Underflow of regulator enable count\n");
2878 return -EINVAL;
2879 }
2880
2881 regulator->enable_count--;
2882 if (regulator->uA_load && regulator->enable_count == 0)
2883 return drms_uA_update(rdev);
2884
2885 return 0;
2886}
2887
2888/* locks held by regulator_enable() */
2889static int _regulator_enable(struct regulator *regulator)
2890{
2891 struct regulator_dev *rdev = regulator->rdev;
2892 int ret;
2893
2894 lockdep_assert_held_once(&rdev->mutex.base);
2895
2896 if (rdev->use_count == 0 && rdev->supply) {
2897 ret = _regulator_enable(rdev->supply);
2898 if (ret < 0)
2899 return ret;
2900 }
2901
2902 /* balance only if there are regulators coupled */
2903 if (rdev->coupling_desc.n_coupled > 1) {
2904 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 if (ret < 0)
2906 goto err_disable_supply;
2907 }
2908
2909 ret = _regulator_handle_consumer_enable(regulator);
2910 if (ret < 0)
2911 goto err_disable_supply;
2912
2913 if (rdev->use_count == 0) {
2914 /*
2915 * The regulator may already be enabled if it's not switchable
2916 * or was left on
2917 */
2918 ret = _regulator_is_enabled(rdev);
2919 if (ret == -EINVAL || ret == 0) {
2920 if (!regulator_ops_is_valid(rdev,
2921 REGULATOR_CHANGE_STATUS)) {
2922 ret = -EPERM;
2923 goto err_consumer_disable;
2924 }
2925
2926 ret = _regulator_do_enable(rdev);
2927 if (ret < 0)
2928 goto err_consumer_disable;
2929
2930 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931 NULL);
2932 } else if (ret < 0) {
2933 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934 goto err_consumer_disable;
2935 }
2936 /* Fallthrough on positive return values - already enabled */
2937 }
2938
2939 if (regulator->enable_count == 1)
2940 rdev->use_count++;
2941
2942 return 0;
2943
2944err_consumer_disable:
2945 _regulator_handle_consumer_disable(regulator);
2946
2947err_disable_supply:
2948 if (rdev->use_count == 0 && rdev->supply)
2949 _regulator_disable(rdev->supply);
2950
2951 return ret;
2952}
2953
2954/**
2955 * regulator_enable - enable regulator output
2956 * @regulator: regulator source
2957 *
2958 * Request that the regulator be enabled with the regulator output at
2959 * the predefined voltage or current value. Calls to regulator_enable()
2960 * must be balanced with calls to regulator_disable().
2961 *
2962 * NOTE: the output value can be set by other drivers, boot loader or may be
2963 * hardwired in the regulator.
2964 */
2965int regulator_enable(struct regulator *regulator)
2966{
2967 struct regulator_dev *rdev = regulator->rdev;
2968 struct ww_acquire_ctx ww_ctx;
2969 int ret;
2970
2971 regulator_lock_dependent(rdev, &ww_ctx);
2972 ret = _regulator_enable(regulator);
2973 regulator_unlock_dependent(rdev, &ww_ctx);
2974
2975 return ret;
2976}
2977EXPORT_SYMBOL_GPL(regulator_enable);
2978
2979static int _regulator_do_disable(struct regulator_dev *rdev)
2980{
2981 int ret;
2982
2983 trace_regulator_disable(rdev_get_name(rdev));
2984
2985 if (rdev->ena_pin) {
2986 if (rdev->ena_gpio_state) {
2987 ret = regulator_ena_gpio_ctrl(rdev, false);
2988 if (ret < 0)
2989 return ret;
2990 rdev->ena_gpio_state = 0;
2991 }
2992
2993 } else if (rdev->desc->ops->disable) {
2994 ret = rdev->desc->ops->disable(rdev);
2995 if (ret != 0)
2996 return ret;
2997 }
2998
2999 if (rdev->desc->off_on_delay)
3000 rdev->last_off = ktime_get_boottime();
3001
3002 trace_regulator_disable_complete(rdev_get_name(rdev));
3003
3004 return 0;
3005}
3006
3007/* locks held by regulator_disable() */
3008static int _regulator_disable(struct regulator *regulator)
3009{
3010 struct regulator_dev *rdev = regulator->rdev;
3011 int ret = 0;
3012
3013 lockdep_assert_held_once(&rdev->mutex.base);
3014
3015 if (WARN(regulator->enable_count == 0,
3016 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017 return -EIO;
3018
3019 if (regulator->enable_count == 1) {
3020 /* disabling last enable_count from this regulator */
3021 /* are we the last user and permitted to disable ? */
3022 if (rdev->use_count == 1 &&
3023 (rdev->constraints && !rdev->constraints->always_on)) {
3024
3025 /* we are last user */
3026 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027 ret = _notifier_call_chain(rdev,
3028 REGULATOR_EVENT_PRE_DISABLE,
3029 NULL);
3030 if (ret & NOTIFY_STOP_MASK)
3031 return -EINVAL;
3032
3033 ret = _regulator_do_disable(rdev);
3034 if (ret < 0) {
3035 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036 _notifier_call_chain(rdev,
3037 REGULATOR_EVENT_ABORT_DISABLE,
3038 NULL);
3039 return ret;
3040 }
3041 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042 NULL);
3043 }
3044
3045 rdev->use_count = 0;
3046 } else if (rdev->use_count > 1) {
3047 rdev->use_count--;
3048 }
3049 }
3050
3051 if (ret == 0)
3052 ret = _regulator_handle_consumer_disable(regulator);
3053
3054 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3056
3057 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058 ret = _regulator_disable(rdev->supply);
3059
3060 return ret;
3061}
3062
3063/**
3064 * regulator_disable - disable regulator output
3065 * @regulator: regulator source
3066 *
3067 * Disable the regulator output voltage or current. Calls to
3068 * regulator_enable() must be balanced with calls to
3069 * regulator_disable().
3070 *
3071 * NOTE: this will only disable the regulator output if no other consumer
3072 * devices have it enabled, the regulator device supports disabling and
3073 * machine constraints permit this operation.
3074 */
3075int regulator_disable(struct regulator *regulator)
3076{
3077 struct regulator_dev *rdev = regulator->rdev;
3078 struct ww_acquire_ctx ww_ctx;
3079 int ret;
3080
3081 regulator_lock_dependent(rdev, &ww_ctx);
3082 ret = _regulator_disable(regulator);
3083 regulator_unlock_dependent(rdev, &ww_ctx);
3084
3085 return ret;
3086}
3087EXPORT_SYMBOL_GPL(regulator_disable);
3088
3089/* locks held by regulator_force_disable() */
3090static int _regulator_force_disable(struct regulator_dev *rdev)
3091{
3092 int ret = 0;
3093
3094 lockdep_assert_held_once(&rdev->mutex.base);
3095
3096 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_PRE_DISABLE, NULL);
3098 if (ret & NOTIFY_STOP_MASK)
3099 return -EINVAL;
3100
3101 ret = _regulator_do_disable(rdev);
3102 if (ret < 0) {
3103 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106 return ret;
3107 }
3108
3109 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110 REGULATOR_EVENT_DISABLE, NULL);
3111
3112 return 0;
3113}
3114
3115/**
3116 * regulator_force_disable - force disable regulator output
3117 * @regulator: regulator source
3118 *
3119 * Forcibly disable the regulator output voltage or current.
3120 * NOTE: this *will* disable the regulator output even if other consumer
3121 * devices have it enabled. This should be used for situations when device
3122 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3123 */
3124int regulator_force_disable(struct regulator *regulator)
3125{
3126 struct regulator_dev *rdev = regulator->rdev;
3127 struct ww_acquire_ctx ww_ctx;
3128 int ret;
3129
3130 regulator_lock_dependent(rdev, &ww_ctx);
3131
3132 ret = _regulator_force_disable(regulator->rdev);
3133
3134 if (rdev->coupling_desc.n_coupled > 1)
3135 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3136
3137 if (regulator->uA_load) {
3138 regulator->uA_load = 0;
3139 ret = drms_uA_update(rdev);
3140 }
3141
3142 if (rdev->use_count != 0 && rdev->supply)
3143 _regulator_disable(rdev->supply);
3144
3145 regulator_unlock_dependent(rdev, &ww_ctx);
3146
3147 return ret;
3148}
3149EXPORT_SYMBOL_GPL(regulator_force_disable);
3150
3151static void regulator_disable_work(struct work_struct *work)
3152{
3153 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154 disable_work.work);
3155 struct ww_acquire_ctx ww_ctx;
3156 int count, i, ret;
3157 struct regulator *regulator;
3158 int total_count = 0;
3159
3160 regulator_lock_dependent(rdev, &ww_ctx);
3161
3162 /*
3163 * Workqueue functions queue the new work instance while the previous
3164 * work instance is being processed. Cancel the queued work instance
3165 * as the work instance under processing does the job of the queued
3166 * work instance.
3167 */
3168 cancel_delayed_work(&rdev->disable_work);
3169
3170 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171 count = regulator->deferred_disables;
3172
3173 if (!count)
3174 continue;
3175
3176 total_count += count;
3177 regulator->deferred_disables = 0;
3178
3179 for (i = 0; i < count; i++) {
3180 ret = _regulator_disable(regulator);
3181 if (ret != 0)
3182 rdev_err(rdev, "Deferred disable failed: %pe\n",
3183 ERR_PTR(ret));
3184 }
3185 }
3186 WARN_ON(!total_count);
3187
3188 if (rdev->coupling_desc.n_coupled > 1)
3189 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3190
3191 regulator_unlock_dependent(rdev, &ww_ctx);
3192}
3193
3194/**
3195 * regulator_disable_deferred - disable regulator output with delay
3196 * @regulator: regulator source
3197 * @ms: milliseconds until the regulator is disabled
3198 *
3199 * Execute regulator_disable() on the regulator after a delay. This
3200 * is intended for use with devices that require some time to quiesce.
3201 *
3202 * NOTE: this will only disable the regulator output if no other consumer
3203 * devices have it enabled, the regulator device supports disabling and
3204 * machine constraints permit this operation.
3205 */
3206int regulator_disable_deferred(struct regulator *regulator, int ms)
3207{
3208 struct regulator_dev *rdev = regulator->rdev;
3209
3210 if (!ms)
3211 return regulator_disable(regulator);
3212
3213 regulator_lock(rdev);
3214 regulator->deferred_disables++;
3215 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216 msecs_to_jiffies(ms));
3217 regulator_unlock(rdev);
3218
3219 return 0;
3220}
3221EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3222
3223static int _regulator_is_enabled(struct regulator_dev *rdev)
3224{
3225 /* A GPIO control always takes precedence */
3226 if (rdev->ena_pin)
3227 return rdev->ena_gpio_state;
3228
3229 /* If we don't know then assume that the regulator is always on */
3230 if (!rdev->desc->ops->is_enabled)
3231 return 1;
3232
3233 return rdev->desc->ops->is_enabled(rdev);
3234}
3235
3236static int _regulator_list_voltage(struct regulator_dev *rdev,
3237 unsigned selector, int lock)
3238{
3239 const struct regulator_ops *ops = rdev->desc->ops;
3240 int ret;
3241
3242 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243 return rdev->desc->fixed_uV;
3244
3245 if (ops->list_voltage) {
3246 if (selector >= rdev->desc->n_voltages)
3247 return -EINVAL;
3248 if (selector < rdev->desc->linear_min_sel)
3249 return 0;
3250 if (lock)
3251 regulator_lock(rdev);
3252 ret = ops->list_voltage(rdev, selector);
3253 if (lock)
3254 regulator_unlock(rdev);
3255 } else if (rdev->is_switch && rdev->supply) {
3256 ret = _regulator_list_voltage(rdev->supply->rdev,
3257 selector, lock);
3258 } else {
3259 return -EINVAL;
3260 }
3261
3262 if (ret > 0) {
3263 if (ret < rdev->constraints->min_uV)
3264 ret = 0;
3265 else if (ret > rdev->constraints->max_uV)
3266 ret = 0;
3267 }
3268
3269 return ret;
3270}
3271
3272/**
3273 * regulator_is_enabled - is the regulator output enabled
3274 * @regulator: regulator source
3275 *
3276 * Returns positive if the regulator driver backing the source/client
3277 * has requested that the device be enabled, zero if it hasn't, else a
3278 * negative errno code.
3279 *
3280 * Note that the device backing this regulator handle can have multiple
3281 * users, so it might be enabled even if regulator_enable() was never
3282 * called for this particular source.
3283 */
3284int regulator_is_enabled(struct regulator *regulator)
3285{
3286 int ret;
3287
3288 if (regulator->always_on)
3289 return 1;
3290
3291 regulator_lock(regulator->rdev);
3292 ret = _regulator_is_enabled(regulator->rdev);
3293 regulator_unlock(regulator->rdev);
3294
3295 return ret;
3296}
3297EXPORT_SYMBOL_GPL(regulator_is_enabled);
3298
3299/**
3300 * regulator_count_voltages - count regulator_list_voltage() selectors
3301 * @regulator: regulator source
3302 *
3303 * Returns number of selectors, or negative errno. Selectors are
3304 * numbered starting at zero, and typically correspond to bitfields
3305 * in hardware registers.
3306 */
3307int regulator_count_voltages(struct regulator *regulator)
3308{
3309 struct regulator_dev *rdev = regulator->rdev;
3310
3311 if (rdev->desc->n_voltages)
3312 return rdev->desc->n_voltages;
3313
3314 if (!rdev->is_switch || !rdev->supply)
3315 return -EINVAL;
3316
3317 return regulator_count_voltages(rdev->supply);
3318}
3319EXPORT_SYMBOL_GPL(regulator_count_voltages);
3320
3321/**
3322 * regulator_list_voltage - enumerate supported voltages
3323 * @regulator: regulator source
3324 * @selector: identify voltage to list
3325 * Context: can sleep
3326 *
3327 * Returns a voltage that can be passed to @regulator_set_voltage(),
3328 * zero if this selector code can't be used on this system, or a
3329 * negative errno.
3330 */
3331int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3332{
3333 return _regulator_list_voltage(regulator->rdev, selector, 1);
3334}
3335EXPORT_SYMBOL_GPL(regulator_list_voltage);
3336
3337/**
3338 * regulator_get_regmap - get the regulator's register map
3339 * @regulator: regulator source
3340 *
3341 * Returns the register map for the given regulator, or an ERR_PTR value
3342 * if the regulator doesn't use regmap.
3343 */
3344struct regmap *regulator_get_regmap(struct regulator *regulator)
3345{
3346 struct regmap *map = regulator->rdev->regmap;
3347
3348 return map ? map : ERR_PTR(-EOPNOTSUPP);
3349}
3350
3351/**
3352 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3353 * @regulator: regulator source
3354 * @vsel_reg: voltage selector register, output parameter
3355 * @vsel_mask: mask for voltage selector bitfield, output parameter
3356 *
3357 * Returns the hardware register offset and bitmask used for setting the
3358 * regulator voltage. This might be useful when configuring voltage-scaling
3359 * hardware or firmware that can make I2C requests behind the kernel's back,
3360 * for example.
3361 *
3362 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3363 * and 0 is returned, otherwise a negative errno is returned.
3364 */
3365int regulator_get_hardware_vsel_register(struct regulator *regulator,
3366 unsigned *vsel_reg,
3367 unsigned *vsel_mask)
3368{
3369 struct regulator_dev *rdev = regulator->rdev;
3370 const struct regulator_ops *ops = rdev->desc->ops;
3371
3372 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3373 return -EOPNOTSUPP;
3374
3375 *vsel_reg = rdev->desc->vsel_reg;
3376 *vsel_mask = rdev->desc->vsel_mask;
3377
3378 return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3381
3382/**
3383 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3384 * @regulator: regulator source
3385 * @selector: identify voltage to list
3386 *
3387 * Converts the selector to a hardware-specific voltage selector that can be
3388 * directly written to the regulator registers. The address of the voltage
3389 * register can be determined by calling @regulator_get_hardware_vsel_register.
3390 *
3391 * On error a negative errno is returned.
3392 */
3393int regulator_list_hardware_vsel(struct regulator *regulator,
3394 unsigned selector)
3395{
3396 struct regulator_dev *rdev = regulator->rdev;
3397 const struct regulator_ops *ops = rdev->desc->ops;
3398
3399 if (selector >= rdev->desc->n_voltages)
3400 return -EINVAL;
3401 if (selector < rdev->desc->linear_min_sel)
3402 return 0;
3403 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3404 return -EOPNOTSUPP;
3405
3406 return selector;
3407}
3408EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3409
3410/**
3411 * regulator_get_linear_step - return the voltage step size between VSEL values
3412 * @regulator: regulator source
3413 *
3414 * Returns the voltage step size between VSEL values for linear
3415 * regulators, or return 0 if the regulator isn't a linear regulator.
3416 */
3417unsigned int regulator_get_linear_step(struct regulator *regulator)
3418{
3419 struct regulator_dev *rdev = regulator->rdev;
3420
3421 return rdev->desc->uV_step;
3422}
3423EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3424
3425/**
3426 * regulator_is_supported_voltage - check if a voltage range can be supported
3427 *
3428 * @regulator: Regulator to check.
3429 * @min_uV: Minimum required voltage in uV.
3430 * @max_uV: Maximum required voltage in uV.
3431 *
3432 * Returns a boolean.
3433 */
3434int regulator_is_supported_voltage(struct regulator *regulator,
3435 int min_uV, int max_uV)
3436{
3437 struct regulator_dev *rdev = regulator->rdev;
3438 int i, voltages, ret;
3439
3440 /* If we can't change voltage check the current voltage */
3441 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3442 ret = regulator_get_voltage(regulator);
3443 if (ret >= 0)
3444 return min_uV <= ret && ret <= max_uV;
3445 else
3446 return ret;
3447 }
3448
3449 /* Any voltage within constrains range is fine? */
3450 if (rdev->desc->continuous_voltage_range)
3451 return min_uV >= rdev->constraints->min_uV &&
3452 max_uV <= rdev->constraints->max_uV;
3453
3454 ret = regulator_count_voltages(regulator);
3455 if (ret < 0)
3456 return 0;
3457 voltages = ret;
3458
3459 for (i = 0; i < voltages; i++) {
3460 ret = regulator_list_voltage(regulator, i);
3461
3462 if (ret >= min_uV && ret <= max_uV)
3463 return 1;
3464 }
3465
3466 return 0;
3467}
3468EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3469
3470static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3471 int max_uV)
3472{
3473 const struct regulator_desc *desc = rdev->desc;
3474
3475 if (desc->ops->map_voltage)
3476 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3477
3478 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3479 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3480
3481 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3482 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3483
3484 if (desc->ops->list_voltage ==
3485 regulator_list_voltage_pickable_linear_range)
3486 return regulator_map_voltage_pickable_linear_range(rdev,
3487 min_uV, max_uV);
3488
3489 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3490}
3491
3492static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3493 int min_uV, int max_uV,
3494 unsigned *selector)
3495{
3496 struct pre_voltage_change_data data;
3497 int ret;
3498
3499 data.old_uV = regulator_get_voltage_rdev(rdev);
3500 data.min_uV = min_uV;
3501 data.max_uV = max_uV;
3502 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3503 &data);
3504 if (ret & NOTIFY_STOP_MASK)
3505 return -EINVAL;
3506
3507 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3508 if (ret >= 0)
3509 return ret;
3510
3511 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3512 (void *)data.old_uV);
3513
3514 return ret;
3515}
3516
3517static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3518 int uV, unsigned selector)
3519{
3520 struct pre_voltage_change_data data;
3521 int ret;
3522
3523 data.old_uV = regulator_get_voltage_rdev(rdev);
3524 data.min_uV = uV;
3525 data.max_uV = uV;
3526 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3527 &data);
3528 if (ret & NOTIFY_STOP_MASK)
3529 return -EINVAL;
3530
3531 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3532 if (ret >= 0)
3533 return ret;
3534
3535 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3536 (void *)data.old_uV);
3537
3538 return ret;
3539}
3540
3541static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3542 int uV, int new_selector)
3543{
3544 const struct regulator_ops *ops = rdev->desc->ops;
3545 int diff, old_sel, curr_sel, ret;
3546
3547 /* Stepping is only needed if the regulator is enabled. */
3548 if (!_regulator_is_enabled(rdev))
3549 goto final_set;
3550
3551 if (!ops->get_voltage_sel)
3552 return -EINVAL;
3553
3554 old_sel = ops->get_voltage_sel(rdev);
3555 if (old_sel < 0)
3556 return old_sel;
3557
3558 diff = new_selector - old_sel;
3559 if (diff == 0)
3560 return 0; /* No change needed. */
3561
3562 if (diff > 0) {
3563 /* Stepping up. */
3564 for (curr_sel = old_sel + rdev->desc->vsel_step;
3565 curr_sel < new_selector;
3566 curr_sel += rdev->desc->vsel_step) {
3567 /*
3568 * Call the callback directly instead of using
3569 * _regulator_call_set_voltage_sel() as we don't
3570 * want to notify anyone yet. Same in the branch
3571 * below.
3572 */
3573 ret = ops->set_voltage_sel(rdev, curr_sel);
3574 if (ret)
3575 goto try_revert;
3576 }
3577 } else {
3578 /* Stepping down. */
3579 for (curr_sel = old_sel - rdev->desc->vsel_step;
3580 curr_sel > new_selector;
3581 curr_sel -= rdev->desc->vsel_step) {
3582 ret = ops->set_voltage_sel(rdev, curr_sel);
3583 if (ret)
3584 goto try_revert;
3585 }
3586 }
3587
3588final_set:
3589 /* The final selector will trigger the notifiers. */
3590 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3591
3592try_revert:
3593 /*
3594 * At least try to return to the previous voltage if setting a new
3595 * one failed.
3596 */
3597 (void)ops->set_voltage_sel(rdev, old_sel);
3598 return ret;
3599}
3600
3601static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3602 int old_uV, int new_uV)
3603{
3604 unsigned int ramp_delay = 0;
3605
3606 if (rdev->constraints->ramp_delay)
3607 ramp_delay = rdev->constraints->ramp_delay;
3608 else if (rdev->desc->ramp_delay)
3609 ramp_delay = rdev->desc->ramp_delay;
3610 else if (rdev->constraints->settling_time)
3611 return rdev->constraints->settling_time;
3612 else if (rdev->constraints->settling_time_up &&
3613 (new_uV > old_uV))
3614 return rdev->constraints->settling_time_up;
3615 else if (rdev->constraints->settling_time_down &&
3616 (new_uV < old_uV))
3617 return rdev->constraints->settling_time_down;
3618
3619 if (ramp_delay == 0)
3620 return 0;
3621
3622 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3623}
3624
3625static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3626 int min_uV, int max_uV)
3627{
3628 int ret;
3629 int delay = 0;
3630 int best_val = 0;
3631 unsigned int selector;
3632 int old_selector = -1;
3633 const struct regulator_ops *ops = rdev->desc->ops;
3634 int old_uV = regulator_get_voltage_rdev(rdev);
3635
3636 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3637
3638 min_uV += rdev->constraints->uV_offset;
3639 max_uV += rdev->constraints->uV_offset;
3640
3641 /*
3642 * If we can't obtain the old selector there is not enough
3643 * info to call set_voltage_time_sel().
3644 */
3645 if (_regulator_is_enabled(rdev) &&
3646 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3647 old_selector = ops->get_voltage_sel(rdev);
3648 if (old_selector < 0)
3649 return old_selector;
3650 }
3651
3652 if (ops->set_voltage) {
3653 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3654 &selector);
3655
3656 if (ret >= 0) {
3657 if (ops->list_voltage)
3658 best_val = ops->list_voltage(rdev,
3659 selector);
3660 else
3661 best_val = regulator_get_voltage_rdev(rdev);
3662 }
3663
3664 } else if (ops->set_voltage_sel) {
3665 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3666 if (ret >= 0) {
3667 best_val = ops->list_voltage(rdev, ret);
3668 if (min_uV <= best_val && max_uV >= best_val) {
3669 selector = ret;
3670 if (old_selector == selector)
3671 ret = 0;
3672 else if (rdev->desc->vsel_step)
3673 ret = _regulator_set_voltage_sel_step(
3674 rdev, best_val, selector);
3675 else
3676 ret = _regulator_call_set_voltage_sel(
3677 rdev, best_val, selector);
3678 } else {
3679 ret = -EINVAL;
3680 }
3681 }
3682 } else {
3683 ret = -EINVAL;
3684 }
3685
3686 if (ret)
3687 goto out;
3688
3689 if (ops->set_voltage_time_sel) {
3690 /*
3691 * Call set_voltage_time_sel if successfully obtained
3692 * old_selector
3693 */
3694 if (old_selector >= 0 && old_selector != selector)
3695 delay = ops->set_voltage_time_sel(rdev, old_selector,
3696 selector);
3697 } else {
3698 if (old_uV != best_val) {
3699 if (ops->set_voltage_time)
3700 delay = ops->set_voltage_time(rdev, old_uV,
3701 best_val);
3702 else
3703 delay = _regulator_set_voltage_time(rdev,
3704 old_uV,
3705 best_val);
3706 }
3707 }
3708
3709 if (delay < 0) {
3710 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3711 delay = 0;
3712 }
3713
3714 /* Insert any necessary delays */
3715 _regulator_delay_helper(delay);
3716
3717 if (best_val >= 0) {
3718 unsigned long data = best_val;
3719
3720 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3721 (void *)data);
3722 }
3723
3724out:
3725 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3726
3727 return ret;
3728}
3729
3730static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3731 int min_uV, int max_uV, suspend_state_t state)
3732{
3733 struct regulator_state *rstate;
3734 int uV, sel;
3735
3736 rstate = regulator_get_suspend_state(rdev, state);
3737 if (rstate == NULL)
3738 return -EINVAL;
3739
3740 if (min_uV < rstate->min_uV)
3741 min_uV = rstate->min_uV;
3742 if (max_uV > rstate->max_uV)
3743 max_uV = rstate->max_uV;
3744
3745 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3746 if (sel < 0)
3747 return sel;
3748
3749 uV = rdev->desc->ops->list_voltage(rdev, sel);
3750 if (uV >= min_uV && uV <= max_uV)
3751 rstate->uV = uV;
3752
3753 return 0;
3754}
3755
3756static int regulator_set_voltage_unlocked(struct regulator *regulator,
3757 int min_uV, int max_uV,
3758 suspend_state_t state)
3759{
3760 struct regulator_dev *rdev = regulator->rdev;
3761 struct regulator_voltage *voltage = ®ulator->voltage[state];
3762 int ret = 0;
3763 int old_min_uV, old_max_uV;
3764 int current_uV;
3765
3766 /* If we're setting the same range as last time the change
3767 * should be a noop (some cpufreq implementations use the same
3768 * voltage for multiple frequencies, for example).
3769 */
3770 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3771 goto out;
3772
3773 /* If we're trying to set a range that overlaps the current voltage,
3774 * return successfully even though the regulator does not support
3775 * changing the voltage.
3776 */
3777 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3778 current_uV = regulator_get_voltage_rdev(rdev);
3779 if (min_uV <= current_uV && current_uV <= max_uV) {
3780 voltage->min_uV = min_uV;
3781 voltage->max_uV = max_uV;
3782 goto out;
3783 }
3784 }
3785
3786 /* sanity check */
3787 if (!rdev->desc->ops->set_voltage &&
3788 !rdev->desc->ops->set_voltage_sel) {
3789 ret = -EINVAL;
3790 goto out;
3791 }
3792
3793 /* constraints check */
3794 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3795 if (ret < 0)
3796 goto out;
3797
3798 /* restore original values in case of error */
3799 old_min_uV = voltage->min_uV;
3800 old_max_uV = voltage->max_uV;
3801 voltage->min_uV = min_uV;
3802 voltage->max_uV = max_uV;
3803
3804 /* for not coupled regulators this will just set the voltage */
3805 ret = regulator_balance_voltage(rdev, state);
3806 if (ret < 0) {
3807 voltage->min_uV = old_min_uV;
3808 voltage->max_uV = old_max_uV;
3809 }
3810
3811out:
3812 return ret;
3813}
3814
3815int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3816 int max_uV, suspend_state_t state)
3817{
3818 int best_supply_uV = 0;
3819 int supply_change_uV = 0;
3820 int ret;
3821
3822 if (rdev->supply &&
3823 regulator_ops_is_valid(rdev->supply->rdev,
3824 REGULATOR_CHANGE_VOLTAGE) &&
3825 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3826 rdev->desc->ops->get_voltage_sel))) {
3827 int current_supply_uV;
3828 int selector;
3829
3830 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3831 if (selector < 0) {
3832 ret = selector;
3833 goto out;
3834 }
3835
3836 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3837 if (best_supply_uV < 0) {
3838 ret = best_supply_uV;
3839 goto out;
3840 }
3841
3842 best_supply_uV += rdev->desc->min_dropout_uV;
3843
3844 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3845 if (current_supply_uV < 0) {
3846 ret = current_supply_uV;
3847 goto out;
3848 }
3849
3850 supply_change_uV = best_supply_uV - current_supply_uV;
3851 }
3852
3853 if (supply_change_uV > 0) {
3854 ret = regulator_set_voltage_unlocked(rdev->supply,
3855 best_supply_uV, INT_MAX, state);
3856 if (ret) {
3857 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3858 ERR_PTR(ret));
3859 goto out;
3860 }
3861 }
3862
3863 if (state == PM_SUSPEND_ON)
3864 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3865 else
3866 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3867 max_uV, state);
3868 if (ret < 0)
3869 goto out;
3870
3871 if (supply_change_uV < 0) {
3872 ret = regulator_set_voltage_unlocked(rdev->supply,
3873 best_supply_uV, INT_MAX, state);
3874 if (ret)
3875 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3876 ERR_PTR(ret));
3877 /* No need to fail here */
3878 ret = 0;
3879 }
3880
3881out:
3882 return ret;
3883}
3884EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3885
3886static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3887 int *current_uV, int *min_uV)
3888{
3889 struct regulation_constraints *constraints = rdev->constraints;
3890
3891 /* Limit voltage change only if necessary */
3892 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3893 return 1;
3894
3895 if (*current_uV < 0) {
3896 *current_uV = regulator_get_voltage_rdev(rdev);
3897
3898 if (*current_uV < 0)
3899 return *current_uV;
3900 }
3901
3902 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3903 return 1;
3904
3905 /* Clamp target voltage within the given step */
3906 if (*current_uV < *min_uV)
3907 *min_uV = min(*current_uV + constraints->max_uV_step,
3908 *min_uV);
3909 else
3910 *min_uV = max(*current_uV - constraints->max_uV_step,
3911 *min_uV);
3912
3913 return 0;
3914}
3915
3916static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3917 int *current_uV,
3918 int *min_uV, int *max_uV,
3919 suspend_state_t state,
3920 int n_coupled)
3921{
3922 struct coupling_desc *c_desc = &rdev->coupling_desc;
3923 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3924 struct regulation_constraints *constraints = rdev->constraints;
3925 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3926 int max_current_uV = 0, min_current_uV = INT_MAX;
3927 int highest_min_uV = 0, target_uV, possible_uV;
3928 int i, ret, max_spread;
3929 bool done;
3930
3931 *current_uV = -1;
3932
3933 /*
3934 * If there are no coupled regulators, simply set the voltage
3935 * demanded by consumers.
3936 */
3937 if (n_coupled == 1) {
3938 /*
3939 * If consumers don't provide any demands, set voltage
3940 * to min_uV
3941 */
3942 desired_min_uV = constraints->min_uV;
3943 desired_max_uV = constraints->max_uV;
3944
3945 ret = regulator_check_consumers(rdev,
3946 &desired_min_uV,
3947 &desired_max_uV, state);
3948 if (ret < 0)
3949 return ret;
3950
3951 done = true;
3952
3953 goto finish;
3954 }
3955
3956 /* Find highest min desired voltage */
3957 for (i = 0; i < n_coupled; i++) {
3958 int tmp_min = 0;
3959 int tmp_max = INT_MAX;
3960
3961 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3962
3963 ret = regulator_check_consumers(c_rdevs[i],
3964 &tmp_min,
3965 &tmp_max, state);
3966 if (ret < 0)
3967 return ret;
3968
3969 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3970 if (ret < 0)
3971 return ret;
3972
3973 highest_min_uV = max(highest_min_uV, tmp_min);
3974
3975 if (i == 0) {
3976 desired_min_uV = tmp_min;
3977 desired_max_uV = tmp_max;
3978 }
3979 }
3980
3981 max_spread = constraints->max_spread[0];
3982
3983 /*
3984 * Let target_uV be equal to the desired one if possible.
3985 * If not, set it to minimum voltage, allowed by other coupled
3986 * regulators.
3987 */
3988 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3989
3990 /*
3991 * Find min and max voltages, which currently aren't violating
3992 * max_spread.
3993 */
3994 for (i = 1; i < n_coupled; i++) {
3995 int tmp_act;
3996
3997 if (!_regulator_is_enabled(c_rdevs[i]))
3998 continue;
3999
4000 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4001 if (tmp_act < 0)
4002 return tmp_act;
4003
4004 min_current_uV = min(tmp_act, min_current_uV);
4005 max_current_uV = max(tmp_act, max_current_uV);
4006 }
4007
4008 /* There aren't any other regulators enabled */
4009 if (max_current_uV == 0) {
4010 possible_uV = target_uV;
4011 } else {
4012 /*
4013 * Correct target voltage, so as it currently isn't
4014 * violating max_spread
4015 */
4016 possible_uV = max(target_uV, max_current_uV - max_spread);
4017 possible_uV = min(possible_uV, min_current_uV + max_spread);
4018 }
4019
4020 if (possible_uV > desired_max_uV)
4021 return -EINVAL;
4022
4023 done = (possible_uV == target_uV);
4024 desired_min_uV = possible_uV;
4025
4026finish:
4027 /* Apply max_uV_step constraint if necessary */
4028 if (state == PM_SUSPEND_ON) {
4029 ret = regulator_limit_voltage_step(rdev, current_uV,
4030 &desired_min_uV);
4031 if (ret < 0)
4032 return ret;
4033
4034 if (ret == 0)
4035 done = false;
4036 }
4037
4038 /* Set current_uV if wasn't done earlier in the code and if necessary */
4039 if (n_coupled > 1 && *current_uV == -1) {
4040
4041 if (_regulator_is_enabled(rdev)) {
4042 ret = regulator_get_voltage_rdev(rdev);
4043 if (ret < 0)
4044 return ret;
4045
4046 *current_uV = ret;
4047 } else {
4048 *current_uV = desired_min_uV;
4049 }
4050 }
4051
4052 *min_uV = desired_min_uV;
4053 *max_uV = desired_max_uV;
4054
4055 return done;
4056}
4057
4058int regulator_do_balance_voltage(struct regulator_dev *rdev,
4059 suspend_state_t state, bool skip_coupled)
4060{
4061 struct regulator_dev **c_rdevs;
4062 struct regulator_dev *best_rdev;
4063 struct coupling_desc *c_desc = &rdev->coupling_desc;
4064 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4065 unsigned int delta, best_delta;
4066 unsigned long c_rdev_done = 0;
4067 bool best_c_rdev_done;
4068
4069 c_rdevs = c_desc->coupled_rdevs;
4070 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4071
4072 /*
4073 * Find the best possible voltage change on each loop. Leave the loop
4074 * if there isn't any possible change.
4075 */
4076 do {
4077 best_c_rdev_done = false;
4078 best_delta = 0;
4079 best_min_uV = 0;
4080 best_max_uV = 0;
4081 best_c_rdev = 0;
4082 best_rdev = NULL;
4083
4084 /*
4085 * Find highest difference between optimal voltage
4086 * and current voltage.
4087 */
4088 for (i = 0; i < n_coupled; i++) {
4089 /*
4090 * optimal_uV is the best voltage that can be set for
4091 * i-th regulator at the moment without violating
4092 * max_spread constraint in order to balance
4093 * the coupled voltages.
4094 */
4095 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4096
4097 if (test_bit(i, &c_rdev_done))
4098 continue;
4099
4100 ret = regulator_get_optimal_voltage(c_rdevs[i],
4101 ¤t_uV,
4102 &optimal_uV,
4103 &optimal_max_uV,
4104 state, n_coupled);
4105 if (ret < 0)
4106 goto out;
4107
4108 delta = abs(optimal_uV - current_uV);
4109
4110 if (delta && best_delta <= delta) {
4111 best_c_rdev_done = ret;
4112 best_delta = delta;
4113 best_rdev = c_rdevs[i];
4114 best_min_uV = optimal_uV;
4115 best_max_uV = optimal_max_uV;
4116 best_c_rdev = i;
4117 }
4118 }
4119
4120 /* Nothing to change, return successfully */
4121 if (!best_rdev) {
4122 ret = 0;
4123 goto out;
4124 }
4125
4126 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4127 best_max_uV, state);
4128
4129 if (ret < 0)
4130 goto out;
4131
4132 if (best_c_rdev_done)
4133 set_bit(best_c_rdev, &c_rdev_done);
4134
4135 } while (n_coupled > 1);
4136
4137out:
4138 return ret;
4139}
4140
4141static int regulator_balance_voltage(struct regulator_dev *rdev,
4142 suspend_state_t state)
4143{
4144 struct coupling_desc *c_desc = &rdev->coupling_desc;
4145 struct regulator_coupler *coupler = c_desc->coupler;
4146 bool skip_coupled = false;
4147
4148 /*
4149 * If system is in a state other than PM_SUSPEND_ON, don't check
4150 * other coupled regulators.
4151 */
4152 if (state != PM_SUSPEND_ON)
4153 skip_coupled = true;
4154
4155 if (c_desc->n_resolved < c_desc->n_coupled) {
4156 rdev_err(rdev, "Not all coupled regulators registered\n");
4157 return -EPERM;
4158 }
4159
4160 /* Invoke custom balancer for customized couplers */
4161 if (coupler && coupler->balance_voltage)
4162 return coupler->balance_voltage(coupler, rdev, state);
4163
4164 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4165}
4166
4167/**
4168 * regulator_set_voltage - set regulator output voltage
4169 * @regulator: regulator source
4170 * @min_uV: Minimum required voltage in uV
4171 * @max_uV: Maximum acceptable voltage in uV
4172 *
4173 * Sets a voltage regulator to the desired output voltage. This can be set
4174 * during any regulator state. IOW, regulator can be disabled or enabled.
4175 *
4176 * If the regulator is enabled then the voltage will change to the new value
4177 * immediately otherwise if the regulator is disabled the regulator will
4178 * output at the new voltage when enabled.
4179 *
4180 * NOTE: If the regulator is shared between several devices then the lowest
4181 * request voltage that meets the system constraints will be used.
4182 * Regulator system constraints must be set for this regulator before
4183 * calling this function otherwise this call will fail.
4184 */
4185int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4186{
4187 struct ww_acquire_ctx ww_ctx;
4188 int ret;
4189
4190 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4191
4192 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4193 PM_SUSPEND_ON);
4194
4195 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4196
4197 return ret;
4198}
4199EXPORT_SYMBOL_GPL(regulator_set_voltage);
4200
4201static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4202 suspend_state_t state, bool en)
4203{
4204 struct regulator_state *rstate;
4205
4206 rstate = regulator_get_suspend_state(rdev, state);
4207 if (rstate == NULL)
4208 return -EINVAL;
4209
4210 if (!rstate->changeable)
4211 return -EPERM;
4212
4213 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4214
4215 return 0;
4216}
4217
4218int regulator_suspend_enable(struct regulator_dev *rdev,
4219 suspend_state_t state)
4220{
4221 return regulator_suspend_toggle(rdev, state, true);
4222}
4223EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4224
4225int regulator_suspend_disable(struct regulator_dev *rdev,
4226 suspend_state_t state)
4227{
4228 struct regulator *regulator;
4229 struct regulator_voltage *voltage;
4230
4231 /*
4232 * if any consumer wants this regulator device keeping on in
4233 * suspend states, don't set it as disabled.
4234 */
4235 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4236 voltage = ®ulator->voltage[state];
4237 if (voltage->min_uV || voltage->max_uV)
4238 return 0;
4239 }
4240
4241 return regulator_suspend_toggle(rdev, state, false);
4242}
4243EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4244
4245static int _regulator_set_suspend_voltage(struct regulator *regulator,
4246 int min_uV, int max_uV,
4247 suspend_state_t state)
4248{
4249 struct regulator_dev *rdev = regulator->rdev;
4250 struct regulator_state *rstate;
4251
4252 rstate = regulator_get_suspend_state(rdev, state);
4253 if (rstate == NULL)
4254 return -EINVAL;
4255
4256 if (rstate->min_uV == rstate->max_uV) {
4257 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4258 return -EPERM;
4259 }
4260
4261 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4262}
4263
4264int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4265 int max_uV, suspend_state_t state)
4266{
4267 struct ww_acquire_ctx ww_ctx;
4268 int ret;
4269
4270 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4271 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4272 return -EINVAL;
4273
4274 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4275
4276 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4277 max_uV, state);
4278
4279 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4280
4281 return ret;
4282}
4283EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4284
4285/**
4286 * regulator_set_voltage_time - get raise/fall time
4287 * @regulator: regulator source
4288 * @old_uV: starting voltage in microvolts
4289 * @new_uV: target voltage in microvolts
4290 *
4291 * Provided with the starting and ending voltage, this function attempts to
4292 * calculate the time in microseconds required to rise or fall to this new
4293 * voltage.
4294 */
4295int regulator_set_voltage_time(struct regulator *regulator,
4296 int old_uV, int new_uV)
4297{
4298 struct regulator_dev *rdev = regulator->rdev;
4299 const struct regulator_ops *ops = rdev->desc->ops;
4300 int old_sel = -1;
4301 int new_sel = -1;
4302 int voltage;
4303 int i;
4304
4305 if (ops->set_voltage_time)
4306 return ops->set_voltage_time(rdev, old_uV, new_uV);
4307 else if (!ops->set_voltage_time_sel)
4308 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4309
4310 /* Currently requires operations to do this */
4311 if (!ops->list_voltage || !rdev->desc->n_voltages)
4312 return -EINVAL;
4313
4314 for (i = 0; i < rdev->desc->n_voltages; i++) {
4315 /* We only look for exact voltage matches here */
4316 if (i < rdev->desc->linear_min_sel)
4317 continue;
4318
4319 if (old_sel >= 0 && new_sel >= 0)
4320 break;
4321
4322 voltage = regulator_list_voltage(regulator, i);
4323 if (voltage < 0)
4324 return -EINVAL;
4325 if (voltage == 0)
4326 continue;
4327 if (voltage == old_uV)
4328 old_sel = i;
4329 if (voltage == new_uV)
4330 new_sel = i;
4331 }
4332
4333 if (old_sel < 0 || new_sel < 0)
4334 return -EINVAL;
4335
4336 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4337}
4338EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4339
4340/**
4341 * regulator_set_voltage_time_sel - get raise/fall time
4342 * @rdev: regulator source device
4343 * @old_selector: selector for starting voltage
4344 * @new_selector: selector for target voltage
4345 *
4346 * Provided with the starting and target voltage selectors, this function
4347 * returns time in microseconds required to rise or fall to this new voltage
4348 *
4349 * Drivers providing ramp_delay in regulation_constraints can use this as their
4350 * set_voltage_time_sel() operation.
4351 */
4352int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4353 unsigned int old_selector,
4354 unsigned int new_selector)
4355{
4356 int old_volt, new_volt;
4357
4358 /* sanity check */
4359 if (!rdev->desc->ops->list_voltage)
4360 return -EINVAL;
4361
4362 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4363 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4364
4365 if (rdev->desc->ops->set_voltage_time)
4366 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4367 new_volt);
4368 else
4369 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4370}
4371EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4372
4373int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4374{
4375 int ret;
4376
4377 regulator_lock(rdev);
4378
4379 if (!rdev->desc->ops->set_voltage &&
4380 !rdev->desc->ops->set_voltage_sel) {
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
4385 /* balance only, if regulator is coupled */
4386 if (rdev->coupling_desc.n_coupled > 1)
4387 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4388 else
4389 ret = -EOPNOTSUPP;
4390
4391out:
4392 regulator_unlock(rdev);
4393 return ret;
4394}
4395
4396/**
4397 * regulator_sync_voltage - re-apply last regulator output voltage
4398 * @regulator: regulator source
4399 *
4400 * Re-apply the last configured voltage. This is intended to be used
4401 * where some external control source the consumer is cooperating with
4402 * has caused the configured voltage to change.
4403 */
4404int regulator_sync_voltage(struct regulator *regulator)
4405{
4406 struct regulator_dev *rdev = regulator->rdev;
4407 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4408 int ret, min_uV, max_uV;
4409
4410 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4411 return 0;
4412
4413 regulator_lock(rdev);
4414
4415 if (!rdev->desc->ops->set_voltage &&
4416 !rdev->desc->ops->set_voltage_sel) {
4417 ret = -EINVAL;
4418 goto out;
4419 }
4420
4421 /* This is only going to work if we've had a voltage configured. */
4422 if (!voltage->min_uV && !voltage->max_uV) {
4423 ret = -EINVAL;
4424 goto out;
4425 }
4426
4427 min_uV = voltage->min_uV;
4428 max_uV = voltage->max_uV;
4429
4430 /* This should be a paranoia check... */
4431 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4432 if (ret < 0)
4433 goto out;
4434
4435 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4436 if (ret < 0)
4437 goto out;
4438
4439 /* balance only, if regulator is coupled */
4440 if (rdev->coupling_desc.n_coupled > 1)
4441 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4442 else
4443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4444
4445out:
4446 regulator_unlock(rdev);
4447 return ret;
4448}
4449EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4450
4451int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4452{
4453 int sel, ret;
4454 bool bypassed;
4455
4456 if (rdev->desc->ops->get_bypass) {
4457 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4458 if (ret < 0)
4459 return ret;
4460 if (bypassed) {
4461 /* if bypassed the regulator must have a supply */
4462 if (!rdev->supply) {
4463 rdev_err(rdev,
4464 "bypassed regulator has no supply!\n");
4465 return -EPROBE_DEFER;
4466 }
4467
4468 return regulator_get_voltage_rdev(rdev->supply->rdev);
4469 }
4470 }
4471
4472 if (rdev->desc->ops->get_voltage_sel) {
4473 sel = rdev->desc->ops->get_voltage_sel(rdev);
4474 if (sel < 0)
4475 return sel;
4476 ret = rdev->desc->ops->list_voltage(rdev, sel);
4477 } else if (rdev->desc->ops->get_voltage) {
4478 ret = rdev->desc->ops->get_voltage(rdev);
4479 } else if (rdev->desc->ops->list_voltage) {
4480 ret = rdev->desc->ops->list_voltage(rdev, 0);
4481 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4482 ret = rdev->desc->fixed_uV;
4483 } else if (rdev->supply) {
4484 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4485 } else if (rdev->supply_name) {
4486 return -EPROBE_DEFER;
4487 } else {
4488 return -EINVAL;
4489 }
4490
4491 if (ret < 0)
4492 return ret;
4493 return ret - rdev->constraints->uV_offset;
4494}
4495EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4496
4497/**
4498 * regulator_get_voltage - get regulator output voltage
4499 * @regulator: regulator source
4500 *
4501 * This returns the current regulator voltage in uV.
4502 *
4503 * NOTE: If the regulator is disabled it will return the voltage value. This
4504 * function should not be used to determine regulator state.
4505 */
4506int regulator_get_voltage(struct regulator *regulator)
4507{
4508 struct ww_acquire_ctx ww_ctx;
4509 int ret;
4510
4511 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4512 ret = regulator_get_voltage_rdev(regulator->rdev);
4513 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4514
4515 return ret;
4516}
4517EXPORT_SYMBOL_GPL(regulator_get_voltage);
4518
4519/**
4520 * regulator_set_current_limit - set regulator output current limit
4521 * @regulator: regulator source
4522 * @min_uA: Minimum supported current in uA
4523 * @max_uA: Maximum supported current in uA
4524 *
4525 * Sets current sink to the desired output current. This can be set during
4526 * any regulator state. IOW, regulator can be disabled or enabled.
4527 *
4528 * If the regulator is enabled then the current will change to the new value
4529 * immediately otherwise if the regulator is disabled the regulator will
4530 * output at the new current when enabled.
4531 *
4532 * NOTE: Regulator system constraints must be set for this regulator before
4533 * calling this function otherwise this call will fail.
4534 */
4535int regulator_set_current_limit(struct regulator *regulator,
4536 int min_uA, int max_uA)
4537{
4538 struct regulator_dev *rdev = regulator->rdev;
4539 int ret;
4540
4541 regulator_lock(rdev);
4542
4543 /* sanity check */
4544 if (!rdev->desc->ops->set_current_limit) {
4545 ret = -EINVAL;
4546 goto out;
4547 }
4548
4549 /* constraints check */
4550 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4551 if (ret < 0)
4552 goto out;
4553
4554 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4555out:
4556 regulator_unlock(rdev);
4557 return ret;
4558}
4559EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4560
4561static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4562{
4563 /* sanity check */
4564 if (!rdev->desc->ops->get_current_limit)
4565 return -EINVAL;
4566
4567 return rdev->desc->ops->get_current_limit(rdev);
4568}
4569
4570static int _regulator_get_current_limit(struct regulator_dev *rdev)
4571{
4572 int ret;
4573
4574 regulator_lock(rdev);
4575 ret = _regulator_get_current_limit_unlocked(rdev);
4576 regulator_unlock(rdev);
4577
4578 return ret;
4579}
4580
4581/**
4582 * regulator_get_current_limit - get regulator output current
4583 * @regulator: regulator source
4584 *
4585 * This returns the current supplied by the specified current sink in uA.
4586 *
4587 * NOTE: If the regulator is disabled it will return the current value. This
4588 * function should not be used to determine regulator state.
4589 */
4590int regulator_get_current_limit(struct regulator *regulator)
4591{
4592 return _regulator_get_current_limit(regulator->rdev);
4593}
4594EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4595
4596/**
4597 * regulator_set_mode - set regulator operating mode
4598 * @regulator: regulator source
4599 * @mode: operating mode - one of the REGULATOR_MODE constants
4600 *
4601 * Set regulator operating mode to increase regulator efficiency or improve
4602 * regulation performance.
4603 *
4604 * NOTE: Regulator system constraints must be set for this regulator before
4605 * calling this function otherwise this call will fail.
4606 */
4607int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4608{
4609 struct regulator_dev *rdev = regulator->rdev;
4610 int ret;
4611 int regulator_curr_mode;
4612
4613 regulator_lock(rdev);
4614
4615 /* sanity check */
4616 if (!rdev->desc->ops->set_mode) {
4617 ret = -EINVAL;
4618 goto out;
4619 }
4620
4621 /* return if the same mode is requested */
4622 if (rdev->desc->ops->get_mode) {
4623 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4624 if (regulator_curr_mode == mode) {
4625 ret = 0;
4626 goto out;
4627 }
4628 }
4629
4630 /* constraints check */
4631 ret = regulator_mode_constrain(rdev, &mode);
4632 if (ret < 0)
4633 goto out;
4634
4635 ret = rdev->desc->ops->set_mode(rdev, mode);
4636out:
4637 regulator_unlock(rdev);
4638 return ret;
4639}
4640EXPORT_SYMBOL_GPL(regulator_set_mode);
4641
4642static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4643{
4644 /* sanity check */
4645 if (!rdev->desc->ops->get_mode)
4646 return -EINVAL;
4647
4648 return rdev->desc->ops->get_mode(rdev);
4649}
4650
4651static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4652{
4653 int ret;
4654
4655 regulator_lock(rdev);
4656 ret = _regulator_get_mode_unlocked(rdev);
4657 regulator_unlock(rdev);
4658
4659 return ret;
4660}
4661
4662/**
4663 * regulator_get_mode - get regulator operating mode
4664 * @regulator: regulator source
4665 *
4666 * Get the current regulator operating mode.
4667 */
4668unsigned int regulator_get_mode(struct regulator *regulator)
4669{
4670 return _regulator_get_mode(regulator->rdev);
4671}
4672EXPORT_SYMBOL_GPL(regulator_get_mode);
4673
4674static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4675{
4676 int ret = 0;
4677
4678 if (rdev->use_cached_err) {
4679 spin_lock(&rdev->err_lock);
4680 ret = rdev->cached_err;
4681 spin_unlock(&rdev->err_lock);
4682 }
4683 return ret;
4684}
4685
4686static int _regulator_get_error_flags(struct regulator_dev *rdev,
4687 unsigned int *flags)
4688{
4689 int cached_flags, ret = 0;
4690
4691 regulator_lock(rdev);
4692
4693 cached_flags = rdev_get_cached_err_flags(rdev);
4694
4695 if (rdev->desc->ops->get_error_flags)
4696 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4697 else if (!rdev->use_cached_err)
4698 ret = -EINVAL;
4699
4700 *flags |= cached_flags;
4701
4702 regulator_unlock(rdev);
4703
4704 return ret;
4705}
4706
4707/**
4708 * regulator_get_error_flags - get regulator error information
4709 * @regulator: regulator source
4710 * @flags: pointer to store error flags
4711 *
4712 * Get the current regulator error information.
4713 */
4714int regulator_get_error_flags(struct regulator *regulator,
4715 unsigned int *flags)
4716{
4717 return _regulator_get_error_flags(regulator->rdev, flags);
4718}
4719EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4720
4721/**
4722 * regulator_set_load - set regulator load
4723 * @regulator: regulator source
4724 * @uA_load: load current
4725 *
4726 * Notifies the regulator core of a new device load. This is then used by
4727 * DRMS (if enabled by constraints) to set the most efficient regulator
4728 * operating mode for the new regulator loading.
4729 *
4730 * Consumer devices notify their supply regulator of the maximum power
4731 * they will require (can be taken from device datasheet in the power
4732 * consumption tables) when they change operational status and hence power
4733 * state. Examples of operational state changes that can affect power
4734 * consumption are :-
4735 *
4736 * o Device is opened / closed.
4737 * o Device I/O is about to begin or has just finished.
4738 * o Device is idling in between work.
4739 *
4740 * This information is also exported via sysfs to userspace.
4741 *
4742 * DRMS will sum the total requested load on the regulator and change
4743 * to the most efficient operating mode if platform constraints allow.
4744 *
4745 * NOTE: when a regulator consumer requests to have a regulator
4746 * disabled then any load that consumer requested no longer counts
4747 * toward the total requested load. If the regulator is re-enabled
4748 * then the previously requested load will start counting again.
4749 *
4750 * If a regulator is an always-on regulator then an individual consumer's
4751 * load will still be removed if that consumer is fully disabled.
4752 *
4753 * On error a negative errno is returned.
4754 */
4755int regulator_set_load(struct regulator *regulator, int uA_load)
4756{
4757 struct regulator_dev *rdev = regulator->rdev;
4758 int old_uA_load;
4759 int ret = 0;
4760
4761 regulator_lock(rdev);
4762 old_uA_load = regulator->uA_load;
4763 regulator->uA_load = uA_load;
4764 if (regulator->enable_count && old_uA_load != uA_load) {
4765 ret = drms_uA_update(rdev);
4766 if (ret < 0)
4767 regulator->uA_load = old_uA_load;
4768 }
4769 regulator_unlock(rdev);
4770
4771 return ret;
4772}
4773EXPORT_SYMBOL_GPL(regulator_set_load);
4774
4775/**
4776 * regulator_allow_bypass - allow the regulator to go into bypass mode
4777 *
4778 * @regulator: Regulator to configure
4779 * @enable: enable or disable bypass mode
4780 *
4781 * Allow the regulator to go into bypass mode if all other consumers
4782 * for the regulator also enable bypass mode and the machine
4783 * constraints allow this. Bypass mode means that the regulator is
4784 * simply passing the input directly to the output with no regulation.
4785 */
4786int regulator_allow_bypass(struct regulator *regulator, bool enable)
4787{
4788 struct regulator_dev *rdev = regulator->rdev;
4789 const char *name = rdev_get_name(rdev);
4790 int ret = 0;
4791
4792 if (!rdev->desc->ops->set_bypass)
4793 return 0;
4794
4795 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4796 return 0;
4797
4798 regulator_lock(rdev);
4799
4800 if (enable && !regulator->bypass) {
4801 rdev->bypass_count++;
4802
4803 if (rdev->bypass_count == rdev->open_count) {
4804 trace_regulator_bypass_enable(name);
4805
4806 ret = rdev->desc->ops->set_bypass(rdev, enable);
4807 if (ret != 0)
4808 rdev->bypass_count--;
4809 else
4810 trace_regulator_bypass_enable_complete(name);
4811 }
4812
4813 } else if (!enable && regulator->bypass) {
4814 rdev->bypass_count--;
4815
4816 if (rdev->bypass_count != rdev->open_count) {
4817 trace_regulator_bypass_disable(name);
4818
4819 ret = rdev->desc->ops->set_bypass(rdev, enable);
4820 if (ret != 0)
4821 rdev->bypass_count++;
4822 else
4823 trace_regulator_bypass_disable_complete(name);
4824 }
4825 }
4826
4827 if (ret == 0)
4828 regulator->bypass = enable;
4829
4830 regulator_unlock(rdev);
4831
4832 return ret;
4833}
4834EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4835
4836/**
4837 * regulator_register_notifier - register regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Register notifier block to receive regulator events.
4842 */
4843int regulator_register_notifier(struct regulator *regulator,
4844 struct notifier_block *nb)
4845{
4846 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4847 nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_register_notifier);
4850
4851/**
4852 * regulator_unregister_notifier - unregister regulator event notifier
4853 * @regulator: regulator source
4854 * @nb: notifier block
4855 *
4856 * Unregister regulator event notifier block.
4857 */
4858int regulator_unregister_notifier(struct regulator *regulator,
4859 struct notifier_block *nb)
4860{
4861 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4862 nb);
4863}
4864EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4865
4866/* notify regulator consumers and downstream regulator consumers.
4867 * Note mutex must be held by caller.
4868 */
4869static int _notifier_call_chain(struct regulator_dev *rdev,
4870 unsigned long event, void *data)
4871{
4872 /* call rdev chain first */
4873 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4874
4875 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4876 struct device *parent = rdev->dev.parent;
4877 const char *rname = rdev_get_name(rdev);
4878 char name[32];
4879
4880 /* Avoid duplicate debugfs directory names */
4881 if (parent && rname == rdev->desc->name) {
4882 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4883 rname);
4884 rname = name;
4885 }
4886 reg_generate_netlink_event(rname, event);
4887 }
4888
4889 return ret;
4890}
4891
4892int _regulator_bulk_get(struct device *dev, int num_consumers,
4893 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4894{
4895 int i;
4896 int ret;
4897
4898 for (i = 0; i < num_consumers; i++)
4899 consumers[i].consumer = NULL;
4900
4901 for (i = 0; i < num_consumers; i++) {
4902 consumers[i].consumer = _regulator_get(dev,
4903 consumers[i].supply, get_type);
4904 if (IS_ERR(consumers[i].consumer)) {
4905 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4906 "Failed to get supply '%s'",
4907 consumers[i].supply);
4908 consumers[i].consumer = NULL;
4909 goto err;
4910 }
4911
4912 if (consumers[i].init_load_uA > 0) {
4913 ret = regulator_set_load(consumers[i].consumer,
4914 consumers[i].init_load_uA);
4915 if (ret) {
4916 i++;
4917 goto err;
4918 }
4919 }
4920 }
4921
4922 return 0;
4923
4924err:
4925 while (--i >= 0)
4926 regulator_put(consumers[i].consumer);
4927
4928 return ret;
4929}
4930
4931/**
4932 * regulator_bulk_get - get multiple regulator consumers
4933 *
4934 * @dev: Device to supply
4935 * @num_consumers: Number of consumers to register
4936 * @consumers: Configuration of consumers; clients are stored here.
4937 *
4938 * @return 0 on success, an errno on failure.
4939 *
4940 * This helper function allows drivers to get several regulator
4941 * consumers in one operation. If any of the regulators cannot be
4942 * acquired then any regulators that were allocated will be freed
4943 * before returning to the caller.
4944 */
4945int regulator_bulk_get(struct device *dev, int num_consumers,
4946 struct regulator_bulk_data *consumers)
4947{
4948 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4949}
4950EXPORT_SYMBOL_GPL(regulator_bulk_get);
4951
4952static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4953{
4954 struct regulator_bulk_data *bulk = data;
4955
4956 bulk->ret = regulator_enable(bulk->consumer);
4957}
4958
4959/**
4960 * regulator_bulk_enable - enable multiple regulator consumers
4961 *
4962 * @num_consumers: Number of consumers
4963 * @consumers: Consumer data; clients are stored here.
4964 * @return 0 on success, an errno on failure
4965 *
4966 * This convenience API allows consumers to enable multiple regulator
4967 * clients in a single API call. If any consumers cannot be enabled
4968 * then any others that were enabled will be disabled again prior to
4969 * return.
4970 */
4971int regulator_bulk_enable(int num_consumers,
4972 struct regulator_bulk_data *consumers)
4973{
4974 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4975 int i;
4976 int ret = 0;
4977
4978 for (i = 0; i < num_consumers; i++) {
4979 async_schedule_domain(regulator_bulk_enable_async,
4980 &consumers[i], &async_domain);
4981 }
4982
4983 async_synchronize_full_domain(&async_domain);
4984
4985 /* If any consumer failed we need to unwind any that succeeded */
4986 for (i = 0; i < num_consumers; i++) {
4987 if (consumers[i].ret != 0) {
4988 ret = consumers[i].ret;
4989 goto err;
4990 }
4991 }
4992
4993 return 0;
4994
4995err:
4996 for (i = 0; i < num_consumers; i++) {
4997 if (consumers[i].ret < 0)
4998 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4999 ERR_PTR(consumers[i].ret));
5000 else
5001 regulator_disable(consumers[i].consumer);
5002 }
5003
5004 return ret;
5005}
5006EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5007
5008/**
5009 * regulator_bulk_disable - disable multiple regulator consumers
5010 *
5011 * @num_consumers: Number of consumers
5012 * @consumers: Consumer data; clients are stored here.
5013 * @return 0 on success, an errno on failure
5014 *
5015 * This convenience API allows consumers to disable multiple regulator
5016 * clients in a single API call. If any consumers cannot be disabled
5017 * then any others that were disabled will be enabled again prior to
5018 * return.
5019 */
5020int regulator_bulk_disable(int num_consumers,
5021 struct regulator_bulk_data *consumers)
5022{
5023 int i;
5024 int ret, r;
5025
5026 for (i = num_consumers - 1; i >= 0; --i) {
5027 ret = regulator_disable(consumers[i].consumer);
5028 if (ret != 0)
5029 goto err;
5030 }
5031
5032 return 0;
5033
5034err:
5035 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5036 for (++i; i < num_consumers; ++i) {
5037 r = regulator_enable(consumers[i].consumer);
5038 if (r != 0)
5039 pr_err("Failed to re-enable %s: %pe\n",
5040 consumers[i].supply, ERR_PTR(r));
5041 }
5042
5043 return ret;
5044}
5045EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5046
5047/**
5048 * regulator_bulk_force_disable - force disable multiple regulator consumers
5049 *
5050 * @num_consumers: Number of consumers
5051 * @consumers: Consumer data; clients are stored here.
5052 * @return 0 on success, an errno on failure
5053 *
5054 * This convenience API allows consumers to forcibly disable multiple regulator
5055 * clients in a single API call.
5056 * NOTE: This should be used for situations when device damage will
5057 * likely occur if the regulators are not disabled (e.g. over temp).
5058 * Although regulator_force_disable function call for some consumers can
5059 * return error numbers, the function is called for all consumers.
5060 */
5061int regulator_bulk_force_disable(int num_consumers,
5062 struct regulator_bulk_data *consumers)
5063{
5064 int i;
5065 int ret = 0;
5066
5067 for (i = 0; i < num_consumers; i++) {
5068 consumers[i].ret =
5069 regulator_force_disable(consumers[i].consumer);
5070
5071 /* Store first error for reporting */
5072 if (consumers[i].ret && !ret)
5073 ret = consumers[i].ret;
5074 }
5075
5076 return ret;
5077}
5078EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5079
5080/**
5081 * regulator_bulk_free - free multiple regulator consumers
5082 *
5083 * @num_consumers: Number of consumers
5084 * @consumers: Consumer data; clients are stored here.
5085 *
5086 * This convenience API allows consumers to free multiple regulator
5087 * clients in a single API call.
5088 */
5089void regulator_bulk_free(int num_consumers,
5090 struct regulator_bulk_data *consumers)
5091{
5092 int i;
5093
5094 for (i = 0; i < num_consumers; i++) {
5095 regulator_put(consumers[i].consumer);
5096 consumers[i].consumer = NULL;
5097 }
5098}
5099EXPORT_SYMBOL_GPL(regulator_bulk_free);
5100
5101/**
5102 * regulator_handle_critical - Handle events for system-critical regulators.
5103 * @rdev: The regulator device.
5104 * @event: The event being handled.
5105 *
5106 * This function handles critical events such as under-voltage, over-current,
5107 * and unknown errors for regulators deemed system-critical. On detecting such
5108 * events, it triggers a hardware protection shutdown with a defined timeout.
5109 */
5110static void regulator_handle_critical(struct regulator_dev *rdev,
5111 unsigned long event)
5112{
5113 const char *reason = NULL;
5114
5115 if (!rdev->constraints->system_critical)
5116 return;
5117
5118 switch (event) {
5119 case REGULATOR_EVENT_UNDER_VOLTAGE:
5120 reason = "System critical regulator: voltage drop detected";
5121 break;
5122 case REGULATOR_EVENT_OVER_CURRENT:
5123 reason = "System critical regulator: over-current detected";
5124 break;
5125 case REGULATOR_EVENT_FAIL:
5126 reason = "System critical regulator: unknown error";
5127 }
5128
5129 if (!reason)
5130 return;
5131
5132 hw_protection_shutdown(reason,
5133 rdev->constraints->uv_less_critical_window_ms);
5134}
5135
5136/**
5137 * regulator_notifier_call_chain - call regulator event notifier
5138 * @rdev: regulator source
5139 * @event: notifier block
5140 * @data: callback-specific data.
5141 *
5142 * Called by regulator drivers to notify clients a regulator event has
5143 * occurred.
5144 */
5145int regulator_notifier_call_chain(struct regulator_dev *rdev,
5146 unsigned long event, void *data)
5147{
5148 regulator_handle_critical(rdev, event);
5149
5150 _notifier_call_chain(rdev, event, data);
5151 return NOTIFY_DONE;
5152
5153}
5154EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5155
5156/**
5157 * regulator_mode_to_status - convert a regulator mode into a status
5158 *
5159 * @mode: Mode to convert
5160 *
5161 * Convert a regulator mode into a status.
5162 */
5163int regulator_mode_to_status(unsigned int mode)
5164{
5165 switch (mode) {
5166 case REGULATOR_MODE_FAST:
5167 return REGULATOR_STATUS_FAST;
5168 case REGULATOR_MODE_NORMAL:
5169 return REGULATOR_STATUS_NORMAL;
5170 case REGULATOR_MODE_IDLE:
5171 return REGULATOR_STATUS_IDLE;
5172 case REGULATOR_MODE_STANDBY:
5173 return REGULATOR_STATUS_STANDBY;
5174 default:
5175 return REGULATOR_STATUS_UNDEFINED;
5176 }
5177}
5178EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5179
5180static struct attribute *regulator_dev_attrs[] = {
5181 &dev_attr_name.attr,
5182 &dev_attr_num_users.attr,
5183 &dev_attr_type.attr,
5184 &dev_attr_microvolts.attr,
5185 &dev_attr_microamps.attr,
5186 &dev_attr_opmode.attr,
5187 &dev_attr_state.attr,
5188 &dev_attr_status.attr,
5189 &dev_attr_bypass.attr,
5190 &dev_attr_requested_microamps.attr,
5191 &dev_attr_min_microvolts.attr,
5192 &dev_attr_max_microvolts.attr,
5193 &dev_attr_min_microamps.attr,
5194 &dev_attr_max_microamps.attr,
5195 &dev_attr_under_voltage.attr,
5196 &dev_attr_over_current.attr,
5197 &dev_attr_regulation_out.attr,
5198 &dev_attr_fail.attr,
5199 &dev_attr_over_temp.attr,
5200 &dev_attr_under_voltage_warn.attr,
5201 &dev_attr_over_current_warn.attr,
5202 &dev_attr_over_voltage_warn.attr,
5203 &dev_attr_over_temp_warn.attr,
5204 &dev_attr_suspend_standby_state.attr,
5205 &dev_attr_suspend_mem_state.attr,
5206 &dev_attr_suspend_disk_state.attr,
5207 &dev_attr_suspend_standby_microvolts.attr,
5208 &dev_attr_suspend_mem_microvolts.attr,
5209 &dev_attr_suspend_disk_microvolts.attr,
5210 &dev_attr_suspend_standby_mode.attr,
5211 &dev_attr_suspend_mem_mode.attr,
5212 &dev_attr_suspend_disk_mode.attr,
5213 NULL
5214};
5215
5216/*
5217 * To avoid cluttering sysfs (and memory) with useless state, only
5218 * create attributes that can be meaningfully displayed.
5219 */
5220static umode_t regulator_attr_is_visible(struct kobject *kobj,
5221 struct attribute *attr, int idx)
5222{
5223 struct device *dev = kobj_to_dev(kobj);
5224 struct regulator_dev *rdev = dev_to_rdev(dev);
5225 const struct regulator_ops *ops = rdev->desc->ops;
5226 umode_t mode = attr->mode;
5227
5228 /* these three are always present */
5229 if (attr == &dev_attr_name.attr ||
5230 attr == &dev_attr_num_users.attr ||
5231 attr == &dev_attr_type.attr)
5232 return mode;
5233
5234 /* some attributes need specific methods to be displayed */
5235 if (attr == &dev_attr_microvolts.attr) {
5236 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5237 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5238 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5239 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5240 return mode;
5241 return 0;
5242 }
5243
5244 if (attr == &dev_attr_microamps.attr)
5245 return ops->get_current_limit ? mode : 0;
5246
5247 if (attr == &dev_attr_opmode.attr)
5248 return ops->get_mode ? mode : 0;
5249
5250 if (attr == &dev_attr_state.attr)
5251 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5252
5253 if (attr == &dev_attr_status.attr)
5254 return ops->get_status ? mode : 0;
5255
5256 if (attr == &dev_attr_bypass.attr)
5257 return ops->get_bypass ? mode : 0;
5258
5259 if (attr == &dev_attr_under_voltage.attr ||
5260 attr == &dev_attr_over_current.attr ||
5261 attr == &dev_attr_regulation_out.attr ||
5262 attr == &dev_attr_fail.attr ||
5263 attr == &dev_attr_over_temp.attr ||
5264 attr == &dev_attr_under_voltage_warn.attr ||
5265 attr == &dev_attr_over_current_warn.attr ||
5266 attr == &dev_attr_over_voltage_warn.attr ||
5267 attr == &dev_attr_over_temp_warn.attr)
5268 return ops->get_error_flags ? mode : 0;
5269
5270 /* constraints need specific supporting methods */
5271 if (attr == &dev_attr_min_microvolts.attr ||
5272 attr == &dev_attr_max_microvolts.attr)
5273 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5274
5275 if (attr == &dev_attr_min_microamps.attr ||
5276 attr == &dev_attr_max_microamps.attr)
5277 return ops->set_current_limit ? mode : 0;
5278
5279 if (attr == &dev_attr_suspend_standby_state.attr ||
5280 attr == &dev_attr_suspend_mem_state.attr ||
5281 attr == &dev_attr_suspend_disk_state.attr)
5282 return mode;
5283
5284 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5285 attr == &dev_attr_suspend_mem_microvolts.attr ||
5286 attr == &dev_attr_suspend_disk_microvolts.attr)
5287 return ops->set_suspend_voltage ? mode : 0;
5288
5289 if (attr == &dev_attr_suspend_standby_mode.attr ||
5290 attr == &dev_attr_suspend_mem_mode.attr ||
5291 attr == &dev_attr_suspend_disk_mode.attr)
5292 return ops->set_suspend_mode ? mode : 0;
5293
5294 return mode;
5295}
5296
5297static const struct attribute_group regulator_dev_group = {
5298 .attrs = regulator_dev_attrs,
5299 .is_visible = regulator_attr_is_visible,
5300};
5301
5302static const struct attribute_group *regulator_dev_groups[] = {
5303 ®ulator_dev_group,
5304 NULL
5305};
5306
5307static void regulator_dev_release(struct device *dev)
5308{
5309 struct regulator_dev *rdev = dev_get_drvdata(dev);
5310
5311 debugfs_remove_recursive(rdev->debugfs);
5312 kfree(rdev->constraints);
5313 of_node_put(rdev->dev.of_node);
5314 kfree(rdev);
5315}
5316
5317static void rdev_init_debugfs(struct regulator_dev *rdev)
5318{
5319 struct device *parent = rdev->dev.parent;
5320 const char *rname = rdev_get_name(rdev);
5321 char name[NAME_MAX];
5322
5323 /* Avoid duplicate debugfs directory names */
5324 if (parent && rname == rdev->desc->name) {
5325 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5326 rname);
5327 rname = name;
5328 }
5329
5330 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5331 if (IS_ERR(rdev->debugfs))
5332 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5333
5334 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5335 &rdev->use_count);
5336 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5337 &rdev->open_count);
5338 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5339 &rdev->bypass_count);
5340}
5341
5342static int regulator_register_resolve_supply(struct device *dev, void *data)
5343{
5344 struct regulator_dev *rdev = dev_to_rdev(dev);
5345
5346 if (regulator_resolve_supply(rdev))
5347 rdev_dbg(rdev, "unable to resolve supply\n");
5348
5349 return 0;
5350}
5351
5352int regulator_coupler_register(struct regulator_coupler *coupler)
5353{
5354 mutex_lock(®ulator_list_mutex);
5355 list_add_tail(&coupler->list, ®ulator_coupler_list);
5356 mutex_unlock(®ulator_list_mutex);
5357
5358 return 0;
5359}
5360
5361static struct regulator_coupler *
5362regulator_find_coupler(struct regulator_dev *rdev)
5363{
5364 struct regulator_coupler *coupler;
5365 int err;
5366
5367 /*
5368 * Note that regulators are appended to the list and the generic
5369 * coupler is registered first, hence it will be attached at last
5370 * if nobody cared.
5371 */
5372 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5373 err = coupler->attach_regulator(coupler, rdev);
5374 if (!err) {
5375 if (!coupler->balance_voltage &&
5376 rdev->coupling_desc.n_coupled > 2)
5377 goto err_unsupported;
5378
5379 return coupler;
5380 }
5381
5382 if (err < 0)
5383 return ERR_PTR(err);
5384
5385 if (err == 1)
5386 continue;
5387
5388 break;
5389 }
5390
5391 return ERR_PTR(-EINVAL);
5392
5393err_unsupported:
5394 if (coupler->detach_regulator)
5395 coupler->detach_regulator(coupler, rdev);
5396
5397 rdev_err(rdev,
5398 "Voltage balancing for multiple regulator couples is unimplemented\n");
5399
5400 return ERR_PTR(-EPERM);
5401}
5402
5403static void regulator_resolve_coupling(struct regulator_dev *rdev)
5404{
5405 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5406 struct coupling_desc *c_desc = &rdev->coupling_desc;
5407 int n_coupled = c_desc->n_coupled;
5408 struct regulator_dev *c_rdev;
5409 int i;
5410
5411 for (i = 1; i < n_coupled; i++) {
5412 /* already resolved */
5413 if (c_desc->coupled_rdevs[i])
5414 continue;
5415
5416 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5417
5418 if (!c_rdev)
5419 continue;
5420
5421 if (c_rdev->coupling_desc.coupler != coupler) {
5422 rdev_err(rdev, "coupler mismatch with %s\n",
5423 rdev_get_name(c_rdev));
5424 return;
5425 }
5426
5427 c_desc->coupled_rdevs[i] = c_rdev;
5428 c_desc->n_resolved++;
5429
5430 regulator_resolve_coupling(c_rdev);
5431 }
5432}
5433
5434static void regulator_remove_coupling(struct regulator_dev *rdev)
5435{
5436 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5437 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5438 struct regulator_dev *__c_rdev, *c_rdev;
5439 unsigned int __n_coupled, n_coupled;
5440 int i, k;
5441 int err;
5442
5443 n_coupled = c_desc->n_coupled;
5444
5445 for (i = 1; i < n_coupled; i++) {
5446 c_rdev = c_desc->coupled_rdevs[i];
5447
5448 if (!c_rdev)
5449 continue;
5450
5451 regulator_lock(c_rdev);
5452
5453 __c_desc = &c_rdev->coupling_desc;
5454 __n_coupled = __c_desc->n_coupled;
5455
5456 for (k = 1; k < __n_coupled; k++) {
5457 __c_rdev = __c_desc->coupled_rdevs[k];
5458
5459 if (__c_rdev == rdev) {
5460 __c_desc->coupled_rdevs[k] = NULL;
5461 __c_desc->n_resolved--;
5462 break;
5463 }
5464 }
5465
5466 regulator_unlock(c_rdev);
5467
5468 c_desc->coupled_rdevs[i] = NULL;
5469 c_desc->n_resolved--;
5470 }
5471
5472 if (coupler && coupler->detach_regulator) {
5473 err = coupler->detach_regulator(coupler, rdev);
5474 if (err)
5475 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5476 ERR_PTR(err));
5477 }
5478
5479 kfree(rdev->coupling_desc.coupled_rdevs);
5480 rdev->coupling_desc.coupled_rdevs = NULL;
5481}
5482
5483static int regulator_init_coupling(struct regulator_dev *rdev)
5484{
5485 struct regulator_dev **coupled;
5486 int err, n_phandles;
5487
5488 if (!IS_ENABLED(CONFIG_OF))
5489 n_phandles = 0;
5490 else
5491 n_phandles = of_get_n_coupled(rdev);
5492
5493 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5494 if (!coupled)
5495 return -ENOMEM;
5496
5497 rdev->coupling_desc.coupled_rdevs = coupled;
5498
5499 /*
5500 * Every regulator should always have coupling descriptor filled with
5501 * at least pointer to itself.
5502 */
5503 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5504 rdev->coupling_desc.n_coupled = n_phandles + 1;
5505 rdev->coupling_desc.n_resolved++;
5506
5507 /* regulator isn't coupled */
5508 if (n_phandles == 0)
5509 return 0;
5510
5511 if (!of_check_coupling_data(rdev))
5512 return -EPERM;
5513
5514 mutex_lock(®ulator_list_mutex);
5515 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5516 mutex_unlock(®ulator_list_mutex);
5517
5518 if (IS_ERR(rdev->coupling_desc.coupler)) {
5519 err = PTR_ERR(rdev->coupling_desc.coupler);
5520 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5521 return err;
5522 }
5523
5524 return 0;
5525}
5526
5527static int generic_coupler_attach(struct regulator_coupler *coupler,
5528 struct regulator_dev *rdev)
5529{
5530 if (rdev->coupling_desc.n_coupled > 2) {
5531 rdev_err(rdev,
5532 "Voltage balancing for multiple regulator couples is unimplemented\n");
5533 return -EPERM;
5534 }
5535
5536 if (!rdev->constraints->always_on) {
5537 rdev_err(rdev,
5538 "Coupling of a non always-on regulator is unimplemented\n");
5539 return -ENOTSUPP;
5540 }
5541
5542 return 0;
5543}
5544
5545static struct regulator_coupler generic_regulator_coupler = {
5546 .attach_regulator = generic_coupler_attach,
5547};
5548
5549/**
5550 * regulator_register - register regulator
5551 * @dev: the device that drive the regulator
5552 * @regulator_desc: regulator to register
5553 * @cfg: runtime configuration for regulator
5554 *
5555 * Called by regulator drivers to register a regulator.
5556 * Returns a valid pointer to struct regulator_dev on success
5557 * or an ERR_PTR() on error.
5558 */
5559struct regulator_dev *
5560regulator_register(struct device *dev,
5561 const struct regulator_desc *regulator_desc,
5562 const struct regulator_config *cfg)
5563{
5564 const struct regulator_init_data *init_data;
5565 struct regulator_config *config = NULL;
5566 static atomic_t regulator_no = ATOMIC_INIT(-1);
5567 struct regulator_dev *rdev;
5568 bool dangling_cfg_gpiod = false;
5569 bool dangling_of_gpiod = false;
5570 int ret, i;
5571 bool resolved_early = false;
5572
5573 if (cfg == NULL)
5574 return ERR_PTR(-EINVAL);
5575 if (cfg->ena_gpiod)
5576 dangling_cfg_gpiod = true;
5577 if (regulator_desc == NULL) {
5578 ret = -EINVAL;
5579 goto rinse;
5580 }
5581
5582 WARN_ON(!dev || !cfg->dev);
5583
5584 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5585 ret = -EINVAL;
5586 goto rinse;
5587 }
5588
5589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5590 regulator_desc->type != REGULATOR_CURRENT) {
5591 ret = -EINVAL;
5592 goto rinse;
5593 }
5594
5595 /* Only one of each should be implemented */
5596 WARN_ON(regulator_desc->ops->get_voltage &&
5597 regulator_desc->ops->get_voltage_sel);
5598 WARN_ON(regulator_desc->ops->set_voltage &&
5599 regulator_desc->ops->set_voltage_sel);
5600
5601 /* If we're using selectors we must implement list_voltage. */
5602 if (regulator_desc->ops->get_voltage_sel &&
5603 !regulator_desc->ops->list_voltage) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607 if (regulator_desc->ops->set_voltage_sel &&
5608 !regulator_desc->ops->list_voltage) {
5609 ret = -EINVAL;
5610 goto rinse;
5611 }
5612
5613 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5614 if (rdev == NULL) {
5615 ret = -ENOMEM;
5616 goto rinse;
5617 }
5618 device_initialize(&rdev->dev);
5619 dev_set_drvdata(&rdev->dev, rdev);
5620 rdev->dev.class = ®ulator_class;
5621 spin_lock_init(&rdev->err_lock);
5622
5623 /*
5624 * Duplicate the config so the driver could override it after
5625 * parsing init data.
5626 */
5627 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5628 if (config == NULL) {
5629 ret = -ENOMEM;
5630 goto clean;
5631 }
5632
5633 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5634 &rdev->dev.of_node);
5635
5636 /*
5637 * Sometimes not all resources are probed already so we need to take
5638 * that into account. This happens most the time if the ena_gpiod comes
5639 * from a gpio extender or something else.
5640 */
5641 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5642 ret = -EPROBE_DEFER;
5643 goto clean;
5644 }
5645
5646 /*
5647 * We need to keep track of any GPIO descriptor coming from the
5648 * device tree until we have handled it over to the core. If the
5649 * config that was passed in to this function DOES NOT contain
5650 * a descriptor, and the config after this call DOES contain
5651 * a descriptor, we definitely got one from parsing the device
5652 * tree.
5653 */
5654 if (!cfg->ena_gpiod && config->ena_gpiod)
5655 dangling_of_gpiod = true;
5656 if (!init_data) {
5657 init_data = config->init_data;
5658 rdev->dev.of_node = of_node_get(config->of_node);
5659 }
5660
5661 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5662 rdev->reg_data = config->driver_data;
5663 rdev->owner = regulator_desc->owner;
5664 rdev->desc = regulator_desc;
5665 if (config->regmap)
5666 rdev->regmap = config->regmap;
5667 else if (dev_get_regmap(dev, NULL))
5668 rdev->regmap = dev_get_regmap(dev, NULL);
5669 else if (dev->parent)
5670 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5671 INIT_LIST_HEAD(&rdev->consumer_list);
5672 INIT_LIST_HEAD(&rdev->list);
5673 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5674 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5675
5676 if (init_data && init_data->supply_regulator)
5677 rdev->supply_name = init_data->supply_regulator;
5678 else if (regulator_desc->supply_name)
5679 rdev->supply_name = regulator_desc->supply_name;
5680
5681 /* register with sysfs */
5682 rdev->dev.parent = config->dev;
5683 dev_set_name(&rdev->dev, "regulator.%lu",
5684 (unsigned long) atomic_inc_return(®ulator_no));
5685
5686 /* set regulator constraints */
5687 if (init_data)
5688 rdev->constraints = kmemdup(&init_data->constraints,
5689 sizeof(*rdev->constraints),
5690 GFP_KERNEL);
5691 else
5692 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5693 GFP_KERNEL);
5694 if (!rdev->constraints) {
5695 ret = -ENOMEM;
5696 goto wash;
5697 }
5698
5699 if ((rdev->supply_name && !rdev->supply) &&
5700 (rdev->constraints->always_on ||
5701 rdev->constraints->boot_on)) {
5702 ret = regulator_resolve_supply(rdev);
5703 if (ret)
5704 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5705 ERR_PTR(ret));
5706
5707 resolved_early = true;
5708 }
5709
5710 /* perform any regulator specific init */
5711 if (init_data && init_data->regulator_init) {
5712 ret = init_data->regulator_init(rdev->reg_data);
5713 if (ret < 0)
5714 goto wash;
5715 }
5716
5717 if (config->ena_gpiod) {
5718 ret = regulator_ena_gpio_request(rdev, config);
5719 if (ret != 0) {
5720 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5721 ERR_PTR(ret));
5722 goto wash;
5723 }
5724 /* The regulator core took over the GPIO descriptor */
5725 dangling_cfg_gpiod = false;
5726 dangling_of_gpiod = false;
5727 }
5728
5729 ret = set_machine_constraints(rdev);
5730 if (ret == -EPROBE_DEFER && !resolved_early) {
5731 /* Regulator might be in bypass mode and so needs its supply
5732 * to set the constraints
5733 */
5734 /* FIXME: this currently triggers a chicken-and-egg problem
5735 * when creating -SUPPLY symlink in sysfs to a regulator
5736 * that is just being created
5737 */
5738 rdev_dbg(rdev, "will resolve supply early: %s\n",
5739 rdev->supply_name);
5740 ret = regulator_resolve_supply(rdev);
5741 if (!ret)
5742 ret = set_machine_constraints(rdev);
5743 else
5744 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5745 ERR_PTR(ret));
5746 }
5747 if (ret < 0)
5748 goto wash;
5749
5750 ret = regulator_init_coupling(rdev);
5751 if (ret < 0)
5752 goto wash;
5753
5754 /* add consumers devices */
5755 if (init_data) {
5756 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5757 ret = set_consumer_device_supply(rdev,
5758 init_data->consumer_supplies[i].dev_name,
5759 init_data->consumer_supplies[i].supply);
5760 if (ret < 0) {
5761 dev_err(dev, "Failed to set supply %s\n",
5762 init_data->consumer_supplies[i].supply);
5763 goto unset_supplies;
5764 }
5765 }
5766 }
5767
5768 if (!rdev->desc->ops->get_voltage &&
5769 !rdev->desc->ops->list_voltage &&
5770 !rdev->desc->fixed_uV)
5771 rdev->is_switch = true;
5772
5773 ret = device_add(&rdev->dev);
5774 if (ret != 0)
5775 goto unset_supplies;
5776
5777 rdev_init_debugfs(rdev);
5778
5779 /* try to resolve regulators coupling since a new one was registered */
5780 mutex_lock(®ulator_list_mutex);
5781 regulator_resolve_coupling(rdev);
5782 mutex_unlock(®ulator_list_mutex);
5783
5784 /* try to resolve regulators supply since a new one was registered */
5785 class_for_each_device(®ulator_class, NULL, NULL,
5786 regulator_register_resolve_supply);
5787 kfree(config);
5788 return rdev;
5789
5790unset_supplies:
5791 mutex_lock(®ulator_list_mutex);
5792 unset_regulator_supplies(rdev);
5793 regulator_remove_coupling(rdev);
5794 mutex_unlock(®ulator_list_mutex);
5795wash:
5796 regulator_put(rdev->supply);
5797 kfree(rdev->coupling_desc.coupled_rdevs);
5798 mutex_lock(®ulator_list_mutex);
5799 regulator_ena_gpio_free(rdev);
5800 mutex_unlock(®ulator_list_mutex);
5801clean:
5802 if (dangling_of_gpiod)
5803 gpiod_put(config->ena_gpiod);
5804 kfree(config);
5805 put_device(&rdev->dev);
5806rinse:
5807 if (dangling_cfg_gpiod)
5808 gpiod_put(cfg->ena_gpiod);
5809 return ERR_PTR(ret);
5810}
5811EXPORT_SYMBOL_GPL(regulator_register);
5812
5813/**
5814 * regulator_unregister - unregister regulator
5815 * @rdev: regulator to unregister
5816 *
5817 * Called by regulator drivers to unregister a regulator.
5818 */
5819void regulator_unregister(struct regulator_dev *rdev)
5820{
5821 if (rdev == NULL)
5822 return;
5823
5824 if (rdev->supply) {
5825 while (rdev->use_count--)
5826 regulator_disable(rdev->supply);
5827 regulator_put(rdev->supply);
5828 }
5829
5830 flush_work(&rdev->disable_work.work);
5831
5832 mutex_lock(®ulator_list_mutex);
5833
5834 WARN_ON(rdev->open_count);
5835 regulator_remove_coupling(rdev);
5836 unset_regulator_supplies(rdev);
5837 list_del(&rdev->list);
5838 regulator_ena_gpio_free(rdev);
5839 device_unregister(&rdev->dev);
5840
5841 mutex_unlock(®ulator_list_mutex);
5842}
5843EXPORT_SYMBOL_GPL(regulator_unregister);
5844
5845#ifdef CONFIG_SUSPEND
5846/**
5847 * regulator_suspend - prepare regulators for system wide suspend
5848 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5849 *
5850 * Configure each regulator with it's suspend operating parameters for state.
5851 */
5852static int regulator_suspend(struct device *dev)
5853{
5854 struct regulator_dev *rdev = dev_to_rdev(dev);
5855 suspend_state_t state = pm_suspend_target_state;
5856 int ret;
5857 const struct regulator_state *rstate;
5858
5859 rstate = regulator_get_suspend_state_check(rdev, state);
5860 if (!rstate)
5861 return 0;
5862
5863 regulator_lock(rdev);
5864 ret = __suspend_set_state(rdev, rstate);
5865 regulator_unlock(rdev);
5866
5867 return ret;
5868}
5869
5870static int regulator_resume(struct device *dev)
5871{
5872 suspend_state_t state = pm_suspend_target_state;
5873 struct regulator_dev *rdev = dev_to_rdev(dev);
5874 struct regulator_state *rstate;
5875 int ret = 0;
5876
5877 rstate = regulator_get_suspend_state(rdev, state);
5878 if (rstate == NULL)
5879 return 0;
5880
5881 /* Avoid grabbing the lock if we don't need to */
5882 if (!rdev->desc->ops->resume)
5883 return 0;
5884
5885 regulator_lock(rdev);
5886
5887 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5888 rstate->enabled == DISABLE_IN_SUSPEND)
5889 ret = rdev->desc->ops->resume(rdev);
5890
5891 regulator_unlock(rdev);
5892
5893 return ret;
5894}
5895#else /* !CONFIG_SUSPEND */
5896
5897#define regulator_suspend NULL
5898#define regulator_resume NULL
5899
5900#endif /* !CONFIG_SUSPEND */
5901
5902#ifdef CONFIG_PM
5903static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5904 .suspend = regulator_suspend,
5905 .resume = regulator_resume,
5906};
5907#endif
5908
5909const struct class regulator_class = {
5910 .name = "regulator",
5911 .dev_release = regulator_dev_release,
5912 .dev_groups = regulator_dev_groups,
5913#ifdef CONFIG_PM
5914 .pm = ®ulator_pm_ops,
5915#endif
5916};
5917/**
5918 * regulator_has_full_constraints - the system has fully specified constraints
5919 *
5920 * Calling this function will cause the regulator API to disable all
5921 * regulators which have a zero use count and don't have an always_on
5922 * constraint in a late_initcall.
5923 *
5924 * The intention is that this will become the default behaviour in a
5925 * future kernel release so users are encouraged to use this facility
5926 * now.
5927 */
5928void regulator_has_full_constraints(void)
5929{
5930 has_full_constraints = 1;
5931}
5932EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5933
5934/**
5935 * rdev_get_drvdata - get rdev regulator driver data
5936 * @rdev: regulator
5937 *
5938 * Get rdev regulator driver private data. This call can be used in the
5939 * regulator driver context.
5940 */
5941void *rdev_get_drvdata(struct regulator_dev *rdev)
5942{
5943 return rdev->reg_data;
5944}
5945EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5946
5947/**
5948 * regulator_get_drvdata - get regulator driver data
5949 * @regulator: regulator
5950 *
5951 * Get regulator driver private data. This call can be used in the consumer
5952 * driver context when non API regulator specific functions need to be called.
5953 */
5954void *regulator_get_drvdata(struct regulator *regulator)
5955{
5956 return regulator->rdev->reg_data;
5957}
5958EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5959
5960/**
5961 * regulator_set_drvdata - set regulator driver data
5962 * @regulator: regulator
5963 * @data: data
5964 */
5965void regulator_set_drvdata(struct regulator *regulator, void *data)
5966{
5967 regulator->rdev->reg_data = data;
5968}
5969EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5970
5971/**
5972 * rdev_get_id - get regulator ID
5973 * @rdev: regulator
5974 */
5975int rdev_get_id(struct regulator_dev *rdev)
5976{
5977 return rdev->desc->id;
5978}
5979EXPORT_SYMBOL_GPL(rdev_get_id);
5980
5981struct device *rdev_get_dev(struct regulator_dev *rdev)
5982{
5983 return &rdev->dev;
5984}
5985EXPORT_SYMBOL_GPL(rdev_get_dev);
5986
5987struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5988{
5989 return rdev->regmap;
5990}
5991EXPORT_SYMBOL_GPL(rdev_get_regmap);
5992
5993void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5994{
5995 return reg_init_data->driver_data;
5996}
5997EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5998
5999#ifdef CONFIG_DEBUG_FS
6000static int supply_map_show(struct seq_file *sf, void *data)
6001{
6002 struct regulator_map *map;
6003
6004 list_for_each_entry(map, ®ulator_map_list, list) {
6005 seq_printf(sf, "%s -> %s.%s\n",
6006 rdev_get_name(map->regulator), map->dev_name,
6007 map->supply);
6008 }
6009
6010 return 0;
6011}
6012DEFINE_SHOW_ATTRIBUTE(supply_map);
6013
6014struct summary_data {
6015 struct seq_file *s;
6016 struct regulator_dev *parent;
6017 int level;
6018};
6019
6020static void regulator_summary_show_subtree(struct seq_file *s,
6021 struct regulator_dev *rdev,
6022 int level);
6023
6024static int regulator_summary_show_children(struct device *dev, void *data)
6025{
6026 struct regulator_dev *rdev = dev_to_rdev(dev);
6027 struct summary_data *summary_data = data;
6028
6029 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6030 regulator_summary_show_subtree(summary_data->s, rdev,
6031 summary_data->level + 1);
6032
6033 return 0;
6034}
6035
6036static void regulator_summary_show_subtree(struct seq_file *s,
6037 struct regulator_dev *rdev,
6038 int level)
6039{
6040 struct regulation_constraints *c;
6041 struct regulator *consumer;
6042 struct summary_data summary_data;
6043 unsigned int opmode;
6044
6045 if (!rdev)
6046 return;
6047
6048 opmode = _regulator_get_mode_unlocked(rdev);
6049 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6050 level * 3 + 1, "",
6051 30 - level * 3, rdev_get_name(rdev),
6052 rdev->use_count, rdev->open_count, rdev->bypass_count,
6053 regulator_opmode_to_str(opmode));
6054
6055 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6056 seq_printf(s, "%5dmA ",
6057 _regulator_get_current_limit_unlocked(rdev) / 1000);
6058
6059 c = rdev->constraints;
6060 if (c) {
6061 switch (rdev->desc->type) {
6062 case REGULATOR_VOLTAGE:
6063 seq_printf(s, "%5dmV %5dmV ",
6064 c->min_uV / 1000, c->max_uV / 1000);
6065 break;
6066 case REGULATOR_CURRENT:
6067 seq_printf(s, "%5dmA %5dmA ",
6068 c->min_uA / 1000, c->max_uA / 1000);
6069 break;
6070 }
6071 }
6072
6073 seq_puts(s, "\n");
6074
6075 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6076 if (consumer->dev && consumer->dev->class == ®ulator_class)
6077 continue;
6078
6079 seq_printf(s, "%*s%-*s ",
6080 (level + 1) * 3 + 1, "",
6081 30 - (level + 1) * 3,
6082 consumer->supply_name ? consumer->supply_name :
6083 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6084
6085 switch (rdev->desc->type) {
6086 case REGULATOR_VOLTAGE:
6087 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6088 consumer->enable_count,
6089 consumer->uA_load / 1000,
6090 consumer->uA_load && !consumer->enable_count ?
6091 '*' : ' ',
6092 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6093 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6094 break;
6095 case REGULATOR_CURRENT:
6096 break;
6097 }
6098
6099 seq_puts(s, "\n");
6100 }
6101
6102 summary_data.s = s;
6103 summary_data.level = level;
6104 summary_data.parent = rdev;
6105
6106 class_for_each_device(®ulator_class, NULL, &summary_data,
6107 regulator_summary_show_children);
6108}
6109
6110struct summary_lock_data {
6111 struct ww_acquire_ctx *ww_ctx;
6112 struct regulator_dev **new_contended_rdev;
6113 struct regulator_dev **old_contended_rdev;
6114};
6115
6116static int regulator_summary_lock_one(struct device *dev, void *data)
6117{
6118 struct regulator_dev *rdev = dev_to_rdev(dev);
6119 struct summary_lock_data *lock_data = data;
6120 int ret = 0;
6121
6122 if (rdev != *lock_data->old_contended_rdev) {
6123 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6124
6125 if (ret == -EDEADLK)
6126 *lock_data->new_contended_rdev = rdev;
6127 else
6128 WARN_ON_ONCE(ret);
6129 } else {
6130 *lock_data->old_contended_rdev = NULL;
6131 }
6132
6133 return ret;
6134}
6135
6136static int regulator_summary_unlock_one(struct device *dev, void *data)
6137{
6138 struct regulator_dev *rdev = dev_to_rdev(dev);
6139 struct summary_lock_data *lock_data = data;
6140
6141 if (lock_data) {
6142 if (rdev == *lock_data->new_contended_rdev)
6143 return -EDEADLK;
6144 }
6145
6146 regulator_unlock(rdev);
6147
6148 return 0;
6149}
6150
6151static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6152 struct regulator_dev **new_contended_rdev,
6153 struct regulator_dev **old_contended_rdev)
6154{
6155 struct summary_lock_data lock_data;
6156 int ret;
6157
6158 lock_data.ww_ctx = ww_ctx;
6159 lock_data.new_contended_rdev = new_contended_rdev;
6160 lock_data.old_contended_rdev = old_contended_rdev;
6161
6162 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6163 regulator_summary_lock_one);
6164 if (ret)
6165 class_for_each_device(®ulator_class, NULL, &lock_data,
6166 regulator_summary_unlock_one);
6167
6168 return ret;
6169}
6170
6171static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6172{
6173 struct regulator_dev *new_contended_rdev = NULL;
6174 struct regulator_dev *old_contended_rdev = NULL;
6175 int err;
6176
6177 mutex_lock(®ulator_list_mutex);
6178
6179 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6180
6181 do {
6182 if (new_contended_rdev) {
6183 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6184 old_contended_rdev = new_contended_rdev;
6185 old_contended_rdev->ref_cnt++;
6186 old_contended_rdev->mutex_owner = current;
6187 }
6188
6189 err = regulator_summary_lock_all(ww_ctx,
6190 &new_contended_rdev,
6191 &old_contended_rdev);
6192
6193 if (old_contended_rdev)
6194 regulator_unlock(old_contended_rdev);
6195
6196 } while (err == -EDEADLK);
6197
6198 ww_acquire_done(ww_ctx);
6199}
6200
6201static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6202{
6203 class_for_each_device(®ulator_class, NULL, NULL,
6204 regulator_summary_unlock_one);
6205 ww_acquire_fini(ww_ctx);
6206
6207 mutex_unlock(®ulator_list_mutex);
6208}
6209
6210static int regulator_summary_show_roots(struct device *dev, void *data)
6211{
6212 struct regulator_dev *rdev = dev_to_rdev(dev);
6213 struct seq_file *s = data;
6214
6215 if (!rdev->supply)
6216 regulator_summary_show_subtree(s, rdev, 0);
6217
6218 return 0;
6219}
6220
6221static int regulator_summary_show(struct seq_file *s, void *data)
6222{
6223 struct ww_acquire_ctx ww_ctx;
6224
6225 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6226 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6227
6228 regulator_summary_lock(&ww_ctx);
6229
6230 class_for_each_device(®ulator_class, NULL, s,
6231 regulator_summary_show_roots);
6232
6233 regulator_summary_unlock(&ww_ctx);
6234
6235 return 0;
6236}
6237DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6238#endif /* CONFIG_DEBUG_FS */
6239
6240static int __init regulator_init(void)
6241{
6242 int ret;
6243
6244 ret = class_register(®ulator_class);
6245
6246 debugfs_root = debugfs_create_dir("regulator", NULL);
6247 if (IS_ERR(debugfs_root))
6248 pr_debug("regulator: Failed to create debugfs directory\n");
6249
6250#ifdef CONFIG_DEBUG_FS
6251 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6252 &supply_map_fops);
6253
6254 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6255 NULL, ®ulator_summary_fops);
6256#endif
6257 regulator_dummy_init();
6258
6259 regulator_coupler_register(&generic_regulator_coupler);
6260
6261 return ret;
6262}
6263
6264/* init early to allow our consumers to complete system booting */
6265core_initcall(regulator_init);
6266
6267static int regulator_late_cleanup(struct device *dev, void *data)
6268{
6269 struct regulator_dev *rdev = dev_to_rdev(dev);
6270 struct regulation_constraints *c = rdev->constraints;
6271 int ret;
6272
6273 if (c && c->always_on)
6274 return 0;
6275
6276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6277 return 0;
6278
6279 regulator_lock(rdev);
6280
6281 if (rdev->use_count)
6282 goto unlock;
6283
6284 /* If reading the status failed, assume that it's off. */
6285 if (_regulator_is_enabled(rdev) <= 0)
6286 goto unlock;
6287
6288 if (have_full_constraints()) {
6289 /* We log since this may kill the system if it goes
6290 * wrong.
6291 */
6292 rdev_info(rdev, "disabling\n");
6293 ret = _regulator_do_disable(rdev);
6294 if (ret != 0)
6295 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6296 } else {
6297 /* The intention is that in future we will
6298 * assume that full constraints are provided
6299 * so warn even if we aren't going to do
6300 * anything here.
6301 */
6302 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6303 }
6304
6305unlock:
6306 regulator_unlock(rdev);
6307
6308 return 0;
6309}
6310
6311static bool regulator_ignore_unused;
6312static int __init regulator_ignore_unused_setup(char *__unused)
6313{
6314 regulator_ignore_unused = true;
6315 return 1;
6316}
6317__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6318
6319static void regulator_init_complete_work_function(struct work_struct *work)
6320{
6321 /*
6322 * Regulators may had failed to resolve their input supplies
6323 * when were registered, either because the input supply was
6324 * not registered yet or because its parent device was not
6325 * bound yet. So attempt to resolve the input supplies for
6326 * pending regulators before trying to disable unused ones.
6327 */
6328 class_for_each_device(®ulator_class, NULL, NULL,
6329 regulator_register_resolve_supply);
6330
6331 /*
6332 * For debugging purposes, it may be useful to prevent unused
6333 * regulators from being disabled.
6334 */
6335 if (regulator_ignore_unused) {
6336 pr_warn("regulator: Not disabling unused regulators\n");
6337 return;
6338 }
6339
6340 /* If we have a full configuration then disable any regulators
6341 * we have permission to change the status for and which are
6342 * not in use or always_on. This is effectively the default
6343 * for DT and ACPI as they have full constraints.
6344 */
6345 class_for_each_device(®ulator_class, NULL, NULL,
6346 regulator_late_cleanup);
6347}
6348
6349static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6350 regulator_init_complete_work_function);
6351
6352static int __init regulator_init_complete(void)
6353{
6354 /*
6355 * Since DT doesn't provide an idiomatic mechanism for
6356 * enabling full constraints and since it's much more natural
6357 * with DT to provide them just assume that a DT enabled
6358 * system has full constraints.
6359 */
6360 if (of_have_populated_dt())
6361 has_full_constraints = true;
6362
6363 /*
6364 * We punt completion for an arbitrary amount of time since
6365 * systems like distros will load many drivers from userspace
6366 * so consumers might not always be ready yet, this is
6367 * particularly an issue with laptops where this might bounce
6368 * the display off then on. Ideally we'd get a notification
6369 * from userspace when this happens but we don't so just wait
6370 * a bit and hope we waited long enough. It'd be better if
6371 * we'd only do this on systems that need it, and a kernel
6372 * command line option might be useful.
6373 */
6374 schedule_delayed_work(®ulator_init_complete_work,
6375 msecs_to_jiffies(30000));
6376
6377 return 0;
6378}
6379late_initcall_sync(regulator_init_complete);