Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
 
 
 
 
 
  28#include <linux/regulator/consumer.h>
 
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/regulator.h>
  34
  35#include "dummy.h"
 
 
  36
  37#define rdev_crit(rdev, fmt, ...)					\
  38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  39#define rdev_err(rdev, fmt, ...)					\
  40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_warn(rdev, fmt, ...)					\
  42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_info(rdev, fmt, ...)					\
  44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_dbg(rdev, fmt, ...)					\
  46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47
  48static DEFINE_MUTEX(regulator_list_mutex);
  49static LIST_HEAD(regulator_list);
  50static LIST_HEAD(regulator_map_list);
 
 
 
  51static bool has_full_constraints;
  52static bool board_wants_dummy_regulator;
  53
  54#ifdef CONFIG_DEBUG_FS
  55static struct dentry *debugfs_root;
  56#endif
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
  78	int uA_load;
  79	int min_uV;
  80	int max_uV;
  81	char *supply_name;
  82	struct device_attribute dev_attr;
  83	struct regulator_dev *rdev;
  84#ifdef CONFIG_DEBUG_FS
  85	struct dentry *debugfs;
  86#endif
 
 
 
 
 
 
 
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95				  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97				     int min_uV, int max_uV);
 
 
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99					  struct device *dev,
 100					  const char *supply_name);
 
 
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104	if (rdev->constraints && rdev->constraints->name)
 105		return rdev->constraints->name;
 106	else if (rdev->desc->name)
 107		return rdev->desc->name;
 108	else
 109		return "";
 110}
 
 111
 112/* gets the regulator for a given consumer device */
 113static struct regulator *get_device_regulator(struct device *dev)
 114{
 115	struct regulator *regulator = NULL;
 116	struct regulator_dev *rdev;
 117
 118	mutex_lock(&regulator_list_mutex);
 119	list_for_each_entry(rdev, &regulator_list, list) {
 120		mutex_lock(&rdev->mutex);
 121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 122			if (regulator->dev == dev) {
 123				mutex_unlock(&rdev->mutex);
 124				mutex_unlock(&regulator_list_mutex);
 125				return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126			}
 127		}
 128		mutex_unlock(&rdev->mutex);
 129	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134/* Platform voltage constraint check */
 135static int regulator_check_voltage(struct regulator_dev *rdev,
 136				   int *min_uV, int *max_uV)
 137{
 138	BUG_ON(*min_uV > *max_uV);
 139
 140	if (!rdev->constraints) {
 141		rdev_err(rdev, "no constraints\n");
 142		return -ENODEV;
 143	}
 144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 145		rdev_err(rdev, "operation not allowed\n");
 146		return -EPERM;
 147	}
 148
 149	if (*max_uV > rdev->constraints->max_uV)
 150		*max_uV = rdev->constraints->max_uV;
 151	if (*min_uV < rdev->constraints->min_uV)
 152		*min_uV = rdev->constraints->min_uV;
 153
 154	if (*min_uV > *max_uV) {
 155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 156			 *min_uV, *max_uV);
 157		return -EINVAL;
 158	}
 159
 160	return 0;
 161}
 162
 
 
 
 
 
 
 163/* Make sure we select a voltage that suits the needs of all
 164 * regulator consumers
 165 */
 166static int regulator_check_consumers(struct regulator_dev *rdev,
 167				     int *min_uV, int *max_uV)
 
 168{
 169	struct regulator *regulator;
 
 170
 171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 172		/*
 173		 * Assume consumers that didn't say anything are OK
 174		 * with anything in the constraint range.
 175		 */
 176		if (!regulator->min_uV && !regulator->max_uV)
 177			continue;
 178
 179		if (*max_uV > regulator->max_uV)
 180			*max_uV = regulator->max_uV;
 181		if (*min_uV < regulator->min_uV)
 182			*min_uV = regulator->min_uV;
 183	}
 184
 185	if (*min_uV > *max_uV)
 
 
 186		return -EINVAL;
 
 187
 188	return 0;
 189}
 190
 191/* current constraint check */
 192static int regulator_check_current_limit(struct regulator_dev *rdev,
 193					int *min_uA, int *max_uA)
 194{
 195	BUG_ON(*min_uA > *max_uA);
 196
 197	if (!rdev->constraints) {
 198		rdev_err(rdev, "no constraints\n");
 199		return -ENODEV;
 200	}
 201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 202		rdev_err(rdev, "operation not allowed\n");
 203		return -EPERM;
 204	}
 205
 206	if (*max_uA > rdev->constraints->max_uA)
 207		*max_uA = rdev->constraints->max_uA;
 208	if (*min_uA < rdev->constraints->min_uA)
 209		*min_uA = rdev->constraints->min_uA;
 210
 211	if (*min_uA > *max_uA) {
 212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 213			 *min_uA, *max_uA);
 214		return -EINVAL;
 215	}
 216
 217	return 0;
 218}
 219
 220/* operating mode constraint check */
 221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 222{
 223	switch (*mode) {
 224	case REGULATOR_MODE_FAST:
 225	case REGULATOR_MODE_NORMAL:
 226	case REGULATOR_MODE_IDLE:
 227	case REGULATOR_MODE_STANDBY:
 228		break;
 229	default:
 230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 231		return -EINVAL;
 232	}
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	/* The modes are bitmasks, the most power hungry modes having
 244	 * the lowest values. If the requested mode isn't supported
 245	 * try higher modes. */
 
 246	while (*mode) {
 247		if (rdev->constraints->valid_modes_mask & *mode)
 248			return 0;
 249		*mode /= 2;
 250	}
 251
 252	return -EINVAL;
 253}
 254
 255/* dynamic regulator mode switching constraint check */
 256static int regulator_check_drms(struct regulator_dev *rdev)
 257{
 258	if (!rdev->constraints) {
 259		rdev_err(rdev, "no constraints\n");
 260		return -ENODEV;
 261	}
 262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 263		rdev_err(rdev, "operation not allowed\n");
 264		return -EPERM;
 
 
 
 
 
 265	}
 266	return 0;
 267}
 268
 269static ssize_t device_requested_uA_show(struct device *dev,
 270			     struct device_attribute *attr, char *buf)
 271{
 272	struct regulator *regulator;
 273
 274	regulator = get_device_regulator(dev);
 275	if (regulator == NULL)
 276		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	return sprintf(buf, "%d\n", regulator->uA_load);
 279}
 280
 281static ssize_t regulator_uV_show(struct device *dev,
 282				struct device_attribute *attr, char *buf)
 283{
 284	struct regulator_dev *rdev = dev_get_drvdata(dev);
 285	ssize_t ret;
 286
 287	mutex_lock(&rdev->mutex);
 288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 289	mutex_unlock(&rdev->mutex);
 290
 291	return ret;
 
 
 292}
 293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 294
 295static ssize_t regulator_uA_show(struct device *dev,
 296				struct device_attribute *attr, char *buf)
 297{
 298	struct regulator_dev *rdev = dev_get_drvdata(dev);
 299
 300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 301}
 302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 303
 304static ssize_t regulator_name_show(struct device *dev,
 305			     struct device_attribute *attr, char *buf)
 306{
 307	struct regulator_dev *rdev = dev_get_drvdata(dev);
 308
 309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 310}
 
 311
 312static ssize_t regulator_print_opmode(char *buf, int mode)
 313{
 314	switch (mode) {
 315	case REGULATOR_MODE_FAST:
 316		return sprintf(buf, "fast\n");
 317	case REGULATOR_MODE_NORMAL:
 318		return sprintf(buf, "normal\n");
 319	case REGULATOR_MODE_IDLE:
 320		return sprintf(buf, "idle\n");
 321	case REGULATOR_MODE_STANDBY:
 322		return sprintf(buf, "standby\n");
 323	}
 324	return sprintf(buf, "unknown\n");
 325}
 326
 327static ssize_t regulator_opmode_show(struct device *dev,
 328				    struct device_attribute *attr, char *buf)
 
 
 
 
 
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 333}
 334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 335
 336static ssize_t regulator_print_state(char *buf, int state)
 337{
 338	if (state > 0)
 339		return sprintf(buf, "enabled\n");
 340	else if (state == 0)
 341		return sprintf(buf, "disabled\n");
 342	else
 343		return sprintf(buf, "unknown\n");
 344}
 345
 346static ssize_t regulator_state_show(struct device *dev,
 347				   struct device_attribute *attr, char *buf)
 348{
 349	struct regulator_dev *rdev = dev_get_drvdata(dev);
 350	ssize_t ret;
 351
 352	mutex_lock(&rdev->mutex);
 353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 354	mutex_unlock(&rdev->mutex);
 355
 356	return ret;
 357}
 358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 359
 360static ssize_t regulator_status_show(struct device *dev,
 361				   struct device_attribute *attr, char *buf)
 362{
 363	struct regulator_dev *rdev = dev_get_drvdata(dev);
 364	int status;
 365	char *label;
 366
 367	status = rdev->desc->ops->get_status(rdev);
 368	if (status < 0)
 369		return status;
 370
 371	switch (status) {
 372	case REGULATOR_STATUS_OFF:
 373		label = "off";
 374		break;
 375	case REGULATOR_STATUS_ON:
 376		label = "on";
 377		break;
 378	case REGULATOR_STATUS_ERROR:
 379		label = "error";
 380		break;
 381	case REGULATOR_STATUS_FAST:
 382		label = "fast";
 383		break;
 384	case REGULATOR_STATUS_NORMAL:
 385		label = "normal";
 386		break;
 387	case REGULATOR_STATUS_IDLE:
 388		label = "idle";
 389		break;
 390	case REGULATOR_STATUS_STANDBY:
 391		label = "standby";
 392		break;
 
 
 
 
 
 
 393	default:
 394		return -ERANGE;
 395	}
 396
 397	return sprintf(buf, "%s\n", label);
 398}
 399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 400
 401static ssize_t regulator_min_uA_show(struct device *dev,
 402				    struct device_attribute *attr, char *buf)
 403{
 404	struct regulator_dev *rdev = dev_get_drvdata(dev);
 405
 406	if (!rdev->constraints)
 407		return sprintf(buf, "constraint not defined\n");
 408
 409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 410}
 411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 412
 413static ssize_t regulator_max_uA_show(struct device *dev,
 414				    struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417
 418	if (!rdev->constraints)
 419		return sprintf(buf, "constraint not defined\n");
 420
 421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 422}
 423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 424
 425static ssize_t regulator_min_uV_show(struct device *dev,
 426				    struct device_attribute *attr, char *buf)
 427{
 428	struct regulator_dev *rdev = dev_get_drvdata(dev);
 429
 430	if (!rdev->constraints)
 431		return sprintf(buf, "constraint not defined\n");
 432
 433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 434}
 435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 436
 437static ssize_t regulator_max_uV_show(struct device *dev,
 438				    struct device_attribute *attr, char *buf)
 439{
 440	struct regulator_dev *rdev = dev_get_drvdata(dev);
 441
 442	if (!rdev->constraints)
 443		return sprintf(buf, "constraint not defined\n");
 444
 445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 446}
 447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 448
 449static ssize_t regulator_total_uA_show(struct device *dev,
 450				      struct device_attribute *attr, char *buf)
 451{
 452	struct regulator_dev *rdev = dev_get_drvdata(dev);
 453	struct regulator *regulator;
 454	int uA = 0;
 455
 456	mutex_lock(&rdev->mutex);
 457	list_for_each_entry(regulator, &rdev->consumer_list, list)
 458		uA += regulator->uA_load;
 459	mutex_unlock(&rdev->mutex);
 
 
 460	return sprintf(buf, "%d\n", uA);
 461}
 462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 463
 464static ssize_t regulator_num_users_show(struct device *dev,
 465				      struct device_attribute *attr, char *buf)
 466{
 467	struct regulator_dev *rdev = dev_get_drvdata(dev);
 468	return sprintf(buf, "%d\n", rdev->use_count);
 469}
 
 470
 471static ssize_t regulator_type_show(struct device *dev,
 472				  struct device_attribute *attr, char *buf)
 473{
 474	struct regulator_dev *rdev = dev_get_drvdata(dev);
 475
 476	switch (rdev->desc->type) {
 477	case REGULATOR_VOLTAGE:
 478		return sprintf(buf, "voltage\n");
 479	case REGULATOR_CURRENT:
 480		return sprintf(buf, "current\n");
 481	}
 482	return sprintf(buf, "unknown\n");
 483}
 
 484
 485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 486				struct device_attribute *attr, char *buf)
 487{
 488	struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 491}
 492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 493		regulator_suspend_mem_uV_show, NULL);
 494
 495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 496				struct device_attribute *attr, char *buf)
 497{
 498	struct regulator_dev *rdev = dev_get_drvdata(dev);
 499
 500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 501}
 502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 503		regulator_suspend_disk_uV_show, NULL);
 504
 505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 506				struct device_attribute *attr, char *buf)
 507{
 508	struct regulator_dev *rdev = dev_get_drvdata(dev);
 509
 510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 511}
 512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 513		regulator_suspend_standby_uV_show, NULL);
 514
 515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 516				struct device_attribute *attr, char *buf)
 517{
 518	struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520	return regulator_print_opmode(buf,
 521		rdev->constraints->state_mem.mode);
 522}
 523static DEVICE_ATTR(suspend_mem_mode, 0444,
 524		regulator_suspend_mem_mode_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return regulator_print_opmode(buf,
 532		rdev->constraints->state_disk.mode);
 533}
 534static DEVICE_ATTR(suspend_disk_mode, 0444,
 535		regulator_suspend_disk_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 538				struct device_attribute *attr, char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542	return regulator_print_opmode(buf,
 543		rdev->constraints->state_standby.mode);
 544}
 545static DEVICE_ATTR(suspend_standby_mode, 0444,
 546		regulator_suspend_standby_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 549				   struct device_attribute *attr, char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	return regulator_print_state(buf,
 554			rdev->constraints->state_mem.enabled);
 555}
 556static DEVICE_ATTR(suspend_mem_state, 0444,
 557		regulator_suspend_mem_state_show, NULL);
 558
 559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 560				   struct device_attribute *attr, char *buf)
 561{
 562	struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564	return regulator_print_state(buf,
 565			rdev->constraints->state_disk.enabled);
 566}
 567static DEVICE_ATTR(suspend_disk_state, 0444,
 568		regulator_suspend_disk_state_show, NULL);
 569
 570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 571				   struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_state(buf,
 576			rdev->constraints->state_standby.enabled);
 577}
 578static DEVICE_ATTR(suspend_standby_state, 0444,
 579		regulator_suspend_standby_state_show, NULL);
 580
 581
 582/*
 583 * These are the only attributes are present for all regulators.
 584 * Other attributes are a function of regulator functionality.
 585 */
 586static struct device_attribute regulator_dev_attrs[] = {
 587	__ATTR(name, 0444, regulator_name_show, NULL),
 588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 589	__ATTR(type, 0444, regulator_type_show, NULL),
 590	__ATTR_NULL,
 591};
 592
 593static void regulator_dev_release(struct device *dev)
 
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596	kfree(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 597}
 
 598
 599static struct class regulator_class = {
 600	.name = "regulator",
 601	.dev_release = regulator_dev_release,
 602	.dev_attrs = regulator_dev_attrs,
 603};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604
 605/* Calculate the new optimum regulator operating mode based on the new total
 606 * consumer load. All locks held by caller */
 607static void drms_uA_update(struct regulator_dev *rdev)
 
 608{
 609	struct regulator *sibling;
 610	int current_uA = 0, output_uV, input_uV, err;
 611	unsigned int mode;
 612
 613	err = regulator_check_drms(rdev);
 614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 615	    (!rdev->desc->ops->get_voltage &&
 616	     !rdev->desc->ops->get_voltage_sel) ||
 617	    !rdev->desc->ops->set_mode)
 618		return;
 
 
 619
 620	/* get output voltage */
 621	output_uV = _regulator_get_voltage(rdev);
 622	if (output_uV <= 0)
 623		return;
 624
 625	/* get input voltage */
 626	input_uV = 0;
 627	if (rdev->supply)
 628		input_uV = _regulator_get_voltage(rdev);
 629	if (input_uV <= 0)
 630		input_uV = rdev->constraints->input_uV;
 631	if (input_uV <= 0)
 632		return;
 633
 634	/* calc total requested load */
 635	list_for_each_entry(sibling, &rdev->consumer_list, list)
 636		current_uA += sibling->uA_load;
 
 
 637
 638	/* now get the optimum mode for our new total regulator load */
 639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 640						  output_uV, current_uA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641
 642	/* check the new mode is allowed */
 643	err = regulator_mode_constrain(rdev, &mode);
 644	if (err == 0)
 645		rdev->desc->ops->set_mode(rdev, mode);
 646}
 647
 648static int suspend_set_state(struct regulator_dev *rdev,
 649	struct regulator_state *rstate)
 650{
 651	int ret = 0;
 652	bool can_set_state;
 
 653
 654	can_set_state = rdev->desc->ops->set_suspend_enable &&
 655		rdev->desc->ops->set_suspend_disable;
 
 
 
 
 656
 657	/* If we have no suspend mode configration don't set anything;
 658	 * only warn if the driver actually makes the suspend mode
 659	 * configurable.
 660	 */
 661	if (!rstate->enabled && !rstate->disabled) {
 662		if (can_set_state)
 663			rdev_warn(rdev, "No configuration\n");
 664		return 0;
 665	}
 666
 667	if (rstate->enabled && rstate->disabled) {
 668		rdev_err(rdev, "invalid configuration\n");
 669		return -EINVAL;
 670	}
 671
 672	if (!can_set_state) {
 673		rdev_err(rdev, "no way to set suspend state\n");
 674		return -EINVAL;
 
 
 
 
 
 
 
 
 
 675	}
 676
 677	if (rstate->enabled)
 
 
 
 
 
 
 
 
 
 678		ret = rdev->desc->ops->set_suspend_enable(rdev);
 679	else
 
 680		ret = rdev->desc->ops->set_suspend_disable(rdev);
 
 
 
 681	if (ret < 0) {
 682		rdev_err(rdev, "failed to enabled/disable\n");
 683		return ret;
 684	}
 685
 686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 688		if (ret < 0) {
 689			rdev_err(rdev, "failed to set voltage\n");
 690			return ret;
 691		}
 692	}
 693
 694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 696		if (ret < 0) {
 697			rdev_err(rdev, "failed to set mode\n");
 698			return ret;
 699		}
 700	}
 
 701	return ret;
 702}
 703
 704/* locks held by caller */
 705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 706{
 707	if (!rdev->constraints)
 708		return -EINVAL;
 709
 710	switch (state) {
 711	case PM_SUSPEND_STANDBY:
 712		return suspend_set_state(rdev,
 713			&rdev->constraints->state_standby);
 714	case PM_SUSPEND_MEM:
 715		return suspend_set_state(rdev,
 716			&rdev->constraints->state_mem);
 717	case PM_SUSPEND_MAX:
 718		return suspend_set_state(rdev,
 719			&rdev->constraints->state_disk);
 720	default:
 721		return -EINVAL;
 722	}
 723}
 724
 725static void print_constraints(struct regulator_dev *rdev)
 
 726{
 727	struct regulation_constraints *constraints = rdev->constraints;
 728	char buf[80] = "";
 
 729	int count = 0;
 730	int ret;
 731
 732	if (constraints->min_uV && constraints->max_uV) {
 733		if (constraints->min_uV == constraints->max_uV)
 734			count += sprintf(buf + count, "%d mV ",
 735					 constraints->min_uV / 1000);
 736		else
 737			count += sprintf(buf + count, "%d <--> %d mV ",
 738					 constraints->min_uV / 1000,
 739					 constraints->max_uV / 1000);
 
 740	}
 741
 742	if (!constraints->min_uV ||
 743	    constraints->min_uV != constraints->max_uV) {
 744		ret = _regulator_get_voltage(rdev);
 745		if (ret > 0)
 746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 747	}
 748
 749	if (constraints->uV_offset)
 750		count += sprintf(buf, "%dmV offset ",
 751				 constraints->uV_offset / 1000);
 752
 753	if (constraints->min_uA && constraints->max_uA) {
 754		if (constraints->min_uA == constraints->max_uA)
 755			count += sprintf(buf + count, "%d mA ",
 756					 constraints->min_uA / 1000);
 757		else
 758			count += sprintf(buf + count, "%d <--> %d mA ",
 759					 constraints->min_uA / 1000,
 760					 constraints->max_uA / 1000);
 
 761	}
 762
 763	if (!constraints->min_uA ||
 764	    constraints->min_uA != constraints->max_uA) {
 765		ret = _regulator_get_current_limit(rdev);
 766		if (ret > 0)
 767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 768	}
 769
 770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 771		count += sprintf(buf + count, "fast ");
 772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 773		count += sprintf(buf + count, "normal ");
 774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 775		count += sprintf(buf + count, "idle ");
 776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 777		count += sprintf(buf + count, "standby");
 
 
 
 
 
 
 
 
 778
 779	rdev_info(rdev, "%s\n", buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781
 782static int machine_constraints_voltage(struct regulator_dev *rdev,
 783	struct regulation_constraints *constraints)
 784{
 785	struct regulator_ops *ops = rdev->desc->ops;
 786	int ret;
 787
 788	/* do we need to apply the constraint voltage */
 789	if (rdev->constraints->apply_uV &&
 790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 791		ret = _regulator_do_set_voltage(rdev,
 792						rdev->constraints->min_uV,
 793						rdev->constraints->max_uV);
 794		if (ret < 0) {
 795			rdev_err(rdev, "failed to apply %duV constraint\n",
 796				 rdev->constraints->min_uV);
 797			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798		}
 799	}
 800
 801	/* constrain machine-level voltage specs to fit
 802	 * the actual range supported by this regulator.
 803	 */
 804	if (ops->list_voltage && rdev->desc->n_voltages) {
 805		int	count = rdev->desc->n_voltages;
 806		int	i;
 807		int	min_uV = INT_MAX;
 808		int	max_uV = INT_MIN;
 809		int	cmin = constraints->min_uV;
 810		int	cmax = constraints->max_uV;
 811
 812		/* it's safe to autoconfigure fixed-voltage supplies
 813		   and the constraints are used by list_voltage. */
 
 814		if (count == 1 && !cmin) {
 815			cmin = 1;
 816			cmax = INT_MAX;
 817			constraints->min_uV = cmin;
 818			constraints->max_uV = cmax;
 819		}
 820
 821		/* voltage constraints are optional */
 822		if ((cmin == 0) && (cmax == 0))
 823			return 0;
 824
 825		/* else require explicit machine-level constraints */
 826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 827			rdev_err(rdev, "invalid voltage constraints\n");
 828			return -EINVAL;
 829		}
 830
 
 
 
 
 831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 832		for (i = 0; i < count; i++) {
 833			int	value;
 834
 835			value = ops->list_voltage(rdev, i);
 836			if (value <= 0)
 837				continue;
 838
 839			/* maybe adjust [min_uV..max_uV] */
 840			if (value >= cmin && value < min_uV)
 841				min_uV = value;
 842			if (value <= cmax && value > max_uV)
 843				max_uV = value;
 844		}
 845
 846		/* final: [min_uV..max_uV] valid iff constraints valid */
 847		if (max_uV < min_uV) {
 848			rdev_err(rdev, "unsupportable voltage constraints\n");
 
 
 849			return -EINVAL;
 850		}
 851
 852		/* use regulator's subset of machine constraints */
 853		if (constraints->min_uV < min_uV) {
 854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 855				 constraints->min_uV, min_uV);
 856			constraints->min_uV = min_uV;
 857		}
 858		if (constraints->max_uV > max_uV) {
 859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 860				 constraints->max_uV, max_uV);
 861			constraints->max_uV = max_uV;
 862		}
 863	}
 864
 865	return 0;
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868/**
 869 * set_machine_constraints - sets regulator constraints
 870 * @rdev: regulator source
 871 * @constraints: constraints to apply
 872 *
 873 * Allows platform initialisation code to define and constrain
 874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 875 * Constraints *must* be set by platform code in order for some
 876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 877 * set_mode.
 878 */
 879static int set_machine_constraints(struct regulator_dev *rdev,
 880	const struct regulation_constraints *constraints)
 881{
 882	int ret = 0;
 883	struct regulator_ops *ops = rdev->desc->ops;
 884
 885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 886				    GFP_KERNEL);
 887	if (!rdev->constraints)
 888		return -ENOMEM;
 889
 890	ret = machine_constraints_voltage(rdev, rdev->constraints);
 891	if (ret != 0)
 892		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* do we need to setup our suspend state */
 895	if (constraints->initial_state) {
 896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 897		if (ret < 0) {
 898			rdev_err(rdev, "failed to set suspend state\n");
 899			goto out;
 900		}
 901	}
 902
 903	if (constraints->initial_mode) {
 904		if (!ops->set_mode) {
 905			rdev_err(rdev, "no set_mode operation\n");
 906			ret = -EINVAL;
 907			goto out;
 908		}
 909
 910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 911		if (ret < 0) {
 912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 913			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915	}
 916
 917	/* If the constraints say the regulator should be on at this point
 918	 * and we have control then make sure it is enabled.
 919	 */
 920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 921	    ops->enable) {
 922		ret = ops->enable(rdev);
 923		if (ret < 0) {
 924			rdev_err(rdev, "failed to enable\n");
 925			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926		}
 
 
 
 
 
 927	}
 928
 929	print_constraints(rdev);
 930	return 0;
 931out:
 932	kfree(rdev->constraints);
 933	rdev->constraints = NULL;
 934	return ret;
 935}
 936
 937/**
 938 * set_supply - set regulator supply regulator
 939 * @rdev: regulator name
 940 * @supply_rdev: supply regulator name
 941 *
 942 * Called by platform initialisation code to set the supply regulator for this
 943 * regulator. This ensures that a regulators supply will also be enabled by the
 944 * core if it's child is enabled.
 945 */
 946static int set_supply(struct regulator_dev *rdev,
 947		      struct regulator_dev *supply_rdev)
 948{
 949	int err;
 950
 951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 
 
 
 952
 953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 954	if (IS_ERR(rdev->supply)) {
 955		err = PTR_ERR(rdev->supply);
 956		rdev->supply = NULL;
 957		return err;
 958	}
 
 959
 960	return 0;
 961}
 962
 963/**
 964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 965 * @rdev:         regulator source
 966 * @consumer_dev: device the supply applies to
 967 * @consumer_dev_name: dev_name() string for device supply applies to
 968 * @supply:       symbolic name for supply
 969 *
 970 * Allows platform initialisation code to map physical regulator
 971 * sources to symbolic names for supplies for use by devices.  Devices
 972 * should use these symbolic names to request regulators, avoiding the
 973 * need to provide board-specific regulator names as platform data.
 974 *
 975 * Only one of consumer_dev and consumer_dev_name may be specified.
 976 */
 977static int set_consumer_device_supply(struct regulator_dev *rdev,
 978	struct device *consumer_dev, const char *consumer_dev_name,
 979	const char *supply)
 980{
 981	struct regulator_map *node;
 982	int has_dev;
 983
 984	if (consumer_dev && consumer_dev_name)
 985		return -EINVAL;
 986
 987	if (!consumer_dev_name && consumer_dev)
 988		consumer_dev_name = dev_name(consumer_dev);
 989
 990	if (supply == NULL)
 991		return -EINVAL;
 992
 993	if (consumer_dev_name != NULL)
 994		has_dev = 1;
 995	else
 996		has_dev = 0;
 997
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998	list_for_each_entry(node, &regulator_map_list, list) {
 999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
1014		return -EBUSY;
 
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
 
 
 
 
 
 
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
 
1061		return NULL;
 
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
 
 
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
 
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
 
 
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
 
 
1125	}
1126#endif
1127
1128	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
 
 
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164
 
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
1169
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
 
1179		}
1180	}
 
 
 
 
 
 
 
 
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	}
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188	if (!devname)
1189		devname = "deviceless";
 
 
 
 
 
 
 
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
 
 
 
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
1197		rdev = dummy_regulator_rdev;
1198		goto found;
 
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
 
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
 
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
 
1218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219	regulator = create_regulator(rdev, dev, id);
 
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
1222		module_put(rdev->owner);
 
 
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
 
 
 
 
 
 
 
 
 
 
 
 
1233			rdev->use_count = 0;
 
 
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
 
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
 
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
 
 
 
 
 
 
 
 
 
 
 
1295 */
1296void regulator_put(struct regulator *regulator)
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
1304	rdev = regulator->rdev;
 
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
 
 
 
 
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
 
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322
1323	module_put(rdev->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	if (!rdev->constraints)
1331		return 0;
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336		return 0;
 
 
 
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342	int ret, delay;
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
1354				return -EPERM;
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
 
 
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
 
 
1389
 
 
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
 
1398
1399	return 0;
 
 
 
 
 
 
 
 
 
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
 
1417
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
 
1438	int ret = 0;
1439
1440	if (WARN(rdev->use_count <= 0,
 
 
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
1456				return ret;
 
 
 
 
 
 
 
 
 
 
 
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
 
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
 
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
 
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
 
1523	}
1524
1525	return ret;
 
 
 
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
 
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
 
 
 
 
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
1580	mutex_lock(&regulator->rdev->mutex);
 
 
 
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621		return -EINVAL;
 
 
 
 
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
 
 
 
 
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
 
1650	int i, voltages, ret;
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
 
1672	unsigned int selector;
 
 
 
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692		selector = 0;
 
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
 
 
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
 
 
 
 
 
 
 
 
 
 
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
1705			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
1722		}
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
 
 
 
 
 
 
 
 
 
 
1747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748	return ret;
1749}
1750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
1773
1774	mutex_lock(&rdev->mutex);
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
 
 
 
1782
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
 
 
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
 
 
 
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
1805	return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
 
 
 
 
 
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
 
 
 
 
 
 
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
 
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
 
 
 
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
 
 
 
 
 
 
 
 
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
 
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
 
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
 
 
 
 
 
 
 
 
 
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
 
 
 
 
 
 
 
 
 
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
 
 
 
 
 
 
 
 
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
 
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
 
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
2149
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	}
2187	ret = mode;
2188out:
2189	mutex_unlock(&rdev->mutex);
 
 
 
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
 
 
 
 
 
 
 
 
 
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
 
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
 
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
 
 
 
 
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
 
 
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
 
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
 
 
 
 
 
 
 
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544
2545	return status;
 
 
 
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
 
 
 
2556	}
2557
 
 
 
 
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563}
2564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565/**
2566 * regulator_register - register regulator
 
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
 
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
 
 
 
2580	struct regulator_dev *rdev;
 
 
2581	int ret, i;
 
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
2585
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
 
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
 
 
 
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
 
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
 
2610	}
2611
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
2615
2616	mutex_lock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
 
 
 
 
 
 
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
2648	if (ret < 0)
2649		goto scrub;
 
 
 
 
 
 
 
 
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
 
 
 
2655
2656	if (init_data->supply_regulator) {
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
2672			goto scrub;
 
 
 
 
 
 
 
 
2673		}
 
 
 
 
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678	}
 
 
 
 
 
 
2679
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
 
 
 
 
2690		}
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
 
 
 
 
 
 
 
2694
2695	rdev_init_debugfs(rdev);
2696out:
 
 
 
2697	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
2698	return rdev;
2699
2700unset_supplies:
 
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
2704	kfree(rdev->constraints);
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
 
 
 
 
 
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
 
 
 
 
 
 
 
 
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
 
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
2739	mutex_unlock(&regulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
 
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
 
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
2769		}
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
 
 
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
 
 
 
 
 
 
 
 
 
 
 
 
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
 
 
 
2817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
 
 
 
 
 
 
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
2923
 
 
 
 
 
 
 
2924	regulator_dummy_init();
2925
 
 
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
2939	mutex_lock(&regulator_list_mutex);
 
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
 
 
2951
2952		mutex_lock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
 
 
 
 
 
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
 
 
 
 
 
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/reboot.h>
  23#include <linux/regmap.h>
  24#include <linux/regulator/of_regulator.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/regulator/coupler.h>
  27#include <linux/regulator/driver.h>
  28#include <linux/regulator/machine.h>
  29#include <linux/module.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/regulator.h>
  33
  34#include "dummy.h"
  35#include "internal.h"
  36#include "regnl.h"
  37
  38static DEFINE_WW_CLASS(regulator_ww_class);
  39static DEFINE_MUTEX(regulator_nesting_mutex);
 
 
 
 
 
 
 
 
 
  40static DEFINE_MUTEX(regulator_list_mutex);
 
  41static LIST_HEAD(regulator_map_list);
  42static LIST_HEAD(regulator_ena_gpio_list);
  43static LIST_HEAD(regulator_supply_alias_list);
  44static LIST_HEAD(regulator_coupler_list);
  45static bool has_full_constraints;
 
  46
 
  47static struct dentry *debugfs_root;
 
  48
  49/*
  50 * struct regulator_map
  51 *
  52 * Used to provide symbolic supply names to devices.
  53 */
  54struct regulator_map {
  55	struct list_head list;
  56	const char *dev_name;   /* The dev_name() for the consumer */
  57	const char *supply;
  58	struct regulator_dev *regulator;
  59};
  60
  61/*
  62 * struct regulator_enable_gpio
  63 *
  64 * Management for shared enable GPIO pin
  65 */
  66struct regulator_enable_gpio {
 
  67	struct list_head list;
  68	struct gpio_desc *gpiod;
  69	u32 enable_count;	/* a number of enabled shared GPIO */
  70	u32 request_count;	/* a number of requested shared GPIO */
  71};
  72
  73/*
  74 * struct regulator_supply_alias
  75 *
  76 * Used to map lookups for a supply onto an alternative device.
  77 */
  78struct regulator_supply_alias {
  79	struct list_head list;
  80	struct device *src_dev;
  81	const char *src_supply;
  82	struct device *alias_dev;
  83	const char *alias_supply;
  84};
  85
  86static int _regulator_is_enabled(struct regulator_dev *rdev);
  87static int _regulator_disable(struct regulator *regulator);
  88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
  89static int _regulator_get_current_limit(struct regulator_dev *rdev);
  90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  91static int _notifier_call_chain(struct regulator_dev *rdev,
  92				  unsigned long event, void *data);
  93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  94				     int min_uV, int max_uV);
  95static int regulator_balance_voltage(struct regulator_dev *rdev,
  96				     suspend_state_t state);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100static void destroy_regulator(struct regulator *regulator);
 101static void _regulator_put(struct regulator *regulator);
 102
 103const char *rdev_get_name(struct regulator_dev *rdev)
 104{
 105	if (rdev->constraints && rdev->constraints->name)
 106		return rdev->constraints->name;
 107	else if (rdev->desc->name)
 108		return rdev->desc->name;
 109	else
 110		return "";
 111}
 112EXPORT_SYMBOL_GPL(rdev_get_name);
 113
 114static bool have_full_constraints(void)
 
 115{
 116	return has_full_constraints || of_have_populated_dt();
 117}
 118
 119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 120{
 121	if (!rdev->constraints) {
 122		rdev_err(rdev, "no constraints\n");
 123		return false;
 124	}
 125
 126	if (rdev->constraints->valid_ops_mask & ops)
 127		return true;
 128
 129	return false;
 130}
 131
 132/**
 133 * regulator_lock_nested - lock a single regulator
 134 * @rdev:		regulator source
 135 * @ww_ctx:		w/w mutex acquire context
 136 *
 137 * This function can be called many times by one task on
 138 * a single regulator and its mutex will be locked only
 139 * once. If a task, which is calling this function is other
 140 * than the one, which initially locked the mutex, it will
 141 * wait on mutex.
 142 */
 143static inline int regulator_lock_nested(struct regulator_dev *rdev,
 144					struct ww_acquire_ctx *ww_ctx)
 145{
 146	bool lock = false;
 147	int ret = 0;
 148
 149	mutex_lock(&regulator_nesting_mutex);
 150
 151	if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
 152		if (rdev->mutex_owner == current)
 153			rdev->ref_cnt++;
 154		else
 155			lock = true;
 156
 157		if (lock) {
 158			mutex_unlock(&regulator_nesting_mutex);
 159			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 160			mutex_lock(&regulator_nesting_mutex);
 161		}
 162	} else {
 163		lock = true;
 164	}
 165
 166	if (lock && ret != -EDEADLK) {
 167		rdev->ref_cnt++;
 168		rdev->mutex_owner = current;
 169	}
 170
 171	mutex_unlock(&regulator_nesting_mutex);
 172
 173	return ret;
 174}
 175
 176/**
 177 * regulator_lock - lock a single regulator
 178 * @rdev:		regulator source
 179 *
 180 * This function can be called many times by one task on
 181 * a single regulator and its mutex will be locked only
 182 * once. If a task, which is calling this function is other
 183 * than the one, which initially locked the mutex, it will
 184 * wait on mutex.
 185 */
 186static void regulator_lock(struct regulator_dev *rdev)
 187{
 188	regulator_lock_nested(rdev, NULL);
 189}
 190
 191/**
 192 * regulator_unlock - unlock a single regulator
 193 * @rdev:		regulator_source
 194 *
 195 * This function unlocks the mutex when the
 196 * reference counter reaches 0.
 197 */
 198static void regulator_unlock(struct regulator_dev *rdev)
 199{
 200	mutex_lock(&regulator_nesting_mutex);
 201
 202	if (--rdev->ref_cnt == 0) {
 203		rdev->mutex_owner = NULL;
 204		ww_mutex_unlock(&rdev->mutex);
 205	}
 206
 207	WARN_ON_ONCE(rdev->ref_cnt < 0);
 208
 209	mutex_unlock(&regulator_nesting_mutex);
 210}
 211
 212/**
 213 * regulator_lock_two - lock two regulators
 214 * @rdev1:		first regulator
 215 * @rdev2:		second regulator
 216 * @ww_ctx:		w/w mutex acquire context
 217 *
 218 * Locks both rdevs using the regulator_ww_class.
 219 */
 220static void regulator_lock_two(struct regulator_dev *rdev1,
 221			       struct regulator_dev *rdev2,
 222			       struct ww_acquire_ctx *ww_ctx)
 223{
 224	struct regulator_dev *held, *contended;
 225	int ret;
 226
 227	ww_acquire_init(ww_ctx, &regulator_ww_class);
 228
 229	/* Try to just grab both of them */
 230	ret = regulator_lock_nested(rdev1, ww_ctx);
 231	WARN_ON(ret);
 232	ret = regulator_lock_nested(rdev2, ww_ctx);
 233	if (ret != -EDEADLOCK) {
 234		WARN_ON(ret);
 235		goto exit;
 236	}
 237
 238	held = rdev1;
 239	contended = rdev2;
 240	while (true) {
 241		regulator_unlock(held);
 242
 243		ww_mutex_lock_slow(&contended->mutex, ww_ctx);
 244		contended->ref_cnt++;
 245		contended->mutex_owner = current;
 246		swap(held, contended);
 247		ret = regulator_lock_nested(contended, ww_ctx);
 248
 249		if (ret != -EDEADLOCK) {
 250			WARN_ON(ret);
 251			break;
 252		}
 253	}
 254
 255exit:
 256	ww_acquire_done(ww_ctx);
 257}
 258
 259/**
 260 * regulator_unlock_two - unlock two regulators
 261 * @rdev1:		first regulator
 262 * @rdev2:		second regulator
 263 * @ww_ctx:		w/w mutex acquire context
 264 *
 265 * The inverse of regulator_lock_two().
 266 */
 267
 268static void regulator_unlock_two(struct regulator_dev *rdev1,
 269				 struct regulator_dev *rdev2,
 270				 struct ww_acquire_ctx *ww_ctx)
 271{
 272	regulator_unlock(rdev2);
 273	regulator_unlock(rdev1);
 274	ww_acquire_fini(ww_ctx);
 275}
 276
 277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 278{
 279	struct regulator_dev *c_rdev;
 280	int i;
 281
 282	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 283		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 284
 285		if (rdev->supply->rdev == c_rdev)
 286			return true;
 287	}
 288
 289	return false;
 290}
 291
 292static void regulator_unlock_recursive(struct regulator_dev *rdev,
 293				       unsigned int n_coupled)
 294{
 295	struct regulator_dev *c_rdev, *supply_rdev;
 296	int i, supply_n_coupled;
 297
 298	for (i = n_coupled; i > 0; i--) {
 299		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 300
 301		if (!c_rdev)
 302			continue;
 303
 304		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 305			supply_rdev = c_rdev->supply->rdev;
 306			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 307
 308			regulator_unlock_recursive(supply_rdev,
 309						   supply_n_coupled);
 310		}
 311
 312		regulator_unlock(c_rdev);
 313	}
 314}
 315
 316static int regulator_lock_recursive(struct regulator_dev *rdev,
 317				    struct regulator_dev **new_contended_rdev,
 318				    struct regulator_dev **old_contended_rdev,
 319				    struct ww_acquire_ctx *ww_ctx)
 320{
 321	struct regulator_dev *c_rdev;
 322	int i, err;
 323
 324	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 325		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 326
 327		if (!c_rdev)
 328			continue;
 329
 330		if (c_rdev != *old_contended_rdev) {
 331			err = regulator_lock_nested(c_rdev, ww_ctx);
 332			if (err) {
 333				if (err == -EDEADLK) {
 334					*new_contended_rdev = c_rdev;
 335					goto err_unlock;
 336				}
 337
 338				/* shouldn't happen */
 339				WARN_ON_ONCE(err != -EALREADY);
 340			}
 341		} else {
 342			*old_contended_rdev = NULL;
 343		}
 344
 345		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 346			err = regulator_lock_recursive(c_rdev->supply->rdev,
 347						       new_contended_rdev,
 348						       old_contended_rdev,
 349						       ww_ctx);
 350			if (err) {
 351				regulator_unlock(c_rdev);
 352				goto err_unlock;
 353			}
 354		}
 
 355	}
 356
 357	return 0;
 358
 359err_unlock:
 360	regulator_unlock_recursive(rdev, i);
 361
 362	return err;
 363}
 364
 365/**
 366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 367 *				regulators
 368 * @rdev:			regulator source
 369 * @ww_ctx:			w/w mutex acquire context
 370 *
 371 * Unlock all regulators related with rdev by coupling or supplying.
 372 */
 373static void regulator_unlock_dependent(struct regulator_dev *rdev,
 374				       struct ww_acquire_ctx *ww_ctx)
 375{
 376	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 377	ww_acquire_fini(ww_ctx);
 378}
 379
 380/**
 381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 382 * @rdev:			regulator source
 383 * @ww_ctx:			w/w mutex acquire context
 384 *
 385 * This function as a wrapper on regulator_lock_recursive(), which locks
 386 * all regulators related with rdev by coupling or supplying.
 387 */
 388static void regulator_lock_dependent(struct regulator_dev *rdev,
 389				     struct ww_acquire_ctx *ww_ctx)
 390{
 391	struct regulator_dev *new_contended_rdev = NULL;
 392	struct regulator_dev *old_contended_rdev = NULL;
 393	int err;
 394
 395	mutex_lock(&regulator_list_mutex);
 396
 397	ww_acquire_init(ww_ctx, &regulator_ww_class);
 398
 399	do {
 400		if (new_contended_rdev) {
 401			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 402			old_contended_rdev = new_contended_rdev;
 403			old_contended_rdev->ref_cnt++;
 404			old_contended_rdev->mutex_owner = current;
 405		}
 406
 407		err = regulator_lock_recursive(rdev,
 408					       &new_contended_rdev,
 409					       &old_contended_rdev,
 410					       ww_ctx);
 411
 412		if (old_contended_rdev)
 413			regulator_unlock(old_contended_rdev);
 414
 415	} while (err == -EDEADLK);
 416
 417	ww_acquire_done(ww_ctx);
 418
 419	mutex_unlock(&regulator_list_mutex);
 420}
 421
 422/**
 423 * of_get_child_regulator - get a child regulator device node
 424 * based on supply name
 425 * @parent: Parent device node
 426 * @prop_name: Combination regulator supply name and "-supply"
 427 *
 428 * Traverse all child nodes.
 429 * Extract the child regulator device node corresponding to the supply name.
 430 * returns the device node corresponding to the regulator if found, else
 431 * returns NULL.
 432 */
 433static struct device_node *of_get_child_regulator(struct device_node *parent,
 434						  const char *prop_name)
 435{
 436	struct device_node *regnode = NULL;
 437	struct device_node *child = NULL;
 438
 439	for_each_child_of_node(parent, child) {
 440		regnode = of_parse_phandle(child, prop_name, 0);
 441
 442		if (!regnode) {
 443			regnode = of_get_child_regulator(child, prop_name);
 444			if (regnode)
 445				goto err_node_put;
 446		} else {
 447			goto err_node_put;
 448		}
 449	}
 450	return NULL;
 451
 452err_node_put:
 453	of_node_put(child);
 454	return regnode;
 455}
 456
 457/**
 458 * of_get_regulator - get a regulator device node based on supply name
 459 * @dev: Device pointer for the consumer (of regulator) device
 460 * @supply: regulator supply name
 461 *
 462 * Extract the regulator device node corresponding to the supply name.
 463 * returns the device node corresponding to the regulator if found, else
 464 * returns NULL.
 465 */
 466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 467{
 468	struct device_node *regnode = NULL;
 469	char prop_name[64]; /* 64 is max size of property name */
 470
 471	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 472
 473	snprintf(prop_name, 64, "%s-supply", supply);
 474	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 475
 476	if (!regnode) {
 477		regnode = of_get_child_regulator(dev->of_node, prop_name);
 478		if (regnode)
 479			return regnode;
 480
 481		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 482				prop_name, dev->of_node);
 483		return NULL;
 484	}
 485	return regnode;
 486}
 487
 488/* Platform voltage constraint check */
 489int regulator_check_voltage(struct regulator_dev *rdev,
 490			    int *min_uV, int *max_uV)
 491{
 492	BUG_ON(*min_uV > *max_uV);
 493
 494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 495		rdev_err(rdev, "voltage operation not allowed\n");
 
 
 
 
 496		return -EPERM;
 497	}
 498
 499	if (*max_uV > rdev->constraints->max_uV)
 500		*max_uV = rdev->constraints->max_uV;
 501	if (*min_uV < rdev->constraints->min_uV)
 502		*min_uV = rdev->constraints->min_uV;
 503
 504	if (*min_uV > *max_uV) {
 505		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 506			 *min_uV, *max_uV);
 507		return -EINVAL;
 508	}
 509
 510	return 0;
 511}
 512
 513/* return 0 if the state is valid */
 514static int regulator_check_states(suspend_state_t state)
 515{
 516	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 517}
 518
 519/* Make sure we select a voltage that suits the needs of all
 520 * regulator consumers
 521 */
 522int regulator_check_consumers(struct regulator_dev *rdev,
 523			      int *min_uV, int *max_uV,
 524			      suspend_state_t state)
 525{
 526	struct regulator *regulator;
 527	struct regulator_voltage *voltage;
 528
 529	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 530		voltage = &regulator->voltage[state];
 531		/*
 532		 * Assume consumers that didn't say anything are OK
 533		 * with anything in the constraint range.
 534		 */
 535		if (!voltage->min_uV && !voltage->max_uV)
 536			continue;
 537
 538		if (*max_uV > voltage->max_uV)
 539			*max_uV = voltage->max_uV;
 540		if (*min_uV < voltage->min_uV)
 541			*min_uV = voltage->min_uV;
 542	}
 543
 544	if (*min_uV > *max_uV) {
 545		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 546			*min_uV, *max_uV);
 547		return -EINVAL;
 548	}
 549
 550	return 0;
 551}
 552
 553/* current constraint check */
 554static int regulator_check_current_limit(struct regulator_dev *rdev,
 555					int *min_uA, int *max_uA)
 556{
 557	BUG_ON(*min_uA > *max_uA);
 558
 559	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 560		rdev_err(rdev, "current operation not allowed\n");
 
 
 
 
 561		return -EPERM;
 562	}
 563
 564	if (*max_uA > rdev->constraints->max_uA)
 565		*max_uA = rdev->constraints->max_uA;
 566	if (*min_uA < rdev->constraints->min_uA)
 567		*min_uA = rdev->constraints->min_uA;
 568
 569	if (*min_uA > *max_uA) {
 570		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 571			 *min_uA, *max_uA);
 572		return -EINVAL;
 573	}
 574
 575	return 0;
 576}
 577
 578/* operating mode constraint check */
 579static int regulator_mode_constrain(struct regulator_dev *rdev,
 580				    unsigned int *mode)
 581{
 582	switch (*mode) {
 583	case REGULATOR_MODE_FAST:
 584	case REGULATOR_MODE_NORMAL:
 585	case REGULATOR_MODE_IDLE:
 586	case REGULATOR_MODE_STANDBY:
 587		break;
 588	default:
 589		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 590		return -EINVAL;
 591	}
 592
 593	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 594		rdev_err(rdev, "mode operation not allowed\n");
 
 
 
 
 595		return -EPERM;
 596	}
 597
 598	/* The modes are bitmasks, the most power hungry modes having
 599	 * the lowest values. If the requested mode isn't supported
 600	 * try higher modes.
 601	 */
 602	while (*mode) {
 603		if (rdev->constraints->valid_modes_mask & *mode)
 604			return 0;
 605		*mode /= 2;
 606	}
 607
 608	return -EINVAL;
 609}
 610
 611static inline struct regulator_state *
 612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 613{
 614	if (rdev->constraints == NULL)
 615		return NULL;
 616
 617	switch (state) {
 618	case PM_SUSPEND_STANDBY:
 619		return &rdev->constraints->state_standby;
 620	case PM_SUSPEND_MEM:
 621		return &rdev->constraints->state_mem;
 622	case PM_SUSPEND_MAX:
 623		return &rdev->constraints->state_disk;
 624	default:
 625		return NULL;
 626	}
 
 627}
 628
 629static const struct regulator_state *
 630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 631{
 632	const struct regulator_state *rstate;
 633
 634	rstate = regulator_get_suspend_state(rdev, state);
 635	if (rstate == NULL)
 636		return NULL;
 637
 638	/* If we have no suspend mode configuration don't set anything;
 639	 * only warn if the driver implements set_suspend_voltage or
 640	 * set_suspend_mode callback.
 641	 */
 642	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 643	    rstate->enabled != DISABLE_IN_SUSPEND) {
 644		if (rdev->desc->ops->set_suspend_voltage ||
 645		    rdev->desc->ops->set_suspend_mode)
 646			rdev_warn(rdev, "No configuration\n");
 647		return NULL;
 648	}
 649
 650	return rstate;
 651}
 652
 653static ssize_t microvolts_show(struct device *dev,
 654			       struct device_attribute *attr, char *buf)
 655{
 656	struct regulator_dev *rdev = dev_get_drvdata(dev);
 657	int uV;
 658
 659	regulator_lock(rdev);
 660	uV = regulator_get_voltage_rdev(rdev);
 661	regulator_unlock(rdev);
 662
 663	if (uV < 0)
 664		return uV;
 665	return sprintf(buf, "%d\n", uV);
 666}
 667static DEVICE_ATTR_RO(microvolts);
 668
 669static ssize_t microamps_show(struct device *dev,
 670			      struct device_attribute *attr, char *buf)
 671{
 672	struct regulator_dev *rdev = dev_get_drvdata(dev);
 673
 674	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 675}
 676static DEVICE_ATTR_RO(microamps);
 677
 678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 679			 char *buf)
 680{
 681	struct regulator_dev *rdev = dev_get_drvdata(dev);
 682
 683	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 684}
 685static DEVICE_ATTR_RO(name);
 686
 687static const char *regulator_opmode_to_str(int mode)
 688{
 689	switch (mode) {
 690	case REGULATOR_MODE_FAST:
 691		return "fast";
 692	case REGULATOR_MODE_NORMAL:
 693		return "normal";
 694	case REGULATOR_MODE_IDLE:
 695		return "idle";
 696	case REGULATOR_MODE_STANDBY:
 697		return "standby";
 698	}
 699	return "unknown";
 700}
 701
 702static ssize_t regulator_print_opmode(char *buf, int mode)
 703{
 704	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 705}
 706
 707static ssize_t opmode_show(struct device *dev,
 708			   struct device_attribute *attr, char *buf)
 709{
 710	struct regulator_dev *rdev = dev_get_drvdata(dev);
 711
 712	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 713}
 714static DEVICE_ATTR_RO(opmode);
 715
 716static ssize_t regulator_print_state(char *buf, int state)
 717{
 718	if (state > 0)
 719		return sprintf(buf, "enabled\n");
 720	else if (state == 0)
 721		return sprintf(buf, "disabled\n");
 722	else
 723		return sprintf(buf, "unknown\n");
 724}
 725
 726static ssize_t state_show(struct device *dev,
 727			  struct device_attribute *attr, char *buf)
 728{
 729	struct regulator_dev *rdev = dev_get_drvdata(dev);
 730	ssize_t ret;
 731
 732	regulator_lock(rdev);
 733	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 734	regulator_unlock(rdev);
 735
 736	return ret;
 737}
 738static DEVICE_ATTR_RO(state);
 739
 740static ssize_t status_show(struct device *dev,
 741			   struct device_attribute *attr, char *buf)
 742{
 743	struct regulator_dev *rdev = dev_get_drvdata(dev);
 744	int status;
 745	char *label;
 746
 747	status = rdev->desc->ops->get_status(rdev);
 748	if (status < 0)
 749		return status;
 750
 751	switch (status) {
 752	case REGULATOR_STATUS_OFF:
 753		label = "off";
 754		break;
 755	case REGULATOR_STATUS_ON:
 756		label = "on";
 757		break;
 758	case REGULATOR_STATUS_ERROR:
 759		label = "error";
 760		break;
 761	case REGULATOR_STATUS_FAST:
 762		label = "fast";
 763		break;
 764	case REGULATOR_STATUS_NORMAL:
 765		label = "normal";
 766		break;
 767	case REGULATOR_STATUS_IDLE:
 768		label = "idle";
 769		break;
 770	case REGULATOR_STATUS_STANDBY:
 771		label = "standby";
 772		break;
 773	case REGULATOR_STATUS_BYPASS:
 774		label = "bypass";
 775		break;
 776	case REGULATOR_STATUS_UNDEFINED:
 777		label = "undefined";
 778		break;
 779	default:
 780		return -ERANGE;
 781	}
 782
 783	return sprintf(buf, "%s\n", label);
 784}
 785static DEVICE_ATTR_RO(status);
 786
 787static ssize_t min_microamps_show(struct device *dev,
 788				  struct device_attribute *attr, char *buf)
 789{
 790	struct regulator_dev *rdev = dev_get_drvdata(dev);
 791
 792	if (!rdev->constraints)
 793		return sprintf(buf, "constraint not defined\n");
 794
 795	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 796}
 797static DEVICE_ATTR_RO(min_microamps);
 798
 799static ssize_t max_microamps_show(struct device *dev,
 800				  struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	if (!rdev->constraints)
 805		return sprintf(buf, "constraint not defined\n");
 806
 807	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 808}
 809static DEVICE_ATTR_RO(max_microamps);
 810
 811static ssize_t min_microvolts_show(struct device *dev,
 812				   struct device_attribute *attr, char *buf)
 813{
 814	struct regulator_dev *rdev = dev_get_drvdata(dev);
 815
 816	if (!rdev->constraints)
 817		return sprintf(buf, "constraint not defined\n");
 818
 819	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 820}
 821static DEVICE_ATTR_RO(min_microvolts);
 822
 823static ssize_t max_microvolts_show(struct device *dev,
 824				   struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	if (!rdev->constraints)
 829		return sprintf(buf, "constraint not defined\n");
 830
 831	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 832}
 833static DEVICE_ATTR_RO(max_microvolts);
 834
 835static ssize_t requested_microamps_show(struct device *dev,
 836					struct device_attribute *attr, char *buf)
 837{
 838	struct regulator_dev *rdev = dev_get_drvdata(dev);
 839	struct regulator *regulator;
 840	int uA = 0;
 841
 842	regulator_lock(rdev);
 843	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 844		if (regulator->enable_count)
 845			uA += regulator->uA_load;
 846	}
 847	regulator_unlock(rdev);
 848	return sprintf(buf, "%d\n", uA);
 849}
 850static DEVICE_ATTR_RO(requested_microamps);
 851
 852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 853			      char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856	return sprintf(buf, "%d\n", rdev->use_count);
 857}
 858static DEVICE_ATTR_RO(num_users);
 859
 860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 861			 char *buf)
 862{
 863	struct regulator_dev *rdev = dev_get_drvdata(dev);
 864
 865	switch (rdev->desc->type) {
 866	case REGULATOR_VOLTAGE:
 867		return sprintf(buf, "voltage\n");
 868	case REGULATOR_CURRENT:
 869		return sprintf(buf, "current\n");
 870	}
 871	return sprintf(buf, "unknown\n");
 872}
 873static DEVICE_ATTR_RO(type);
 874
 875static ssize_t suspend_mem_microvolts_show(struct device *dev,
 876					   struct device_attribute *attr, char *buf)
 877{
 878	struct regulator_dev *rdev = dev_get_drvdata(dev);
 879
 880	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 881}
 882static DEVICE_ATTR_RO(suspend_mem_microvolts);
 
 883
 884static ssize_t suspend_disk_microvolts_show(struct device *dev,
 885					    struct device_attribute *attr, char *buf)
 886{
 887	struct regulator_dev *rdev = dev_get_drvdata(dev);
 888
 889	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 890}
 891static DEVICE_ATTR_RO(suspend_disk_microvolts);
 
 892
 893static ssize_t suspend_standby_microvolts_show(struct device *dev,
 894					       struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897
 898	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 899}
 900static DEVICE_ATTR_RO(suspend_standby_microvolts);
 
 901
 902static ssize_t suspend_mem_mode_show(struct device *dev,
 903				     struct device_attribute *attr, char *buf)
 904{
 905	struct regulator_dev *rdev = dev_get_drvdata(dev);
 906
 907	return regulator_print_opmode(buf,
 908		rdev->constraints->state_mem.mode);
 909}
 910static DEVICE_ATTR_RO(suspend_mem_mode);
 
 911
 912static ssize_t suspend_disk_mode_show(struct device *dev,
 913				      struct device_attribute *attr, char *buf)
 914{
 915	struct regulator_dev *rdev = dev_get_drvdata(dev);
 916
 917	return regulator_print_opmode(buf,
 918		rdev->constraints->state_disk.mode);
 919}
 920static DEVICE_ATTR_RO(suspend_disk_mode);
 
 921
 922static ssize_t suspend_standby_mode_show(struct device *dev,
 923					 struct device_attribute *attr, char *buf)
 924{
 925	struct regulator_dev *rdev = dev_get_drvdata(dev);
 926
 927	return regulator_print_opmode(buf,
 928		rdev->constraints->state_standby.mode);
 929}
 930static DEVICE_ATTR_RO(suspend_standby_mode);
 
 931
 932static ssize_t suspend_mem_state_show(struct device *dev,
 933				      struct device_attribute *attr, char *buf)
 934{
 935	struct regulator_dev *rdev = dev_get_drvdata(dev);
 936
 937	return regulator_print_state(buf,
 938			rdev->constraints->state_mem.enabled);
 939}
 940static DEVICE_ATTR_RO(suspend_mem_state);
 
 941
 942static ssize_t suspend_disk_state_show(struct device *dev,
 943				       struct device_attribute *attr, char *buf)
 944{
 945	struct regulator_dev *rdev = dev_get_drvdata(dev);
 946
 947	return regulator_print_state(buf,
 948			rdev->constraints->state_disk.enabled);
 949}
 950static DEVICE_ATTR_RO(suspend_disk_state);
 
 951
 952static ssize_t suspend_standby_state_show(struct device *dev,
 953					  struct device_attribute *attr, char *buf)
 954{
 955	struct regulator_dev *rdev = dev_get_drvdata(dev);
 956
 957	return regulator_print_state(buf,
 958			rdev->constraints->state_standby.enabled);
 959}
 960static DEVICE_ATTR_RO(suspend_standby_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 961
 962static ssize_t bypass_show(struct device *dev,
 963			   struct device_attribute *attr, char *buf)
 964{
 965	struct regulator_dev *rdev = dev_get_drvdata(dev);
 966	const char *report;
 967	bool bypass;
 968	int ret;
 969
 970	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 971
 972	if (ret != 0)
 973		report = "unknown";
 974	else if (bypass)
 975		report = "enabled";
 976	else
 977		report = "disabled";
 978
 979	return sprintf(buf, "%s\n", report);
 980}
 981static DEVICE_ATTR_RO(bypass);
 982
 983#define REGULATOR_ERROR_ATTR(name, bit)							\
 984	static ssize_t name##_show(struct device *dev, struct device_attribute *attr,	\
 985				   char *buf)						\
 986	{										\
 987		int ret;								\
 988		unsigned int flags;							\
 989		struct regulator_dev *rdev = dev_get_drvdata(dev);			\
 990		ret = _regulator_get_error_flags(rdev, &flags);				\
 991		if (ret)								\
 992			return ret;							\
 993		return sysfs_emit(buf, "%d\n", !!(flags & (bit)));			\
 994	}										\
 995	static DEVICE_ATTR_RO(name)
 996
 997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
 998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
 999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012	struct regulator *sibling;
1013	int current_uA = 0, output_uV, input_uV, err;
1014	unsigned int mode;
1015
1016	/*
1017	 * first check to see if we can set modes at all, otherwise just
1018	 * tell the consumer everything is OK.
1019	 */
1020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021		rdev_dbg(rdev, "DRMS operation not allowed\n");
1022		return 0;
1023	}
1024
1025	if (!rdev->desc->ops->get_optimum_mode &&
1026	    !rdev->desc->ops->set_load)
1027		return 0;
 
1028
1029	if (!rdev->desc->ops->set_mode &&
1030	    !rdev->desc->ops->set_load)
1031		return -EINVAL;
 
 
 
 
 
1032
1033	/* calc total requested load */
1034	list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035		if (sibling->enable_count)
1036			current_uA += sibling->uA_load;
1037	}
1038
1039	current_uA += rdev->constraints->system_load;
1040
1041	if (rdev->desc->ops->set_load) {
1042		/* set the optimum mode for our new total regulator load */
1043		err = rdev->desc->ops->set_load(rdev, current_uA);
1044		if (err < 0)
1045			rdev_err(rdev, "failed to set load %d: %pe\n",
1046				 current_uA, ERR_PTR(err));
1047	} else {
1048		/*
1049		 * Unfortunately in some cases the constraints->valid_ops has
1050		 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051		 * That's not really legit but we won't consider it a fatal
1052		 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053		 * wasn't set.
1054		 */
1055		if (!rdev->constraints->valid_modes_mask) {
1056			rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057			return 0;
1058		}
1059
1060		/* get output voltage */
1061		output_uV = regulator_get_voltage_rdev(rdev);
 
 
 
1062
1063		/*
1064		 * Don't return an error; if regulator driver cares about
1065		 * output_uV then it's up to the driver to validate.
1066		 */
1067		if (output_uV <= 0)
1068			rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070		/* get input voltage */
1071		input_uV = 0;
1072		if (rdev->supply)
1073			input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074		if (input_uV <= 0)
1075			input_uV = rdev->constraints->input_uV;
1076
1077		/*
1078		 * Don't return an error; if regulator driver cares about
1079		 * input_uV then it's up to the driver to validate.
1080		 */
1081		if (input_uV <= 0)
1082			rdev_dbg(rdev, "invalid input voltage found\n");
 
 
 
1083
1084		/* now get the optimum mode for our new total regulator load */
1085		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086							 output_uV, current_uA);
 
1087
1088		/* check the new mode is allowed */
1089		err = regulator_mode_constrain(rdev, &mode);
1090		if (err < 0) {
1091			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092				 current_uA, input_uV, output_uV, ERR_PTR(err));
1093			return err;
1094		}
1095
1096		err = rdev->desc->ops->set_mode(rdev, mode);
1097		if (err < 0)
1098			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099				 mode, ERR_PTR(err));
1100	}
1101
1102	return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106			       const struct regulator_state *rstate)
1107{
1108	int ret = 0;
1109
1110	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111		rdev->desc->ops->set_suspend_enable)
1112		ret = rdev->desc->ops->set_suspend_enable(rdev);
1113	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114		rdev->desc->ops->set_suspend_disable)
1115		ret = rdev->desc->ops->set_suspend_disable(rdev);
1116	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117		ret = 0;
1118
1119	if (ret < 0) {
1120		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121		return ret;
1122	}
1123
1124	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126		if (ret < 0) {
1127			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128			return ret;
1129		}
1130	}
1131
1132	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134		if (ret < 0) {
1135			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136			return ret;
1137		}
1138	}
1139
1140	return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
 
1144{
1145	const struct regulator_state *rstate;
 
1146
1147	rstate = regulator_get_suspend_state_check(rdev,
1148			rdev->constraints->initial_state);
1149	if (!rstate)
1150		return 0;
1151
1152	return __suspend_set_state(rdev, rstate);
 
 
 
 
 
 
 
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158	struct regulation_constraints *constraints = rdev->constraints;
1159	char buf[160] = "";
1160	size_t len = sizeof(buf) - 1;
1161	int count = 0;
1162	int ret;
1163
1164	if (constraints->min_uV && constraints->max_uV) {
1165		if (constraints->min_uV == constraints->max_uV)
1166			count += scnprintf(buf + count, len - count, "%d mV ",
1167					   constraints->min_uV / 1000);
1168		else
1169			count += scnprintf(buf + count, len - count,
1170					   "%d <--> %d mV ",
1171					   constraints->min_uV / 1000,
1172					   constraints->max_uV / 1000);
1173	}
1174
1175	if (!constraints->min_uV ||
1176	    constraints->min_uV != constraints->max_uV) {
1177		ret = regulator_get_voltage_rdev(rdev);
1178		if (ret > 0)
1179			count += scnprintf(buf + count, len - count,
1180					   "at %d mV ", ret / 1000);
1181	}
1182
1183	if (constraints->uV_offset)
1184		count += scnprintf(buf + count, len - count, "%dmV offset ",
1185				   constraints->uV_offset / 1000);
1186
1187	if (constraints->min_uA && constraints->max_uA) {
1188		if (constraints->min_uA == constraints->max_uA)
1189			count += scnprintf(buf + count, len - count, "%d mA ",
1190					   constraints->min_uA / 1000);
1191		else
1192			count += scnprintf(buf + count, len - count,
1193					   "%d <--> %d mA ",
1194					   constraints->min_uA / 1000,
1195					   constraints->max_uA / 1000);
1196	}
1197
1198	if (!constraints->min_uA ||
1199	    constraints->min_uA != constraints->max_uA) {
1200		ret = _regulator_get_current_limit(rdev);
1201		if (ret > 0)
1202			count += scnprintf(buf + count, len - count,
1203					   "at %d mA ", ret / 1000);
1204	}
1205
1206	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207		count += scnprintf(buf + count, len - count, "fast ");
1208	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209		count += scnprintf(buf + count, len - count, "normal ");
1210	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211		count += scnprintf(buf + count, len - count, "idle ");
1212	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213		count += scnprintf(buf + count, len - count, "standby ");
1214
1215	if (!count)
1216		count = scnprintf(buf, len, "no parameters");
1217	else
1218		--count;
1219
1220	count += scnprintf(buf + count, len - count, ", %s",
1221		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223	rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231	struct regulation_constraints *constraints = rdev->constraints;
1232
1233	print_constraints_debug(rdev);
1234
1235	if ((constraints->min_uV != constraints->max_uV) &&
1236	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237		rdev_warn(rdev,
1238			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242	struct regulation_constraints *constraints)
1243{
1244	const struct regulator_ops *ops = rdev->desc->ops;
1245	int ret;
1246
1247	/* do we need to apply the constraint voltage */
1248	if (rdev->constraints->apply_uV &&
1249	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250		int target_min, target_max;
1251		int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253		if (current_uV == -ENOTRECOVERABLE) {
1254			/* This regulator can't be read and must be initialized */
1255			rdev_info(rdev, "Setting %d-%duV\n",
1256				  rdev->constraints->min_uV,
1257				  rdev->constraints->max_uV);
1258			_regulator_do_set_voltage(rdev,
1259						  rdev->constraints->min_uV,
1260						  rdev->constraints->max_uV);
1261			current_uV = regulator_get_voltage_rdev(rdev);
1262		}
1263
1264		if (current_uV < 0) {
1265			if (current_uV != -EPROBE_DEFER)
1266				rdev_err(rdev,
1267					 "failed to get the current voltage: %pe\n",
1268					 ERR_PTR(current_uV));
1269			return current_uV;
1270		}
1271
1272		/*
1273		 * If we're below the minimum voltage move up to the
1274		 * minimum voltage, if we're above the maximum voltage
1275		 * then move down to the maximum.
1276		 */
1277		target_min = current_uV;
1278		target_max = current_uV;
1279
1280		if (current_uV < rdev->constraints->min_uV) {
1281			target_min = rdev->constraints->min_uV;
1282			target_max = rdev->constraints->min_uV;
1283		}
1284
1285		if (current_uV > rdev->constraints->max_uV) {
1286			target_min = rdev->constraints->max_uV;
1287			target_max = rdev->constraints->max_uV;
1288		}
1289
1290		if (target_min != current_uV || target_max != current_uV) {
1291			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292				  current_uV, target_min, target_max);
1293			ret = _regulator_do_set_voltage(
1294				rdev, target_min, target_max);
1295			if (ret < 0) {
1296				rdev_err(rdev,
1297					"failed to apply %d-%duV constraint: %pe\n",
1298					target_min, target_max, ERR_PTR(ret));
1299				return ret;
1300			}
1301		}
1302	}
1303
1304	/* constrain machine-level voltage specs to fit
1305	 * the actual range supported by this regulator.
1306	 */
1307	if (ops->list_voltage && rdev->desc->n_voltages) {
1308		int	count = rdev->desc->n_voltages;
1309		int	i;
1310		int	min_uV = INT_MAX;
1311		int	max_uV = INT_MIN;
1312		int	cmin = constraints->min_uV;
1313		int	cmax = constraints->max_uV;
1314
1315		/* it's safe to autoconfigure fixed-voltage supplies
1316		 * and the constraints are used by list_voltage.
1317		 */
1318		if (count == 1 && !cmin) {
1319			cmin = 1;
1320			cmax = INT_MAX;
1321			constraints->min_uV = cmin;
1322			constraints->max_uV = cmax;
1323		}
1324
1325		/* voltage constraints are optional */
1326		if ((cmin == 0) && (cmax == 0))
1327			return 0;
1328
1329		/* else require explicit machine-level constraints */
1330		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331			rdev_err(rdev, "invalid voltage constraints\n");
1332			return -EINVAL;
1333		}
1334
1335		/* no need to loop voltages if range is continuous */
1336		if (rdev->desc->continuous_voltage_range)
1337			return 0;
1338
1339		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340		for (i = 0; i < count; i++) {
1341			int	value;
1342
1343			value = ops->list_voltage(rdev, i);
1344			if (value <= 0)
1345				continue;
1346
1347			/* maybe adjust [min_uV..max_uV] */
1348			if (value >= cmin && value < min_uV)
1349				min_uV = value;
1350			if (value <= cmax && value > max_uV)
1351				max_uV = value;
1352		}
1353
1354		/* final: [min_uV..max_uV] valid iff constraints valid */
1355		if (max_uV < min_uV) {
1356			rdev_err(rdev,
1357				 "unsupportable voltage constraints %u-%uuV\n",
1358				 min_uV, max_uV);
1359			return -EINVAL;
1360		}
1361
1362		/* use regulator's subset of machine constraints */
1363		if (constraints->min_uV < min_uV) {
1364			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365				 constraints->min_uV, min_uV);
1366			constraints->min_uV = min_uV;
1367		}
1368		if (constraints->max_uV > max_uV) {
1369			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370				 constraints->max_uV, max_uV);
1371			constraints->max_uV = max_uV;
1372		}
1373	}
1374
1375	return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379	struct regulation_constraints *constraints)
1380{
1381	const struct regulator_ops *ops = rdev->desc->ops;
1382	int ret;
1383
1384	if (!constraints->min_uA && !constraints->max_uA)
1385		return 0;
1386
1387	if (constraints->min_uA > constraints->max_uA) {
1388		rdev_err(rdev, "Invalid current constraints\n");
1389		return -EINVAL;
1390	}
1391
1392	if (!ops->set_current_limit || !ops->get_current_limit) {
1393		rdev_warn(rdev, "Operation of current configuration missing\n");
1394		return 0;
1395	}
1396
1397	/* Set regulator current in constraints range */
1398	ret = ops->set_current_limit(rdev, constraints->min_uA,
1399			constraints->max_uA);
1400	if (ret < 0) {
1401		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402		return ret;
1403	}
1404
1405	return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411			   int (*set)(struct regulator_dev *, int, int, bool),
1412			   int limit, int severity)
1413{
1414	bool enable;
1415
1416	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417		enable = false;
1418		limit = 0;
1419	} else {
1420		enable = true;
1421	}
1422
1423	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424		limit = 0;
1425
1426	return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430			int (*set)(struct regulator_dev *, int, int, bool),
1431			struct notification_limit *limits)
1432{
1433	int ret = 0;
1434
1435	if (!set)
1436		return -EOPNOTSUPP;
1437
1438	if (limits->prot)
1439		ret = notif_set_limit(rdev, set, limits->prot,
1440				      REGULATOR_SEVERITY_PROT);
1441	if (ret)
1442		return ret;
1443
1444	if (limits->err)
1445		ret = notif_set_limit(rdev, set, limits->err,
1446				      REGULATOR_SEVERITY_ERR);
1447	if (ret)
1448		return ret;
1449
1450	if (limits->warn)
1451		ret = notif_set_limit(rdev, set, limits->warn,
1452				      REGULATOR_SEVERITY_WARN);
1453
1454	return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
 
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
 
1467{
1468	int ret = 0;
1469	const struct regulator_ops *ops = rdev->desc->ops;
 
 
 
 
 
1470
1471	ret = machine_constraints_voltage(rdev, rdev->constraints);
1472	if (ret != 0)
1473		return ret;
1474
1475	ret = machine_constraints_current(rdev, rdev->constraints);
1476	if (ret != 0)
1477		return ret;
1478
1479	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480		ret = ops->set_input_current_limit(rdev,
1481						   rdev->constraints->ilim_uA);
1482		if (ret < 0) {
1483			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484			return ret;
1485		}
1486	}
1487
1488	/* do we need to setup our suspend state */
1489	if (rdev->constraints->initial_state) {
1490		ret = suspend_set_initial_state(rdev);
1491		if (ret < 0) {
1492			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493			return ret;
1494		}
1495	}
1496
1497	if (rdev->constraints->initial_mode) {
1498		if (!ops->set_mode) {
1499			rdev_err(rdev, "no set_mode operation\n");
1500			return -EINVAL;
 
1501		}
1502
1503		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504		if (ret < 0) {
1505			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506			return ret;
1507		}
1508	} else if (rdev->constraints->system_load) {
1509		/*
1510		 * We'll only apply the initial system load if an
1511		 * initial mode wasn't specified.
1512		 */
1513		drms_uA_update(rdev);
1514	}
1515
1516	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517		&& ops->set_ramp_delay) {
1518		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519		if (ret < 0) {
1520			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521			return ret;
1522		}
1523	}
1524
1525	if (rdev->constraints->pull_down && ops->set_pull_down) {
1526		ret = ops->set_pull_down(rdev);
1527		if (ret < 0) {
1528			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529			return ret;
1530		}
1531	}
1532
1533	if (rdev->constraints->soft_start && ops->set_soft_start) {
1534		ret = ops->set_soft_start(rdev);
1535		if (ret < 0) {
1536			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537			return ret;
1538		}
1539	}
1540
1541	/*
1542	 * Existing logic does not warn if over_current_protection is given as
1543	 * a constraint but driver does not support that. I think we should
1544	 * warn about this type of issues as it is possible someone changes
1545	 * PMIC on board to another type - and the another PMIC's driver does
1546	 * not support setting protection. Board composer may happily believe
1547	 * the DT limits are respected - especially if the new PMIC HW also
1548	 * supports protection but the driver does not. I won't change the logic
1549	 * without hearing more experienced opinion on this though.
1550	 *
1551	 * If warning is seen as a good idea then we can merge handling the
1552	 * over-curret protection and detection and get rid of this special
1553	 * handling.
1554	 */
1555	if (rdev->constraints->over_current_protection
1556		&& ops->set_over_current_protection) {
1557		int lim = rdev->constraints->over_curr_limits.prot;
1558
1559		ret = ops->set_over_current_protection(rdev, lim,
1560						       REGULATOR_SEVERITY_PROT,
1561						       true);
1562		if (ret < 0) {
1563			rdev_err(rdev, "failed to set over current protection: %pe\n",
1564				 ERR_PTR(ret));
1565			return ret;
1566		}
1567	}
1568
1569	if (rdev->constraints->over_current_detection)
1570		ret = handle_notify_limits(rdev,
1571					   ops->set_over_current_protection,
1572					   &rdev->constraints->over_curr_limits);
1573	if (ret) {
1574		if (ret != -EOPNOTSUPP) {
1575			rdev_err(rdev, "failed to set over current limits: %pe\n",
1576				 ERR_PTR(ret));
1577			return ret;
1578		}
1579		rdev_warn(rdev,
1580			  "IC does not support requested over-current limits\n");
1581	}
1582
1583	if (rdev->constraints->over_voltage_detection)
1584		ret = handle_notify_limits(rdev,
1585					   ops->set_over_voltage_protection,
1586					   &rdev->constraints->over_voltage_limits);
1587	if (ret) {
1588		if (ret != -EOPNOTSUPP) {
1589			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590				 ERR_PTR(ret));
1591			return ret;
1592		}
1593		rdev_warn(rdev,
1594			  "IC does not support requested over voltage limits\n");
1595	}
1596
1597	if (rdev->constraints->under_voltage_detection)
1598		ret = handle_notify_limits(rdev,
1599					   ops->set_under_voltage_protection,
1600					   &rdev->constraints->under_voltage_limits);
1601	if (ret) {
1602		if (ret != -EOPNOTSUPP) {
1603			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604				 ERR_PTR(ret));
1605			return ret;
1606		}
1607		rdev_warn(rdev,
1608			  "IC does not support requested under voltage limits\n");
1609	}
1610
1611	if (rdev->constraints->over_temp_detection)
1612		ret = handle_notify_limits(rdev,
1613					   ops->set_thermal_protection,
1614					   &rdev->constraints->temp_limits);
1615	if (ret) {
1616		if (ret != -EOPNOTSUPP) {
1617			rdev_err(rdev, "failed to set temperature limits %pe\n",
1618				 ERR_PTR(ret));
1619			return ret;
1620		}
1621		rdev_warn(rdev,
1622			  "IC does not support requested temperature limits\n");
1623	}
1624
1625	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626		bool ad_state = (rdev->constraints->active_discharge ==
1627			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629		ret = ops->set_active_discharge(rdev, ad_state);
1630		if (ret < 0) {
1631			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632			return ret;
1633		}
1634	}
1635
1636	/*
1637	 * If there is no mechanism for controlling the regulator then
1638	 * flag it as always_on so we don't end up duplicating checks
1639	 * for this so much.  Note that we could control the state of
1640	 * a supply to control the output on a regulator that has no
1641	 * direct control.
1642	 */
1643	if (!rdev->ena_pin && !ops->enable) {
1644		if (rdev->supply_name && !rdev->supply)
1645			return -EPROBE_DEFER;
1646
1647		if (rdev->supply)
1648			rdev->constraints->always_on =
1649				rdev->supply->rdev->constraints->always_on;
1650		else
1651			rdev->constraints->always_on = true;
1652	}
1653
1654	/* If the constraints say the regulator should be on at this point
1655	 * and we have control then make sure it is enabled.
1656	 */
1657	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658		/* If we want to enable this regulator, make sure that we know
1659		 * the supplying regulator.
1660		 */
1661		if (rdev->supply_name && !rdev->supply)
1662			return -EPROBE_DEFER;
1663
1664		/* If supplying regulator has already been enabled,
1665		 * it's not intended to have use_count increment
1666		 * when rdev is only boot-on.
1667		 */
1668		if (rdev->supply &&
1669		    (rdev->constraints->always_on ||
1670		     !regulator_is_enabled(rdev->supply))) {
1671			ret = regulator_enable(rdev->supply);
1672			if (ret < 0) {
1673				_regulator_put(rdev->supply);
1674				rdev->supply = NULL;
1675				return ret;
1676			}
1677		}
1678
1679		ret = _regulator_do_enable(rdev);
1680		if (ret < 0 && ret != -EINVAL) {
1681			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682			return ret;
1683		}
1684
1685		if (rdev->constraints->always_on)
1686			rdev->use_count++;
1687	} else if (rdev->desc->off_on_delay) {
1688		rdev->last_off = ktime_get();
1689	}
1690
1691	print_constraints(rdev);
1692	return 0;
 
 
 
 
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705		      struct regulator_dev *supply_rdev)
1706{
1707	int err;
1708
1709	rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711	if (!try_module_get(supply_rdev->owner))
1712		return -ENODEV;
1713
1714	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715	if (rdev->supply == NULL) {
1716		module_put(supply_rdev->owner);
1717		err = -ENOMEM;
1718		return err;
1719	}
1720	supply_rdev->open_count++;
1721
1722	return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev:         regulator source
 
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply:       symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices.  Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
 
 
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737				      const char *consumer_dev_name,
1738				      const char *supply)
1739{
1740	struct regulator_map *node, *new_node;
1741	int has_dev;
1742
 
 
 
 
 
 
1743	if (supply == NULL)
1744		return -EINVAL;
1745
1746	if (consumer_dev_name != NULL)
1747		has_dev = 1;
1748	else
1749		has_dev = 0;
1750
1751	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752	if (new_node == NULL)
1753		return -ENOMEM;
1754
1755	new_node->regulator = rdev;
1756	new_node->supply = supply;
1757
1758	if (has_dev) {
1759		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760		if (new_node->dev_name == NULL) {
1761			kfree(new_node);
1762			return -ENOMEM;
1763		}
1764	}
1765
1766	mutex_lock(&regulator_list_mutex);
1767	list_for_each_entry(node, &regulator_map_list, list) {
1768		if (node->dev_name && consumer_dev_name) {
1769			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770				continue;
1771		} else if (node->dev_name || consumer_dev_name) {
1772			continue;
1773		}
1774
1775		if (strcmp(node->supply, supply) != 0)
1776			continue;
1777
1778		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779			 consumer_dev_name,
1780			 dev_name(&node->regulator->dev),
1781			 node->regulator->desc->name,
1782			 supply,
1783			 dev_name(&rdev->dev), rdev_get_name(rdev));
1784		goto fail;
1785	}
1786
1787	list_add(&new_node->list, &regulator_map_list);
1788	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
1789
 
1790	return 0;
1791
1792fail:
1793	mutex_unlock(&regulator_list_mutex);
1794	kfree(new_node->dev_name);
1795	kfree(new_node);
1796	return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801	struct regulator_map *node, *n;
1802
1803	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804		if (rdev == node->regulator) {
1805			list_del(&node->list);
1806			kfree(node->dev_name);
1807			kfree(node);
1808		}
1809	}
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814					  char __user *user_buf,
1815					  size_t count, loff_t *ppos)
1816{
1817	const struct regulator *regulator = file->private_data;
1818	const struct regulation_constraints *c = regulator->rdev->constraints;
1819	char *buf;
1820	ssize_t ret;
1821
1822	if (!c)
1823		return 0;
1824
1825	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826	if (!buf)
1827		return -ENOMEM;
1828
1829	ret = snprintf(buf, PAGE_SIZE,
1830			"always_on: %u\n"
1831			"boot_on: %u\n"
1832			"apply_uV: %u\n"
1833			"ramp_disable: %u\n"
1834			"soft_start: %u\n"
1835			"pull_down: %u\n"
1836			"over_current_protection: %u\n",
1837			c->always_on,
1838			c->boot_on,
1839			c->apply_uV,
1840			c->ramp_disable,
1841			c->soft_start,
1842			c->pull_down,
1843			c->over_current_protection);
1844
1845	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846	kfree(buf);
1847
1848	return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855	.open = simple_open,
1856	.read = constraint_flags_read_file,
1857	.llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE	64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864					  struct device *dev,
1865					  const char *supply_name)
1866{
1867	struct regulator *regulator;
1868	int err = 0;
1869
1870	lockdep_assert_held_once(&rdev->mutex.base);
1871
1872	if (dev) {
1873		char buf[REG_STR_SIZE];
1874		int size;
1875
1876		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877				dev->kobj.name, supply_name);
1878		if (size >= REG_STR_SIZE)
1879			return NULL;
1880
1881		supply_name = kstrdup(buf, GFP_KERNEL);
1882		if (supply_name == NULL)
1883			return NULL;
1884	} else {
1885		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886		if (supply_name == NULL)
1887			return NULL;
1888	}
1889
1890	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891	if (regulator == NULL) {
1892		kfree_const(supply_name);
1893		return NULL;
1894	}
1895
 
1896	regulator->rdev = rdev;
1897	regulator->supply_name = supply_name;
1898
1899	list_add(&regulator->list, &rdev->consumer_list);
1900
1901	if (dev) {
 
 
 
 
 
 
 
1902		regulator->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903
1904		/* Add a link to the device sysfs entry */
1905		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906					       supply_name);
1907		if (err) {
1908			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909				  dev->kobj.name, ERR_PTR(err));
1910			/* non-fatal */
1911		}
 
 
 
 
1912	}
1913
1914	if (err != -EEXIST) {
1915		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916		if (IS_ERR(regulator->debugfs)) {
1917			rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918			regulator->debugfs = NULL;
1919		}
1920	}
1921
1922	if (regulator->debugfs) {
1923		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924				   &regulator->uA_load);
1925		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1927		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1929		debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930				    regulator, &constraint_flags_fops);
1931	}
 
1932
1933	/*
1934	 * Check now if the regulator is an always on regulator - if
1935	 * it is then we don't need to do nearly so much work for
1936	 * enable/disable calls.
1937	 */
1938	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939	    _regulator_is_enabled(rdev))
1940		regulator->always_on = true;
1941
1942	return regulator;
 
 
 
 
 
 
 
 
 
 
 
1943}
1944
1945static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946{
1947	if (rdev->constraints && rdev->constraints->enable_time)
1948		return rdev->constraints->enable_time;
1949	if (rdev->desc->ops->enable_time)
1950		return rdev->desc->ops->enable_time(rdev);
1951	return rdev->desc->enable_time;
1952}
1953
1954static struct regulator_supply_alias *regulator_find_supply_alias(
1955		struct device *dev, const char *supply)
 
1956{
1957	struct regulator_supply_alias *map;
1958
1959	list_for_each_entry(map, &regulator_supply_alias_list, list)
1960		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961			return map;
1962
1963	return NULL;
1964}
1965
1966static void regulator_supply_alias(struct device **dev, const char **supply)
1967{
1968	struct regulator_supply_alias *map;
1969
1970	map = regulator_find_supply_alias(*dev, *supply);
1971	if (map) {
1972		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973				*supply, map->alias_supply,
1974				dev_name(map->alias_dev));
1975		*dev = map->alias_dev;
1976		*supply = map->alias_supply;
1977	}
1978}
1979
1980static int regulator_match(struct device *dev, const void *data)
1981{
1982	struct regulator_dev *r = dev_to_rdev(dev);
1983
1984	return strcmp(rdev_get_name(r), data) == 0;
1985}
1986
1987static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988{
1989	struct device *dev;
1990
1991	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1992
1993	return dev ? dev_to_rdev(dev) : NULL;
1994}
1995
1996/**
1997 * regulator_dev_lookup - lookup a regulator device.
1998 * @dev: device for regulator "consumer".
1999 * @supply: Supply name or regulator ID.
2000 *
2001 * If successful, returns a struct regulator_dev that corresponds to the name
2002 * @supply and with the embedded struct device refcount incremented by one.
2003 * The refcount must be dropped by calling put_device().
2004 * On failure one of the following ERR-PTR-encoded values is returned:
2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006 * in the future.
2007 */
2008static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009						  const char *supply)
2010{
2011	struct regulator_dev *r = NULL;
2012	struct device_node *node;
2013	struct regulator_map *map;
 
2014	const char *devname = NULL;
 
2015
2016	regulator_supply_alias(&dev, &supply);
2017
2018	/* first do a dt based lookup */
2019	if (dev && dev->of_node) {
2020		node = of_get_regulator(dev, supply);
2021		if (node) {
2022			r = of_find_regulator_by_node(node);
2023			of_node_put(node);
2024			if (r)
2025				return r;
2026
2027			/*
2028			 * We have a node, but there is no device.
2029			 * assume it has not registered yet.
2030			 */
2031			return ERR_PTR(-EPROBE_DEFER);
2032		}
2033	}
2034
2035	/* if not found, try doing it non-dt way */
2036	if (dev)
2037		devname = dev_name(dev);
2038
2039	mutex_lock(&regulator_list_mutex);
 
2040	list_for_each_entry(map, &regulator_map_list, list) {
2041		/* If the mapping has a device set up it must match */
2042		if (map->dev_name &&
2043		    (!devname || strcmp(map->dev_name, devname)))
2044			continue;
2045
2046		if (strcmp(map->supply, supply) == 0 &&
2047		    get_device(&map->regulator->dev)) {
2048			r = map->regulator;
2049			break;
2050		}
2051	}
2052	mutex_unlock(&regulator_list_mutex);
2053
2054	if (r)
2055		return r;
2056
2057	r = regulator_lookup_by_name(supply);
2058	if (r)
2059		return r;
2060
2061	return ERR_PTR(-ENODEV);
2062}
2063
2064static int regulator_resolve_supply(struct regulator_dev *rdev)
2065{
2066	struct regulator_dev *r;
2067	struct device *dev = rdev->dev.parent;
2068	struct ww_acquire_ctx ww_ctx;
2069	int ret = 0;
2070
2071	/* No supply to resolve? */
2072	if (!rdev->supply_name)
2073		return 0;
2074
2075	/* Supply already resolved? (fast-path without locking contention) */
2076	if (rdev->supply)
2077		return 0;
2078
2079	r = regulator_dev_lookup(dev, rdev->supply_name);
2080	if (IS_ERR(r)) {
2081		ret = PTR_ERR(r);
2082
2083		/* Did the lookup explicitly defer for us? */
2084		if (ret == -EPROBE_DEFER)
2085			goto out;
2086
2087		if (have_full_constraints()) {
2088			r = dummy_regulator_rdev;
2089			get_device(&r->dev);
2090		} else {
2091			dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092				rdev->supply_name, rdev->desc->name);
2093			ret = -EPROBE_DEFER;
2094			goto out;
2095		}
2096	}
2097
2098	if (r == rdev) {
2099		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100			rdev->desc->name, rdev->supply_name);
2101		if (!have_full_constraints()) {
2102			ret = -EINVAL;
2103			goto out;
2104		}
2105		r = dummy_regulator_rdev;
2106		get_device(&r->dev);
2107	}
2108
2109	/*
2110	 * If the supply's parent device is not the same as the
2111	 * regulator's parent device, then ensure the parent device
2112	 * is bound before we resolve the supply, in case the parent
2113	 * device get probe deferred and unregisters the supply.
2114	 */
2115	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116		if (!device_is_bound(r->dev.parent)) {
2117			put_device(&r->dev);
2118			ret = -EPROBE_DEFER;
2119			goto out;
2120		}
2121	}
 
2122
2123	/* Recursively resolve the supply of the supply */
2124	ret = regulator_resolve_supply(r);
2125	if (ret < 0) {
2126		put_device(&r->dev);
2127		goto out;
2128	}
2129
2130	/*
2131	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132	 * between rdev->supply null check and setting rdev->supply in
2133	 * set_supply() from concurrent tasks.
2134	 */
2135	regulator_lock_two(rdev, r, &ww_ctx);
2136
2137	/* Supply just resolved by a concurrent task? */
2138	if (rdev->supply) {
2139		regulator_unlock_two(rdev, r, &ww_ctx);
2140		put_device(&r->dev);
2141		goto out;
2142	}
2143
2144	ret = set_supply(rdev, r);
2145	if (ret < 0) {
2146		regulator_unlock_two(rdev, r, &ww_ctx);
2147		put_device(&r->dev);
2148		goto out;
2149	}
2150
2151	regulator_unlock_two(rdev, r, &ww_ctx);
2152
2153	/*
2154	 * In set_machine_constraints() we may have turned this regulator on
2155	 * but we couldn't propagate to the supply if it hadn't been resolved
2156	 * yet.  Do it now.
2157	 */
2158	if (rdev->use_count) {
2159		ret = regulator_enable(rdev->supply);
2160		if (ret < 0) {
2161			_regulator_put(rdev->supply);
2162			rdev->supply = NULL;
2163			goto out;
2164		}
2165	}
2166
2167out:
2168	return ret;
2169}
2170
2171/* Internal regulator request function */
2172struct regulator *_regulator_get(struct device *dev, const char *id,
2173				 enum regulator_get_type get_type)
2174{
2175	struct regulator_dev *rdev;
2176	struct regulator *regulator;
2177	struct device_link *link;
2178	int ret;
2179
2180	if (get_type >= MAX_GET_TYPE) {
2181		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182		return ERR_PTR(-EINVAL);
2183	}
2184
2185	if (id == NULL) {
2186		pr_err("get() with no identifier\n");
2187		return ERR_PTR(-EINVAL);
2188	}
2189
2190	rdev = regulator_dev_lookup(dev, id);
2191	if (IS_ERR(rdev)) {
2192		ret = PTR_ERR(rdev);
2193
2194		/*
2195		 * If regulator_dev_lookup() fails with error other
2196		 * than -ENODEV our job here is done, we simply return it.
2197		 */
2198		if (ret != -ENODEV)
2199			return ERR_PTR(ret);
2200
2201		if (!have_full_constraints()) {
2202			dev_warn(dev,
2203				 "incomplete constraints, dummy supplies not allowed\n");
2204			return ERR_PTR(-ENODEV);
2205		}
2206
2207		switch (get_type) {
2208		case NORMAL_GET:
2209			/*
2210			 * Assume that a regulator is physically present and
2211			 * enabled, even if it isn't hooked up, and just
2212			 * provide a dummy.
2213			 */
2214			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215			rdev = dummy_regulator_rdev;
2216			get_device(&rdev->dev);
2217			break;
2218
2219		case EXCLUSIVE_GET:
2220			dev_warn(dev,
2221				 "dummy supplies not allowed for exclusive requests\n");
2222			fallthrough;
2223
2224		default:
2225			return ERR_PTR(-ENODEV);
2226		}
2227	}
2228
 
2229	if (rdev->exclusive) {
2230		regulator = ERR_PTR(-EPERM);
2231		put_device(&rdev->dev);
2232		return regulator;
2233	}
2234
2235	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236		regulator = ERR_PTR(-EBUSY);
2237		put_device(&rdev->dev);
2238		return regulator;
2239	}
2240
2241	mutex_lock(&regulator_list_mutex);
2242	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243	mutex_unlock(&regulator_list_mutex);
2244
2245	if (ret != 0) {
2246		regulator = ERR_PTR(-EPROBE_DEFER);
2247		put_device(&rdev->dev);
2248		return regulator;
2249	}
2250
2251	ret = regulator_resolve_supply(rdev);
2252	if (ret < 0) {
2253		regulator = ERR_PTR(ret);
2254		put_device(&rdev->dev);
2255		return regulator;
2256	}
2257
2258	if (!try_module_get(rdev->owner)) {
2259		regulator = ERR_PTR(-EPROBE_DEFER);
2260		put_device(&rdev->dev);
2261		return regulator;
2262	}
2263
2264	regulator_lock(rdev);
2265	regulator = create_regulator(rdev, dev, id);
2266	regulator_unlock(rdev);
2267	if (regulator == NULL) {
2268		regulator = ERR_PTR(-ENOMEM);
2269		module_put(rdev->owner);
2270		put_device(&rdev->dev);
2271		return regulator;
2272	}
2273
2274	rdev->open_count++;
2275	if (get_type == EXCLUSIVE_GET) {
2276		rdev->exclusive = 1;
2277
2278		ret = _regulator_is_enabled(rdev);
2279		if (ret > 0) {
2280			rdev->use_count = 1;
2281			regulator->enable_count = 1;
2282
2283			/* Propagate the regulator state to its supply */
2284			if (rdev->supply) {
2285				ret = regulator_enable(rdev->supply);
2286				if (ret < 0) {
2287					destroy_regulator(regulator);
2288					module_put(rdev->owner);
2289					put_device(&rdev->dev);
2290					return ERR_PTR(ret);
2291				}
2292			}
2293		} else {
2294			rdev->use_count = 0;
2295			regulator->enable_count = 0;
2296		}
2297	}
2298
2299	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300	if (!IS_ERR_OR_NULL(link))
2301		regulator->device_link = true;
2302
2303	return regulator;
2304}
2305
2306/**
2307 * regulator_get - lookup and obtain a reference to a regulator.
2308 * @dev: device for regulator "consumer"
2309 * @id: Supply name or regulator ID.
2310 *
2311 * Returns a struct regulator corresponding to the regulator producer,
2312 * or IS_ERR() condition containing errno.
2313 *
2314 * Use of supply names configured via set_consumer_device_supply() is
2315 * strongly encouraged.  It is recommended that the supply name used
2316 * should match the name used for the supply and/or the relevant
2317 * device pins in the datasheet.
2318 */
2319struct regulator *regulator_get(struct device *dev, const char *id)
2320{
2321	return _regulator_get(dev, id, NORMAL_GET);
2322}
2323EXPORT_SYMBOL_GPL(regulator_get);
2324
2325/**
2326 * regulator_get_exclusive - obtain exclusive access to a regulator.
2327 * @dev: device for regulator "consumer"
2328 * @id: Supply name or regulator ID.
2329 *
2330 * Returns a struct regulator corresponding to the regulator producer,
2331 * or IS_ERR() condition containing errno.  Other consumers will be
2332 * unable to obtain this regulator while this reference is held and the
2333 * use count for the regulator will be initialised to reflect the current
2334 * state of the regulator.
2335 *
2336 * This is intended for use by consumers which cannot tolerate shared
2337 * use of the regulator such as those which need to force the
2338 * regulator off for correct operation of the hardware they are
2339 * controlling.
2340 *
2341 * Use of supply names configured via set_consumer_device_supply() is
2342 * strongly encouraged.  It is recommended that the supply name used
2343 * should match the name used for the supply and/or the relevant
2344 * device pins in the datasheet.
2345 */
2346struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2347{
2348	return _regulator_get(dev, id, EXCLUSIVE_GET);
2349}
2350EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2351
2352/**
2353 * regulator_get_optional - obtain optional access to a regulator.
2354 * @dev: device for regulator "consumer"
2355 * @id: Supply name or regulator ID.
2356 *
2357 * Returns a struct regulator corresponding to the regulator producer,
2358 * or IS_ERR() condition containing errno.
2359 *
2360 * This is intended for use by consumers for devices which can have
2361 * some supplies unconnected in normal use, such as some MMC devices.
2362 * It can allow the regulator core to provide stub supplies for other
2363 * supplies requested using normal regulator_get() calls without
2364 * disrupting the operation of drivers that can handle absent
2365 * supplies.
2366 *
2367 * Use of supply names configured via set_consumer_device_supply() is
2368 * strongly encouraged.  It is recommended that the supply name used
2369 * should match the name used for the supply and/or the relevant
2370 * device pins in the datasheet.
2371 */
2372struct regulator *regulator_get_optional(struct device *dev, const char *id)
2373{
2374	return _regulator_get(dev, id, OPTIONAL_GET);
2375}
2376EXPORT_SYMBOL_GPL(regulator_get_optional);
 
2377
2378static void destroy_regulator(struct regulator *regulator)
2379{
2380	struct regulator_dev *rdev = regulator->rdev;
2381
 
2382	debugfs_remove_recursive(regulator->debugfs);
 
2383
 
2384	if (regulator->dev) {
2385		if (regulator->device_link)
2386			device_link_remove(regulator->dev, &rdev->dev);
2387
2388		/* remove any sysfs entries */
2389		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
 
 
2390	}
2391
2392	regulator_lock(rdev);
2393	list_del(&regulator->list);
 
2394
2395	rdev->open_count--;
2396	rdev->exclusive = 0;
2397	regulator_unlock(rdev);
2398
2399	kfree_const(regulator->supply_name);
2400	kfree(regulator);
2401}
2402
2403/* regulator_list_mutex lock held by regulator_put() */
2404static void _regulator_put(struct regulator *regulator)
2405{
2406	struct regulator_dev *rdev;
2407
2408	if (IS_ERR_OR_NULL(regulator))
2409		return;
2410
2411	lockdep_assert_held_once(&regulator_list_mutex);
2412
2413	/* Docs say you must disable before calling regulator_put() */
2414	WARN_ON(regulator->enable_count);
2415
2416	rdev = regulator->rdev;
2417
2418	destroy_regulator(regulator);
2419
2420	module_put(rdev->owner);
2421	put_device(&rdev->dev);
2422}
2423
2424/**
2425 * regulator_put - "free" the regulator source
2426 * @regulator: regulator source
2427 *
2428 * Note: drivers must ensure that all regulator_enable calls made on this
2429 * regulator source are balanced by regulator_disable calls prior to calling
2430 * this function.
2431 */
2432void regulator_put(struct regulator *regulator)
2433{
2434	mutex_lock(&regulator_list_mutex);
2435	_regulator_put(regulator);
2436	mutex_unlock(&regulator_list_mutex);
2437}
2438EXPORT_SYMBOL_GPL(regulator_put);
2439
2440/**
2441 * regulator_register_supply_alias - Provide device alias for supply lookup
2442 *
2443 * @dev: device that will be given as the regulator "consumer"
2444 * @id: Supply name or regulator ID
2445 * @alias_dev: device that should be used to lookup the supply
2446 * @alias_id: Supply name or regulator ID that should be used to lookup the
2447 * supply
2448 *
2449 * All lookups for id on dev will instead be conducted for alias_id on
2450 * alias_dev.
2451 */
2452int regulator_register_supply_alias(struct device *dev, const char *id,
2453				    struct device *alias_dev,
2454				    const char *alias_id)
2455{
2456	struct regulator_supply_alias *map;
 
2457
2458	map = regulator_find_supply_alias(dev, id);
2459	if (map)
2460		return -EEXIST;
2461
2462	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463	if (!map)
2464		return -ENOMEM;
2465
2466	map->src_dev = dev;
2467	map->src_supply = id;
2468	map->alias_dev = alias_dev;
2469	map->alias_supply = alias_id;
2470
2471	list_add(&map->list, &regulator_supply_alias_list);
2472
2473	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474		id, dev_name(dev), alias_id, dev_name(alias_dev));
2475
2476	return 0;
2477}
2478EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2479
2480/**
2481 * regulator_unregister_supply_alias - Remove device alias
2482 *
2483 * @dev: device that will be given as the regulator "consumer"
2484 * @id: Supply name or regulator ID
2485 *
2486 * Remove a lookup alias if one exists for id on dev.
2487 */
2488void regulator_unregister_supply_alias(struct device *dev, const char *id)
2489{
2490	struct regulator_supply_alias *map;
2491
2492	map = regulator_find_supply_alias(dev, id);
2493	if (map) {
2494		list_del(&map->list);
2495		kfree(map);
2496	}
2497}
2498EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2499
2500/**
2501 * regulator_bulk_register_supply_alias - register multiple aliases
2502 *
2503 * @dev: device that will be given as the regulator "consumer"
2504 * @id: List of supply names or regulator IDs
2505 * @alias_dev: device that should be used to lookup the supply
2506 * @alias_id: List of supply names or regulator IDs that should be used to
2507 * lookup the supply
2508 * @num_id: Number of aliases to register
2509 *
2510 * @return 0 on success, an errno on failure.
2511 *
2512 * This helper function allows drivers to register several supply
2513 * aliases in one operation.  If any of the aliases cannot be
2514 * registered any aliases that were registered will be removed
2515 * before returning to the caller.
2516 */
2517int regulator_bulk_register_supply_alias(struct device *dev,
2518					 const char *const *id,
2519					 struct device *alias_dev,
2520					 const char *const *alias_id,
2521					 int num_id)
2522{
2523	int i;
2524	int ret;
2525
2526	for (i = 0; i < num_id; ++i) {
2527		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528						      alias_id[i]);
2529		if (ret < 0)
2530			goto err;
2531	}
2532
2533	return 0;
2534
2535err:
2536	dev_err(dev,
2537		"Failed to create supply alias %s,%s -> %s,%s\n",
2538		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2539
2540	while (--i >= 0)
2541		regulator_unregister_supply_alias(dev, id[i]);
2542
2543	return ret;
2544}
2545EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2546
2547/**
2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2549 *
2550 * @dev: device that will be given as the regulator "consumer"
2551 * @id: List of supply names or regulator IDs
2552 * @num_id: Number of aliases to unregister
2553 *
2554 * This helper function allows drivers to unregister several supply
2555 * aliases in one operation.
2556 */
2557void regulator_bulk_unregister_supply_alias(struct device *dev,
2558					    const char *const *id,
2559					    int num_id)
2560{
2561	int i;
2562
2563	for (i = 0; i < num_id; ++i)
2564		regulator_unregister_supply_alias(dev, id[i]);
2565}
2566EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2567
2568
2569/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571				const struct regulator_config *config)
2572{
2573	struct regulator_enable_gpio *pin, *new_pin;
2574	struct gpio_desc *gpiod;
2575
2576	gpiod = config->ena_gpiod;
2577	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2578
2579	mutex_lock(&regulator_list_mutex);
2580
2581	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2582		if (pin->gpiod == gpiod) {
2583			rdev_dbg(rdev, "GPIO is already used\n");
2584			goto update_ena_gpio_to_rdev;
2585		}
2586	}
2587
2588	if (new_pin == NULL) {
2589		mutex_unlock(&regulator_list_mutex);
2590		return -ENOMEM;
2591	}
2592
2593	pin = new_pin;
2594	new_pin = NULL;
2595
2596	pin->gpiod = gpiod;
2597	list_add(&pin->list, &regulator_ena_gpio_list);
2598
2599update_ena_gpio_to_rdev:
2600	pin->request_count++;
2601	rdev->ena_pin = pin;
2602
2603	mutex_unlock(&regulator_list_mutex);
2604	kfree(new_pin);
2605
2606	return 0;
2607}
2608
2609static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2610{
2611	struct regulator_enable_gpio *pin, *n;
2612
2613	if (!rdev->ena_pin)
2614		return;
2615
2616	/* Free the GPIO only in case of no use */
2617	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2618		if (pin != rdev->ena_pin)
2619			continue;
2620
2621		if (--pin->request_count)
2622			break;
2623
2624		gpiod_put(pin->gpiod);
2625		list_del(&pin->list);
2626		kfree(pin);
2627		break;
2628	}
2629
2630	rdev->ena_pin = NULL;
2631}
2632
2633/**
2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635 * @rdev: regulator_dev structure
2636 * @enable: enable GPIO at initial use?
2637 *
2638 * GPIO is enabled in case of initial use. (enable_count is 0)
2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2640 */
2641static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2642{
2643	struct regulator_enable_gpio *pin = rdev->ena_pin;
2644
2645	if (!pin)
2646		return -EINVAL;
2647
2648	if (enable) {
2649		/* Enable GPIO at initial use */
2650		if (pin->enable_count == 0)
2651			gpiod_set_value_cansleep(pin->gpiod, 1);
2652
2653		pin->enable_count++;
2654	} else {
2655		if (pin->enable_count > 1) {
2656			pin->enable_count--;
2657			return 0;
2658		}
2659
2660		/* Disable GPIO if not used */
2661		if (pin->enable_count <= 1) {
2662			gpiod_set_value_cansleep(pin->gpiod, 0);
2663			pin->enable_count = 0;
2664		}
2665	}
2666
2667	return 0;
2668}
2669
2670/**
2671 * _regulator_delay_helper - a delay helper function
2672 * @delay: time to delay in microseconds
2673 *
2674 * Delay for the requested amount of time as per the guidelines in:
2675 *
2676 *     Documentation/timers/timers-howto.rst
2677 *
2678 * The assumption here is that these regulator operations will never used in
2679 * atomic context and therefore sleeping functions can be used.
2680 */
2681static void _regulator_delay_helper(unsigned int delay)
2682{
2683	unsigned int ms = delay / 1000;
2684	unsigned int us = delay % 1000;
2685
2686	if (ms > 0) {
2687		/*
2688		 * For small enough values, handle super-millisecond
2689		 * delays in the usleep_range() call below.
2690		 */
2691		if (ms < 20)
2692			us += ms * 1000;
2693		else
2694			msleep(ms);
2695	}
2696
2697	/*
2698	 * Give the scheduler some room to coalesce with any other
2699	 * wakeup sources. For delays shorter than 10 us, don't even
2700	 * bother setting up high-resolution timers and just busy-
2701	 * loop.
2702	 */
2703	if (us >= 10)
2704		usleep_range(us, us + 100);
2705	else
2706		udelay(us);
2707}
2708
2709/**
2710 * _regulator_check_status_enabled
2711 *
2712 * A helper function to check if the regulator status can be interpreted
2713 * as 'regulator is enabled'.
2714 * @rdev: the regulator device to check
2715 *
2716 * Return:
2717 * * 1			- if status shows regulator is in enabled state
2718 * * 0			- if not enabled state
2719 * * Error Value	- as received from ops->get_status()
2720 */
2721static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2722{
2723	int ret = rdev->desc->ops->get_status(rdev);
2724
2725	if (ret < 0) {
2726		rdev_info(rdev, "get_status returned error: %d\n", ret);
2727		return ret;
2728	}
2729
2730	switch (ret) {
2731	case REGULATOR_STATUS_OFF:
2732	case REGULATOR_STATUS_ERROR:
2733	case REGULATOR_STATUS_UNDEFINED:
2734		return 0;
2735	default:
2736		return 1;
2737	}
2738}
2739
2740static int _regulator_do_enable(struct regulator_dev *rdev)
 
2741{
2742	int ret, delay;
2743
2744	/* Query before enabling in case configuration dependent.  */
2745	ret = _regulator_get_enable_time(rdev);
2746	if (ret >= 0) {
2747		delay = ret;
2748	} else {
2749		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750		delay = 0;
2751	}
 
 
 
2752
2753	trace_regulator_enable(rdev_get_name(rdev));
 
2754
2755	if (rdev->desc->off_on_delay) {
2756		/* if needed, keep a distance of off_on_delay from last time
2757		 * this regulator was disabled.
2758		 */
2759		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760		s64 remaining = ktime_us_delta(end, ktime_get_boottime());
 
 
 
 
2761
2762		if (remaining > 0)
2763			_regulator_delay_helper(remaining);
2764	}
2765
2766	if (rdev->ena_pin) {
2767		if (!rdev->ena_gpio_state) {
2768			ret = regulator_ena_gpio_ctrl(rdev, true);
 
2769			if (ret < 0)
2770				return ret;
2771			rdev->ena_gpio_state = 1;
2772		}
2773	} else if (rdev->desc->ops->enable) {
2774		ret = rdev->desc->ops->enable(rdev);
2775		if (ret < 0)
2776			return ret;
2777	} else {
2778		return -EINVAL;
2779	}
2780
2781	/* Allow the regulator to ramp; it would be useful to extend
2782	 * this for bulk operations so that the regulators can ramp
2783	 * together.
2784	 */
2785	trace_regulator_enable_delay(rdev_get_name(rdev));
2786
2787	/* If poll_enabled_time is set, poll upto the delay calculated
2788	 * above, delaying poll_enabled_time uS to check if the regulator
2789	 * actually got enabled.
2790	 * If the regulator isn't enabled after our delay helper has expired,
2791	 * return -ETIMEDOUT.
2792	 */
2793	if (rdev->desc->poll_enabled_time) {
2794		int time_remaining = delay;
2795
2796		while (time_remaining > 0) {
2797			_regulator_delay_helper(rdev->desc->poll_enabled_time);
2798
2799			if (rdev->desc->ops->get_status) {
2800				ret = _regulator_check_status_enabled(rdev);
2801				if (ret < 0)
2802					return ret;
2803				else if (ret)
2804					break;
2805			} else if (rdev->desc->ops->is_enabled(rdev))
2806				break;
2807
2808			time_remaining -= rdev->desc->poll_enabled_time;
2809		}
2810
2811		if (time_remaining <= 0) {
2812			rdev_err(rdev, "Enabled check timed out\n");
2813			return -ETIMEDOUT;
2814		}
2815	} else {
2816		_regulator_delay_helper(delay);
2817	}
2818
2819	trace_regulator_enable_complete(rdev_get_name(rdev));
2820
2821	return 0;
2822}
2823
2824/**
2825 * _regulator_handle_consumer_enable - handle that a consumer enabled
2826 * @regulator: regulator source
2827 *
2828 * Some things on a regulator consumer (like the contribution towards total
2829 * load on the regulator) only have an effect when the consumer wants the
2830 * regulator enabled.  Explained in example with two consumers of the same
2831 * regulator:
2832 *   consumer A: set_load(100);       => total load = 0
2833 *   consumer A: regulator_enable();  => total load = 100
2834 *   consumer B: set_load(1000);      => total load = 100
2835 *   consumer B: regulator_enable();  => total load = 1100
2836 *   consumer A: regulator_disable(); => total_load = 1000
2837 *
2838 * This function (together with _regulator_handle_consumer_disable) is
2839 * responsible for keeping track of the refcount for a given regulator consumer
2840 * and applying / unapplying these things.
2841 *
2842 * Returns 0 upon no error; -error upon error.
2843 */
2844static int _regulator_handle_consumer_enable(struct regulator *regulator)
2845{
2846	int ret;
2847	struct regulator_dev *rdev = regulator->rdev;
2848
2849	lockdep_assert_held_once(&rdev->mutex.base);
2850
2851	regulator->enable_count++;
2852	if (regulator->uA_load && regulator->enable_count == 1) {
2853		ret = drms_uA_update(rdev);
2854		if (ret)
2855			regulator->enable_count--;
2856		return ret;
2857	}
2858
2859	return 0;
2860}
2861
2862/**
2863 * _regulator_handle_consumer_disable - handle that a consumer disabled
2864 * @regulator: regulator source
2865 *
2866 * The opposite of _regulator_handle_consumer_enable().
2867 *
2868 * Returns 0 upon no error; -error upon error.
2869 */
2870static int _regulator_handle_consumer_disable(struct regulator *regulator)
2871{
2872	struct regulator_dev *rdev = regulator->rdev;
2873
2874	lockdep_assert_held_once(&rdev->mutex.base);
2875
2876	if (!regulator->enable_count) {
2877		rdev_err(rdev, "Underflow of regulator enable count\n");
2878		return -EINVAL;
2879	}
2880
2881	regulator->enable_count--;
2882	if (regulator->uA_load && regulator->enable_count == 0)
2883		return drms_uA_update(rdev);
2884
2885	return 0;
2886}
2887
2888/* locks held by regulator_enable() */
2889static int _regulator_enable(struct regulator *regulator)
2890{
2891	struct regulator_dev *rdev = regulator->rdev;
2892	int ret;
2893
2894	lockdep_assert_held_once(&rdev->mutex.base);
2895
2896	if (rdev->use_count == 0 && rdev->supply) {
2897		ret = _regulator_enable(rdev->supply);
2898		if (ret < 0)
2899			return ret;
2900	}
2901
2902	/* balance only if there are regulators coupled */
2903	if (rdev->coupling_desc.n_coupled > 1) {
2904		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905		if (ret < 0)
2906			goto err_disable_supply;
2907	}
2908
2909	ret = _regulator_handle_consumer_enable(regulator);
2910	if (ret < 0)
2911		goto err_disable_supply;
2912
2913	if (rdev->use_count == 0) {
2914		/*
2915		 * The regulator may already be enabled if it's not switchable
2916		 * or was left on
2917		 */
2918		ret = _regulator_is_enabled(rdev);
2919		if (ret == -EINVAL || ret == 0) {
2920			if (!regulator_ops_is_valid(rdev,
2921					REGULATOR_CHANGE_STATUS)) {
2922				ret = -EPERM;
2923				goto err_consumer_disable;
2924			}
2925
2926			ret = _regulator_do_enable(rdev);
2927			if (ret < 0)
2928				goto err_consumer_disable;
2929
2930			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931					     NULL);
2932		} else if (ret < 0) {
2933			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934			goto err_consumer_disable;
2935		}
2936		/* Fallthrough on positive return values - already enabled */
2937	}
2938
2939	if (regulator->enable_count == 1)
2940		rdev->use_count++;
2941
2942	return 0;
2943
2944err_consumer_disable:
2945	_regulator_handle_consumer_disable(regulator);
2946
2947err_disable_supply:
2948	if (rdev->use_count == 0 && rdev->supply)
2949		_regulator_disable(rdev->supply);
2950
2951	return ret;
2952}
2953
2954/**
2955 * regulator_enable - enable regulator output
2956 * @regulator: regulator source
2957 *
2958 * Request that the regulator be enabled with the regulator output at
2959 * the predefined voltage or current value.  Calls to regulator_enable()
2960 * must be balanced with calls to regulator_disable().
2961 *
2962 * NOTE: the output value can be set by other drivers, boot loader or may be
2963 * hardwired in the regulator.
2964 */
2965int regulator_enable(struct regulator *regulator)
2966{
2967	struct regulator_dev *rdev = regulator->rdev;
2968	struct ww_acquire_ctx ww_ctx;
2969	int ret;
2970
2971	regulator_lock_dependent(rdev, &ww_ctx);
2972	ret = _regulator_enable(regulator);
2973	regulator_unlock_dependent(rdev, &ww_ctx);
2974
2975	return ret;
2976}
2977EXPORT_SYMBOL_GPL(regulator_enable);
2978
2979static int _regulator_do_disable(struct regulator_dev *rdev)
2980{
2981	int ret;
2982
2983	trace_regulator_disable(rdev_get_name(rdev));
2984
2985	if (rdev->ena_pin) {
2986		if (rdev->ena_gpio_state) {
2987			ret = regulator_ena_gpio_ctrl(rdev, false);
2988			if (ret < 0)
2989				return ret;
2990			rdev->ena_gpio_state = 0;
2991		}
2992
2993	} else if (rdev->desc->ops->disable) {
2994		ret = rdev->desc->ops->disable(rdev);
2995		if (ret != 0)
2996			return ret;
2997	}
2998
2999	if (rdev->desc->off_on_delay)
3000		rdev->last_off = ktime_get_boottime();
 
3001
3002	trace_regulator_disable_complete(rdev_get_name(rdev));
 
3003
3004	return 0;
3005}
 
3006
3007/* locks held by regulator_disable() */
3008static int _regulator_disable(struct regulator *regulator)
3009{
3010	struct regulator_dev *rdev = regulator->rdev;
3011	int ret = 0;
3012
3013	lockdep_assert_held_once(&rdev->mutex.base);
3014
3015	if (WARN(regulator->enable_count == 0,
3016		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017		return -EIO;
3018
3019	if (regulator->enable_count == 1) {
3020	/* disabling last enable_count from this regulator */
3021		/* are we the last user and permitted to disable ? */
3022		if (rdev->use_count == 1 &&
3023		    (rdev->constraints && !rdev->constraints->always_on)) {
3024
3025			/* we are last user */
3026			if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027				ret = _notifier_call_chain(rdev,
3028							   REGULATOR_EVENT_PRE_DISABLE,
3029							   NULL);
3030				if (ret & NOTIFY_STOP_MASK)
3031					return -EINVAL;
3032
3033				ret = _regulator_do_disable(rdev);
3034				if (ret < 0) {
3035					rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036					_notifier_call_chain(rdev,
3037							REGULATOR_EVENT_ABORT_DISABLE,
3038							NULL);
3039					return ret;
3040				}
3041				_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042						NULL);
3043			}
3044
3045			rdev->use_count = 0;
3046		} else if (rdev->use_count > 1) {
3047			rdev->use_count--;
 
3048		}
3049	}
3050
3051	if (ret == 0)
3052		ret = _regulator_handle_consumer_disable(regulator);
3053
3054	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
 
 
3056
3057	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058		ret = _regulator_disable(rdev->supply);
3059
3060	return ret;
3061}
3062
3063/**
3064 * regulator_disable - disable regulator output
3065 * @regulator: regulator source
3066 *
3067 * Disable the regulator output voltage or current.  Calls to
3068 * regulator_enable() must be balanced with calls to
3069 * regulator_disable().
3070 *
3071 * NOTE: this will only disable the regulator output if no other consumer
3072 * devices have it enabled, the regulator device supports disabling and
3073 * machine constraints permit this operation.
3074 */
3075int regulator_disable(struct regulator *regulator)
3076{
3077	struct regulator_dev *rdev = regulator->rdev;
3078	struct ww_acquire_ctx ww_ctx;
3079	int ret;
 
 
 
3080
3081	regulator_lock_dependent(rdev, &ww_ctx);
3082	ret = _regulator_disable(regulator);
3083	regulator_unlock_dependent(rdev, &ww_ctx);
3084
3085	return ret;
3086}
3087EXPORT_SYMBOL_GPL(regulator_disable);
3088
3089/* locks held by regulator_force_disable() */
3090static int _regulator_force_disable(struct regulator_dev *rdev)
3091{
3092	int ret = 0;
3093
3094	lockdep_assert_held_once(&rdev->mutex.base);
3095
3096	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097			REGULATOR_EVENT_PRE_DISABLE, NULL);
3098	if (ret & NOTIFY_STOP_MASK)
3099		return -EINVAL;
3100
3101	ret = _regulator_do_disable(rdev);
3102	if (ret < 0) {
3103		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105				REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106		return ret;
3107	}
3108
3109	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110			REGULATOR_EVENT_DISABLE, NULL);
3111
3112	return 0;
3113}
3114
3115/**
3116 * regulator_force_disable - force disable regulator output
3117 * @regulator: regulator source
3118 *
3119 * Forcibly disable the regulator output voltage or current.
3120 * NOTE: this *will* disable the regulator output even if other consumer
3121 * devices have it enabled. This should be used for situations when device
3122 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3123 */
3124int regulator_force_disable(struct regulator *regulator)
3125{
3126	struct regulator_dev *rdev = regulator->rdev;
3127	struct ww_acquire_ctx ww_ctx;
3128	int ret;
3129
3130	regulator_lock_dependent(rdev, &ww_ctx);
3131
3132	ret = _regulator_force_disable(regulator->rdev);
 
3133
3134	if (rdev->coupling_desc.n_coupled > 1)
3135		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3136
3137	if (regulator->uA_load) {
3138		regulator->uA_load = 0;
3139		ret = drms_uA_update(rdev);
3140	}
3141
3142	if (rdev->use_count != 0 && rdev->supply)
3143		_regulator_disable(rdev->supply);
3144
3145	regulator_unlock_dependent(rdev, &ww_ctx);
3146
3147	return ret;
3148}
3149EXPORT_SYMBOL_GPL(regulator_force_disable);
3150
3151static void regulator_disable_work(struct work_struct *work)
3152{
3153	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154						  disable_work.work);
3155	struct ww_acquire_ctx ww_ctx;
3156	int count, i, ret;
3157	struct regulator *regulator;
3158	int total_count = 0;
3159
3160	regulator_lock_dependent(rdev, &ww_ctx);
3161
3162	/*
3163	 * Workqueue functions queue the new work instance while the previous
3164	 * work instance is being processed. Cancel the queued work instance
3165	 * as the work instance under processing does the job of the queued
3166	 * work instance.
3167	 */
3168	cancel_delayed_work(&rdev->disable_work);
3169
3170	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171		count = regulator->deferred_disables;
3172
3173		if (!count)
3174			continue;
3175
3176		total_count += count;
3177		regulator->deferred_disables = 0;
3178
3179		for (i = 0; i < count; i++) {
3180			ret = _regulator_disable(regulator);
3181			if (ret != 0)
3182				rdev_err(rdev, "Deferred disable failed: %pe\n",
3183					 ERR_PTR(ret));
3184		}
3185	}
3186	WARN_ON(!total_count);
3187
3188	if (rdev->coupling_desc.n_coupled > 1)
3189		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3190
3191	regulator_unlock_dependent(rdev, &ww_ctx);
3192}
3193
3194/**
3195 * regulator_disable_deferred - disable regulator output with delay
3196 * @regulator: regulator source
3197 * @ms: milliseconds until the regulator is disabled
3198 *
3199 * Execute regulator_disable() on the regulator after a delay.  This
3200 * is intended for use with devices that require some time to quiesce.
3201 *
3202 * NOTE: this will only disable the regulator output if no other consumer
3203 * devices have it enabled, the regulator device supports disabling and
3204 * machine constraints permit this operation.
3205 */
3206int regulator_disable_deferred(struct regulator *regulator, int ms)
3207{
3208	struct regulator_dev *rdev = regulator->rdev;
3209
3210	if (!ms)
3211		return regulator_disable(regulator);
3212
3213	regulator_lock(rdev);
3214	regulator->deferred_disables++;
3215	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216			 msecs_to_jiffies(ms));
3217	regulator_unlock(rdev);
3218
3219	return 0;
3220}
3221EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3222
3223static int _regulator_is_enabled(struct regulator_dev *rdev)
3224{
3225	/* A GPIO control always takes precedence */
3226	if (rdev->ena_pin)
3227		return rdev->ena_gpio_state;
3228
3229	/* If we don't know then assume that the regulator is always on */
3230	if (!rdev->desc->ops->is_enabled)
3231		return 1;
3232
3233	return rdev->desc->ops->is_enabled(rdev);
3234}
3235
3236static int _regulator_list_voltage(struct regulator_dev *rdev,
3237				   unsigned selector, int lock)
3238{
3239	const struct regulator_ops *ops = rdev->desc->ops;
3240	int ret;
3241
3242	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243		return rdev->desc->fixed_uV;
3244
3245	if (ops->list_voltage) {
3246		if (selector >= rdev->desc->n_voltages)
3247			return -EINVAL;
3248		if (selector < rdev->desc->linear_min_sel)
3249			return 0;
3250		if (lock)
3251			regulator_lock(rdev);
3252		ret = ops->list_voltage(rdev, selector);
3253		if (lock)
3254			regulator_unlock(rdev);
3255	} else if (rdev->is_switch && rdev->supply) {
3256		ret = _regulator_list_voltage(rdev->supply->rdev,
3257					      selector, lock);
3258	} else {
3259		return -EINVAL;
3260	}
3261
3262	if (ret > 0) {
3263		if (ret < rdev->constraints->min_uV)
3264			ret = 0;
3265		else if (ret > rdev->constraints->max_uV)
3266			ret = 0;
3267	}
3268
3269	return ret;
3270}
3271
3272/**
3273 * regulator_is_enabled - is the regulator output enabled
3274 * @regulator: regulator source
3275 *
3276 * Returns positive if the regulator driver backing the source/client
3277 * has requested that the device be enabled, zero if it hasn't, else a
3278 * negative errno code.
3279 *
3280 * Note that the device backing this regulator handle can have multiple
3281 * users, so it might be enabled even if regulator_enable() was never
3282 * called for this particular source.
3283 */
3284int regulator_is_enabled(struct regulator *regulator)
3285{
3286	int ret;
3287
3288	if (regulator->always_on)
3289		return 1;
3290
3291	regulator_lock(regulator->rdev);
3292	ret = _regulator_is_enabled(regulator->rdev);
3293	regulator_unlock(regulator->rdev);
3294
3295	return ret;
3296}
3297EXPORT_SYMBOL_GPL(regulator_is_enabled);
3298
3299/**
3300 * regulator_count_voltages - count regulator_list_voltage() selectors
3301 * @regulator: regulator source
3302 *
3303 * Returns number of selectors, or negative errno.  Selectors are
3304 * numbered starting at zero, and typically correspond to bitfields
3305 * in hardware registers.
3306 */
3307int regulator_count_voltages(struct regulator *regulator)
3308{
3309	struct regulator_dev	*rdev = regulator->rdev;
3310
3311	if (rdev->desc->n_voltages)
3312		return rdev->desc->n_voltages;
3313
3314	if (!rdev->is_switch || !rdev->supply)
3315		return -EINVAL;
3316
3317	return regulator_count_voltages(rdev->supply);
3318}
3319EXPORT_SYMBOL_GPL(regulator_count_voltages);
3320
3321/**
3322 * regulator_list_voltage - enumerate supported voltages
3323 * @regulator: regulator source
3324 * @selector: identify voltage to list
3325 * Context: can sleep
3326 *
3327 * Returns a voltage that can be passed to @regulator_set_voltage(),
3328 * zero if this selector code can't be used on this system, or a
3329 * negative errno.
3330 */
3331int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3332{
3333	return _regulator_list_voltage(regulator->rdev, selector, 1);
3334}
3335EXPORT_SYMBOL_GPL(regulator_list_voltage);
3336
3337/**
3338 * regulator_get_regmap - get the regulator's register map
3339 * @regulator: regulator source
3340 *
3341 * Returns the register map for the given regulator, or an ERR_PTR value
3342 * if the regulator doesn't use regmap.
3343 */
3344struct regmap *regulator_get_regmap(struct regulator *regulator)
3345{
3346	struct regmap *map = regulator->rdev->regmap;
3347
3348	return map ? map : ERR_PTR(-EOPNOTSUPP);
3349}
3350
3351/**
3352 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3353 * @regulator: regulator source
3354 * @vsel_reg: voltage selector register, output parameter
3355 * @vsel_mask: mask for voltage selector bitfield, output parameter
3356 *
3357 * Returns the hardware register offset and bitmask used for setting the
3358 * regulator voltage. This might be useful when configuring voltage-scaling
3359 * hardware or firmware that can make I2C requests behind the kernel's back,
3360 * for example.
3361 *
3362 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3363 * and 0 is returned, otherwise a negative errno is returned.
3364 */
3365int regulator_get_hardware_vsel_register(struct regulator *regulator,
3366					 unsigned *vsel_reg,
3367					 unsigned *vsel_mask)
3368{
3369	struct regulator_dev *rdev = regulator->rdev;
3370	const struct regulator_ops *ops = rdev->desc->ops;
3371
3372	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3373		return -EOPNOTSUPP;
3374
3375	*vsel_reg = rdev->desc->vsel_reg;
3376	*vsel_mask = rdev->desc->vsel_mask;
3377
3378	return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3381
3382/**
3383 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3384 * @regulator: regulator source
3385 * @selector: identify voltage to list
3386 *
3387 * Converts the selector to a hardware-specific voltage selector that can be
3388 * directly written to the regulator registers. The address of the voltage
3389 * register can be determined by calling @regulator_get_hardware_vsel_register.
3390 *
3391 * On error a negative errno is returned.
3392 */
3393int regulator_list_hardware_vsel(struct regulator *regulator,
3394				 unsigned selector)
3395{
3396	struct regulator_dev *rdev = regulator->rdev;
3397	const struct regulator_ops *ops = rdev->desc->ops;
3398
3399	if (selector >= rdev->desc->n_voltages)
3400		return -EINVAL;
3401	if (selector < rdev->desc->linear_min_sel)
3402		return 0;
3403	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3404		return -EOPNOTSUPP;
3405
3406	return selector;
3407}
3408EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3409
3410/**
3411 * regulator_get_linear_step - return the voltage step size between VSEL values
3412 * @regulator: regulator source
3413 *
3414 * Returns the voltage step size between VSEL values for linear
3415 * regulators, or return 0 if the regulator isn't a linear regulator.
3416 */
3417unsigned int regulator_get_linear_step(struct regulator *regulator)
3418{
3419	struct regulator_dev *rdev = regulator->rdev;
3420
3421	return rdev->desc->uV_step;
3422}
3423EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3424
3425/**
3426 * regulator_is_supported_voltage - check if a voltage range can be supported
3427 *
3428 * @regulator: Regulator to check.
3429 * @min_uV: Minimum required voltage in uV.
3430 * @max_uV: Maximum required voltage in uV.
3431 *
3432 * Returns a boolean.
3433 */
3434int regulator_is_supported_voltage(struct regulator *regulator,
3435				   int min_uV, int max_uV)
3436{
3437	struct regulator_dev *rdev = regulator->rdev;
3438	int i, voltages, ret;
3439
3440	/* If we can't change voltage check the current voltage */
3441	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3442		ret = regulator_get_voltage(regulator);
3443		if (ret >= 0)
3444			return min_uV <= ret && ret <= max_uV;
3445		else
3446			return ret;
3447	}
3448
3449	/* Any voltage within constrains range is fine? */
3450	if (rdev->desc->continuous_voltage_range)
3451		return min_uV >= rdev->constraints->min_uV &&
3452				max_uV <= rdev->constraints->max_uV;
3453
3454	ret = regulator_count_voltages(regulator);
3455	if (ret < 0)
3456		return 0;
3457	voltages = ret;
3458
3459	for (i = 0; i < voltages; i++) {
3460		ret = regulator_list_voltage(regulator, i);
3461
3462		if (ret >= min_uV && ret <= max_uV)
3463			return 1;
3464	}
3465
3466	return 0;
3467}
3468EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3469
3470static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3471				 int max_uV)
3472{
3473	const struct regulator_desc *desc = rdev->desc;
3474
3475	if (desc->ops->map_voltage)
3476		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3477
3478	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3479		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3480
3481	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3482		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3483
3484	if (desc->ops->list_voltage ==
3485		regulator_list_voltage_pickable_linear_range)
3486		return regulator_map_voltage_pickable_linear_range(rdev,
3487							min_uV, max_uV);
3488
3489	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3490}
3491
3492static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3493				       int min_uV, int max_uV,
3494				       unsigned *selector)
3495{
3496	struct pre_voltage_change_data data;
3497	int ret;
3498
3499	data.old_uV = regulator_get_voltage_rdev(rdev);
3500	data.min_uV = min_uV;
3501	data.max_uV = max_uV;
3502	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3503				   &data);
3504	if (ret & NOTIFY_STOP_MASK)
3505		return -EINVAL;
3506
3507	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3508	if (ret >= 0)
3509		return ret;
3510
3511	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3512			     (void *)data.old_uV);
3513
3514	return ret;
3515}
3516
3517static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3518					   int uV, unsigned selector)
3519{
3520	struct pre_voltage_change_data data;
3521	int ret;
3522
3523	data.old_uV = regulator_get_voltage_rdev(rdev);
3524	data.min_uV = uV;
3525	data.max_uV = uV;
3526	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3527				   &data);
3528	if (ret & NOTIFY_STOP_MASK)
3529		return -EINVAL;
3530
3531	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3532	if (ret >= 0)
3533		return ret;
3534
3535	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3536			     (void *)data.old_uV);
3537
3538	return ret;
3539}
3540
3541static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3542					   int uV, int new_selector)
3543{
3544	const struct regulator_ops *ops = rdev->desc->ops;
3545	int diff, old_sel, curr_sel, ret;
3546
3547	/* Stepping is only needed if the regulator is enabled. */
3548	if (!_regulator_is_enabled(rdev))
3549		goto final_set;
3550
3551	if (!ops->get_voltage_sel)
3552		return -EINVAL;
3553
3554	old_sel = ops->get_voltage_sel(rdev);
3555	if (old_sel < 0)
3556		return old_sel;
3557
3558	diff = new_selector - old_sel;
3559	if (diff == 0)
3560		return 0; /* No change needed. */
3561
3562	if (diff > 0) {
3563		/* Stepping up. */
3564		for (curr_sel = old_sel + rdev->desc->vsel_step;
3565		     curr_sel < new_selector;
3566		     curr_sel += rdev->desc->vsel_step) {
3567			/*
3568			 * Call the callback directly instead of using
3569			 * _regulator_call_set_voltage_sel() as we don't
3570			 * want to notify anyone yet. Same in the branch
3571			 * below.
3572			 */
3573			ret = ops->set_voltage_sel(rdev, curr_sel);
3574			if (ret)
3575				goto try_revert;
3576		}
3577	} else {
3578		/* Stepping down. */
3579		for (curr_sel = old_sel - rdev->desc->vsel_step;
3580		     curr_sel > new_selector;
3581		     curr_sel -= rdev->desc->vsel_step) {
3582			ret = ops->set_voltage_sel(rdev, curr_sel);
3583			if (ret)
3584				goto try_revert;
3585		}
3586	}
3587
3588final_set:
3589	/* The final selector will trigger the notifiers. */
3590	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3591
3592try_revert:
3593	/*
3594	 * At least try to return to the previous voltage if setting a new
3595	 * one failed.
3596	 */
3597	(void)ops->set_voltage_sel(rdev, old_sel);
3598	return ret;
3599}
3600
3601static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3602				       int old_uV, int new_uV)
3603{
3604	unsigned int ramp_delay = 0;
3605
3606	if (rdev->constraints->ramp_delay)
3607		ramp_delay = rdev->constraints->ramp_delay;
3608	else if (rdev->desc->ramp_delay)
3609		ramp_delay = rdev->desc->ramp_delay;
3610	else if (rdev->constraints->settling_time)
3611		return rdev->constraints->settling_time;
3612	else if (rdev->constraints->settling_time_up &&
3613		 (new_uV > old_uV))
3614		return rdev->constraints->settling_time_up;
3615	else if (rdev->constraints->settling_time_down &&
3616		 (new_uV < old_uV))
3617		return rdev->constraints->settling_time_down;
3618
3619	if (ramp_delay == 0)
3620		return 0;
3621
3622	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3623}
3624
3625static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3626				     int min_uV, int max_uV)
3627{
3628	int ret;
3629	int delay = 0;
3630	int best_val = 0;
3631	unsigned int selector;
3632	int old_selector = -1;
3633	const struct regulator_ops *ops = rdev->desc->ops;
3634	int old_uV = regulator_get_voltage_rdev(rdev);
3635
3636	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3637
3638	min_uV += rdev->constraints->uV_offset;
3639	max_uV += rdev->constraints->uV_offset;
3640
3641	/*
3642	 * If we can't obtain the old selector there is not enough
3643	 * info to call set_voltage_time_sel().
3644	 */
3645	if (_regulator_is_enabled(rdev) &&
3646	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3647		old_selector = ops->get_voltage_sel(rdev);
3648		if (old_selector < 0)
3649			return old_selector;
3650	}
3651
3652	if (ops->set_voltage) {
3653		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3654						  &selector);
3655
3656		if (ret >= 0) {
3657			if (ops->list_voltage)
3658				best_val = ops->list_voltage(rdev,
3659							     selector);
3660			else
3661				best_val = regulator_get_voltage_rdev(rdev);
3662		}
3663
3664	} else if (ops->set_voltage_sel) {
3665		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3666		if (ret >= 0) {
3667			best_val = ops->list_voltage(rdev, ret);
3668			if (min_uV <= best_val && max_uV >= best_val) {
3669				selector = ret;
3670				if (old_selector == selector)
3671					ret = 0;
3672				else if (rdev->desc->vsel_step)
3673					ret = _regulator_set_voltage_sel_step(
3674						rdev, best_val, selector);
3675				else
3676					ret = _regulator_call_set_voltage_sel(
3677						rdev, best_val, selector);
3678			} else {
3679				ret = -EINVAL;
3680			}
3681		}
3682	} else {
3683		ret = -EINVAL;
3684	}
3685
3686	if (ret)
3687		goto out;
3688
3689	if (ops->set_voltage_time_sel) {
3690		/*
3691		 * Call set_voltage_time_sel if successfully obtained
3692		 * old_selector
3693		 */
3694		if (old_selector >= 0 && old_selector != selector)
3695			delay = ops->set_voltage_time_sel(rdev, old_selector,
3696							  selector);
3697	} else {
3698		if (old_uV != best_val) {
3699			if (ops->set_voltage_time)
3700				delay = ops->set_voltage_time(rdev, old_uV,
3701							      best_val);
3702			else
3703				delay = _regulator_set_voltage_time(rdev,
3704								    old_uV,
3705								    best_val);
3706		}
3707	}
3708
3709	if (delay < 0) {
3710		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3711		delay = 0;
3712	}
3713
3714	/* Insert any necessary delays */
3715	_regulator_delay_helper(delay);
3716
3717	if (best_val >= 0) {
3718		unsigned long data = best_val;
3719
3720		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3721				     (void *)data);
3722	}
3723
3724out:
3725	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3726
3727	return ret;
3728}
3729
3730static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3731				  int min_uV, int max_uV, suspend_state_t state)
3732{
3733	struct regulator_state *rstate;
3734	int uV, sel;
3735
3736	rstate = regulator_get_suspend_state(rdev, state);
3737	if (rstate == NULL)
3738		return -EINVAL;
3739
3740	if (min_uV < rstate->min_uV)
3741		min_uV = rstate->min_uV;
3742	if (max_uV > rstate->max_uV)
3743		max_uV = rstate->max_uV;
3744
3745	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3746	if (sel < 0)
3747		return sel;
3748
3749	uV = rdev->desc->ops->list_voltage(rdev, sel);
3750	if (uV >= min_uV && uV <= max_uV)
3751		rstate->uV = uV;
3752
3753	return 0;
3754}
3755
3756static int regulator_set_voltage_unlocked(struct regulator *regulator,
3757					  int min_uV, int max_uV,
3758					  suspend_state_t state)
3759{
3760	struct regulator_dev *rdev = regulator->rdev;
3761	struct regulator_voltage *voltage = &regulator->voltage[state];
3762	int ret = 0;
3763	int old_min_uV, old_max_uV;
3764	int current_uV;
3765
3766	/* If we're setting the same range as last time the change
3767	 * should be a noop (some cpufreq implementations use the same
3768	 * voltage for multiple frequencies, for example).
3769	 */
3770	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3771		goto out;
3772
3773	/* If we're trying to set a range that overlaps the current voltage,
3774	 * return successfully even though the regulator does not support
3775	 * changing the voltage.
3776	 */
3777	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3778		current_uV = regulator_get_voltage_rdev(rdev);
3779		if (min_uV <= current_uV && current_uV <= max_uV) {
3780			voltage->min_uV = min_uV;
3781			voltage->max_uV = max_uV;
3782			goto out;
3783		}
3784	}
3785
3786	/* sanity check */
3787	if (!rdev->desc->ops->set_voltage &&
3788	    !rdev->desc->ops->set_voltage_sel) {
3789		ret = -EINVAL;
3790		goto out;
3791	}
3792
3793	/* constraints check */
3794	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3795	if (ret < 0)
3796		goto out;
3797
3798	/* restore original values in case of error */
3799	old_min_uV = voltage->min_uV;
3800	old_max_uV = voltage->max_uV;
3801	voltage->min_uV = min_uV;
3802	voltage->max_uV = max_uV;
3803
3804	/* for not coupled regulators this will just set the voltage */
3805	ret = regulator_balance_voltage(rdev, state);
3806	if (ret < 0) {
3807		voltage->min_uV = old_min_uV;
3808		voltage->max_uV = old_max_uV;
3809	}
3810
3811out:
3812	return ret;
3813}
3814
3815int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3816			       int max_uV, suspend_state_t state)
3817{
3818	int best_supply_uV = 0;
3819	int supply_change_uV = 0;
3820	int ret;
3821
3822	if (rdev->supply &&
3823	    regulator_ops_is_valid(rdev->supply->rdev,
3824				   REGULATOR_CHANGE_VOLTAGE) &&
3825	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3826					   rdev->desc->ops->get_voltage_sel))) {
3827		int current_supply_uV;
3828		int selector;
3829
3830		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3831		if (selector < 0) {
3832			ret = selector;
3833			goto out;
3834		}
3835
3836		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3837		if (best_supply_uV < 0) {
3838			ret = best_supply_uV;
3839			goto out;
3840		}
3841
3842		best_supply_uV += rdev->desc->min_dropout_uV;
3843
3844		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3845		if (current_supply_uV < 0) {
3846			ret = current_supply_uV;
3847			goto out;
3848		}
3849
3850		supply_change_uV = best_supply_uV - current_supply_uV;
3851	}
3852
3853	if (supply_change_uV > 0) {
3854		ret = regulator_set_voltage_unlocked(rdev->supply,
3855				best_supply_uV, INT_MAX, state);
3856		if (ret) {
3857			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3858				ERR_PTR(ret));
3859			goto out;
3860		}
3861	}
3862
3863	if (state == PM_SUSPEND_ON)
3864		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3865	else
3866		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3867							max_uV, state);
3868	if (ret < 0)
3869		goto out;
3870
3871	if (supply_change_uV < 0) {
3872		ret = regulator_set_voltage_unlocked(rdev->supply,
3873				best_supply_uV, INT_MAX, state);
3874		if (ret)
3875			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3876				 ERR_PTR(ret));
3877		/* No need to fail here */
3878		ret = 0;
3879	}
3880
3881out:
3882	return ret;
3883}
3884EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3885
3886static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3887					int *current_uV, int *min_uV)
3888{
3889	struct regulation_constraints *constraints = rdev->constraints;
3890
3891	/* Limit voltage change only if necessary */
3892	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3893		return 1;
3894
3895	if (*current_uV < 0) {
3896		*current_uV = regulator_get_voltage_rdev(rdev);
3897
3898		if (*current_uV < 0)
3899			return *current_uV;
3900	}
3901
3902	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3903		return 1;
3904
3905	/* Clamp target voltage within the given step */
3906	if (*current_uV < *min_uV)
3907		*min_uV = min(*current_uV + constraints->max_uV_step,
3908			      *min_uV);
3909	else
3910		*min_uV = max(*current_uV - constraints->max_uV_step,
3911			      *min_uV);
3912
3913	return 0;
3914}
3915
3916static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3917					 int *current_uV,
3918					 int *min_uV, int *max_uV,
3919					 suspend_state_t state,
3920					 int n_coupled)
3921{
3922	struct coupling_desc *c_desc = &rdev->coupling_desc;
3923	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3924	struct regulation_constraints *constraints = rdev->constraints;
3925	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3926	int max_current_uV = 0, min_current_uV = INT_MAX;
3927	int highest_min_uV = 0, target_uV, possible_uV;
3928	int i, ret, max_spread;
3929	bool done;
3930
3931	*current_uV = -1;
3932
3933	/*
3934	 * If there are no coupled regulators, simply set the voltage
3935	 * demanded by consumers.
3936	 */
3937	if (n_coupled == 1) {
3938		/*
3939		 * If consumers don't provide any demands, set voltage
3940		 * to min_uV
3941		 */
3942		desired_min_uV = constraints->min_uV;
3943		desired_max_uV = constraints->max_uV;
3944
3945		ret = regulator_check_consumers(rdev,
3946						&desired_min_uV,
3947						&desired_max_uV, state);
3948		if (ret < 0)
3949			return ret;
3950
3951		done = true;
3952
3953		goto finish;
3954	}
3955
3956	/* Find highest min desired voltage */
3957	for (i = 0; i < n_coupled; i++) {
3958		int tmp_min = 0;
3959		int tmp_max = INT_MAX;
3960
3961		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3962
3963		ret = regulator_check_consumers(c_rdevs[i],
3964						&tmp_min,
3965						&tmp_max, state);
3966		if (ret < 0)
3967			return ret;
3968
3969		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3970		if (ret < 0)
3971			return ret;
3972
3973		highest_min_uV = max(highest_min_uV, tmp_min);
3974
3975		if (i == 0) {
3976			desired_min_uV = tmp_min;
3977			desired_max_uV = tmp_max;
3978		}
3979	}
3980
3981	max_spread = constraints->max_spread[0];
3982
3983	/*
3984	 * Let target_uV be equal to the desired one if possible.
3985	 * If not, set it to minimum voltage, allowed by other coupled
3986	 * regulators.
3987	 */
3988	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3989
3990	/*
3991	 * Find min and max voltages, which currently aren't violating
3992	 * max_spread.
3993	 */
3994	for (i = 1; i < n_coupled; i++) {
3995		int tmp_act;
3996
3997		if (!_regulator_is_enabled(c_rdevs[i]))
3998			continue;
3999
4000		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4001		if (tmp_act < 0)
4002			return tmp_act;
4003
4004		min_current_uV = min(tmp_act, min_current_uV);
4005		max_current_uV = max(tmp_act, max_current_uV);
4006	}
4007
4008	/* There aren't any other regulators enabled */
4009	if (max_current_uV == 0) {
4010		possible_uV = target_uV;
4011	} else {
4012		/*
4013		 * Correct target voltage, so as it currently isn't
4014		 * violating max_spread
4015		 */
4016		possible_uV = max(target_uV, max_current_uV - max_spread);
4017		possible_uV = min(possible_uV, min_current_uV + max_spread);
4018	}
4019
4020	if (possible_uV > desired_max_uV)
4021		return -EINVAL;
4022
4023	done = (possible_uV == target_uV);
4024	desired_min_uV = possible_uV;
4025
4026finish:
4027	/* Apply max_uV_step constraint if necessary */
4028	if (state == PM_SUSPEND_ON) {
4029		ret = regulator_limit_voltage_step(rdev, current_uV,
4030						   &desired_min_uV);
4031		if (ret < 0)
4032			return ret;
4033
4034		if (ret == 0)
4035			done = false;
4036	}
4037
4038	/* Set current_uV if wasn't done earlier in the code and if necessary */
4039	if (n_coupled > 1 && *current_uV == -1) {
4040
4041		if (_regulator_is_enabled(rdev)) {
4042			ret = regulator_get_voltage_rdev(rdev);
4043			if (ret < 0)
4044				return ret;
 
 
 
 
4045
4046			*current_uV = ret;
 
 
4047		} else {
4048			*current_uV = desired_min_uV;
4049		}
 
 
4050	}
4051
4052	*min_uV = desired_min_uV;
4053	*max_uV = desired_max_uV;
 
 
 
 
 
4054
4055	return done;
4056}
4057
4058int regulator_do_balance_voltage(struct regulator_dev *rdev,
4059				 suspend_state_t state, bool skip_coupled)
4060{
4061	struct regulator_dev **c_rdevs;
4062	struct regulator_dev *best_rdev;
4063	struct coupling_desc *c_desc = &rdev->coupling_desc;
4064	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4065	unsigned int delta, best_delta;
4066	unsigned long c_rdev_done = 0;
4067	bool best_c_rdev_done;
4068
4069	c_rdevs = c_desc->coupled_rdevs;
4070	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4071
4072	/*
4073	 * Find the best possible voltage change on each loop. Leave the loop
4074	 * if there isn't any possible change.
4075	 */
4076	do {
4077		best_c_rdev_done = false;
4078		best_delta = 0;
4079		best_min_uV = 0;
4080		best_max_uV = 0;
4081		best_c_rdev = 0;
4082		best_rdev = NULL;
4083
4084		/*
4085		 * Find highest difference between optimal voltage
4086		 * and current voltage.
4087		 */
4088		for (i = 0; i < n_coupled; i++) {
4089			/*
4090			 * optimal_uV is the best voltage that can be set for
4091			 * i-th regulator at the moment without violating
4092			 * max_spread constraint in order to balance
4093			 * the coupled voltages.
4094			 */
4095			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4096
4097			if (test_bit(i, &c_rdev_done))
4098				continue;
4099
4100			ret = regulator_get_optimal_voltage(c_rdevs[i],
4101							    &current_uV,
4102							    &optimal_uV,
4103							    &optimal_max_uV,
4104							    state, n_coupled);
4105			if (ret < 0)
4106				goto out;
4107
4108			delta = abs(optimal_uV - current_uV);
4109
4110			if (delta && best_delta <= delta) {
4111				best_c_rdev_done = ret;
4112				best_delta = delta;
4113				best_rdev = c_rdevs[i];
4114				best_min_uV = optimal_uV;
4115				best_max_uV = optimal_max_uV;
4116				best_c_rdev = i;
4117			}
4118		}
4119
4120		/* Nothing to change, return successfully */
4121		if (!best_rdev) {
4122			ret = 0;
4123			goto out;
4124		}
4125
4126		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4127						 best_max_uV, state);
4128
4129		if (ret < 0)
4130			goto out;
4131
4132		if (best_c_rdev_done)
4133			set_bit(best_c_rdev, &c_rdev_done);
4134
4135	} while (n_coupled > 1);
4136
4137out:
4138	return ret;
4139}
4140
4141static int regulator_balance_voltage(struct regulator_dev *rdev,
4142				     suspend_state_t state)
4143{
4144	struct coupling_desc *c_desc = &rdev->coupling_desc;
4145	struct regulator_coupler *coupler = c_desc->coupler;
4146	bool skip_coupled = false;
4147
4148	/*
4149	 * If system is in a state other than PM_SUSPEND_ON, don't check
4150	 * other coupled regulators.
4151	 */
4152	if (state != PM_SUSPEND_ON)
4153		skip_coupled = true;
4154
4155	if (c_desc->n_resolved < c_desc->n_coupled) {
4156		rdev_err(rdev, "Not all coupled regulators registered\n");
4157		return -EPERM;
4158	}
4159
4160	/* Invoke custom balancer for customized couplers */
4161	if (coupler && coupler->balance_voltage)
4162		return coupler->balance_voltage(coupler, rdev, state);
4163
4164	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4165}
4166
4167/**
4168 * regulator_set_voltage - set regulator output voltage
4169 * @regulator: regulator source
4170 * @min_uV: Minimum required voltage in uV
4171 * @max_uV: Maximum acceptable voltage in uV
4172 *
4173 * Sets a voltage regulator to the desired output voltage. This can be set
4174 * during any regulator state. IOW, regulator can be disabled or enabled.
4175 *
4176 * If the regulator is enabled then the voltage will change to the new value
4177 * immediately otherwise if the regulator is disabled the regulator will
4178 * output at the new voltage when enabled.
4179 *
4180 * NOTE: If the regulator is shared between several devices then the lowest
4181 * request voltage that meets the system constraints will be used.
4182 * Regulator system constraints must be set for this regulator before
4183 * calling this function otherwise this call will fail.
4184 */
4185int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4186{
4187	struct ww_acquire_ctx ww_ctx;
4188	int ret;
4189
4190	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4191
4192	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4193					     PM_SUSPEND_ON);
4194
4195	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4196
4197	return ret;
4198}
4199EXPORT_SYMBOL_GPL(regulator_set_voltage);
4200
4201static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4202					   suspend_state_t state, bool en)
4203{
4204	struct regulator_state *rstate;
4205
4206	rstate = regulator_get_suspend_state(rdev, state);
4207	if (rstate == NULL)
4208		return -EINVAL;
4209
4210	if (!rstate->changeable)
4211		return -EPERM;
4212
4213	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4214
4215	return 0;
4216}
4217
4218int regulator_suspend_enable(struct regulator_dev *rdev,
4219				    suspend_state_t state)
4220{
4221	return regulator_suspend_toggle(rdev, state, true);
4222}
4223EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4224
4225int regulator_suspend_disable(struct regulator_dev *rdev,
4226				     suspend_state_t state)
4227{
4228	struct regulator *regulator;
4229	struct regulator_voltage *voltage;
4230
4231	/*
4232	 * if any consumer wants this regulator device keeping on in
4233	 * suspend states, don't set it as disabled.
4234	 */
4235	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4236		voltage = &regulator->voltage[state];
4237		if (voltage->min_uV || voltage->max_uV)
4238			return 0;
4239	}
4240
4241	return regulator_suspend_toggle(rdev, state, false);
4242}
4243EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4244
4245static int _regulator_set_suspend_voltage(struct regulator *regulator,
4246					  int min_uV, int max_uV,
4247					  suspend_state_t state)
4248{
4249	struct regulator_dev *rdev = regulator->rdev;
4250	struct regulator_state *rstate;
4251
4252	rstate = regulator_get_suspend_state(rdev, state);
4253	if (rstate == NULL)
4254		return -EINVAL;
4255
4256	if (rstate->min_uV == rstate->max_uV) {
4257		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4258		return -EPERM;
4259	}
4260
4261	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4262}
 
 
 
 
4263
4264int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4265				  int max_uV, suspend_state_t state)
4266{
4267	struct ww_acquire_ctx ww_ctx;
4268	int ret;
4269
4270	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4271	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4272		return -EINVAL;
4273
4274	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4275
4276	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4277					     max_uV, state);
4278
4279	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4280
 
 
4281	return ret;
4282}
4283EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4284
4285/**
4286 * regulator_set_voltage_time - get raise/fall time
4287 * @regulator: regulator source
4288 * @old_uV: starting voltage in microvolts
4289 * @new_uV: target voltage in microvolts
4290 *
4291 * Provided with the starting and ending voltage, this function attempts to
4292 * calculate the time in microseconds required to rise or fall to this new
4293 * voltage.
4294 */
4295int regulator_set_voltage_time(struct regulator *regulator,
4296			       int old_uV, int new_uV)
4297{
4298	struct regulator_dev *rdev = regulator->rdev;
4299	const struct regulator_ops *ops = rdev->desc->ops;
4300	int old_sel = -1;
4301	int new_sel = -1;
4302	int voltage;
4303	int i;
4304
4305	if (ops->set_voltage_time)
4306		return ops->set_voltage_time(rdev, old_uV, new_uV);
4307	else if (!ops->set_voltage_time_sel)
4308		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4309
4310	/* Currently requires operations to do this */
4311	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
4312		return -EINVAL;
4313
4314	for (i = 0; i < rdev->desc->n_voltages; i++) {
4315		/* We only look for exact voltage matches here */
4316		if (i < rdev->desc->linear_min_sel)
4317			continue;
4318
4319		if (old_sel >= 0 && new_sel >= 0)
4320			break;
4321
4322		voltage = regulator_list_voltage(regulator, i);
4323		if (voltage < 0)
4324			return -EINVAL;
4325		if (voltage == 0)
4326			continue;
4327		if (voltage == old_uV)
4328			old_sel = i;
4329		if (voltage == new_uV)
4330			new_sel = i;
4331	}
4332
4333	if (old_sel < 0 || new_sel < 0)
4334		return -EINVAL;
4335
4336	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4337}
4338EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4339
4340/**
4341 * regulator_set_voltage_time_sel - get raise/fall time
4342 * @rdev: regulator source device
4343 * @old_selector: selector for starting voltage
4344 * @new_selector: selector for target voltage
4345 *
4346 * Provided with the starting and target voltage selectors, this function
4347 * returns time in microseconds required to rise or fall to this new voltage
4348 *
4349 * Drivers providing ramp_delay in regulation_constraints can use this as their
4350 * set_voltage_time_sel() operation.
4351 */
4352int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4353				   unsigned int old_selector,
4354				   unsigned int new_selector)
4355{
4356	int old_volt, new_volt;
4357
4358	/* sanity check */
4359	if (!rdev->desc->ops->list_voltage)
4360		return -EINVAL;
4361
4362	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4363	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4364
4365	if (rdev->desc->ops->set_voltage_time)
4366		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4367							 new_volt);
4368	else
4369		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4370}
4371EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4372
4373int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4374{
4375	int ret;
4376
4377	regulator_lock(rdev);
4378
4379	if (!rdev->desc->ops->set_voltage &&
4380	    !rdev->desc->ops->set_voltage_sel) {
4381		ret = -EINVAL;
4382		goto out;
4383	}
4384
4385	/* balance only, if regulator is coupled */
4386	if (rdev->coupling_desc.n_coupled > 1)
4387		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4388	else
4389		ret = -EOPNOTSUPP;
4390
4391out:
4392	regulator_unlock(rdev);
4393	return ret;
4394}
4395
4396/**
4397 * regulator_sync_voltage - re-apply last regulator output voltage
4398 * @regulator: regulator source
4399 *
4400 * Re-apply the last configured voltage.  This is intended to be used
4401 * where some external control source the consumer is cooperating with
4402 * has caused the configured voltage to change.
4403 */
4404int regulator_sync_voltage(struct regulator *regulator)
4405{
4406	struct regulator_dev *rdev = regulator->rdev;
4407	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4408	int ret, min_uV, max_uV;
4409
4410	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4411		return 0;
4412
4413	regulator_lock(rdev);
4414
4415	if (!rdev->desc->ops->set_voltage &&
4416	    !rdev->desc->ops->set_voltage_sel) {
4417		ret = -EINVAL;
4418		goto out;
4419	}
4420
4421	/* This is only going to work if we've had a voltage configured. */
4422	if (!voltage->min_uV && !voltage->max_uV) {
4423		ret = -EINVAL;
4424		goto out;
4425	}
4426
4427	min_uV = voltage->min_uV;
4428	max_uV = voltage->max_uV;
4429
4430	/* This should be a paranoia check... */
4431	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4432	if (ret < 0)
4433		goto out;
4434
4435	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4436	if (ret < 0)
4437		goto out;
4438
4439	/* balance only, if regulator is coupled */
4440	if (rdev->coupling_desc.n_coupled > 1)
4441		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4442	else
4443		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4444
4445out:
4446	regulator_unlock(rdev);
4447	return ret;
4448}
4449EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4450
4451int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4452{
4453	int sel, ret;
4454	bool bypassed;
4455
4456	if (rdev->desc->ops->get_bypass) {
4457		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4458		if (ret < 0)
4459			return ret;
4460		if (bypassed) {
4461			/* if bypassed the regulator must have a supply */
4462			if (!rdev->supply) {
4463				rdev_err(rdev,
4464					 "bypassed regulator has no supply!\n");
4465				return -EPROBE_DEFER;
4466			}
4467
4468			return regulator_get_voltage_rdev(rdev->supply->rdev);
4469		}
4470	}
4471
4472	if (rdev->desc->ops->get_voltage_sel) {
4473		sel = rdev->desc->ops->get_voltage_sel(rdev);
4474		if (sel < 0)
4475			return sel;
4476		ret = rdev->desc->ops->list_voltage(rdev, sel);
4477	} else if (rdev->desc->ops->get_voltage) {
4478		ret = rdev->desc->ops->get_voltage(rdev);
4479	} else if (rdev->desc->ops->list_voltage) {
4480		ret = rdev->desc->ops->list_voltage(rdev, 0);
4481	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4482		ret = rdev->desc->fixed_uV;
4483	} else if (rdev->supply) {
4484		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4485	} else if (rdev->supply_name) {
4486		return -EPROBE_DEFER;
4487	} else {
4488		return -EINVAL;
4489	}
4490
4491	if (ret < 0)
4492		return ret;
4493	return ret - rdev->constraints->uV_offset;
4494}
4495EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4496
4497/**
4498 * regulator_get_voltage - get regulator output voltage
4499 * @regulator: regulator source
4500 *
4501 * This returns the current regulator voltage in uV.
4502 *
4503 * NOTE: If the regulator is disabled it will return the voltage value. This
4504 * function should not be used to determine regulator state.
4505 */
4506int regulator_get_voltage(struct regulator *regulator)
4507{
4508	struct ww_acquire_ctx ww_ctx;
4509	int ret;
4510
4511	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4512	ret = regulator_get_voltage_rdev(regulator->rdev);
4513	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4514
4515	return ret;
4516}
4517EXPORT_SYMBOL_GPL(regulator_get_voltage);
4518
4519/**
4520 * regulator_set_current_limit - set regulator output current limit
4521 * @regulator: regulator source
4522 * @min_uA: Minimum supported current in uA
4523 * @max_uA: Maximum supported current in uA
4524 *
4525 * Sets current sink to the desired output current. This can be set during
4526 * any regulator state. IOW, regulator can be disabled or enabled.
4527 *
4528 * If the regulator is enabled then the current will change to the new value
4529 * immediately otherwise if the regulator is disabled the regulator will
4530 * output at the new current when enabled.
4531 *
4532 * NOTE: Regulator system constraints must be set for this regulator before
4533 * calling this function otherwise this call will fail.
4534 */
4535int regulator_set_current_limit(struct regulator *regulator,
4536			       int min_uA, int max_uA)
4537{
4538	struct regulator_dev *rdev = regulator->rdev;
4539	int ret;
4540
4541	regulator_lock(rdev);
4542
4543	/* sanity check */
4544	if (!rdev->desc->ops->set_current_limit) {
4545		ret = -EINVAL;
4546		goto out;
4547	}
4548
4549	/* constraints check */
4550	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4551	if (ret < 0)
4552		goto out;
4553
4554	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4555out:
4556	regulator_unlock(rdev);
4557	return ret;
4558}
4559EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4560
4561static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4562{
4563	/* sanity check */
4564	if (!rdev->desc->ops->get_current_limit)
4565		return -EINVAL;
4566
4567	return rdev->desc->ops->get_current_limit(rdev);
4568}
4569
4570static int _regulator_get_current_limit(struct regulator_dev *rdev)
4571{
4572	int ret;
4573
4574	regulator_lock(rdev);
4575	ret = _regulator_get_current_limit_unlocked(rdev);
4576	regulator_unlock(rdev);
 
 
 
 
4577
 
 
 
4578	return ret;
4579}
4580
4581/**
4582 * regulator_get_current_limit - get regulator output current
4583 * @regulator: regulator source
4584 *
4585 * This returns the current supplied by the specified current sink in uA.
4586 *
4587 * NOTE: If the regulator is disabled it will return the current value. This
4588 * function should not be used to determine regulator state.
4589 */
4590int regulator_get_current_limit(struct regulator *regulator)
4591{
4592	return _regulator_get_current_limit(regulator->rdev);
4593}
4594EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4595
4596/**
4597 * regulator_set_mode - set regulator operating mode
4598 * @regulator: regulator source
4599 * @mode: operating mode - one of the REGULATOR_MODE constants
4600 *
4601 * Set regulator operating mode to increase regulator efficiency or improve
4602 * regulation performance.
4603 *
4604 * NOTE: Regulator system constraints must be set for this regulator before
4605 * calling this function otherwise this call will fail.
4606 */
4607int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4608{
4609	struct regulator_dev *rdev = regulator->rdev;
4610	int ret;
4611	int regulator_curr_mode;
4612
4613	regulator_lock(rdev);
4614
4615	/* sanity check */
4616	if (!rdev->desc->ops->set_mode) {
4617		ret = -EINVAL;
4618		goto out;
4619	}
4620
4621	/* return if the same mode is requested */
4622	if (rdev->desc->ops->get_mode) {
4623		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4624		if (regulator_curr_mode == mode) {
4625			ret = 0;
4626			goto out;
4627		}
4628	}
4629
4630	/* constraints check */
4631	ret = regulator_mode_constrain(rdev, &mode);
4632	if (ret < 0)
4633		goto out;
4634
4635	ret = rdev->desc->ops->set_mode(rdev, mode);
4636out:
4637	regulator_unlock(rdev);
4638	return ret;
4639}
4640EXPORT_SYMBOL_GPL(regulator_set_mode);
4641
4642static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4643{
4644	/* sanity check */
4645	if (!rdev->desc->ops->get_mode)
4646		return -EINVAL;
4647
4648	return rdev->desc->ops->get_mode(rdev);
4649}
4650
4651static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4652{
4653	int ret;
4654
4655	regulator_lock(rdev);
4656	ret = _regulator_get_mode_unlocked(rdev);
4657	regulator_unlock(rdev);
 
 
 
 
4658
 
 
 
4659	return ret;
4660}
4661
4662/**
4663 * regulator_get_mode - get regulator operating mode
4664 * @regulator: regulator source
4665 *
4666 * Get the current regulator operating mode.
4667 */
4668unsigned int regulator_get_mode(struct regulator *regulator)
4669{
4670	return _regulator_get_mode(regulator->rdev);
4671}
4672EXPORT_SYMBOL_GPL(regulator_get_mode);
4673
4674static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4675{
4676	int ret = 0;
4677
4678	if (rdev->use_cached_err) {
4679		spin_lock(&rdev->err_lock);
4680		ret = rdev->cached_err;
4681		spin_unlock(&rdev->err_lock);
4682	}
4683	return ret;
4684}
4685
4686static int _regulator_get_error_flags(struct regulator_dev *rdev,
4687					unsigned int *flags)
4688{
4689	int cached_flags, ret = 0;
4690
4691	regulator_lock(rdev);
4692
4693	cached_flags = rdev_get_cached_err_flags(rdev);
4694
4695	if (rdev->desc->ops->get_error_flags)
4696		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4697	else if (!rdev->use_cached_err)
4698		ret = -EINVAL;
4699
4700	*flags |= cached_flags;
4701
4702	regulator_unlock(rdev);
4703
4704	return ret;
4705}
4706
4707/**
4708 * regulator_get_error_flags - get regulator error information
4709 * @regulator: regulator source
4710 * @flags: pointer to store error flags
4711 *
4712 * Get the current regulator error information.
4713 */
4714int regulator_get_error_flags(struct regulator *regulator,
4715				unsigned int *flags)
4716{
4717	return _regulator_get_error_flags(regulator->rdev, flags);
4718}
4719EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4720
4721/**
4722 * regulator_set_load - set regulator load
4723 * @regulator: regulator source
4724 * @uA_load: load current
4725 *
4726 * Notifies the regulator core of a new device load. This is then used by
4727 * DRMS (if enabled by constraints) to set the most efficient regulator
4728 * operating mode for the new regulator loading.
4729 *
4730 * Consumer devices notify their supply regulator of the maximum power
4731 * they will require (can be taken from device datasheet in the power
4732 * consumption tables) when they change operational status and hence power
4733 * state. Examples of operational state changes that can affect power
4734 * consumption are :-
4735 *
4736 *    o Device is opened / closed.
4737 *    o Device I/O is about to begin or has just finished.
4738 *    o Device is idling in between work.
4739 *
4740 * This information is also exported via sysfs to userspace.
4741 *
4742 * DRMS will sum the total requested load on the regulator and change
4743 * to the most efficient operating mode if platform constraints allow.
4744 *
4745 * NOTE: when a regulator consumer requests to have a regulator
4746 * disabled then any load that consumer requested no longer counts
4747 * toward the total requested load.  If the regulator is re-enabled
4748 * then the previously requested load will start counting again.
4749 *
4750 * If a regulator is an always-on regulator then an individual consumer's
4751 * load will still be removed if that consumer is fully disabled.
4752 *
4753 * On error a negative errno is returned.
4754 */
4755int regulator_set_load(struct regulator *regulator, int uA_load)
4756{
4757	struct regulator_dev *rdev = regulator->rdev;
4758	int old_uA_load;
4759	int ret = 0;
 
 
 
4760
4761	regulator_lock(rdev);
4762	old_uA_load = regulator->uA_load;
 
 
4763	regulator->uA_load = uA_load;
4764	if (regulator->enable_count && old_uA_load != uA_load) {
4765		ret = drms_uA_update(rdev);
4766		if (ret < 0)
4767			regulator->uA_load = old_uA_load;
4768	}
4769	regulator_unlock(rdev);
4770
4771	return ret;
4772}
4773EXPORT_SYMBOL_GPL(regulator_set_load);
4774
4775/**
4776 * regulator_allow_bypass - allow the regulator to go into bypass mode
4777 *
4778 * @regulator: Regulator to configure
4779 * @enable: enable or disable bypass mode
4780 *
4781 * Allow the regulator to go into bypass mode if all other consumers
4782 * for the regulator also enable bypass mode and the machine
4783 * constraints allow this.  Bypass mode means that the regulator is
4784 * simply passing the input directly to the output with no regulation.
4785 */
4786int regulator_allow_bypass(struct regulator *regulator, bool enable)
4787{
4788	struct regulator_dev *rdev = regulator->rdev;
4789	const char *name = rdev_get_name(rdev);
4790	int ret = 0;
4791
4792	if (!rdev->desc->ops->set_bypass)
4793		return 0;
 
 
 
 
4794
4795	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4796		return 0;
 
 
 
 
 
 
 
 
4797
4798	regulator_lock(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
4799
4800	if (enable && !regulator->bypass) {
4801		rdev->bypass_count++;
4802
4803		if (rdev->bypass_count == rdev->open_count) {
4804			trace_regulator_bypass_enable(name);
4805
4806			ret = rdev->desc->ops->set_bypass(rdev, enable);
4807			if (ret != 0)
4808				rdev->bypass_count--;
4809			else
4810				trace_regulator_bypass_enable_complete(name);
4811		}
4812
4813	} else if (!enable && regulator->bypass) {
4814		rdev->bypass_count--;
4815
4816		if (rdev->bypass_count != rdev->open_count) {
4817			trace_regulator_bypass_disable(name);
4818
4819			ret = rdev->desc->ops->set_bypass(rdev, enable);
4820			if (ret != 0)
4821				rdev->bypass_count++;
4822			else
4823				trace_regulator_bypass_disable_complete(name);
4824		}
4825	}
4826
4827	if (ret == 0)
4828		regulator->bypass = enable;
4829
4830	regulator_unlock(rdev);
4831
4832	return ret;
4833}
4834EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4835
4836/**
4837 * regulator_register_notifier - register regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Register notifier block to receive regulator events.
4842 */
4843int regulator_register_notifier(struct regulator *regulator,
4844			      struct notifier_block *nb)
4845{
4846	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4847						nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_register_notifier);
4850
4851/**
4852 * regulator_unregister_notifier - unregister regulator event notifier
4853 * @regulator: regulator source
4854 * @nb: notifier block
4855 *
4856 * Unregister regulator event notifier block.
4857 */
4858int regulator_unregister_notifier(struct regulator *regulator,
4859				struct notifier_block *nb)
4860{
4861	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4862						  nb);
4863}
4864EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4865
4866/* notify regulator consumers and downstream regulator consumers.
4867 * Note mutex must be held by caller.
4868 */
4869static int _notifier_call_chain(struct regulator_dev *rdev,
4870				  unsigned long event, void *data)
4871{
4872	/* call rdev chain first */
4873	int ret =  blocking_notifier_call_chain(&rdev->notifier, event, data);
4874
4875	if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4876		struct device *parent = rdev->dev.parent;
4877		const char *rname = rdev_get_name(rdev);
4878		char name[32];
4879
4880		/* Avoid duplicate debugfs directory names */
4881		if (parent && rname == rdev->desc->name) {
4882			snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4883				 rname);
4884			rname = name;
4885		}
4886		reg_generate_netlink_event(rname, event);
4887	}
4888
4889	return ret;
4890}
4891
4892int _regulator_bulk_get(struct device *dev, int num_consumers,
4893			struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4894{
4895	int i;
4896	int ret;
4897
4898	for (i = 0; i < num_consumers; i++)
4899		consumers[i].consumer = NULL;
4900
4901	for (i = 0; i < num_consumers; i++) {
4902		consumers[i].consumer = _regulator_get(dev,
4903						       consumers[i].supply, get_type);
4904		if (IS_ERR(consumers[i].consumer)) {
4905			ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4906					    "Failed to get supply '%s'",
4907					    consumers[i].supply);
4908			consumers[i].consumer = NULL;
4909			goto err;
4910		}
4911
4912		if (consumers[i].init_load_uA > 0) {
4913			ret = regulator_set_load(consumers[i].consumer,
4914						 consumers[i].init_load_uA);
4915			if (ret) {
4916				i++;
4917				goto err;
4918			}
4919		}
4920	}
4921
4922	return 0;
4923
4924err:
4925	while (--i >= 0)
4926		regulator_put(consumers[i].consumer);
4927
4928	return ret;
4929}
4930
4931/**
4932 * regulator_bulk_get - get multiple regulator consumers
4933 *
4934 * @dev:           Device to supply
4935 * @num_consumers: Number of consumers to register
4936 * @consumers:     Configuration of consumers; clients are stored here.
4937 *
4938 * @return 0 on success, an errno on failure.
4939 *
4940 * This helper function allows drivers to get several regulator
4941 * consumers in one operation.  If any of the regulators cannot be
4942 * acquired then any regulators that were allocated will be freed
4943 * before returning to the caller.
4944 */
4945int regulator_bulk_get(struct device *dev, int num_consumers,
4946		       struct regulator_bulk_data *consumers)
4947{
4948	return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4949}
4950EXPORT_SYMBOL_GPL(regulator_bulk_get);
4951
4952static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4953{
4954	struct regulator_bulk_data *bulk = data;
4955
4956	bulk->ret = regulator_enable(bulk->consumer);
4957}
4958
4959/**
4960 * regulator_bulk_enable - enable multiple regulator consumers
4961 *
4962 * @num_consumers: Number of consumers
4963 * @consumers:     Consumer data; clients are stored here.
4964 * @return         0 on success, an errno on failure
4965 *
4966 * This convenience API allows consumers to enable multiple regulator
4967 * clients in a single API call.  If any consumers cannot be enabled
4968 * then any others that were enabled will be disabled again prior to
4969 * return.
4970 */
4971int regulator_bulk_enable(int num_consumers,
4972			  struct regulator_bulk_data *consumers)
4973{
4974	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4975	int i;
4976	int ret = 0;
4977
4978	for (i = 0; i < num_consumers; i++) {
4979		async_schedule_domain(regulator_bulk_enable_async,
4980				      &consumers[i], &async_domain);
4981	}
4982
4983	async_synchronize_full_domain(&async_domain);
4984
4985	/* If any consumer failed we need to unwind any that succeeded */
4986	for (i = 0; i < num_consumers; i++) {
4987		if (consumers[i].ret != 0) {
4988			ret = consumers[i].ret;
4989			goto err;
4990		}
4991	}
4992
4993	return 0;
4994
4995err:
4996	for (i = 0; i < num_consumers; i++) {
4997		if (consumers[i].ret < 0)
4998			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4999			       ERR_PTR(consumers[i].ret));
5000		else
5001			regulator_disable(consumers[i].consumer);
5002	}
5003
5004	return ret;
5005}
5006EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5007
5008/**
5009 * regulator_bulk_disable - disable multiple regulator consumers
5010 *
5011 * @num_consumers: Number of consumers
5012 * @consumers:     Consumer data; clients are stored here.
5013 * @return         0 on success, an errno on failure
5014 *
5015 * This convenience API allows consumers to disable multiple regulator
5016 * clients in a single API call.  If any consumers cannot be disabled
5017 * then any others that were disabled will be enabled again prior to
5018 * return.
5019 */
5020int regulator_bulk_disable(int num_consumers,
5021			   struct regulator_bulk_data *consumers)
5022{
5023	int i;
5024	int ret, r;
5025
5026	for (i = num_consumers - 1; i >= 0; --i) {
5027		ret = regulator_disable(consumers[i].consumer);
5028		if (ret != 0)
5029			goto err;
5030	}
5031
5032	return 0;
5033
5034err:
5035	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5036	for (++i; i < num_consumers; ++i) {
5037		r = regulator_enable(consumers[i].consumer);
5038		if (r != 0)
5039			pr_err("Failed to re-enable %s: %pe\n",
5040			       consumers[i].supply, ERR_PTR(r));
5041	}
5042
5043	return ret;
5044}
5045EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5046
5047/**
5048 * regulator_bulk_force_disable - force disable multiple regulator consumers
5049 *
5050 * @num_consumers: Number of consumers
5051 * @consumers:     Consumer data; clients are stored here.
5052 * @return         0 on success, an errno on failure
5053 *
5054 * This convenience API allows consumers to forcibly disable multiple regulator
5055 * clients in a single API call.
5056 * NOTE: This should be used for situations when device damage will
5057 * likely occur if the regulators are not disabled (e.g. over temp).
5058 * Although regulator_force_disable function call for some consumers can
5059 * return error numbers, the function is called for all consumers.
5060 */
5061int regulator_bulk_force_disable(int num_consumers,
5062			   struct regulator_bulk_data *consumers)
5063{
5064	int i;
5065	int ret = 0;
5066
5067	for (i = 0; i < num_consumers; i++) {
5068		consumers[i].ret =
5069			    regulator_force_disable(consumers[i].consumer);
5070
5071		/* Store first error for reporting */
5072		if (consumers[i].ret && !ret)
5073			ret = consumers[i].ret;
5074	}
5075
5076	return ret;
5077}
5078EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5079
5080/**
5081 * regulator_bulk_free - free multiple regulator consumers
5082 *
5083 * @num_consumers: Number of consumers
5084 * @consumers:     Consumer data; clients are stored here.
5085 *
5086 * This convenience API allows consumers to free multiple regulator
5087 * clients in a single API call.
5088 */
5089void regulator_bulk_free(int num_consumers,
5090			 struct regulator_bulk_data *consumers)
5091{
5092	int i;
5093
5094	for (i = 0; i < num_consumers; i++) {
5095		regulator_put(consumers[i].consumer);
5096		consumers[i].consumer = NULL;
5097	}
5098}
5099EXPORT_SYMBOL_GPL(regulator_bulk_free);
5100
5101/**
5102 * regulator_handle_critical - Handle events for system-critical regulators.
5103 * @rdev: The regulator device.
5104 * @event: The event being handled.
5105 *
5106 * This function handles critical events such as under-voltage, over-current,
5107 * and unknown errors for regulators deemed system-critical. On detecting such
5108 * events, it triggers a hardware protection shutdown with a defined timeout.
5109 */
5110static void regulator_handle_critical(struct regulator_dev *rdev,
5111				      unsigned long event)
5112{
5113	const char *reason = NULL;
5114
5115	if (!rdev->constraints->system_critical)
5116		return;
5117
5118	switch (event) {
5119	case REGULATOR_EVENT_UNDER_VOLTAGE:
5120		reason = "System critical regulator: voltage drop detected";
5121		break;
5122	case REGULATOR_EVENT_OVER_CURRENT:
5123		reason = "System critical regulator: over-current detected";
5124		break;
5125	case REGULATOR_EVENT_FAIL:
5126		reason = "System critical regulator: unknown error";
5127	}
5128
5129	if (!reason)
5130		return;
5131
5132	hw_protection_shutdown(reason,
5133			       rdev->constraints->uv_less_critical_window_ms);
5134}
5135
5136/**
5137 * regulator_notifier_call_chain - call regulator event notifier
5138 * @rdev: regulator source
5139 * @event: notifier block
5140 * @data: callback-specific data.
5141 *
5142 * Called by regulator drivers to notify clients a regulator event has
5143 * occurred.
 
5144 */
5145int regulator_notifier_call_chain(struct regulator_dev *rdev,
5146				  unsigned long event, void *data)
5147{
5148	regulator_handle_critical(rdev, event);
5149
5150	_notifier_call_chain(rdev, event, data);
5151	return NOTIFY_DONE;
5152
5153}
5154EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5155
5156/**
5157 * regulator_mode_to_status - convert a regulator mode into a status
5158 *
5159 * @mode: Mode to convert
5160 *
5161 * Convert a regulator mode into a status.
5162 */
5163int regulator_mode_to_status(unsigned int mode)
5164{
5165	switch (mode) {
5166	case REGULATOR_MODE_FAST:
5167		return REGULATOR_STATUS_FAST;
5168	case REGULATOR_MODE_NORMAL:
5169		return REGULATOR_STATUS_NORMAL;
5170	case REGULATOR_MODE_IDLE:
5171		return REGULATOR_STATUS_IDLE;
5172	case REGULATOR_MODE_STANDBY:
5173		return REGULATOR_STATUS_STANDBY;
5174	default:
5175		return REGULATOR_STATUS_UNDEFINED;
5176	}
5177}
5178EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5179
5180static struct attribute *regulator_dev_attrs[] = {
5181	&dev_attr_name.attr,
5182	&dev_attr_num_users.attr,
5183	&dev_attr_type.attr,
5184	&dev_attr_microvolts.attr,
5185	&dev_attr_microamps.attr,
5186	&dev_attr_opmode.attr,
5187	&dev_attr_state.attr,
5188	&dev_attr_status.attr,
5189	&dev_attr_bypass.attr,
5190	&dev_attr_requested_microamps.attr,
5191	&dev_attr_min_microvolts.attr,
5192	&dev_attr_max_microvolts.attr,
5193	&dev_attr_min_microamps.attr,
5194	&dev_attr_max_microamps.attr,
5195	&dev_attr_under_voltage.attr,
5196	&dev_attr_over_current.attr,
5197	&dev_attr_regulation_out.attr,
5198	&dev_attr_fail.attr,
5199	&dev_attr_over_temp.attr,
5200	&dev_attr_under_voltage_warn.attr,
5201	&dev_attr_over_current_warn.attr,
5202	&dev_attr_over_voltage_warn.attr,
5203	&dev_attr_over_temp_warn.attr,
5204	&dev_attr_suspend_standby_state.attr,
5205	&dev_attr_suspend_mem_state.attr,
5206	&dev_attr_suspend_disk_state.attr,
5207	&dev_attr_suspend_standby_microvolts.attr,
5208	&dev_attr_suspend_mem_microvolts.attr,
5209	&dev_attr_suspend_disk_microvolts.attr,
5210	&dev_attr_suspend_standby_mode.attr,
5211	&dev_attr_suspend_mem_mode.attr,
5212	&dev_attr_suspend_disk_mode.attr,
5213	NULL
5214};
5215
5216/*
5217 * To avoid cluttering sysfs (and memory) with useless state, only
5218 * create attributes that can be meaningfully displayed.
5219 */
5220static umode_t regulator_attr_is_visible(struct kobject *kobj,
5221					 struct attribute *attr, int idx)
5222{
5223	struct device *dev = kobj_to_dev(kobj);
5224	struct regulator_dev *rdev = dev_to_rdev(dev);
5225	const struct regulator_ops *ops = rdev->desc->ops;
5226	umode_t mode = attr->mode;
5227
5228	/* these three are always present */
5229	if (attr == &dev_attr_name.attr ||
5230	    attr == &dev_attr_num_users.attr ||
5231	    attr == &dev_attr_type.attr)
5232		return mode;
5233
5234	/* some attributes need specific methods to be displayed */
5235	if (attr == &dev_attr_microvolts.attr) {
5236		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5237		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5238		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5239		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5240			return mode;
5241		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5242	}
5243
5244	if (attr == &dev_attr_microamps.attr)
5245		return ops->get_current_limit ? mode : 0;
 
5246
5247	if (attr == &dev_attr_opmode.attr)
5248		return ops->get_mode ? mode : 0;
 
 
 
 
 
 
 
5249
5250	if (attr == &dev_attr_state.attr)
5251		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5252
5253	if (attr == &dev_attr_status.attr)
5254		return ops->get_status ? mode : 0;
5255
5256	if (attr == &dev_attr_bypass.attr)
5257		return ops->get_bypass ? mode : 0;
5258
5259	if (attr == &dev_attr_under_voltage.attr ||
5260	    attr == &dev_attr_over_current.attr ||
5261	    attr == &dev_attr_regulation_out.attr ||
5262	    attr == &dev_attr_fail.attr ||
5263	    attr == &dev_attr_over_temp.attr ||
5264	    attr == &dev_attr_under_voltage_warn.attr ||
5265	    attr == &dev_attr_over_current_warn.attr ||
5266	    attr == &dev_attr_over_voltage_warn.attr ||
5267	    attr == &dev_attr_over_temp_warn.attr)
5268		return ops->get_error_flags ? mode : 0;
5269
5270	/* constraints need specific supporting methods */
5271	if (attr == &dev_attr_min_microvolts.attr ||
5272	    attr == &dev_attr_max_microvolts.attr)
5273		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5274
5275	if (attr == &dev_attr_min_microamps.attr ||
5276	    attr == &dev_attr_max_microamps.attr)
5277		return ops->set_current_limit ? mode : 0;
5278
5279	if (attr == &dev_attr_suspend_standby_state.attr ||
5280	    attr == &dev_attr_suspend_mem_state.attr ||
5281	    attr == &dev_attr_suspend_disk_state.attr)
5282		return mode;
5283
5284	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5285	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5286	    attr == &dev_attr_suspend_disk_microvolts.attr)
5287		return ops->set_suspend_voltage ? mode : 0;
5288
5289	if (attr == &dev_attr_suspend_standby_mode.attr ||
5290	    attr == &dev_attr_suspend_mem_mode.attr ||
5291	    attr == &dev_attr_suspend_disk_mode.attr)
5292		return ops->set_suspend_mode ? mode : 0;
5293
5294	return mode;
5295}
5296
5297static const struct attribute_group regulator_dev_group = {
5298	.attrs = regulator_dev_attrs,
5299	.is_visible = regulator_attr_is_visible,
5300};
5301
5302static const struct attribute_group *regulator_dev_groups[] = {
5303	&regulator_dev_group,
5304	NULL
5305};
5306
5307static void regulator_dev_release(struct device *dev)
5308{
5309	struct regulator_dev *rdev = dev_get_drvdata(dev);
5310
5311	debugfs_remove_recursive(rdev->debugfs);
5312	kfree(rdev->constraints);
5313	of_node_put(rdev->dev.of_node);
5314	kfree(rdev);
5315}
5316
5317static void rdev_init_debugfs(struct regulator_dev *rdev)
5318{
5319	struct device *parent = rdev->dev.parent;
5320	const char *rname = rdev_get_name(rdev);
5321	char name[NAME_MAX];
5322
5323	/* Avoid duplicate debugfs directory names */
5324	if (parent && rname == rdev->desc->name) {
5325		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5326			 rname);
5327		rname = name;
5328	}
5329
5330	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5331	if (IS_ERR(rdev->debugfs))
5332		rdev_dbg(rdev, "Failed to create debugfs directory\n");
5333
5334	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5335			   &rdev->use_count);
5336	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5337			   &rdev->open_count);
5338	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5339			   &rdev->bypass_count);
5340}
5341
5342static int regulator_register_resolve_supply(struct device *dev, void *data)
5343{
5344	struct regulator_dev *rdev = dev_to_rdev(dev);
5345
5346	if (regulator_resolve_supply(rdev))
5347		rdev_dbg(rdev, "unable to resolve supply\n");
5348
5349	return 0;
5350}
5351
5352int regulator_coupler_register(struct regulator_coupler *coupler)
5353{
5354	mutex_lock(&regulator_list_mutex);
5355	list_add_tail(&coupler->list, &regulator_coupler_list);
5356	mutex_unlock(&regulator_list_mutex);
5357
5358	return 0;
5359}
5360
5361static struct regulator_coupler *
5362regulator_find_coupler(struct regulator_dev *rdev)
5363{
5364	struct regulator_coupler *coupler;
5365	int err;
5366
5367	/*
5368	 * Note that regulators are appended to the list and the generic
5369	 * coupler is registered first, hence it will be attached at last
5370	 * if nobody cared.
5371	 */
5372	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5373		err = coupler->attach_regulator(coupler, rdev);
5374		if (!err) {
5375			if (!coupler->balance_voltage &&
5376			    rdev->coupling_desc.n_coupled > 2)
5377				goto err_unsupported;
5378
5379			return coupler;
5380		}
5381
5382		if (err < 0)
5383			return ERR_PTR(err);
5384
5385		if (err == 1)
5386			continue;
5387
5388		break;
5389	}
5390
5391	return ERR_PTR(-EINVAL);
5392
5393err_unsupported:
5394	if (coupler->detach_regulator)
5395		coupler->detach_regulator(coupler, rdev);
5396
5397	rdev_err(rdev,
5398		"Voltage balancing for multiple regulator couples is unimplemented\n");
5399
5400	return ERR_PTR(-EPERM);
5401}
5402
5403static void regulator_resolve_coupling(struct regulator_dev *rdev)
5404{
5405	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5406	struct coupling_desc *c_desc = &rdev->coupling_desc;
5407	int n_coupled = c_desc->n_coupled;
5408	struct regulator_dev *c_rdev;
5409	int i;
5410
5411	for (i = 1; i < n_coupled; i++) {
5412		/* already resolved */
5413		if (c_desc->coupled_rdevs[i])
5414			continue;
5415
5416		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5417
5418		if (!c_rdev)
5419			continue;
5420
5421		if (c_rdev->coupling_desc.coupler != coupler) {
5422			rdev_err(rdev, "coupler mismatch with %s\n",
5423				 rdev_get_name(c_rdev));
5424			return;
5425		}
5426
5427		c_desc->coupled_rdevs[i] = c_rdev;
5428		c_desc->n_resolved++;
5429
5430		regulator_resolve_coupling(c_rdev);
5431	}
5432}
5433
5434static void regulator_remove_coupling(struct regulator_dev *rdev)
5435{
5436	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5437	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5438	struct regulator_dev *__c_rdev, *c_rdev;
5439	unsigned int __n_coupled, n_coupled;
5440	int i, k;
5441	int err;
5442
5443	n_coupled = c_desc->n_coupled;
5444
5445	for (i = 1; i < n_coupled; i++) {
5446		c_rdev = c_desc->coupled_rdevs[i];
5447
5448		if (!c_rdev)
5449			continue;
5450
5451		regulator_lock(c_rdev);
5452
5453		__c_desc = &c_rdev->coupling_desc;
5454		__n_coupled = __c_desc->n_coupled;
5455
5456		for (k = 1; k < __n_coupled; k++) {
5457			__c_rdev = __c_desc->coupled_rdevs[k];
5458
5459			if (__c_rdev == rdev) {
5460				__c_desc->coupled_rdevs[k] = NULL;
5461				__c_desc->n_resolved--;
5462				break;
5463			}
5464		}
5465
5466		regulator_unlock(c_rdev);
5467
5468		c_desc->coupled_rdevs[i] = NULL;
5469		c_desc->n_resolved--;
5470	}
5471
5472	if (coupler && coupler->detach_regulator) {
5473		err = coupler->detach_regulator(coupler, rdev);
5474		if (err)
5475			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5476				 ERR_PTR(err));
5477	}
5478
5479	kfree(rdev->coupling_desc.coupled_rdevs);
5480	rdev->coupling_desc.coupled_rdevs = NULL;
5481}
5482
5483static int regulator_init_coupling(struct regulator_dev *rdev)
5484{
5485	struct regulator_dev **coupled;
5486	int err, n_phandles;
5487
5488	if (!IS_ENABLED(CONFIG_OF))
5489		n_phandles = 0;
5490	else
5491		n_phandles = of_get_n_coupled(rdev);
5492
5493	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5494	if (!coupled)
5495		return -ENOMEM;
5496
5497	rdev->coupling_desc.coupled_rdevs = coupled;
5498
5499	/*
5500	 * Every regulator should always have coupling descriptor filled with
5501	 * at least pointer to itself.
5502	 */
5503	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5504	rdev->coupling_desc.n_coupled = n_phandles + 1;
5505	rdev->coupling_desc.n_resolved++;
5506
5507	/* regulator isn't coupled */
5508	if (n_phandles == 0)
5509		return 0;
5510
5511	if (!of_check_coupling_data(rdev))
5512		return -EPERM;
5513
5514	mutex_lock(&regulator_list_mutex);
5515	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5516	mutex_unlock(&regulator_list_mutex);
5517
5518	if (IS_ERR(rdev->coupling_desc.coupler)) {
5519		err = PTR_ERR(rdev->coupling_desc.coupler);
5520		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5521		return err;
5522	}
5523
5524	return 0;
5525}
5526
5527static int generic_coupler_attach(struct regulator_coupler *coupler,
5528				  struct regulator_dev *rdev)
5529{
5530	if (rdev->coupling_desc.n_coupled > 2) {
5531		rdev_err(rdev,
5532			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5533		return -EPERM;
5534	}
5535
5536	if (!rdev->constraints->always_on) {
5537		rdev_err(rdev,
5538			 "Coupling of a non always-on regulator is unimplemented\n");
5539		return -ENOTSUPP;
5540	}
5541
5542	return 0;
5543}
5544
5545static struct regulator_coupler generic_regulator_coupler = {
5546	.attach_regulator = generic_coupler_attach,
5547};
5548
5549/**
5550 * regulator_register - register regulator
5551 * @dev: the device that drive the regulator
5552 * @regulator_desc: regulator to register
5553 * @cfg: runtime configuration for regulator
 
 
5554 *
5555 * Called by regulator drivers to register a regulator.
5556 * Returns a valid pointer to struct regulator_dev on success
5557 * or an ERR_PTR() on error.
5558 */
5559struct regulator_dev *
5560regulator_register(struct device *dev,
5561		   const struct regulator_desc *regulator_desc,
5562		   const struct regulator_config *cfg)
5563{
5564	const struct regulator_init_data *init_data;
5565	struct regulator_config *config = NULL;
5566	static atomic_t regulator_no = ATOMIC_INIT(-1);
5567	struct regulator_dev *rdev;
5568	bool dangling_cfg_gpiod = false;
5569	bool dangling_of_gpiod = false;
5570	int ret, i;
5571	bool resolved_early = false;
5572
5573	if (cfg == NULL)
5574		return ERR_PTR(-EINVAL);
5575	if (cfg->ena_gpiod)
5576		dangling_cfg_gpiod = true;
5577	if (regulator_desc == NULL) {
5578		ret = -EINVAL;
5579		goto rinse;
5580	}
5581
5582	WARN_ON(!dev || !cfg->dev);
 
5583
5584	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5585		ret = -EINVAL;
5586		goto rinse;
5587	}
5588
5589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5590	    regulator_desc->type != REGULATOR_CURRENT) {
5591		ret = -EINVAL;
5592		goto rinse;
5593	}
5594
5595	/* Only one of each should be implemented */
5596	WARN_ON(regulator_desc->ops->get_voltage &&
5597		regulator_desc->ops->get_voltage_sel);
5598	WARN_ON(regulator_desc->ops->set_voltage &&
5599		regulator_desc->ops->set_voltage_sel);
5600
5601	/* If we're using selectors we must implement list_voltage. */
5602	if (regulator_desc->ops->get_voltage_sel &&
5603	    !regulator_desc->ops->list_voltage) {
5604		ret = -EINVAL;
5605		goto rinse;
5606	}
5607	if (regulator_desc->ops->set_voltage_sel &&
5608	    !regulator_desc->ops->list_voltage) {
5609		ret = -EINVAL;
5610		goto rinse;
5611	}
5612
5613	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5614	if (rdev == NULL) {
5615		ret = -ENOMEM;
5616		goto rinse;
5617	}
5618	device_initialize(&rdev->dev);
5619	dev_set_drvdata(&rdev->dev, rdev);
5620	rdev->dev.class = &regulator_class;
5621	spin_lock_init(&rdev->err_lock);
5622
5623	/*
5624	 * Duplicate the config so the driver could override it after
5625	 * parsing init data.
5626	 */
5627	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5628	if (config == NULL) {
5629		ret = -ENOMEM;
5630		goto clean;
5631	}
5632
5633	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5634					       &rdev->dev.of_node);
5635
5636	/*
5637	 * Sometimes not all resources are probed already so we need to take
5638	 * that into account. This happens most the time if the ena_gpiod comes
5639	 * from a gpio extender or something else.
5640	 */
5641	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5642		ret = -EPROBE_DEFER;
5643		goto clean;
5644	}
5645
5646	/*
5647	 * We need to keep track of any GPIO descriptor coming from the
5648	 * device tree until we have handled it over to the core. If the
5649	 * config that was passed in to this function DOES NOT contain
5650	 * a descriptor, and the config after this call DOES contain
5651	 * a descriptor, we definitely got one from parsing the device
5652	 * tree.
5653	 */
5654	if (!cfg->ena_gpiod && config->ena_gpiod)
5655		dangling_of_gpiod = true;
5656	if (!init_data) {
5657		init_data = config->init_data;
5658		rdev->dev.of_node = of_node_get(config->of_node);
5659	}
5660
5661	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5662	rdev->reg_data = config->driver_data;
5663	rdev->owner = regulator_desc->owner;
5664	rdev->desc = regulator_desc;
5665	if (config->regmap)
5666		rdev->regmap = config->regmap;
5667	else if (dev_get_regmap(dev, NULL))
5668		rdev->regmap = dev_get_regmap(dev, NULL);
5669	else if (dev->parent)
5670		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5671	INIT_LIST_HEAD(&rdev->consumer_list);
5672	INIT_LIST_HEAD(&rdev->list);
5673	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5674	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5675
5676	if (init_data && init_data->supply_regulator)
5677		rdev->supply_name = init_data->supply_regulator;
5678	else if (regulator_desc->supply_name)
5679		rdev->supply_name = regulator_desc->supply_name;
 
 
5680
5681	/* register with sysfs */
5682	rdev->dev.parent = config->dev;
5683	dev_set_name(&rdev->dev, "regulator.%lu",
5684		    (unsigned long) atomic_inc_return(&regulator_no));
 
 
 
 
 
 
 
 
5685
5686	/* set regulator constraints */
5687	if (init_data)
5688		rdev->constraints = kmemdup(&init_data->constraints,
5689					    sizeof(*rdev->constraints),
5690					    GFP_KERNEL);
5691	else
5692		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5693					    GFP_KERNEL);
5694	if (!rdev->constraints) {
5695		ret = -ENOMEM;
5696		goto wash;
5697	}
5698
5699	if ((rdev->supply_name && !rdev->supply) &&
5700		(rdev->constraints->always_on ||
5701		 rdev->constraints->boot_on)) {
5702		ret = regulator_resolve_supply(rdev);
5703		if (ret)
5704			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5705					 ERR_PTR(ret));
5706
5707		resolved_early = true;
5708	}
 
 
 
 
 
 
 
 
 
5709
5710	/* perform any regulator specific init */
5711	if (init_data && init_data->regulator_init) {
5712		ret = init_data->regulator_init(rdev->reg_data);
5713		if (ret < 0)
5714			goto wash;
5715	}
5716
5717	if (config->ena_gpiod) {
5718		ret = regulator_ena_gpio_request(rdev, config);
5719		if (ret != 0) {
5720			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5721				 ERR_PTR(ret));
5722			goto wash;
5723		}
5724		/* The regulator core took over the GPIO descriptor */
5725		dangling_cfg_gpiod = false;
5726		dangling_of_gpiod = false;
5727	}
5728
5729	ret = set_machine_constraints(rdev);
5730	if (ret == -EPROBE_DEFER && !resolved_early) {
5731		/* Regulator might be in bypass mode and so needs its supply
5732		 * to set the constraints
5733		 */
5734		/* FIXME: this currently triggers a chicken-and-egg problem
5735		 * when creating -SUPPLY symlink in sysfs to a regulator
5736		 * that is just being created
5737		 */
5738		rdev_dbg(rdev, "will resolve supply early: %s\n",
5739			 rdev->supply_name);
5740		ret = regulator_resolve_supply(rdev);
5741		if (!ret)
5742			ret = set_machine_constraints(rdev);
5743		else
5744			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5745				 ERR_PTR(ret));
5746	}
5747	if (ret < 0)
5748		goto wash;
5749
5750	ret = regulator_init_coupling(rdev);
5751	if (ret < 0)
5752		goto wash;
5753
5754	/* add consumers devices */
5755	if (init_data) {
5756		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5757			ret = set_consumer_device_supply(rdev,
5758				init_data->consumer_supplies[i].dev_name,
 
 
 
5759				init_data->consumer_supplies[i].supply);
5760			if (ret < 0) {
5761				dev_err(dev, "Failed to set supply %s\n",
5762					init_data->consumer_supplies[i].supply);
5763				goto unset_supplies;
5764			}
5765		}
5766	}
5767
5768	if (!rdev->desc->ops->get_voltage &&
5769	    !rdev->desc->ops->list_voltage &&
5770	    !rdev->desc->fixed_uV)
5771		rdev->is_switch = true;
5772
5773	ret = device_add(&rdev->dev);
5774	if (ret != 0)
5775		goto unset_supplies;
5776
5777	rdev_init_debugfs(rdev);
5778
5779	/* try to resolve regulators coupling since a new one was registered */
5780	mutex_lock(&regulator_list_mutex);
5781	regulator_resolve_coupling(rdev);
5782	mutex_unlock(&regulator_list_mutex);
5783
5784	/* try to resolve regulators supply since a new one was registered */
5785	class_for_each_device(&regulator_class, NULL, NULL,
5786			      regulator_register_resolve_supply);
5787	kfree(config);
5788	return rdev;
5789
5790unset_supplies:
5791	mutex_lock(&regulator_list_mutex);
5792	unset_regulator_supplies(rdev);
5793	regulator_remove_coupling(rdev);
5794	mutex_unlock(&regulator_list_mutex);
5795wash:
5796	regulator_put(rdev->supply);
5797	kfree(rdev->coupling_desc.coupled_rdevs);
5798	mutex_lock(&regulator_list_mutex);
5799	regulator_ena_gpio_free(rdev);
5800	mutex_unlock(&regulator_list_mutex);
5801clean:
5802	if (dangling_of_gpiod)
5803		gpiod_put(config->ena_gpiod);
5804	kfree(config);
5805	put_device(&rdev->dev);
5806rinse:
5807	if (dangling_cfg_gpiod)
5808		gpiod_put(cfg->ena_gpiod);
5809	return ERR_PTR(ret);
5810}
5811EXPORT_SYMBOL_GPL(regulator_register);
5812
5813/**
5814 * regulator_unregister - unregister regulator
5815 * @rdev: regulator to unregister
5816 *
5817 * Called by regulator drivers to unregister a regulator.
5818 */
5819void regulator_unregister(struct regulator_dev *rdev)
5820{
5821	if (rdev == NULL)
5822		return;
5823
5824	if (rdev->supply) {
5825		while (rdev->use_count--)
5826			regulator_disable(rdev->supply);
5827		regulator_put(rdev->supply);
5828	}
5829
5830	flush_work(&rdev->disable_work.work);
5831
5832	mutex_lock(&regulator_list_mutex);
5833
 
 
5834	WARN_ON(rdev->open_count);
5835	regulator_remove_coupling(rdev);
5836	unset_regulator_supplies(rdev);
5837	list_del(&rdev->list);
5838	regulator_ena_gpio_free(rdev);
 
5839	device_unregister(&rdev->dev);
5840
5841	mutex_unlock(&regulator_list_mutex);
5842}
5843EXPORT_SYMBOL_GPL(regulator_unregister);
5844
5845#ifdef CONFIG_SUSPEND
5846/**
5847 * regulator_suspend - prepare regulators for system wide suspend
5848 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5849 *
5850 * Configure each regulator with it's suspend operating parameters for state.
 
5851 */
5852static int regulator_suspend(struct device *dev)
5853{
5854	struct regulator_dev *rdev = dev_to_rdev(dev);
5855	suspend_state_t state = pm_suspend_target_state;
5856	int ret;
5857	const struct regulator_state *rstate;
 
 
5858
5859	rstate = regulator_get_suspend_state_check(rdev, state);
5860	if (!rstate)
5861		return 0;
5862
5863	regulator_lock(rdev);
5864	ret = __suspend_set_state(rdev, rstate);
5865	regulator_unlock(rdev);
5866
 
 
 
 
 
 
 
5867	return ret;
5868}
 
5869
5870static int regulator_resume(struct device *dev)
 
 
 
 
 
 
5871{
5872	suspend_state_t state = pm_suspend_target_state;
5873	struct regulator_dev *rdev = dev_to_rdev(dev);
5874	struct regulator_state *rstate;
5875	int ret = 0;
5876
5877	rstate = regulator_get_suspend_state(rdev, state);
5878	if (rstate == NULL)
5879		return 0;
5880
5881	/* Avoid grabbing the lock if we don't need to */
5882	if (!rdev->desc->ops->resume)
5883		return 0;
5884
5885	regulator_lock(rdev);
5886
5887	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5888	    rstate->enabled == DISABLE_IN_SUSPEND)
5889		ret = rdev->desc->ops->resume(rdev);
5890
5891	regulator_unlock(rdev);
5892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5893	return ret;
5894}
5895#else /* !CONFIG_SUSPEND */
5896
5897#define regulator_suspend	NULL
5898#define regulator_resume	NULL
5899
5900#endif /* !CONFIG_SUSPEND */
5901
5902#ifdef CONFIG_PM
5903static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5904	.suspend	= regulator_suspend,
5905	.resume		= regulator_resume,
5906};
5907#endif
5908
5909const struct class regulator_class = {
5910	.name = "regulator",
5911	.dev_release = regulator_dev_release,
5912	.dev_groups = regulator_dev_groups,
5913#ifdef CONFIG_PM
5914	.pm = &regulator_pm_ops,
5915#endif
5916};
5917/**
5918 * regulator_has_full_constraints - the system has fully specified constraints
5919 *
5920 * Calling this function will cause the regulator API to disable all
5921 * regulators which have a zero use count and don't have an always_on
5922 * constraint in a late_initcall.
5923 *
5924 * The intention is that this will become the default behaviour in a
5925 * future kernel release so users are encouraged to use this facility
5926 * now.
5927 */
5928void regulator_has_full_constraints(void)
5929{
5930	has_full_constraints = 1;
5931}
5932EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5933
5934/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5935 * rdev_get_drvdata - get rdev regulator driver data
5936 * @rdev: regulator
5937 *
5938 * Get rdev regulator driver private data. This call can be used in the
5939 * regulator driver context.
5940 */
5941void *rdev_get_drvdata(struct regulator_dev *rdev)
5942{
5943	return rdev->reg_data;
5944}
5945EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5946
5947/**
5948 * regulator_get_drvdata - get regulator driver data
5949 * @regulator: regulator
5950 *
5951 * Get regulator driver private data. This call can be used in the consumer
5952 * driver context when non API regulator specific functions need to be called.
5953 */
5954void *regulator_get_drvdata(struct regulator *regulator)
5955{
5956	return regulator->rdev->reg_data;
5957}
5958EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5959
5960/**
5961 * regulator_set_drvdata - set regulator driver data
5962 * @regulator: regulator
5963 * @data: data
5964 */
5965void regulator_set_drvdata(struct regulator *regulator, void *data)
5966{
5967	regulator->rdev->reg_data = data;
5968}
5969EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5970
5971/**
5972 * rdev_get_id - get regulator ID
5973 * @rdev: regulator
5974 */
5975int rdev_get_id(struct regulator_dev *rdev)
5976{
5977	return rdev->desc->id;
5978}
5979EXPORT_SYMBOL_GPL(rdev_get_id);
5980
5981struct device *rdev_get_dev(struct regulator_dev *rdev)
5982{
5983	return &rdev->dev;
5984}
5985EXPORT_SYMBOL_GPL(rdev_get_dev);
5986
5987struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5988{
5989	return rdev->regmap;
5990}
5991EXPORT_SYMBOL_GPL(rdev_get_regmap);
5992
5993void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5994{
5995	return reg_init_data->driver_data;
5996}
5997EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5998
5999#ifdef CONFIG_DEBUG_FS
6000static int supply_map_show(struct seq_file *sf, void *data)
6001{
6002	struct regulator_map *map;
6003
6004	list_for_each_entry(map, &regulator_map_list, list) {
6005		seq_printf(sf, "%s -> %s.%s\n",
6006				rdev_get_name(map->regulator), map->dev_name,
6007				map->supply);
6008	}
6009
6010	return 0;
6011}
6012DEFINE_SHOW_ATTRIBUTE(supply_map);
6013
6014struct summary_data {
6015	struct seq_file *s;
6016	struct regulator_dev *parent;
6017	int level;
6018};
6019
6020static void regulator_summary_show_subtree(struct seq_file *s,
6021					   struct regulator_dev *rdev,
6022					   int level);
6023
6024static int regulator_summary_show_children(struct device *dev, void *data)
6025{
6026	struct regulator_dev *rdev = dev_to_rdev(dev);
6027	struct summary_data *summary_data = data;
6028
6029	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6030		regulator_summary_show_subtree(summary_data->s, rdev,
6031					       summary_data->level + 1);
6032
6033	return 0;
6034}
6035
6036static void regulator_summary_show_subtree(struct seq_file *s,
6037					   struct regulator_dev *rdev,
6038					   int level)
6039{
6040	struct regulation_constraints *c;
6041	struct regulator *consumer;
6042	struct summary_data summary_data;
6043	unsigned int opmode;
6044
6045	if (!rdev)
6046		return;
6047
6048	opmode = _regulator_get_mode_unlocked(rdev);
6049	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6050		   level * 3 + 1, "",
6051		   30 - level * 3, rdev_get_name(rdev),
6052		   rdev->use_count, rdev->open_count, rdev->bypass_count,
6053		   regulator_opmode_to_str(opmode));
6054
6055	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6056	seq_printf(s, "%5dmA ",
6057		   _regulator_get_current_limit_unlocked(rdev) / 1000);
6058
6059	c = rdev->constraints;
6060	if (c) {
6061		switch (rdev->desc->type) {
6062		case REGULATOR_VOLTAGE:
6063			seq_printf(s, "%5dmV %5dmV ",
6064				   c->min_uV / 1000, c->max_uV / 1000);
6065			break;
6066		case REGULATOR_CURRENT:
6067			seq_printf(s, "%5dmA %5dmA ",
6068				   c->min_uA / 1000, c->max_uA / 1000);
6069			break;
6070		}
6071	}
6072
6073	seq_puts(s, "\n");
6074
6075	list_for_each_entry(consumer, &rdev->consumer_list, list) {
6076		if (consumer->dev && consumer->dev->class == &regulator_class)
6077			continue;
6078
6079		seq_printf(s, "%*s%-*s ",
6080			   (level + 1) * 3 + 1, "",
6081			   30 - (level + 1) * 3,
6082			   consumer->supply_name ? consumer->supply_name :
6083			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
6084
6085		switch (rdev->desc->type) {
6086		case REGULATOR_VOLTAGE:
6087			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6088				   consumer->enable_count,
6089				   consumer->uA_load / 1000,
6090				   consumer->uA_load && !consumer->enable_count ?
6091				   '*' : ' ',
6092				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6093				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6094			break;
6095		case REGULATOR_CURRENT:
6096			break;
6097		}
6098
6099		seq_puts(s, "\n");
6100	}
6101
6102	summary_data.s = s;
6103	summary_data.level = level;
6104	summary_data.parent = rdev;
6105
6106	class_for_each_device(&regulator_class, NULL, &summary_data,
6107			      regulator_summary_show_children);
6108}
6109
6110struct summary_lock_data {
6111	struct ww_acquire_ctx *ww_ctx;
6112	struct regulator_dev **new_contended_rdev;
6113	struct regulator_dev **old_contended_rdev;
6114};
6115
6116static int regulator_summary_lock_one(struct device *dev, void *data)
6117{
6118	struct regulator_dev *rdev = dev_to_rdev(dev);
6119	struct summary_lock_data *lock_data = data;
6120	int ret = 0;
6121
6122	if (rdev != *lock_data->old_contended_rdev) {
6123		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6124
6125		if (ret == -EDEADLK)
6126			*lock_data->new_contended_rdev = rdev;
6127		else
6128			WARN_ON_ONCE(ret);
6129	} else {
6130		*lock_data->old_contended_rdev = NULL;
6131	}
6132
6133	return ret;
6134}
6135
6136static int regulator_summary_unlock_one(struct device *dev, void *data)
6137{
6138	struct regulator_dev *rdev = dev_to_rdev(dev);
6139	struct summary_lock_data *lock_data = data;
6140
6141	if (lock_data) {
6142		if (rdev == *lock_data->new_contended_rdev)
6143			return -EDEADLK;
6144	}
6145
6146	regulator_unlock(rdev);
6147
6148	return 0;
6149}
6150
6151static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6152				      struct regulator_dev **new_contended_rdev,
6153				      struct regulator_dev **old_contended_rdev)
6154{
6155	struct summary_lock_data lock_data;
6156	int ret;
6157
6158	lock_data.ww_ctx = ww_ctx;
6159	lock_data.new_contended_rdev = new_contended_rdev;
6160	lock_data.old_contended_rdev = old_contended_rdev;
6161
6162	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6163				    regulator_summary_lock_one);
6164	if (ret)
6165		class_for_each_device(&regulator_class, NULL, &lock_data,
6166				      regulator_summary_unlock_one);
6167
6168	return ret;
6169}
6170
6171static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6172{
6173	struct regulator_dev *new_contended_rdev = NULL;
6174	struct regulator_dev *old_contended_rdev = NULL;
6175	int err;
6176
6177	mutex_lock(&regulator_list_mutex);
6178
6179	ww_acquire_init(ww_ctx, &regulator_ww_class);
6180
6181	do {
6182		if (new_contended_rdev) {
6183			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6184			old_contended_rdev = new_contended_rdev;
6185			old_contended_rdev->ref_cnt++;
6186			old_contended_rdev->mutex_owner = current;
6187		}
6188
6189		err = regulator_summary_lock_all(ww_ctx,
6190						 &new_contended_rdev,
6191						 &old_contended_rdev);
6192
6193		if (old_contended_rdev)
6194			regulator_unlock(old_contended_rdev);
6195
6196	} while (err == -EDEADLK);
6197
6198	ww_acquire_done(ww_ctx);
6199}
6200
6201static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6202{
6203	class_for_each_device(&regulator_class, NULL, NULL,
6204			      regulator_summary_unlock_one);
6205	ww_acquire_fini(ww_ctx);
6206
6207	mutex_unlock(&regulator_list_mutex);
6208}
6209
6210static int regulator_summary_show_roots(struct device *dev, void *data)
6211{
6212	struct regulator_dev *rdev = dev_to_rdev(dev);
6213	struct seq_file *s = data;
6214
6215	if (!rdev->supply)
6216		regulator_summary_show_subtree(s, rdev, 0);
6217
6218	return 0;
6219}
6220
6221static int regulator_summary_show(struct seq_file *s, void *data)
6222{
6223	struct ww_acquire_ctx ww_ctx;
6224
6225	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
6226	seq_puts(s, "---------------------------------------------------------------------------------------\n");
6227
6228	regulator_summary_lock(&ww_ctx);
6229
6230	class_for_each_device(&regulator_class, NULL, s,
6231			      regulator_summary_show_roots);
6232
6233	regulator_summary_unlock(&ww_ctx);
6234
6235	return 0;
6236}
6237DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6238#endif /* CONFIG_DEBUG_FS */
6239
6240static int __init regulator_init(void)
6241{
6242	int ret;
6243
6244	ret = class_register(&regulator_class);
6245
 
6246	debugfs_root = debugfs_create_dir("regulator", NULL);
6247	if (IS_ERR(debugfs_root))
6248		pr_debug("regulator: Failed to create debugfs directory\n");
 
 
 
6249
6250#ifdef CONFIG_DEBUG_FS
6251	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6252			    &supply_map_fops);
6253
6254	debugfs_create_file("regulator_summary", 0444, debugfs_root,
6255			    NULL, &regulator_summary_fops);
6256#endif
6257	regulator_dummy_init();
6258
6259	regulator_coupler_register(&generic_regulator_coupler);
6260
6261	return ret;
6262}
6263
6264/* init early to allow our consumers to complete system booting */
6265core_initcall(regulator_init);
6266
6267static int regulator_late_cleanup(struct device *dev, void *data)
6268{
6269	struct regulator_dev *rdev = dev_to_rdev(dev);
6270	struct regulation_constraints *c = rdev->constraints;
6271	int ret;
 
6272
6273	if (c && c->always_on)
6274		return 0;
6275
6276	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6277		return 0;
 
 
 
 
 
6278
6279	regulator_lock(rdev);
6280
6281	if (rdev->use_count)
6282		goto unlock;
6283
6284	/* If reading the status failed, assume that it's off. */
6285	if (_regulator_is_enabled(rdev) <= 0)
6286		goto unlock;
6287
6288	if (have_full_constraints()) {
6289		/* We log since this may kill the system if it goes
6290		 * wrong.
6291		 */
6292		rdev_info(rdev, "disabling\n");
6293		ret = _regulator_do_disable(rdev);
6294		if (ret != 0)
6295			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6296	} else {
6297		/* The intention is that in future we will
6298		 * assume that full constraints are provided
6299		 * so warn even if we aren't going to do
6300		 * anything here.
6301		 */
6302		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6303	}
6304
6305unlock:
6306	regulator_unlock(rdev);
6307
6308	return 0;
6309}
 
 
 
6310
6311static bool regulator_ignore_unused;
6312static int __init regulator_ignore_unused_setup(char *__unused)
6313{
6314	regulator_ignore_unused = true;
6315	return 1;
6316}
6317__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6318
6319static void regulator_init_complete_work_function(struct work_struct *work)
6320{
6321	/*
6322	 * Regulators may had failed to resolve their input supplies
6323	 * when were registered, either because the input supply was
6324	 * not registered yet or because its parent device was not
6325	 * bound yet. So attempt to resolve the input supplies for
6326	 * pending regulators before trying to disable unused ones.
6327	 */
6328	class_for_each_device(&regulator_class, NULL, NULL,
6329			      regulator_register_resolve_supply);
 
 
 
 
 
6330
6331	/*
6332	 * For debugging purposes, it may be useful to prevent unused
6333	 * regulators from being disabled.
6334	 */
6335	if (regulator_ignore_unused) {
6336		pr_warn("regulator: Not disabling unused regulators\n");
6337		return;
6338	}
6339
6340	/* If we have a full configuration then disable any regulators
6341	 * we have permission to change the status for and which are
6342	 * not in use or always_on.  This is effectively the default
6343	 * for DT and ACPI as they have full constraints.
6344	 */
6345	class_for_each_device(&regulator_class, NULL, NULL,
6346			      regulator_late_cleanup);
6347}
6348
6349static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6350			    regulator_init_complete_work_function);
6351
6352static int __init regulator_init_complete(void)
6353{
6354	/*
6355	 * Since DT doesn't provide an idiomatic mechanism for
6356	 * enabling full constraints and since it's much more natural
6357	 * with DT to provide them just assume that a DT enabled
6358	 * system has full constraints.
6359	 */
6360	if (of_have_populated_dt())
6361		has_full_constraints = true;
6362
6363	/*
6364	 * We punt completion for an arbitrary amount of time since
6365	 * systems like distros will load many drivers from userspace
6366	 * so consumers might not always be ready yet, this is
6367	 * particularly an issue with laptops where this might bounce
6368	 * the display off then on.  Ideally we'd get a notification
6369	 * from userspace when this happens but we don't so just wait
6370	 * a bit and hope we waited long enough.  It'd be better if
6371	 * we'd only do this on systems that need it, and a kernel
6372	 * command line option might be useful.
6373	 */
6374	schedule_delayed_work(&regulator_init_complete_work,
6375			      msecs_to_jiffies(30000));
6376
6377	return 0;
6378}
6379late_initcall_sync(regulator_init_complete);