Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v3.1
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
 
 
 
 
  28#include <linux/regulator/consumer.h>
 
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/regulator.h>
  34
  35#include "dummy.h"
 
  36
  37#define rdev_crit(rdev, fmt, ...)					\
  38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  39#define rdev_err(rdev, fmt, ...)					\
  40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_warn(rdev, fmt, ...)					\
  42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_info(rdev, fmt, ...)					\
  44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_dbg(rdev, fmt, ...)					\
  46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47
 
 
  48static DEFINE_MUTEX(regulator_list_mutex);
  49static LIST_HEAD(regulator_list);
  50static LIST_HEAD(regulator_map_list);
 
 
 
  51static bool has_full_constraints;
  52static bool board_wants_dummy_regulator;
  53
  54#ifdef CONFIG_DEBUG_FS
  55static struct dentry *debugfs_root;
  56#endif
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
  78	int uA_load;
  79	int min_uV;
  80	int max_uV;
  81	char *supply_name;
  82	struct device_attribute dev_attr;
  83	struct regulator_dev *rdev;
  84#ifdef CONFIG_DEBUG_FS
  85	struct dentry *debugfs;
  86#endif
 
 
 
 
 
 
 
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95				  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97				     int min_uV, int max_uV);
 
 
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99					  struct device *dev,
 100					  const char *supply_name);
 
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104	if (rdev->constraints && rdev->constraints->name)
 105		return rdev->constraints->name;
 106	else if (rdev->desc->name)
 107		return rdev->desc->name;
 108	else
 109		return "";
 110}
 111
 112/* gets the regulator for a given consumer device */
 113static struct regulator *get_device_regulator(struct device *dev)
 114{
 115	struct regulator *regulator = NULL;
 116	struct regulator_dev *rdev;
 117
 118	mutex_lock(&regulator_list_mutex);
 119	list_for_each_entry(rdev, &regulator_list, list) {
 120		mutex_lock(&rdev->mutex);
 121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 122			if (regulator->dev == dev) {
 123				mutex_unlock(&rdev->mutex);
 124				mutex_unlock(&regulator_list_mutex);
 125				return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126			}
 127		}
 128		mutex_unlock(&rdev->mutex);
 129	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134/* Platform voltage constraint check */
 135static int regulator_check_voltage(struct regulator_dev *rdev,
 136				   int *min_uV, int *max_uV)
 137{
 138	BUG_ON(*min_uV > *max_uV);
 139
 140	if (!rdev->constraints) {
 141		rdev_err(rdev, "no constraints\n");
 142		return -ENODEV;
 143	}
 144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 145		rdev_err(rdev, "operation not allowed\n");
 146		return -EPERM;
 147	}
 148
 149	if (*max_uV > rdev->constraints->max_uV)
 150		*max_uV = rdev->constraints->max_uV;
 151	if (*min_uV < rdev->constraints->min_uV)
 152		*min_uV = rdev->constraints->min_uV;
 153
 154	if (*min_uV > *max_uV) {
 155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 156			 *min_uV, *max_uV);
 157		return -EINVAL;
 158	}
 159
 160	return 0;
 161}
 162
 
 
 
 
 
 
 163/* Make sure we select a voltage that suits the needs of all
 164 * regulator consumers
 165 */
 166static int regulator_check_consumers(struct regulator_dev *rdev,
 167				     int *min_uV, int *max_uV)
 
 168{
 169	struct regulator *regulator;
 
 170
 171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 172		/*
 173		 * Assume consumers that didn't say anything are OK
 174		 * with anything in the constraint range.
 175		 */
 176		if (!regulator->min_uV && !regulator->max_uV)
 177			continue;
 178
 179		if (*max_uV > regulator->max_uV)
 180			*max_uV = regulator->max_uV;
 181		if (*min_uV < regulator->min_uV)
 182			*min_uV = regulator->min_uV;
 183	}
 184
 185	if (*min_uV > *max_uV)
 
 
 186		return -EINVAL;
 
 187
 188	return 0;
 189}
 190
 191/* current constraint check */
 192static int regulator_check_current_limit(struct regulator_dev *rdev,
 193					int *min_uA, int *max_uA)
 194{
 195	BUG_ON(*min_uA > *max_uA);
 196
 197	if (!rdev->constraints) {
 198		rdev_err(rdev, "no constraints\n");
 199		return -ENODEV;
 200	}
 201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 202		rdev_err(rdev, "operation not allowed\n");
 203		return -EPERM;
 204	}
 205
 206	if (*max_uA > rdev->constraints->max_uA)
 207		*max_uA = rdev->constraints->max_uA;
 208	if (*min_uA < rdev->constraints->min_uA)
 209		*min_uA = rdev->constraints->min_uA;
 210
 211	if (*min_uA > *max_uA) {
 212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 213			 *min_uA, *max_uA);
 214		return -EINVAL;
 215	}
 216
 217	return 0;
 218}
 219
 220/* operating mode constraint check */
 221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 222{
 223	switch (*mode) {
 224	case REGULATOR_MODE_FAST:
 225	case REGULATOR_MODE_NORMAL:
 226	case REGULATOR_MODE_IDLE:
 227	case REGULATOR_MODE_STANDBY:
 228		break;
 229	default:
 230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 231		return -EINVAL;
 232	}
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	/* The modes are bitmasks, the most power hungry modes having
 244	 * the lowest values. If the requested mode isn't supported
 245	 * try higher modes. */
 246	while (*mode) {
 247		if (rdev->constraints->valid_modes_mask & *mode)
 248			return 0;
 249		*mode /= 2;
 250	}
 251
 252	return -EINVAL;
 253}
 254
 255/* dynamic regulator mode switching constraint check */
 256static int regulator_check_drms(struct regulator_dev *rdev)
 257{
 258	if (!rdev->constraints) {
 259		rdev_err(rdev, "no constraints\n");
 260		return -ENODEV;
 261	}
 262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 263		rdev_err(rdev, "operation not allowed\n");
 264		return -EPERM;
 265	}
 266	return 0;
 267}
 268
 269static ssize_t device_requested_uA_show(struct device *dev,
 270			     struct device_attribute *attr, char *buf)
 271{
 272	struct regulator *regulator;
 273
 274	regulator = get_device_regulator(dev);
 275	if (regulator == NULL)
 276		return 0;
 277
 278	return sprintf(buf, "%d\n", regulator->uA_load);
 
 
 
 
 
 
 
 
 
 279}
 280
 281static ssize_t regulator_uV_show(struct device *dev,
 282				struct device_attribute *attr, char *buf)
 283{
 284	struct regulator_dev *rdev = dev_get_drvdata(dev);
 285	ssize_t ret;
 286
 287	mutex_lock(&rdev->mutex);
 288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 289	mutex_unlock(&rdev->mutex);
 290
 291	return ret;
 
 
 
 
 
 
 292}
 293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 294
 295static ssize_t regulator_uA_show(struct device *dev,
 296				struct device_attribute *attr, char *buf)
 297{
 298	struct regulator_dev *rdev = dev_get_drvdata(dev);
 299
 300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 301}
 302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 303
 304static ssize_t regulator_name_show(struct device *dev,
 305			     struct device_attribute *attr, char *buf)
 306{
 307	struct regulator_dev *rdev = dev_get_drvdata(dev);
 308
 309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 310}
 
 311
 312static ssize_t regulator_print_opmode(char *buf, int mode)
 313{
 314	switch (mode) {
 315	case REGULATOR_MODE_FAST:
 316		return sprintf(buf, "fast\n");
 317	case REGULATOR_MODE_NORMAL:
 318		return sprintf(buf, "normal\n");
 319	case REGULATOR_MODE_IDLE:
 320		return sprintf(buf, "idle\n");
 321	case REGULATOR_MODE_STANDBY:
 322		return sprintf(buf, "standby\n");
 323	}
 324	return sprintf(buf, "unknown\n");
 
 
 
 
 
 325}
 326
 327static ssize_t regulator_opmode_show(struct device *dev,
 328				    struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 333}
 334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 335
 336static ssize_t regulator_print_state(char *buf, int state)
 337{
 338	if (state > 0)
 339		return sprintf(buf, "enabled\n");
 340	else if (state == 0)
 341		return sprintf(buf, "disabled\n");
 342	else
 343		return sprintf(buf, "unknown\n");
 344}
 345
 346static ssize_t regulator_state_show(struct device *dev,
 347				   struct device_attribute *attr, char *buf)
 348{
 349	struct regulator_dev *rdev = dev_get_drvdata(dev);
 350	ssize_t ret;
 351
 352	mutex_lock(&rdev->mutex);
 353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 354	mutex_unlock(&rdev->mutex);
 355
 356	return ret;
 357}
 358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 359
 360static ssize_t regulator_status_show(struct device *dev,
 361				   struct device_attribute *attr, char *buf)
 362{
 363	struct regulator_dev *rdev = dev_get_drvdata(dev);
 364	int status;
 365	char *label;
 366
 367	status = rdev->desc->ops->get_status(rdev);
 368	if (status < 0)
 369		return status;
 370
 371	switch (status) {
 372	case REGULATOR_STATUS_OFF:
 373		label = "off";
 374		break;
 375	case REGULATOR_STATUS_ON:
 376		label = "on";
 377		break;
 378	case REGULATOR_STATUS_ERROR:
 379		label = "error";
 380		break;
 381	case REGULATOR_STATUS_FAST:
 382		label = "fast";
 383		break;
 384	case REGULATOR_STATUS_NORMAL:
 385		label = "normal";
 386		break;
 387	case REGULATOR_STATUS_IDLE:
 388		label = "idle";
 389		break;
 390	case REGULATOR_STATUS_STANDBY:
 391		label = "standby";
 392		break;
 
 
 
 
 
 
 393	default:
 394		return -ERANGE;
 395	}
 396
 397	return sprintf(buf, "%s\n", label);
 398}
 399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 400
 401static ssize_t regulator_min_uA_show(struct device *dev,
 402				    struct device_attribute *attr, char *buf)
 403{
 404	struct regulator_dev *rdev = dev_get_drvdata(dev);
 405
 406	if (!rdev->constraints)
 407		return sprintf(buf, "constraint not defined\n");
 408
 409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 410}
 411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 412
 413static ssize_t regulator_max_uA_show(struct device *dev,
 414				    struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417
 418	if (!rdev->constraints)
 419		return sprintf(buf, "constraint not defined\n");
 420
 421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 422}
 423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 424
 425static ssize_t regulator_min_uV_show(struct device *dev,
 426				    struct device_attribute *attr, char *buf)
 427{
 428	struct regulator_dev *rdev = dev_get_drvdata(dev);
 429
 430	if (!rdev->constraints)
 431		return sprintf(buf, "constraint not defined\n");
 432
 433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 434}
 435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 436
 437static ssize_t regulator_max_uV_show(struct device *dev,
 438				    struct device_attribute *attr, char *buf)
 439{
 440	struct regulator_dev *rdev = dev_get_drvdata(dev);
 441
 442	if (!rdev->constraints)
 443		return sprintf(buf, "constraint not defined\n");
 444
 445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 446}
 447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 448
 449static ssize_t regulator_total_uA_show(struct device *dev,
 450				      struct device_attribute *attr, char *buf)
 451{
 452	struct regulator_dev *rdev = dev_get_drvdata(dev);
 453	struct regulator *regulator;
 454	int uA = 0;
 455
 456	mutex_lock(&rdev->mutex);
 457	list_for_each_entry(regulator, &rdev->consumer_list, list)
 458		uA += regulator->uA_load;
 459	mutex_unlock(&rdev->mutex);
 
 
 460	return sprintf(buf, "%d\n", uA);
 461}
 462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 463
 464static ssize_t regulator_num_users_show(struct device *dev,
 465				      struct device_attribute *attr, char *buf)
 466{
 467	struct regulator_dev *rdev = dev_get_drvdata(dev);
 468	return sprintf(buf, "%d\n", rdev->use_count);
 469}
 
 470
 471static ssize_t regulator_type_show(struct device *dev,
 472				  struct device_attribute *attr, char *buf)
 473{
 474	struct regulator_dev *rdev = dev_get_drvdata(dev);
 475
 476	switch (rdev->desc->type) {
 477	case REGULATOR_VOLTAGE:
 478		return sprintf(buf, "voltage\n");
 479	case REGULATOR_CURRENT:
 480		return sprintf(buf, "current\n");
 481	}
 482	return sprintf(buf, "unknown\n");
 483}
 
 484
 485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 486				struct device_attribute *attr, char *buf)
 487{
 488	struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 491}
 492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 493		regulator_suspend_mem_uV_show, NULL);
 494
 495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 496				struct device_attribute *attr, char *buf)
 497{
 498	struct regulator_dev *rdev = dev_get_drvdata(dev);
 499
 500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 501}
 502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 503		regulator_suspend_disk_uV_show, NULL);
 504
 505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 506				struct device_attribute *attr, char *buf)
 507{
 508	struct regulator_dev *rdev = dev_get_drvdata(dev);
 509
 510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 511}
 512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 513		regulator_suspend_standby_uV_show, NULL);
 514
 515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 516				struct device_attribute *attr, char *buf)
 517{
 518	struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520	return regulator_print_opmode(buf,
 521		rdev->constraints->state_mem.mode);
 522}
 523static DEVICE_ATTR(suspend_mem_mode, 0444,
 524		regulator_suspend_mem_mode_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return regulator_print_opmode(buf,
 532		rdev->constraints->state_disk.mode);
 533}
 534static DEVICE_ATTR(suspend_disk_mode, 0444,
 535		regulator_suspend_disk_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 538				struct device_attribute *attr, char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542	return regulator_print_opmode(buf,
 543		rdev->constraints->state_standby.mode);
 544}
 545static DEVICE_ATTR(suspend_standby_mode, 0444,
 546		regulator_suspend_standby_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 549				   struct device_attribute *attr, char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	return regulator_print_state(buf,
 554			rdev->constraints->state_mem.enabled);
 555}
 556static DEVICE_ATTR(suspend_mem_state, 0444,
 557		regulator_suspend_mem_state_show, NULL);
 558
 559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 560				   struct device_attribute *attr, char *buf)
 561{
 562	struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564	return regulator_print_state(buf,
 565			rdev->constraints->state_disk.enabled);
 566}
 567static DEVICE_ATTR(suspend_disk_state, 0444,
 568		regulator_suspend_disk_state_show, NULL);
 569
 570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 571				   struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_state(buf,
 576			rdev->constraints->state_standby.enabled);
 577}
 578static DEVICE_ATTR(suspend_standby_state, 0444,
 579		regulator_suspend_standby_state_show, NULL);
 580
 581
 582/*
 583 * These are the only attributes are present for all regulators.
 584 * Other attributes are a function of regulator functionality.
 585 */
 586static struct device_attribute regulator_dev_attrs[] = {
 587	__ATTR(name, 0444, regulator_name_show, NULL),
 588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 589	__ATTR(type, 0444, regulator_type_show, NULL),
 590	__ATTR_NULL,
 591};
 592
 593static void regulator_dev_release(struct device *dev)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596	kfree(rdev);
 597}
 
 598
 599static struct class regulator_class = {
 600	.name = "regulator",
 601	.dev_release = regulator_dev_release,
 602	.dev_attrs = regulator_dev_attrs,
 603};
 
 
 
 
 
 
 
 
 604
 605/* Calculate the new optimum regulator operating mode based on the new total
 606 * consumer load. All locks held by caller */
 607static void drms_uA_update(struct regulator_dev *rdev)
 608{
 609	struct regulator *sibling;
 610	int current_uA = 0, output_uV, input_uV, err;
 611	unsigned int mode;
 612
 613	err = regulator_check_drms(rdev);
 614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 615	    (!rdev->desc->ops->get_voltage &&
 616	     !rdev->desc->ops->get_voltage_sel) ||
 617	    !rdev->desc->ops->set_mode)
 618		return;
 
 
 619
 620	/* get output voltage */
 621	output_uV = _regulator_get_voltage(rdev);
 622	if (output_uV <= 0)
 623		return;
 624
 625	/* get input voltage */
 626	input_uV = 0;
 627	if (rdev->supply)
 628		input_uV = _regulator_get_voltage(rdev);
 629	if (input_uV <= 0)
 630		input_uV = rdev->constraints->input_uV;
 631	if (input_uV <= 0)
 632		return;
 633
 634	/* calc total requested load */
 635	list_for_each_entry(sibling, &rdev->consumer_list, list)
 636		current_uA += sibling->uA_load;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638	/* now get the optimum mode for our new total regulator load */
 639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 640						  output_uV, current_uA);
 641
 642	/* check the new mode is allowed */
 643	err = regulator_mode_constrain(rdev, &mode);
 644	if (err == 0)
 645		rdev->desc->ops->set_mode(rdev, mode);
 
 
 
 
 
 
 
 
 
 
 646}
 647
 648static int suspend_set_state(struct regulator_dev *rdev,
 649	struct regulator_state *rstate)
 650{
 651	int ret = 0;
 652	bool can_set_state;
 653
 654	can_set_state = rdev->desc->ops->set_suspend_enable &&
 655		rdev->desc->ops->set_suspend_disable;
 
 656
 657	/* If we have no suspend mode configration don't set anything;
 658	 * only warn if the driver actually makes the suspend mode
 659	 * configurable.
 660	 */
 661	if (!rstate->enabled && !rstate->disabled) {
 662		if (can_set_state)
 
 
 663			rdev_warn(rdev, "No configuration\n");
 664		return 0;
 665	}
 666
 667	if (rstate->enabled && rstate->disabled) {
 668		rdev_err(rdev, "invalid configuration\n");
 669		return -EINVAL;
 670	}
 671
 672	if (!can_set_state) {
 673		rdev_err(rdev, "no way to set suspend state\n");
 674		return -EINVAL;
 675	}
 676
 677	if (rstate->enabled)
 678		ret = rdev->desc->ops->set_suspend_enable(rdev);
 679	else
 
 680		ret = rdev->desc->ops->set_suspend_disable(rdev);
 
 
 
 681	if (ret < 0) {
 682		rdev_err(rdev, "failed to enabled/disable\n");
 683		return ret;
 684	}
 685
 686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 688		if (ret < 0) {
 689			rdev_err(rdev, "failed to set voltage\n");
 690			return ret;
 691		}
 692	}
 693
 694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 696		if (ret < 0) {
 697			rdev_err(rdev, "failed to set mode\n");
 698			return ret;
 699		}
 700	}
 701	return ret;
 702}
 703
 704/* locks held by caller */
 705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 706{
 707	if (!rdev->constraints)
 708		return -EINVAL;
 709
 710	switch (state) {
 711	case PM_SUSPEND_STANDBY:
 712		return suspend_set_state(rdev,
 713			&rdev->constraints->state_standby);
 714	case PM_SUSPEND_MEM:
 715		return suspend_set_state(rdev,
 716			&rdev->constraints->state_mem);
 717	case PM_SUSPEND_MAX:
 718		return suspend_set_state(rdev,
 719			&rdev->constraints->state_disk);
 720	default:
 721		return -EINVAL;
 722	}
 723}
 724
 725static void print_constraints(struct regulator_dev *rdev)
 726{
 727	struct regulation_constraints *constraints = rdev->constraints;
 728	char buf[80] = "";
 
 729	int count = 0;
 730	int ret;
 731
 732	if (constraints->min_uV && constraints->max_uV) {
 733		if (constraints->min_uV == constraints->max_uV)
 734			count += sprintf(buf + count, "%d mV ",
 735					 constraints->min_uV / 1000);
 736		else
 737			count += sprintf(buf + count, "%d <--> %d mV ",
 738					 constraints->min_uV / 1000,
 739					 constraints->max_uV / 1000);
 
 740	}
 741
 742	if (!constraints->min_uV ||
 743	    constraints->min_uV != constraints->max_uV) {
 744		ret = _regulator_get_voltage(rdev);
 745		if (ret > 0)
 746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 747	}
 748
 749	if (constraints->uV_offset)
 750		count += sprintf(buf, "%dmV offset ",
 751				 constraints->uV_offset / 1000);
 752
 753	if (constraints->min_uA && constraints->max_uA) {
 754		if (constraints->min_uA == constraints->max_uA)
 755			count += sprintf(buf + count, "%d mA ",
 756					 constraints->min_uA / 1000);
 757		else
 758			count += sprintf(buf + count, "%d <--> %d mA ",
 759					 constraints->min_uA / 1000,
 760					 constraints->max_uA / 1000);
 
 761	}
 762
 763	if (!constraints->min_uA ||
 764	    constraints->min_uA != constraints->max_uA) {
 765		ret = _regulator_get_current_limit(rdev);
 766		if (ret > 0)
 767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 768	}
 769
 770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 771		count += sprintf(buf + count, "fast ");
 772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 773		count += sprintf(buf + count, "normal ");
 774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 775		count += sprintf(buf + count, "idle ");
 776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 777		count += sprintf(buf + count, "standby");
 
 
 
 778
 779	rdev_info(rdev, "%s\n", buf);
 
 
 
 
 
 780}
 781
 782static int machine_constraints_voltage(struct regulator_dev *rdev,
 783	struct regulation_constraints *constraints)
 784{
 785	struct regulator_ops *ops = rdev->desc->ops;
 786	int ret;
 787
 788	/* do we need to apply the constraint voltage */
 789	if (rdev->constraints->apply_uV &&
 790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 791		ret = _regulator_do_set_voltage(rdev,
 792						rdev->constraints->min_uV,
 793						rdev->constraints->max_uV);
 794		if (ret < 0) {
 795			rdev_err(rdev, "failed to apply %duV constraint\n",
 796				 rdev->constraints->min_uV);
 797			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798		}
 799	}
 800
 801	/* constrain machine-level voltage specs to fit
 802	 * the actual range supported by this regulator.
 803	 */
 804	if (ops->list_voltage && rdev->desc->n_voltages) {
 805		int	count = rdev->desc->n_voltages;
 806		int	i;
 807		int	min_uV = INT_MAX;
 808		int	max_uV = INT_MIN;
 809		int	cmin = constraints->min_uV;
 810		int	cmax = constraints->max_uV;
 811
 812		/* it's safe to autoconfigure fixed-voltage supplies
 813		   and the constraints are used by list_voltage. */
 814		if (count == 1 && !cmin) {
 815			cmin = 1;
 816			cmax = INT_MAX;
 817			constraints->min_uV = cmin;
 818			constraints->max_uV = cmax;
 819		}
 820
 821		/* voltage constraints are optional */
 822		if ((cmin == 0) && (cmax == 0))
 823			return 0;
 824
 825		/* else require explicit machine-level constraints */
 826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 827			rdev_err(rdev, "invalid voltage constraints\n");
 828			return -EINVAL;
 829		}
 830
 831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 832		for (i = 0; i < count; i++) {
 833			int	value;
 834
 835			value = ops->list_voltage(rdev, i);
 836			if (value <= 0)
 837				continue;
 838
 839			/* maybe adjust [min_uV..max_uV] */
 840			if (value >= cmin && value < min_uV)
 841				min_uV = value;
 842			if (value <= cmax && value > max_uV)
 843				max_uV = value;
 844		}
 845
 846		/* final: [min_uV..max_uV] valid iff constraints valid */
 847		if (max_uV < min_uV) {
 848			rdev_err(rdev, "unsupportable voltage constraints\n");
 
 
 849			return -EINVAL;
 850		}
 851
 852		/* use regulator's subset of machine constraints */
 853		if (constraints->min_uV < min_uV) {
 854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 855				 constraints->min_uV, min_uV);
 856			constraints->min_uV = min_uV;
 857		}
 858		if (constraints->max_uV > max_uV) {
 859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 860				 constraints->max_uV, max_uV);
 861			constraints->max_uV = max_uV;
 862		}
 863	}
 864
 865	return 0;
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868/**
 869 * set_machine_constraints - sets regulator constraints
 870 * @rdev: regulator source
 871 * @constraints: constraints to apply
 872 *
 873 * Allows platform initialisation code to define and constrain
 874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 875 * Constraints *must* be set by platform code in order for some
 876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 877 * set_mode.
 878 */
 879static int set_machine_constraints(struct regulator_dev *rdev,
 880	const struct regulation_constraints *constraints)
 881{
 882	int ret = 0;
 883	struct regulator_ops *ops = rdev->desc->ops;
 884
 885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 886				    GFP_KERNEL);
 
 
 
 
 887	if (!rdev->constraints)
 888		return -ENOMEM;
 889
 890	ret = machine_constraints_voltage(rdev, rdev->constraints);
 891	if (ret != 0)
 892		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* do we need to setup our suspend state */
 895	if (constraints->initial_state) {
 896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 897		if (ret < 0) {
 898			rdev_err(rdev, "failed to set suspend state\n");
 899			goto out;
 900		}
 901	}
 902
 903	if (constraints->initial_mode) {
 904		if (!ops->set_mode) {
 905			rdev_err(rdev, "no set_mode operation\n");
 906			ret = -EINVAL;
 907			goto out;
 908		}
 909
 910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 911		if (ret < 0) {
 912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 913			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914		}
 915	}
 916
 917	/* If the constraints say the regulator should be on at this point
 918	 * and we have control then make sure it is enabled.
 919	 */
 920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 921	    ops->enable) {
 922		ret = ops->enable(rdev);
 923		if (ret < 0) {
 
 
 
 
 
 
 
 
 924			rdev_err(rdev, "failed to enable\n");
 925			goto out;
 926		}
 
 927	}
 928
 929	print_constraints(rdev);
 930	return 0;
 931out:
 932	kfree(rdev->constraints);
 933	rdev->constraints = NULL;
 934	return ret;
 935}
 936
 937/**
 938 * set_supply - set regulator supply regulator
 939 * @rdev: regulator name
 940 * @supply_rdev: supply regulator name
 941 *
 942 * Called by platform initialisation code to set the supply regulator for this
 943 * regulator. This ensures that a regulators supply will also be enabled by the
 944 * core if it's child is enabled.
 945 */
 946static int set_supply(struct regulator_dev *rdev,
 947		      struct regulator_dev *supply_rdev)
 948{
 949	int err;
 950
 951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 952
 
 
 
 953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 954	if (IS_ERR(rdev->supply)) {
 955		err = PTR_ERR(rdev->supply);
 956		rdev->supply = NULL;
 957		return err;
 958	}
 
 959
 960	return 0;
 961}
 962
 963/**
 964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 965 * @rdev:         regulator source
 966 * @consumer_dev: device the supply applies to
 967 * @consumer_dev_name: dev_name() string for device supply applies to
 968 * @supply:       symbolic name for supply
 969 *
 970 * Allows platform initialisation code to map physical regulator
 971 * sources to symbolic names for supplies for use by devices.  Devices
 972 * should use these symbolic names to request regulators, avoiding the
 973 * need to provide board-specific regulator names as platform data.
 974 *
 975 * Only one of consumer_dev and consumer_dev_name may be specified.
 976 */
 977static int set_consumer_device_supply(struct regulator_dev *rdev,
 978	struct device *consumer_dev, const char *consumer_dev_name,
 979	const char *supply)
 980{
 981	struct regulator_map *node;
 982	int has_dev;
 983
 984	if (consumer_dev && consumer_dev_name)
 985		return -EINVAL;
 986
 987	if (!consumer_dev_name && consumer_dev)
 988		consumer_dev_name = dev_name(consumer_dev);
 989
 990	if (supply == NULL)
 991		return -EINVAL;
 992
 993	if (consumer_dev_name != NULL)
 994		has_dev = 1;
 995	else
 996		has_dev = 0;
 997
 998	list_for_each_entry(node, &regulator_map_list, list) {
 999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
 
1014		return -EBUSY;
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
1061		return NULL;
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
 
 
 
1125	}
1126#endif
1127
1128	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
 
 
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164
 
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
1169
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
 
1179		}
1180	}
 
 
 
 
 
 
 
 
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	}
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188	if (!devname)
1189		devname = "deviceless";
 
 
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
 
 
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
1197		rdev = dummy_regulator_rdev;
1198		goto found;
 
 
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
 
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
 
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219	regulator = create_regulator(rdev, dev, id);
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
 
1222		module_put(rdev->owner);
 
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
1233			rdev->use_count = 0;
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
 
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
 
 
 
 
 
 
 
 
 
 
 
1295 */
1296void regulator_put(struct regulator *regulator)
 
 
 
 
 
 
 
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
 
 
 
 
1304	rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
 
 
 
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
 
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
 
 
 
 
 
1322
1323	module_put(rdev->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	if (!rdev->constraints)
1331		return 0;
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
1335	else
1336		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
 
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
 
 
 
 
 
 
 
1341{
1342	int ret, delay;
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
 
 
 
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
1354				return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
 
 
1389
 
 
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
1398
1399	return 0;
 
 
 
 
 
 
 
 
 
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
 
1417
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
 
 
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
 
1438	int ret = 0;
1439
 
 
1440	if (WARN(rdev->use_count <= 0,
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
 
 
 
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
 
 
 
1456				return ret;
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
 
 
 
 
 
 
 
 
 
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
 
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
 
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
 
1523	}
1524
1525	return ret;
 
 
 
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
 
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
 
 
 
 
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
1580	mutex_lock(&regulator->rdev->mutex);
 
 
 
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621		return -EINVAL;
 
 
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
 
 
 
 
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
 
1650	int i, voltages, ret;
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
 
1672	unsigned int selector;
 
 
 
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
1691
1692		selector = 0;
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1705			}
1706		}
 
 
 
1707
 
 
 
 
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
 
 
1722		}
 
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
 
 
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
 
 
 
 
 
 
1747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748	return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
1773
1774	mutex_lock(&rdev->mutex);
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
 
 
 
1782
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
 
 
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
 
 
 
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
1805	return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
 
 
 
 
 
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
 
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
 
 
 
 
 
 
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
 
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
 
 
 
 
 
 
 
 
 
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
 
 
 
 
 
 
 
 
 
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
 
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
 
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
 
 
 
 
 
 
 
 
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
 
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
 
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
2149
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	}
2187	ret = mode;
2188out:
2189	mutex_unlock(&rdev->mutex);
 
 
 
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
 
 
 
 
 
 
 
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
 
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
 
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
 
 
 
 
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
 
 
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
 
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
 
 
 
 
 
 
 
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
 
 
 
 
 
 
 
 
 
 
 
2544
2545	return status;
 
 
 
 
 
 
 
 
 
 
 
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
 
 
 
 
 
 
 
 
 
 
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
2556	}
2557
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563}
2564
 
 
 
 
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
 
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
 
 
 
2580	struct regulator_dev *rdev;
 
 
 
2581	int ret, i;
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
2585
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
 
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
 
 
 
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
 
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
 
2610	}
2611
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
 
 
2615
2616	mutex_lock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
 
 
 
 
 
 
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
2648	if (ret < 0)
2649		goto scrub;
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
2655
2656	if (init_data->supply_regulator) {
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
2672			goto scrub;
2673		}
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
2678	}
 
2679
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
 
 
 
 
 
2690		}
 
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
 
 
 
 
 
 
 
 
 
 
2694
2695	rdev_init_debugfs(rdev);
2696out:
 
 
 
2697	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
2698	return rdev;
2699
2700unset_supplies:
 
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
 
2704	kfree(rdev->constraints);
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
 
 
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
 
 
 
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
 
 
 
 
 
 
 
 
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
 
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
2739	mutex_unlock(&regulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
 
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
2769		}
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
 
 
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
 
 
 
 
 
 
 
 
 
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
 
 
 
2817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
 
 
 
 
 
 
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
2923
 
 
 
 
 
 
 
2924	regulator_dummy_init();
2925
 
 
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
2939	mutex_lock(&regulator_list_mutex);
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
2951
2952		mutex_lock(&rdev->mutex);
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)					\
  37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)					\
  39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)					\
  41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)					\
  43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)					\
  45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
 
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
 
  55
 
  56static struct dentry *debugfs_root;
 
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
 
  76	struct list_head list;
  77	struct gpio_desc *gpiod;
  78	u32 enable_count;	/* a number of enabled shared GPIO */
  79	u32 request_count;	/* a number of requested shared GPIO */
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88	struct list_head list;
  89	struct device *src_dev;
  90	const char *src_supply;
  91	struct device *alias_dev;
  92	const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
 
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100				  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102				     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104				     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106					  struct device *dev,
 107					  const char *supply_name);
 108static void _regulator_put(struct regulator *regulator);
 109
 110const char *rdev_get_name(struct regulator_dev *rdev)
 111{
 112	if (rdev->constraints && rdev->constraints->name)
 113		return rdev->constraints->name;
 114	else if (rdev->desc->name)
 115		return rdev->desc->name;
 116	else
 117		return "";
 118}
 119
 120static bool have_full_constraints(void)
 
 121{
 122	return has_full_constraints || of_have_populated_dt();
 123}
 124
 125static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 126{
 127	if (!rdev->constraints) {
 128		rdev_err(rdev, "no constraints\n");
 129		return false;
 130	}
 131
 132	if (rdev->constraints->valid_ops_mask & ops)
 133		return true;
 134
 135	return false;
 136}
 137
 138/**
 139 * regulator_lock_nested - lock a single regulator
 140 * @rdev:		regulator source
 141 * @ww_ctx:		w/w mutex acquire context
 142 *
 143 * This function can be called many times by one task on
 144 * a single regulator and its mutex will be locked only
 145 * once. If a task, which is calling this function is other
 146 * than the one, which initially locked the mutex, it will
 147 * wait on mutex.
 148 */
 149static inline int regulator_lock_nested(struct regulator_dev *rdev,
 150					struct ww_acquire_ctx *ww_ctx)
 151{
 152	bool lock = false;
 153	int ret = 0;
 154
 155	mutex_lock(&regulator_nesting_mutex);
 156
 157	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 158		if (rdev->mutex_owner == current)
 159			rdev->ref_cnt++;
 160		else
 161			lock = true;
 162
 163		if (lock) {
 164			mutex_unlock(&regulator_nesting_mutex);
 165			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 166			mutex_lock(&regulator_nesting_mutex);
 167		}
 168	} else {
 169		lock = true;
 170	}
 171
 172	if (lock && ret != -EDEADLK) {
 173		rdev->ref_cnt++;
 174		rdev->mutex_owner = current;
 175	}
 176
 177	mutex_unlock(&regulator_nesting_mutex);
 178
 179	return ret;
 180}
 181
 182/**
 183 * regulator_lock - lock a single regulator
 184 * @rdev:		regulator source
 185 *
 186 * This function can be called many times by one task on
 187 * a single regulator and its mutex will be locked only
 188 * once. If a task, which is calling this function is other
 189 * than the one, which initially locked the mutex, it will
 190 * wait on mutex.
 191 */
 192void regulator_lock(struct regulator_dev *rdev)
 193{
 194	regulator_lock_nested(rdev, NULL);
 195}
 196EXPORT_SYMBOL_GPL(regulator_lock);
 197
 198/**
 199 * regulator_unlock - unlock a single regulator
 200 * @rdev:		regulator_source
 201 *
 202 * This function unlocks the mutex when the
 203 * reference counter reaches 0.
 204 */
 205void regulator_unlock(struct regulator_dev *rdev)
 206{
 207	mutex_lock(&regulator_nesting_mutex);
 208
 209	if (--rdev->ref_cnt == 0) {
 210		rdev->mutex_owner = NULL;
 211		ww_mutex_unlock(&rdev->mutex);
 212	}
 213
 214	WARN_ON_ONCE(rdev->ref_cnt < 0);
 215
 216	mutex_unlock(&regulator_nesting_mutex);
 217}
 218EXPORT_SYMBOL_GPL(regulator_unlock);
 219
 220static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 221{
 222	struct regulator_dev *c_rdev;
 223	int i;
 224
 225	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 226		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 227
 228		if (rdev->supply->rdev == c_rdev)
 229			return true;
 230	}
 231
 232	return false;
 233}
 234
 235static void regulator_unlock_recursive(struct regulator_dev *rdev,
 236				       unsigned int n_coupled)
 237{
 238	struct regulator_dev *c_rdev;
 239	int i;
 240
 241	for (i = n_coupled; i > 0; i--) {
 242		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 243
 244		if (!c_rdev)
 245			continue;
 246
 247		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
 248			regulator_unlock_recursive(
 249					c_rdev->supply->rdev,
 250					c_rdev->coupling_desc.n_coupled);
 251
 252		regulator_unlock(c_rdev);
 253	}
 254}
 255
 256static int regulator_lock_recursive(struct regulator_dev *rdev,
 257				    struct regulator_dev **new_contended_rdev,
 258				    struct regulator_dev **old_contended_rdev,
 259				    struct ww_acquire_ctx *ww_ctx)
 260{
 261	struct regulator_dev *c_rdev;
 262	int i, err;
 263
 264	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 265		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 266
 267		if (!c_rdev)
 268			continue;
 269
 270		if (c_rdev != *old_contended_rdev) {
 271			err = regulator_lock_nested(c_rdev, ww_ctx);
 272			if (err) {
 273				if (err == -EDEADLK) {
 274					*new_contended_rdev = c_rdev;
 275					goto err_unlock;
 276				}
 277
 278				/* shouldn't happen */
 279				WARN_ON_ONCE(err != -EALREADY);
 280			}
 281		} else {
 282			*old_contended_rdev = NULL;
 283		}
 284
 285		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 286			err = regulator_lock_recursive(c_rdev->supply->rdev,
 287						       new_contended_rdev,
 288						       old_contended_rdev,
 289						       ww_ctx);
 290			if (err) {
 291				regulator_unlock(c_rdev);
 292				goto err_unlock;
 293			}
 294		}
 
 295	}
 296
 297	return 0;
 298
 299err_unlock:
 300	regulator_unlock_recursive(rdev, i);
 301
 302	return err;
 303}
 304
 305/**
 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 307 *				regulators
 308 * @rdev:			regulator source
 309 * @ww_ctx:			w/w mutex acquire context
 310 *
 311 * Unlock all regulators related with rdev by coupling or supplying.
 312 */
 313static void regulator_unlock_dependent(struct regulator_dev *rdev,
 314				       struct ww_acquire_ctx *ww_ctx)
 315{
 316	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 317	ww_acquire_fini(ww_ctx);
 318}
 319
 320/**
 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 322 * @rdev:			regulator source
 323 * @ww_ctx:			w/w mutex acquire context
 324 *
 325 * This function as a wrapper on regulator_lock_recursive(), which locks
 326 * all regulators related with rdev by coupling or supplying.
 327 */
 328static void regulator_lock_dependent(struct regulator_dev *rdev,
 329				     struct ww_acquire_ctx *ww_ctx)
 330{
 331	struct regulator_dev *new_contended_rdev = NULL;
 332	struct regulator_dev *old_contended_rdev = NULL;
 333	int err;
 334
 335	mutex_lock(&regulator_list_mutex);
 336
 337	ww_acquire_init(ww_ctx, &regulator_ww_class);
 338
 339	do {
 340		if (new_contended_rdev) {
 341			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 342			old_contended_rdev = new_contended_rdev;
 343			old_contended_rdev->ref_cnt++;
 344		}
 345
 346		err = regulator_lock_recursive(rdev,
 347					       &new_contended_rdev,
 348					       &old_contended_rdev,
 349					       ww_ctx);
 350
 351		if (old_contended_rdev)
 352			regulator_unlock(old_contended_rdev);
 353
 354	} while (err == -EDEADLK);
 355
 356	ww_acquire_done(ww_ctx);
 357
 358	mutex_unlock(&regulator_list_mutex);
 359}
 360
 361/**
 362 * of_get_child_regulator - get a child regulator device node
 363 * based on supply name
 364 * @parent: Parent device node
 365 * @prop_name: Combination regulator supply name and "-supply"
 366 *
 367 * Traverse all child nodes.
 368 * Extract the child regulator device node corresponding to the supply name.
 369 * returns the device node corresponding to the regulator if found, else
 370 * returns NULL.
 371 */
 372static struct device_node *of_get_child_regulator(struct device_node *parent,
 373						  const char *prop_name)
 374{
 375	struct device_node *regnode = NULL;
 376	struct device_node *child = NULL;
 377
 378	for_each_child_of_node(parent, child) {
 379		regnode = of_parse_phandle(child, prop_name, 0);
 380
 381		if (!regnode) {
 382			regnode = of_get_child_regulator(child, prop_name);
 383			if (regnode)
 384				goto err_node_put;
 385		} else {
 386			goto err_node_put;
 387		}
 388	}
 389	return NULL;
 390
 391err_node_put:
 392	of_node_put(child);
 393	return regnode;
 394}
 395
 396/**
 397 * of_get_regulator - get a regulator device node based on supply name
 398 * @dev: Device pointer for the consumer (of regulator) device
 399 * @supply: regulator supply name
 400 *
 401 * Extract the regulator device node corresponding to the supply name.
 402 * returns the device node corresponding to the regulator if found, else
 403 * returns NULL.
 404 */
 405static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 406{
 407	struct device_node *regnode = NULL;
 408	char prop_name[32]; /* 32 is max size of property name */
 409
 410	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 411
 412	snprintf(prop_name, 32, "%s-supply", supply);
 413	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 414
 415	if (!regnode) {
 416		regnode = of_get_child_regulator(dev->of_node, prop_name);
 417		if (regnode)
 418			return regnode;
 419
 420		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 421				prop_name, dev->of_node);
 422		return NULL;
 423	}
 424	return regnode;
 425}
 426
 427/* Platform voltage constraint check */
 428int regulator_check_voltage(struct regulator_dev *rdev,
 429			    int *min_uV, int *max_uV)
 430{
 431	BUG_ON(*min_uV > *max_uV);
 432
 433	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 434		rdev_err(rdev, "voltage operation not allowed\n");
 
 
 
 
 435		return -EPERM;
 436	}
 437
 438	if (*max_uV > rdev->constraints->max_uV)
 439		*max_uV = rdev->constraints->max_uV;
 440	if (*min_uV < rdev->constraints->min_uV)
 441		*min_uV = rdev->constraints->min_uV;
 442
 443	if (*min_uV > *max_uV) {
 444		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 445			 *min_uV, *max_uV);
 446		return -EINVAL;
 447	}
 448
 449	return 0;
 450}
 451
 452/* return 0 if the state is valid */
 453static int regulator_check_states(suspend_state_t state)
 454{
 455	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 456}
 457
 458/* Make sure we select a voltage that suits the needs of all
 459 * regulator consumers
 460 */
 461int regulator_check_consumers(struct regulator_dev *rdev,
 462			      int *min_uV, int *max_uV,
 463			      suspend_state_t state)
 464{
 465	struct regulator *regulator;
 466	struct regulator_voltage *voltage;
 467
 468	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 469		voltage = &regulator->voltage[state];
 470		/*
 471		 * Assume consumers that didn't say anything are OK
 472		 * with anything in the constraint range.
 473		 */
 474		if (!voltage->min_uV && !voltage->max_uV)
 475			continue;
 476
 477		if (*max_uV > voltage->max_uV)
 478			*max_uV = voltage->max_uV;
 479		if (*min_uV < voltage->min_uV)
 480			*min_uV = voltage->min_uV;
 481	}
 482
 483	if (*min_uV > *max_uV) {
 484		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 485			*min_uV, *max_uV);
 486		return -EINVAL;
 487	}
 488
 489	return 0;
 490}
 491
 492/* current constraint check */
 493static int regulator_check_current_limit(struct regulator_dev *rdev,
 494					int *min_uA, int *max_uA)
 495{
 496	BUG_ON(*min_uA > *max_uA);
 497
 498	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 499		rdev_err(rdev, "current operation not allowed\n");
 
 
 
 
 500		return -EPERM;
 501	}
 502
 503	if (*max_uA > rdev->constraints->max_uA)
 504		*max_uA = rdev->constraints->max_uA;
 505	if (*min_uA < rdev->constraints->min_uA)
 506		*min_uA = rdev->constraints->min_uA;
 507
 508	if (*min_uA > *max_uA) {
 509		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 510			 *min_uA, *max_uA);
 511		return -EINVAL;
 512	}
 513
 514	return 0;
 515}
 516
 517/* operating mode constraint check */
 518static int regulator_mode_constrain(struct regulator_dev *rdev,
 519				    unsigned int *mode)
 520{
 521	switch (*mode) {
 522	case REGULATOR_MODE_FAST:
 523	case REGULATOR_MODE_NORMAL:
 524	case REGULATOR_MODE_IDLE:
 525	case REGULATOR_MODE_STANDBY:
 526		break;
 527	default:
 528		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 529		return -EINVAL;
 530	}
 531
 532	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 533		rdev_err(rdev, "mode operation not allowed\n");
 
 
 
 
 534		return -EPERM;
 535	}
 536
 537	/* The modes are bitmasks, the most power hungry modes having
 538	 * the lowest values. If the requested mode isn't supported
 539	 * try higher modes. */
 540	while (*mode) {
 541		if (rdev->constraints->valid_modes_mask & *mode)
 542			return 0;
 543		*mode /= 2;
 544	}
 545
 546	return -EINVAL;
 547}
 548
 549static inline struct regulator_state *
 550regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551{
 552	if (rdev->constraints == NULL)
 553		return NULL;
 
 
 
 554
 555	switch (state) {
 556	case PM_SUSPEND_STANDBY:
 557		return &rdev->constraints->state_standby;
 558	case PM_SUSPEND_MEM:
 559		return &rdev->constraints->state_mem;
 560	case PM_SUSPEND_MAX:
 561		return &rdev->constraints->state_disk;
 562	default:
 563		return NULL;
 564	}
 565}
 566
 567static ssize_t regulator_uV_show(struct device *dev,
 568				struct device_attribute *attr, char *buf)
 569{
 570	struct regulator_dev *rdev = dev_get_drvdata(dev);
 571	int uV;
 
 
 
 
 572
 573	regulator_lock(rdev);
 574	uV = regulator_get_voltage_rdev(rdev);
 575	regulator_unlock(rdev);
 576
 577	if (uV < 0)
 578		return uV;
 579	return sprintf(buf, "%d\n", uV);
 580}
 581static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 582
 583static ssize_t regulator_uA_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 589}
 590static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 591
 592static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 593			 char *buf)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 598}
 599static DEVICE_ATTR_RO(name);
 600
 601static const char *regulator_opmode_to_str(int mode)
 602{
 603	switch (mode) {
 604	case REGULATOR_MODE_FAST:
 605		return "fast";
 606	case REGULATOR_MODE_NORMAL:
 607		return "normal";
 608	case REGULATOR_MODE_IDLE:
 609		return "idle";
 610	case REGULATOR_MODE_STANDBY:
 611		return "standby";
 612	}
 613	return "unknown";
 614}
 615
 616static ssize_t regulator_print_opmode(char *buf, int mode)
 617{
 618	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 619}
 620
 621static ssize_t regulator_opmode_show(struct device *dev,
 622				    struct device_attribute *attr, char *buf)
 623{
 624	struct regulator_dev *rdev = dev_get_drvdata(dev);
 625
 626	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 627}
 628static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 629
 630static ssize_t regulator_print_state(char *buf, int state)
 631{
 632	if (state > 0)
 633		return sprintf(buf, "enabled\n");
 634	else if (state == 0)
 635		return sprintf(buf, "disabled\n");
 636	else
 637		return sprintf(buf, "unknown\n");
 638}
 639
 640static ssize_t regulator_state_show(struct device *dev,
 641				   struct device_attribute *attr, char *buf)
 642{
 643	struct regulator_dev *rdev = dev_get_drvdata(dev);
 644	ssize_t ret;
 645
 646	regulator_lock(rdev);
 647	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 648	regulator_unlock(rdev);
 649
 650	return ret;
 651}
 652static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 653
 654static ssize_t regulator_status_show(struct device *dev,
 655				   struct device_attribute *attr, char *buf)
 656{
 657	struct regulator_dev *rdev = dev_get_drvdata(dev);
 658	int status;
 659	char *label;
 660
 661	status = rdev->desc->ops->get_status(rdev);
 662	if (status < 0)
 663		return status;
 664
 665	switch (status) {
 666	case REGULATOR_STATUS_OFF:
 667		label = "off";
 668		break;
 669	case REGULATOR_STATUS_ON:
 670		label = "on";
 671		break;
 672	case REGULATOR_STATUS_ERROR:
 673		label = "error";
 674		break;
 675	case REGULATOR_STATUS_FAST:
 676		label = "fast";
 677		break;
 678	case REGULATOR_STATUS_NORMAL:
 679		label = "normal";
 680		break;
 681	case REGULATOR_STATUS_IDLE:
 682		label = "idle";
 683		break;
 684	case REGULATOR_STATUS_STANDBY:
 685		label = "standby";
 686		break;
 687	case REGULATOR_STATUS_BYPASS:
 688		label = "bypass";
 689		break;
 690	case REGULATOR_STATUS_UNDEFINED:
 691		label = "undefined";
 692		break;
 693	default:
 694		return -ERANGE;
 695	}
 696
 697	return sprintf(buf, "%s\n", label);
 698}
 699static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 700
 701static ssize_t regulator_min_uA_show(struct device *dev,
 702				    struct device_attribute *attr, char *buf)
 703{
 704	struct regulator_dev *rdev = dev_get_drvdata(dev);
 705
 706	if (!rdev->constraints)
 707		return sprintf(buf, "constraint not defined\n");
 708
 709	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 710}
 711static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 712
 713static ssize_t regulator_max_uA_show(struct device *dev,
 714				    struct device_attribute *attr, char *buf)
 715{
 716	struct regulator_dev *rdev = dev_get_drvdata(dev);
 717
 718	if (!rdev->constraints)
 719		return sprintf(buf, "constraint not defined\n");
 720
 721	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 722}
 723static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 724
 725static ssize_t regulator_min_uV_show(struct device *dev,
 726				    struct device_attribute *attr, char *buf)
 727{
 728	struct regulator_dev *rdev = dev_get_drvdata(dev);
 729
 730	if (!rdev->constraints)
 731		return sprintf(buf, "constraint not defined\n");
 732
 733	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 734}
 735static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 736
 737static ssize_t regulator_max_uV_show(struct device *dev,
 738				    struct device_attribute *attr, char *buf)
 739{
 740	struct regulator_dev *rdev = dev_get_drvdata(dev);
 741
 742	if (!rdev->constraints)
 743		return sprintf(buf, "constraint not defined\n");
 744
 745	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 746}
 747static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 748
 749static ssize_t regulator_total_uA_show(struct device *dev,
 750				      struct device_attribute *attr, char *buf)
 751{
 752	struct regulator_dev *rdev = dev_get_drvdata(dev);
 753	struct regulator *regulator;
 754	int uA = 0;
 755
 756	regulator_lock(rdev);
 757	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 758		if (regulator->enable_count)
 759			uA += regulator->uA_load;
 760	}
 761	regulator_unlock(rdev);
 762	return sprintf(buf, "%d\n", uA);
 763}
 764static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 765
 766static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 767			      char *buf)
 768{
 769	struct regulator_dev *rdev = dev_get_drvdata(dev);
 770	return sprintf(buf, "%d\n", rdev->use_count);
 771}
 772static DEVICE_ATTR_RO(num_users);
 773
 774static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 775			 char *buf)
 776{
 777	struct regulator_dev *rdev = dev_get_drvdata(dev);
 778
 779	switch (rdev->desc->type) {
 780	case REGULATOR_VOLTAGE:
 781		return sprintf(buf, "voltage\n");
 782	case REGULATOR_CURRENT:
 783		return sprintf(buf, "current\n");
 784	}
 785	return sprintf(buf, "unknown\n");
 786}
 787static DEVICE_ATTR_RO(type);
 788
 789static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 790				struct device_attribute *attr, char *buf)
 791{
 792	struct regulator_dev *rdev = dev_get_drvdata(dev);
 793
 794	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 795}
 796static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 797		regulator_suspend_mem_uV_show, NULL);
 798
 799static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 800				struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 805}
 806static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 807		regulator_suspend_disk_uV_show, NULL);
 808
 809static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 810				struct device_attribute *attr, char *buf)
 811{
 812	struct regulator_dev *rdev = dev_get_drvdata(dev);
 813
 814	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 815}
 816static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 817		regulator_suspend_standby_uV_show, NULL);
 818
 819static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 820				struct device_attribute *attr, char *buf)
 821{
 822	struct regulator_dev *rdev = dev_get_drvdata(dev);
 823
 824	return regulator_print_opmode(buf,
 825		rdev->constraints->state_mem.mode);
 826}
 827static DEVICE_ATTR(suspend_mem_mode, 0444,
 828		regulator_suspend_mem_mode_show, NULL);
 829
 830static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 831				struct device_attribute *attr, char *buf)
 832{
 833	struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835	return regulator_print_opmode(buf,
 836		rdev->constraints->state_disk.mode);
 837}
 838static DEVICE_ATTR(suspend_disk_mode, 0444,
 839		regulator_suspend_disk_mode_show, NULL);
 840
 841static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 842				struct device_attribute *attr, char *buf)
 843{
 844	struct regulator_dev *rdev = dev_get_drvdata(dev);
 845
 846	return regulator_print_opmode(buf,
 847		rdev->constraints->state_standby.mode);
 848}
 849static DEVICE_ATTR(suspend_standby_mode, 0444,
 850		regulator_suspend_standby_mode_show, NULL);
 851
 852static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 853				   struct device_attribute *attr, char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856
 857	return regulator_print_state(buf,
 858			rdev->constraints->state_mem.enabled);
 859}
 860static DEVICE_ATTR(suspend_mem_state, 0444,
 861		regulator_suspend_mem_state_show, NULL);
 862
 863static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 864				   struct device_attribute *attr, char *buf)
 865{
 866	struct regulator_dev *rdev = dev_get_drvdata(dev);
 867
 868	return regulator_print_state(buf,
 869			rdev->constraints->state_disk.enabled);
 870}
 871static DEVICE_ATTR(suspend_disk_state, 0444,
 872		regulator_suspend_disk_state_show, NULL);
 873
 874static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 875				   struct device_attribute *attr, char *buf)
 876{
 877	struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879	return regulator_print_state(buf,
 880			rdev->constraints->state_standby.enabled);
 881}
 882static DEVICE_ATTR(suspend_standby_state, 0444,
 883		regulator_suspend_standby_state_show, NULL);
 884
 885static ssize_t regulator_bypass_show(struct device *dev,
 886				     struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 887{
 888	struct regulator_dev *rdev = dev_get_drvdata(dev);
 889	const char *report;
 890	bool bypass;
 891	int ret;
 892
 893	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 894
 895	if (ret != 0)
 896		report = "unknown";
 897	else if (bypass)
 898		report = "enabled";
 899	else
 900		report = "disabled";
 901
 902	return sprintf(buf, "%s\n", report);
 903}
 904static DEVICE_ATTR(bypass, 0444,
 905		   regulator_bypass_show, NULL);
 906
 907/* Calculate the new optimum regulator operating mode based on the new total
 908 * consumer load. All locks held by caller */
 909static int drms_uA_update(struct regulator_dev *rdev)
 910{
 911	struct regulator *sibling;
 912	int current_uA = 0, output_uV, input_uV, err;
 913	unsigned int mode;
 914
 915	/*
 916	 * first check to see if we can set modes at all, otherwise just
 917	 * tell the consumer everything is OK.
 918	 */
 919	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 920		rdev_dbg(rdev, "DRMS operation not allowed\n");
 921		return 0;
 922	}
 923
 924	if (!rdev->desc->ops->get_optimum_mode &&
 925	    !rdev->desc->ops->set_load)
 926		return 0;
 
 927
 928	if (!rdev->desc->ops->set_mode &&
 929	    !rdev->desc->ops->set_load)
 930		return -EINVAL;
 
 
 
 
 
 931
 932	/* calc total requested load */
 933	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 934		if (sibling->enable_count)
 935			current_uA += sibling->uA_load;
 936	}
 937
 938	current_uA += rdev->constraints->system_load;
 939
 940	if (rdev->desc->ops->set_load) {
 941		/* set the optimum mode for our new total regulator load */
 942		err = rdev->desc->ops->set_load(rdev, current_uA);
 943		if (err < 0)
 944			rdev_err(rdev, "failed to set load %d\n", current_uA);
 945	} else {
 946		/* get output voltage */
 947		output_uV = regulator_get_voltage_rdev(rdev);
 948		if (output_uV <= 0) {
 949			rdev_err(rdev, "invalid output voltage found\n");
 950			return -EINVAL;
 951		}
 952
 953		/* get input voltage */
 954		input_uV = 0;
 955		if (rdev->supply)
 956			input_uV = regulator_get_voltage(rdev->supply);
 957		if (input_uV <= 0)
 958			input_uV = rdev->constraints->input_uV;
 959		if (input_uV <= 0) {
 960			rdev_err(rdev, "invalid input voltage found\n");
 961			return -EINVAL;
 962		}
 963
 964		/* now get the optimum mode for our new total regulator load */
 965		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 966							 output_uV, current_uA);
 967
 968		/* check the new mode is allowed */
 969		err = regulator_mode_constrain(rdev, &mode);
 970		if (err < 0) {
 971			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 972				 current_uA, input_uV, output_uV);
 973			return err;
 974		}
 975
 976		err = rdev->desc->ops->set_mode(rdev, mode);
 977		if (err < 0)
 978			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 979	}
 980
 981	return err;
 982}
 983
 984static int suspend_set_state(struct regulator_dev *rdev,
 985				    suspend_state_t state)
 986{
 987	int ret = 0;
 988	struct regulator_state *rstate;
 989
 990	rstate = regulator_get_suspend_state(rdev, state);
 991	if (rstate == NULL)
 992		return 0;
 993
 994	/* If we have no suspend mode configuration don't set anything;
 995	 * only warn if the driver implements set_suspend_voltage or
 996	 * set_suspend_mode callback.
 997	 */
 998	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 999	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000		if (rdev->desc->ops->set_suspend_voltage ||
1001		    rdev->desc->ops->set_suspend_mode)
1002			rdev_warn(rdev, "No configuration\n");
1003		return 0;
1004	}
1005
1006	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007		rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 
 
 
 
1008		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010		rdev->desc->ops->set_suspend_disable)
1011		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013		ret = 0;
1014
1015	if (ret < 0) {
1016		rdev_err(rdev, "failed to enabled/disable\n");
1017		return ret;
1018	}
1019
1020	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022		if (ret < 0) {
1023			rdev_err(rdev, "failed to set voltage\n");
1024			return ret;
1025		}
1026	}
1027
1028	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030		if (ret < 0) {
1031			rdev_err(rdev, "failed to set mode\n");
1032			return ret;
1033		}
1034	}
 
 
 
 
 
 
 
 
1035
1036	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1037}
1038
1039static void print_constraints(struct regulator_dev *rdev)
1040{
1041	struct regulation_constraints *constraints = rdev->constraints;
1042	char buf[160] = "";
1043	size_t len = sizeof(buf) - 1;
1044	int count = 0;
1045	int ret;
1046
1047	if (constraints->min_uV && constraints->max_uV) {
1048		if (constraints->min_uV == constraints->max_uV)
1049			count += scnprintf(buf + count, len - count, "%d mV ",
1050					   constraints->min_uV / 1000);
1051		else
1052			count += scnprintf(buf + count, len - count,
1053					   "%d <--> %d mV ",
1054					   constraints->min_uV / 1000,
1055					   constraints->max_uV / 1000);
1056	}
1057
1058	if (!constraints->min_uV ||
1059	    constraints->min_uV != constraints->max_uV) {
1060		ret = regulator_get_voltage_rdev(rdev);
1061		if (ret > 0)
1062			count += scnprintf(buf + count, len - count,
1063					   "at %d mV ", ret / 1000);
1064	}
1065
1066	if (constraints->uV_offset)
1067		count += scnprintf(buf + count, len - count, "%dmV offset ",
1068				   constraints->uV_offset / 1000);
1069
1070	if (constraints->min_uA && constraints->max_uA) {
1071		if (constraints->min_uA == constraints->max_uA)
1072			count += scnprintf(buf + count, len - count, "%d mA ",
1073					   constraints->min_uA / 1000);
1074		else
1075			count += scnprintf(buf + count, len - count,
1076					   "%d <--> %d mA ",
1077					   constraints->min_uA / 1000,
1078					   constraints->max_uA / 1000);
1079	}
1080
1081	if (!constraints->min_uA ||
1082	    constraints->min_uA != constraints->max_uA) {
1083		ret = _regulator_get_current_limit(rdev);
1084		if (ret > 0)
1085			count += scnprintf(buf + count, len - count,
1086					   "at %d mA ", ret / 1000);
1087	}
1088
1089	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090		count += scnprintf(buf + count, len - count, "fast ");
1091	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092		count += scnprintf(buf + count, len - count, "normal ");
1093	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094		count += scnprintf(buf + count, len - count, "idle ");
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096		count += scnprintf(buf + count, len - count, "standby");
1097
1098	if (!count)
1099		scnprintf(buf, len, "no parameters");
1100
1101	rdev_dbg(rdev, "%s\n", buf);
1102
1103	if ((constraints->min_uV != constraints->max_uV) &&
1104	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105		rdev_warn(rdev,
1106			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107}
1108
1109static int machine_constraints_voltage(struct regulator_dev *rdev,
1110	struct regulation_constraints *constraints)
1111{
1112	const struct regulator_ops *ops = rdev->desc->ops;
1113	int ret;
1114
1115	/* do we need to apply the constraint voltage */
1116	if (rdev->constraints->apply_uV &&
1117	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118		int target_min, target_max;
1119		int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121		if (current_uV == -ENOTRECOVERABLE) {
1122			/* This regulator can't be read and must be initialized */
1123			rdev_info(rdev, "Setting %d-%duV\n",
1124				  rdev->constraints->min_uV,
1125				  rdev->constraints->max_uV);
1126			_regulator_do_set_voltage(rdev,
1127						  rdev->constraints->min_uV,
1128						  rdev->constraints->max_uV);
1129			current_uV = regulator_get_voltage_rdev(rdev);
1130		}
1131
1132		if (current_uV < 0) {
1133			rdev_err(rdev,
1134				 "failed to get the current voltage(%d)\n",
1135				 current_uV);
1136			return current_uV;
1137		}
1138
1139		/*
1140		 * If we're below the minimum voltage move up to the
1141		 * minimum voltage, if we're above the maximum voltage
1142		 * then move down to the maximum.
1143		 */
1144		target_min = current_uV;
1145		target_max = current_uV;
1146
1147		if (current_uV < rdev->constraints->min_uV) {
1148			target_min = rdev->constraints->min_uV;
1149			target_max = rdev->constraints->min_uV;
1150		}
1151
1152		if (current_uV > rdev->constraints->max_uV) {
1153			target_min = rdev->constraints->max_uV;
1154			target_max = rdev->constraints->max_uV;
1155		}
1156
1157		if (target_min != current_uV || target_max != current_uV) {
1158			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159				  current_uV, target_min, target_max);
1160			ret = _regulator_do_set_voltage(
1161				rdev, target_min, target_max);
1162			if (ret < 0) {
1163				rdev_err(rdev,
1164					"failed to apply %d-%duV constraint(%d)\n",
1165					target_min, target_max, ret);
1166				return ret;
1167			}
1168		}
1169	}
1170
1171	/* constrain machine-level voltage specs to fit
1172	 * the actual range supported by this regulator.
1173	 */
1174	if (ops->list_voltage && rdev->desc->n_voltages) {
1175		int	count = rdev->desc->n_voltages;
1176		int	i;
1177		int	min_uV = INT_MAX;
1178		int	max_uV = INT_MIN;
1179		int	cmin = constraints->min_uV;
1180		int	cmax = constraints->max_uV;
1181
1182		/* it's safe to autoconfigure fixed-voltage supplies
1183		   and the constraints are used by list_voltage. */
1184		if (count == 1 && !cmin) {
1185			cmin = 1;
1186			cmax = INT_MAX;
1187			constraints->min_uV = cmin;
1188			constraints->max_uV = cmax;
1189		}
1190
1191		/* voltage constraints are optional */
1192		if ((cmin == 0) && (cmax == 0))
1193			return 0;
1194
1195		/* else require explicit machine-level constraints */
1196		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197			rdev_err(rdev, "invalid voltage constraints\n");
1198			return -EINVAL;
1199		}
1200
1201		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202		for (i = 0; i < count; i++) {
1203			int	value;
1204
1205			value = ops->list_voltage(rdev, i);
1206			if (value <= 0)
1207				continue;
1208
1209			/* maybe adjust [min_uV..max_uV] */
1210			if (value >= cmin && value < min_uV)
1211				min_uV = value;
1212			if (value <= cmax && value > max_uV)
1213				max_uV = value;
1214		}
1215
1216		/* final: [min_uV..max_uV] valid iff constraints valid */
1217		if (max_uV < min_uV) {
1218			rdev_err(rdev,
1219				 "unsupportable voltage constraints %u-%uuV\n",
1220				 min_uV, max_uV);
1221			return -EINVAL;
1222		}
1223
1224		/* use regulator's subset of machine constraints */
1225		if (constraints->min_uV < min_uV) {
1226			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227				 constraints->min_uV, min_uV);
1228			constraints->min_uV = min_uV;
1229		}
1230		if (constraints->max_uV > max_uV) {
1231			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232				 constraints->max_uV, max_uV);
1233			constraints->max_uV = max_uV;
1234		}
1235	}
1236
1237	return 0;
1238}
1239
1240static int machine_constraints_current(struct regulator_dev *rdev,
1241	struct regulation_constraints *constraints)
1242{
1243	const struct regulator_ops *ops = rdev->desc->ops;
1244	int ret;
1245
1246	if (!constraints->min_uA && !constraints->max_uA)
1247		return 0;
1248
1249	if (constraints->min_uA > constraints->max_uA) {
1250		rdev_err(rdev, "Invalid current constraints\n");
1251		return -EINVAL;
1252	}
1253
1254	if (!ops->set_current_limit || !ops->get_current_limit) {
1255		rdev_warn(rdev, "Operation of current configuration missing\n");
1256		return 0;
1257	}
1258
1259	/* Set regulator current in constraints range */
1260	ret = ops->set_current_limit(rdev, constraints->min_uA,
1261			constraints->max_uA);
1262	if (ret < 0) {
1263		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264		return ret;
1265	}
1266
1267	return 0;
1268}
1269
1270static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272/**
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1276 *
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281 * set_mode.
1282 */
1283static int set_machine_constraints(struct regulator_dev *rdev,
1284	const struct regulation_constraints *constraints)
1285{
1286	int ret = 0;
1287	const struct regulator_ops *ops = rdev->desc->ops;
1288
1289	if (constraints)
1290		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291					    GFP_KERNEL);
1292	else
1293		rdev->constraints = kzalloc(sizeof(*constraints),
1294					    GFP_KERNEL);
1295	if (!rdev->constraints)
1296		return -ENOMEM;
1297
1298	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299	if (ret != 0)
1300		return ret;
1301
1302	ret = machine_constraints_current(rdev, rdev->constraints);
1303	if (ret != 0)
1304		return ret;
1305
1306	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307		ret = ops->set_input_current_limit(rdev,
1308						   rdev->constraints->ilim_uA);
1309		if (ret < 0) {
1310			rdev_err(rdev, "failed to set input limit\n");
1311			return ret;
1312		}
1313	}
1314
1315	/* do we need to setup our suspend state */
1316	if (rdev->constraints->initial_state) {
1317		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318		if (ret < 0) {
1319			rdev_err(rdev, "failed to set suspend state\n");
1320			return ret;
1321		}
1322	}
1323
1324	if (rdev->constraints->initial_mode) {
1325		if (!ops->set_mode) {
1326			rdev_err(rdev, "no set_mode operation\n");
1327			return -EINVAL;
 
1328		}
1329
1330		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331		if (ret < 0) {
1332			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333			return ret;
1334		}
1335	} else if (rdev->constraints->system_load) {
1336		/*
1337		 * We'll only apply the initial system load if an
1338		 * initial mode wasn't specified.
1339		 */
1340		drms_uA_update(rdev);
1341	}
1342
1343	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344		&& ops->set_ramp_delay) {
1345		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346		if (ret < 0) {
1347			rdev_err(rdev, "failed to set ramp_delay\n");
1348			return ret;
1349		}
1350	}
1351
1352	if (rdev->constraints->pull_down && ops->set_pull_down) {
1353		ret = ops->set_pull_down(rdev);
1354		if (ret < 0) {
1355			rdev_err(rdev, "failed to set pull down\n");
1356			return ret;
1357		}
1358	}
1359
1360	if (rdev->constraints->soft_start && ops->set_soft_start) {
1361		ret = ops->set_soft_start(rdev);
1362		if (ret < 0) {
1363			rdev_err(rdev, "failed to set soft start\n");
1364			return ret;
1365		}
1366	}
1367
1368	if (rdev->constraints->over_current_protection
1369		&& ops->set_over_current_protection) {
1370		ret = ops->set_over_current_protection(rdev);
1371		if (ret < 0) {
1372			rdev_err(rdev, "failed to set over current protection\n");
1373			return ret;
1374		}
1375	}
1376
1377	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378		bool ad_state = (rdev->constraints->active_discharge ==
1379			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381		ret = ops->set_active_discharge(rdev, ad_state);
1382		if (ret < 0) {
1383			rdev_err(rdev, "failed to set active discharge\n");
1384			return ret;
1385		}
1386	}
1387
1388	/* If the constraints say the regulator should be on at this point
1389	 * and we have control then make sure it is enabled.
1390	 */
1391	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392		if (rdev->supply) {
1393			ret = regulator_enable(rdev->supply);
1394			if (ret < 0) {
1395				_regulator_put(rdev->supply);
1396				rdev->supply = NULL;
1397				return ret;
1398			}
1399		}
1400
1401		ret = _regulator_do_enable(rdev);
1402		if (ret < 0 && ret != -EINVAL) {
1403			rdev_err(rdev, "failed to enable\n");
1404			return ret;
1405		}
1406		rdev->use_count++;
1407	}
1408
1409	print_constraints(rdev);
1410	return 0;
 
 
 
 
1411}
1412
1413/**
1414 * set_supply - set regulator supply regulator
1415 * @rdev: regulator name
1416 * @supply_rdev: supply regulator name
1417 *
1418 * Called by platform initialisation code to set the supply regulator for this
1419 * regulator. This ensures that a regulators supply will also be enabled by the
1420 * core if it's child is enabled.
1421 */
1422static int set_supply(struct regulator_dev *rdev,
1423		      struct regulator_dev *supply_rdev)
1424{
1425	int err;
1426
1427	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428
1429	if (!try_module_get(supply_rdev->owner))
1430		return -ENODEV;
1431
1432	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433	if (rdev->supply == NULL) {
1434		err = -ENOMEM;
 
1435		return err;
1436	}
1437	supply_rdev->open_count++;
1438
1439	return 0;
1440}
1441
1442/**
1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444 * @rdev:         regulator source
 
1445 * @consumer_dev_name: dev_name() string for device supply applies to
1446 * @supply:       symbolic name for supply
1447 *
1448 * Allows platform initialisation code to map physical regulator
1449 * sources to symbolic names for supplies for use by devices.  Devices
1450 * should use these symbolic names to request regulators, avoiding the
1451 * need to provide board-specific regulator names as platform data.
 
 
1452 */
1453static int set_consumer_device_supply(struct regulator_dev *rdev,
1454				      const char *consumer_dev_name,
1455				      const char *supply)
1456{
1457	struct regulator_map *node;
1458	int has_dev;
1459
 
 
 
 
 
 
1460	if (supply == NULL)
1461		return -EINVAL;
1462
1463	if (consumer_dev_name != NULL)
1464		has_dev = 1;
1465	else
1466		has_dev = 0;
1467
1468	list_for_each_entry(node, &regulator_map_list, list) {
1469		if (node->dev_name && consumer_dev_name) {
1470			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471				continue;
1472		} else if (node->dev_name || consumer_dev_name) {
1473			continue;
1474		}
1475
1476		if (strcmp(node->supply, supply) != 0)
1477			continue;
1478
1479		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480			 consumer_dev_name,
1481			 dev_name(&node->regulator->dev),
1482			 node->regulator->desc->name,
1483			 supply,
1484			 dev_name(&rdev->dev), rdev_get_name(rdev));
1485		return -EBUSY;
1486	}
1487
1488	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489	if (node == NULL)
1490		return -ENOMEM;
1491
1492	node->regulator = rdev;
1493	node->supply = supply;
1494
1495	if (has_dev) {
1496		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497		if (node->dev_name == NULL) {
1498			kfree(node);
1499			return -ENOMEM;
1500		}
1501	}
1502
1503	list_add(&node->list, &regulator_map_list);
1504	return 0;
1505}
1506
1507static void unset_regulator_supplies(struct regulator_dev *rdev)
1508{
1509	struct regulator_map *node, *n;
1510
1511	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1512		if (rdev == node->regulator) {
1513			list_del(&node->list);
1514			kfree(node->dev_name);
1515			kfree(node);
1516		}
1517	}
1518}
1519
1520#ifdef CONFIG_DEBUG_FS
1521static ssize_t constraint_flags_read_file(struct file *file,
1522					  char __user *user_buf,
1523					  size_t count, loff_t *ppos)
1524{
1525	const struct regulator *regulator = file->private_data;
1526	const struct regulation_constraints *c = regulator->rdev->constraints;
1527	char *buf;
1528	ssize_t ret;
1529
1530	if (!c)
1531		return 0;
1532
1533	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534	if (!buf)
1535		return -ENOMEM;
1536
1537	ret = snprintf(buf, PAGE_SIZE,
1538			"always_on: %u\n"
1539			"boot_on: %u\n"
1540			"apply_uV: %u\n"
1541			"ramp_disable: %u\n"
1542			"soft_start: %u\n"
1543			"pull_down: %u\n"
1544			"over_current_protection: %u\n",
1545			c->always_on,
1546			c->boot_on,
1547			c->apply_uV,
1548			c->ramp_disable,
1549			c->soft_start,
1550			c->pull_down,
1551			c->over_current_protection);
1552
1553	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554	kfree(buf);
1555
1556	return ret;
1557}
1558
1559#endif
1560
1561static const struct file_operations constraint_flags_fops = {
1562#ifdef CONFIG_DEBUG_FS
1563	.open = simple_open,
1564	.read = constraint_flags_read_file,
1565	.llseek = default_llseek,
1566#endif
1567};
1568
1569#define REG_STR_SIZE	64
1570
1571static struct regulator *create_regulator(struct regulator_dev *rdev,
1572					  struct device *dev,
1573					  const char *supply_name)
1574{
1575	struct regulator *regulator;
1576	char buf[REG_STR_SIZE];
1577	int err, size;
1578
1579	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580	if (regulator == NULL)
1581		return NULL;
1582
1583	regulator_lock(rdev);
1584	regulator->rdev = rdev;
1585	list_add(&regulator->list, &rdev->consumer_list);
1586
1587	if (dev) {
 
 
 
 
 
 
 
1588		regulator->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
1589
1590		/* Add a link to the device sysfs entry */
1591		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592				dev->kobj.name, supply_name);
1593		if (size >= REG_STR_SIZE)
1594			goto overflow_err;
1595
1596		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597		if (regulator->supply_name == NULL)
1598			goto overflow_err;
1599
1600		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601					buf);
1602		if (err) {
1603			rdev_dbg(rdev, "could not add device link %s err %d\n",
1604				  dev->kobj.name, err);
1605			/* non-fatal */
1606		}
1607	} else {
1608		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609		if (regulator->supply_name == NULL)
1610			goto overflow_err;
1611	}
1612
 
1613	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614						rdev->debugfs);
1615	if (!regulator->debugfs) {
1616		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
1617	} else {
1618		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619				   &regulator->uA_load);
1620		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624		debugfs_create_file("constraint_flags", 0444,
1625				    regulator->debugfs, regulator,
1626				    &constraint_flags_fops);
1627	}
 
1628
1629	/*
1630	 * Check now if the regulator is an always on regulator - if
1631	 * it is then we don't need to do nearly so much work for
1632	 * enable/disable calls.
1633	 */
1634	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635	    _regulator_is_enabled(rdev))
1636		regulator->always_on = true;
1637
1638	regulator_unlock(rdev);
1639	return regulator;
 
 
 
 
 
 
1640overflow_err:
1641	list_del(&regulator->list);
1642	kfree(regulator);
1643	regulator_unlock(rdev);
1644	return NULL;
1645}
1646
1647static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648{
1649	if (rdev->constraints && rdev->constraints->enable_time)
1650		return rdev->constraints->enable_time;
1651	if (rdev->desc->ops->enable_time)
1652		return rdev->desc->ops->enable_time(rdev);
1653	return rdev->desc->enable_time;
1654}
1655
1656static struct regulator_supply_alias *regulator_find_supply_alias(
1657		struct device *dev, const char *supply)
 
1658{
1659	struct regulator_supply_alias *map;
1660
1661	list_for_each_entry(map, &regulator_supply_alias_list, list)
1662		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663			return map;
1664
1665	return NULL;
1666}
1667
1668static void regulator_supply_alias(struct device **dev, const char **supply)
1669{
1670	struct regulator_supply_alias *map;
1671
1672	map = regulator_find_supply_alias(*dev, *supply);
1673	if (map) {
1674		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675				*supply, map->alias_supply,
1676				dev_name(map->alias_dev));
1677		*dev = map->alias_dev;
1678		*supply = map->alias_supply;
1679	}
1680}
1681
1682static int regulator_match(struct device *dev, const void *data)
1683{
1684	struct regulator_dev *r = dev_to_rdev(dev);
1685
1686	return strcmp(rdev_get_name(r), data) == 0;
1687}
1688
1689static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690{
1691	struct device *dev;
1692
1693	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1694
1695	return dev ? dev_to_rdev(dev) : NULL;
1696}
1697
1698/**
1699 * regulator_dev_lookup - lookup a regulator device.
1700 * @dev: device for regulator "consumer".
1701 * @supply: Supply name or regulator ID.
1702 *
1703 * If successful, returns a struct regulator_dev that corresponds to the name
1704 * @supply and with the embedded struct device refcount incremented by one.
1705 * The refcount must be dropped by calling put_device().
1706 * On failure one of the following ERR-PTR-encoded values is returned:
1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708 * in the future.
1709 */
1710static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711						  const char *supply)
1712{
1713	struct regulator_dev *r = NULL;
1714	struct device_node *node;
1715	struct regulator_map *map;
 
1716	const char *devname = NULL;
 
1717
1718	regulator_supply_alias(&dev, &supply);
1719
1720	/* first do a dt based lookup */
1721	if (dev && dev->of_node) {
1722		node = of_get_regulator(dev, supply);
1723		if (node) {
1724			r = of_find_regulator_by_node(node);
1725			if (r)
1726				return r;
1727
1728			/*
1729			 * We have a node, but there is no device.
1730			 * assume it has not registered yet.
1731			 */
1732			return ERR_PTR(-EPROBE_DEFER);
1733		}
1734	}
1735
1736	/* if not found, try doing it non-dt way */
1737	if (dev)
1738		devname = dev_name(dev);
1739
1740	mutex_lock(&regulator_list_mutex);
 
1741	list_for_each_entry(map, &regulator_map_list, list) {
1742		/* If the mapping has a device set up it must match */
1743		if (map->dev_name &&
1744		    (!devname || strcmp(map->dev_name, devname)))
1745			continue;
1746
1747		if (strcmp(map->supply, supply) == 0 &&
1748		    get_device(&map->regulator->dev)) {
1749			r = map->regulator;
1750			break;
1751		}
1752	}
1753	mutex_unlock(&regulator_list_mutex);
1754
1755	if (r)
1756		return r;
1757
1758	r = regulator_lookup_by_name(supply);
1759	if (r)
1760		return r;
1761
1762	return ERR_PTR(-ENODEV);
1763}
1764
1765static int regulator_resolve_supply(struct regulator_dev *rdev)
1766{
1767	struct regulator_dev *r;
1768	struct device *dev = rdev->dev.parent;
1769	int ret;
1770
1771	/* No supply to resolve? */
1772	if (!rdev->supply_name)
1773		return 0;
1774
1775	/* Supply already resolved? */
1776	if (rdev->supply)
1777		return 0;
1778
1779	r = regulator_dev_lookup(dev, rdev->supply_name);
1780	if (IS_ERR(r)) {
1781		ret = PTR_ERR(r);
1782
1783		/* Did the lookup explicitly defer for us? */
1784		if (ret == -EPROBE_DEFER)
1785			return ret;
1786
1787		if (have_full_constraints()) {
1788			r = dummy_regulator_rdev;
1789			get_device(&r->dev);
1790		} else {
1791			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792				rdev->supply_name, rdev->desc->name);
1793			return -EPROBE_DEFER;
1794		}
1795	}
1796
1797	/*
1798	 * If the supply's parent device is not the same as the
1799	 * regulator's parent device, then ensure the parent device
1800	 * is bound before we resolve the supply, in case the parent
1801	 * device get probe deferred and unregisters the supply.
1802	 */
1803	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804		if (!device_is_bound(r->dev.parent)) {
1805			put_device(&r->dev);
1806			return -EPROBE_DEFER;
1807		}
1808	}
1809
1810	/* Recursively resolve the supply of the supply */
1811	ret = regulator_resolve_supply(r);
1812	if (ret < 0) {
1813		put_device(&r->dev);
1814		return ret;
1815	}
1816
1817	ret = set_supply(rdev, r);
1818	if (ret < 0) {
1819		put_device(&r->dev);
1820		return ret;
1821	}
1822
1823	/*
1824	 * In set_machine_constraints() we may have turned this regulator on
1825	 * but we couldn't propagate to the supply if it hadn't been resolved
1826	 * yet.  Do it now.
1827	 */
1828	if (rdev->use_count) {
1829		ret = regulator_enable(rdev->supply);
1830		if (ret < 0) {
1831			_regulator_put(rdev->supply);
1832			rdev->supply = NULL;
1833			return ret;
1834		}
1835	}
 
1836
1837	return 0;
1838}
1839
1840/* Internal regulator request function */
1841struct regulator *_regulator_get(struct device *dev, const char *id,
1842				 enum regulator_get_type get_type)
1843{
1844	struct regulator_dev *rdev;
1845	struct regulator *regulator;
1846	const char *devname = dev ? dev_name(dev) : "deviceless";
1847	int ret;
1848
1849	if (get_type >= MAX_GET_TYPE) {
1850		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851		return ERR_PTR(-EINVAL);
1852	}
1853
1854	if (id == NULL) {
1855		pr_err("get() with no identifier\n");
1856		return ERR_PTR(-EINVAL);
1857	}
1858
1859	rdev = regulator_dev_lookup(dev, id);
1860	if (IS_ERR(rdev)) {
1861		ret = PTR_ERR(rdev);
1862
1863		/*
1864		 * If regulator_dev_lookup() fails with error other
1865		 * than -ENODEV our job here is done, we simply return it.
1866		 */
1867		if (ret != -ENODEV)
1868			return ERR_PTR(ret);
1869
1870		if (!have_full_constraints()) {
1871			dev_warn(dev,
1872				 "incomplete constraints, dummy supplies not allowed\n");
1873			return ERR_PTR(-ENODEV);
1874		}
1875
1876		switch (get_type) {
1877		case NORMAL_GET:
1878			/*
1879			 * Assume that a regulator is physically present and
1880			 * enabled, even if it isn't hooked up, and just
1881			 * provide a dummy.
1882			 */
1883			dev_warn(dev,
1884				 "%s supply %s not found, using dummy regulator\n",
1885				 devname, id);
1886			rdev = dummy_regulator_rdev;
1887			get_device(&rdev->dev);
1888			break;
1889
1890		case EXCLUSIVE_GET:
1891			dev_warn(dev,
1892				 "dummy supplies not allowed for exclusive requests\n");
1893			/* fall through */
1894
1895		default:
1896			return ERR_PTR(-ENODEV);
1897		}
1898	}
1899
 
1900	if (rdev->exclusive) {
1901		regulator = ERR_PTR(-EPERM);
1902		put_device(&rdev->dev);
1903		return regulator;
1904	}
1905
1906	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907		regulator = ERR_PTR(-EBUSY);
1908		put_device(&rdev->dev);
1909		return regulator;
1910	}
1911
1912	mutex_lock(&regulator_list_mutex);
1913	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914	mutex_unlock(&regulator_list_mutex);
1915
1916	if (ret != 0) {
1917		regulator = ERR_PTR(-EPROBE_DEFER);
1918		put_device(&rdev->dev);
1919		return regulator;
1920	}
1921
1922	ret = regulator_resolve_supply(rdev);
1923	if (ret < 0) {
1924		regulator = ERR_PTR(ret);
1925		put_device(&rdev->dev);
1926		return regulator;
1927	}
1928
1929	if (!try_module_get(rdev->owner)) {
1930		regulator = ERR_PTR(-EPROBE_DEFER);
1931		put_device(&rdev->dev);
1932		return regulator;
1933	}
1934
1935	regulator = create_regulator(rdev, dev, id);
1936	if (regulator == NULL) {
1937		regulator = ERR_PTR(-ENOMEM);
1938		put_device(&rdev->dev);
1939		module_put(rdev->owner);
1940		return regulator;
1941	}
1942
1943	rdev->open_count++;
1944	if (get_type == EXCLUSIVE_GET) {
1945		rdev->exclusive = 1;
1946
1947		ret = _regulator_is_enabled(rdev);
1948		if (ret > 0)
1949			rdev->use_count = 1;
1950		else
1951			rdev->use_count = 0;
1952	}
1953
1954	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
 
1955
1956	return regulator;
1957}
1958
1959/**
1960 * regulator_get - lookup and obtain a reference to a regulator.
1961 * @dev: device for regulator "consumer"
1962 * @id: Supply name or regulator ID.
1963 *
1964 * Returns a struct regulator corresponding to the regulator producer,
1965 * or IS_ERR() condition containing errno.
1966 *
1967 * Use of supply names configured via regulator_set_device_supply() is
1968 * strongly encouraged.  It is recommended that the supply name used
1969 * should match the name used for the supply and/or the relevant
1970 * device pins in the datasheet.
1971 */
1972struct regulator *regulator_get(struct device *dev, const char *id)
1973{
1974	return _regulator_get(dev, id, NORMAL_GET);
1975}
1976EXPORT_SYMBOL_GPL(regulator_get);
1977
1978/**
1979 * regulator_get_exclusive - obtain exclusive access to a regulator.
1980 * @dev: device for regulator "consumer"
1981 * @id: Supply name or regulator ID.
1982 *
1983 * Returns a struct regulator corresponding to the regulator producer,
1984 * or IS_ERR() condition containing errno.  Other consumers will be
1985 * unable to obtain this regulator while this reference is held and the
1986 * use count for the regulator will be initialised to reflect the current
1987 * state of the regulator.
1988 *
1989 * This is intended for use by consumers which cannot tolerate shared
1990 * use of the regulator such as those which need to force the
1991 * regulator off for correct operation of the hardware they are
1992 * controlling.
1993 *
1994 * Use of supply names configured via regulator_set_device_supply() is
1995 * strongly encouraged.  It is recommended that the supply name used
1996 * should match the name used for the supply and/or the relevant
1997 * device pins in the datasheet.
1998 */
1999struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000{
2001	return _regulator_get(dev, id, EXCLUSIVE_GET);
2002}
2003EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004
2005/**
2006 * regulator_get_optional - obtain optional access to a regulator.
2007 * @dev: device for regulator "consumer"
2008 * @id: Supply name or regulator ID.
2009 *
2010 * Returns a struct regulator corresponding to the regulator producer,
2011 * or IS_ERR() condition containing errno.
2012 *
2013 * This is intended for use by consumers for devices which can have
2014 * some supplies unconnected in normal use, such as some MMC devices.
2015 * It can allow the regulator core to provide stub supplies for other
2016 * supplies requested using normal regulator_get() calls without
2017 * disrupting the operation of drivers that can handle absent
2018 * supplies.
2019 *
2020 * Use of supply names configured via regulator_set_device_supply() is
2021 * strongly encouraged.  It is recommended that the supply name used
2022 * should match the name used for the supply and/or the relevant
2023 * device pins in the datasheet.
2024 */
2025struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026{
2027	return _regulator_get(dev, id, OPTIONAL_GET);
2028}
2029EXPORT_SYMBOL_GPL(regulator_get_optional);
2030
2031/* regulator_list_mutex lock held by regulator_put() */
2032static void _regulator_put(struct regulator *regulator)
2033{
2034	struct regulator_dev *rdev;
2035
2036	if (IS_ERR_OR_NULL(regulator))
2037		return;
2038
2039	lockdep_assert_held_once(&regulator_list_mutex);
2040
2041	/* Docs say you must disable before calling regulator_put() */
2042	WARN_ON(regulator->enable_count);
2043
2044	rdev = regulator->rdev;
2045
 
2046	debugfs_remove_recursive(regulator->debugfs);
 
2047
 
2048	if (regulator->dev) {
2049		device_link_remove(regulator->dev, &rdev->dev);
2050
2051		/* remove any sysfs entries */
2052		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
 
 
2053	}
2054
2055	regulator_lock(rdev);
2056	list_del(&regulator->list);
 
2057
2058	rdev->open_count--;
2059	rdev->exclusive = 0;
2060	put_device(&rdev->dev);
2061	regulator_unlock(rdev);
2062
2063	kfree_const(regulator->supply_name);
2064	kfree(regulator);
2065
2066	module_put(rdev->owner);
2067}
2068
2069/**
2070 * regulator_put - "free" the regulator source
2071 * @regulator: regulator source
2072 *
2073 * Note: drivers must ensure that all regulator_enable calls made on this
2074 * regulator source are balanced by regulator_disable calls prior to calling
2075 * this function.
2076 */
2077void regulator_put(struct regulator *regulator)
2078{
2079	mutex_lock(&regulator_list_mutex);
2080	_regulator_put(regulator);
2081	mutex_unlock(&regulator_list_mutex);
2082}
2083EXPORT_SYMBOL_GPL(regulator_put);
2084
2085/**
2086 * regulator_register_supply_alias - Provide device alias for supply lookup
2087 *
2088 * @dev: device that will be given as the regulator "consumer"
2089 * @id: Supply name or regulator ID
2090 * @alias_dev: device that should be used to lookup the supply
2091 * @alias_id: Supply name or regulator ID that should be used to lookup the
2092 * supply
2093 *
2094 * All lookups for id on dev will instead be conducted for alias_id on
2095 * alias_dev.
2096 */
2097int regulator_register_supply_alias(struct device *dev, const char *id,
2098				    struct device *alias_dev,
2099				    const char *alias_id)
2100{
2101	struct regulator_supply_alias *map;
 
2102
2103	map = regulator_find_supply_alias(dev, id);
2104	if (map)
2105		return -EEXIST;
2106
2107	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108	if (!map)
2109		return -ENOMEM;
2110
2111	map->src_dev = dev;
2112	map->src_supply = id;
2113	map->alias_dev = alias_dev;
2114	map->alias_supply = alias_id;
2115
2116	list_add(&map->list, &regulator_supply_alias_list);
2117
2118	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119		id, dev_name(dev), alias_id, dev_name(alias_dev));
2120
2121	return 0;
2122}
2123EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124
2125/**
2126 * regulator_unregister_supply_alias - Remove device alias
2127 *
2128 * @dev: device that will be given as the regulator "consumer"
2129 * @id: Supply name or regulator ID
2130 *
2131 * Remove a lookup alias if one exists for id on dev.
2132 */
2133void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134{
2135	struct regulator_supply_alias *map;
2136
2137	map = regulator_find_supply_alias(dev, id);
2138	if (map) {
2139		list_del(&map->list);
2140		kfree(map);
2141	}
2142}
2143EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144
2145/**
2146 * regulator_bulk_register_supply_alias - register multiple aliases
2147 *
2148 * @dev: device that will be given as the regulator "consumer"
2149 * @id: List of supply names or regulator IDs
2150 * @alias_dev: device that should be used to lookup the supply
2151 * @alias_id: List of supply names or regulator IDs that should be used to
2152 * lookup the supply
2153 * @num_id: Number of aliases to register
2154 *
2155 * @return 0 on success, an errno on failure.
2156 *
2157 * This helper function allows drivers to register several supply
2158 * aliases in one operation.  If any of the aliases cannot be
2159 * registered any aliases that were registered will be removed
2160 * before returning to the caller.
2161 */
2162int regulator_bulk_register_supply_alias(struct device *dev,
2163					 const char *const *id,
2164					 struct device *alias_dev,
2165					 const char *const *alias_id,
2166					 int num_id)
2167{
2168	int i;
2169	int ret;
2170
2171	for (i = 0; i < num_id; ++i) {
2172		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173						      alias_id[i]);
2174		if (ret < 0)
2175			goto err;
2176	}
2177
2178	return 0;
2179
2180err:
2181	dev_err(dev,
2182		"Failed to create supply alias %s,%s -> %s,%s\n",
2183		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184
2185	while (--i >= 0)
2186		regulator_unregister_supply_alias(dev, id[i]);
2187
2188	return ret;
2189}
2190EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191
2192/**
2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194 *
2195 * @dev: device that will be given as the regulator "consumer"
2196 * @id: List of supply names or regulator IDs
2197 * @num_id: Number of aliases to unregister
2198 *
2199 * This helper function allows drivers to unregister several supply
2200 * aliases in one operation.
2201 */
2202void regulator_bulk_unregister_supply_alias(struct device *dev,
2203					    const char *const *id,
2204					    int num_id)
2205{
2206	int i;
2207
2208	for (i = 0; i < num_id; ++i)
2209		regulator_unregister_supply_alias(dev, id[i]);
2210}
2211EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212
2213
2214/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216				const struct regulator_config *config)
2217{
2218	struct regulator_enable_gpio *pin;
2219	struct gpio_desc *gpiod;
2220
2221	gpiod = config->ena_gpiod;
2222
2223	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2224		if (pin->gpiod == gpiod) {
2225			rdev_dbg(rdev, "GPIO is already used\n");
2226			goto update_ena_gpio_to_rdev;
2227		}
2228	}
2229
2230	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231	if (pin == NULL)
2232		return -ENOMEM;
2233
2234	pin->gpiod = gpiod;
2235	list_add(&pin->list, &regulator_ena_gpio_list);
2236
2237update_ena_gpio_to_rdev:
2238	pin->request_count++;
2239	rdev->ena_pin = pin;
2240	return 0;
2241}
2242
2243static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244{
2245	struct regulator_enable_gpio *pin, *n;
2246
2247	if (!rdev->ena_pin)
2248		return;
2249
2250	/* Free the GPIO only in case of no use */
2251	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2252		if (pin->gpiod == rdev->ena_pin->gpiod) {
2253			if (pin->request_count <= 1) {
2254				pin->request_count = 0;
2255				gpiod_put(pin->gpiod);
2256				list_del(&pin->list);
2257				kfree(pin);
2258				rdev->ena_pin = NULL;
2259				return;
2260			} else {
2261				pin->request_count--;
 
 
2262			}
2263		}
2264	}
2265}
2266
2267/**
2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269 * @rdev: regulator_dev structure
2270 * @enable: enable GPIO at initial use?
2271 *
2272 * GPIO is enabled in case of initial use. (enable_count is 0)
2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274 */
2275static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276{
2277	struct regulator_enable_gpio *pin = rdev->ena_pin;
2278
2279	if (!pin)
2280		return -EINVAL;
2281
2282	if (enable) {
2283		/* Enable GPIO at initial use */
2284		if (pin->enable_count == 0)
2285			gpiod_set_value_cansleep(pin->gpiod, 1);
2286
2287		pin->enable_count++;
2288	} else {
2289		if (pin->enable_count > 1) {
2290			pin->enable_count--;
2291			return 0;
2292		}
2293
2294		/* Disable GPIO if not used */
2295		if (pin->enable_count <= 1) {
2296			gpiod_set_value_cansleep(pin->gpiod, 0);
2297			pin->enable_count = 0;
2298		}
2299	}
2300
2301	return 0;
2302}
2303
2304/**
2305 * _regulator_enable_delay - a delay helper function
2306 * @delay: time to delay in microseconds
2307 *
2308 * Delay for the requested amount of time as per the guidelines in:
2309 *
2310 *     Documentation/timers/timers-howto.rst
2311 *
2312 * The assumption here is that regulators will never be enabled in
2313 * atomic context and therefore sleeping functions can be used.
2314 */
2315static void _regulator_enable_delay(unsigned int delay)
2316{
2317	unsigned int ms = delay / 1000;
2318	unsigned int us = delay % 1000;
2319
2320	if (ms > 0) {
2321		/*
2322		 * For small enough values, handle super-millisecond
2323		 * delays in the usleep_range() call below.
2324		 */
2325		if (ms < 20)
2326			us += ms * 1000;
2327		else
2328			msleep(ms);
2329	}
2330
2331	/*
2332	 * Give the scheduler some room to coalesce with any other
2333	 * wakeup sources. For delays shorter than 10 us, don't even
2334	 * bother setting up high-resolution timers and just busy-
2335	 * loop.
2336	 */
2337	if (us >= 10)
2338		usleep_range(us, us + 100);
2339	else
2340		udelay(us);
2341}
2342
2343static int _regulator_do_enable(struct regulator_dev *rdev)
2344{
2345	int ret, delay;
2346
2347	/* Query before enabling in case configuration dependent.  */
2348	ret = _regulator_get_enable_time(rdev);
2349	if (ret >= 0) {
2350		delay = ret;
2351	} else {
2352		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353		delay = 0;
2354	}
2355
2356	trace_regulator_enable(rdev_get_name(rdev));
2357
2358	if (rdev->desc->off_on_delay) {
2359		/* if needed, keep a distance of off_on_delay from last time
2360		 * this regulator was disabled.
2361		 */
2362		unsigned long start_jiffy = jiffies;
2363		unsigned long intended, max_delay, remaining;
2364
2365		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366		intended = rdev->last_off_jiffy + max_delay;
2367
2368		if (time_before(start_jiffy, intended)) {
2369			/* calc remaining jiffies to deal with one-time
2370			 * timer wrapping.
2371			 * in case of multiple timer wrapping, either it can be
2372			 * detected by out-of-range remaining, or it cannot be
2373			 * detected and we get a penalty of
2374			 * _regulator_enable_delay().
2375			 */
2376			remaining = intended - start_jiffy;
2377			if (remaining <= max_delay)
2378				_regulator_enable_delay(
2379						jiffies_to_usecs(remaining));
2380		}
2381	}
2382
2383	if (rdev->ena_pin) {
2384		if (!rdev->ena_gpio_state) {
2385			ret = regulator_ena_gpio_ctrl(rdev, true);
 
2386			if (ret < 0)
2387				return ret;
2388			rdev->ena_gpio_state = 1;
2389		}
2390	} else if (rdev->desc->ops->enable) {
2391		ret = rdev->desc->ops->enable(rdev);
2392		if (ret < 0)
2393			return ret;
2394	} else {
2395		return -EINVAL;
2396	}
2397
2398	/* Allow the regulator to ramp; it would be useful to extend
2399	 * this for bulk operations so that the regulators can ramp
2400	 * together.  */
2401	trace_regulator_enable_delay(rdev_get_name(rdev));
2402
2403	_regulator_enable_delay(delay);
2404
2405	trace_regulator_enable_complete(rdev_get_name(rdev));
2406
2407	return 0;
2408}
2409
2410/**
2411 * _regulator_handle_consumer_enable - handle that a consumer enabled
2412 * @regulator: regulator source
2413 *
2414 * Some things on a regulator consumer (like the contribution towards total
2415 * load on the regulator) only have an effect when the consumer wants the
2416 * regulator enabled.  Explained in example with two consumers of the same
2417 * regulator:
2418 *   consumer A: set_load(100);       => total load = 0
2419 *   consumer A: regulator_enable();  => total load = 100
2420 *   consumer B: set_load(1000);      => total load = 100
2421 *   consumer B: regulator_enable();  => total load = 1100
2422 *   consumer A: regulator_disable(); => total_load = 1000
2423 *
2424 * This function (together with _regulator_handle_consumer_disable) is
2425 * responsible for keeping track of the refcount for a given regulator consumer
2426 * and applying / unapplying these things.
2427 *
2428 * Returns 0 upon no error; -error upon error.
2429 */
2430static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431{
2432	struct regulator_dev *rdev = regulator->rdev;
2433
2434	lockdep_assert_held_once(&rdev->mutex.base);
2435
2436	regulator->enable_count++;
2437	if (regulator->uA_load && regulator->enable_count == 1)
2438		return drms_uA_update(rdev);
2439
2440	return 0;
2441}
2442
2443/**
2444 * _regulator_handle_consumer_disable - handle that a consumer disabled
2445 * @regulator: regulator source
2446 *
2447 * The opposite of _regulator_handle_consumer_enable().
2448 *
2449 * Returns 0 upon no error; -error upon error.
2450 */
2451static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452{
2453	struct regulator_dev *rdev = regulator->rdev;
2454
2455	lockdep_assert_held_once(&rdev->mutex.base);
2456
2457	if (!regulator->enable_count) {
2458		rdev_err(rdev, "Underflow of regulator enable count\n");
2459		return -EINVAL;
2460	}
2461
2462	regulator->enable_count--;
2463	if (regulator->uA_load && regulator->enable_count == 0)
2464		return drms_uA_update(rdev);
2465
2466	return 0;
2467}
2468
2469/* locks held by regulator_enable() */
2470static int _regulator_enable(struct regulator *regulator)
2471{
2472	struct regulator_dev *rdev = regulator->rdev;
2473	int ret;
2474
2475	lockdep_assert_held_once(&rdev->mutex.base);
2476
2477	if (rdev->use_count == 0 && rdev->supply) {
2478		ret = _regulator_enable(rdev->supply);
2479		if (ret < 0)
2480			return ret;
2481	}
2482
2483	/* balance only if there are regulators coupled */
2484	if (rdev->coupling_desc.n_coupled > 1) {
2485		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486		if (ret < 0)
2487			goto err_disable_supply;
2488	}
2489
2490	ret = _regulator_handle_consumer_enable(regulator);
2491	if (ret < 0)
2492		goto err_disable_supply;
2493
2494	if (rdev->use_count == 0) {
2495		/* The regulator may on if it's not switchable or left on */
2496		ret = _regulator_is_enabled(rdev);
2497		if (ret == -EINVAL || ret == 0) {
2498			if (!regulator_ops_is_valid(rdev,
2499					REGULATOR_CHANGE_STATUS)) {
2500				ret = -EPERM;
2501				goto err_consumer_disable;
2502			}
2503
2504			ret = _regulator_do_enable(rdev);
2505			if (ret < 0)
2506				goto err_consumer_disable;
2507
2508			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509					     NULL);
2510		} else if (ret < 0) {
2511			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512			goto err_consumer_disable;
2513		}
2514		/* Fallthrough on positive return values - already enabled */
2515	}
2516
2517	rdev->use_count++;
2518
2519	return 0;
2520
2521err_consumer_disable:
2522	_regulator_handle_consumer_disable(regulator);
2523
2524err_disable_supply:
2525	if (rdev->use_count == 0 && rdev->supply)
2526		_regulator_disable(rdev->supply);
2527
2528	return ret;
2529}
2530
2531/**
2532 * regulator_enable - enable regulator output
2533 * @regulator: regulator source
2534 *
2535 * Request that the regulator be enabled with the regulator output at
2536 * the predefined voltage or current value.  Calls to regulator_enable()
2537 * must be balanced with calls to regulator_disable().
2538 *
2539 * NOTE: the output value can be set by other drivers, boot loader or may be
2540 * hardwired in the regulator.
2541 */
2542int regulator_enable(struct regulator *regulator)
2543{
2544	struct regulator_dev *rdev = regulator->rdev;
2545	struct ww_acquire_ctx ww_ctx;
2546	int ret;
2547
2548	regulator_lock_dependent(rdev, &ww_ctx);
2549	ret = _regulator_enable(regulator);
2550	regulator_unlock_dependent(rdev, &ww_ctx);
2551
2552	return ret;
2553}
2554EXPORT_SYMBOL_GPL(regulator_enable);
2555
2556static int _regulator_do_disable(struct regulator_dev *rdev)
2557{
2558	int ret;
2559
2560	trace_regulator_disable(rdev_get_name(rdev));
2561
2562	if (rdev->ena_pin) {
2563		if (rdev->ena_gpio_state) {
2564			ret = regulator_ena_gpio_ctrl(rdev, false);
2565			if (ret < 0)
2566				return ret;
2567			rdev->ena_gpio_state = 0;
2568		}
2569
2570	} else if (rdev->desc->ops->disable) {
2571		ret = rdev->desc->ops->disable(rdev);
2572		if (ret != 0)
2573			return ret;
2574	}
2575
2576	/* cares about last_off_jiffy only if off_on_delay is required by
2577	 * device.
2578	 */
2579	if (rdev->desc->off_on_delay)
2580		rdev->last_off_jiffy = jiffies;
2581
2582	trace_regulator_disable_complete(rdev_get_name(rdev));
 
2583
2584	return 0;
2585}
 
2586
2587/* locks held by regulator_disable() */
2588static int _regulator_disable(struct regulator *regulator)
2589{
2590	struct regulator_dev *rdev = regulator->rdev;
2591	int ret = 0;
2592
2593	lockdep_assert_held_once(&rdev->mutex.base);
2594
2595	if (WARN(rdev->use_count <= 0,
2596		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597		return -EIO;
2598
2599	/* are we the last user and permitted to disable ? */
2600	if (rdev->use_count == 1 &&
2601	    (rdev->constraints && !rdev->constraints->always_on)) {
2602
2603		/* we are last user */
2604		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605			ret = _notifier_call_chain(rdev,
2606						   REGULATOR_EVENT_PRE_DISABLE,
2607						   NULL);
2608			if (ret & NOTIFY_STOP_MASK)
2609				return -EINVAL;
2610
2611			ret = _regulator_do_disable(rdev);
2612			if (ret < 0) {
2613				rdev_err(rdev, "failed to disable\n");
2614				_notifier_call_chain(rdev,
2615						REGULATOR_EVENT_ABORT_DISABLE,
2616						NULL);
2617				return ret;
2618			}
 
 
 
2619			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620					NULL);
2621		}
2622
2623		rdev->use_count = 0;
2624	} else if (rdev->use_count > 1) {
 
 
 
 
 
 
2625		rdev->use_count--;
2626	}
2627
2628	if (ret == 0)
2629		ret = _regulator_handle_consumer_disable(regulator);
2630
2631	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633
2634	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635		ret = _regulator_disable(rdev->supply);
2636
2637	return ret;
2638}
2639
2640/**
2641 * regulator_disable - disable regulator output
2642 * @regulator: regulator source
2643 *
2644 * Disable the regulator output voltage or current.  Calls to
2645 * regulator_enable() must be balanced with calls to
2646 * regulator_disable().
2647 *
2648 * NOTE: this will only disable the regulator output if no other consumer
2649 * devices have it enabled, the regulator device supports disabling and
2650 * machine constraints permit this operation.
2651 */
2652int regulator_disable(struct regulator *regulator)
2653{
2654	struct regulator_dev *rdev = regulator->rdev;
2655	struct ww_acquire_ctx ww_ctx;
2656	int ret;
 
 
 
2657
2658	regulator_lock_dependent(rdev, &ww_ctx);
2659	ret = _regulator_disable(regulator);
2660	regulator_unlock_dependent(rdev, &ww_ctx);
2661
2662	return ret;
2663}
2664EXPORT_SYMBOL_GPL(regulator_disable);
2665
2666/* locks held by regulator_force_disable() */
2667static int _regulator_force_disable(struct regulator_dev *rdev)
2668{
2669	int ret = 0;
2670
2671	lockdep_assert_held_once(&rdev->mutex.base);
2672
2673	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674			REGULATOR_EVENT_PRE_DISABLE, NULL);
2675	if (ret & NOTIFY_STOP_MASK)
2676		return -EINVAL;
2677
2678	ret = _regulator_do_disable(rdev);
2679	if (ret < 0) {
2680		rdev_err(rdev, "failed to force disable\n");
2681		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683		return ret;
2684	}
2685
2686	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687			REGULATOR_EVENT_DISABLE, NULL);
2688
2689	return 0;
2690}
2691
2692/**
2693 * regulator_force_disable - force disable regulator output
2694 * @regulator: regulator source
2695 *
2696 * Forcibly disable the regulator output voltage or current.
2697 * NOTE: this *will* disable the regulator output even if other consumer
2698 * devices have it enabled. This should be used for situations when device
2699 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700 */
2701int regulator_force_disable(struct regulator *regulator)
2702{
2703	struct regulator_dev *rdev = regulator->rdev;
2704	struct ww_acquire_ctx ww_ctx;
2705	int ret;
2706
2707	regulator_lock_dependent(rdev, &ww_ctx);
2708
2709	ret = _regulator_force_disable(regulator->rdev);
 
2710
2711	if (rdev->coupling_desc.n_coupled > 1)
2712		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713
2714	if (regulator->uA_load) {
2715		regulator->uA_load = 0;
2716		ret = drms_uA_update(rdev);
2717	}
2718
2719	if (rdev->use_count != 0 && rdev->supply)
2720		_regulator_disable(rdev->supply);
2721
2722	regulator_unlock_dependent(rdev, &ww_ctx);
2723
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_force_disable);
2727
2728static void regulator_disable_work(struct work_struct *work)
2729{
2730	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731						  disable_work.work);
2732	struct ww_acquire_ctx ww_ctx;
2733	int count, i, ret;
2734	struct regulator *regulator;
2735	int total_count = 0;
2736
2737	regulator_lock_dependent(rdev, &ww_ctx);
2738
2739	/*
2740	 * Workqueue functions queue the new work instance while the previous
2741	 * work instance is being processed. Cancel the queued work instance
2742	 * as the work instance under processing does the job of the queued
2743	 * work instance.
2744	 */
2745	cancel_delayed_work(&rdev->disable_work);
2746
2747	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748		count = regulator->deferred_disables;
2749
2750		if (!count)
2751			continue;
2752
2753		total_count += count;
2754		regulator->deferred_disables = 0;
2755
2756		for (i = 0; i < count; i++) {
2757			ret = _regulator_disable(regulator);
2758			if (ret != 0)
2759				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2760		}
2761	}
2762	WARN_ON(!total_count);
2763
2764	if (rdev->coupling_desc.n_coupled > 1)
2765		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766
2767	regulator_unlock_dependent(rdev, &ww_ctx);
2768}
2769
2770/**
2771 * regulator_disable_deferred - disable regulator output with delay
2772 * @regulator: regulator source
2773 * @ms: milliseconds until the regulator is disabled
2774 *
2775 * Execute regulator_disable() on the regulator after a delay.  This
2776 * is intended for use with devices that require some time to quiesce.
2777 *
2778 * NOTE: this will only disable the regulator output if no other consumer
2779 * devices have it enabled, the regulator device supports disabling and
2780 * machine constraints permit this operation.
2781 */
2782int regulator_disable_deferred(struct regulator *regulator, int ms)
2783{
2784	struct regulator_dev *rdev = regulator->rdev;
2785
2786	if (!ms)
2787		return regulator_disable(regulator);
2788
2789	regulator_lock(rdev);
2790	regulator->deferred_disables++;
2791	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792			 msecs_to_jiffies(ms));
2793	regulator_unlock(rdev);
2794
2795	return 0;
2796}
2797EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798
2799static int _regulator_is_enabled(struct regulator_dev *rdev)
2800{
2801	/* A GPIO control always takes precedence */
2802	if (rdev->ena_pin)
2803		return rdev->ena_gpio_state;
2804
2805	/* If we don't know then assume that the regulator is always on */
2806	if (!rdev->desc->ops->is_enabled)
2807		return 1;
2808
2809	return rdev->desc->ops->is_enabled(rdev);
2810}
2811
2812static int _regulator_list_voltage(struct regulator_dev *rdev,
2813				   unsigned selector, int lock)
2814{
2815	const struct regulator_ops *ops = rdev->desc->ops;
2816	int ret;
2817
2818	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819		return rdev->desc->fixed_uV;
2820
2821	if (ops->list_voltage) {
2822		if (selector >= rdev->desc->n_voltages)
2823			return -EINVAL;
2824		if (lock)
2825			regulator_lock(rdev);
2826		ret = ops->list_voltage(rdev, selector);
2827		if (lock)
2828			regulator_unlock(rdev);
2829	} else if (rdev->is_switch && rdev->supply) {
2830		ret = _regulator_list_voltage(rdev->supply->rdev,
2831					      selector, lock);
2832	} else {
2833		return -EINVAL;
2834	}
2835
2836	if (ret > 0) {
2837		if (ret < rdev->constraints->min_uV)
2838			ret = 0;
2839		else if (ret > rdev->constraints->max_uV)
2840			ret = 0;
2841	}
2842
2843	return ret;
2844}
2845
2846/**
2847 * regulator_is_enabled - is the regulator output enabled
2848 * @regulator: regulator source
2849 *
2850 * Returns positive if the regulator driver backing the source/client
2851 * has requested that the device be enabled, zero if it hasn't, else a
2852 * negative errno code.
2853 *
2854 * Note that the device backing this regulator handle can have multiple
2855 * users, so it might be enabled even if regulator_enable() was never
2856 * called for this particular source.
2857 */
2858int regulator_is_enabled(struct regulator *regulator)
2859{
2860	int ret;
2861
2862	if (regulator->always_on)
2863		return 1;
2864
2865	regulator_lock(regulator->rdev);
2866	ret = _regulator_is_enabled(regulator->rdev);
2867	regulator_unlock(regulator->rdev);
2868
2869	return ret;
2870}
2871EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872
2873/**
2874 * regulator_count_voltages - count regulator_list_voltage() selectors
2875 * @regulator: regulator source
2876 *
2877 * Returns number of selectors, or negative errno.  Selectors are
2878 * numbered starting at zero, and typically correspond to bitfields
2879 * in hardware registers.
2880 */
2881int regulator_count_voltages(struct regulator *regulator)
2882{
2883	struct regulator_dev	*rdev = regulator->rdev;
2884
2885	if (rdev->desc->n_voltages)
2886		return rdev->desc->n_voltages;
2887
2888	if (!rdev->is_switch || !rdev->supply)
2889		return -EINVAL;
2890
2891	return regulator_count_voltages(rdev->supply);
2892}
2893EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894
2895/**
2896 * regulator_list_voltage - enumerate supported voltages
2897 * @regulator: regulator source
2898 * @selector: identify voltage to list
2899 * Context: can sleep
2900 *
2901 * Returns a voltage that can be passed to @regulator_set_voltage(),
2902 * zero if this selector code can't be used on this system, or a
2903 * negative errno.
2904 */
2905int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906{
2907	return _regulator_list_voltage(regulator->rdev, selector, 1);
2908}
2909EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910
2911/**
2912 * regulator_get_regmap - get the regulator's register map
2913 * @regulator: regulator source
2914 *
2915 * Returns the register map for the given regulator, or an ERR_PTR value
2916 * if the regulator doesn't use regmap.
2917 */
2918struct regmap *regulator_get_regmap(struct regulator *regulator)
2919{
2920	struct regmap *map = regulator->rdev->regmap;
2921
2922	return map ? map : ERR_PTR(-EOPNOTSUPP);
2923}
2924
2925/**
2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927 * @regulator: regulator source
2928 * @vsel_reg: voltage selector register, output parameter
2929 * @vsel_mask: mask for voltage selector bitfield, output parameter
2930 *
2931 * Returns the hardware register offset and bitmask used for setting the
2932 * regulator voltage. This might be useful when configuring voltage-scaling
2933 * hardware or firmware that can make I2C requests behind the kernel's back,
2934 * for example.
2935 *
2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937 * and 0 is returned, otherwise a negative errno is returned.
2938 */
2939int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940					 unsigned *vsel_reg,
2941					 unsigned *vsel_mask)
2942{
2943	struct regulator_dev *rdev = regulator->rdev;
2944	const struct regulator_ops *ops = rdev->desc->ops;
2945
2946	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947		return -EOPNOTSUPP;
2948
2949	*vsel_reg = rdev->desc->vsel_reg;
2950	*vsel_mask = rdev->desc->vsel_mask;
2951
2952	 return 0;
2953}
2954EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955
2956/**
2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958 * @regulator: regulator source
2959 * @selector: identify voltage to list
2960 *
2961 * Converts the selector to a hardware-specific voltage selector that can be
2962 * directly written to the regulator registers. The address of the voltage
2963 * register can be determined by calling @regulator_get_hardware_vsel_register.
2964 *
2965 * On error a negative errno is returned.
2966 */
2967int regulator_list_hardware_vsel(struct regulator *regulator,
2968				 unsigned selector)
2969{
2970	struct regulator_dev *rdev = regulator->rdev;
2971	const struct regulator_ops *ops = rdev->desc->ops;
2972
2973	if (selector >= rdev->desc->n_voltages)
2974		return -EINVAL;
2975	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976		return -EOPNOTSUPP;
2977
2978	return selector;
2979}
2980EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981
2982/**
2983 * regulator_get_linear_step - return the voltage step size between VSEL values
2984 * @regulator: regulator source
2985 *
2986 * Returns the voltage step size between VSEL values for linear
2987 * regulators, or return 0 if the regulator isn't a linear regulator.
2988 */
2989unsigned int regulator_get_linear_step(struct regulator *regulator)
2990{
2991	struct regulator_dev *rdev = regulator->rdev;
2992
2993	return rdev->desc->uV_step;
2994}
2995EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996
2997/**
2998 * regulator_is_supported_voltage - check if a voltage range can be supported
2999 *
3000 * @regulator: Regulator to check.
3001 * @min_uV: Minimum required voltage in uV.
3002 * @max_uV: Maximum required voltage in uV.
3003 *
3004 * Returns a boolean.
3005 */
3006int regulator_is_supported_voltage(struct regulator *regulator,
3007				   int min_uV, int max_uV)
3008{
3009	struct regulator_dev *rdev = regulator->rdev;
3010	int i, voltages, ret;
3011
3012	/* If we can't change voltage check the current voltage */
3013	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014		ret = regulator_get_voltage(regulator);
3015		if (ret >= 0)
3016			return min_uV <= ret && ret <= max_uV;
3017		else
3018			return ret;
3019	}
3020
3021	/* Any voltage within constrains range is fine? */
3022	if (rdev->desc->continuous_voltage_range)
3023		return min_uV >= rdev->constraints->min_uV &&
3024				max_uV <= rdev->constraints->max_uV;
3025
3026	ret = regulator_count_voltages(regulator);
3027	if (ret < 0)
3028		return 0;
3029	voltages = ret;
3030
3031	for (i = 0; i < voltages; i++) {
3032		ret = regulator_list_voltage(regulator, i);
3033
3034		if (ret >= min_uV && ret <= max_uV)
3035			return 1;
3036	}
3037
3038	return 0;
3039}
3040EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041
3042static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043				 int max_uV)
3044{
3045	const struct regulator_desc *desc = rdev->desc;
3046
3047	if (desc->ops->map_voltage)
3048		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049
3050	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052
3053	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055
3056	if (desc->ops->list_voltage ==
3057		regulator_list_voltage_pickable_linear_range)
3058		return regulator_map_voltage_pickable_linear_range(rdev,
3059							min_uV, max_uV);
3060
3061	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062}
3063
3064static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065				       int min_uV, int max_uV,
3066				       unsigned *selector)
3067{
3068	struct pre_voltage_change_data data;
3069	int ret;
3070
3071	data.old_uV = regulator_get_voltage_rdev(rdev);
3072	data.min_uV = min_uV;
3073	data.max_uV = max_uV;
3074	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075				   &data);
3076	if (ret & NOTIFY_STOP_MASK)
3077		return -EINVAL;
3078
3079	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080	if (ret >= 0)
3081		return ret;
3082
3083	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084			     (void *)data.old_uV);
3085
3086	return ret;
3087}
3088
3089static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090					   int uV, unsigned selector)
3091{
3092	struct pre_voltage_change_data data;
3093	int ret;
3094
3095	data.old_uV = regulator_get_voltage_rdev(rdev);
3096	data.min_uV = uV;
3097	data.max_uV = uV;
3098	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099				   &data);
3100	if (ret & NOTIFY_STOP_MASK)
3101		return -EINVAL;
3102
3103	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104	if (ret >= 0)
3105		return ret;
3106
3107	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108			     (void *)data.old_uV);
3109
3110	return ret;
3111}
3112
3113static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114					   int uV, int new_selector)
3115{
3116	const struct regulator_ops *ops = rdev->desc->ops;
3117	int diff, old_sel, curr_sel, ret;
3118
3119	/* Stepping is only needed if the regulator is enabled. */
3120	if (!_regulator_is_enabled(rdev))
3121		goto final_set;
3122
3123	if (!ops->get_voltage_sel)
3124		return -EINVAL;
3125
3126	old_sel = ops->get_voltage_sel(rdev);
3127	if (old_sel < 0)
3128		return old_sel;
3129
3130	diff = new_selector - old_sel;
3131	if (diff == 0)
3132		return 0; /* No change needed. */
3133
3134	if (diff > 0) {
3135		/* Stepping up. */
3136		for (curr_sel = old_sel + rdev->desc->vsel_step;
3137		     curr_sel < new_selector;
3138		     curr_sel += rdev->desc->vsel_step) {
3139			/*
3140			 * Call the callback directly instead of using
3141			 * _regulator_call_set_voltage_sel() as we don't
3142			 * want to notify anyone yet. Same in the branch
3143			 * below.
3144			 */
3145			ret = ops->set_voltage_sel(rdev, curr_sel);
3146			if (ret)
3147				goto try_revert;
3148		}
3149	} else {
3150		/* Stepping down. */
3151		for (curr_sel = old_sel - rdev->desc->vsel_step;
3152		     curr_sel > new_selector;
3153		     curr_sel -= rdev->desc->vsel_step) {
3154			ret = ops->set_voltage_sel(rdev, curr_sel);
3155			if (ret)
3156				goto try_revert;
3157		}
3158	}
3159
3160final_set:
3161	/* The final selector will trigger the notifiers. */
3162	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163
3164try_revert:
3165	/*
3166	 * At least try to return to the previous voltage if setting a new
3167	 * one failed.
3168	 */
3169	(void)ops->set_voltage_sel(rdev, old_sel);
3170	return ret;
3171}
3172
3173static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174				       int old_uV, int new_uV)
3175{
3176	unsigned int ramp_delay = 0;
3177
3178	if (rdev->constraints->ramp_delay)
3179		ramp_delay = rdev->constraints->ramp_delay;
3180	else if (rdev->desc->ramp_delay)
3181		ramp_delay = rdev->desc->ramp_delay;
3182	else if (rdev->constraints->settling_time)
3183		return rdev->constraints->settling_time;
3184	else if (rdev->constraints->settling_time_up &&
3185		 (new_uV > old_uV))
3186		return rdev->constraints->settling_time_up;
3187	else if (rdev->constraints->settling_time_down &&
3188		 (new_uV < old_uV))
3189		return rdev->constraints->settling_time_down;
3190
3191	if (ramp_delay == 0) {
3192		rdev_dbg(rdev, "ramp_delay not set\n");
3193		return 0;
3194	}
3195
3196	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197}
3198
3199static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200				     int min_uV, int max_uV)
3201{
3202	int ret;
3203	int delay = 0;
3204	int best_val = 0;
3205	unsigned int selector;
3206	int old_selector = -1;
3207	const struct regulator_ops *ops = rdev->desc->ops;
3208	int old_uV = regulator_get_voltage_rdev(rdev);
3209
3210	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211
3212	min_uV += rdev->constraints->uV_offset;
3213	max_uV += rdev->constraints->uV_offset;
3214
3215	/*
3216	 * If we can't obtain the old selector there is not enough
3217	 * info to call set_voltage_time_sel().
3218	 */
3219	if (_regulator_is_enabled(rdev) &&
3220	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221		old_selector = ops->get_voltage_sel(rdev);
3222		if (old_selector < 0)
3223			return old_selector;
3224	}
3225
3226	if (ops->set_voltage) {
3227		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228						  &selector);
3229
3230		if (ret >= 0) {
3231			if (ops->list_voltage)
3232				best_val = ops->list_voltage(rdev,
3233							     selector);
3234			else
3235				best_val = regulator_get_voltage_rdev(rdev);
3236		}
3237
3238	} else if (ops->set_voltage_sel) {
3239		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240		if (ret >= 0) {
3241			best_val = ops->list_voltage(rdev, ret);
3242			if (min_uV <= best_val && max_uV >= best_val) {
3243				selector = ret;
3244				if (old_selector == selector)
3245					ret = 0;
3246				else if (rdev->desc->vsel_step)
3247					ret = _regulator_set_voltage_sel_step(
3248						rdev, best_val, selector);
3249				else
3250					ret = _regulator_call_set_voltage_sel(
3251						rdev, best_val, selector);
3252			} else {
3253				ret = -EINVAL;
3254			}
3255		}
3256	} else {
3257		ret = -EINVAL;
3258	}
3259
3260	if (ret)
3261		goto out;
3262
3263	if (ops->set_voltage_time_sel) {
3264		/*
3265		 * Call set_voltage_time_sel if successfully obtained
3266		 * old_selector
3267		 */
3268		if (old_selector >= 0 && old_selector != selector)
3269			delay = ops->set_voltage_time_sel(rdev, old_selector,
3270							  selector);
3271	} else {
3272		if (old_uV != best_val) {
3273			if (ops->set_voltage_time)
3274				delay = ops->set_voltage_time(rdev, old_uV,
3275							      best_val);
3276			else
3277				delay = _regulator_set_voltage_time(rdev,
3278								    old_uV,
3279								    best_val);
3280		}
3281	}
3282
3283	if (delay < 0) {
3284		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285		delay = 0;
 
 
 
 
 
3286	}
3287
3288	/* Insert any necessary delays */
3289	if (delay >= 1000) {
3290		mdelay(delay / 1000);
3291		udelay(delay % 1000);
3292	} else if (delay) {
3293		udelay(delay);
3294	}
3295
3296	if (best_val >= 0) {
3297		unsigned long data = best_val;
3298
3299		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300				     (void *)data);
3301	}
3302
3303out:
3304	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305
3306	return ret;
3307}
3308
3309static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310				  int min_uV, int max_uV, suspend_state_t state)
3311{
3312	struct regulator_state *rstate;
3313	int uV, sel;
3314
3315	rstate = regulator_get_suspend_state(rdev, state);
3316	if (rstate == NULL)
3317		return -EINVAL;
3318
3319	if (min_uV < rstate->min_uV)
3320		min_uV = rstate->min_uV;
3321	if (max_uV > rstate->max_uV)
3322		max_uV = rstate->max_uV;
3323
3324	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325	if (sel < 0)
3326		return sel;
3327
3328	uV = rdev->desc->ops->list_voltage(rdev, sel);
3329	if (uV >= min_uV && uV <= max_uV)
3330		rstate->uV = uV;
3331
3332	return 0;
3333}
3334
3335static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336					  int min_uV, int max_uV,
3337					  suspend_state_t state)
3338{
3339	struct regulator_dev *rdev = regulator->rdev;
3340	struct regulator_voltage *voltage = &regulator->voltage[state];
3341	int ret = 0;
3342	int old_min_uV, old_max_uV;
3343	int current_uV;
3344
3345	/* If we're setting the same range as last time the change
3346	 * should be a noop (some cpufreq implementations use the same
3347	 * voltage for multiple frequencies, for example).
3348	 */
3349	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350		goto out;
3351
3352	/* If we're trying to set a range that overlaps the current voltage,
3353	 * return successfully even though the regulator does not support
3354	 * changing the voltage.
3355	 */
3356	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357		current_uV = regulator_get_voltage_rdev(rdev);
3358		if (min_uV <= current_uV && current_uV <= max_uV) {
3359			voltage->min_uV = min_uV;
3360			voltage->max_uV = max_uV;
3361			goto out;
3362		}
3363	}
3364
3365	/* sanity check */
3366	if (!rdev->desc->ops->set_voltage &&
3367	    !rdev->desc->ops->set_voltage_sel) {
3368		ret = -EINVAL;
3369		goto out;
3370	}
3371
3372	/* constraints check */
3373	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374	if (ret < 0)
3375		goto out;
3376
3377	/* restore original values in case of error */
3378	old_min_uV = voltage->min_uV;
3379	old_max_uV = voltage->max_uV;
3380	voltage->min_uV = min_uV;
3381	voltage->max_uV = max_uV;
3382
3383	/* for not coupled regulators this will just set the voltage */
3384	ret = regulator_balance_voltage(rdev, state);
3385	if (ret < 0) {
3386		voltage->min_uV = old_min_uV;
3387		voltage->max_uV = old_max_uV;
3388	}
3389
3390out:
3391	return ret;
3392}
3393
3394int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395			       int max_uV, suspend_state_t state)
3396{
3397	int best_supply_uV = 0;
3398	int supply_change_uV = 0;
3399	int ret;
3400
3401	if (rdev->supply &&
3402	    regulator_ops_is_valid(rdev->supply->rdev,
3403				   REGULATOR_CHANGE_VOLTAGE) &&
3404	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405					   rdev->desc->ops->get_voltage_sel))) {
3406		int current_supply_uV;
3407		int selector;
3408
3409		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410		if (selector < 0) {
3411			ret = selector;
3412			goto out;
3413		}
3414
3415		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416		if (best_supply_uV < 0) {
3417			ret = best_supply_uV;
3418			goto out;
3419		}
3420
3421		best_supply_uV += rdev->desc->min_dropout_uV;
3422
3423		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424		if (current_supply_uV < 0) {
3425			ret = current_supply_uV;
3426			goto out;
3427		}
3428
3429		supply_change_uV = best_supply_uV - current_supply_uV;
3430	}
3431
3432	if (supply_change_uV > 0) {
3433		ret = regulator_set_voltage_unlocked(rdev->supply,
3434				best_supply_uV, INT_MAX, state);
3435		if (ret) {
3436			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437					ret);
3438			goto out;
3439		}
3440	}
3441
3442	if (state == PM_SUSPEND_ON)
3443		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444	else
3445		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446							max_uV, state);
3447	if (ret < 0)
3448		goto out;
3449
3450	if (supply_change_uV < 0) {
3451		ret = regulator_set_voltage_unlocked(rdev->supply,
3452				best_supply_uV, INT_MAX, state);
3453		if (ret)
3454			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455					ret);
3456		/* No need to fail here */
3457		ret = 0;
3458	}
3459
3460out:
3461	return ret;
3462}
3463
3464static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465					int *current_uV, int *min_uV)
3466{
3467	struct regulation_constraints *constraints = rdev->constraints;
3468
3469	/* Limit voltage change only if necessary */
3470	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471		return 1;
3472
3473	if (*current_uV < 0) {
3474		*current_uV = regulator_get_voltage_rdev(rdev);
3475
3476		if (*current_uV < 0)
3477			return *current_uV;
3478	}
3479
3480	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481		return 1;
3482
3483	/* Clamp target voltage within the given step */
3484	if (*current_uV < *min_uV)
3485		*min_uV = min(*current_uV + constraints->max_uV_step,
3486			      *min_uV);
3487	else
3488		*min_uV = max(*current_uV - constraints->max_uV_step,
3489			      *min_uV);
3490
3491	return 0;
3492}
3493
3494static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495					 int *current_uV,
3496					 int *min_uV, int *max_uV,
3497					 suspend_state_t state,
3498					 int n_coupled)
3499{
3500	struct coupling_desc *c_desc = &rdev->coupling_desc;
3501	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502	struct regulation_constraints *constraints = rdev->constraints;
3503	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504	int max_current_uV = 0, min_current_uV = INT_MAX;
3505	int highest_min_uV = 0, target_uV, possible_uV;
3506	int i, ret, max_spread;
3507	bool done;
3508
3509	*current_uV = -1;
3510
3511	/*
3512	 * If there are no coupled regulators, simply set the voltage
3513	 * demanded by consumers.
3514	 */
3515	if (n_coupled == 1) {
3516		/*
3517		 * If consumers don't provide any demands, set voltage
3518		 * to min_uV
3519		 */
3520		desired_min_uV = constraints->min_uV;
3521		desired_max_uV = constraints->max_uV;
3522
3523		ret = regulator_check_consumers(rdev,
3524						&desired_min_uV,
3525						&desired_max_uV, state);
3526		if (ret < 0)
3527			return ret;
3528
3529		possible_uV = desired_min_uV;
3530		done = true;
3531
3532		goto finish;
3533	}
3534
3535	/* Find highest min desired voltage */
3536	for (i = 0; i < n_coupled; i++) {
3537		int tmp_min = 0;
3538		int tmp_max = INT_MAX;
3539
3540		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541
3542		ret = regulator_check_consumers(c_rdevs[i],
3543						&tmp_min,
3544						&tmp_max, state);
3545		if (ret < 0)
3546			return ret;
3547
3548		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549		if (ret < 0)
3550			return ret;
3551
3552		highest_min_uV = max(highest_min_uV, tmp_min);
3553
3554		if (i == 0) {
3555			desired_min_uV = tmp_min;
3556			desired_max_uV = tmp_max;
3557		}
3558	}
3559
3560	max_spread = constraints->max_spread[0];
3561
3562	/*
3563	 * Let target_uV be equal to the desired one if possible.
3564	 * If not, set it to minimum voltage, allowed by other coupled
3565	 * regulators.
3566	 */
3567	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568
3569	/*
3570	 * Find min and max voltages, which currently aren't violating
3571	 * max_spread.
3572	 */
3573	for (i = 1; i < n_coupled; i++) {
3574		int tmp_act;
3575
3576		if (!_regulator_is_enabled(c_rdevs[i]))
3577			continue;
3578
3579		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580		if (tmp_act < 0)
3581			return tmp_act;
3582
3583		min_current_uV = min(tmp_act, min_current_uV);
3584		max_current_uV = max(tmp_act, max_current_uV);
3585	}
3586
3587	/* There aren't any other regulators enabled */
3588	if (max_current_uV == 0) {
3589		possible_uV = target_uV;
3590	} else {
3591		/*
3592		 * Correct target voltage, so as it currently isn't
3593		 * violating max_spread
3594		 */
3595		possible_uV = max(target_uV, max_current_uV - max_spread);
3596		possible_uV = min(possible_uV, min_current_uV + max_spread);
3597	}
3598
3599	if (possible_uV > desired_max_uV)
3600		return -EINVAL;
3601
3602	done = (possible_uV == target_uV);
3603	desired_min_uV = possible_uV;
3604
3605finish:
3606	/* Apply max_uV_step constraint if necessary */
3607	if (state == PM_SUSPEND_ON) {
3608		ret = regulator_limit_voltage_step(rdev, current_uV,
3609						   &desired_min_uV);
3610		if (ret < 0)
3611			return ret;
3612
3613		if (ret == 0)
3614			done = false;
3615	}
3616
3617	/* Set current_uV if wasn't done earlier in the code and if necessary */
3618	if (n_coupled > 1 && *current_uV == -1) {
3619
3620		if (_regulator_is_enabled(rdev)) {
3621			ret = regulator_get_voltage_rdev(rdev);
3622			if (ret < 0)
3623				return ret;
3624
3625			*current_uV = ret;
3626		} else {
3627			*current_uV = desired_min_uV;
3628		}
3629	}
3630
3631	*min_uV = desired_min_uV;
3632	*max_uV = desired_max_uV;
3633
3634	return done;
3635}
3636
3637static int regulator_balance_voltage(struct regulator_dev *rdev,
3638				     suspend_state_t state)
3639{
3640	struct regulator_dev **c_rdevs;
3641	struct regulator_dev *best_rdev;
3642	struct coupling_desc *c_desc = &rdev->coupling_desc;
3643	struct regulator_coupler *coupler = c_desc->coupler;
3644	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645	unsigned int delta, best_delta;
3646	unsigned long c_rdev_done = 0;
3647	bool best_c_rdev_done;
3648
3649	c_rdevs = c_desc->coupled_rdevs;
3650	n_coupled = c_desc->n_coupled;
3651
3652	/*
3653	 * If system is in a state other than PM_SUSPEND_ON, don't check
3654	 * other coupled regulators.
3655	 */
3656	if (state != PM_SUSPEND_ON)
3657		n_coupled = 1;
3658
3659	if (c_desc->n_resolved < n_coupled) {
3660		rdev_err(rdev, "Not all coupled regulators registered\n");
3661		return -EPERM;
3662	}
3663
3664	/* Invoke custom balancer for customized couplers */
3665	if (coupler && coupler->balance_voltage)
3666		return coupler->balance_voltage(coupler, rdev, state);
3667
3668	/*
3669	 * Find the best possible voltage change on each loop. Leave the loop
3670	 * if there isn't any possible change.
3671	 */
3672	do {
3673		best_c_rdev_done = false;
3674		best_delta = 0;
3675		best_min_uV = 0;
3676		best_max_uV = 0;
3677		best_c_rdev = 0;
3678		best_rdev = NULL;
3679
3680		/*
3681		 * Find highest difference between optimal voltage
3682		 * and current voltage.
3683		 */
3684		for (i = 0; i < n_coupled; i++) {
3685			/*
3686			 * optimal_uV is the best voltage that can be set for
3687			 * i-th regulator at the moment without violating
3688			 * max_spread constraint in order to balance
3689			 * the coupled voltages.
3690			 */
3691			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692
3693			if (test_bit(i, &c_rdev_done))
3694				continue;
3695
3696			ret = regulator_get_optimal_voltage(c_rdevs[i],
3697							    &current_uV,
3698							    &optimal_uV,
3699							    &optimal_max_uV,
3700							    state, n_coupled);
3701			if (ret < 0)
3702				goto out;
3703
3704			delta = abs(optimal_uV - current_uV);
3705
3706			if (delta && best_delta <= delta) {
3707				best_c_rdev_done = ret;
3708				best_delta = delta;
3709				best_rdev = c_rdevs[i];
3710				best_min_uV = optimal_uV;
3711				best_max_uV = optimal_max_uV;
3712				best_c_rdev = i;
3713			}
3714		}
3715
3716		/* Nothing to change, return successfully */
3717		if (!best_rdev) {
3718			ret = 0;
3719			goto out;
3720		}
3721
3722		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723						 best_max_uV, state);
3724
3725		if (ret < 0)
3726			goto out;
3727
3728		if (best_c_rdev_done)
3729			set_bit(best_c_rdev, &c_rdev_done);
3730
3731	} while (n_coupled > 1);
3732
3733out:
3734	return ret;
3735}
3736
3737/**
3738 * regulator_set_voltage - set regulator output voltage
3739 * @regulator: regulator source
3740 * @min_uV: Minimum required voltage in uV
3741 * @max_uV: Maximum acceptable voltage in uV
3742 *
3743 * Sets a voltage regulator to the desired output voltage. This can be set
3744 * during any regulator state. IOW, regulator can be disabled or enabled.
3745 *
3746 * If the regulator is enabled then the voltage will change to the new value
3747 * immediately otherwise if the regulator is disabled the regulator will
3748 * output at the new voltage when enabled.
3749 *
3750 * NOTE: If the regulator is shared between several devices then the lowest
3751 * request voltage that meets the system constraints will be used.
3752 * Regulator system constraints must be set for this regulator before
3753 * calling this function otherwise this call will fail.
3754 */
3755int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756{
3757	struct ww_acquire_ctx ww_ctx;
3758	int ret;
3759
3760	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761
3762	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763					     PM_SUSPEND_ON);
3764
3765	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766
3767	return ret;
3768}
3769EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770
3771static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772					   suspend_state_t state, bool en)
3773{
3774	struct regulator_state *rstate;
3775
3776	rstate = regulator_get_suspend_state(rdev, state);
3777	if (rstate == NULL)
3778		return -EINVAL;
3779
3780	if (!rstate->changeable)
3781		return -EPERM;
3782
3783	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784
3785	return 0;
3786}
3787
3788int regulator_suspend_enable(struct regulator_dev *rdev,
3789				    suspend_state_t state)
3790{
3791	return regulator_suspend_toggle(rdev, state, true);
3792}
3793EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794
3795int regulator_suspend_disable(struct regulator_dev *rdev,
3796				     suspend_state_t state)
3797{
3798	struct regulator *regulator;
3799	struct regulator_voltage *voltage;
3800
3801	/*
3802	 * if any consumer wants this regulator device keeping on in
3803	 * suspend states, don't set it as disabled.
3804	 */
3805	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806		voltage = &regulator->voltage[state];
3807		if (voltage->min_uV || voltage->max_uV)
3808			return 0;
3809	}
3810
3811	return regulator_suspend_toggle(rdev, state, false);
3812}
3813EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814
3815static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816					  int min_uV, int max_uV,
3817					  suspend_state_t state)
3818{
3819	struct regulator_dev *rdev = regulator->rdev;
3820	struct regulator_state *rstate;
3821
3822	rstate = regulator_get_suspend_state(rdev, state);
3823	if (rstate == NULL)
3824		return -EINVAL;
3825
3826	if (rstate->min_uV == rstate->max_uV) {
3827		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828		return -EPERM;
3829	}
3830
3831	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832}
 
 
 
 
3833
3834int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835				  int max_uV, suspend_state_t state)
3836{
3837	struct ww_acquire_ctx ww_ctx;
3838	int ret;
3839
3840	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842		return -EINVAL;
3843
3844	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845
3846	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847					     max_uV, state);
3848
3849	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850
 
 
3851	return ret;
3852}
3853EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854
3855/**
3856 * regulator_set_voltage_time - get raise/fall time
3857 * @regulator: regulator source
3858 * @old_uV: starting voltage in microvolts
3859 * @new_uV: target voltage in microvolts
3860 *
3861 * Provided with the starting and ending voltage, this function attempts to
3862 * calculate the time in microseconds required to rise or fall to this new
3863 * voltage.
3864 */
3865int regulator_set_voltage_time(struct regulator *regulator,
3866			       int old_uV, int new_uV)
3867{
3868	struct regulator_dev *rdev = regulator->rdev;
3869	const struct regulator_ops *ops = rdev->desc->ops;
3870	int old_sel = -1;
3871	int new_sel = -1;
3872	int voltage;
3873	int i;
3874
3875	if (ops->set_voltage_time)
3876		return ops->set_voltage_time(rdev, old_uV, new_uV);
3877	else if (!ops->set_voltage_time_sel)
3878		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879
3880	/* Currently requires operations to do this */
3881	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
3882		return -EINVAL;
3883
3884	for (i = 0; i < rdev->desc->n_voltages; i++) {
3885		/* We only look for exact voltage matches here */
3886		voltage = regulator_list_voltage(regulator, i);
3887		if (voltage < 0)
3888			return -EINVAL;
3889		if (voltage == 0)
3890			continue;
3891		if (voltage == old_uV)
3892			old_sel = i;
3893		if (voltage == new_uV)
3894			new_sel = i;
3895	}
3896
3897	if (old_sel < 0 || new_sel < 0)
3898		return -EINVAL;
3899
3900	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901}
3902EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903
3904/**
3905 * regulator_set_voltage_time_sel - get raise/fall time
3906 * @rdev: regulator source device
3907 * @old_selector: selector for starting voltage
3908 * @new_selector: selector for target voltage
3909 *
3910 * Provided with the starting and target voltage selectors, this function
3911 * returns time in microseconds required to rise or fall to this new voltage
3912 *
3913 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914 * set_voltage_time_sel() operation.
3915 */
3916int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917				   unsigned int old_selector,
3918				   unsigned int new_selector)
3919{
3920	int old_volt, new_volt;
3921
3922	/* sanity check */
3923	if (!rdev->desc->ops->list_voltage)
3924		return -EINVAL;
3925
3926	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928
3929	if (rdev->desc->ops->set_voltage_time)
3930		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931							 new_volt);
3932	else
3933		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934}
3935EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936
3937/**
3938 * regulator_sync_voltage - re-apply last regulator output voltage
3939 * @regulator: regulator source
3940 *
3941 * Re-apply the last configured voltage.  This is intended to be used
3942 * where some external control source the consumer is cooperating with
3943 * has caused the configured voltage to change.
3944 */
3945int regulator_sync_voltage(struct regulator *regulator)
3946{
3947	struct regulator_dev *rdev = regulator->rdev;
3948	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3949	int ret, min_uV, max_uV;
3950
3951	regulator_lock(rdev);
3952
3953	if (!rdev->desc->ops->set_voltage &&
3954	    !rdev->desc->ops->set_voltage_sel) {
3955		ret = -EINVAL;
3956		goto out;
3957	}
3958
3959	/* This is only going to work if we've had a voltage configured. */
3960	if (!voltage->min_uV && !voltage->max_uV) {
3961		ret = -EINVAL;
3962		goto out;
3963	}
3964
3965	min_uV = voltage->min_uV;
3966	max_uV = voltage->max_uV;
3967
3968	/* This should be a paranoia check... */
3969	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970	if (ret < 0)
3971		goto out;
3972
3973	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974	if (ret < 0)
3975		goto out;
3976
3977	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978
3979out:
3980	regulator_unlock(rdev);
3981	return ret;
3982}
3983EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984
3985int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986{
3987	int sel, ret;
3988	bool bypassed;
3989
3990	if (rdev->desc->ops->get_bypass) {
3991		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992		if (ret < 0)
3993			return ret;
3994		if (bypassed) {
3995			/* if bypassed the regulator must have a supply */
3996			if (!rdev->supply) {
3997				rdev_err(rdev,
3998					 "bypassed regulator has no supply!\n");
3999				return -EPROBE_DEFER;
4000			}
4001
4002			return regulator_get_voltage_rdev(rdev->supply->rdev);
4003		}
4004	}
4005
4006	if (rdev->desc->ops->get_voltage_sel) {
4007		sel = rdev->desc->ops->get_voltage_sel(rdev);
4008		if (sel < 0)
4009			return sel;
4010		ret = rdev->desc->ops->list_voltage(rdev, sel);
4011	} else if (rdev->desc->ops->get_voltage) {
4012		ret = rdev->desc->ops->get_voltage(rdev);
4013	} else if (rdev->desc->ops->list_voltage) {
4014		ret = rdev->desc->ops->list_voltage(rdev, 0);
4015	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016		ret = rdev->desc->fixed_uV;
4017	} else if (rdev->supply) {
4018		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019	} else {
4020		return -EINVAL;
4021	}
4022
4023	if (ret < 0)
4024		return ret;
4025	return ret - rdev->constraints->uV_offset;
4026}
4027
4028/**
4029 * regulator_get_voltage - get regulator output voltage
4030 * @regulator: regulator source
4031 *
4032 * This returns the current regulator voltage in uV.
4033 *
4034 * NOTE: If the regulator is disabled it will return the voltage value. This
4035 * function should not be used to determine regulator state.
4036 */
4037int regulator_get_voltage(struct regulator *regulator)
4038{
4039	struct ww_acquire_ctx ww_ctx;
4040	int ret;
4041
4042	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043	ret = regulator_get_voltage_rdev(regulator->rdev);
4044	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4045
4046	return ret;
4047}
4048EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049
4050/**
4051 * regulator_set_current_limit - set regulator output current limit
4052 * @regulator: regulator source
4053 * @min_uA: Minimum supported current in uA
4054 * @max_uA: Maximum supported current in uA
4055 *
4056 * Sets current sink to the desired output current. This can be set during
4057 * any regulator state. IOW, regulator can be disabled or enabled.
4058 *
4059 * If the regulator is enabled then the current will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new current when enabled.
4062 *
4063 * NOTE: Regulator system constraints must be set for this regulator before
4064 * calling this function otherwise this call will fail.
4065 */
4066int regulator_set_current_limit(struct regulator *regulator,
4067			       int min_uA, int max_uA)
4068{
4069	struct regulator_dev *rdev = regulator->rdev;
4070	int ret;
4071
4072	regulator_lock(rdev);
4073
4074	/* sanity check */
4075	if (!rdev->desc->ops->set_current_limit) {
4076		ret = -EINVAL;
4077		goto out;
4078	}
4079
4080	/* constraints check */
4081	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082	if (ret < 0)
4083		goto out;
4084
4085	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086out:
4087	regulator_unlock(rdev);
4088	return ret;
4089}
4090EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091
4092static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093{
4094	/* sanity check */
4095	if (!rdev->desc->ops->get_current_limit)
4096		return -EINVAL;
4097
4098	return rdev->desc->ops->get_current_limit(rdev);
4099}
4100
4101static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102{
4103	int ret;
4104
4105	regulator_lock(rdev);
4106	ret = _regulator_get_current_limit_unlocked(rdev);
4107	regulator_unlock(rdev);
 
 
 
 
4108
 
 
 
4109	return ret;
4110}
4111
4112/**
4113 * regulator_get_current_limit - get regulator output current
4114 * @regulator: regulator source
4115 *
4116 * This returns the current supplied by the specified current sink in uA.
4117 *
4118 * NOTE: If the regulator is disabled it will return the current value. This
4119 * function should not be used to determine regulator state.
4120 */
4121int regulator_get_current_limit(struct regulator *regulator)
4122{
4123	return _regulator_get_current_limit(regulator->rdev);
4124}
4125EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126
4127/**
4128 * regulator_set_mode - set regulator operating mode
4129 * @regulator: regulator source
4130 * @mode: operating mode - one of the REGULATOR_MODE constants
4131 *
4132 * Set regulator operating mode to increase regulator efficiency or improve
4133 * regulation performance.
4134 *
4135 * NOTE: Regulator system constraints must be set for this regulator before
4136 * calling this function otherwise this call will fail.
4137 */
4138int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139{
4140	struct regulator_dev *rdev = regulator->rdev;
4141	int ret;
4142	int regulator_curr_mode;
4143
4144	regulator_lock(rdev);
4145
4146	/* sanity check */
4147	if (!rdev->desc->ops->set_mode) {
4148		ret = -EINVAL;
4149		goto out;
4150	}
4151
4152	/* return if the same mode is requested */
4153	if (rdev->desc->ops->get_mode) {
4154		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155		if (regulator_curr_mode == mode) {
4156			ret = 0;
4157			goto out;
4158		}
4159	}
4160
4161	/* constraints check */
4162	ret = regulator_mode_constrain(rdev, &mode);
4163	if (ret < 0)
4164		goto out;
4165
4166	ret = rdev->desc->ops->set_mode(rdev, mode);
4167out:
4168	regulator_unlock(rdev);
4169	return ret;
4170}
4171EXPORT_SYMBOL_GPL(regulator_set_mode);
4172
4173static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174{
4175	/* sanity check */
4176	if (!rdev->desc->ops->get_mode)
4177		return -EINVAL;
4178
4179	return rdev->desc->ops->get_mode(rdev);
4180}
4181
4182static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183{
4184	int ret;
4185
4186	regulator_lock(rdev);
4187	ret = _regulator_get_mode_unlocked(rdev);
4188	regulator_unlock(rdev);
4189
4190	return ret;
4191}
4192
4193/**
4194 * regulator_get_mode - get regulator operating mode
4195 * @regulator: regulator source
4196 *
4197 * Get the current regulator operating mode.
4198 */
4199unsigned int regulator_get_mode(struct regulator *regulator)
4200{
4201	return _regulator_get_mode(regulator->rdev);
4202}
4203EXPORT_SYMBOL_GPL(regulator_get_mode);
4204
4205static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206					unsigned int *flags)
4207{
4208	int ret;
4209
4210	regulator_lock(rdev);
4211
4212	/* sanity check */
4213	if (!rdev->desc->ops->get_error_flags) {
4214		ret = -EINVAL;
4215		goto out;
4216	}
4217
4218	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219out:
4220	regulator_unlock(rdev);
4221	return ret;
4222}
4223
4224/**
4225 * regulator_get_error_flags - get regulator error information
4226 * @regulator: regulator source
4227 * @flags: pointer to store error flags
4228 *
4229 * Get the current regulator error information.
4230 */
4231int regulator_get_error_flags(struct regulator *regulator,
4232				unsigned int *flags)
4233{
4234	return _regulator_get_error_flags(regulator->rdev, flags);
4235}
4236EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237
4238/**
4239 * regulator_set_load - set regulator load
4240 * @regulator: regulator source
4241 * @uA_load: load current
4242 *
4243 * Notifies the regulator core of a new device load. This is then used by
4244 * DRMS (if enabled by constraints) to set the most efficient regulator
4245 * operating mode for the new regulator loading.
4246 *
4247 * Consumer devices notify their supply regulator of the maximum power
4248 * they will require (can be taken from device datasheet in the power
4249 * consumption tables) when they change operational status and hence power
4250 * state. Examples of operational state changes that can affect power
4251 * consumption are :-
4252 *
4253 *    o Device is opened / closed.
4254 *    o Device I/O is about to begin or has just finished.
4255 *    o Device is idling in between work.
4256 *
4257 * This information is also exported via sysfs to userspace.
4258 *
4259 * DRMS will sum the total requested load on the regulator and change
4260 * to the most efficient operating mode if platform constraints allow.
4261 *
4262 * NOTE: when a regulator consumer requests to have a regulator
4263 * disabled then any load that consumer requested no longer counts
4264 * toward the total requested load.  If the regulator is re-enabled
4265 * then the previously requested load will start counting again.
4266 *
4267 * If a regulator is an always-on regulator then an individual consumer's
4268 * load will still be removed if that consumer is fully disabled.
4269 *
4270 * On error a negative errno is returned.
4271 */
4272int regulator_set_load(struct regulator *regulator, int uA_load)
4273{
4274	struct regulator_dev *rdev = regulator->rdev;
4275	int old_uA_load;
4276	int ret = 0;
 
 
 
4277
4278	regulator_lock(rdev);
4279	old_uA_load = regulator->uA_load;
 
 
4280	regulator->uA_load = uA_load;
4281	if (regulator->enable_count && old_uA_load != uA_load) {
4282		ret = drms_uA_update(rdev);
4283		if (ret < 0)
4284			regulator->uA_load = old_uA_load;
4285	}
4286	regulator_unlock(rdev);
4287
4288	return ret;
4289}
4290EXPORT_SYMBOL_GPL(regulator_set_load);
4291
4292/**
4293 * regulator_allow_bypass - allow the regulator to go into bypass mode
4294 *
4295 * @regulator: Regulator to configure
4296 * @enable: enable or disable bypass mode
4297 *
4298 * Allow the regulator to go into bypass mode if all other consumers
4299 * for the regulator also enable bypass mode and the machine
4300 * constraints allow this.  Bypass mode means that the regulator is
4301 * simply passing the input directly to the output with no regulation.
4302 */
4303int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304{
4305	struct regulator_dev *rdev = regulator->rdev;
4306	int ret = 0;
4307
4308	if (!rdev->desc->ops->set_bypass)
4309		return 0;
 
 
 
 
4310
4311	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312		return 0;
 
 
 
 
 
 
 
 
4313
4314	regulator_lock(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
4315
4316	if (enable && !regulator->bypass) {
4317		rdev->bypass_count++;
4318
4319		if (rdev->bypass_count == rdev->open_count) {
4320			ret = rdev->desc->ops->set_bypass(rdev, enable);
4321			if (ret != 0)
4322				rdev->bypass_count--;
4323		}
4324
4325	} else if (!enable && regulator->bypass) {
4326		rdev->bypass_count--;
4327
4328		if (rdev->bypass_count != rdev->open_count) {
4329			ret = rdev->desc->ops->set_bypass(rdev, enable);
4330			if (ret != 0)
4331				rdev->bypass_count++;
4332		}
4333	}
4334
4335	if (ret == 0)
4336		regulator->bypass = enable;
4337
4338	regulator_unlock(rdev);
4339
4340	return ret;
4341}
4342EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343
4344/**
4345 * regulator_register_notifier - register regulator event notifier
4346 * @regulator: regulator source
4347 * @nb: notifier block
4348 *
4349 * Register notifier block to receive regulator events.
4350 */
4351int regulator_register_notifier(struct regulator *regulator,
4352			      struct notifier_block *nb)
4353{
4354	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4355						nb);
4356}
4357EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358
4359/**
4360 * regulator_unregister_notifier - unregister regulator event notifier
4361 * @regulator: regulator source
4362 * @nb: notifier block
4363 *
4364 * Unregister regulator event notifier block.
4365 */
4366int regulator_unregister_notifier(struct regulator *regulator,
4367				struct notifier_block *nb)
4368{
4369	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4370						  nb);
4371}
4372EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373
4374/* notify regulator consumers and downstream regulator consumers.
4375 * Note mutex must be held by caller.
4376 */
4377static int _notifier_call_chain(struct regulator_dev *rdev,
4378				  unsigned long event, void *data)
4379{
4380	/* call rdev chain first */
4381	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382}
4383
4384/**
4385 * regulator_bulk_get - get multiple regulator consumers
4386 *
4387 * @dev:           Device to supply
4388 * @num_consumers: Number of consumers to register
4389 * @consumers:     Configuration of consumers; clients are stored here.
4390 *
4391 * @return 0 on success, an errno on failure.
4392 *
4393 * This helper function allows drivers to get several regulator
4394 * consumers in one operation.  If any of the regulators cannot be
4395 * acquired then any regulators that were allocated will be freed
4396 * before returning to the caller.
4397 */
4398int regulator_bulk_get(struct device *dev, int num_consumers,
4399		       struct regulator_bulk_data *consumers)
4400{
4401	int i;
4402	int ret;
4403
4404	for (i = 0; i < num_consumers; i++)
4405		consumers[i].consumer = NULL;
4406
4407	for (i = 0; i < num_consumers; i++) {
4408		consumers[i].consumer = regulator_get(dev,
4409						      consumers[i].supply);
4410		if (IS_ERR(consumers[i].consumer)) {
4411			ret = PTR_ERR(consumers[i].consumer);
 
 
4412			consumers[i].consumer = NULL;
4413			goto err;
4414		}
4415	}
4416
4417	return 0;
4418
4419err:
4420	if (ret != -EPROBE_DEFER)
4421		dev_err(dev, "Failed to get supply '%s': %d\n",
4422			consumers[i].supply, ret);
4423	else
4424		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425			consumers[i].supply);
4426
4427	while (--i >= 0)
4428		regulator_put(consumers[i].consumer);
4429
4430	return ret;
4431}
4432EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433
4434static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435{
4436	struct regulator_bulk_data *bulk = data;
4437
4438	bulk->ret = regulator_enable(bulk->consumer);
4439}
4440
4441/**
4442 * regulator_bulk_enable - enable multiple regulator consumers
4443 *
4444 * @num_consumers: Number of consumers
4445 * @consumers:     Consumer data; clients are stored here.
4446 * @return         0 on success, an errno on failure
4447 *
4448 * This convenience API allows consumers to enable multiple regulator
4449 * clients in a single API call.  If any consumers cannot be enabled
4450 * then any others that were enabled will be disabled again prior to
4451 * return.
4452 */
4453int regulator_bulk_enable(int num_consumers,
4454			  struct regulator_bulk_data *consumers)
4455{
4456	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457	int i;
4458	int ret = 0;
4459
4460	for (i = 0; i < num_consumers; i++) {
4461		async_schedule_domain(regulator_bulk_enable_async,
4462				      &consumers[i], &async_domain);
4463	}
4464
4465	async_synchronize_full_domain(&async_domain);
4466
4467	/* If any consumer failed we need to unwind any that succeeded */
4468	for (i = 0; i < num_consumers; i++) {
4469		if (consumers[i].ret != 0) {
4470			ret = consumers[i].ret;
4471			goto err;
4472		}
4473	}
4474
4475	return 0;
4476
4477err:
4478	for (i = 0; i < num_consumers; i++) {
4479		if (consumers[i].ret < 0)
4480			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481			       consumers[i].ret);
4482		else
4483			regulator_disable(consumers[i].consumer);
4484	}
4485
4486	return ret;
4487}
4488EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489
4490/**
4491 * regulator_bulk_disable - disable multiple regulator consumers
4492 *
4493 * @num_consumers: Number of consumers
4494 * @consumers:     Consumer data; clients are stored here.
4495 * @return         0 on success, an errno on failure
4496 *
4497 * This convenience API allows consumers to disable multiple regulator
4498 * clients in a single API call.  If any consumers cannot be disabled
4499 * then any others that were disabled will be enabled again prior to
4500 * return.
4501 */
4502int regulator_bulk_disable(int num_consumers,
4503			   struct regulator_bulk_data *consumers)
4504{
4505	int i;
4506	int ret, r;
4507
4508	for (i = num_consumers - 1; i >= 0; --i) {
4509		ret = regulator_disable(consumers[i].consumer);
4510		if (ret != 0)
4511			goto err;
4512	}
4513
4514	return 0;
4515
4516err:
4517	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518	for (++i; i < num_consumers; ++i) {
4519		r = regulator_enable(consumers[i].consumer);
4520		if (r != 0)
4521			pr_err("Failed to re-enable %s: %d\n",
4522			       consumers[i].supply, r);
4523	}
4524
4525	return ret;
4526}
4527EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528
4529/**
4530 * regulator_bulk_force_disable - force disable multiple regulator consumers
4531 *
4532 * @num_consumers: Number of consumers
4533 * @consumers:     Consumer data; clients are stored here.
4534 * @return         0 on success, an errno on failure
4535 *
4536 * This convenience API allows consumers to forcibly disable multiple regulator
4537 * clients in a single API call.
4538 * NOTE: This should be used for situations when device damage will
4539 * likely occur if the regulators are not disabled (e.g. over temp).
4540 * Although regulator_force_disable function call for some consumers can
4541 * return error numbers, the function is called for all consumers.
4542 */
4543int regulator_bulk_force_disable(int num_consumers,
4544			   struct regulator_bulk_data *consumers)
4545{
4546	int i;
4547	int ret = 0;
4548
4549	for (i = 0; i < num_consumers; i++) {
4550		consumers[i].ret =
4551			    regulator_force_disable(consumers[i].consumer);
4552
4553		/* Store first error for reporting */
4554		if (consumers[i].ret && !ret)
4555			ret = consumers[i].ret;
4556	}
4557
4558	return ret;
4559}
4560EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561
4562/**
4563 * regulator_bulk_free - free multiple regulator consumers
4564 *
4565 * @num_consumers: Number of consumers
4566 * @consumers:     Consumer data; clients are stored here.
4567 *
4568 * This convenience API allows consumers to free multiple regulator
4569 * clients in a single API call.
4570 */
4571void regulator_bulk_free(int num_consumers,
4572			 struct regulator_bulk_data *consumers)
4573{
4574	int i;
4575
4576	for (i = 0; i < num_consumers; i++) {
4577		regulator_put(consumers[i].consumer);
4578		consumers[i].consumer = NULL;
4579	}
4580}
4581EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582
4583/**
4584 * regulator_notifier_call_chain - call regulator event notifier
4585 * @rdev: regulator source
4586 * @event: notifier block
4587 * @data: callback-specific data.
4588 *
4589 * Called by regulator drivers to notify clients a regulator event has
4590 * occurred. We also notify regulator clients downstream.
4591 * Note lock must be held by caller.
4592 */
4593int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594				  unsigned long event, void *data)
4595{
4596	lockdep_assert_held_once(&rdev->mutex.base);
4597
4598	_notifier_call_chain(rdev, event, data);
4599	return NOTIFY_DONE;
4600
4601}
4602EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603
4604/**
4605 * regulator_mode_to_status - convert a regulator mode into a status
4606 *
4607 * @mode: Mode to convert
4608 *
4609 * Convert a regulator mode into a status.
4610 */
4611int regulator_mode_to_status(unsigned int mode)
4612{
4613	switch (mode) {
4614	case REGULATOR_MODE_FAST:
4615		return REGULATOR_STATUS_FAST;
4616	case REGULATOR_MODE_NORMAL:
4617		return REGULATOR_STATUS_NORMAL;
4618	case REGULATOR_MODE_IDLE:
4619		return REGULATOR_STATUS_IDLE;
4620	case REGULATOR_MODE_STANDBY:
4621		return REGULATOR_STATUS_STANDBY;
4622	default:
4623		return REGULATOR_STATUS_UNDEFINED;
4624	}
4625}
4626EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627
4628static struct attribute *regulator_dev_attrs[] = {
4629	&dev_attr_name.attr,
4630	&dev_attr_num_users.attr,
4631	&dev_attr_type.attr,
4632	&dev_attr_microvolts.attr,
4633	&dev_attr_microamps.attr,
4634	&dev_attr_opmode.attr,
4635	&dev_attr_state.attr,
4636	&dev_attr_status.attr,
4637	&dev_attr_bypass.attr,
4638	&dev_attr_requested_microamps.attr,
4639	&dev_attr_min_microvolts.attr,
4640	&dev_attr_max_microvolts.attr,
4641	&dev_attr_min_microamps.attr,
4642	&dev_attr_max_microamps.attr,
4643	&dev_attr_suspend_standby_state.attr,
4644	&dev_attr_suspend_mem_state.attr,
4645	&dev_attr_suspend_disk_state.attr,
4646	&dev_attr_suspend_standby_microvolts.attr,
4647	&dev_attr_suspend_mem_microvolts.attr,
4648	&dev_attr_suspend_disk_microvolts.attr,
4649	&dev_attr_suspend_standby_mode.attr,
4650	&dev_attr_suspend_mem_mode.attr,
4651	&dev_attr_suspend_disk_mode.attr,
4652	NULL
4653};
4654
4655/*
4656 * To avoid cluttering sysfs (and memory) with useless state, only
4657 * create attributes that can be meaningfully displayed.
4658 */
4659static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660					 struct attribute *attr, int idx)
4661{
4662	struct device *dev = kobj_to_dev(kobj);
4663	struct regulator_dev *rdev = dev_to_rdev(dev);
4664	const struct regulator_ops *ops = rdev->desc->ops;
4665	umode_t mode = attr->mode;
4666
4667	/* these three are always present */
4668	if (attr == &dev_attr_name.attr ||
4669	    attr == &dev_attr_num_users.attr ||
4670	    attr == &dev_attr_type.attr)
4671		return mode;
4672
4673	/* some attributes need specific methods to be displayed */
4674	if (attr == &dev_attr_microvolts.attr) {
4675		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679			return mode;
4680		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4681	}
4682
4683	if (attr == &dev_attr_microamps.attr)
4684		return ops->get_current_limit ? mode : 0;
 
4685
4686	if (attr == &dev_attr_opmode.attr)
4687		return ops->get_mode ? mode : 0;
 
 
 
 
 
 
 
4688
4689	if (attr == &dev_attr_state.attr)
4690		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691
4692	if (attr == &dev_attr_status.attr)
4693		return ops->get_status ? mode : 0;
4694
4695	if (attr == &dev_attr_bypass.attr)
4696		return ops->get_bypass ? mode : 0;
4697
4698	/* constraints need specific supporting methods */
4699	if (attr == &dev_attr_min_microvolts.attr ||
4700	    attr == &dev_attr_max_microvolts.attr)
4701		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702
4703	if (attr == &dev_attr_min_microamps.attr ||
4704	    attr == &dev_attr_max_microamps.attr)
4705		return ops->set_current_limit ? mode : 0;
4706
4707	if (attr == &dev_attr_suspend_standby_state.attr ||
4708	    attr == &dev_attr_suspend_mem_state.attr ||
4709	    attr == &dev_attr_suspend_disk_state.attr)
4710		return mode;
4711
4712	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4714	    attr == &dev_attr_suspend_disk_microvolts.attr)
4715		return ops->set_suspend_voltage ? mode : 0;
4716
4717	if (attr == &dev_attr_suspend_standby_mode.attr ||
4718	    attr == &dev_attr_suspend_mem_mode.attr ||
4719	    attr == &dev_attr_suspend_disk_mode.attr)
4720		return ops->set_suspend_mode ? mode : 0;
4721
4722	return mode;
4723}
4724
4725static const struct attribute_group regulator_dev_group = {
4726	.attrs = regulator_dev_attrs,
4727	.is_visible = regulator_attr_is_visible,
4728};
4729
4730static const struct attribute_group *regulator_dev_groups[] = {
4731	&regulator_dev_group,
4732	NULL
4733};
4734
4735static void regulator_dev_release(struct device *dev)
4736{
4737	struct regulator_dev *rdev = dev_get_drvdata(dev);
4738
4739	kfree(rdev->constraints);
4740	of_node_put(rdev->dev.of_node);
4741	kfree(rdev);
4742}
4743
4744static void rdev_init_debugfs(struct regulator_dev *rdev)
4745{
4746	struct device *parent = rdev->dev.parent;
4747	const char *rname = rdev_get_name(rdev);
4748	char name[NAME_MAX];
4749
4750	/* Avoid duplicate debugfs directory names */
4751	if (parent && rname == rdev->desc->name) {
4752		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753			 rname);
4754		rname = name;
4755	}
4756
4757	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758	if (!rdev->debugfs) {
4759		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
4760		return;
4761	}
4762
4763	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764			   &rdev->use_count);
4765	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766			   &rdev->open_count);
4767	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768			   &rdev->bypass_count);
4769}
4770
4771static int regulator_register_resolve_supply(struct device *dev, void *data)
4772{
4773	struct regulator_dev *rdev = dev_to_rdev(dev);
4774
4775	if (regulator_resolve_supply(rdev))
4776		rdev_dbg(rdev, "unable to resolve supply\n");
4777
4778	return 0;
4779}
4780
4781int regulator_coupler_register(struct regulator_coupler *coupler)
4782{
4783	mutex_lock(&regulator_list_mutex);
4784	list_add_tail(&coupler->list, &regulator_coupler_list);
4785	mutex_unlock(&regulator_list_mutex);
4786
4787	return 0;
4788}
4789
4790static struct regulator_coupler *
4791regulator_find_coupler(struct regulator_dev *rdev)
4792{
4793	struct regulator_coupler *coupler;
4794	int err;
4795
4796	/*
4797	 * Note that regulators are appended to the list and the generic
4798	 * coupler is registered first, hence it will be attached at last
4799	 * if nobody cared.
4800	 */
4801	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4802		err = coupler->attach_regulator(coupler, rdev);
4803		if (!err) {
4804			if (!coupler->balance_voltage &&
4805			    rdev->coupling_desc.n_coupled > 2)
4806				goto err_unsupported;
4807
4808			return coupler;
4809		}
4810
4811		if (err < 0)
4812			return ERR_PTR(err);
4813
4814		if (err == 1)
4815			continue;
4816
4817		break;
4818	}
4819
4820	return ERR_PTR(-EINVAL);
4821
4822err_unsupported:
4823	if (coupler->detach_regulator)
4824		coupler->detach_regulator(coupler, rdev);
4825
4826	rdev_err(rdev,
4827		"Voltage balancing for multiple regulator couples is unimplemented\n");
4828
4829	return ERR_PTR(-EPERM);
4830}
4831
4832static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833{
4834	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835	struct coupling_desc *c_desc = &rdev->coupling_desc;
4836	int n_coupled = c_desc->n_coupled;
4837	struct regulator_dev *c_rdev;
4838	int i;
4839
4840	for (i = 1; i < n_coupled; i++) {
4841		/* already resolved */
4842		if (c_desc->coupled_rdevs[i])
4843			continue;
4844
4845		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846
4847		if (!c_rdev)
4848			continue;
4849
4850		if (c_rdev->coupling_desc.coupler != coupler) {
4851			rdev_err(rdev, "coupler mismatch with %s\n",
4852				 rdev_get_name(c_rdev));
4853			return;
4854		}
4855
4856		regulator_lock(c_rdev);
4857
4858		c_desc->coupled_rdevs[i] = c_rdev;
4859		c_desc->n_resolved++;
4860
4861		regulator_unlock(c_rdev);
4862
4863		regulator_resolve_coupling(c_rdev);
4864	}
4865}
4866
4867static void regulator_remove_coupling(struct regulator_dev *rdev)
4868{
4869	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871	struct regulator_dev *__c_rdev, *c_rdev;
4872	unsigned int __n_coupled, n_coupled;
4873	int i, k;
4874	int err;
4875
4876	n_coupled = c_desc->n_coupled;
4877
4878	for (i = 1; i < n_coupled; i++) {
4879		c_rdev = c_desc->coupled_rdevs[i];
4880
4881		if (!c_rdev)
4882			continue;
4883
4884		regulator_lock(c_rdev);
4885
4886		__c_desc = &c_rdev->coupling_desc;
4887		__n_coupled = __c_desc->n_coupled;
4888
4889		for (k = 1; k < __n_coupled; k++) {
4890			__c_rdev = __c_desc->coupled_rdevs[k];
4891
4892			if (__c_rdev == rdev) {
4893				__c_desc->coupled_rdevs[k] = NULL;
4894				__c_desc->n_resolved--;
4895				break;
4896			}
4897		}
4898
4899		regulator_unlock(c_rdev);
4900
4901		c_desc->coupled_rdevs[i] = NULL;
4902		c_desc->n_resolved--;
4903	}
4904
4905	if (coupler && coupler->detach_regulator) {
4906		err = coupler->detach_regulator(coupler, rdev);
4907		if (err)
4908			rdev_err(rdev, "failed to detach from coupler: %d\n",
4909				 err);
4910	}
4911
4912	kfree(rdev->coupling_desc.coupled_rdevs);
4913	rdev->coupling_desc.coupled_rdevs = NULL;
4914}
4915
4916static int regulator_init_coupling(struct regulator_dev *rdev)
4917{
4918	int err, n_phandles;
4919	size_t alloc_size;
4920
4921	if (!IS_ENABLED(CONFIG_OF))
4922		n_phandles = 0;
4923	else
4924		n_phandles = of_get_n_coupled(rdev);
4925
4926	alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927
4928	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929	if (!rdev->coupling_desc.coupled_rdevs)
4930		return -ENOMEM;
4931
4932	/*
4933	 * Every regulator should always have coupling descriptor filled with
4934	 * at least pointer to itself.
4935	 */
4936	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937	rdev->coupling_desc.n_coupled = n_phandles + 1;
4938	rdev->coupling_desc.n_resolved++;
4939
4940	/* regulator isn't coupled */
4941	if (n_phandles == 0)
4942		return 0;
4943
4944	if (!of_check_coupling_data(rdev))
4945		return -EPERM;
4946
4947	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948	if (IS_ERR(rdev->coupling_desc.coupler)) {
4949		err = PTR_ERR(rdev->coupling_desc.coupler);
4950		rdev_err(rdev, "failed to get coupler: %d\n", err);
4951		return err;
4952	}
4953
4954	return 0;
4955}
4956
4957static int generic_coupler_attach(struct regulator_coupler *coupler,
4958				  struct regulator_dev *rdev)
4959{
4960	if (rdev->coupling_desc.n_coupled > 2) {
4961		rdev_err(rdev,
4962			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963		return -EPERM;
4964	}
4965
4966	return 0;
4967}
4968
4969static struct regulator_coupler generic_regulator_coupler = {
4970	.attach_regulator = generic_coupler_attach,
4971};
4972
4973/**
4974 * regulator_register - register regulator
4975 * @regulator_desc: regulator to register
4976 * @cfg: runtime configuration for regulator
 
 
4977 *
4978 * Called by regulator drivers to register a regulator.
4979 * Returns a valid pointer to struct regulator_dev on success
4980 * or an ERR_PTR() on error.
4981 */
4982struct regulator_dev *
4983regulator_register(const struct regulator_desc *regulator_desc,
4984		   const struct regulator_config *cfg)
4985{
4986	const struct regulation_constraints *constraints = NULL;
4987	const struct regulator_init_data *init_data;
4988	struct regulator_config *config = NULL;
4989	static atomic_t regulator_no = ATOMIC_INIT(-1);
4990	struct regulator_dev *rdev;
4991	bool dangling_cfg_gpiod = false;
4992	bool dangling_of_gpiod = false;
4993	struct device *dev;
4994	int ret, i;
4995
4996	if (cfg == NULL)
4997		return ERR_PTR(-EINVAL);
4998	if (cfg->ena_gpiod)
4999		dangling_cfg_gpiod = true;
5000	if (regulator_desc == NULL) {
5001		ret = -EINVAL;
5002		goto rinse;
5003	}
5004
5005	dev = cfg->dev;
5006	WARN_ON(!dev);
5007
5008	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009		ret = -EINVAL;
5010		goto rinse;
5011	}
5012
5013	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014	    regulator_desc->type != REGULATOR_CURRENT) {
5015		ret = -EINVAL;
5016		goto rinse;
5017	}
5018
5019	/* Only one of each should be implemented */
5020	WARN_ON(regulator_desc->ops->get_voltage &&
5021		regulator_desc->ops->get_voltage_sel);
5022	WARN_ON(regulator_desc->ops->set_voltage &&
5023		regulator_desc->ops->set_voltage_sel);
5024
5025	/* If we're using selectors we must implement list_voltage. */
5026	if (regulator_desc->ops->get_voltage_sel &&
5027	    !regulator_desc->ops->list_voltage) {
5028		ret = -EINVAL;
5029		goto rinse;
5030	}
5031	if (regulator_desc->ops->set_voltage_sel &&
5032	    !regulator_desc->ops->list_voltage) {
5033		ret = -EINVAL;
5034		goto rinse;
5035	}
5036
5037	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038	if (rdev == NULL) {
5039		ret = -ENOMEM;
5040		goto rinse;
5041	}
5042
5043	/*
5044	 * Duplicate the config so the driver could override it after
5045	 * parsing init data.
5046	 */
5047	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048	if (config == NULL) {
5049		kfree(rdev);
5050		ret = -ENOMEM;
5051		goto rinse;
5052	}
5053
5054	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055					       &rdev->dev.of_node);
5056
5057	/*
5058	 * Sometimes not all resources are probed already so we need to take
5059	 * that into account. This happens most the time if the ena_gpiod comes
5060	 * from a gpio extender or something else.
5061	 */
5062	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5063		kfree(config);
5064		kfree(rdev);
5065		ret = -EPROBE_DEFER;
5066		goto rinse;
5067	}
5068
5069	/*
5070	 * We need to keep track of any GPIO descriptor coming from the
5071	 * device tree until we have handled it over to the core. If the
5072	 * config that was passed in to this function DOES NOT contain
5073	 * a descriptor, and the config after this call DOES contain
5074	 * a descriptor, we definitely got one from parsing the device
5075	 * tree.
5076	 */
5077	if (!cfg->ena_gpiod && config->ena_gpiod)
5078		dangling_of_gpiod = true;
5079	if (!init_data) {
5080		init_data = config->init_data;
5081		rdev->dev.of_node = of_node_get(config->of_node);
5082	}
5083
5084	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5085	rdev->reg_data = config->driver_data;
5086	rdev->owner = regulator_desc->owner;
5087	rdev->desc = regulator_desc;
5088	if (config->regmap)
5089		rdev->regmap = config->regmap;
5090	else if (dev_get_regmap(dev, NULL))
5091		rdev->regmap = dev_get_regmap(dev, NULL);
5092	else if (dev->parent)
5093		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094	INIT_LIST_HEAD(&rdev->consumer_list);
5095	INIT_LIST_HEAD(&rdev->list);
5096	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5098
5099	/* preform any regulator specific init */
5100	if (init_data && init_data->regulator_init) {
5101		ret = init_data->regulator_init(rdev->reg_data);
5102		if (ret < 0)
5103			goto clean;
5104	}
5105
5106	if (config->ena_gpiod) {
5107		mutex_lock(&regulator_list_mutex);
5108		ret = regulator_ena_gpio_request(rdev, config);
5109		mutex_unlock(&regulator_list_mutex);
5110		if (ret != 0) {
5111			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5112				 ret);
5113			goto clean;
5114		}
5115		/* The regulator core took over the GPIO descriptor */
5116		dangling_cfg_gpiod = false;
5117		dangling_of_gpiod = false;
5118	}
5119
5120	/* register with sysfs */
5121	rdev->dev.class = &regulator_class;
5122	rdev->dev.parent = dev;
5123	dev_set_name(&rdev->dev, "regulator.%lu",
5124		    (unsigned long) atomic_inc_return(&regulator_no));
 
 
 
 
 
 
 
5125
5126	/* set regulator constraints */
5127	if (init_data)
5128		constraints = &init_data->constraints;
 
5129
5130	if (init_data && init_data->supply_regulator)
5131		rdev->supply_name = init_data->supply_regulator;
5132	else if (regulator_desc->supply_name)
5133		rdev->supply_name = regulator_desc->supply_name;
5134
5135	/*
5136	 * Attempt to resolve the regulator supply, if specified,
5137	 * but don't return an error if we fail because we will try
5138	 * to resolve it again later as more regulators are added.
5139	 */
5140	if (regulator_resolve_supply(rdev))
5141		rdev_dbg(rdev, "unable to resolve supply\n");
 
 
 
 
5142
5143	ret = set_machine_constraints(rdev, constraints);
5144	if (ret < 0)
5145		goto wash;
 
 
 
5146
5147	mutex_lock(&regulator_list_mutex);
5148	ret = regulator_init_coupling(rdev);
5149	mutex_unlock(&regulator_list_mutex);
5150	if (ret < 0)
5151		goto wash;
5152
5153	/* add consumers devices */
5154	if (init_data) {
5155		mutex_lock(&regulator_list_mutex);
5156		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5157			ret = set_consumer_device_supply(rdev,
5158				init_data->consumer_supplies[i].dev_name,
 
 
5159				init_data->consumer_supplies[i].supply);
5160			if (ret < 0) {
5161				mutex_unlock(&regulator_list_mutex);
5162				dev_err(dev, "Failed to set supply %s\n",
5163					init_data->consumer_supplies[i].supply);
5164				goto unset_supplies;
5165			}
5166		}
5167		mutex_unlock(&regulator_list_mutex);
5168	}
5169
5170	if (!rdev->desc->ops->get_voltage &&
5171	    !rdev->desc->ops->list_voltage &&
5172	    !rdev->desc->fixed_uV)
5173		rdev->is_switch = true;
5174
5175	dev_set_drvdata(&rdev->dev, rdev);
5176	ret = device_register(&rdev->dev);
5177	if (ret != 0) {
5178		put_device(&rdev->dev);
5179		goto unset_supplies;
5180	}
5181
5182	rdev_init_debugfs(rdev);
5183
5184	/* try to resolve regulators coupling since a new one was registered */
5185	mutex_lock(&regulator_list_mutex);
5186	regulator_resolve_coupling(rdev);
5187	mutex_unlock(&regulator_list_mutex);
5188
5189	/* try to resolve regulators supply since a new one was registered */
5190	class_for_each_device(&regulator_class, NULL, NULL,
5191			      regulator_register_resolve_supply);
5192	kfree(config);
5193	return rdev;
5194
5195unset_supplies:
5196	mutex_lock(&regulator_list_mutex);
5197	unset_regulator_supplies(rdev);
5198	regulator_remove_coupling(rdev);
5199	mutex_unlock(&regulator_list_mutex);
5200wash:
5201	kfree(rdev->constraints);
5202	mutex_lock(&regulator_list_mutex);
5203	regulator_ena_gpio_free(rdev);
5204	mutex_unlock(&regulator_list_mutex);
 
 
5205clean:
5206	if (dangling_of_gpiod)
5207		gpiod_put(config->ena_gpiod);
5208	kfree(rdev);
5209	kfree(config);
5210rinse:
5211	if (dangling_cfg_gpiod)
5212		gpiod_put(cfg->ena_gpiod);
5213	return ERR_PTR(ret);
5214}
5215EXPORT_SYMBOL_GPL(regulator_register);
5216
5217/**
5218 * regulator_unregister - unregister regulator
5219 * @rdev: regulator to unregister
5220 *
5221 * Called by regulator drivers to unregister a regulator.
5222 */
5223void regulator_unregister(struct regulator_dev *rdev)
5224{
5225	if (rdev == NULL)
5226		return;
5227
5228	if (rdev->supply) {
5229		while (rdev->use_count--)
5230			regulator_disable(rdev->supply);
5231		regulator_put(rdev->supply);
5232	}
5233
5234	flush_work(&rdev->disable_work.work);
5235
5236	mutex_lock(&regulator_list_mutex);
5237
5238	debugfs_remove_recursive(rdev->debugfs);
 
5239	WARN_ON(rdev->open_count);
5240	regulator_remove_coupling(rdev);
5241	unset_regulator_supplies(rdev);
5242	list_del(&rdev->list);
5243	regulator_ena_gpio_free(rdev);
 
5244	device_unregister(&rdev->dev);
5245
5246	mutex_unlock(&regulator_list_mutex);
5247}
5248EXPORT_SYMBOL_GPL(regulator_unregister);
5249
5250#ifdef CONFIG_SUSPEND
5251/**
5252 * regulator_suspend - prepare regulators for system wide suspend
5253 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5254 *
5255 * Configure each regulator with it's suspend operating parameters for state.
 
5256 */
5257static int regulator_suspend(struct device *dev)
5258{
5259	struct regulator_dev *rdev = dev_to_rdev(dev);
5260	suspend_state_t state = pm_suspend_target_state;
5261	int ret;
 
 
 
 
 
 
5262
5263	regulator_lock(rdev);
5264	ret = suspend_set_state(rdev, state);
5265	regulator_unlock(rdev);
5266
 
 
 
 
 
 
 
5267	return ret;
5268}
 
5269
5270static int regulator_resume(struct device *dev)
 
 
 
 
 
 
5271{
5272	suspend_state_t state = pm_suspend_target_state;
5273	struct regulator_dev *rdev = dev_to_rdev(dev);
5274	struct regulator_state *rstate;
5275	int ret = 0;
5276
5277	rstate = regulator_get_suspend_state(rdev, state);
5278	if (rstate == NULL)
5279		return 0;
5280
5281	regulator_lock(rdev);
5282
5283	if (rdev->desc->ops->resume &&
5284	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5285	     rstate->enabled == DISABLE_IN_SUSPEND))
5286		ret = rdev->desc->ops->resume(rdev);
5287
5288	regulator_unlock(rdev);
5289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5290	return ret;
5291}
5292#else /* !CONFIG_SUSPEND */
5293
5294#define regulator_suspend	NULL
5295#define regulator_resume	NULL
5296
5297#endif /* !CONFIG_SUSPEND */
5298
5299#ifdef CONFIG_PM
5300static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301	.suspend	= regulator_suspend,
5302	.resume		= regulator_resume,
5303};
5304#endif
5305
5306struct class regulator_class = {
5307	.name = "regulator",
5308	.dev_release = regulator_dev_release,
5309	.dev_groups = regulator_dev_groups,
5310#ifdef CONFIG_PM
5311	.pm = &regulator_pm_ops,
5312#endif
5313};
5314/**
5315 * regulator_has_full_constraints - the system has fully specified constraints
5316 *
5317 * Calling this function will cause the regulator API to disable all
5318 * regulators which have a zero use count and don't have an always_on
5319 * constraint in a late_initcall.
5320 *
5321 * The intention is that this will become the default behaviour in a
5322 * future kernel release so users are encouraged to use this facility
5323 * now.
5324 */
5325void regulator_has_full_constraints(void)
5326{
5327	has_full_constraints = 1;
5328}
5329EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5330
5331/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5332 * rdev_get_drvdata - get rdev regulator driver data
5333 * @rdev: regulator
5334 *
5335 * Get rdev regulator driver private data. This call can be used in the
5336 * regulator driver context.
5337 */
5338void *rdev_get_drvdata(struct regulator_dev *rdev)
5339{
5340	return rdev->reg_data;
5341}
5342EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5343
5344/**
5345 * regulator_get_drvdata - get regulator driver data
5346 * @regulator: regulator
5347 *
5348 * Get regulator driver private data. This call can be used in the consumer
5349 * driver context when non API regulator specific functions need to be called.
5350 */
5351void *regulator_get_drvdata(struct regulator *regulator)
5352{
5353	return regulator->rdev->reg_data;
5354}
5355EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5356
5357/**
5358 * regulator_set_drvdata - set regulator driver data
5359 * @regulator: regulator
5360 * @data: data
5361 */
5362void regulator_set_drvdata(struct regulator *regulator, void *data)
5363{
5364	regulator->rdev->reg_data = data;
5365}
5366EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5367
5368/**
5369 * regulator_get_id - get regulator ID
5370 * @rdev: regulator
5371 */
5372int rdev_get_id(struct regulator_dev *rdev)
5373{
5374	return rdev->desc->id;
5375}
5376EXPORT_SYMBOL_GPL(rdev_get_id);
5377
5378struct device *rdev_get_dev(struct regulator_dev *rdev)
5379{
5380	return &rdev->dev;
5381}
5382EXPORT_SYMBOL_GPL(rdev_get_dev);
5383
5384struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5385{
5386	return rdev->regmap;
5387}
5388EXPORT_SYMBOL_GPL(rdev_get_regmap);
5389
5390void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5391{
5392	return reg_init_data->driver_data;
5393}
5394EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5395
5396#ifdef CONFIG_DEBUG_FS
5397static int supply_map_show(struct seq_file *sf, void *data)
5398{
5399	struct regulator_map *map;
5400
5401	list_for_each_entry(map, &regulator_map_list, list) {
5402		seq_printf(sf, "%s -> %s.%s\n",
5403				rdev_get_name(map->regulator), map->dev_name,
5404				map->supply);
5405	}
5406
5407	return 0;
5408}
5409DEFINE_SHOW_ATTRIBUTE(supply_map);
5410
5411struct summary_data {
5412	struct seq_file *s;
5413	struct regulator_dev *parent;
5414	int level;
5415};
5416
5417static void regulator_summary_show_subtree(struct seq_file *s,
5418					   struct regulator_dev *rdev,
5419					   int level);
5420
5421static int regulator_summary_show_children(struct device *dev, void *data)
5422{
5423	struct regulator_dev *rdev = dev_to_rdev(dev);
5424	struct summary_data *summary_data = data;
5425
5426	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5427		regulator_summary_show_subtree(summary_data->s, rdev,
5428					       summary_data->level + 1);
5429
5430	return 0;
5431}
5432
5433static void regulator_summary_show_subtree(struct seq_file *s,
5434					   struct regulator_dev *rdev,
5435					   int level)
5436{
5437	struct regulation_constraints *c;
5438	struct regulator *consumer;
5439	struct summary_data summary_data;
5440	unsigned int opmode;
5441
5442	if (!rdev)
5443		return;
5444
5445	opmode = _regulator_get_mode_unlocked(rdev);
5446	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5447		   level * 3 + 1, "",
5448		   30 - level * 3, rdev_get_name(rdev),
5449		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5450		   regulator_opmode_to_str(opmode));
5451
5452	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453	seq_printf(s, "%5dmA ",
5454		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5455
5456	c = rdev->constraints;
5457	if (c) {
5458		switch (rdev->desc->type) {
5459		case REGULATOR_VOLTAGE:
5460			seq_printf(s, "%5dmV %5dmV ",
5461				   c->min_uV / 1000, c->max_uV / 1000);
5462			break;
5463		case REGULATOR_CURRENT:
5464			seq_printf(s, "%5dmA %5dmA ",
5465				   c->min_uA / 1000, c->max_uA / 1000);
5466			break;
5467		}
5468	}
5469
5470	seq_puts(s, "\n");
5471
5472	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473		if (consumer->dev && consumer->dev->class == &regulator_class)
5474			continue;
5475
5476		seq_printf(s, "%*s%-*s ",
5477			   (level + 1) * 3 + 1, "",
5478			   30 - (level + 1) * 3,
5479			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5480
5481		switch (rdev->desc->type) {
5482		case REGULATOR_VOLTAGE:
5483			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5484				   consumer->enable_count,
5485				   consumer->uA_load / 1000,
5486				   consumer->uA_load && !consumer->enable_count ?
5487				   '*' : ' ',
5488				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5489				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5490			break;
5491		case REGULATOR_CURRENT:
5492			break;
5493		}
5494
5495		seq_puts(s, "\n");
5496	}
5497
5498	summary_data.s = s;
5499	summary_data.level = level;
5500	summary_data.parent = rdev;
5501
5502	class_for_each_device(&regulator_class, NULL, &summary_data,
5503			      regulator_summary_show_children);
5504}
5505
5506struct summary_lock_data {
5507	struct ww_acquire_ctx *ww_ctx;
5508	struct regulator_dev **new_contended_rdev;
5509	struct regulator_dev **old_contended_rdev;
5510};
5511
5512static int regulator_summary_lock_one(struct device *dev, void *data)
5513{
5514	struct regulator_dev *rdev = dev_to_rdev(dev);
5515	struct summary_lock_data *lock_data = data;
5516	int ret = 0;
5517
5518	if (rdev != *lock_data->old_contended_rdev) {
5519		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5520
5521		if (ret == -EDEADLK)
5522			*lock_data->new_contended_rdev = rdev;
5523		else
5524			WARN_ON_ONCE(ret);
5525	} else {
5526		*lock_data->old_contended_rdev = NULL;
5527	}
5528
5529	return ret;
5530}
5531
5532static int regulator_summary_unlock_one(struct device *dev, void *data)
5533{
5534	struct regulator_dev *rdev = dev_to_rdev(dev);
5535	struct summary_lock_data *lock_data = data;
5536
5537	if (lock_data) {
5538		if (rdev == *lock_data->new_contended_rdev)
5539			return -EDEADLK;
5540	}
5541
5542	regulator_unlock(rdev);
5543
5544	return 0;
5545}
5546
5547static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5548				      struct regulator_dev **new_contended_rdev,
5549				      struct regulator_dev **old_contended_rdev)
5550{
5551	struct summary_lock_data lock_data;
5552	int ret;
5553
5554	lock_data.ww_ctx = ww_ctx;
5555	lock_data.new_contended_rdev = new_contended_rdev;
5556	lock_data.old_contended_rdev = old_contended_rdev;
5557
5558	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5559				    regulator_summary_lock_one);
5560	if (ret)
5561		class_for_each_device(&regulator_class, NULL, &lock_data,
5562				      regulator_summary_unlock_one);
5563
5564	return ret;
5565}
5566
5567static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5568{
5569	struct regulator_dev *new_contended_rdev = NULL;
5570	struct regulator_dev *old_contended_rdev = NULL;
5571	int err;
5572
5573	mutex_lock(&regulator_list_mutex);
5574
5575	ww_acquire_init(ww_ctx, &regulator_ww_class);
5576
5577	do {
5578		if (new_contended_rdev) {
5579			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5580			old_contended_rdev = new_contended_rdev;
5581			old_contended_rdev->ref_cnt++;
5582		}
5583
5584		err = regulator_summary_lock_all(ww_ctx,
5585						 &new_contended_rdev,
5586						 &old_contended_rdev);
5587
5588		if (old_contended_rdev)
5589			regulator_unlock(old_contended_rdev);
5590
5591	} while (err == -EDEADLK);
5592
5593	ww_acquire_done(ww_ctx);
5594}
5595
5596static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5597{
5598	class_for_each_device(&regulator_class, NULL, NULL,
5599			      regulator_summary_unlock_one);
5600	ww_acquire_fini(ww_ctx);
5601
5602	mutex_unlock(&regulator_list_mutex);
5603}
5604
5605static int regulator_summary_show_roots(struct device *dev, void *data)
5606{
5607	struct regulator_dev *rdev = dev_to_rdev(dev);
5608	struct seq_file *s = data;
5609
5610	if (!rdev->supply)
5611		regulator_summary_show_subtree(s, rdev, 0);
5612
5613	return 0;
5614}
5615
5616static int regulator_summary_show(struct seq_file *s, void *data)
5617{
5618	struct ww_acquire_ctx ww_ctx;
5619
5620	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5621	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5622
5623	regulator_summary_lock(&ww_ctx);
5624
5625	class_for_each_device(&regulator_class, NULL, s,
5626			      regulator_summary_show_roots);
5627
5628	regulator_summary_unlock(&ww_ctx);
5629
5630	return 0;
5631}
5632DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5633#endif /* CONFIG_DEBUG_FS */
5634
5635static int __init regulator_init(void)
5636{
5637	int ret;
5638
5639	ret = class_register(&regulator_class);
5640
 
5641	debugfs_root = debugfs_create_dir("regulator", NULL);
5642	if (!debugfs_root)
5643		pr_warn("regulator: Failed to create debugfs directory\n");
 
 
 
5644
5645#ifdef CONFIG_DEBUG_FS
5646	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5647			    &supply_map_fops);
5648
5649	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650			    NULL, &regulator_summary_fops);
5651#endif
5652	regulator_dummy_init();
5653
5654	regulator_coupler_register(&generic_regulator_coupler);
5655
5656	return ret;
5657}
5658
5659/* init early to allow our consumers to complete system booting */
5660core_initcall(regulator_init);
5661
5662static int regulator_late_cleanup(struct device *dev, void *data)
5663{
5664	struct regulator_dev *rdev = dev_to_rdev(dev);
5665	const struct regulator_ops *ops = rdev->desc->ops;
5666	struct regulation_constraints *c = rdev->constraints;
5667	int enabled, ret;
5668
5669	if (c && c->always_on)
5670		return 0;
 
 
 
 
 
 
 
5671
5672	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5673		return 0;
5674
5675	regulator_lock(rdev);
5676
5677	if (rdev->use_count)
5678		goto unlock;
5679
5680	/* If we can't read the status assume it's on. */
5681	if (ops->is_enabled)
5682		enabled = ops->is_enabled(rdev);
5683	else
5684		enabled = 1;
5685
5686	if (!enabled)
5687		goto unlock;
5688
5689	if (have_full_constraints()) {
5690		/* We log since this may kill the system if it goes
5691		 * wrong. */
5692		rdev_info(rdev, "disabling\n");
5693		ret = _regulator_do_disable(rdev);
5694		if (ret != 0)
5695			rdev_err(rdev, "couldn't disable: %d\n", ret);
5696	} else {
5697		/* The intention is that in future we will
5698		 * assume that full constraints are provided
5699		 * so warn even if we aren't going to do
5700		 * anything here.
5701		 */
5702		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5703	}
 
5704
5705unlock:
5706	regulator_unlock(rdev);
 
5707
5708	return 0;
5709}
5710
5711static void regulator_init_complete_work_function(struct work_struct *work)
5712{
5713	/*
5714	 * Regulators may had failed to resolve their input supplies
5715	 * when were registered, either because the input supply was
5716	 * not registered yet or because its parent device was not
5717	 * bound yet. So attempt to resolve the input supplies for
5718	 * pending regulators before trying to disable unused ones.
5719	 */
5720	class_for_each_device(&regulator_class, NULL, NULL,
5721			      regulator_register_resolve_supply);
5722
5723	/* If we have a full configuration then disable any regulators
5724	 * we have permission to change the status for and which are
5725	 * not in use or always_on.  This is effectively the default
5726	 * for DT and ACPI as they have full constraints.
5727	 */
5728	class_for_each_device(&regulator_class, NULL, NULL,
5729			      regulator_late_cleanup);
5730}
5731
5732static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5733			    regulator_init_complete_work_function);
5734
5735static int __init regulator_init_complete(void)
5736{
5737	/*
5738	 * Since DT doesn't provide an idiomatic mechanism for
5739	 * enabling full constraints and since it's much more natural
5740	 * with DT to provide them just assume that a DT enabled
5741	 * system has full constraints.
5742	 */
5743	if (of_have_populated_dt())
5744		has_full_constraints = true;
5745
5746	/*
5747	 * We punt completion for an arbitrary amount of time since
5748	 * systems like distros will load many drivers from userspace
5749	 * so consumers might not always be ready yet, this is
5750	 * particularly an issue with laptops where this might bounce
5751	 * the display off then on.  Ideally we'd get a notification
5752	 * from userspace when this happens but we don't so just wait
5753	 * a bit and hope we waited long enough.  It'd be better if
5754	 * we'd only do this on systems that need it, and a kernel
5755	 * command line option might be useful.
5756	 */
5757	schedule_delayed_work(&regulator_init_complete_work,
5758			      msecs_to_jiffies(30000));
5759
5760	return 0;
5761}
5762late_initcall_sync(regulator_init_complete);