Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
 
 
 
  28#include <linux/regulator/consumer.h>
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/regulator.h>
  34
  35#include "dummy.h"
  36
  37#define rdev_crit(rdev, fmt, ...)					\
  38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  39#define rdev_err(rdev, fmt, ...)					\
  40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_warn(rdev, fmt, ...)					\
  42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_info(rdev, fmt, ...)					\
  44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_dbg(rdev, fmt, ...)					\
  46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47
  48static DEFINE_MUTEX(regulator_list_mutex);
  49static LIST_HEAD(regulator_list);
  50static LIST_HEAD(regulator_map_list);
  51static bool has_full_constraints;
  52static bool board_wants_dummy_regulator;
  53
  54#ifdef CONFIG_DEBUG_FS
  55static struct dentry *debugfs_root;
  56#endif
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
 
  78	int uA_load;
  79	int min_uV;
  80	int max_uV;
  81	char *supply_name;
  82	struct device_attribute dev_attr;
  83	struct regulator_dev *rdev;
  84#ifdef CONFIG_DEBUG_FS
  85	struct dentry *debugfs;
  86#endif
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95				  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97				     int min_uV, int max_uV);
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99					  struct device *dev,
 100					  const char *supply_name);
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104	if (rdev->constraints && rdev->constraints->name)
 105		return rdev->constraints->name;
 106	else if (rdev->desc->name)
 107		return rdev->desc->name;
 108	else
 109		return "";
 110}
 111
 112/* gets the regulator for a given consumer device */
 113static struct regulator *get_device_regulator(struct device *dev)
 114{
 115	struct regulator *regulator = NULL;
 116	struct regulator_dev *rdev;
 117
 118	mutex_lock(&regulator_list_mutex);
 119	list_for_each_entry(rdev, &regulator_list, list) {
 120		mutex_lock(&rdev->mutex);
 121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 122			if (regulator->dev == dev) {
 123				mutex_unlock(&rdev->mutex);
 124				mutex_unlock(&regulator_list_mutex);
 125				return regulator;
 126			}
 127		}
 128		mutex_unlock(&rdev->mutex);
 129	}
 130	mutex_unlock(&regulator_list_mutex);
 131	return NULL;
 132}
 133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134/* Platform voltage constraint check */
 135static int regulator_check_voltage(struct regulator_dev *rdev,
 136				   int *min_uV, int *max_uV)
 137{
 138	BUG_ON(*min_uV > *max_uV);
 139
 140	if (!rdev->constraints) {
 141		rdev_err(rdev, "no constraints\n");
 142		return -ENODEV;
 143	}
 144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 145		rdev_err(rdev, "operation not allowed\n");
 146		return -EPERM;
 147	}
 148
 149	if (*max_uV > rdev->constraints->max_uV)
 150		*max_uV = rdev->constraints->max_uV;
 151	if (*min_uV < rdev->constraints->min_uV)
 152		*min_uV = rdev->constraints->min_uV;
 153
 154	if (*min_uV > *max_uV) {
 155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 156			 *min_uV, *max_uV);
 157		return -EINVAL;
 158	}
 159
 160	return 0;
 161}
 162
 163/* Make sure we select a voltage that suits the needs of all
 164 * regulator consumers
 165 */
 166static int regulator_check_consumers(struct regulator_dev *rdev,
 167				     int *min_uV, int *max_uV)
 168{
 169	struct regulator *regulator;
 170
 171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 172		/*
 173		 * Assume consumers that didn't say anything are OK
 174		 * with anything in the constraint range.
 175		 */
 176		if (!regulator->min_uV && !regulator->max_uV)
 177			continue;
 178
 179		if (*max_uV > regulator->max_uV)
 180			*max_uV = regulator->max_uV;
 181		if (*min_uV < regulator->min_uV)
 182			*min_uV = regulator->min_uV;
 183	}
 184
 185	if (*min_uV > *max_uV)
 186		return -EINVAL;
 187
 188	return 0;
 189}
 190
 191/* current constraint check */
 192static int regulator_check_current_limit(struct regulator_dev *rdev,
 193					int *min_uA, int *max_uA)
 194{
 195	BUG_ON(*min_uA > *max_uA);
 196
 197	if (!rdev->constraints) {
 198		rdev_err(rdev, "no constraints\n");
 199		return -ENODEV;
 200	}
 201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 202		rdev_err(rdev, "operation not allowed\n");
 203		return -EPERM;
 204	}
 205
 206	if (*max_uA > rdev->constraints->max_uA)
 207		*max_uA = rdev->constraints->max_uA;
 208	if (*min_uA < rdev->constraints->min_uA)
 209		*min_uA = rdev->constraints->min_uA;
 210
 211	if (*min_uA > *max_uA) {
 212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 213			 *min_uA, *max_uA);
 214		return -EINVAL;
 215	}
 216
 217	return 0;
 218}
 219
 220/* operating mode constraint check */
 221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 222{
 223	switch (*mode) {
 224	case REGULATOR_MODE_FAST:
 225	case REGULATOR_MODE_NORMAL:
 226	case REGULATOR_MODE_IDLE:
 227	case REGULATOR_MODE_STANDBY:
 228		break;
 229	default:
 230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 231		return -EINVAL;
 232	}
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	/* The modes are bitmasks, the most power hungry modes having
 244	 * the lowest values. If the requested mode isn't supported
 245	 * try higher modes. */
 246	while (*mode) {
 247		if (rdev->constraints->valid_modes_mask & *mode)
 248			return 0;
 249		*mode /= 2;
 250	}
 251
 252	return -EINVAL;
 253}
 254
 255/* dynamic regulator mode switching constraint check */
 256static int regulator_check_drms(struct regulator_dev *rdev)
 257{
 258	if (!rdev->constraints) {
 259		rdev_err(rdev, "no constraints\n");
 260		return -ENODEV;
 261	}
 262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 263		rdev_err(rdev, "operation not allowed\n");
 264		return -EPERM;
 265	}
 266	return 0;
 267}
 268
 269static ssize_t device_requested_uA_show(struct device *dev,
 270			     struct device_attribute *attr, char *buf)
 271{
 272	struct regulator *regulator;
 273
 274	regulator = get_device_regulator(dev);
 275	if (regulator == NULL)
 276		return 0;
 277
 278	return sprintf(buf, "%d\n", regulator->uA_load);
 279}
 280
 281static ssize_t regulator_uV_show(struct device *dev,
 282				struct device_attribute *attr, char *buf)
 283{
 284	struct regulator_dev *rdev = dev_get_drvdata(dev);
 285	ssize_t ret;
 286
 287	mutex_lock(&rdev->mutex);
 288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 289	mutex_unlock(&rdev->mutex);
 290
 291	return ret;
 292}
 293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 294
 295static ssize_t regulator_uA_show(struct device *dev,
 296				struct device_attribute *attr, char *buf)
 297{
 298	struct regulator_dev *rdev = dev_get_drvdata(dev);
 299
 300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 301}
 302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 303
 304static ssize_t regulator_name_show(struct device *dev,
 305			     struct device_attribute *attr, char *buf)
 306{
 307	struct regulator_dev *rdev = dev_get_drvdata(dev);
 308
 309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 310}
 311
 312static ssize_t regulator_print_opmode(char *buf, int mode)
 313{
 314	switch (mode) {
 315	case REGULATOR_MODE_FAST:
 316		return sprintf(buf, "fast\n");
 317	case REGULATOR_MODE_NORMAL:
 318		return sprintf(buf, "normal\n");
 319	case REGULATOR_MODE_IDLE:
 320		return sprintf(buf, "idle\n");
 321	case REGULATOR_MODE_STANDBY:
 322		return sprintf(buf, "standby\n");
 323	}
 324	return sprintf(buf, "unknown\n");
 325}
 326
 327static ssize_t regulator_opmode_show(struct device *dev,
 328				    struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 333}
 334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 335
 336static ssize_t regulator_print_state(char *buf, int state)
 337{
 338	if (state > 0)
 339		return sprintf(buf, "enabled\n");
 340	else if (state == 0)
 341		return sprintf(buf, "disabled\n");
 342	else
 343		return sprintf(buf, "unknown\n");
 344}
 345
 346static ssize_t regulator_state_show(struct device *dev,
 347				   struct device_attribute *attr, char *buf)
 348{
 349	struct regulator_dev *rdev = dev_get_drvdata(dev);
 350	ssize_t ret;
 351
 352	mutex_lock(&rdev->mutex);
 353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 354	mutex_unlock(&rdev->mutex);
 355
 356	return ret;
 357}
 358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 359
 360static ssize_t regulator_status_show(struct device *dev,
 361				   struct device_attribute *attr, char *buf)
 362{
 363	struct regulator_dev *rdev = dev_get_drvdata(dev);
 364	int status;
 365	char *label;
 366
 367	status = rdev->desc->ops->get_status(rdev);
 368	if (status < 0)
 369		return status;
 370
 371	switch (status) {
 372	case REGULATOR_STATUS_OFF:
 373		label = "off";
 374		break;
 375	case REGULATOR_STATUS_ON:
 376		label = "on";
 377		break;
 378	case REGULATOR_STATUS_ERROR:
 379		label = "error";
 380		break;
 381	case REGULATOR_STATUS_FAST:
 382		label = "fast";
 383		break;
 384	case REGULATOR_STATUS_NORMAL:
 385		label = "normal";
 386		break;
 387	case REGULATOR_STATUS_IDLE:
 388		label = "idle";
 389		break;
 390	case REGULATOR_STATUS_STANDBY:
 391		label = "standby";
 392		break;
 393	default:
 394		return -ERANGE;
 395	}
 396
 397	return sprintf(buf, "%s\n", label);
 398}
 399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 400
 401static ssize_t regulator_min_uA_show(struct device *dev,
 402				    struct device_attribute *attr, char *buf)
 403{
 404	struct regulator_dev *rdev = dev_get_drvdata(dev);
 405
 406	if (!rdev->constraints)
 407		return sprintf(buf, "constraint not defined\n");
 408
 409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 410}
 411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 412
 413static ssize_t regulator_max_uA_show(struct device *dev,
 414				    struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417
 418	if (!rdev->constraints)
 419		return sprintf(buf, "constraint not defined\n");
 420
 421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 422}
 423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 424
 425static ssize_t regulator_min_uV_show(struct device *dev,
 426				    struct device_attribute *attr, char *buf)
 427{
 428	struct regulator_dev *rdev = dev_get_drvdata(dev);
 429
 430	if (!rdev->constraints)
 431		return sprintf(buf, "constraint not defined\n");
 432
 433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 434}
 435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 436
 437static ssize_t regulator_max_uV_show(struct device *dev,
 438				    struct device_attribute *attr, char *buf)
 439{
 440	struct regulator_dev *rdev = dev_get_drvdata(dev);
 441
 442	if (!rdev->constraints)
 443		return sprintf(buf, "constraint not defined\n");
 444
 445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 446}
 447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 448
 449static ssize_t regulator_total_uA_show(struct device *dev,
 450				      struct device_attribute *attr, char *buf)
 451{
 452	struct regulator_dev *rdev = dev_get_drvdata(dev);
 453	struct regulator *regulator;
 454	int uA = 0;
 455
 456	mutex_lock(&rdev->mutex);
 457	list_for_each_entry(regulator, &rdev->consumer_list, list)
 458		uA += regulator->uA_load;
 459	mutex_unlock(&rdev->mutex);
 460	return sprintf(buf, "%d\n", uA);
 461}
 462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 463
 464static ssize_t regulator_num_users_show(struct device *dev,
 465				      struct device_attribute *attr, char *buf)
 466{
 467	struct regulator_dev *rdev = dev_get_drvdata(dev);
 468	return sprintf(buf, "%d\n", rdev->use_count);
 469}
 470
 471static ssize_t regulator_type_show(struct device *dev,
 472				  struct device_attribute *attr, char *buf)
 473{
 474	struct regulator_dev *rdev = dev_get_drvdata(dev);
 475
 476	switch (rdev->desc->type) {
 477	case REGULATOR_VOLTAGE:
 478		return sprintf(buf, "voltage\n");
 479	case REGULATOR_CURRENT:
 480		return sprintf(buf, "current\n");
 481	}
 482	return sprintf(buf, "unknown\n");
 483}
 484
 485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 486				struct device_attribute *attr, char *buf)
 487{
 488	struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 491}
 492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 493		regulator_suspend_mem_uV_show, NULL);
 494
 495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 496				struct device_attribute *attr, char *buf)
 497{
 498	struct regulator_dev *rdev = dev_get_drvdata(dev);
 499
 500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 501}
 502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 503		regulator_suspend_disk_uV_show, NULL);
 504
 505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 506				struct device_attribute *attr, char *buf)
 507{
 508	struct regulator_dev *rdev = dev_get_drvdata(dev);
 509
 510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 511}
 512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 513		regulator_suspend_standby_uV_show, NULL);
 514
 515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 516				struct device_attribute *attr, char *buf)
 517{
 518	struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520	return regulator_print_opmode(buf,
 521		rdev->constraints->state_mem.mode);
 522}
 523static DEVICE_ATTR(suspend_mem_mode, 0444,
 524		regulator_suspend_mem_mode_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return regulator_print_opmode(buf,
 532		rdev->constraints->state_disk.mode);
 533}
 534static DEVICE_ATTR(suspend_disk_mode, 0444,
 535		regulator_suspend_disk_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 538				struct device_attribute *attr, char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542	return regulator_print_opmode(buf,
 543		rdev->constraints->state_standby.mode);
 544}
 545static DEVICE_ATTR(suspend_standby_mode, 0444,
 546		regulator_suspend_standby_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 549				   struct device_attribute *attr, char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	return regulator_print_state(buf,
 554			rdev->constraints->state_mem.enabled);
 555}
 556static DEVICE_ATTR(suspend_mem_state, 0444,
 557		regulator_suspend_mem_state_show, NULL);
 558
 559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 560				   struct device_attribute *attr, char *buf)
 561{
 562	struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564	return regulator_print_state(buf,
 565			rdev->constraints->state_disk.enabled);
 566}
 567static DEVICE_ATTR(suspend_disk_state, 0444,
 568		regulator_suspend_disk_state_show, NULL);
 569
 570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 571				   struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_state(buf,
 576			rdev->constraints->state_standby.enabled);
 577}
 578static DEVICE_ATTR(suspend_standby_state, 0444,
 579		regulator_suspend_standby_state_show, NULL);
 580
 581
 582/*
 583 * These are the only attributes are present for all regulators.
 584 * Other attributes are a function of regulator functionality.
 585 */
 586static struct device_attribute regulator_dev_attrs[] = {
 587	__ATTR(name, 0444, regulator_name_show, NULL),
 588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 589	__ATTR(type, 0444, regulator_type_show, NULL),
 590	__ATTR_NULL,
 591};
 592
 593static void regulator_dev_release(struct device *dev)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596	kfree(rdev);
 597}
 598
 599static struct class regulator_class = {
 600	.name = "regulator",
 601	.dev_release = regulator_dev_release,
 602	.dev_attrs = regulator_dev_attrs,
 603};
 604
 605/* Calculate the new optimum regulator operating mode based on the new total
 606 * consumer load. All locks held by caller */
 607static void drms_uA_update(struct regulator_dev *rdev)
 608{
 609	struct regulator *sibling;
 610	int current_uA = 0, output_uV, input_uV, err;
 611	unsigned int mode;
 612
 613	err = regulator_check_drms(rdev);
 614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 615	    (!rdev->desc->ops->get_voltage &&
 616	     !rdev->desc->ops->get_voltage_sel) ||
 617	    !rdev->desc->ops->set_mode)
 618		return;
 619
 620	/* get output voltage */
 621	output_uV = _regulator_get_voltage(rdev);
 622	if (output_uV <= 0)
 623		return;
 624
 625	/* get input voltage */
 626	input_uV = 0;
 627	if (rdev->supply)
 628		input_uV = _regulator_get_voltage(rdev);
 629	if (input_uV <= 0)
 630		input_uV = rdev->constraints->input_uV;
 631	if (input_uV <= 0)
 632		return;
 633
 634	/* calc total requested load */
 635	list_for_each_entry(sibling, &rdev->consumer_list, list)
 636		current_uA += sibling->uA_load;
 637
 638	/* now get the optimum mode for our new total regulator load */
 639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 640						  output_uV, current_uA);
 641
 642	/* check the new mode is allowed */
 643	err = regulator_mode_constrain(rdev, &mode);
 644	if (err == 0)
 645		rdev->desc->ops->set_mode(rdev, mode);
 646}
 647
 648static int suspend_set_state(struct regulator_dev *rdev,
 649	struct regulator_state *rstate)
 650{
 651	int ret = 0;
 652	bool can_set_state;
 653
 654	can_set_state = rdev->desc->ops->set_suspend_enable &&
 655		rdev->desc->ops->set_suspend_disable;
 656
 657	/* If we have no suspend mode configration don't set anything;
 658	 * only warn if the driver actually makes the suspend mode
 659	 * configurable.
 660	 */
 661	if (!rstate->enabled && !rstate->disabled) {
 662		if (can_set_state)
 
 663			rdev_warn(rdev, "No configuration\n");
 664		return 0;
 665	}
 666
 667	if (rstate->enabled && rstate->disabled) {
 668		rdev_err(rdev, "invalid configuration\n");
 669		return -EINVAL;
 670	}
 671
 672	if (!can_set_state) {
 673		rdev_err(rdev, "no way to set suspend state\n");
 674		return -EINVAL;
 675	}
 676
 677	if (rstate->enabled)
 678		ret = rdev->desc->ops->set_suspend_enable(rdev);
 679	else
 680		ret = rdev->desc->ops->set_suspend_disable(rdev);
 
 
 
 681	if (ret < 0) {
 682		rdev_err(rdev, "failed to enabled/disable\n");
 683		return ret;
 684	}
 685
 686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 688		if (ret < 0) {
 689			rdev_err(rdev, "failed to set voltage\n");
 690			return ret;
 691		}
 692	}
 693
 694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 696		if (ret < 0) {
 697			rdev_err(rdev, "failed to set mode\n");
 698			return ret;
 699		}
 700	}
 701	return ret;
 702}
 703
 704/* locks held by caller */
 705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 706{
 707	if (!rdev->constraints)
 708		return -EINVAL;
 709
 710	switch (state) {
 711	case PM_SUSPEND_STANDBY:
 712		return suspend_set_state(rdev,
 713			&rdev->constraints->state_standby);
 714	case PM_SUSPEND_MEM:
 715		return suspend_set_state(rdev,
 716			&rdev->constraints->state_mem);
 717	case PM_SUSPEND_MAX:
 718		return suspend_set_state(rdev,
 719			&rdev->constraints->state_disk);
 720	default:
 721		return -EINVAL;
 722	}
 723}
 724
 725static void print_constraints(struct regulator_dev *rdev)
 726{
 727	struct regulation_constraints *constraints = rdev->constraints;
 728	char buf[80] = "";
 729	int count = 0;
 730	int ret;
 731
 732	if (constraints->min_uV && constraints->max_uV) {
 733		if (constraints->min_uV == constraints->max_uV)
 734			count += sprintf(buf + count, "%d mV ",
 735					 constraints->min_uV / 1000);
 736		else
 737			count += sprintf(buf + count, "%d <--> %d mV ",
 738					 constraints->min_uV / 1000,
 739					 constraints->max_uV / 1000);
 740	}
 741
 742	if (!constraints->min_uV ||
 743	    constraints->min_uV != constraints->max_uV) {
 744		ret = _regulator_get_voltage(rdev);
 745		if (ret > 0)
 746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 747	}
 748
 749	if (constraints->uV_offset)
 750		count += sprintf(buf, "%dmV offset ",
 751				 constraints->uV_offset / 1000);
 752
 753	if (constraints->min_uA && constraints->max_uA) {
 754		if (constraints->min_uA == constraints->max_uA)
 755			count += sprintf(buf + count, "%d mA ",
 756					 constraints->min_uA / 1000);
 757		else
 758			count += sprintf(buf + count, "%d <--> %d mA ",
 759					 constraints->min_uA / 1000,
 760					 constraints->max_uA / 1000);
 761	}
 762
 763	if (!constraints->min_uA ||
 764	    constraints->min_uA != constraints->max_uA) {
 765		ret = _regulator_get_current_limit(rdev);
 766		if (ret > 0)
 767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 768	}
 769
 770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 771		count += sprintf(buf + count, "fast ");
 772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 773		count += sprintf(buf + count, "normal ");
 774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 775		count += sprintf(buf + count, "idle ");
 776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 777		count += sprintf(buf + count, "standby");
 778
 779	rdev_info(rdev, "%s\n", buf);
 
 
 
 
 
 780}
 781
 782static int machine_constraints_voltage(struct regulator_dev *rdev,
 783	struct regulation_constraints *constraints)
 784{
 785	struct regulator_ops *ops = rdev->desc->ops;
 786	int ret;
 787
 788	/* do we need to apply the constraint voltage */
 789	if (rdev->constraints->apply_uV &&
 790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 791		ret = _regulator_do_set_voltage(rdev,
 792						rdev->constraints->min_uV,
 793						rdev->constraints->max_uV);
 794		if (ret < 0) {
 795			rdev_err(rdev, "failed to apply %duV constraint\n",
 796				 rdev->constraints->min_uV);
 797			return ret;
 798		}
 799	}
 800
 801	/* constrain machine-level voltage specs to fit
 802	 * the actual range supported by this regulator.
 803	 */
 804	if (ops->list_voltage && rdev->desc->n_voltages) {
 805		int	count = rdev->desc->n_voltages;
 806		int	i;
 807		int	min_uV = INT_MAX;
 808		int	max_uV = INT_MIN;
 809		int	cmin = constraints->min_uV;
 810		int	cmax = constraints->max_uV;
 811
 812		/* it's safe to autoconfigure fixed-voltage supplies
 813		   and the constraints are used by list_voltage. */
 814		if (count == 1 && !cmin) {
 815			cmin = 1;
 816			cmax = INT_MAX;
 817			constraints->min_uV = cmin;
 818			constraints->max_uV = cmax;
 819		}
 820
 821		/* voltage constraints are optional */
 822		if ((cmin == 0) && (cmax == 0))
 823			return 0;
 824
 825		/* else require explicit machine-level constraints */
 826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 827			rdev_err(rdev, "invalid voltage constraints\n");
 828			return -EINVAL;
 829		}
 830
 831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 832		for (i = 0; i < count; i++) {
 833			int	value;
 834
 835			value = ops->list_voltage(rdev, i);
 836			if (value <= 0)
 837				continue;
 838
 839			/* maybe adjust [min_uV..max_uV] */
 840			if (value >= cmin && value < min_uV)
 841				min_uV = value;
 842			if (value <= cmax && value > max_uV)
 843				max_uV = value;
 844		}
 845
 846		/* final: [min_uV..max_uV] valid iff constraints valid */
 847		if (max_uV < min_uV) {
 848			rdev_err(rdev, "unsupportable voltage constraints\n");
 849			return -EINVAL;
 850		}
 851
 852		/* use regulator's subset of machine constraints */
 853		if (constraints->min_uV < min_uV) {
 854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 855				 constraints->min_uV, min_uV);
 856			constraints->min_uV = min_uV;
 857		}
 858		if (constraints->max_uV > max_uV) {
 859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 860				 constraints->max_uV, max_uV);
 861			constraints->max_uV = max_uV;
 862		}
 863	}
 864
 865	return 0;
 866}
 867
 868/**
 869 * set_machine_constraints - sets regulator constraints
 870 * @rdev: regulator source
 871 * @constraints: constraints to apply
 872 *
 873 * Allows platform initialisation code to define and constrain
 874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 875 * Constraints *must* be set by platform code in order for some
 876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 877 * set_mode.
 878 */
 879static int set_machine_constraints(struct regulator_dev *rdev,
 880	const struct regulation_constraints *constraints)
 881{
 882	int ret = 0;
 883	struct regulator_ops *ops = rdev->desc->ops;
 884
 885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 886				    GFP_KERNEL);
 
 
 
 
 887	if (!rdev->constraints)
 888		return -ENOMEM;
 889
 890	ret = machine_constraints_voltage(rdev, rdev->constraints);
 891	if (ret != 0)
 892		goto out;
 893
 894	/* do we need to setup our suspend state */
 895	if (constraints->initial_state) {
 896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 897		if (ret < 0) {
 898			rdev_err(rdev, "failed to set suspend state\n");
 899			goto out;
 900		}
 901	}
 902
 903	if (constraints->initial_mode) {
 904		if (!ops->set_mode) {
 905			rdev_err(rdev, "no set_mode operation\n");
 906			ret = -EINVAL;
 907			goto out;
 908		}
 909
 910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 911		if (ret < 0) {
 912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 913			goto out;
 914		}
 915	}
 916
 917	/* If the constraints say the regulator should be on at this point
 918	 * and we have control then make sure it is enabled.
 919	 */
 920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 921	    ops->enable) {
 922		ret = ops->enable(rdev);
 923		if (ret < 0) {
 924			rdev_err(rdev, "failed to enable\n");
 925			goto out;
 926		}
 927	}
 928
 929	print_constraints(rdev);
 930	return 0;
 931out:
 932	kfree(rdev->constraints);
 933	rdev->constraints = NULL;
 934	return ret;
 935}
 936
 937/**
 938 * set_supply - set regulator supply regulator
 939 * @rdev: regulator name
 940 * @supply_rdev: supply regulator name
 941 *
 942 * Called by platform initialisation code to set the supply regulator for this
 943 * regulator. This ensures that a regulators supply will also be enabled by the
 944 * core if it's child is enabled.
 945 */
 946static int set_supply(struct regulator_dev *rdev,
 947		      struct regulator_dev *supply_rdev)
 948{
 949	int err;
 950
 951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 952
 953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 954	if (IS_ERR(rdev->supply)) {
 955		err = PTR_ERR(rdev->supply);
 956		rdev->supply = NULL;
 957		return err;
 958	}
 959
 960	return 0;
 961}
 962
 963/**
 964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 965 * @rdev:         regulator source
 966 * @consumer_dev: device the supply applies to
 967 * @consumer_dev_name: dev_name() string for device supply applies to
 968 * @supply:       symbolic name for supply
 969 *
 970 * Allows platform initialisation code to map physical regulator
 971 * sources to symbolic names for supplies for use by devices.  Devices
 972 * should use these symbolic names to request regulators, avoiding the
 973 * need to provide board-specific regulator names as platform data.
 974 *
 975 * Only one of consumer_dev and consumer_dev_name may be specified.
 976 */
 977static int set_consumer_device_supply(struct regulator_dev *rdev,
 978	struct device *consumer_dev, const char *consumer_dev_name,
 979	const char *supply)
 980{
 981	struct regulator_map *node;
 982	int has_dev;
 983
 984	if (consumer_dev && consumer_dev_name)
 985		return -EINVAL;
 986
 987	if (!consumer_dev_name && consumer_dev)
 988		consumer_dev_name = dev_name(consumer_dev);
 989
 990	if (supply == NULL)
 991		return -EINVAL;
 992
 993	if (consumer_dev_name != NULL)
 994		has_dev = 1;
 995	else
 996		has_dev = 0;
 997
 998	list_for_each_entry(node, &regulator_map_list, list) {
 999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
 
1014		return -EBUSY;
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
1061		return NULL;
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
1125	}
1126#endif
 
 
 
 
 
 
 
 
1127
1128	mutex_unlock(&rdev->mutex);
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
1163	}
1164
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
1169
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
1179		}
1180	}
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
1185	}
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188	if (!devname)
1189		devname = "deviceless";
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
1197		rdev = dummy_regulator_rdev;
1198		goto found;
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
1218
1219	regulator = create_regulator(rdev, dev, id);
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
1222		module_put(rdev->owner);
 
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
1233			rdev->use_count = 0;
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1295 */
1296void regulator_put(struct regulator *regulator)
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
1304	rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
1322
1323	module_put(rdev->owner);
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
1329{
1330	if (!rdev->constraints)
 
 
1331		return 0;
 
 
 
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	else
1336		return 0;
1337}
 
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342	int ret, delay;
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
1354				return -EPERM;
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
1398
1399	return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
1417
 
 
 
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438	int ret = 0;
1439
1440	if (WARN(rdev->use_count <= 0,
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
1456				return ret;
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
 
 
 
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
1523	}
1524
1525	return ret;
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
 
 
 
1580	mutex_lock(&regulator->rdev->mutex);
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
1619
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621		return -EINVAL;
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
1650	int i, voltages, ret;
1651
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
 
1672	unsigned int selector;
 
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
 
 
 
 
 
 
 
 
 
 
 
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
1691
1692		selector = 0;
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
1705			}
1706		}
 
 
 
1707
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
1722		}
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
 
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747
1748	return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
1773
1774	mutex_lock(&rdev->mutex);
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
1782
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
1805	return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
 
 
 
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
2149
 
 
 
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
2186	}
2187	ret = mode;
2188out:
2189	mutex_unlock(&rdev->mutex);
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
 
 
 
 
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
 
 
 
 
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
 
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
2544
2545	return status;
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
2556	}
2557
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
 
 
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
2580	struct regulator_dev *rdev;
 
2581	int ret, i;
 
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
2585
 
 
 
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
2610	}
2611
 
 
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
2615
2616	mutex_lock(&regulator_list_mutex);
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
 
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
 
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
 
 
 
2648	if (ret < 0)
2649		goto scrub;
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
2655
2656	if (init_data->supply_regulator) {
 
 
 
 
 
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
2672			goto scrub;
2673		}
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
 
 
 
 
 
 
 
2678	}
2679
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
 
 
 
 
2690		}
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
2694
2695	rdev_init_debugfs(rdev);
2696out:
2697	mutex_unlock(&regulator_list_mutex);
2698	return rdev;
2699
2700unset_supplies:
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
 
 
2704	kfree(rdev->constraints);
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
 
 
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
 
2739	mutex_unlock(&regulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
2769		}
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
2923
2924	regulator_dummy_init();
2925
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
2939	mutex_lock(&regulator_list_mutex);
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
2951
2952		mutex_lock(&rdev->mutex);
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
v3.5.6
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
 
 
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/of.h>
  27#include <linux/regmap.h>
  28#include <linux/regulator/of_regulator.h>
  29#include <linux/regulator/consumer.h>
  30#include <linux/regulator/driver.h>
  31#include <linux/regulator/machine.h>
  32#include <linux/module.h>
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/regulator.h>
  36
  37#include "dummy.h"
  38
  39#define rdev_crit(rdev, fmt, ...)					\
  40	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_err(rdev, fmt, ...)					\
  42	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_warn(rdev, fmt, ...)					\
  44	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_info(rdev, fmt, ...)					\
  46	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47#define rdev_dbg(rdev, fmt, ...)					\
  48	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  49
  50static DEFINE_MUTEX(regulator_list_mutex);
  51static LIST_HEAD(regulator_list);
  52static LIST_HEAD(regulator_map_list);
  53static bool has_full_constraints;
  54static bool board_wants_dummy_regulator;
  55
 
  56static struct dentry *debugfs_root;
 
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
  78	unsigned int always_on:1;
  79	int uA_load;
  80	int min_uV;
  81	int max_uV;
  82	char *supply_name;
  83	struct device_attribute dev_attr;
  84	struct regulator_dev *rdev;
 
  85	struct dentry *debugfs;
 
  86};
  87
  88static int _regulator_is_enabled(struct regulator_dev *rdev);
  89static int _regulator_disable(struct regulator_dev *rdev);
  90static int _regulator_get_voltage(struct regulator_dev *rdev);
  91static int _regulator_get_current_limit(struct regulator_dev *rdev);
  92static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  93static void _notifier_call_chain(struct regulator_dev *rdev,
  94				  unsigned long event, void *data);
  95static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  96				     int min_uV, int max_uV);
  97static struct regulator *create_regulator(struct regulator_dev *rdev,
  98					  struct device *dev,
  99					  const char *supply_name);
 100
 101static const char *rdev_get_name(struct regulator_dev *rdev)
 102{
 103	if (rdev->constraints && rdev->constraints->name)
 104		return rdev->constraints->name;
 105	else if (rdev->desc->name)
 106		return rdev->desc->name;
 107	else
 108		return "";
 109}
 110
 111/* gets the regulator for a given consumer device */
 112static struct regulator *get_device_regulator(struct device *dev)
 113{
 114	struct regulator *regulator = NULL;
 115	struct regulator_dev *rdev;
 116
 117	mutex_lock(&regulator_list_mutex);
 118	list_for_each_entry(rdev, &regulator_list, list) {
 119		mutex_lock(&rdev->mutex);
 120		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 121			if (regulator->dev == dev) {
 122				mutex_unlock(&rdev->mutex);
 123				mutex_unlock(&regulator_list_mutex);
 124				return regulator;
 125			}
 126		}
 127		mutex_unlock(&rdev->mutex);
 128	}
 129	mutex_unlock(&regulator_list_mutex);
 130	return NULL;
 131}
 132
 133/**
 134 * of_get_regulator - get a regulator device node based on supply name
 135 * @dev: Device pointer for the consumer (of regulator) device
 136 * @supply: regulator supply name
 137 *
 138 * Extract the regulator device node corresponding to the supply name.
 139 * retruns the device node corresponding to the regulator if found, else
 140 * returns NULL.
 141 */
 142static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 143{
 144	struct device_node *regnode = NULL;
 145	char prop_name[32]; /* 32 is max size of property name */
 146
 147	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 148
 149	snprintf(prop_name, 32, "%s-supply", supply);
 150	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 151
 152	if (!regnode) {
 153		dev_dbg(dev, "Looking up %s property in node %s failed",
 154				prop_name, dev->of_node->full_name);
 155		return NULL;
 156	}
 157	return regnode;
 158}
 159
 160static int _regulator_can_change_status(struct regulator_dev *rdev)
 161{
 162	if (!rdev->constraints)
 163		return 0;
 164
 165	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 166		return 1;
 167	else
 168		return 0;
 169}
 170
 171/* Platform voltage constraint check */
 172static int regulator_check_voltage(struct regulator_dev *rdev,
 173				   int *min_uV, int *max_uV)
 174{
 175	BUG_ON(*min_uV > *max_uV);
 176
 177	if (!rdev->constraints) {
 178		rdev_err(rdev, "no constraints\n");
 179		return -ENODEV;
 180	}
 181	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 182		rdev_err(rdev, "operation not allowed\n");
 183		return -EPERM;
 184	}
 185
 186	if (*max_uV > rdev->constraints->max_uV)
 187		*max_uV = rdev->constraints->max_uV;
 188	if (*min_uV < rdev->constraints->min_uV)
 189		*min_uV = rdev->constraints->min_uV;
 190
 191	if (*min_uV > *max_uV) {
 192		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 193			 *min_uV, *max_uV);
 194		return -EINVAL;
 195	}
 196
 197	return 0;
 198}
 199
 200/* Make sure we select a voltage that suits the needs of all
 201 * regulator consumers
 202 */
 203static int regulator_check_consumers(struct regulator_dev *rdev,
 204				     int *min_uV, int *max_uV)
 205{
 206	struct regulator *regulator;
 207
 208	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 209		/*
 210		 * Assume consumers that didn't say anything are OK
 211		 * with anything in the constraint range.
 212		 */
 213		if (!regulator->min_uV && !regulator->max_uV)
 214			continue;
 215
 216		if (*max_uV > regulator->max_uV)
 217			*max_uV = regulator->max_uV;
 218		if (*min_uV < regulator->min_uV)
 219			*min_uV = regulator->min_uV;
 220	}
 221
 222	if (*min_uV > *max_uV)
 223		return -EINVAL;
 224
 225	return 0;
 226}
 227
 228/* current constraint check */
 229static int regulator_check_current_limit(struct regulator_dev *rdev,
 230					int *min_uA, int *max_uA)
 231{
 232	BUG_ON(*min_uA > *max_uA);
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	if (*max_uA > rdev->constraints->max_uA)
 244		*max_uA = rdev->constraints->max_uA;
 245	if (*min_uA < rdev->constraints->min_uA)
 246		*min_uA = rdev->constraints->min_uA;
 247
 248	if (*min_uA > *max_uA) {
 249		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 250			 *min_uA, *max_uA);
 251		return -EINVAL;
 252	}
 253
 254	return 0;
 255}
 256
 257/* operating mode constraint check */
 258static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 259{
 260	switch (*mode) {
 261	case REGULATOR_MODE_FAST:
 262	case REGULATOR_MODE_NORMAL:
 263	case REGULATOR_MODE_IDLE:
 264	case REGULATOR_MODE_STANDBY:
 265		break;
 266	default:
 267		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 268		return -EINVAL;
 269	}
 270
 271	if (!rdev->constraints) {
 272		rdev_err(rdev, "no constraints\n");
 273		return -ENODEV;
 274	}
 275	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 276		rdev_err(rdev, "operation not allowed\n");
 277		return -EPERM;
 278	}
 279
 280	/* The modes are bitmasks, the most power hungry modes having
 281	 * the lowest values. If the requested mode isn't supported
 282	 * try higher modes. */
 283	while (*mode) {
 284		if (rdev->constraints->valid_modes_mask & *mode)
 285			return 0;
 286		*mode /= 2;
 287	}
 288
 289	return -EINVAL;
 290}
 291
 292/* dynamic regulator mode switching constraint check */
 293static int regulator_check_drms(struct regulator_dev *rdev)
 294{
 295	if (!rdev->constraints) {
 296		rdev_err(rdev, "no constraints\n");
 297		return -ENODEV;
 298	}
 299	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 300		rdev_err(rdev, "operation not allowed\n");
 301		return -EPERM;
 302	}
 303	return 0;
 304}
 305
 306static ssize_t device_requested_uA_show(struct device *dev,
 307			     struct device_attribute *attr, char *buf)
 308{
 309	struct regulator *regulator;
 310
 311	regulator = get_device_regulator(dev);
 312	if (regulator == NULL)
 313		return 0;
 314
 315	return sprintf(buf, "%d\n", regulator->uA_load);
 316}
 317
 318static ssize_t regulator_uV_show(struct device *dev,
 319				struct device_attribute *attr, char *buf)
 320{
 321	struct regulator_dev *rdev = dev_get_drvdata(dev);
 322	ssize_t ret;
 323
 324	mutex_lock(&rdev->mutex);
 325	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 326	mutex_unlock(&rdev->mutex);
 327
 328	return ret;
 329}
 330static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 331
 332static ssize_t regulator_uA_show(struct device *dev,
 333				struct device_attribute *attr, char *buf)
 334{
 335	struct regulator_dev *rdev = dev_get_drvdata(dev);
 336
 337	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 338}
 339static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 340
 341static ssize_t regulator_name_show(struct device *dev,
 342			     struct device_attribute *attr, char *buf)
 343{
 344	struct regulator_dev *rdev = dev_get_drvdata(dev);
 345
 346	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 347}
 348
 349static ssize_t regulator_print_opmode(char *buf, int mode)
 350{
 351	switch (mode) {
 352	case REGULATOR_MODE_FAST:
 353		return sprintf(buf, "fast\n");
 354	case REGULATOR_MODE_NORMAL:
 355		return sprintf(buf, "normal\n");
 356	case REGULATOR_MODE_IDLE:
 357		return sprintf(buf, "idle\n");
 358	case REGULATOR_MODE_STANDBY:
 359		return sprintf(buf, "standby\n");
 360	}
 361	return sprintf(buf, "unknown\n");
 362}
 363
 364static ssize_t regulator_opmode_show(struct device *dev,
 365				    struct device_attribute *attr, char *buf)
 366{
 367	struct regulator_dev *rdev = dev_get_drvdata(dev);
 368
 369	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 370}
 371static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 372
 373static ssize_t regulator_print_state(char *buf, int state)
 374{
 375	if (state > 0)
 376		return sprintf(buf, "enabled\n");
 377	else if (state == 0)
 378		return sprintf(buf, "disabled\n");
 379	else
 380		return sprintf(buf, "unknown\n");
 381}
 382
 383static ssize_t regulator_state_show(struct device *dev,
 384				   struct device_attribute *attr, char *buf)
 385{
 386	struct regulator_dev *rdev = dev_get_drvdata(dev);
 387	ssize_t ret;
 388
 389	mutex_lock(&rdev->mutex);
 390	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 391	mutex_unlock(&rdev->mutex);
 392
 393	return ret;
 394}
 395static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 396
 397static ssize_t regulator_status_show(struct device *dev,
 398				   struct device_attribute *attr, char *buf)
 399{
 400	struct regulator_dev *rdev = dev_get_drvdata(dev);
 401	int status;
 402	char *label;
 403
 404	status = rdev->desc->ops->get_status(rdev);
 405	if (status < 0)
 406		return status;
 407
 408	switch (status) {
 409	case REGULATOR_STATUS_OFF:
 410		label = "off";
 411		break;
 412	case REGULATOR_STATUS_ON:
 413		label = "on";
 414		break;
 415	case REGULATOR_STATUS_ERROR:
 416		label = "error";
 417		break;
 418	case REGULATOR_STATUS_FAST:
 419		label = "fast";
 420		break;
 421	case REGULATOR_STATUS_NORMAL:
 422		label = "normal";
 423		break;
 424	case REGULATOR_STATUS_IDLE:
 425		label = "idle";
 426		break;
 427	case REGULATOR_STATUS_STANDBY:
 428		label = "standby";
 429		break;
 430	default:
 431		return -ERANGE;
 432	}
 433
 434	return sprintf(buf, "%s\n", label);
 435}
 436static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 437
 438static ssize_t regulator_min_uA_show(struct device *dev,
 439				    struct device_attribute *attr, char *buf)
 440{
 441	struct regulator_dev *rdev = dev_get_drvdata(dev);
 442
 443	if (!rdev->constraints)
 444		return sprintf(buf, "constraint not defined\n");
 445
 446	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 447}
 448static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 449
 450static ssize_t regulator_max_uA_show(struct device *dev,
 451				    struct device_attribute *attr, char *buf)
 452{
 453	struct regulator_dev *rdev = dev_get_drvdata(dev);
 454
 455	if (!rdev->constraints)
 456		return sprintf(buf, "constraint not defined\n");
 457
 458	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 459}
 460static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 461
 462static ssize_t regulator_min_uV_show(struct device *dev,
 463				    struct device_attribute *attr, char *buf)
 464{
 465	struct regulator_dev *rdev = dev_get_drvdata(dev);
 466
 467	if (!rdev->constraints)
 468		return sprintf(buf, "constraint not defined\n");
 469
 470	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 471}
 472static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 473
 474static ssize_t regulator_max_uV_show(struct device *dev,
 475				    struct device_attribute *attr, char *buf)
 476{
 477	struct regulator_dev *rdev = dev_get_drvdata(dev);
 478
 479	if (!rdev->constraints)
 480		return sprintf(buf, "constraint not defined\n");
 481
 482	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 483}
 484static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 485
 486static ssize_t regulator_total_uA_show(struct device *dev,
 487				      struct device_attribute *attr, char *buf)
 488{
 489	struct regulator_dev *rdev = dev_get_drvdata(dev);
 490	struct regulator *regulator;
 491	int uA = 0;
 492
 493	mutex_lock(&rdev->mutex);
 494	list_for_each_entry(regulator, &rdev->consumer_list, list)
 495		uA += regulator->uA_load;
 496	mutex_unlock(&rdev->mutex);
 497	return sprintf(buf, "%d\n", uA);
 498}
 499static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 500
 501static ssize_t regulator_num_users_show(struct device *dev,
 502				      struct device_attribute *attr, char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505	return sprintf(buf, "%d\n", rdev->use_count);
 506}
 507
 508static ssize_t regulator_type_show(struct device *dev,
 509				  struct device_attribute *attr, char *buf)
 510{
 511	struct regulator_dev *rdev = dev_get_drvdata(dev);
 512
 513	switch (rdev->desc->type) {
 514	case REGULATOR_VOLTAGE:
 515		return sprintf(buf, "voltage\n");
 516	case REGULATOR_CURRENT:
 517		return sprintf(buf, "current\n");
 518	}
 519	return sprintf(buf, "unknown\n");
 520}
 521
 522static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 523				struct device_attribute *attr, char *buf)
 524{
 525	struct regulator_dev *rdev = dev_get_drvdata(dev);
 526
 527	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 528}
 529static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 530		regulator_suspend_mem_uV_show, NULL);
 531
 532static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 533				struct device_attribute *attr, char *buf)
 534{
 535	struct regulator_dev *rdev = dev_get_drvdata(dev);
 536
 537	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 538}
 539static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 540		regulator_suspend_disk_uV_show, NULL);
 541
 542static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 543				struct device_attribute *attr, char *buf)
 544{
 545	struct regulator_dev *rdev = dev_get_drvdata(dev);
 546
 547	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 548}
 549static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 550		regulator_suspend_standby_uV_show, NULL);
 551
 552static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 553				struct device_attribute *attr, char *buf)
 554{
 555	struct regulator_dev *rdev = dev_get_drvdata(dev);
 556
 557	return regulator_print_opmode(buf,
 558		rdev->constraints->state_mem.mode);
 559}
 560static DEVICE_ATTR(suspend_mem_mode, 0444,
 561		regulator_suspend_mem_mode_show, NULL);
 562
 563static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 564				struct device_attribute *attr, char *buf)
 565{
 566	struct regulator_dev *rdev = dev_get_drvdata(dev);
 567
 568	return regulator_print_opmode(buf,
 569		rdev->constraints->state_disk.mode);
 570}
 571static DEVICE_ATTR(suspend_disk_mode, 0444,
 572		regulator_suspend_disk_mode_show, NULL);
 573
 574static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 575				struct device_attribute *attr, char *buf)
 576{
 577	struct regulator_dev *rdev = dev_get_drvdata(dev);
 578
 579	return regulator_print_opmode(buf,
 580		rdev->constraints->state_standby.mode);
 581}
 582static DEVICE_ATTR(suspend_standby_mode, 0444,
 583		regulator_suspend_standby_mode_show, NULL);
 584
 585static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 586				   struct device_attribute *attr, char *buf)
 587{
 588	struct regulator_dev *rdev = dev_get_drvdata(dev);
 589
 590	return regulator_print_state(buf,
 591			rdev->constraints->state_mem.enabled);
 592}
 593static DEVICE_ATTR(suspend_mem_state, 0444,
 594		regulator_suspend_mem_state_show, NULL);
 595
 596static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 597				   struct device_attribute *attr, char *buf)
 598{
 599	struct regulator_dev *rdev = dev_get_drvdata(dev);
 600
 601	return regulator_print_state(buf,
 602			rdev->constraints->state_disk.enabled);
 603}
 604static DEVICE_ATTR(suspend_disk_state, 0444,
 605		regulator_suspend_disk_state_show, NULL);
 606
 607static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 608				   struct device_attribute *attr, char *buf)
 609{
 610	struct regulator_dev *rdev = dev_get_drvdata(dev);
 611
 612	return regulator_print_state(buf,
 613			rdev->constraints->state_standby.enabled);
 614}
 615static DEVICE_ATTR(suspend_standby_state, 0444,
 616		regulator_suspend_standby_state_show, NULL);
 617
 618
 619/*
 620 * These are the only attributes are present for all regulators.
 621 * Other attributes are a function of regulator functionality.
 622 */
 623static struct device_attribute regulator_dev_attrs[] = {
 624	__ATTR(name, 0444, regulator_name_show, NULL),
 625	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 626	__ATTR(type, 0444, regulator_type_show, NULL),
 627	__ATTR_NULL,
 628};
 629
 630static void regulator_dev_release(struct device *dev)
 631{
 632	struct regulator_dev *rdev = dev_get_drvdata(dev);
 633	kfree(rdev);
 634}
 635
 636static struct class regulator_class = {
 637	.name = "regulator",
 638	.dev_release = regulator_dev_release,
 639	.dev_attrs = regulator_dev_attrs,
 640};
 641
 642/* Calculate the new optimum regulator operating mode based on the new total
 643 * consumer load. All locks held by caller */
 644static void drms_uA_update(struct regulator_dev *rdev)
 645{
 646	struct regulator *sibling;
 647	int current_uA = 0, output_uV, input_uV, err;
 648	unsigned int mode;
 649
 650	err = regulator_check_drms(rdev);
 651	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 652	    (!rdev->desc->ops->get_voltage &&
 653	     !rdev->desc->ops->get_voltage_sel) ||
 654	    !rdev->desc->ops->set_mode)
 655		return;
 656
 657	/* get output voltage */
 658	output_uV = _regulator_get_voltage(rdev);
 659	if (output_uV <= 0)
 660		return;
 661
 662	/* get input voltage */
 663	input_uV = 0;
 664	if (rdev->supply)
 665		input_uV = regulator_get_voltage(rdev->supply);
 666	if (input_uV <= 0)
 667		input_uV = rdev->constraints->input_uV;
 668	if (input_uV <= 0)
 669		return;
 670
 671	/* calc total requested load */
 672	list_for_each_entry(sibling, &rdev->consumer_list, list)
 673		current_uA += sibling->uA_load;
 674
 675	/* now get the optimum mode for our new total regulator load */
 676	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 677						  output_uV, current_uA);
 678
 679	/* check the new mode is allowed */
 680	err = regulator_mode_constrain(rdev, &mode);
 681	if (err == 0)
 682		rdev->desc->ops->set_mode(rdev, mode);
 683}
 684
 685static int suspend_set_state(struct regulator_dev *rdev,
 686	struct regulator_state *rstate)
 687{
 688	int ret = 0;
 
 
 
 
 689
 690	/* If we have no suspend mode configration don't set anything;
 691	 * only warn if the driver implements set_suspend_voltage or
 692	 * set_suspend_mode callback.
 693	 */
 694	if (!rstate->enabled && !rstate->disabled) {
 695		if (rdev->desc->ops->set_suspend_voltage ||
 696		    rdev->desc->ops->set_suspend_mode)
 697			rdev_warn(rdev, "No configuration\n");
 698		return 0;
 699	}
 700
 701	if (rstate->enabled && rstate->disabled) {
 702		rdev_err(rdev, "invalid configuration\n");
 703		return -EINVAL;
 704	}
 705
 706	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 707		ret = rdev->desc->ops->set_suspend_enable(rdev);
 708	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 709		ret = rdev->desc->ops->set_suspend_disable(rdev);
 710	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 711		ret = 0;
 712
 713	if (ret < 0) {
 714		rdev_err(rdev, "failed to enabled/disable\n");
 715		return ret;
 716	}
 717
 718	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 719		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 720		if (ret < 0) {
 721			rdev_err(rdev, "failed to set voltage\n");
 722			return ret;
 723		}
 724	}
 725
 726	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 727		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 728		if (ret < 0) {
 729			rdev_err(rdev, "failed to set mode\n");
 730			return ret;
 731		}
 732	}
 733	return ret;
 734}
 735
 736/* locks held by caller */
 737static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 738{
 739	if (!rdev->constraints)
 740		return -EINVAL;
 741
 742	switch (state) {
 743	case PM_SUSPEND_STANDBY:
 744		return suspend_set_state(rdev,
 745			&rdev->constraints->state_standby);
 746	case PM_SUSPEND_MEM:
 747		return suspend_set_state(rdev,
 748			&rdev->constraints->state_mem);
 749	case PM_SUSPEND_MAX:
 750		return suspend_set_state(rdev,
 751			&rdev->constraints->state_disk);
 752	default:
 753		return -EINVAL;
 754	}
 755}
 756
 757static void print_constraints(struct regulator_dev *rdev)
 758{
 759	struct regulation_constraints *constraints = rdev->constraints;
 760	char buf[80] = "";
 761	int count = 0;
 762	int ret;
 763
 764	if (constraints->min_uV && constraints->max_uV) {
 765		if (constraints->min_uV == constraints->max_uV)
 766			count += sprintf(buf + count, "%d mV ",
 767					 constraints->min_uV / 1000);
 768		else
 769			count += sprintf(buf + count, "%d <--> %d mV ",
 770					 constraints->min_uV / 1000,
 771					 constraints->max_uV / 1000);
 772	}
 773
 774	if (!constraints->min_uV ||
 775	    constraints->min_uV != constraints->max_uV) {
 776		ret = _regulator_get_voltage(rdev);
 777		if (ret > 0)
 778			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 779	}
 780
 781	if (constraints->uV_offset)
 782		count += sprintf(buf, "%dmV offset ",
 783				 constraints->uV_offset / 1000);
 784
 785	if (constraints->min_uA && constraints->max_uA) {
 786		if (constraints->min_uA == constraints->max_uA)
 787			count += sprintf(buf + count, "%d mA ",
 788					 constraints->min_uA / 1000);
 789		else
 790			count += sprintf(buf + count, "%d <--> %d mA ",
 791					 constraints->min_uA / 1000,
 792					 constraints->max_uA / 1000);
 793	}
 794
 795	if (!constraints->min_uA ||
 796	    constraints->min_uA != constraints->max_uA) {
 797		ret = _regulator_get_current_limit(rdev);
 798		if (ret > 0)
 799			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 800	}
 801
 802	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 803		count += sprintf(buf + count, "fast ");
 804	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 805		count += sprintf(buf + count, "normal ");
 806	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 807		count += sprintf(buf + count, "idle ");
 808	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 809		count += sprintf(buf + count, "standby");
 810
 811	rdev_info(rdev, "%s\n", buf);
 812
 813	if ((constraints->min_uV != constraints->max_uV) &&
 814	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 815		rdev_warn(rdev,
 816			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 817}
 818
 819static int machine_constraints_voltage(struct regulator_dev *rdev,
 820	struct regulation_constraints *constraints)
 821{
 822	struct regulator_ops *ops = rdev->desc->ops;
 823	int ret;
 824
 825	/* do we need to apply the constraint voltage */
 826	if (rdev->constraints->apply_uV &&
 827	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 828		ret = _regulator_do_set_voltage(rdev,
 829						rdev->constraints->min_uV,
 830						rdev->constraints->max_uV);
 831		if (ret < 0) {
 832			rdev_err(rdev, "failed to apply %duV constraint\n",
 833				 rdev->constraints->min_uV);
 834			return ret;
 835		}
 836	}
 837
 838	/* constrain machine-level voltage specs to fit
 839	 * the actual range supported by this regulator.
 840	 */
 841	if (ops->list_voltage && rdev->desc->n_voltages) {
 842		int	count = rdev->desc->n_voltages;
 843		int	i;
 844		int	min_uV = INT_MAX;
 845		int	max_uV = INT_MIN;
 846		int	cmin = constraints->min_uV;
 847		int	cmax = constraints->max_uV;
 848
 849		/* it's safe to autoconfigure fixed-voltage supplies
 850		   and the constraints are used by list_voltage. */
 851		if (count == 1 && !cmin) {
 852			cmin = 1;
 853			cmax = INT_MAX;
 854			constraints->min_uV = cmin;
 855			constraints->max_uV = cmax;
 856		}
 857
 858		/* voltage constraints are optional */
 859		if ((cmin == 0) && (cmax == 0))
 860			return 0;
 861
 862		/* else require explicit machine-level constraints */
 863		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 864			rdev_err(rdev, "invalid voltage constraints\n");
 865			return -EINVAL;
 866		}
 867
 868		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 869		for (i = 0; i < count; i++) {
 870			int	value;
 871
 872			value = ops->list_voltage(rdev, i);
 873			if (value <= 0)
 874				continue;
 875
 876			/* maybe adjust [min_uV..max_uV] */
 877			if (value >= cmin && value < min_uV)
 878				min_uV = value;
 879			if (value <= cmax && value > max_uV)
 880				max_uV = value;
 881		}
 882
 883		/* final: [min_uV..max_uV] valid iff constraints valid */
 884		if (max_uV < min_uV) {
 885			rdev_err(rdev, "unsupportable voltage constraints\n");
 886			return -EINVAL;
 887		}
 888
 889		/* use regulator's subset of machine constraints */
 890		if (constraints->min_uV < min_uV) {
 891			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 892				 constraints->min_uV, min_uV);
 893			constraints->min_uV = min_uV;
 894		}
 895		if (constraints->max_uV > max_uV) {
 896			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 897				 constraints->max_uV, max_uV);
 898			constraints->max_uV = max_uV;
 899		}
 900	}
 901
 902	return 0;
 903}
 904
 905/**
 906 * set_machine_constraints - sets regulator constraints
 907 * @rdev: regulator source
 908 * @constraints: constraints to apply
 909 *
 910 * Allows platform initialisation code to define and constrain
 911 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 912 * Constraints *must* be set by platform code in order for some
 913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 914 * set_mode.
 915 */
 916static int set_machine_constraints(struct regulator_dev *rdev,
 917	const struct regulation_constraints *constraints)
 918{
 919	int ret = 0;
 920	struct regulator_ops *ops = rdev->desc->ops;
 921
 922	if (constraints)
 923		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 924					    GFP_KERNEL);
 925	else
 926		rdev->constraints = kzalloc(sizeof(*constraints),
 927					    GFP_KERNEL);
 928	if (!rdev->constraints)
 929		return -ENOMEM;
 930
 931	ret = machine_constraints_voltage(rdev, rdev->constraints);
 932	if (ret != 0)
 933		goto out;
 934
 935	/* do we need to setup our suspend state */
 936	if (rdev->constraints->initial_state) {
 937		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 938		if (ret < 0) {
 939			rdev_err(rdev, "failed to set suspend state\n");
 940			goto out;
 941		}
 942	}
 943
 944	if (rdev->constraints->initial_mode) {
 945		if (!ops->set_mode) {
 946			rdev_err(rdev, "no set_mode operation\n");
 947			ret = -EINVAL;
 948			goto out;
 949		}
 950
 951		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 952		if (ret < 0) {
 953			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 954			goto out;
 955		}
 956	}
 957
 958	/* If the constraints say the regulator should be on at this point
 959	 * and we have control then make sure it is enabled.
 960	 */
 961	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 962	    ops->enable) {
 963		ret = ops->enable(rdev);
 964		if (ret < 0) {
 965			rdev_err(rdev, "failed to enable\n");
 966			goto out;
 967		}
 968	}
 969
 970	print_constraints(rdev);
 971	return 0;
 972out:
 973	kfree(rdev->constraints);
 974	rdev->constraints = NULL;
 975	return ret;
 976}
 977
 978/**
 979 * set_supply - set regulator supply regulator
 980 * @rdev: regulator name
 981 * @supply_rdev: supply regulator name
 982 *
 983 * Called by platform initialisation code to set the supply regulator for this
 984 * regulator. This ensures that a regulators supply will also be enabled by the
 985 * core if it's child is enabled.
 986 */
 987static int set_supply(struct regulator_dev *rdev,
 988		      struct regulator_dev *supply_rdev)
 989{
 990	int err;
 991
 992	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 993
 994	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 995	if (rdev->supply == NULL) {
 996		err = -ENOMEM;
 
 997		return err;
 998	}
 999
1000	return 0;
1001}
1002
1003/**
1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005 * @rdev:         regulator source
 
1006 * @consumer_dev_name: dev_name() string for device supply applies to
1007 * @supply:       symbolic name for supply
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices.  Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
 
 
1013 */
1014static int set_consumer_device_supply(struct regulator_dev *rdev,
1015				      const char *consumer_dev_name,
1016				      const char *supply)
1017{
1018	struct regulator_map *node;
1019	int has_dev;
1020
 
 
 
 
 
 
1021	if (supply == NULL)
1022		return -EINVAL;
1023
1024	if (consumer_dev_name != NULL)
1025		has_dev = 1;
1026	else
1027		has_dev = 0;
1028
1029	list_for_each_entry(node, &regulator_map_list, list) {
1030		if (node->dev_name && consumer_dev_name) {
1031			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032				continue;
1033		} else if (node->dev_name || consumer_dev_name) {
1034			continue;
1035		}
1036
1037		if (strcmp(node->supply, supply) != 0)
1038			continue;
1039
1040		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041			 consumer_dev_name,
1042			 dev_name(&node->regulator->dev),
1043			 node->regulator->desc->name,
1044			 supply,
1045			 dev_name(&rdev->dev), rdev_get_name(rdev));
1046		return -EBUSY;
1047	}
1048
1049	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050	if (node == NULL)
1051		return -ENOMEM;
1052
1053	node->regulator = rdev;
1054	node->supply = supply;
1055
1056	if (has_dev) {
1057		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058		if (node->dev_name == NULL) {
1059			kfree(node);
1060			return -ENOMEM;
1061		}
1062	}
1063
1064	list_add(&node->list, &regulator_map_list);
1065	return 0;
1066}
1067
1068static void unset_regulator_supplies(struct regulator_dev *rdev)
1069{
1070	struct regulator_map *node, *n;
1071
1072	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073		if (rdev == node->regulator) {
1074			list_del(&node->list);
1075			kfree(node->dev_name);
1076			kfree(node);
1077		}
1078	}
1079}
1080
1081#define REG_STR_SIZE	64
1082
1083static struct regulator *create_regulator(struct regulator_dev *rdev,
1084					  struct device *dev,
1085					  const char *supply_name)
1086{
1087	struct regulator *regulator;
1088	char buf[REG_STR_SIZE];
1089	int err, size;
1090
1091	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092	if (regulator == NULL)
1093		return NULL;
1094
1095	mutex_lock(&rdev->mutex);
1096	regulator->rdev = rdev;
1097	list_add(&regulator->list, &rdev->consumer_list);
1098
1099	if (dev) {
1100		/* create a 'requested_microamps_name' sysfs entry */
1101		size = scnprintf(buf, REG_STR_SIZE,
1102				 "microamps_requested_%s-%s",
1103				 dev_name(dev), supply_name);
1104		if (size >= REG_STR_SIZE)
1105			goto overflow_err;
1106
1107		regulator->dev = dev;
1108		sysfs_attr_init(&regulator->dev_attr.attr);
1109		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110		if (regulator->dev_attr.attr.name == NULL)
1111			goto attr_name_err;
1112
1113		regulator->dev_attr.attr.mode = 0444;
1114		regulator->dev_attr.show = device_requested_uA_show;
1115		err = device_create_file(dev, &regulator->dev_attr);
1116		if (err < 0) {
1117			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118			goto attr_name_err;
1119		}
1120
1121		/* also add a link to the device sysfs entry */
1122		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123				 dev->kobj.name, supply_name);
1124		if (size >= REG_STR_SIZE)
1125			goto attr_err;
1126
1127		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128		if (regulator->supply_name == NULL)
1129			goto attr_err;
1130
1131		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132					buf);
1133		if (err) {
1134			rdev_warn(rdev, "could not add device link %s err %d\n",
1135				  dev->kobj.name, err);
1136			goto link_name_err;
1137		}
1138	} else {
1139		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140		if (regulator->supply_name == NULL)
1141			goto attr_err;
1142	}
1143
 
1144	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145						rdev->debugfs);
1146	if (!regulator->debugfs) {
1147		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
1148	} else {
1149		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150				   &regulator->uA_load);
1151		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152				   &regulator->min_uV);
1153		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154				   &regulator->max_uV);
1155	}
1156
1157	/*
1158	 * Check now if the regulator is an always on regulator - if
1159	 * it is then we don't need to do nearly so much work for
1160	 * enable/disable calls.
1161	 */
1162	if (!_regulator_can_change_status(rdev) &&
1163	    _regulator_is_enabled(rdev))
1164		regulator->always_on = true;
1165
1166	mutex_unlock(&rdev->mutex);
1167	return regulator;
1168link_name_err:
1169	kfree(regulator->supply_name);
1170attr_err:
1171	device_remove_file(regulator->dev, &regulator->dev_attr);
1172attr_name_err:
1173	kfree(regulator->dev_attr.attr.name);
1174overflow_err:
1175	list_del(&regulator->list);
1176	kfree(regulator);
1177	mutex_unlock(&rdev->mutex);
1178	return NULL;
1179}
1180
1181static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182{
1183	if (!rdev->desc->ops->enable_time)
1184		return 0;
1185	return rdev->desc->ops->enable_time(rdev);
1186}
1187
1188static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189						  const char *supply,
1190						  int *ret)
1191{
1192	struct regulator_dev *r;
1193	struct device_node *node;
1194	struct regulator_map *map;
1195	const char *devname = NULL;
1196
1197	/* first do a dt based lookup */
1198	if (dev && dev->of_node) {
1199		node = of_get_regulator(dev, supply);
1200		if (node) {
1201			list_for_each_entry(r, &regulator_list, list)
1202				if (r->dev.parent &&
1203					node == r->dev.of_node)
1204					return r;
1205		} else {
1206			/*
1207			 * If we couldn't even get the node then it's
1208			 * not just that the device didn't register
1209			 * yet, there's no node and we'll never
1210			 * succeed.
1211			 */
1212			*ret = -ENODEV;
1213		}
1214	}
1215
1216	/* if not found, try doing it non-dt way */
1217	if (dev)
1218		devname = dev_name(dev);
1219
1220	list_for_each_entry(r, &regulator_list, list)
1221		if (strcmp(rdev_get_name(r), supply) == 0)
1222			return r;
1223
1224	list_for_each_entry(map, &regulator_map_list, list) {
1225		/* If the mapping has a device set up it must match */
1226		if (map->dev_name &&
1227		    (!devname || strcmp(map->dev_name, devname)))
1228			continue;
1229
1230		if (strcmp(map->supply, supply) == 0)
1231			return map->regulator;
1232	}
1233
1234
1235	return NULL;
1236}
1237
1238/* Internal regulator request function */
1239static struct regulator *_regulator_get(struct device *dev, const char *id,
1240					int exclusive)
1241{
1242	struct regulator_dev *rdev;
1243	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
 
1244	const char *devname = NULL;
1245	int ret;
1246
1247	if (id == NULL) {
1248		pr_err("get() with no identifier\n");
1249		return regulator;
1250	}
1251
1252	if (dev)
1253		devname = dev_name(dev);
1254
1255	mutex_lock(&regulator_list_mutex);
1256
1257	rdev = regulator_dev_lookup(dev, id, &ret);
1258	if (rdev)
1259		goto found;
 
 
 
 
 
 
 
 
1260
1261	if (board_wants_dummy_regulator) {
1262		rdev = dummy_regulator_rdev;
1263		goto found;
1264	}
1265
1266#ifdef CONFIG_REGULATOR_DUMMY
1267	if (!devname)
1268		devname = "deviceless";
1269
1270	/* If the board didn't flag that it was fully constrained then
1271	 * substitute in a dummy regulator so consumers can continue.
1272	 */
1273	if (!has_full_constraints) {
1274		pr_warn("%s supply %s not found, using dummy regulator\n",
1275			devname, id);
1276		rdev = dummy_regulator_rdev;
1277		goto found;
1278	}
1279#endif
1280
1281	mutex_unlock(&regulator_list_mutex);
1282	return regulator;
1283
1284found:
1285	if (rdev->exclusive) {
1286		regulator = ERR_PTR(-EPERM);
1287		goto out;
1288	}
1289
1290	if (exclusive && rdev->open_count) {
1291		regulator = ERR_PTR(-EBUSY);
1292		goto out;
1293	}
1294
1295	if (!try_module_get(rdev->owner))
1296		goto out;
1297
1298	regulator = create_regulator(rdev, dev, id);
1299	if (regulator == NULL) {
1300		regulator = ERR_PTR(-ENOMEM);
1301		module_put(rdev->owner);
1302		goto out;
1303	}
1304
1305	rdev->open_count++;
1306	if (exclusive) {
1307		rdev->exclusive = 1;
1308
1309		ret = _regulator_is_enabled(rdev);
1310		if (ret > 0)
1311			rdev->use_count = 1;
1312		else
1313			rdev->use_count = 0;
1314	}
1315
1316out:
1317	mutex_unlock(&regulator_list_mutex);
1318
1319	return regulator;
1320}
1321
1322/**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged.  It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335struct regulator *regulator_get(struct device *dev, const char *id)
1336{
1337	return _regulator_get(dev, id, 0);
1338}
1339EXPORT_SYMBOL_GPL(regulator_get);
1340
1341static void devm_regulator_release(struct device *dev, void *res)
1342{
1343	regulator_put(*(struct regulator **)res);
1344}
1345
1346/**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356{
1357	struct regulator **ptr, *regulator;
1358
1359	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360	if (!ptr)
1361		return ERR_PTR(-ENOMEM);
1362
1363	regulator = regulator_get(dev, id);
1364	if (!IS_ERR(regulator)) {
1365		*ptr = regulator;
1366		devres_add(dev, ptr);
1367	} else {
1368		devres_free(ptr);
1369	}
1370
1371	return regulator;
1372}
1373EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375/**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno.  Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged.  It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397{
1398	return _regulator_get(dev, id, 1);
1399}
1400EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402/**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410void regulator_put(struct regulator *regulator)
1411{
1412	struct regulator_dev *rdev;
1413
1414	if (regulator == NULL || IS_ERR(regulator))
1415		return;
1416
1417	mutex_lock(&regulator_list_mutex);
1418	rdev = regulator->rdev;
1419
 
1420	debugfs_remove_recursive(regulator->debugfs);
 
1421
1422	/* remove any sysfs entries */
1423	if (regulator->dev) {
1424		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425		device_remove_file(regulator->dev, &regulator->dev_attr);
1426		kfree(regulator->dev_attr.attr.name);
1427	}
1428	kfree(regulator->supply_name);
1429	list_del(&regulator->list);
1430	kfree(regulator);
1431
1432	rdev->open_count--;
1433	rdev->exclusive = 0;
1434
1435	module_put(rdev->owner);
1436	mutex_unlock(&regulator_list_mutex);
1437}
1438EXPORT_SYMBOL_GPL(regulator_put);
1439
1440static int devm_regulator_match(struct device *dev, void *res, void *data)
1441{
1442	struct regulator **r = res;
1443	if (!r || !*r) {
1444		WARN_ON(!r || !*r);
1445		return 0;
1446	}
1447	return *r == data;
1448}
1449
1450/**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458void devm_regulator_put(struct regulator *regulator)
1459{
1460	int rc;
1461
1462	rc = devres_destroy(regulator->dev, devm_regulator_release,
1463			    devm_regulator_match, regulator);
1464	if (rc == 0)
1465		regulator_put(regulator);
1466	else
1467		WARN_ON(rc);
1468}
1469EXPORT_SYMBOL_GPL(devm_regulator_put);
1470
1471/* locks held by regulator_enable() */
1472static int _regulator_enable(struct regulator_dev *rdev)
1473{
1474	int ret, delay;
1475
1476	/* check voltage and requested load before enabling */
1477	if (rdev->constraints &&
1478	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1479		drms_uA_update(rdev);
1480
1481	if (rdev->use_count == 0) {
1482		/* The regulator may on if it's not switchable or left on */
1483		ret = _regulator_is_enabled(rdev);
1484		if (ret == -EINVAL || ret == 0) {
1485			if (!_regulator_can_change_status(rdev))
1486				return -EPERM;
1487
1488			if (!rdev->desc->ops->enable)
1489				return -EINVAL;
1490
1491			/* Query before enabling in case configuration
1492			 * dependent.  */
1493			ret = _regulator_get_enable_time(rdev);
1494			if (ret >= 0) {
1495				delay = ret;
1496			} else {
1497				rdev_warn(rdev, "enable_time() failed: %d\n",
1498					   ret);
1499				delay = 0;
1500			}
1501
1502			trace_regulator_enable(rdev_get_name(rdev));
1503
1504			/* Allow the regulator to ramp; it would be useful
1505			 * to extend this for bulk operations so that the
1506			 * regulators can ramp together.  */
1507			ret = rdev->desc->ops->enable(rdev);
1508			if (ret < 0)
1509				return ret;
1510
1511			trace_regulator_enable_delay(rdev_get_name(rdev));
1512
1513			if (delay >= 1000) {
1514				mdelay(delay / 1000);
1515				udelay(delay % 1000);
1516			} else if (delay) {
1517				udelay(delay);
1518			}
1519
1520			trace_regulator_enable_complete(rdev_get_name(rdev));
1521
1522		} else if (ret < 0) {
1523			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524			return ret;
1525		}
1526		/* Fallthrough on positive return values - already enabled */
1527	}
1528
1529	rdev->use_count++;
1530
1531	return 0;
1532}
1533
1534/**
1535 * regulator_enable - enable regulator output
1536 * @regulator: regulator source
1537 *
1538 * Request that the regulator be enabled with the regulator output at
1539 * the predefined voltage or current value.  Calls to regulator_enable()
1540 * must be balanced with calls to regulator_disable().
1541 *
1542 * NOTE: the output value can be set by other drivers, boot loader or may be
1543 * hardwired in the regulator.
1544 */
1545int regulator_enable(struct regulator *regulator)
1546{
1547	struct regulator_dev *rdev = regulator->rdev;
1548	int ret = 0;
1549
1550	if (regulator->always_on)
1551		return 0;
1552
1553	if (rdev->supply) {
1554		ret = regulator_enable(rdev->supply);
1555		if (ret != 0)
1556			return ret;
1557	}
1558
1559	mutex_lock(&rdev->mutex);
1560	ret = _regulator_enable(rdev);
1561	mutex_unlock(&rdev->mutex);
1562
1563	if (ret != 0 && rdev->supply)
1564		regulator_disable(rdev->supply);
1565
1566	return ret;
1567}
1568EXPORT_SYMBOL_GPL(regulator_enable);
1569
1570/* locks held by regulator_disable() */
1571static int _regulator_disable(struct regulator_dev *rdev)
1572{
1573	int ret = 0;
1574
1575	if (WARN(rdev->use_count <= 0,
1576		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1577		return -EIO;
1578
1579	/* are we the last user and permitted to disable ? */
1580	if (rdev->use_count == 1 &&
1581	    (rdev->constraints && !rdev->constraints->always_on)) {
1582
1583		/* we are last user */
1584		if (_regulator_can_change_status(rdev) &&
1585		    rdev->desc->ops->disable) {
1586			trace_regulator_disable(rdev_get_name(rdev));
1587
1588			ret = rdev->desc->ops->disable(rdev);
1589			if (ret < 0) {
1590				rdev_err(rdev, "failed to disable\n");
1591				return ret;
1592			}
1593
1594			trace_regulator_disable_complete(rdev_get_name(rdev));
1595
1596			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1597					     NULL);
1598		}
1599
1600		rdev->use_count = 0;
1601	} else if (rdev->use_count > 1) {
1602
1603		if (rdev->constraints &&
1604			(rdev->constraints->valid_ops_mask &
1605			REGULATOR_CHANGE_DRMS))
1606			drms_uA_update(rdev);
1607
1608		rdev->use_count--;
1609	}
1610
1611	return ret;
1612}
1613
1614/**
1615 * regulator_disable - disable regulator output
1616 * @regulator: regulator source
1617 *
1618 * Disable the regulator output voltage or current.  Calls to
1619 * regulator_enable() must be balanced with calls to
1620 * regulator_disable().
1621 *
1622 * NOTE: this will only disable the regulator output if no other consumer
1623 * devices have it enabled, the regulator device supports disabling and
1624 * machine constraints permit this operation.
1625 */
1626int regulator_disable(struct regulator *regulator)
1627{
1628	struct regulator_dev *rdev = regulator->rdev;
1629	int ret = 0;
1630
1631	if (regulator->always_on)
1632		return 0;
1633
1634	mutex_lock(&rdev->mutex);
1635	ret = _regulator_disable(rdev);
1636	mutex_unlock(&rdev->mutex);
1637
1638	if (ret == 0 && rdev->supply)
1639		regulator_disable(rdev->supply);
1640
1641	return ret;
1642}
1643EXPORT_SYMBOL_GPL(regulator_disable);
1644
1645/* locks held by regulator_force_disable() */
1646static int _regulator_force_disable(struct regulator_dev *rdev)
1647{
1648	int ret = 0;
1649
1650	/* force disable */
1651	if (rdev->desc->ops->disable) {
1652		/* ah well, who wants to live forever... */
1653		ret = rdev->desc->ops->disable(rdev);
1654		if (ret < 0) {
1655			rdev_err(rdev, "failed to force disable\n");
1656			return ret;
1657		}
1658		/* notify other consumers that power has been forced off */
1659		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1660			REGULATOR_EVENT_DISABLE, NULL);
1661	}
1662
1663	return ret;
1664}
1665
1666/**
1667 * regulator_force_disable - force disable regulator output
1668 * @regulator: regulator source
1669 *
1670 * Forcibly disable the regulator output voltage or current.
1671 * NOTE: this *will* disable the regulator output even if other consumer
1672 * devices have it enabled. This should be used for situations when device
1673 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1674 */
1675int regulator_force_disable(struct regulator *regulator)
1676{
1677	struct regulator_dev *rdev = regulator->rdev;
1678	int ret;
1679
1680	mutex_lock(&rdev->mutex);
1681	regulator->uA_load = 0;
1682	ret = _regulator_force_disable(regulator->rdev);
1683	mutex_unlock(&rdev->mutex);
1684
1685	if (rdev->supply)
1686		while (rdev->open_count--)
1687			regulator_disable(rdev->supply);
1688
1689	return ret;
1690}
1691EXPORT_SYMBOL_GPL(regulator_force_disable);
1692
1693static void regulator_disable_work(struct work_struct *work)
1694{
1695	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1696						  disable_work.work);
1697	int count, i, ret;
1698
1699	mutex_lock(&rdev->mutex);
1700
1701	BUG_ON(!rdev->deferred_disables);
1702
1703	count = rdev->deferred_disables;
1704	rdev->deferred_disables = 0;
1705
1706	for (i = 0; i < count; i++) {
1707		ret = _regulator_disable(rdev);
1708		if (ret != 0)
1709			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1710	}
1711
1712	mutex_unlock(&rdev->mutex);
1713
1714	if (rdev->supply) {
1715		for (i = 0; i < count; i++) {
1716			ret = regulator_disable(rdev->supply);
1717			if (ret != 0) {
1718				rdev_err(rdev,
1719					 "Supply disable failed: %d\n", ret);
1720			}
1721		}
1722	}
1723}
1724
1725/**
1726 * regulator_disable_deferred - disable regulator output with delay
1727 * @regulator: regulator source
1728 * @ms: miliseconds until the regulator is disabled
1729 *
1730 * Execute regulator_disable() on the regulator after a delay.  This
1731 * is intended for use with devices that require some time to quiesce.
1732 *
1733 * NOTE: this will only disable the regulator output if no other consumer
1734 * devices have it enabled, the regulator device supports disabling and
1735 * machine constraints permit this operation.
1736 */
1737int regulator_disable_deferred(struct regulator *regulator, int ms)
1738{
1739	struct regulator_dev *rdev = regulator->rdev;
1740	int ret;
1741
1742	if (regulator->always_on)
1743		return 0;
1744
1745	mutex_lock(&rdev->mutex);
1746	rdev->deferred_disables++;
1747	mutex_unlock(&rdev->mutex);
1748
1749	ret = schedule_delayed_work(&rdev->disable_work,
1750				    msecs_to_jiffies(ms));
1751	if (ret < 0)
1752		return ret;
1753	else
1754		return 0;
1755}
1756EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1757
1758/**
1759 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their is_enabled operation, saving some code.
1766 */
1767int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1768{
1769	unsigned int val;
1770	int ret;
1771
1772	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1773	if (ret != 0)
1774		return ret;
1775
1776	return (val & rdev->desc->enable_mask) != 0;
1777}
1778EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1779
1780/**
1781 * regulator_enable_regmap - standard enable() for regmap users
1782 *
1783 * @rdev: regulator to operate on
1784 *
1785 * Regulators that use regmap for their register I/O can set the
1786 * enable_reg and enable_mask fields in their descriptor and then use
1787 * this as their enable() operation, saving some code.
1788 */
1789int regulator_enable_regmap(struct regulator_dev *rdev)
1790{
1791	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1792				  rdev->desc->enable_mask,
1793				  rdev->desc->enable_mask);
1794}
1795EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1796
1797/**
1798 * regulator_disable_regmap - standard disable() for regmap users
1799 *
1800 * @rdev: regulator to operate on
1801 *
1802 * Regulators that use regmap for their register I/O can set the
1803 * enable_reg and enable_mask fields in their descriptor and then use
1804 * this as their disable() operation, saving some code.
1805 */
1806int regulator_disable_regmap(struct regulator_dev *rdev)
1807{
1808	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1809				  rdev->desc->enable_mask, 0);
1810}
1811EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1812
1813static int _regulator_is_enabled(struct regulator_dev *rdev)
1814{
1815	/* If we don't know then assume that the regulator is always on */
1816	if (!rdev->desc->ops->is_enabled)
1817		return 1;
1818
1819	return rdev->desc->ops->is_enabled(rdev);
1820}
1821
1822/**
1823 * regulator_is_enabled - is the regulator output enabled
1824 * @regulator: regulator source
1825 *
1826 * Returns positive if the regulator driver backing the source/client
1827 * has requested that the device be enabled, zero if it hasn't, else a
1828 * negative errno code.
1829 *
1830 * Note that the device backing this regulator handle can have multiple
1831 * users, so it might be enabled even if regulator_enable() was never
1832 * called for this particular source.
1833 */
1834int regulator_is_enabled(struct regulator *regulator)
1835{
1836	int ret;
1837
1838	if (regulator->always_on)
1839		return 1;
1840
1841	mutex_lock(&regulator->rdev->mutex);
1842	ret = _regulator_is_enabled(regulator->rdev);
1843	mutex_unlock(&regulator->rdev->mutex);
1844
1845	return ret;
1846}
1847EXPORT_SYMBOL_GPL(regulator_is_enabled);
1848
1849/**
1850 * regulator_count_voltages - count regulator_list_voltage() selectors
1851 * @regulator: regulator source
1852 *
1853 * Returns number of selectors, or negative errno.  Selectors are
1854 * numbered starting at zero, and typically correspond to bitfields
1855 * in hardware registers.
1856 */
1857int regulator_count_voltages(struct regulator *regulator)
1858{
1859	struct regulator_dev	*rdev = regulator->rdev;
1860
1861	return rdev->desc->n_voltages ? : -EINVAL;
1862}
1863EXPORT_SYMBOL_GPL(regulator_count_voltages);
1864
1865/**
1866 * regulator_list_voltage_linear - List voltages with simple calculation
1867 *
1868 * @rdev: Regulator device
1869 * @selector: Selector to convert into a voltage
1870 *
1871 * Regulators with a simple linear mapping between voltages and
1872 * selectors can set min_uV and uV_step in the regulator descriptor
1873 * and then use this function as their list_voltage() operation,
1874 */
1875int regulator_list_voltage_linear(struct regulator_dev *rdev,
1876				  unsigned int selector)
1877{
1878	if (selector >= rdev->desc->n_voltages)
1879		return -EINVAL;
1880
1881	return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1882}
1883EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1884
1885/**
1886 * regulator_list_voltage - enumerate supported voltages
1887 * @regulator: regulator source
1888 * @selector: identify voltage to list
1889 * Context: can sleep
1890 *
1891 * Returns a voltage that can be passed to @regulator_set_voltage(),
1892 * zero if this selector code can't be used on this system, or a
1893 * negative errno.
1894 */
1895int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1896{
1897	struct regulator_dev	*rdev = regulator->rdev;
1898	struct regulator_ops	*ops = rdev->desc->ops;
1899	int			ret;
1900
1901	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1902		return -EINVAL;
1903
1904	mutex_lock(&rdev->mutex);
1905	ret = ops->list_voltage(rdev, selector);
1906	mutex_unlock(&rdev->mutex);
1907
1908	if (ret > 0) {
1909		if (ret < rdev->constraints->min_uV)
1910			ret = 0;
1911		else if (ret > rdev->constraints->max_uV)
1912			ret = 0;
1913	}
1914
1915	return ret;
1916}
1917EXPORT_SYMBOL_GPL(regulator_list_voltage);
1918
1919/**
1920 * regulator_is_supported_voltage - check if a voltage range can be supported
1921 *
1922 * @regulator: Regulator to check.
1923 * @min_uV: Minimum required voltage in uV.
1924 * @max_uV: Maximum required voltage in uV.
1925 *
1926 * Returns a boolean or a negative error code.
1927 */
1928int regulator_is_supported_voltage(struct regulator *regulator,
1929				   int min_uV, int max_uV)
1930{
1931	int i, voltages, ret;
1932
1933	ret = regulator_count_voltages(regulator);
1934	if (ret < 0)
1935		return ret;
1936	voltages = ret;
1937
1938	for (i = 0; i < voltages; i++) {
1939		ret = regulator_list_voltage(regulator, i);
1940
1941		if (ret >= min_uV && ret <= max_uV)
1942			return 1;
1943	}
1944
1945	return 0;
1946}
1947EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948
1949/**
1950 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1951 *
1952 * @rdev: regulator to operate on
1953 *
1954 * Regulators that use regmap for their register I/O can set the
1955 * vsel_reg and vsel_mask fields in their descriptor and then use this
1956 * as their get_voltage_vsel operation, saving some code.
1957 */
1958int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1959{
1960	unsigned int val;
1961	int ret;
1962
1963	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1964	if (ret != 0)
1965		return ret;
1966
1967	val &= rdev->desc->vsel_mask;
1968	val >>= ffs(rdev->desc->vsel_mask) - 1;
1969
1970	return val;
1971}
1972EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1973
1974/**
1975 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1976 *
1977 * @rdev: regulator to operate on
1978 * @sel: Selector to set
1979 *
1980 * Regulators that use regmap for their register I/O can set the
1981 * vsel_reg and vsel_mask fields in their descriptor and then use this
1982 * as their set_voltage_vsel operation, saving some code.
1983 */
1984int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1985{
1986	sel <<= ffs(rdev->desc->vsel_mask) - 1;
1987
1988	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1989				  rdev->desc->vsel_mask, sel);
1990}
1991EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1992
1993/**
1994 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1995 *
1996 * @rdev: Regulator to operate on
1997 * @min_uV: Lower bound for voltage
1998 * @max_uV: Upper bound for voltage
1999 *
2000 * Drivers implementing set_voltage_sel() and list_voltage() can use
2001 * this as their map_voltage() operation.  It will find a suitable
2002 * voltage by calling list_voltage() until it gets something in bounds
2003 * for the requested voltages.
2004 */
2005int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2006				  int min_uV, int max_uV)
2007{
2008	int best_val = INT_MAX;
2009	int selector = 0;
2010	int i, ret;
2011
2012	/* Find the smallest voltage that falls within the specified
2013	 * range.
2014	 */
2015	for (i = 0; i < rdev->desc->n_voltages; i++) {
2016		ret = rdev->desc->ops->list_voltage(rdev, i);
2017		if (ret < 0)
2018			continue;
2019
2020		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2021			best_val = ret;
2022			selector = i;
2023		}
2024	}
2025
2026	if (best_val != INT_MAX)
2027		return selector;
2028	else
2029		return -EINVAL;
2030}
2031EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2032
2033/**
2034 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2035 *
2036 * @rdev: Regulator to operate on
2037 * @min_uV: Lower bound for voltage
2038 * @max_uV: Upper bound for voltage
2039 *
2040 * Drivers providing min_uV and uV_step in their regulator_desc can
2041 * use this as their map_voltage() operation.
2042 */
2043int regulator_map_voltage_linear(struct regulator_dev *rdev,
2044				 int min_uV, int max_uV)
2045{
2046	int ret, voltage;
2047
2048	if (!rdev->desc->uV_step) {
2049		BUG_ON(!rdev->desc->uV_step);
2050		return -EINVAL;
2051	}
2052
2053	if (min_uV < rdev->desc->min_uV)
2054		min_uV = rdev->desc->min_uV;
2055
2056	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2057	if (ret < 0)
2058		return ret;
2059
2060	/* Map back into a voltage to verify we're still in bounds */
2061	voltage = rdev->desc->ops->list_voltage(rdev, ret);
2062	if (voltage < min_uV || voltage > max_uV)
2063		return -EINVAL;
2064
2065	return ret;
2066}
2067EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2068
2069static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2070				     int min_uV, int max_uV)
2071{
2072	int ret;
2073	int delay = 0;
2074	int best_val;
2075	unsigned int selector;
2076	int old_selector = -1;
2077
2078	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2079
2080	min_uV += rdev->constraints->uV_offset;
2081	max_uV += rdev->constraints->uV_offset;
2082
2083	/*
2084	 * If we can't obtain the old selector there is not enough
2085	 * info to call set_voltage_time_sel().
2086	 */
2087	if (rdev->desc->ops->set_voltage_time_sel &&
2088	    rdev->desc->ops->get_voltage_sel) {
2089		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2090		if (old_selector < 0)
2091			return old_selector;
2092	}
2093
2094	if (rdev->desc->ops->set_voltage) {
2095		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2096						   &selector);
 
 
 
 
 
 
2097	} else if (rdev->desc->ops->set_voltage_sel) {
2098		if (rdev->desc->ops->map_voltage)
2099			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2100							   max_uV);
2101		else
2102			ret = regulator_map_voltage_iterate(rdev, min_uV,
2103							    max_uV);
 
 
 
 
 
 
2104
2105		if (ret >= 0) {
2106			selector = ret;
2107			ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
 
2108		}
2109	} else {
2110		ret = -EINVAL;
2111	}
2112
2113	if (rdev->desc->ops->list_voltage)
2114		best_val = rdev->desc->ops->list_voltage(rdev, selector);
2115	else
2116		best_val = -1;
 
 
 
2117
2118	/* Call set_voltage_time_sel if successfully obtained old_selector */
2119	if (ret == 0 && old_selector >= 0 &&
2120	    rdev->desc->ops->set_voltage_time_sel) {
 
 
 
 
2121
2122		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2123						old_selector, selector);
2124		if (delay < 0) {
2125			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2126				  delay);
2127			delay = 0;
2128		}
 
 
2129	}
2130
2131	/* Insert any necessary delays */
2132	if (delay >= 1000) {
2133		mdelay(delay / 1000);
2134		udelay(delay % 1000);
2135	} else if (delay) {
2136		udelay(delay);
2137	}
2138
2139	if (ret == 0)
2140		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2141				     NULL);
2142
2143	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2144
2145	return ret;
2146}
2147
2148/**
2149 * regulator_set_voltage - set regulator output voltage
2150 * @regulator: regulator source
2151 * @min_uV: Minimum required voltage in uV
2152 * @max_uV: Maximum acceptable voltage in uV
2153 *
2154 * Sets a voltage regulator to the desired output voltage. This can be set
2155 * during any regulator state. IOW, regulator can be disabled or enabled.
2156 *
2157 * If the regulator is enabled then the voltage will change to the new value
2158 * immediately otherwise if the regulator is disabled the regulator will
2159 * output at the new voltage when enabled.
2160 *
2161 * NOTE: If the regulator is shared between several devices then the lowest
2162 * request voltage that meets the system constraints will be used.
2163 * Regulator system constraints must be set for this regulator before
2164 * calling this function otherwise this call will fail.
2165 */
2166int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2167{
2168	struct regulator_dev *rdev = regulator->rdev;
2169	int ret = 0;
2170
2171	mutex_lock(&rdev->mutex);
2172
2173	/* If we're setting the same range as last time the change
2174	 * should be a noop (some cpufreq implementations use the same
2175	 * voltage for multiple frequencies, for example).
2176	 */
2177	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2178		goto out;
2179
2180	/* sanity check */
2181	if (!rdev->desc->ops->set_voltage &&
2182	    !rdev->desc->ops->set_voltage_sel) {
2183		ret = -EINVAL;
2184		goto out;
2185	}
2186
2187	/* constraints check */
2188	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2189	if (ret < 0)
2190		goto out;
2191	regulator->min_uV = min_uV;
2192	regulator->max_uV = max_uV;
2193
2194	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2195	if (ret < 0)
2196		goto out;
2197
2198	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2199
2200out:
2201	mutex_unlock(&rdev->mutex);
2202	return ret;
2203}
2204EXPORT_SYMBOL_GPL(regulator_set_voltage);
2205
2206/**
2207 * regulator_set_voltage_time - get raise/fall time
2208 * @regulator: regulator source
2209 * @old_uV: starting voltage in microvolts
2210 * @new_uV: target voltage in microvolts
2211 *
2212 * Provided with the starting and ending voltage, this function attempts to
2213 * calculate the time in microseconds required to rise or fall to this new
2214 * voltage.
2215 */
2216int regulator_set_voltage_time(struct regulator *regulator,
2217			       int old_uV, int new_uV)
2218{
2219	struct regulator_dev	*rdev = regulator->rdev;
2220	struct regulator_ops	*ops = rdev->desc->ops;
2221	int old_sel = -1;
2222	int new_sel = -1;
2223	int voltage;
2224	int i;
2225
2226	/* Currently requires operations to do this */
2227	if (!ops->list_voltage || !ops->set_voltage_time_sel
2228	    || !rdev->desc->n_voltages)
2229		return -EINVAL;
2230
2231	for (i = 0; i < rdev->desc->n_voltages; i++) {
2232		/* We only look for exact voltage matches here */
2233		voltage = regulator_list_voltage(regulator, i);
2234		if (voltage < 0)
2235			return -EINVAL;
2236		if (voltage == 0)
2237			continue;
2238		if (voltage == old_uV)
2239			old_sel = i;
2240		if (voltage == new_uV)
2241			new_sel = i;
2242	}
2243
2244	if (old_sel < 0 || new_sel < 0)
2245		return -EINVAL;
2246
2247	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2248}
2249EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2250
2251/**
2252 * regulator_sync_voltage - re-apply last regulator output voltage
2253 * @regulator: regulator source
2254 *
2255 * Re-apply the last configured voltage.  This is intended to be used
2256 * where some external control source the consumer is cooperating with
2257 * has caused the configured voltage to change.
2258 */
2259int regulator_sync_voltage(struct regulator *regulator)
2260{
2261	struct regulator_dev *rdev = regulator->rdev;
2262	int ret, min_uV, max_uV;
2263
2264	mutex_lock(&rdev->mutex);
2265
2266	if (!rdev->desc->ops->set_voltage &&
2267	    !rdev->desc->ops->set_voltage_sel) {
2268		ret = -EINVAL;
2269		goto out;
2270	}
2271
2272	/* This is only going to work if we've had a voltage configured. */
2273	if (!regulator->min_uV && !regulator->max_uV) {
2274		ret = -EINVAL;
2275		goto out;
2276	}
2277
2278	min_uV = regulator->min_uV;
2279	max_uV = regulator->max_uV;
2280
2281	/* This should be a paranoia check... */
2282	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2283	if (ret < 0)
2284		goto out;
2285
2286	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2287	if (ret < 0)
2288		goto out;
2289
2290	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2291
2292out:
2293	mutex_unlock(&rdev->mutex);
2294	return ret;
2295}
2296EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2297
2298static int _regulator_get_voltage(struct regulator_dev *rdev)
2299{
2300	int sel, ret;
2301
2302	if (rdev->desc->ops->get_voltage_sel) {
2303		sel = rdev->desc->ops->get_voltage_sel(rdev);
2304		if (sel < 0)
2305			return sel;
2306		ret = rdev->desc->ops->list_voltage(rdev, sel);
2307	} else if (rdev->desc->ops->get_voltage) {
2308		ret = rdev->desc->ops->get_voltage(rdev);
2309	} else {
2310		return -EINVAL;
2311	}
2312
2313	if (ret < 0)
2314		return ret;
2315	return ret - rdev->constraints->uV_offset;
2316}
2317
2318/**
2319 * regulator_get_voltage - get regulator output voltage
2320 * @regulator: regulator source
2321 *
2322 * This returns the current regulator voltage in uV.
2323 *
2324 * NOTE: If the regulator is disabled it will return the voltage value. This
2325 * function should not be used to determine regulator state.
2326 */
2327int regulator_get_voltage(struct regulator *regulator)
2328{
2329	int ret;
2330
2331	mutex_lock(&regulator->rdev->mutex);
2332
2333	ret = _regulator_get_voltage(regulator->rdev);
2334
2335	mutex_unlock(&regulator->rdev->mutex);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL_GPL(regulator_get_voltage);
2340
2341/**
2342 * regulator_set_current_limit - set regulator output current limit
2343 * @regulator: regulator source
2344 * @min_uA: Minimuum supported current in uA
2345 * @max_uA: Maximum supported current in uA
2346 *
2347 * Sets current sink to the desired output current. This can be set during
2348 * any regulator state. IOW, regulator can be disabled or enabled.
2349 *
2350 * If the regulator is enabled then the current will change to the new value
2351 * immediately otherwise if the regulator is disabled the regulator will
2352 * output at the new current when enabled.
2353 *
2354 * NOTE: Regulator system constraints must be set for this regulator before
2355 * calling this function otherwise this call will fail.
2356 */
2357int regulator_set_current_limit(struct regulator *regulator,
2358			       int min_uA, int max_uA)
2359{
2360	struct regulator_dev *rdev = regulator->rdev;
2361	int ret;
2362
2363	mutex_lock(&rdev->mutex);
2364
2365	/* sanity check */
2366	if (!rdev->desc->ops->set_current_limit) {
2367		ret = -EINVAL;
2368		goto out;
2369	}
2370
2371	/* constraints check */
2372	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2373	if (ret < 0)
2374		goto out;
2375
2376	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2377out:
2378	mutex_unlock(&rdev->mutex);
2379	return ret;
2380}
2381EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2382
2383static int _regulator_get_current_limit(struct regulator_dev *rdev)
2384{
2385	int ret;
2386
2387	mutex_lock(&rdev->mutex);
2388
2389	/* sanity check */
2390	if (!rdev->desc->ops->get_current_limit) {
2391		ret = -EINVAL;
2392		goto out;
2393	}
2394
2395	ret = rdev->desc->ops->get_current_limit(rdev);
2396out:
2397	mutex_unlock(&rdev->mutex);
2398	return ret;
2399}
2400
2401/**
2402 * regulator_get_current_limit - get regulator output current
2403 * @regulator: regulator source
2404 *
2405 * This returns the current supplied by the specified current sink in uA.
2406 *
2407 * NOTE: If the regulator is disabled it will return the current value. This
2408 * function should not be used to determine regulator state.
2409 */
2410int regulator_get_current_limit(struct regulator *regulator)
2411{
2412	return _regulator_get_current_limit(regulator->rdev);
2413}
2414EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2415
2416/**
2417 * regulator_set_mode - set regulator operating mode
2418 * @regulator: regulator source
2419 * @mode: operating mode - one of the REGULATOR_MODE constants
2420 *
2421 * Set regulator operating mode to increase regulator efficiency or improve
2422 * regulation performance.
2423 *
2424 * NOTE: Regulator system constraints must be set for this regulator before
2425 * calling this function otherwise this call will fail.
2426 */
2427int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2428{
2429	struct regulator_dev *rdev = regulator->rdev;
2430	int ret;
2431	int regulator_curr_mode;
2432
2433	mutex_lock(&rdev->mutex);
2434
2435	/* sanity check */
2436	if (!rdev->desc->ops->set_mode) {
2437		ret = -EINVAL;
2438		goto out;
2439	}
2440
2441	/* return if the same mode is requested */
2442	if (rdev->desc->ops->get_mode) {
2443		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2444		if (regulator_curr_mode == mode) {
2445			ret = 0;
2446			goto out;
2447		}
2448	}
2449
2450	/* constraints check */
2451	ret = regulator_mode_constrain(rdev, &mode);
2452	if (ret < 0)
2453		goto out;
2454
2455	ret = rdev->desc->ops->set_mode(rdev, mode);
2456out:
2457	mutex_unlock(&rdev->mutex);
2458	return ret;
2459}
2460EXPORT_SYMBOL_GPL(regulator_set_mode);
2461
2462static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2463{
2464	int ret;
2465
2466	mutex_lock(&rdev->mutex);
2467
2468	/* sanity check */
2469	if (!rdev->desc->ops->get_mode) {
2470		ret = -EINVAL;
2471		goto out;
2472	}
2473
2474	ret = rdev->desc->ops->get_mode(rdev);
2475out:
2476	mutex_unlock(&rdev->mutex);
2477	return ret;
2478}
2479
2480/**
2481 * regulator_get_mode - get regulator operating mode
2482 * @regulator: regulator source
2483 *
2484 * Get the current regulator operating mode.
2485 */
2486unsigned int regulator_get_mode(struct regulator *regulator)
2487{
2488	return _regulator_get_mode(regulator->rdev);
2489}
2490EXPORT_SYMBOL_GPL(regulator_get_mode);
2491
2492/**
2493 * regulator_set_optimum_mode - set regulator optimum operating mode
2494 * @regulator: regulator source
2495 * @uA_load: load current
2496 *
2497 * Notifies the regulator core of a new device load. This is then used by
2498 * DRMS (if enabled by constraints) to set the most efficient regulator
2499 * operating mode for the new regulator loading.
2500 *
2501 * Consumer devices notify their supply regulator of the maximum power
2502 * they will require (can be taken from device datasheet in the power
2503 * consumption tables) when they change operational status and hence power
2504 * state. Examples of operational state changes that can affect power
2505 * consumption are :-
2506 *
2507 *    o Device is opened / closed.
2508 *    o Device I/O is about to begin or has just finished.
2509 *    o Device is idling in between work.
2510 *
2511 * This information is also exported via sysfs to userspace.
2512 *
2513 * DRMS will sum the total requested load on the regulator and change
2514 * to the most efficient operating mode if platform constraints allow.
2515 *
2516 * Returns the new regulator mode or error.
2517 */
2518int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2519{
2520	struct regulator_dev *rdev = regulator->rdev;
2521	struct regulator *consumer;
2522	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2523	unsigned int mode;
2524
2525	if (rdev->supply)
2526		input_uV = regulator_get_voltage(rdev->supply);
2527
2528	mutex_lock(&rdev->mutex);
2529
2530	/*
2531	 * first check to see if we can set modes at all, otherwise just
2532	 * tell the consumer everything is OK.
2533	 */
2534	regulator->uA_load = uA_load;
2535	ret = regulator_check_drms(rdev);
2536	if (ret < 0) {
2537		ret = 0;
2538		goto out;
2539	}
2540
2541	if (!rdev->desc->ops->get_optimum_mode)
2542		goto out;
2543
2544	/*
2545	 * we can actually do this so any errors are indicators of
2546	 * potential real failure.
2547	 */
2548	ret = -EINVAL;
2549
2550	if (!rdev->desc->ops->set_mode)
2551		goto out;
2552
2553	/* get output voltage */
2554	output_uV = _regulator_get_voltage(rdev);
2555	if (output_uV <= 0) {
2556		rdev_err(rdev, "invalid output voltage found\n");
2557		goto out;
2558	}
2559
2560	/* No supply? Use constraint voltage */
 
 
 
2561	if (input_uV <= 0)
2562		input_uV = rdev->constraints->input_uV;
2563	if (input_uV <= 0) {
2564		rdev_err(rdev, "invalid input voltage found\n");
2565		goto out;
2566	}
2567
2568	/* calc total requested load for this regulator */
2569	list_for_each_entry(consumer, &rdev->consumer_list, list)
2570		total_uA_load += consumer->uA_load;
2571
2572	mode = rdev->desc->ops->get_optimum_mode(rdev,
2573						 input_uV, output_uV,
2574						 total_uA_load);
2575	ret = regulator_mode_constrain(rdev, &mode);
2576	if (ret < 0) {
2577		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2578			 total_uA_load, input_uV, output_uV);
2579		goto out;
2580	}
2581
2582	ret = rdev->desc->ops->set_mode(rdev, mode);
2583	if (ret < 0) {
2584		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2585		goto out;
2586	}
2587	ret = mode;
2588out:
2589	mutex_unlock(&rdev->mutex);
2590	return ret;
2591}
2592EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2593
2594/**
2595 * regulator_register_notifier - register regulator event notifier
2596 * @regulator: regulator source
2597 * @nb: notifier block
2598 *
2599 * Register notifier block to receive regulator events.
2600 */
2601int regulator_register_notifier(struct regulator *regulator,
2602			      struct notifier_block *nb)
2603{
2604	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2605						nb);
2606}
2607EXPORT_SYMBOL_GPL(regulator_register_notifier);
2608
2609/**
2610 * regulator_unregister_notifier - unregister regulator event notifier
2611 * @regulator: regulator source
2612 * @nb: notifier block
2613 *
2614 * Unregister regulator event notifier block.
2615 */
2616int regulator_unregister_notifier(struct regulator *regulator,
2617				struct notifier_block *nb)
2618{
2619	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2620						  nb);
2621}
2622EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2623
2624/* notify regulator consumers and downstream regulator consumers.
2625 * Note mutex must be held by caller.
2626 */
2627static void _notifier_call_chain(struct regulator_dev *rdev,
2628				  unsigned long event, void *data)
2629{
2630	/* call rdev chain first */
2631	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2632}
2633
2634/**
2635 * regulator_bulk_get - get multiple regulator consumers
2636 *
2637 * @dev:           Device to supply
2638 * @num_consumers: Number of consumers to register
2639 * @consumers:     Configuration of consumers; clients are stored here.
2640 *
2641 * @return 0 on success, an errno on failure.
2642 *
2643 * This helper function allows drivers to get several regulator
2644 * consumers in one operation.  If any of the regulators cannot be
2645 * acquired then any regulators that were allocated will be freed
2646 * before returning to the caller.
2647 */
2648int regulator_bulk_get(struct device *dev, int num_consumers,
2649		       struct regulator_bulk_data *consumers)
2650{
2651	int i;
2652	int ret;
2653
2654	for (i = 0; i < num_consumers; i++)
2655		consumers[i].consumer = NULL;
2656
2657	for (i = 0; i < num_consumers; i++) {
2658		consumers[i].consumer = regulator_get(dev,
2659						      consumers[i].supply);
2660		if (IS_ERR(consumers[i].consumer)) {
2661			ret = PTR_ERR(consumers[i].consumer);
2662			dev_err(dev, "Failed to get supply '%s': %d\n",
2663				consumers[i].supply, ret);
2664			consumers[i].consumer = NULL;
2665			goto err;
2666		}
2667	}
2668
2669	return 0;
2670
2671err:
2672	while (--i >= 0)
2673		regulator_put(consumers[i].consumer);
2674
2675	return ret;
2676}
2677EXPORT_SYMBOL_GPL(regulator_bulk_get);
2678
2679/**
2680 * devm_regulator_bulk_get - managed get multiple regulator consumers
2681 *
2682 * @dev:           Device to supply
2683 * @num_consumers: Number of consumers to register
2684 * @consumers:     Configuration of consumers; clients are stored here.
2685 *
2686 * @return 0 on success, an errno on failure.
2687 *
2688 * This helper function allows drivers to get several regulator
2689 * consumers in one operation with management, the regulators will
2690 * automatically be freed when the device is unbound.  If any of the
2691 * regulators cannot be acquired then any regulators that were
2692 * allocated will be freed before returning to the caller.
2693 */
2694int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2695			    struct regulator_bulk_data *consumers)
2696{
2697	int i;
2698	int ret;
2699
2700	for (i = 0; i < num_consumers; i++)
2701		consumers[i].consumer = NULL;
2702
2703	for (i = 0; i < num_consumers; i++) {
2704		consumers[i].consumer = devm_regulator_get(dev,
2705							   consumers[i].supply);
2706		if (IS_ERR(consumers[i].consumer)) {
2707			ret = PTR_ERR(consumers[i].consumer);
2708			dev_err(dev, "Failed to get supply '%s': %d\n",
2709				consumers[i].supply, ret);
2710			consumers[i].consumer = NULL;
2711			goto err;
2712		}
2713	}
2714
2715	return 0;
2716
2717err:
2718	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2719		devm_regulator_put(consumers[i].consumer);
2720
2721	return ret;
2722}
2723EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2724
2725static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2726{
2727	struct regulator_bulk_data *bulk = data;
2728
2729	bulk->ret = regulator_enable(bulk->consumer);
2730}
2731
2732/**
2733 * regulator_bulk_enable - enable multiple regulator consumers
2734 *
2735 * @num_consumers: Number of consumers
2736 * @consumers:     Consumer data; clients are stored here.
2737 * @return         0 on success, an errno on failure
2738 *
2739 * This convenience API allows consumers to enable multiple regulator
2740 * clients in a single API call.  If any consumers cannot be enabled
2741 * then any others that were enabled will be disabled again prior to
2742 * return.
2743 */
2744int regulator_bulk_enable(int num_consumers,
2745			  struct regulator_bulk_data *consumers)
2746{
2747	LIST_HEAD(async_domain);
2748	int i;
2749	int ret = 0;
2750
2751	for (i = 0; i < num_consumers; i++) {
2752		if (consumers[i].consumer->always_on)
2753			consumers[i].ret = 0;
2754		else
2755			async_schedule_domain(regulator_bulk_enable_async,
2756					      &consumers[i], &async_domain);
2757	}
2758
2759	async_synchronize_full_domain(&async_domain);
2760
2761	/* If any consumer failed we need to unwind any that succeeded */
2762	for (i = 0; i < num_consumers; i++) {
2763		if (consumers[i].ret != 0) {
2764			ret = consumers[i].ret;
2765			goto err;
2766		}
2767	}
2768
2769	return 0;
2770
2771err:
2772	pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2773	while (--i >= 0)
2774		regulator_disable(consumers[i].consumer);
 
 
 
2775
2776	return ret;
2777}
2778EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2779
2780/**
2781 * regulator_bulk_disable - disable multiple regulator consumers
2782 *
2783 * @num_consumers: Number of consumers
2784 * @consumers:     Consumer data; clients are stored here.
2785 * @return         0 on success, an errno on failure
2786 *
2787 * This convenience API allows consumers to disable multiple regulator
2788 * clients in a single API call.  If any consumers cannot be disabled
2789 * then any others that were disabled will be enabled again prior to
2790 * return.
2791 */
2792int regulator_bulk_disable(int num_consumers,
2793			   struct regulator_bulk_data *consumers)
2794{
2795	int i;
2796	int ret, r;
2797
2798	for (i = num_consumers - 1; i >= 0; --i) {
2799		ret = regulator_disable(consumers[i].consumer);
2800		if (ret != 0)
2801			goto err;
2802	}
2803
2804	return 0;
2805
2806err:
2807	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2808	for (++i; i < num_consumers; ++i) {
2809		r = regulator_enable(consumers[i].consumer);
2810		if (r != 0)
2811			pr_err("Failed to reename %s: %d\n",
2812			       consumers[i].supply, r);
2813	}
2814
2815	return ret;
2816}
2817EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2818
2819/**
2820 * regulator_bulk_force_disable - force disable multiple regulator consumers
2821 *
2822 * @num_consumers: Number of consumers
2823 * @consumers:     Consumer data; clients are stored here.
2824 * @return         0 on success, an errno on failure
2825 *
2826 * This convenience API allows consumers to forcibly disable multiple regulator
2827 * clients in a single API call.
2828 * NOTE: This should be used for situations when device damage will
2829 * likely occur if the regulators are not disabled (e.g. over temp).
2830 * Although regulator_force_disable function call for some consumers can
2831 * return error numbers, the function is called for all consumers.
2832 */
2833int regulator_bulk_force_disable(int num_consumers,
2834			   struct regulator_bulk_data *consumers)
2835{
2836	int i;
2837	int ret;
2838
2839	for (i = 0; i < num_consumers; i++)
2840		consumers[i].ret =
2841			    regulator_force_disable(consumers[i].consumer);
2842
2843	for (i = 0; i < num_consumers; i++) {
2844		if (consumers[i].ret != 0) {
2845			ret = consumers[i].ret;
2846			goto out;
2847		}
2848	}
2849
2850	return 0;
2851out:
2852	return ret;
2853}
2854EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2855
2856/**
2857 * regulator_bulk_free - free multiple regulator consumers
2858 *
2859 * @num_consumers: Number of consumers
2860 * @consumers:     Consumer data; clients are stored here.
2861 *
2862 * This convenience API allows consumers to free multiple regulator
2863 * clients in a single API call.
2864 */
2865void regulator_bulk_free(int num_consumers,
2866			 struct regulator_bulk_data *consumers)
2867{
2868	int i;
2869
2870	for (i = 0; i < num_consumers; i++) {
2871		regulator_put(consumers[i].consumer);
2872		consumers[i].consumer = NULL;
2873	}
2874}
2875EXPORT_SYMBOL_GPL(regulator_bulk_free);
2876
2877/**
2878 * regulator_notifier_call_chain - call regulator event notifier
2879 * @rdev: regulator source
2880 * @event: notifier block
2881 * @data: callback-specific data.
2882 *
2883 * Called by regulator drivers to notify clients a regulator event has
2884 * occurred. We also notify regulator clients downstream.
2885 * Note lock must be held by caller.
2886 */
2887int regulator_notifier_call_chain(struct regulator_dev *rdev,
2888				  unsigned long event, void *data)
2889{
2890	_notifier_call_chain(rdev, event, data);
2891	return NOTIFY_DONE;
2892
2893}
2894EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2895
2896/**
2897 * regulator_mode_to_status - convert a regulator mode into a status
2898 *
2899 * @mode: Mode to convert
2900 *
2901 * Convert a regulator mode into a status.
2902 */
2903int regulator_mode_to_status(unsigned int mode)
2904{
2905	switch (mode) {
2906	case REGULATOR_MODE_FAST:
2907		return REGULATOR_STATUS_FAST;
2908	case REGULATOR_MODE_NORMAL:
2909		return REGULATOR_STATUS_NORMAL;
2910	case REGULATOR_MODE_IDLE:
2911		return REGULATOR_STATUS_IDLE;
2912	case REGULATOR_STATUS_STANDBY:
2913		return REGULATOR_STATUS_STANDBY;
2914	default:
2915		return 0;
2916	}
2917}
2918EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2919
2920/*
2921 * To avoid cluttering sysfs (and memory) with useless state, only
2922 * create attributes that can be meaningfully displayed.
2923 */
2924static int add_regulator_attributes(struct regulator_dev *rdev)
2925{
2926	struct device		*dev = &rdev->dev;
2927	struct regulator_ops	*ops = rdev->desc->ops;
2928	int			status = 0;
2929
2930	/* some attributes need specific methods to be displayed */
2931	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2932	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2933		status = device_create_file(dev, &dev_attr_microvolts);
2934		if (status < 0)
2935			return status;
2936	}
2937	if (ops->get_current_limit) {
2938		status = device_create_file(dev, &dev_attr_microamps);
2939		if (status < 0)
2940			return status;
2941	}
2942	if (ops->get_mode) {
2943		status = device_create_file(dev, &dev_attr_opmode);
2944		if (status < 0)
2945			return status;
2946	}
2947	if (ops->is_enabled) {
2948		status = device_create_file(dev, &dev_attr_state);
2949		if (status < 0)
2950			return status;
2951	}
2952	if (ops->get_status) {
2953		status = device_create_file(dev, &dev_attr_status);
2954		if (status < 0)
2955			return status;
2956	}
2957
2958	/* some attributes are type-specific */
2959	if (rdev->desc->type == REGULATOR_CURRENT) {
2960		status = device_create_file(dev, &dev_attr_requested_microamps);
2961		if (status < 0)
2962			return status;
2963	}
2964
2965	/* all the other attributes exist to support constraints;
2966	 * don't show them if there are no constraints, or if the
2967	 * relevant supporting methods are missing.
2968	 */
2969	if (!rdev->constraints)
2970		return status;
2971
2972	/* constraints need specific supporting methods */
2973	if (ops->set_voltage || ops->set_voltage_sel) {
2974		status = device_create_file(dev, &dev_attr_min_microvolts);
2975		if (status < 0)
2976			return status;
2977		status = device_create_file(dev, &dev_attr_max_microvolts);
2978		if (status < 0)
2979			return status;
2980	}
2981	if (ops->set_current_limit) {
2982		status = device_create_file(dev, &dev_attr_min_microamps);
2983		if (status < 0)
2984			return status;
2985		status = device_create_file(dev, &dev_attr_max_microamps);
2986		if (status < 0)
2987			return status;
2988	}
2989
 
 
 
 
2990	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2991	if (status < 0)
2992		return status;
2993	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2994	if (status < 0)
2995		return status;
2996	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2997	if (status < 0)
2998		return status;
2999
3000	if (ops->set_suspend_voltage) {
3001		status = device_create_file(dev,
3002				&dev_attr_suspend_standby_microvolts);
3003		if (status < 0)
3004			return status;
3005		status = device_create_file(dev,
3006				&dev_attr_suspend_mem_microvolts);
3007		if (status < 0)
3008			return status;
3009		status = device_create_file(dev,
3010				&dev_attr_suspend_disk_microvolts);
3011		if (status < 0)
3012			return status;
3013	}
3014
3015	if (ops->set_suspend_mode) {
3016		status = device_create_file(dev,
3017				&dev_attr_suspend_standby_mode);
3018		if (status < 0)
3019			return status;
3020		status = device_create_file(dev,
3021				&dev_attr_suspend_mem_mode);
3022		if (status < 0)
3023			return status;
3024		status = device_create_file(dev,
3025				&dev_attr_suspend_disk_mode);
3026		if (status < 0)
3027			return status;
3028	}
3029
3030	return status;
3031}
3032
3033static void rdev_init_debugfs(struct regulator_dev *rdev)
3034{
 
3035	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3036	if (!rdev->debugfs) {
3037		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
3038		return;
3039	}
3040
3041	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3042			   &rdev->use_count);
3043	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3044			   &rdev->open_count);
 
3045}
3046
3047/**
3048 * regulator_register - register regulator
3049 * @regulator_desc: regulator to register
3050 * @config: runtime configuration for regulator
 
 
3051 *
3052 * Called by regulator drivers to register a regulator.
3053 * Returns 0 on success.
3054 */
3055struct regulator_dev *
3056regulator_register(const struct regulator_desc *regulator_desc,
3057		   const struct regulator_config *config)
3058{
3059	const struct regulation_constraints *constraints = NULL;
3060	const struct regulator_init_data *init_data;
3061	static atomic_t regulator_no = ATOMIC_INIT(0);
3062	struct regulator_dev *rdev;
3063	struct device *dev;
3064	int ret, i;
3065	const char *supply = NULL;
3066
3067	if (regulator_desc == NULL || config == NULL)
3068		return ERR_PTR(-EINVAL);
3069
3070	dev = config->dev;
3071	WARN_ON(!dev);
3072
3073	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3074		return ERR_PTR(-EINVAL);
3075
3076	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3077	    regulator_desc->type != REGULATOR_CURRENT)
3078		return ERR_PTR(-EINVAL);
3079
 
 
 
3080	/* Only one of each should be implemented */
3081	WARN_ON(regulator_desc->ops->get_voltage &&
3082		regulator_desc->ops->get_voltage_sel);
3083	WARN_ON(regulator_desc->ops->set_voltage &&
3084		regulator_desc->ops->set_voltage_sel);
3085
3086	/* If we're using selectors we must implement list_voltage. */
3087	if (regulator_desc->ops->get_voltage_sel &&
3088	    !regulator_desc->ops->list_voltage) {
3089		return ERR_PTR(-EINVAL);
3090	}
3091	if (regulator_desc->ops->set_voltage_sel &&
3092	    !regulator_desc->ops->list_voltage) {
3093		return ERR_PTR(-EINVAL);
3094	}
3095
3096	init_data = config->init_data;
3097
3098	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3099	if (rdev == NULL)
3100		return ERR_PTR(-ENOMEM);
3101
3102	mutex_lock(&regulator_list_mutex);
3103
3104	mutex_init(&rdev->mutex);
3105	rdev->reg_data = config->driver_data;
3106	rdev->owner = regulator_desc->owner;
3107	rdev->desc = regulator_desc;
3108	rdev->regmap = config->regmap;
3109	INIT_LIST_HEAD(&rdev->consumer_list);
3110	INIT_LIST_HEAD(&rdev->list);
3111	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3112	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3113
3114	/* preform any regulator specific init */
3115	if (init_data && init_data->regulator_init) {
3116		ret = init_data->regulator_init(rdev->reg_data);
3117		if (ret < 0)
3118			goto clean;
3119	}
3120
3121	/* register with sysfs */
3122	rdev->dev.class = &regulator_class;
3123	rdev->dev.of_node = config->of_node;
3124	rdev->dev.parent = dev;
3125	dev_set_name(&rdev->dev, "regulator.%d",
3126		     atomic_inc_return(&regulator_no) - 1);
3127	ret = device_register(&rdev->dev);
3128	if (ret != 0) {
3129		put_device(&rdev->dev);
3130		goto clean;
3131	}
3132
3133	dev_set_drvdata(&rdev->dev, rdev);
3134
3135	/* set regulator constraints */
3136	if (init_data)
3137		constraints = &init_data->constraints;
3138
3139	ret = set_machine_constraints(rdev, constraints);
3140	if (ret < 0)
3141		goto scrub;
3142
3143	/* add attributes supported by this regulator */
3144	ret = add_regulator_attributes(rdev);
3145	if (ret < 0)
3146		goto scrub;
3147
3148	if (init_data && init_data->supply_regulator)
3149		supply = init_data->supply_regulator;
3150	else if (regulator_desc->supply_name)
3151		supply = regulator_desc->supply_name;
3152
3153	if (supply) {
3154		struct regulator_dev *r;
 
3155
3156		r = regulator_dev_lookup(dev, supply, &ret);
 
 
 
 
 
 
3157
3158		if (!r) {
3159			dev_err(dev, "Failed to find supply %s\n", supply);
3160			ret = -EPROBE_DEFER;
 
3161			goto scrub;
3162		}
3163
3164		ret = set_supply(rdev, r);
3165		if (ret < 0)
3166			goto scrub;
3167
3168		/* Enable supply if rail is enabled */
3169		if (_regulator_is_enabled(rdev)) {
3170			ret = regulator_enable(rdev->supply);
3171			if (ret < 0)
3172				goto scrub;
3173		}
3174	}
3175
3176	/* add consumers devices */
3177	if (init_data) {
3178		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3179			ret = set_consumer_device_supply(rdev,
3180				init_data->consumer_supplies[i].dev_name,
 
 
 
3181				init_data->consumer_supplies[i].supply);
3182			if (ret < 0) {
3183				dev_err(dev, "Failed to set supply %s\n",
3184					init_data->consumer_supplies[i].supply);
3185				goto unset_supplies;
3186			}
3187		}
3188	}
3189
3190	list_add(&rdev->list, &regulator_list);
3191
3192	rdev_init_debugfs(rdev);
3193out:
3194	mutex_unlock(&regulator_list_mutex);
3195	return rdev;
3196
3197unset_supplies:
3198	unset_regulator_supplies(rdev);
3199
3200scrub:
3201	if (rdev->supply)
3202		regulator_put(rdev->supply);
3203	kfree(rdev->constraints);
3204	device_unregister(&rdev->dev);
3205	/* device core frees rdev */
3206	rdev = ERR_PTR(ret);
3207	goto out;
3208
3209clean:
3210	kfree(rdev);
3211	rdev = ERR_PTR(ret);
3212	goto out;
3213}
3214EXPORT_SYMBOL_GPL(regulator_register);
3215
3216/**
3217 * regulator_unregister - unregister regulator
3218 * @rdev: regulator to unregister
3219 *
3220 * Called by regulator drivers to unregister a regulator.
3221 */
3222void regulator_unregister(struct regulator_dev *rdev)
3223{
3224	if (rdev == NULL)
3225		return;
3226
3227	if (rdev->supply)
3228		regulator_put(rdev->supply);
3229	mutex_lock(&regulator_list_mutex);
 
3230	debugfs_remove_recursive(rdev->debugfs);
3231	flush_work_sync(&rdev->disable_work.work);
3232	WARN_ON(rdev->open_count);
3233	unset_regulator_supplies(rdev);
3234	list_del(&rdev->list);
 
 
 
3235	kfree(rdev->constraints);
3236	device_unregister(&rdev->dev);
3237	mutex_unlock(&regulator_list_mutex);
3238}
3239EXPORT_SYMBOL_GPL(regulator_unregister);
3240
3241/**
3242 * regulator_suspend_prepare - prepare regulators for system wide suspend
3243 * @state: system suspend state
3244 *
3245 * Configure each regulator with it's suspend operating parameters for state.
3246 * This will usually be called by machine suspend code prior to supending.
3247 */
3248int regulator_suspend_prepare(suspend_state_t state)
3249{
3250	struct regulator_dev *rdev;
3251	int ret = 0;
3252
3253	/* ON is handled by regulator active state */
3254	if (state == PM_SUSPEND_ON)
3255		return -EINVAL;
3256
3257	mutex_lock(&regulator_list_mutex);
3258	list_for_each_entry(rdev, &regulator_list, list) {
3259
3260		mutex_lock(&rdev->mutex);
3261		ret = suspend_prepare(rdev, state);
3262		mutex_unlock(&rdev->mutex);
3263
3264		if (ret < 0) {
3265			rdev_err(rdev, "failed to prepare\n");
3266			goto out;
3267		}
3268	}
3269out:
3270	mutex_unlock(&regulator_list_mutex);
3271	return ret;
3272}
3273EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3274
3275/**
3276 * regulator_suspend_finish - resume regulators from system wide suspend
3277 *
3278 * Turn on regulators that might be turned off by regulator_suspend_prepare
3279 * and that should be turned on according to the regulators properties.
3280 */
3281int regulator_suspend_finish(void)
3282{
3283	struct regulator_dev *rdev;
3284	int ret = 0, error;
3285
3286	mutex_lock(&regulator_list_mutex);
3287	list_for_each_entry(rdev, &regulator_list, list) {
3288		struct regulator_ops *ops = rdev->desc->ops;
3289
3290		mutex_lock(&rdev->mutex);
3291		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3292				ops->enable) {
3293			error = ops->enable(rdev);
3294			if (error)
3295				ret = error;
3296		} else {
3297			if (!has_full_constraints)
3298				goto unlock;
3299			if (!ops->disable)
3300				goto unlock;
3301			if (!_regulator_is_enabled(rdev))
3302				goto unlock;
3303
3304			error = ops->disable(rdev);
3305			if (error)
3306				ret = error;
3307		}
3308unlock:
3309		mutex_unlock(&rdev->mutex);
3310	}
3311	mutex_unlock(&regulator_list_mutex);
3312	return ret;
3313}
3314EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3315
3316/**
3317 * regulator_has_full_constraints - the system has fully specified constraints
3318 *
3319 * Calling this function will cause the regulator API to disable all
3320 * regulators which have a zero use count and don't have an always_on
3321 * constraint in a late_initcall.
3322 *
3323 * The intention is that this will become the default behaviour in a
3324 * future kernel release so users are encouraged to use this facility
3325 * now.
3326 */
3327void regulator_has_full_constraints(void)
3328{
3329	has_full_constraints = 1;
3330}
3331EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3332
3333/**
3334 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3335 *
3336 * Calling this function will cause the regulator API to provide a
3337 * dummy regulator to consumers if no physical regulator is found,
3338 * allowing most consumers to proceed as though a regulator were
3339 * configured.  This allows systems such as those with software
3340 * controllable regulators for the CPU core only to be brought up more
3341 * readily.
3342 */
3343void regulator_use_dummy_regulator(void)
3344{
3345	board_wants_dummy_regulator = true;
3346}
3347EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3348
3349/**
3350 * rdev_get_drvdata - get rdev regulator driver data
3351 * @rdev: regulator
3352 *
3353 * Get rdev regulator driver private data. This call can be used in the
3354 * regulator driver context.
3355 */
3356void *rdev_get_drvdata(struct regulator_dev *rdev)
3357{
3358	return rdev->reg_data;
3359}
3360EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3361
3362/**
3363 * regulator_get_drvdata - get regulator driver data
3364 * @regulator: regulator
3365 *
3366 * Get regulator driver private data. This call can be used in the consumer
3367 * driver context when non API regulator specific functions need to be called.
3368 */
3369void *regulator_get_drvdata(struct regulator *regulator)
3370{
3371	return regulator->rdev->reg_data;
3372}
3373EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3374
3375/**
3376 * regulator_set_drvdata - set regulator driver data
3377 * @regulator: regulator
3378 * @data: data
3379 */
3380void regulator_set_drvdata(struct regulator *regulator, void *data)
3381{
3382	regulator->rdev->reg_data = data;
3383}
3384EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3385
3386/**
3387 * regulator_get_id - get regulator ID
3388 * @rdev: regulator
3389 */
3390int rdev_get_id(struct regulator_dev *rdev)
3391{
3392	return rdev->desc->id;
3393}
3394EXPORT_SYMBOL_GPL(rdev_get_id);
3395
3396struct device *rdev_get_dev(struct regulator_dev *rdev)
3397{
3398	return &rdev->dev;
3399}
3400EXPORT_SYMBOL_GPL(rdev_get_dev);
3401
3402void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3403{
3404	return reg_init_data->driver_data;
3405}
3406EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3407
3408#ifdef CONFIG_DEBUG_FS
3409static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3410				    size_t count, loff_t *ppos)
3411{
3412	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3413	ssize_t len, ret = 0;
3414	struct regulator_map *map;
3415
3416	if (!buf)
3417		return -ENOMEM;
3418
3419	list_for_each_entry(map, &regulator_map_list, list) {
3420		len = snprintf(buf + ret, PAGE_SIZE - ret,
3421			       "%s -> %s.%s\n",
3422			       rdev_get_name(map->regulator), map->dev_name,
3423			       map->supply);
3424		if (len >= 0)
3425			ret += len;
3426		if (ret > PAGE_SIZE) {
3427			ret = PAGE_SIZE;
3428			break;
3429		}
3430	}
3431
3432	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3433
3434	kfree(buf);
3435
3436	return ret;
3437}
3438#endif
3439
3440static const struct file_operations supply_map_fops = {
3441#ifdef CONFIG_DEBUG_FS
3442	.read = supply_map_read_file,
3443	.llseek = default_llseek,
3444#endif
3445};
3446
3447static int __init regulator_init(void)
3448{
3449	int ret;
3450
3451	ret = class_register(&regulator_class);
3452
 
3453	debugfs_root = debugfs_create_dir("regulator", NULL);
3454	if (!debugfs_root)
3455		pr_warn("regulator: Failed to create debugfs directory\n");
3456
3457	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3458			    &supply_map_fops);
3459
3460	regulator_dummy_init();
3461
3462	return ret;
3463}
3464
3465/* init early to allow our consumers to complete system booting */
3466core_initcall(regulator_init);
3467
3468static int __init regulator_init_complete(void)
3469{
3470	struct regulator_dev *rdev;
3471	struct regulator_ops *ops;
3472	struct regulation_constraints *c;
3473	int enabled, ret;
3474
3475	mutex_lock(&regulator_list_mutex);
3476
3477	/* If we have a full configuration then disable any regulators
3478	 * which are not in use or always_on.  This will become the
3479	 * default behaviour in the future.
3480	 */
3481	list_for_each_entry(rdev, &regulator_list, list) {
3482		ops = rdev->desc->ops;
3483		c = rdev->constraints;
3484
3485		if (!ops->disable || (c && c->always_on))
3486			continue;
3487
3488		mutex_lock(&rdev->mutex);
3489
3490		if (rdev->use_count)
3491			goto unlock;
3492
3493		/* If we can't read the status assume it's on. */
3494		if (ops->is_enabled)
3495			enabled = ops->is_enabled(rdev);
3496		else
3497			enabled = 1;
3498
3499		if (!enabled)
3500			goto unlock;
3501
3502		if (has_full_constraints) {
3503			/* We log since this may kill the system if it
3504			 * goes wrong. */
3505			rdev_info(rdev, "disabling\n");
3506			ret = ops->disable(rdev);
3507			if (ret != 0) {
3508				rdev_err(rdev, "couldn't disable: %d\n", ret);
3509			}
3510		} else {
3511			/* The intention is that in future we will
3512			 * assume that full constraints are provided
3513			 * so warn even if we aren't going to do
3514			 * anything here.
3515			 */
3516			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3517		}
3518
3519unlock:
3520		mutex_unlock(&rdev->mutex);
3521	}
3522
3523	mutex_unlock(&regulator_list_mutex);
3524
3525	return 0;
3526}
3527late_initcall(regulator_init_complete);