Loading...
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_crit(rdev, fmt, ...) \
38 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_err(rdev, fmt, ...) \
40 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_warn(rdev, fmt, ...) \
42 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_info(rdev, fmt, ...) \
44 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_dbg(rdev, fmt, ...) \
46 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48static DEFINE_MUTEX(regulator_list_mutex);
49static LIST_HEAD(regulator_list);
50static LIST_HEAD(regulator_map_list);
51static bool has_full_constraints;
52static bool board_wants_dummy_regulator;
53
54#ifdef CONFIG_DEBUG_FS
55static struct dentry *debugfs_root;
56#endif
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76 struct device *dev;
77 struct list_head list;
78 int uA_load;
79 int min_uV;
80 int max_uV;
81 char *supply_name;
82 struct device_attribute dev_attr;
83 struct regulator_dev *rdev;
84#ifdef CONFIG_DEBUG_FS
85 struct dentry *debugfs;
86#endif
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
110}
111
112/* gets the regulator for a given consumer device */
113static struct regulator *get_device_regulator(struct device *dev)
114{
115 struct regulator *regulator = NULL;
116 struct regulator_dev *rdev;
117
118 mutex_lock(®ulator_list_mutex);
119 list_for_each_entry(rdev, ®ulator_list, list) {
120 mutex_lock(&rdev->mutex);
121 list_for_each_entry(regulator, &rdev->consumer_list, list) {
122 if (regulator->dev == dev) {
123 mutex_unlock(&rdev->mutex);
124 mutex_unlock(®ulator_list_mutex);
125 return regulator;
126 }
127 }
128 mutex_unlock(&rdev->mutex);
129 }
130 mutex_unlock(®ulator_list_mutex);
131 return NULL;
132}
133
134/* Platform voltage constraint check */
135static int regulator_check_voltage(struct regulator_dev *rdev,
136 int *min_uV, int *max_uV)
137{
138 BUG_ON(*min_uV > *max_uV);
139
140 if (!rdev->constraints) {
141 rdev_err(rdev, "no constraints\n");
142 return -ENODEV;
143 }
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145 rdev_err(rdev, "operation not allowed\n");
146 return -EPERM;
147 }
148
149 if (*max_uV > rdev->constraints->max_uV)
150 *max_uV = rdev->constraints->max_uV;
151 if (*min_uV < rdev->constraints->min_uV)
152 *min_uV = rdev->constraints->min_uV;
153
154 if (*min_uV > *max_uV) {
155 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156 *min_uV, *max_uV);
157 return -EINVAL;
158 }
159
160 return 0;
161}
162
163/* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
165 */
166static int regulator_check_consumers(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168{
169 struct regulator *regulator;
170
171 list_for_each_entry(regulator, &rdev->consumer_list, list) {
172 /*
173 * Assume consumers that didn't say anything are OK
174 * with anything in the constraint range.
175 */
176 if (!regulator->min_uV && !regulator->max_uV)
177 continue;
178
179 if (*max_uV > regulator->max_uV)
180 *max_uV = regulator->max_uV;
181 if (*min_uV < regulator->min_uV)
182 *min_uV = regulator->min_uV;
183 }
184
185 if (*min_uV > *max_uV)
186 return -EINVAL;
187
188 return 0;
189}
190
191/* current constraint check */
192static int regulator_check_current_limit(struct regulator_dev *rdev,
193 int *min_uA, int *max_uA)
194{
195 BUG_ON(*min_uA > *max_uA);
196
197 if (!rdev->constraints) {
198 rdev_err(rdev, "no constraints\n");
199 return -ENODEV;
200 }
201 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202 rdev_err(rdev, "operation not allowed\n");
203 return -EPERM;
204 }
205
206 if (*max_uA > rdev->constraints->max_uA)
207 *max_uA = rdev->constraints->max_uA;
208 if (*min_uA < rdev->constraints->min_uA)
209 *min_uA = rdev->constraints->min_uA;
210
211 if (*min_uA > *max_uA) {
212 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213 *min_uA, *max_uA);
214 return -EINVAL;
215 }
216
217 return 0;
218}
219
220/* operating mode constraint check */
221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222{
223 switch (*mode) {
224 case REGULATOR_MODE_FAST:
225 case REGULATOR_MODE_NORMAL:
226 case REGULATOR_MODE_IDLE:
227 case REGULATOR_MODE_STANDBY:
228 break;
229 default:
230 rdev_err(rdev, "invalid mode %x specified\n", *mode);
231 return -EINVAL;
232 }
233
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
241 }
242
243 /* The modes are bitmasks, the most power hungry modes having
244 * the lowest values. If the requested mode isn't supported
245 * try higher modes. */
246 while (*mode) {
247 if (rdev->constraints->valid_modes_mask & *mode)
248 return 0;
249 *mode /= 2;
250 }
251
252 return -EINVAL;
253}
254
255/* dynamic regulator mode switching constraint check */
256static int regulator_check_drms(struct regulator_dev *rdev)
257{
258 if (!rdev->constraints) {
259 rdev_err(rdev, "no constraints\n");
260 return -ENODEV;
261 }
262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263 rdev_err(rdev, "operation not allowed\n");
264 return -EPERM;
265 }
266 return 0;
267}
268
269static ssize_t device_requested_uA_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct regulator *regulator;
273
274 regulator = get_device_regulator(dev);
275 if (regulator == NULL)
276 return 0;
277
278 return sprintf(buf, "%d\n", regulator->uA_load);
279}
280
281static ssize_t regulator_uV_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct regulator_dev *rdev = dev_get_drvdata(dev);
285 ssize_t ret;
286
287 mutex_lock(&rdev->mutex);
288 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289 mutex_unlock(&rdev->mutex);
290
291 return ret;
292}
293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294
295static ssize_t regulator_uA_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
297{
298 struct regulator_dev *rdev = dev_get_drvdata(dev);
299
300 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301}
302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303
304static ssize_t regulator_name_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306{
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308
309 return sprintf(buf, "%s\n", rdev_get_name(rdev));
310}
311
312static ssize_t regulator_print_opmode(char *buf, int mode)
313{
314 switch (mode) {
315 case REGULATOR_MODE_FAST:
316 return sprintf(buf, "fast\n");
317 case REGULATOR_MODE_NORMAL:
318 return sprintf(buf, "normal\n");
319 case REGULATOR_MODE_IDLE:
320 return sprintf(buf, "idle\n");
321 case REGULATOR_MODE_STANDBY:
322 return sprintf(buf, "standby\n");
323 }
324 return sprintf(buf, "unknown\n");
325}
326
327static ssize_t regulator_opmode_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329{
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333}
334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335
336static ssize_t regulator_print_state(char *buf, int state)
337{
338 if (state > 0)
339 return sprintf(buf, "enabled\n");
340 else if (state == 0)
341 return sprintf(buf, "disabled\n");
342 else
343 return sprintf(buf, "unknown\n");
344}
345
346static ssize_t regulator_state_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348{
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350 ssize_t ret;
351
352 mutex_lock(&rdev->mutex);
353 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354 mutex_unlock(&rdev->mutex);
355
356 return ret;
357}
358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359
360static ssize_t regulator_status_show(struct device *dev,
361 struct device_attribute *attr, char *buf)
362{
363 struct regulator_dev *rdev = dev_get_drvdata(dev);
364 int status;
365 char *label;
366
367 status = rdev->desc->ops->get_status(rdev);
368 if (status < 0)
369 return status;
370
371 switch (status) {
372 case REGULATOR_STATUS_OFF:
373 label = "off";
374 break;
375 case REGULATOR_STATUS_ON:
376 label = "on";
377 break;
378 case REGULATOR_STATUS_ERROR:
379 label = "error";
380 break;
381 case REGULATOR_STATUS_FAST:
382 label = "fast";
383 break;
384 case REGULATOR_STATUS_NORMAL:
385 label = "normal";
386 break;
387 case REGULATOR_STATUS_IDLE:
388 label = "idle";
389 break;
390 case REGULATOR_STATUS_STANDBY:
391 label = "standby";
392 break;
393 default:
394 return -ERANGE;
395 }
396
397 return sprintf(buf, "%s\n", label);
398}
399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400
401static ssize_t regulator_min_uA_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406 if (!rdev->constraints)
407 return sprintf(buf, "constraint not defined\n");
408
409 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410}
411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412
413static ssize_t regulator_max_uA_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415{
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418 if (!rdev->constraints)
419 return sprintf(buf, "constraint not defined\n");
420
421 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422}
423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424
425static ssize_t regulator_min_uV_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430 if (!rdev->constraints)
431 return sprintf(buf, "constraint not defined\n");
432
433 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434}
435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436
437static ssize_t regulator_max_uV_show(struct device *dev,
438 struct device_attribute *attr, char *buf)
439{
440 struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442 if (!rdev->constraints)
443 return sprintf(buf, "constraint not defined\n");
444
445 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446}
447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448
449static ssize_t regulator_total_uA_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
451{
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 struct regulator *regulator;
454 int uA = 0;
455
456 mutex_lock(&rdev->mutex);
457 list_for_each_entry(regulator, &rdev->consumer_list, list)
458 uA += regulator->uA_load;
459 mutex_unlock(&rdev->mutex);
460 return sprintf(buf, "%d\n", uA);
461}
462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463
464static ssize_t regulator_num_users_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466{
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
468 return sprintf(buf, "%d\n", rdev->use_count);
469}
470
471static ssize_t regulator_type_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473{
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476 switch (rdev->desc->type) {
477 case REGULATOR_VOLTAGE:
478 return sprintf(buf, "voltage\n");
479 case REGULATOR_CURRENT:
480 return sprintf(buf, "current\n");
481 }
482 return sprintf(buf, "unknown\n");
483}
484
485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
487{
488 struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491}
492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493 regulator_suspend_mem_uV_show, NULL);
494
495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
497{
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501}
502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503 regulator_suspend_disk_uV_show, NULL);
504
505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506 struct device_attribute *attr, char *buf)
507{
508 struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511}
512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513 regulator_suspend_standby_uV_show, NULL);
514
515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
517{
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520 return regulator_print_opmode(buf,
521 rdev->constraints->state_mem.mode);
522}
523static DEVICE_ATTR(suspend_mem_mode, 0444,
524 regulator_suspend_mem_mode_show, NULL);
525
526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528{
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_disk.mode);
533}
534static DEVICE_ATTR(suspend_disk_mode, 0444,
535 regulator_suspend_disk_mode_show, NULL);
536
537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539{
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_standby.mode);
544}
545static DEVICE_ATTR(suspend_standby_mode, 0444,
546 regulator_suspend_standby_mode_show, NULL);
547
548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550{
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 return regulator_print_state(buf,
554 rdev->constraints->state_mem.enabled);
555}
556static DEVICE_ATTR(suspend_mem_state, 0444,
557 regulator_suspend_mem_state_show, NULL);
558
559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561{
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return regulator_print_state(buf,
565 rdev->constraints->state_disk.enabled);
566}
567static DEVICE_ATTR(suspend_disk_state, 0444,
568 regulator_suspend_disk_state_show, NULL);
569
570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572{
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_state(buf,
576 rdev->constraints->state_standby.enabled);
577}
578static DEVICE_ATTR(suspend_standby_state, 0444,
579 regulator_suspend_standby_state_show, NULL);
580
581
582/*
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
585 */
586static struct device_attribute regulator_dev_attrs[] = {
587 __ATTR(name, 0444, regulator_name_show, NULL),
588 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
589 __ATTR(type, 0444, regulator_type_show, NULL),
590 __ATTR_NULL,
591};
592
593static void regulator_dev_release(struct device *dev)
594{
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 kfree(rdev);
597}
598
599static struct class regulator_class = {
600 .name = "regulator",
601 .dev_release = regulator_dev_release,
602 .dev_attrs = regulator_dev_attrs,
603};
604
605/* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607static void drms_uA_update(struct regulator_dev *rdev)
608{
609 struct regulator *sibling;
610 int current_uA = 0, output_uV, input_uV, err;
611 unsigned int mode;
612
613 err = regulator_check_drms(rdev);
614 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615 (!rdev->desc->ops->get_voltage &&
616 !rdev->desc->ops->get_voltage_sel) ||
617 !rdev->desc->ops->set_mode)
618 return;
619
620 /* get output voltage */
621 output_uV = _regulator_get_voltage(rdev);
622 if (output_uV <= 0)
623 return;
624
625 /* get input voltage */
626 input_uV = 0;
627 if (rdev->supply)
628 input_uV = _regulator_get_voltage(rdev);
629 if (input_uV <= 0)
630 input_uV = rdev->constraints->input_uV;
631 if (input_uV <= 0)
632 return;
633
634 /* calc total requested load */
635 list_for_each_entry(sibling, &rdev->consumer_list, list)
636 current_uA += sibling->uA_load;
637
638 /* now get the optimum mode for our new total regulator load */
639 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640 output_uV, current_uA);
641
642 /* check the new mode is allowed */
643 err = regulator_mode_constrain(rdev, &mode);
644 if (err == 0)
645 rdev->desc->ops->set_mode(rdev, mode);
646}
647
648static int suspend_set_state(struct regulator_dev *rdev,
649 struct regulator_state *rstate)
650{
651 int ret = 0;
652 bool can_set_state;
653
654 can_set_state = rdev->desc->ops->set_suspend_enable &&
655 rdev->desc->ops->set_suspend_disable;
656
657 /* If we have no suspend mode configration don't set anything;
658 * only warn if the driver actually makes the suspend mode
659 * configurable.
660 */
661 if (!rstate->enabled && !rstate->disabled) {
662 if (can_set_state)
663 rdev_warn(rdev, "No configuration\n");
664 return 0;
665 }
666
667 if (rstate->enabled && rstate->disabled) {
668 rdev_err(rdev, "invalid configuration\n");
669 return -EINVAL;
670 }
671
672 if (!can_set_state) {
673 rdev_err(rdev, "no way to set suspend state\n");
674 return -EINVAL;
675 }
676
677 if (rstate->enabled)
678 ret = rdev->desc->ops->set_suspend_enable(rdev);
679 else
680 ret = rdev->desc->ops->set_suspend_disable(rdev);
681 if (ret < 0) {
682 rdev_err(rdev, "failed to enabled/disable\n");
683 return ret;
684 }
685
686 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688 if (ret < 0) {
689 rdev_err(rdev, "failed to set voltage\n");
690 return ret;
691 }
692 }
693
694 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696 if (ret < 0) {
697 rdev_err(rdev, "failed to set mode\n");
698 return ret;
699 }
700 }
701 return ret;
702}
703
704/* locks held by caller */
705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706{
707 if (!rdev->constraints)
708 return -EINVAL;
709
710 switch (state) {
711 case PM_SUSPEND_STANDBY:
712 return suspend_set_state(rdev,
713 &rdev->constraints->state_standby);
714 case PM_SUSPEND_MEM:
715 return suspend_set_state(rdev,
716 &rdev->constraints->state_mem);
717 case PM_SUSPEND_MAX:
718 return suspend_set_state(rdev,
719 &rdev->constraints->state_disk);
720 default:
721 return -EINVAL;
722 }
723}
724
725static void print_constraints(struct regulator_dev *rdev)
726{
727 struct regulation_constraints *constraints = rdev->constraints;
728 char buf[80] = "";
729 int count = 0;
730 int ret;
731
732 if (constraints->min_uV && constraints->max_uV) {
733 if (constraints->min_uV == constraints->max_uV)
734 count += sprintf(buf + count, "%d mV ",
735 constraints->min_uV / 1000);
736 else
737 count += sprintf(buf + count, "%d <--> %d mV ",
738 constraints->min_uV / 1000,
739 constraints->max_uV / 1000);
740 }
741
742 if (!constraints->min_uV ||
743 constraints->min_uV != constraints->max_uV) {
744 ret = _regulator_get_voltage(rdev);
745 if (ret > 0)
746 count += sprintf(buf + count, "at %d mV ", ret / 1000);
747 }
748
749 if (constraints->uV_offset)
750 count += sprintf(buf, "%dmV offset ",
751 constraints->uV_offset / 1000);
752
753 if (constraints->min_uA && constraints->max_uA) {
754 if (constraints->min_uA == constraints->max_uA)
755 count += sprintf(buf + count, "%d mA ",
756 constraints->min_uA / 1000);
757 else
758 count += sprintf(buf + count, "%d <--> %d mA ",
759 constraints->min_uA / 1000,
760 constraints->max_uA / 1000);
761 }
762
763 if (!constraints->min_uA ||
764 constraints->min_uA != constraints->max_uA) {
765 ret = _regulator_get_current_limit(rdev);
766 if (ret > 0)
767 count += sprintf(buf + count, "at %d mA ", ret / 1000);
768 }
769
770 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771 count += sprintf(buf + count, "fast ");
772 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773 count += sprintf(buf + count, "normal ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775 count += sprintf(buf + count, "idle ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777 count += sprintf(buf + count, "standby");
778
779 rdev_info(rdev, "%s\n", buf);
780}
781
782static int machine_constraints_voltage(struct regulator_dev *rdev,
783 struct regulation_constraints *constraints)
784{
785 struct regulator_ops *ops = rdev->desc->ops;
786 int ret;
787
788 /* do we need to apply the constraint voltage */
789 if (rdev->constraints->apply_uV &&
790 rdev->constraints->min_uV == rdev->constraints->max_uV) {
791 ret = _regulator_do_set_voltage(rdev,
792 rdev->constraints->min_uV,
793 rdev->constraints->max_uV);
794 if (ret < 0) {
795 rdev_err(rdev, "failed to apply %duV constraint\n",
796 rdev->constraints->min_uV);
797 return ret;
798 }
799 }
800
801 /* constrain machine-level voltage specs to fit
802 * the actual range supported by this regulator.
803 */
804 if (ops->list_voltage && rdev->desc->n_voltages) {
805 int count = rdev->desc->n_voltages;
806 int i;
807 int min_uV = INT_MAX;
808 int max_uV = INT_MIN;
809 int cmin = constraints->min_uV;
810 int cmax = constraints->max_uV;
811
812 /* it's safe to autoconfigure fixed-voltage supplies
813 and the constraints are used by list_voltage. */
814 if (count == 1 && !cmin) {
815 cmin = 1;
816 cmax = INT_MAX;
817 constraints->min_uV = cmin;
818 constraints->max_uV = cmax;
819 }
820
821 /* voltage constraints are optional */
822 if ((cmin == 0) && (cmax == 0))
823 return 0;
824
825 /* else require explicit machine-level constraints */
826 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827 rdev_err(rdev, "invalid voltage constraints\n");
828 return -EINVAL;
829 }
830
831 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 for (i = 0; i < count; i++) {
833 int value;
834
835 value = ops->list_voltage(rdev, i);
836 if (value <= 0)
837 continue;
838
839 /* maybe adjust [min_uV..max_uV] */
840 if (value >= cmin && value < min_uV)
841 min_uV = value;
842 if (value <= cmax && value > max_uV)
843 max_uV = value;
844 }
845
846 /* final: [min_uV..max_uV] valid iff constraints valid */
847 if (max_uV < min_uV) {
848 rdev_err(rdev, "unsupportable voltage constraints\n");
849 return -EINVAL;
850 }
851
852 /* use regulator's subset of machine constraints */
853 if (constraints->min_uV < min_uV) {
854 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855 constraints->min_uV, min_uV);
856 constraints->min_uV = min_uV;
857 }
858 if (constraints->max_uV > max_uV) {
859 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860 constraints->max_uV, max_uV);
861 constraints->max_uV = max_uV;
862 }
863 }
864
865 return 0;
866}
867
868/**
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
872 *
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
877 * set_mode.
878 */
879static int set_machine_constraints(struct regulator_dev *rdev,
880 const struct regulation_constraints *constraints)
881{
882 int ret = 0;
883 struct regulator_ops *ops = rdev->desc->ops;
884
885 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886 GFP_KERNEL);
887 if (!rdev->constraints)
888 return -ENOMEM;
889
890 ret = machine_constraints_voltage(rdev, rdev->constraints);
891 if (ret != 0)
892 goto out;
893
894 /* do we need to setup our suspend state */
895 if (constraints->initial_state) {
896 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897 if (ret < 0) {
898 rdev_err(rdev, "failed to set suspend state\n");
899 goto out;
900 }
901 }
902
903 if (constraints->initial_mode) {
904 if (!ops->set_mode) {
905 rdev_err(rdev, "no set_mode operation\n");
906 ret = -EINVAL;
907 goto out;
908 }
909
910 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911 if (ret < 0) {
912 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913 goto out;
914 }
915 }
916
917 /* If the constraints say the regulator should be on at this point
918 * and we have control then make sure it is enabled.
919 */
920 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921 ops->enable) {
922 ret = ops->enable(rdev);
923 if (ret < 0) {
924 rdev_err(rdev, "failed to enable\n");
925 goto out;
926 }
927 }
928
929 print_constraints(rdev);
930 return 0;
931out:
932 kfree(rdev->constraints);
933 rdev->constraints = NULL;
934 return ret;
935}
936
937/**
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
941 *
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
945 */
946static int set_supply(struct regulator_dev *rdev,
947 struct regulator_dev *supply_rdev)
948{
949 int err;
950
951 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952
953 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954 if (IS_ERR(rdev->supply)) {
955 err = PTR_ERR(rdev->supply);
956 rdev->supply = NULL;
957 return err;
958 }
959
960 return 0;
961}
962
963/**
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev: regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply: symbolic name for supply
969 *
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices. Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
974 *
975 * Only one of consumer_dev and consumer_dev_name may be specified.
976 */
977static int set_consumer_device_supply(struct regulator_dev *rdev,
978 struct device *consumer_dev, const char *consumer_dev_name,
979 const char *supply)
980{
981 struct regulator_map *node;
982 int has_dev;
983
984 if (consumer_dev && consumer_dev_name)
985 return -EINVAL;
986
987 if (!consumer_dev_name && consumer_dev)
988 consumer_dev_name = dev_name(consumer_dev);
989
990 if (supply == NULL)
991 return -EINVAL;
992
993 if (consumer_dev_name != NULL)
994 has_dev = 1;
995 else
996 has_dev = 0;
997
998 list_for_each_entry(node, ®ulator_map_list, list) {
999 if (node->dev_name && consumer_dev_name) {
1000 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001 continue;
1002 } else if (node->dev_name || consumer_dev_name) {
1003 continue;
1004 }
1005
1006 if (strcmp(node->supply, supply) != 0)
1007 continue;
1008
1009 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010 dev_name(&node->regulator->dev),
1011 node->regulator->desc->name,
1012 supply,
1013 dev_name(&rdev->dev), rdev_get_name(rdev));
1014 return -EBUSY;
1015 }
1016
1017 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018 if (node == NULL)
1019 return -ENOMEM;
1020
1021 node->regulator = rdev;
1022 node->supply = supply;
1023
1024 if (has_dev) {
1025 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026 if (node->dev_name == NULL) {
1027 kfree(node);
1028 return -ENOMEM;
1029 }
1030 }
1031
1032 list_add(&node->list, ®ulator_map_list);
1033 return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038 struct regulator_map *node, *n;
1039
1040 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1041 if (rdev == node->regulator) {
1042 list_del(&node->list);
1043 kfree(node->dev_name);
1044 kfree(node);
1045 }
1046 }
1047}
1048
1049#define REG_STR_SIZE 64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052 struct device *dev,
1053 const char *supply_name)
1054{
1055 struct regulator *regulator;
1056 char buf[REG_STR_SIZE];
1057 int err, size;
1058
1059 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060 if (regulator == NULL)
1061 return NULL;
1062
1063 mutex_lock(&rdev->mutex);
1064 regulator->rdev = rdev;
1065 list_add(®ulator->list, &rdev->consumer_list);
1066
1067 if (dev) {
1068 /* create a 'requested_microamps_name' sysfs entry */
1069 size = scnprintf(buf, REG_STR_SIZE,
1070 "microamps_requested_%s-%s",
1071 dev_name(dev), supply_name);
1072 if (size >= REG_STR_SIZE)
1073 goto overflow_err;
1074
1075 regulator->dev = dev;
1076 sysfs_attr_init(®ulator->dev_attr.attr);
1077 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078 if (regulator->dev_attr.attr.name == NULL)
1079 goto attr_name_err;
1080
1081 regulator->dev_attr.attr.mode = 0444;
1082 regulator->dev_attr.show = device_requested_uA_show;
1083 err = device_create_file(dev, ®ulator->dev_attr);
1084 if (err < 0) {
1085 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086 goto attr_name_err;
1087 }
1088
1089 /* also add a link to the device sysfs entry */
1090 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091 dev->kobj.name, supply_name);
1092 if (size >= REG_STR_SIZE)
1093 goto attr_err;
1094
1095 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096 if (regulator->supply_name == NULL)
1097 goto attr_err;
1098
1099 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100 buf);
1101 if (err) {
1102 rdev_warn(rdev, "could not add device link %s err %d\n",
1103 dev->kobj.name, err);
1104 goto link_name_err;
1105 }
1106 } else {
1107 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108 if (regulator->supply_name == NULL)
1109 goto attr_err;
1110 }
1111
1112#ifdef CONFIG_DEBUG_FS
1113 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114 rdev->debugfs);
1115 if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116 rdev_warn(rdev, "Failed to create debugfs directory\n");
1117 regulator->debugfs = NULL;
1118 } else {
1119 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120 ®ulator->uA_load);
1121 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122 ®ulator->min_uV);
1123 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124 ®ulator->max_uV);
1125 }
1126#endif
1127
1128 mutex_unlock(&rdev->mutex);
1129 return regulator;
1130link_name_err:
1131 kfree(regulator->supply_name);
1132attr_err:
1133 device_remove_file(regulator->dev, ®ulator->dev_attr);
1134attr_name_err:
1135 kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137 list_del(®ulator->list);
1138 kfree(regulator);
1139 mutex_unlock(&rdev->mutex);
1140 return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145 if (!rdev->desc->ops->enable_time)
1146 return 0;
1147 return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152 int exclusive)
1153{
1154 struct regulator_dev *rdev;
1155 struct regulator_map *map;
1156 struct regulator *regulator = ERR_PTR(-ENODEV);
1157 const char *devname = NULL;
1158 int ret;
1159
1160 if (id == NULL) {
1161 pr_err("get() with no identifier\n");
1162 return regulator;
1163 }
1164
1165 if (dev)
1166 devname = dev_name(dev);
1167
1168 mutex_lock(®ulator_list_mutex);
1169
1170 list_for_each_entry(map, ®ulator_map_list, list) {
1171 /* If the mapping has a device set up it must match */
1172 if (map->dev_name &&
1173 (!devname || strcmp(map->dev_name, devname)))
1174 continue;
1175
1176 if (strcmp(map->supply, id) == 0) {
1177 rdev = map->regulator;
1178 goto found;
1179 }
1180 }
1181
1182 if (board_wants_dummy_regulator) {
1183 rdev = dummy_regulator_rdev;
1184 goto found;
1185 }
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188 if (!devname)
1189 devname = "deviceless";
1190
1191 /* If the board didn't flag that it was fully constrained then
1192 * substitute in a dummy regulator so consumers can continue.
1193 */
1194 if (!has_full_constraints) {
1195 pr_warn("%s supply %s not found, using dummy regulator\n",
1196 devname, id);
1197 rdev = dummy_regulator_rdev;
1198 goto found;
1199 }
1200#endif
1201
1202 mutex_unlock(®ulator_list_mutex);
1203 return regulator;
1204
1205found:
1206 if (rdev->exclusive) {
1207 regulator = ERR_PTR(-EPERM);
1208 goto out;
1209 }
1210
1211 if (exclusive && rdev->open_count) {
1212 regulator = ERR_PTR(-EBUSY);
1213 goto out;
1214 }
1215
1216 if (!try_module_get(rdev->owner))
1217 goto out;
1218
1219 regulator = create_regulator(rdev, dev, id);
1220 if (regulator == NULL) {
1221 regulator = ERR_PTR(-ENOMEM);
1222 module_put(rdev->owner);
1223 }
1224
1225 rdev->open_count++;
1226 if (exclusive) {
1227 rdev->exclusive = 1;
1228
1229 ret = _regulator_is_enabled(rdev);
1230 if (ret > 0)
1231 rdev->use_count = 1;
1232 else
1233 rdev->use_count = 0;
1234 }
1235
1236out:
1237 mutex_unlock(®ulator_list_mutex);
1238
1239 return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged. It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257 return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno. Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged. It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284 return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1295 */
1296void regulator_put(struct regulator *regulator)
1297{
1298 struct regulator_dev *rdev;
1299
1300 if (regulator == NULL || IS_ERR(regulator))
1301 return;
1302
1303 mutex_lock(®ulator_list_mutex);
1304 rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307 debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310 /* remove any sysfs entries */
1311 if (regulator->dev) {
1312 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313 device_remove_file(regulator->dev, ®ulator->dev_attr);
1314 kfree(regulator->dev_attr.attr.name);
1315 }
1316 kfree(regulator->supply_name);
1317 list_del(®ulator->list);
1318 kfree(regulator);
1319
1320 rdev->open_count--;
1321 rdev->exclusive = 0;
1322
1323 module_put(rdev->owner);
1324 mutex_unlock(®ulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
1329{
1330 if (!rdev->constraints)
1331 return 0;
1332
1333 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334 return 1;
1335 else
1336 return 0;
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342 int ret, delay;
1343
1344 /* check voltage and requested load before enabling */
1345 if (rdev->constraints &&
1346 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347 drms_uA_update(rdev);
1348
1349 if (rdev->use_count == 0) {
1350 /* The regulator may on if it's not switchable or left on */
1351 ret = _regulator_is_enabled(rdev);
1352 if (ret == -EINVAL || ret == 0) {
1353 if (!_regulator_can_change_status(rdev))
1354 return -EPERM;
1355
1356 if (!rdev->desc->ops->enable)
1357 return -EINVAL;
1358
1359 /* Query before enabling in case configuration
1360 * dependent. */
1361 ret = _regulator_get_enable_time(rdev);
1362 if (ret >= 0) {
1363 delay = ret;
1364 } else {
1365 rdev_warn(rdev, "enable_time() failed: %d\n",
1366 ret);
1367 delay = 0;
1368 }
1369
1370 trace_regulator_enable(rdev_get_name(rdev));
1371
1372 /* Allow the regulator to ramp; it would be useful
1373 * to extend this for bulk operations so that the
1374 * regulators can ramp together. */
1375 ret = rdev->desc->ops->enable(rdev);
1376 if (ret < 0)
1377 return ret;
1378
1379 trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381 if (delay >= 1000) {
1382 mdelay(delay / 1000);
1383 udelay(delay % 1000);
1384 } else if (delay) {
1385 udelay(delay);
1386 }
1387
1388 trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390 } else if (ret < 0) {
1391 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392 return ret;
1393 }
1394 /* Fallthrough on positive return values - already enabled */
1395 }
1396
1397 rdev->use_count++;
1398
1399 return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value. Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415 struct regulator_dev *rdev = regulator->rdev;
1416 int ret = 0;
1417
1418 if (rdev->supply) {
1419 ret = regulator_enable(rdev->supply);
1420 if (ret != 0)
1421 return ret;
1422 }
1423
1424 mutex_lock(&rdev->mutex);
1425 ret = _regulator_enable(rdev);
1426 mutex_unlock(&rdev->mutex);
1427
1428 if (ret != 0)
1429 regulator_disable(rdev->supply);
1430
1431 return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438 int ret = 0;
1439
1440 if (WARN(rdev->use_count <= 0,
1441 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442 return -EIO;
1443
1444 /* are we the last user and permitted to disable ? */
1445 if (rdev->use_count == 1 &&
1446 (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448 /* we are last user */
1449 if (_regulator_can_change_status(rdev) &&
1450 rdev->desc->ops->disable) {
1451 trace_regulator_disable(rdev_get_name(rdev));
1452
1453 ret = rdev->desc->ops->disable(rdev);
1454 if (ret < 0) {
1455 rdev_err(rdev, "failed to disable\n");
1456 return ret;
1457 }
1458
1459 trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462 NULL);
1463 }
1464
1465 rdev->use_count = 0;
1466 } else if (rdev->use_count > 1) {
1467
1468 if (rdev->constraints &&
1469 (rdev->constraints->valid_ops_mask &
1470 REGULATOR_CHANGE_DRMS))
1471 drms_uA_update(rdev);
1472
1473 rdev->use_count--;
1474 }
1475
1476 return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current. Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493 struct regulator_dev *rdev = regulator->rdev;
1494 int ret = 0;
1495
1496 mutex_lock(&rdev->mutex);
1497 ret = _regulator_disable(rdev);
1498 mutex_unlock(&rdev->mutex);
1499
1500 if (ret == 0 && rdev->supply)
1501 regulator_disable(rdev->supply);
1502
1503 return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510 int ret = 0;
1511
1512 /* force disable */
1513 if (rdev->desc->ops->disable) {
1514 /* ah well, who wants to live forever... */
1515 ret = rdev->desc->ops->disable(rdev);
1516 if (ret < 0) {
1517 rdev_err(rdev, "failed to force disable\n");
1518 return ret;
1519 }
1520 /* notify other consumers that power has been forced off */
1521 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522 REGULATOR_EVENT_DISABLE, NULL);
1523 }
1524
1525 return ret;
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539 struct regulator_dev *rdev = regulator->rdev;
1540 int ret;
1541
1542 mutex_lock(&rdev->mutex);
1543 regulator->uA_load = 0;
1544 ret = _regulator_force_disable(regulator->rdev);
1545 mutex_unlock(&rdev->mutex);
1546
1547 if (rdev->supply)
1548 while (rdev->open_count--)
1549 regulator_disable(rdev->supply);
1550
1551 return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
1557 /* If we don't know then assume that the regulator is always on */
1558 if (!rdev->desc->ops->is_enabled)
1559 return 1;
1560
1561 return rdev->desc->ops->is_enabled(rdev);
1562}
1563
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578 int ret;
1579
1580 mutex_lock(®ulator->rdev->mutex);
1581 ret = _regulator_is_enabled(regulator->rdev);
1582 mutex_unlock(®ulator->rdev->mutex);
1583
1584 return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno. Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598 struct regulator_dev *rdev = regulator->rdev;
1599
1600 return rdev->desc->n_voltages ? : -EINVAL;
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616 struct regulator_dev *rdev = regulator->rdev;
1617 struct regulator_ops *ops = rdev->desc->ops;
1618 int ret;
1619
1620 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621 return -EINVAL;
1622
1623 mutex_lock(&rdev->mutex);
1624 ret = ops->list_voltage(rdev, selector);
1625 mutex_unlock(&rdev->mutex);
1626
1627 if (ret > 0) {
1628 if (ret < rdev->constraints->min_uV)
1629 ret = 0;
1630 else if (ret > rdev->constraints->max_uV)
1631 ret = 0;
1632 }
1633
1634 return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648 int min_uV, int max_uV)
1649{
1650 int i, voltages, ret;
1651
1652 ret = regulator_count_voltages(regulator);
1653 if (ret < 0)
1654 return ret;
1655 voltages = ret;
1656
1657 for (i = 0; i < voltages; i++) {
1658 ret = regulator_list_voltage(regulator, i);
1659
1660 if (ret >= min_uV && ret <= max_uV)
1661 return 1;
1662 }
1663
1664 return 0;
1665}
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668 int min_uV, int max_uV)
1669{
1670 int ret;
1671 int delay = 0;
1672 unsigned int selector;
1673
1674 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676 min_uV += rdev->constraints->uV_offset;
1677 max_uV += rdev->constraints->uV_offset;
1678
1679 if (rdev->desc->ops->set_voltage) {
1680 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681 &selector);
1682
1683 if (rdev->desc->ops->list_voltage)
1684 selector = rdev->desc->ops->list_voltage(rdev,
1685 selector);
1686 else
1687 selector = -1;
1688 } else if (rdev->desc->ops->set_voltage_sel) {
1689 int best_val = INT_MAX;
1690 int i;
1691
1692 selector = 0;
1693
1694 /* Find the smallest voltage that falls within the specified
1695 * range.
1696 */
1697 for (i = 0; i < rdev->desc->n_voltages; i++) {
1698 ret = rdev->desc->ops->list_voltage(rdev, i);
1699 if (ret < 0)
1700 continue;
1701
1702 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703 best_val = ret;
1704 selector = i;
1705 }
1706 }
1707
1708 /*
1709 * If we can't obtain the old selector there is not enough
1710 * info to call set_voltage_time_sel().
1711 */
1712 if (rdev->desc->ops->set_voltage_time_sel &&
1713 rdev->desc->ops->get_voltage_sel) {
1714 unsigned int old_selector = 0;
1715
1716 ret = rdev->desc->ops->get_voltage_sel(rdev);
1717 if (ret < 0)
1718 return ret;
1719 old_selector = ret;
1720 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721 old_selector, selector);
1722 }
1723
1724 if (best_val != INT_MAX) {
1725 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726 selector = best_val;
1727 } else {
1728 ret = -EINVAL;
1729 }
1730 } else {
1731 ret = -EINVAL;
1732 }
1733
1734 /* Insert any necessary delays */
1735 if (delay >= 1000) {
1736 mdelay(delay / 1000);
1737 udelay(delay % 1000);
1738 } else if (delay) {
1739 udelay(delay);
1740 }
1741
1742 if (ret == 0)
1743 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744 NULL);
1745
1746 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747
1748 return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771 struct regulator_dev *rdev = regulator->rdev;
1772 int ret = 0;
1773
1774 mutex_lock(&rdev->mutex);
1775
1776 /* If we're setting the same range as last time the change
1777 * should be a noop (some cpufreq implementations use the same
1778 * voltage for multiple frequencies, for example).
1779 */
1780 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781 goto out;
1782
1783 /* sanity check */
1784 if (!rdev->desc->ops->set_voltage &&
1785 !rdev->desc->ops->set_voltage_sel) {
1786 ret = -EINVAL;
1787 goto out;
1788 }
1789
1790 /* constraints check */
1791 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792 if (ret < 0)
1793 goto out;
1794 regulator->min_uV = min_uV;
1795 regulator->max_uV = max_uV;
1796
1797 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798 if (ret < 0)
1799 goto out;
1800
1801 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1802
1803out:
1804 mutex_unlock(&rdev->mutex);
1805 return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820 int old_uV, int new_uV)
1821{
1822 struct regulator_dev *rdev = regulator->rdev;
1823 struct regulator_ops *ops = rdev->desc->ops;
1824 int old_sel = -1;
1825 int new_sel = -1;
1826 int voltage;
1827 int i;
1828
1829 /* Currently requires operations to do this */
1830 if (!ops->list_voltage || !ops->set_voltage_time_sel
1831 || !rdev->desc->n_voltages)
1832 return -EINVAL;
1833
1834 for (i = 0; i < rdev->desc->n_voltages; i++) {
1835 /* We only look for exact voltage matches here */
1836 voltage = regulator_list_voltage(regulator, i);
1837 if (voltage < 0)
1838 return -EINVAL;
1839 if (voltage == 0)
1840 continue;
1841 if (voltage == old_uV)
1842 old_sel = i;
1843 if (voltage == new_uV)
1844 new_sel = i;
1845 }
1846
1847 if (old_sel < 0 || new_sel < 0)
1848 return -EINVAL;
1849
1850 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage. This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864 struct regulator_dev *rdev = regulator->rdev;
1865 int ret, min_uV, max_uV;
1866
1867 mutex_lock(&rdev->mutex);
1868
1869 if (!rdev->desc->ops->set_voltage &&
1870 !rdev->desc->ops->set_voltage_sel) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874
1875 /* This is only going to work if we've had a voltage configured. */
1876 if (!regulator->min_uV && !regulator->max_uV) {
1877 ret = -EINVAL;
1878 goto out;
1879 }
1880
1881 min_uV = regulator->min_uV;
1882 max_uV = regulator->max_uV;
1883
1884 /* This should be a paranoia check... */
1885 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886 if (ret < 0)
1887 goto out;
1888
1889 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890 if (ret < 0)
1891 goto out;
1892
1893 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896 mutex_unlock(&rdev->mutex);
1897 return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903 int sel, ret;
1904
1905 if (rdev->desc->ops->get_voltage_sel) {
1906 sel = rdev->desc->ops->get_voltage_sel(rdev);
1907 if (sel < 0)
1908 return sel;
1909 ret = rdev->desc->ops->list_voltage(rdev, sel);
1910 } else if (rdev->desc->ops->get_voltage) {
1911 ret = rdev->desc->ops->get_voltage(rdev);
1912 } else {
1913 return -EINVAL;
1914 }
1915
1916 if (ret < 0)
1917 return ret;
1918 return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932 int ret;
1933
1934 mutex_lock(®ulator->rdev->mutex);
1935
1936 ret = _regulator_get_voltage(regulator->rdev);
1937
1938 mutex_unlock(®ulator->rdev->mutex);
1939
1940 return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961 int min_uA, int max_uA)
1962{
1963 struct regulator_dev *rdev = regulator->rdev;
1964 int ret;
1965
1966 mutex_lock(&rdev->mutex);
1967
1968 /* sanity check */
1969 if (!rdev->desc->ops->set_current_limit) {
1970 ret = -EINVAL;
1971 goto out;
1972 }
1973
1974 /* constraints check */
1975 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976 if (ret < 0)
1977 goto out;
1978
1979 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981 mutex_unlock(&rdev->mutex);
1982 return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988 int ret;
1989
1990 mutex_lock(&rdev->mutex);
1991
1992 /* sanity check */
1993 if (!rdev->desc->ops->get_current_limit) {
1994 ret = -EINVAL;
1995 goto out;
1996 }
1997
1998 ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000 mutex_unlock(&rdev->mutex);
2001 return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015 return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032 struct regulator_dev *rdev = regulator->rdev;
2033 int ret;
2034 int regulator_curr_mode;
2035
2036 mutex_lock(&rdev->mutex);
2037
2038 /* sanity check */
2039 if (!rdev->desc->ops->set_mode) {
2040 ret = -EINVAL;
2041 goto out;
2042 }
2043
2044 /* return if the same mode is requested */
2045 if (rdev->desc->ops->get_mode) {
2046 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047 if (regulator_curr_mode == mode) {
2048 ret = 0;
2049 goto out;
2050 }
2051 }
2052
2053 /* constraints check */
2054 ret = regulator_mode_constrain(rdev, &mode);
2055 if (ret < 0)
2056 goto out;
2057
2058 ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060 mutex_unlock(&rdev->mutex);
2061 return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067 int ret;
2068
2069 mutex_lock(&rdev->mutex);
2070
2071 /* sanity check */
2072 if (!rdev->desc->ops->get_mode) {
2073 ret = -EINVAL;
2074 goto out;
2075 }
2076
2077 ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079 mutex_unlock(&rdev->mutex);
2080 return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091 return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 * o Device is opened / closed.
2111 * o Device I/O is about to begin or has just finished.
2112 * o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123 struct regulator_dev *rdev = regulator->rdev;
2124 struct regulator *consumer;
2125 int ret, output_uV, input_uV, total_uA_load = 0;
2126 unsigned int mode;
2127
2128 mutex_lock(&rdev->mutex);
2129
2130 /*
2131 * first check to see if we can set modes at all, otherwise just
2132 * tell the consumer everything is OK.
2133 */
2134 regulator->uA_load = uA_load;
2135 ret = regulator_check_drms(rdev);
2136 if (ret < 0) {
2137 ret = 0;
2138 goto out;
2139 }
2140
2141 if (!rdev->desc->ops->get_optimum_mode)
2142 goto out;
2143
2144 /*
2145 * we can actually do this so any errors are indicators of
2146 * potential real failure.
2147 */
2148 ret = -EINVAL;
2149
2150 /* get output voltage */
2151 output_uV = _regulator_get_voltage(rdev);
2152 if (output_uV <= 0) {
2153 rdev_err(rdev, "invalid output voltage found\n");
2154 goto out;
2155 }
2156
2157 /* get input voltage */
2158 input_uV = 0;
2159 if (rdev->supply)
2160 input_uV = regulator_get_voltage(rdev->supply);
2161 if (input_uV <= 0)
2162 input_uV = rdev->constraints->input_uV;
2163 if (input_uV <= 0) {
2164 rdev_err(rdev, "invalid input voltage found\n");
2165 goto out;
2166 }
2167
2168 /* calc total requested load for this regulator */
2169 list_for_each_entry(consumer, &rdev->consumer_list, list)
2170 total_uA_load += consumer->uA_load;
2171
2172 mode = rdev->desc->ops->get_optimum_mode(rdev,
2173 input_uV, output_uV,
2174 total_uA_load);
2175 ret = regulator_mode_constrain(rdev, &mode);
2176 if (ret < 0) {
2177 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178 total_uA_load, input_uV, output_uV);
2179 goto out;
2180 }
2181
2182 ret = rdev->desc->ops->set_mode(rdev, mode);
2183 if (ret < 0) {
2184 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185 goto out;
2186 }
2187 ret = mode;
2188out:
2189 mutex_unlock(&rdev->mutex);
2190 return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202 struct notifier_block *nb)
2203{
2204 return blocking_notifier_chain_register(®ulator->rdev->notifier,
2205 nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217 struct notifier_block *nb)
2218{
2219 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
2220 nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228 unsigned long event, void *data)
2229{
2230 /* call rdev chain first */
2231 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev: Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers: Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation. If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249 struct regulator_bulk_data *consumers)
2250{
2251 int i;
2252 int ret;
2253
2254 for (i = 0; i < num_consumers; i++)
2255 consumers[i].consumer = NULL;
2256
2257 for (i = 0; i < num_consumers; i++) {
2258 consumers[i].consumer = regulator_get(dev,
2259 consumers[i].supply);
2260 if (IS_ERR(consumers[i].consumer)) {
2261 ret = PTR_ERR(consumers[i].consumer);
2262 dev_err(dev, "Failed to get supply '%s': %d\n",
2263 consumers[i].supply, ret);
2264 consumers[i].consumer = NULL;
2265 goto err;
2266 }
2267 }
2268
2269 return 0;
2270
2271err:
2272 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273 regulator_put(consumers[i].consumer);
2274
2275 return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281 struct regulator_bulk_data *bulk = data;
2282
2283 bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers: Consumer data; clients are stored here.
2291 * @return 0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call. If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299 struct regulator_bulk_data *consumers)
2300{
2301 LIST_HEAD(async_domain);
2302 int i;
2303 int ret = 0;
2304
2305 for (i = 0; i < num_consumers; i++)
2306 async_schedule_domain(regulator_bulk_enable_async,
2307 &consumers[i], &async_domain);
2308
2309 async_synchronize_full_domain(&async_domain);
2310
2311 /* If any consumer failed we need to unwind any that succeeded */
2312 for (i = 0; i < num_consumers; i++) {
2313 if (consumers[i].ret != 0) {
2314 ret = consumers[i].ret;
2315 goto err;
2316 }
2317 }
2318
2319 return 0;
2320
2321err:
2322 for (i = 0; i < num_consumers; i++)
2323 if (consumers[i].ret == 0)
2324 regulator_disable(consumers[i].consumer);
2325 else
2326 pr_err("Failed to enable %s: %d\n",
2327 consumers[i].supply, consumers[i].ret);
2328
2329 return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers: Consumer data; clients are stored here.
2338 * @return 0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call. If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346 struct regulator_bulk_data *consumers)
2347{
2348 int i;
2349 int ret;
2350
2351 for (i = 0; i < num_consumers; i++) {
2352 ret = regulator_disable(consumers[i].consumer);
2353 if (ret != 0)
2354 goto err;
2355 }
2356
2357 return 0;
2358
2359err:
2360 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361 for (--i; i >= 0; --i)
2362 regulator_enable(consumers[i].consumer);
2363
2364 return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers: Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378 struct regulator_bulk_data *consumers)
2379{
2380 int i;
2381
2382 for (i = 0; i < num_consumers; i++) {
2383 regulator_put(consumers[i].consumer);
2384 consumers[i].consumer = NULL;
2385 }
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400 unsigned long event, void *data)
2401{
2402 _notifier_call_chain(rdev, event, data);
2403 return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417 switch (mode) {
2418 case REGULATOR_MODE_FAST:
2419 return REGULATOR_STATUS_FAST;
2420 case REGULATOR_MODE_NORMAL:
2421 return REGULATOR_STATUS_NORMAL;
2422 case REGULATOR_MODE_IDLE:
2423 return REGULATOR_STATUS_IDLE;
2424 case REGULATOR_STATUS_STANDBY:
2425 return REGULATOR_STATUS_STANDBY;
2426 default:
2427 return 0;
2428 }
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
2437{
2438 struct device *dev = &rdev->dev;
2439 struct regulator_ops *ops = rdev->desc->ops;
2440 int status = 0;
2441
2442 /* some attributes need specific methods to be displayed */
2443 if (ops->get_voltage || ops->get_voltage_sel) {
2444 status = device_create_file(dev, &dev_attr_microvolts);
2445 if (status < 0)
2446 return status;
2447 }
2448 if (ops->get_current_limit) {
2449 status = device_create_file(dev, &dev_attr_microamps);
2450 if (status < 0)
2451 return status;
2452 }
2453 if (ops->get_mode) {
2454 status = device_create_file(dev, &dev_attr_opmode);
2455 if (status < 0)
2456 return status;
2457 }
2458 if (ops->is_enabled) {
2459 status = device_create_file(dev, &dev_attr_state);
2460 if (status < 0)
2461 return status;
2462 }
2463 if (ops->get_status) {
2464 status = device_create_file(dev, &dev_attr_status);
2465 if (status < 0)
2466 return status;
2467 }
2468
2469 /* some attributes are type-specific */
2470 if (rdev->desc->type == REGULATOR_CURRENT) {
2471 status = device_create_file(dev, &dev_attr_requested_microamps);
2472 if (status < 0)
2473 return status;
2474 }
2475
2476 /* all the other attributes exist to support constraints;
2477 * don't show them if there are no constraints, or if the
2478 * relevant supporting methods are missing.
2479 */
2480 if (!rdev->constraints)
2481 return status;
2482
2483 /* constraints need specific supporting methods */
2484 if (ops->set_voltage || ops->set_voltage_sel) {
2485 status = device_create_file(dev, &dev_attr_min_microvolts);
2486 if (status < 0)
2487 return status;
2488 status = device_create_file(dev, &dev_attr_max_microvolts);
2489 if (status < 0)
2490 return status;
2491 }
2492 if (ops->set_current_limit) {
2493 status = device_create_file(dev, &dev_attr_min_microamps);
2494 if (status < 0)
2495 return status;
2496 status = device_create_file(dev, &dev_attr_max_microamps);
2497 if (status < 0)
2498 return status;
2499 }
2500
2501 /* suspend mode constraints need multiple supporting methods */
2502 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503 return status;
2504
2505 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506 if (status < 0)
2507 return status;
2508 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509 if (status < 0)
2510 return status;
2511 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512 if (status < 0)
2513 return status;
2514
2515 if (ops->set_suspend_voltage) {
2516 status = device_create_file(dev,
2517 &dev_attr_suspend_standby_microvolts);
2518 if (status < 0)
2519 return status;
2520 status = device_create_file(dev,
2521 &dev_attr_suspend_mem_microvolts);
2522 if (status < 0)
2523 return status;
2524 status = device_create_file(dev,
2525 &dev_attr_suspend_disk_microvolts);
2526 if (status < 0)
2527 return status;
2528 }
2529
2530 if (ops->set_suspend_mode) {
2531 status = device_create_file(dev,
2532 &dev_attr_suspend_standby_mode);
2533 if (status < 0)
2534 return status;
2535 status = device_create_file(dev,
2536 &dev_attr_suspend_mem_mode);
2537 if (status < 0)
2538 return status;
2539 status = device_create_file(dev,
2540 &dev_attr_suspend_disk_mode);
2541 if (status < 0)
2542 return status;
2543 }
2544
2545 return status;
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553 rdev_warn(rdev, "Failed to create debugfs directory\n");
2554 rdev->debugfs = NULL;
2555 return;
2556 }
2557
2558 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559 &rdev->use_count);
2560 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561 &rdev->open_count);
2562#endif
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576 struct device *dev, const struct regulator_init_data *init_data,
2577 void *driver_data)
2578{
2579 static atomic_t regulator_no = ATOMIC_INIT(0);
2580 struct regulator_dev *rdev;
2581 int ret, i;
2582
2583 if (regulator_desc == NULL)
2584 return ERR_PTR(-EINVAL);
2585
2586 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587 return ERR_PTR(-EINVAL);
2588
2589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590 regulator_desc->type != REGULATOR_CURRENT)
2591 return ERR_PTR(-EINVAL);
2592
2593 if (!init_data)
2594 return ERR_PTR(-EINVAL);
2595
2596 /* Only one of each should be implemented */
2597 WARN_ON(regulator_desc->ops->get_voltage &&
2598 regulator_desc->ops->get_voltage_sel);
2599 WARN_ON(regulator_desc->ops->set_voltage &&
2600 regulator_desc->ops->set_voltage_sel);
2601
2602 /* If we're using selectors we must implement list_voltage. */
2603 if (regulator_desc->ops->get_voltage_sel &&
2604 !regulator_desc->ops->list_voltage) {
2605 return ERR_PTR(-EINVAL);
2606 }
2607 if (regulator_desc->ops->set_voltage_sel &&
2608 !regulator_desc->ops->list_voltage) {
2609 return ERR_PTR(-EINVAL);
2610 }
2611
2612 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613 if (rdev == NULL)
2614 return ERR_PTR(-ENOMEM);
2615
2616 mutex_lock(®ulator_list_mutex);
2617
2618 mutex_init(&rdev->mutex);
2619 rdev->reg_data = driver_data;
2620 rdev->owner = regulator_desc->owner;
2621 rdev->desc = regulator_desc;
2622 INIT_LIST_HEAD(&rdev->consumer_list);
2623 INIT_LIST_HEAD(&rdev->list);
2624 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2625
2626 /* preform any regulator specific init */
2627 if (init_data->regulator_init) {
2628 ret = init_data->regulator_init(rdev->reg_data);
2629 if (ret < 0)
2630 goto clean;
2631 }
2632
2633 /* register with sysfs */
2634 rdev->dev.class = ®ulator_class;
2635 rdev->dev.parent = dev;
2636 dev_set_name(&rdev->dev, "regulator.%d",
2637 atomic_inc_return(®ulator_no) - 1);
2638 ret = device_register(&rdev->dev);
2639 if (ret != 0) {
2640 put_device(&rdev->dev);
2641 goto clean;
2642 }
2643
2644 dev_set_drvdata(&rdev->dev, rdev);
2645
2646 /* set regulator constraints */
2647 ret = set_machine_constraints(rdev, &init_data->constraints);
2648 if (ret < 0)
2649 goto scrub;
2650
2651 /* add attributes supported by this regulator */
2652 ret = add_regulator_attributes(rdev);
2653 if (ret < 0)
2654 goto scrub;
2655
2656 if (init_data->supply_regulator) {
2657 struct regulator_dev *r;
2658 int found = 0;
2659
2660 list_for_each_entry(r, ®ulator_list, list) {
2661 if (strcmp(rdev_get_name(r),
2662 init_data->supply_regulator) == 0) {
2663 found = 1;
2664 break;
2665 }
2666 }
2667
2668 if (!found) {
2669 dev_err(dev, "Failed to find supply %s\n",
2670 init_data->supply_regulator);
2671 ret = -ENODEV;
2672 goto scrub;
2673 }
2674
2675 ret = set_supply(rdev, r);
2676 if (ret < 0)
2677 goto scrub;
2678 }
2679
2680 /* add consumers devices */
2681 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682 ret = set_consumer_device_supply(rdev,
2683 init_data->consumer_supplies[i].dev,
2684 init_data->consumer_supplies[i].dev_name,
2685 init_data->consumer_supplies[i].supply);
2686 if (ret < 0) {
2687 dev_err(dev, "Failed to set supply %s\n",
2688 init_data->consumer_supplies[i].supply);
2689 goto unset_supplies;
2690 }
2691 }
2692
2693 list_add(&rdev->list, ®ulator_list);
2694
2695 rdev_init_debugfs(rdev);
2696out:
2697 mutex_unlock(®ulator_list_mutex);
2698 return rdev;
2699
2700unset_supplies:
2701 unset_regulator_supplies(rdev);
2702
2703scrub:
2704 kfree(rdev->constraints);
2705 device_unregister(&rdev->dev);
2706 /* device core frees rdev */
2707 rdev = ERR_PTR(ret);
2708 goto out;
2709
2710clean:
2711 kfree(rdev);
2712 rdev = ERR_PTR(ret);
2713 goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725 if (rdev == NULL)
2726 return;
2727
2728 mutex_lock(®ulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730 debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732 WARN_ON(rdev->open_count);
2733 unset_regulator_supplies(rdev);
2734 list_del(&rdev->list);
2735 if (rdev->supply)
2736 regulator_put(rdev->supply);
2737 device_unregister(&rdev->dev);
2738 kfree(rdev->constraints);
2739 mutex_unlock(®ulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752 struct regulator_dev *rdev;
2753 int ret = 0;
2754
2755 /* ON is handled by regulator active state */
2756 if (state == PM_SUSPEND_ON)
2757 return -EINVAL;
2758
2759 mutex_lock(®ulator_list_mutex);
2760 list_for_each_entry(rdev, ®ulator_list, list) {
2761
2762 mutex_lock(&rdev->mutex);
2763 ret = suspend_prepare(rdev, state);
2764 mutex_unlock(&rdev->mutex);
2765
2766 if (ret < 0) {
2767 rdev_err(rdev, "failed to prepare\n");
2768 goto out;
2769 }
2770 }
2771out:
2772 mutex_unlock(®ulator_list_mutex);
2773 return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785 struct regulator_dev *rdev;
2786 int ret = 0, error;
2787
2788 mutex_lock(®ulator_list_mutex);
2789 list_for_each_entry(rdev, ®ulator_list, list) {
2790 struct regulator_ops *ops = rdev->desc->ops;
2791
2792 mutex_lock(&rdev->mutex);
2793 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2794 ops->enable) {
2795 error = ops->enable(rdev);
2796 if (error)
2797 ret = error;
2798 } else {
2799 if (!has_full_constraints)
2800 goto unlock;
2801 if (!ops->disable)
2802 goto unlock;
2803 if (ops->is_enabled && !ops->is_enabled(rdev))
2804 goto unlock;
2805
2806 error = ops->disable(rdev);
2807 if (error)
2808 ret = error;
2809 }
2810unlock:
2811 mutex_unlock(&rdev->mutex);
2812 }
2813 mutex_unlock(®ulator_list_mutex);
2814 return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831 has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured. This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847 board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860 return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873 return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884 regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894 return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900 return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906 return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
2910static int __init regulator_init(void)
2911{
2912 int ret;
2913
2914 ret = class_register(®ulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917 debugfs_root = debugfs_create_dir("regulator", NULL);
2918 if (IS_ERR(debugfs_root) || !debugfs_root) {
2919 pr_warn("regulator: Failed to create debugfs directory\n");
2920 debugfs_root = NULL;
2921 }
2922#endif
2923
2924 regulator_dummy_init();
2925
2926 return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934 struct regulator_dev *rdev;
2935 struct regulator_ops *ops;
2936 struct regulation_constraints *c;
2937 int enabled, ret;
2938
2939 mutex_lock(®ulator_list_mutex);
2940
2941 /* If we have a full configuration then disable any regulators
2942 * which are not in use or always_on. This will become the
2943 * default behaviour in the future.
2944 */
2945 list_for_each_entry(rdev, ®ulator_list, list) {
2946 ops = rdev->desc->ops;
2947 c = rdev->constraints;
2948
2949 if (!ops->disable || (c && c->always_on))
2950 continue;
2951
2952 mutex_lock(&rdev->mutex);
2953
2954 if (rdev->use_count)
2955 goto unlock;
2956
2957 /* If we can't read the status assume it's on. */
2958 if (ops->is_enabled)
2959 enabled = ops->is_enabled(rdev);
2960 else
2961 enabled = 1;
2962
2963 if (!enabled)
2964 goto unlock;
2965
2966 if (has_full_constraints) {
2967 /* We log since this may kill the system if it
2968 * goes wrong. */
2969 rdev_info(rdev, "disabling\n");
2970 ret = ops->disable(rdev);
2971 if (ret != 0) {
2972 rdev_err(rdev, "couldn't disable: %d\n", ret);
2973 }
2974 } else {
2975 /* The intention is that in future we will
2976 * assume that full constraints are provided
2977 * so warn even if we aren't going to do
2978 * anything here.
2979 */
2980 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981 }
2982
2983unlock:
2984 mutex_unlock(&rdev->mutex);
2985 }
2986
2987 mutex_unlock(®ulator_list_mutex);
2988
2989 return 0;
2990}
2991late_initcall(regulator_init_complete);
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
120}
121
122static bool have_full_constraints(void)
123{
124 return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168{
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199{
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228{
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305{
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319{
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
328{
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
346 }
347 return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352{
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371{
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
374
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
378
379 return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385{
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
389
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
393
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
424 }
425
426 return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432{
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
437
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444{
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
449
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456{
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468{
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480{
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
484
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
495{
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503{
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
511 }
512 return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518{
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528{
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538{
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
548{
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559{
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
570{
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581{
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592{
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
614{
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
619
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
628
629 return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
650}
651
652static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
672
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
677
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
686
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
690
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
694
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
703{
704 int ret = 0;
705
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
709 */
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
715 }
716
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
720 }
721
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
728
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
732 }
733
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
739 }
740 }
741
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
747 }
748 }
749 return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755 if (!rdev->constraints)
756 return -EINVAL;
757
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
770 }
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
779
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
788 }
789
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 }
796
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
800
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
809 }
810
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 }
817
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
826
827 if (!count)
828 sprintf(buf, "no parameters");
829
830 rdev_info(rdev, "%s\n", buf);
831
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
840{
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
843
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
854 }
855 }
856
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
859 */
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
867
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
875 }
876
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
880
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
890
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
894
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
900 }
901
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
908 }
909
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
915 }
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
920 }
921 }
922
923 return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927 struct regulation_constraints *constraints)
928{
929 struct regulator_ops *ops = rdev->desc->ops;
930 int ret;
931
932 if (!constraints->min_uA && !constraints->max_uA)
933 return 0;
934
935 if (constraints->min_uA > constraints->max_uA) {
936 rdev_err(rdev, "Invalid current constraints\n");
937 return -EINVAL;
938 }
939
940 if (!ops->set_current_limit || !ops->get_current_limit) {
941 rdev_warn(rdev, "Operation of current configuration missing\n");
942 return 0;
943 }
944
945 /* Set regulator current in constraints range */
946 ret = ops->set_current_limit(rdev, constraints->min_uA,
947 constraints->max_uA);
948 if (ret < 0) {
949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 return ret;
951 }
952
953 return 0;
954}
955
956static int _regulator_do_enable(struct regulator_dev *rdev);
957
958/**
959 * set_machine_constraints - sets regulator constraints
960 * @rdev: regulator source
961 * @constraints: constraints to apply
962 *
963 * Allows platform initialisation code to define and constrain
964 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
965 * Constraints *must* be set by platform code in order for some
966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
967 * set_mode.
968 */
969static int set_machine_constraints(struct regulator_dev *rdev,
970 const struct regulation_constraints *constraints)
971{
972 int ret = 0;
973 struct regulator_ops *ops = rdev->desc->ops;
974
975 if (constraints)
976 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977 GFP_KERNEL);
978 else
979 rdev->constraints = kzalloc(sizeof(*constraints),
980 GFP_KERNEL);
981 if (!rdev->constraints)
982 return -ENOMEM;
983
984 ret = machine_constraints_voltage(rdev, rdev->constraints);
985 if (ret != 0)
986 goto out;
987
988 ret = machine_constraints_current(rdev, rdev->constraints);
989 if (ret != 0)
990 goto out;
991
992 /* do we need to setup our suspend state */
993 if (rdev->constraints->initial_state) {
994 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995 if (ret < 0) {
996 rdev_err(rdev, "failed to set suspend state\n");
997 goto out;
998 }
999 }
1000
1001 if (rdev->constraints->initial_mode) {
1002 if (!ops->set_mode) {
1003 rdev_err(rdev, "no set_mode operation\n");
1004 ret = -EINVAL;
1005 goto out;
1006 }
1007
1008 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009 if (ret < 0) {
1010 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011 goto out;
1012 }
1013 }
1014
1015 /* If the constraints say the regulator should be on at this point
1016 * and we have control then make sure it is enabled.
1017 */
1018 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019 ret = _regulator_do_enable(rdev);
1020 if (ret < 0 && ret != -EINVAL) {
1021 rdev_err(rdev, "failed to enable\n");
1022 goto out;
1023 }
1024 }
1025
1026 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027 && ops->set_ramp_delay) {
1028 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029 if (ret < 0) {
1030 rdev_err(rdev, "failed to set ramp_delay\n");
1031 goto out;
1032 }
1033 }
1034
1035 print_constraints(rdev);
1036 return 0;
1037out:
1038 kfree(rdev->constraints);
1039 rdev->constraints = NULL;
1040 return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053 struct regulator_dev *supply_rdev)
1054{
1055 int err;
1056
1057 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060 if (rdev->supply == NULL) {
1061 err = -ENOMEM;
1062 return err;
1063 }
1064 supply_rdev->open_count++;
1065
1066 return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev: regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply: symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices. Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081 const char *consumer_dev_name,
1082 const char *supply)
1083{
1084 struct regulator_map *node;
1085 int has_dev;
1086
1087 if (supply == NULL)
1088 return -EINVAL;
1089
1090 if (consumer_dev_name != NULL)
1091 has_dev = 1;
1092 else
1093 has_dev = 0;
1094
1095 list_for_each_entry(node, ®ulator_map_list, list) {
1096 if (node->dev_name && consumer_dev_name) {
1097 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098 continue;
1099 } else if (node->dev_name || consumer_dev_name) {
1100 continue;
1101 }
1102
1103 if (strcmp(node->supply, supply) != 0)
1104 continue;
1105
1106 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107 consumer_dev_name,
1108 dev_name(&node->regulator->dev),
1109 node->regulator->desc->name,
1110 supply,
1111 dev_name(&rdev->dev), rdev_get_name(rdev));
1112 return -EBUSY;
1113 }
1114
1115 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116 if (node == NULL)
1117 return -ENOMEM;
1118
1119 node->regulator = rdev;
1120 node->supply = supply;
1121
1122 if (has_dev) {
1123 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124 if (node->dev_name == NULL) {
1125 kfree(node);
1126 return -ENOMEM;
1127 }
1128 }
1129
1130 list_add(&node->list, ®ulator_map_list);
1131 return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136 struct regulator_map *node, *n;
1137
1138 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1139 if (rdev == node->regulator) {
1140 list_del(&node->list);
1141 kfree(node->dev_name);
1142 kfree(node);
1143 }
1144 }
1145}
1146
1147#define REG_STR_SIZE 64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150 struct device *dev,
1151 const char *supply_name)
1152{
1153 struct regulator *regulator;
1154 char buf[REG_STR_SIZE];
1155 int err, size;
1156
1157 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158 if (regulator == NULL)
1159 return NULL;
1160
1161 mutex_lock(&rdev->mutex);
1162 regulator->rdev = rdev;
1163 list_add(®ulator->list, &rdev->consumer_list);
1164
1165 if (dev) {
1166 regulator->dev = dev;
1167
1168 /* Add a link to the device sysfs entry */
1169 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170 dev->kobj.name, supply_name);
1171 if (size >= REG_STR_SIZE)
1172 goto overflow_err;
1173
1174 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175 if (regulator->supply_name == NULL)
1176 goto overflow_err;
1177
1178 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179 buf);
1180 if (err) {
1181 rdev_warn(rdev, "could not add device link %s err %d\n",
1182 dev->kobj.name, err);
1183 /* non-fatal */
1184 }
1185 } else {
1186 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1189 }
1190
1191 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192 rdev->debugfs);
1193 if (!regulator->debugfs) {
1194 rdev_warn(rdev, "Failed to create debugfs directory\n");
1195 } else {
1196 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197 ®ulator->uA_load);
1198 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199 ®ulator->min_uV);
1200 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201 ®ulator->max_uV);
1202 }
1203
1204 /*
1205 * Check now if the regulator is an always on regulator - if
1206 * it is then we don't need to do nearly so much work for
1207 * enable/disable calls.
1208 */
1209 if (!_regulator_can_change_status(rdev) &&
1210 _regulator_is_enabled(rdev))
1211 regulator->always_on = true;
1212
1213 mutex_unlock(&rdev->mutex);
1214 return regulator;
1215overflow_err:
1216 list_del(®ulator->list);
1217 kfree(regulator);
1218 mutex_unlock(&rdev->mutex);
1219 return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224 if (rdev->constraints && rdev->constraints->enable_time)
1225 return rdev->constraints->enable_time;
1226 if (!rdev->desc->ops->enable_time)
1227 return rdev->desc->enable_time;
1228 return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232 struct device *dev, const char *supply)
1233{
1234 struct regulator_supply_alias *map;
1235
1236 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1237 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238 return map;
1239
1240 return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245 struct regulator_supply_alias *map;
1246
1247 map = regulator_find_supply_alias(*dev, *supply);
1248 if (map) {
1249 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250 *supply, map->alias_supply,
1251 dev_name(map->alias_dev));
1252 *dev = map->alias_dev;
1253 *supply = map->alias_supply;
1254 }
1255}
1256
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258 const char *supply,
1259 int *ret)
1260{
1261 struct regulator_dev *r;
1262 struct device_node *node;
1263 struct regulator_map *map;
1264 const char *devname = NULL;
1265
1266 regulator_supply_alias(&dev, &supply);
1267
1268 /* first do a dt based lookup */
1269 if (dev && dev->of_node) {
1270 node = of_get_regulator(dev, supply);
1271 if (node) {
1272 list_for_each_entry(r, ®ulator_list, list)
1273 if (r->dev.parent &&
1274 node == r->dev.of_node)
1275 return r;
1276 *ret = -EPROBE_DEFER;
1277 return NULL;
1278 } else {
1279 /*
1280 * If we couldn't even get the node then it's
1281 * not just that the device didn't register
1282 * yet, there's no node and we'll never
1283 * succeed.
1284 */
1285 *ret = -ENODEV;
1286 }
1287 }
1288
1289 /* if not found, try doing it non-dt way */
1290 if (dev)
1291 devname = dev_name(dev);
1292
1293 list_for_each_entry(r, ®ulator_list, list)
1294 if (strcmp(rdev_get_name(r), supply) == 0)
1295 return r;
1296
1297 list_for_each_entry(map, ®ulator_map_list, list) {
1298 /* If the mapping has a device set up it must match */
1299 if (map->dev_name &&
1300 (!devname || strcmp(map->dev_name, devname)))
1301 continue;
1302
1303 if (strcmp(map->supply, supply) == 0)
1304 return map->regulator;
1305 }
1306
1307
1308 return NULL;
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313 bool exclusive, bool allow_dummy)
1314{
1315 struct regulator_dev *rdev;
1316 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317 const char *devname = NULL;
1318 int ret;
1319
1320 if (id == NULL) {
1321 pr_err("get() with no identifier\n");
1322 return ERR_PTR(-EINVAL);
1323 }
1324
1325 if (dev)
1326 devname = dev_name(dev);
1327
1328 if (have_full_constraints())
1329 ret = -ENODEV;
1330 else
1331 ret = -EPROBE_DEFER;
1332
1333 mutex_lock(®ulator_list_mutex);
1334
1335 rdev = regulator_dev_lookup(dev, id, &ret);
1336 if (rdev)
1337 goto found;
1338
1339 regulator = ERR_PTR(ret);
1340
1341 /*
1342 * If we have return value from dev_lookup fail, we do not expect to
1343 * succeed, so, quit with appropriate error value
1344 */
1345 if (ret && ret != -ENODEV)
1346 goto out;
1347
1348 if (!devname)
1349 devname = "deviceless";
1350
1351 /*
1352 * Assume that a regulator is physically present and enabled
1353 * even if it isn't hooked up and just provide a dummy.
1354 */
1355 if (have_full_constraints() && allow_dummy) {
1356 pr_warn("%s supply %s not found, using dummy regulator\n",
1357 devname, id);
1358
1359 rdev = dummy_regulator_rdev;
1360 goto found;
1361 /* Don't log an error when called from regulator_get_optional() */
1362 } else if (!have_full_constraints() || exclusive) {
1363 dev_warn(dev, "dummy supplies not allowed\n");
1364 }
1365
1366 mutex_unlock(®ulator_list_mutex);
1367 return regulator;
1368
1369found:
1370 if (rdev->exclusive) {
1371 regulator = ERR_PTR(-EPERM);
1372 goto out;
1373 }
1374
1375 if (exclusive && rdev->open_count) {
1376 regulator = ERR_PTR(-EBUSY);
1377 goto out;
1378 }
1379
1380 if (!try_module_get(rdev->owner))
1381 goto out;
1382
1383 regulator = create_regulator(rdev, dev, id);
1384 if (regulator == NULL) {
1385 regulator = ERR_PTR(-ENOMEM);
1386 module_put(rdev->owner);
1387 goto out;
1388 }
1389
1390 rdev->open_count++;
1391 if (exclusive) {
1392 rdev->exclusive = 1;
1393
1394 ret = _regulator_is_enabled(rdev);
1395 if (ret > 0)
1396 rdev->use_count = 1;
1397 else
1398 rdev->use_count = 0;
1399 }
1400
1401out:
1402 mutex_unlock(®ulator_list_mutex);
1403
1404 return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged. It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422 return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno. Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged. It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449 return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno. Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged. It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478 return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
1483static void _regulator_put(struct regulator *regulator)
1484{
1485 struct regulator_dev *rdev;
1486
1487 if (regulator == NULL || IS_ERR(regulator))
1488 return;
1489
1490 rdev = regulator->rdev;
1491
1492 debugfs_remove_recursive(regulator->debugfs);
1493
1494 /* remove any sysfs entries */
1495 if (regulator->dev)
1496 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497 kfree(regulator->supply_name);
1498 list_del(®ulator->list);
1499 kfree(regulator);
1500
1501 rdev->open_count--;
1502 rdev->exclusive = 0;
1503
1504 module_put(rdev->owner);
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517 mutex_lock(®ulator_list_mutex);
1518 _regulator_put(regulator);
1519 mutex_unlock(®ulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536 struct device *alias_dev,
1537 const char *alias_id)
1538{
1539 struct regulator_supply_alias *map;
1540
1541 map = regulator_find_supply_alias(dev, id);
1542 if (map)
1543 return -EEXIST;
1544
1545 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546 if (!map)
1547 return -ENOMEM;
1548
1549 map->src_dev = dev;
1550 map->src_supply = id;
1551 map->alias_dev = alias_dev;
1552 map->alias_supply = alias_id;
1553
1554 list_add(&map->list, ®ulator_supply_alias_list);
1555
1556 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557 id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559 return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573 struct regulator_supply_alias *map;
1574
1575 map = regulator_find_supply_alias(dev, id);
1576 if (map) {
1577 list_del(&map->list);
1578 kfree(map);
1579 }
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation. If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601 struct device *alias_dev,
1602 const char **alias_id,
1603 int num_id)
1604{
1605 int i;
1606 int ret;
1607
1608 for (i = 0; i < num_id; ++i) {
1609 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610 alias_id[i]);
1611 if (ret < 0)
1612 goto err;
1613 }
1614
1615 return 0;
1616
1617err:
1618 dev_err(dev,
1619 "Failed to create supply alias %s,%s -> %s,%s\n",
1620 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622 while (--i >= 0)
1623 regulator_unregister_supply_alias(dev, id[i]);
1624
1625 return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640 const char **id,
1641 int num_id)
1642{
1643 int i;
1644
1645 for (i = 0; i < num_id; ++i)
1646 regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653 const struct regulator_config *config)
1654{
1655 struct regulator_enable_gpio *pin;
1656 int ret;
1657
1658 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1659 if (pin->gpio == config->ena_gpio) {
1660 rdev_dbg(rdev, "GPIO %d is already used\n",
1661 config->ena_gpio);
1662 goto update_ena_gpio_to_rdev;
1663 }
1664 }
1665
1666 ret = gpio_request_one(config->ena_gpio,
1667 GPIOF_DIR_OUT | config->ena_gpio_flags,
1668 rdev_get_name(rdev));
1669 if (ret)
1670 return ret;
1671
1672 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673 if (pin == NULL) {
1674 gpio_free(config->ena_gpio);
1675 return -ENOMEM;
1676 }
1677
1678 pin->gpio = config->ena_gpio;
1679 pin->ena_gpio_invert = config->ena_gpio_invert;
1680 list_add(&pin->list, ®ulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683 pin->request_count++;
1684 rdev->ena_pin = pin;
1685 return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690 struct regulator_enable_gpio *pin, *n;
1691
1692 if (!rdev->ena_pin)
1693 return;
1694
1695 /* Free the GPIO only in case of no use */
1696 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1697 if (pin->gpio == rdev->ena_pin->gpio) {
1698 if (pin->request_count <= 1) {
1699 pin->request_count = 0;
1700 gpio_free(pin->gpio);
1701 list_del(&pin->list);
1702 kfree(pin);
1703 } else {
1704 pin->request_count--;
1705 }
1706 }
1707 }
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720 struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722 if (!pin)
1723 return -EINVAL;
1724
1725 if (enable) {
1726 /* Enable GPIO at initial use */
1727 if (pin->enable_count == 0)
1728 gpio_set_value_cansleep(pin->gpio,
1729 !pin->ena_gpio_invert);
1730
1731 pin->enable_count++;
1732 } else {
1733 if (pin->enable_count > 1) {
1734 pin->enable_count--;
1735 return 0;
1736 }
1737
1738 /* Disable GPIO if not used */
1739 if (pin->enable_count <= 1) {
1740 gpio_set_value_cansleep(pin->gpio,
1741 pin->ena_gpio_invert);
1742 pin->enable_count = 0;
1743 }
1744 }
1745
1746 return 0;
1747}
1748
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751 int ret, delay;
1752
1753 /* Query before enabling in case configuration dependent. */
1754 ret = _regulator_get_enable_time(rdev);
1755 if (ret >= 0) {
1756 delay = ret;
1757 } else {
1758 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759 delay = 0;
1760 }
1761
1762 trace_regulator_enable(rdev_get_name(rdev));
1763
1764 if (rdev->ena_pin) {
1765 ret = regulator_ena_gpio_ctrl(rdev, true);
1766 if (ret < 0)
1767 return ret;
1768 rdev->ena_gpio_state = 1;
1769 } else if (rdev->desc->ops->enable) {
1770 ret = rdev->desc->ops->enable(rdev);
1771 if (ret < 0)
1772 return ret;
1773 } else {
1774 return -EINVAL;
1775 }
1776
1777 /* Allow the regulator to ramp; it would be useful to extend
1778 * this for bulk operations so that the regulators can ramp
1779 * together. */
1780 trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782 /*
1783 * Delay for the requested amount of time as per the guidelines in:
1784 *
1785 * Documentation/timers/timers-howto.txt
1786 *
1787 * The assumption here is that regulators will never be enabled in
1788 * atomic context and therefore sleeping functions can be used.
1789 */
1790 if (delay) {
1791 unsigned int ms = delay / 1000;
1792 unsigned int us = delay % 1000;
1793
1794 if (ms > 0) {
1795 /*
1796 * For small enough values, handle super-millisecond
1797 * delays in the usleep_range() call below.
1798 */
1799 if (ms < 20)
1800 us += ms * 1000;
1801 else
1802 msleep(ms);
1803 }
1804
1805 /*
1806 * Give the scheduler some room to coalesce with any other
1807 * wakeup sources. For delays shorter than 10 us, don't even
1808 * bother setting up high-resolution timers and just busy-
1809 * loop.
1810 */
1811 if (us >= 10)
1812 usleep_range(us, us + 100);
1813 else
1814 udelay(us);
1815 }
1816
1817 trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819 return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
1825 int ret;
1826
1827 /* check voltage and requested load before enabling */
1828 if (rdev->constraints &&
1829 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830 drms_uA_update(rdev);
1831
1832 if (rdev->use_count == 0) {
1833 /* The regulator may on if it's not switchable or left on */
1834 ret = _regulator_is_enabled(rdev);
1835 if (ret == -EINVAL || ret == 0) {
1836 if (!_regulator_can_change_status(rdev))
1837 return -EPERM;
1838
1839 ret = _regulator_do_enable(rdev);
1840 if (ret < 0)
1841 return ret;
1842
1843 } else if (ret < 0) {
1844 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845 return ret;
1846 }
1847 /* Fallthrough on positive return values - already enabled */
1848 }
1849
1850 rdev->use_count++;
1851
1852 return 0;
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value. Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868 struct regulator_dev *rdev = regulator->rdev;
1869 int ret = 0;
1870
1871 if (regulator->always_on)
1872 return 0;
1873
1874 if (rdev->supply) {
1875 ret = regulator_enable(rdev->supply);
1876 if (ret != 0)
1877 return ret;
1878 }
1879
1880 mutex_lock(&rdev->mutex);
1881 ret = _regulator_enable(rdev);
1882 mutex_unlock(&rdev->mutex);
1883
1884 if (ret != 0 && rdev->supply)
1885 regulator_disable(rdev->supply);
1886
1887 return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893 int ret;
1894
1895 trace_regulator_disable(rdev_get_name(rdev));
1896
1897 if (rdev->ena_pin) {
1898 ret = regulator_ena_gpio_ctrl(rdev, false);
1899 if (ret < 0)
1900 return ret;
1901 rdev->ena_gpio_state = 0;
1902
1903 } else if (rdev->desc->ops->disable) {
1904 ret = rdev->desc->ops->disable(rdev);
1905 if (ret != 0)
1906 return ret;
1907 }
1908
1909 trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911 return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
1917 int ret = 0;
1918
1919 if (WARN(rdev->use_count <= 0,
1920 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921 return -EIO;
1922
1923 /* are we the last user and permitted to disable ? */
1924 if (rdev->use_count == 1 &&
1925 (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927 /* we are last user */
1928 if (_regulator_can_change_status(rdev)) {
1929 ret = _regulator_do_disable(rdev);
1930 if (ret < 0) {
1931 rdev_err(rdev, "failed to disable\n");
1932 return ret;
1933 }
1934 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935 NULL);
1936 }
1937
1938 rdev->use_count = 0;
1939 } else if (rdev->use_count > 1) {
1940
1941 if (rdev->constraints &&
1942 (rdev->constraints->valid_ops_mask &
1943 REGULATOR_CHANGE_DRMS))
1944 drms_uA_update(rdev);
1945
1946 rdev->use_count--;
1947 }
1948
1949 return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current. Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966 struct regulator_dev *rdev = regulator->rdev;
1967 int ret = 0;
1968
1969 if (regulator->always_on)
1970 return 0;
1971
1972 mutex_lock(&rdev->mutex);
1973 ret = _regulator_disable(rdev);
1974 mutex_unlock(&rdev->mutex);
1975
1976 if (ret == 0 && rdev->supply)
1977 regulator_disable(rdev->supply);
1978
1979 return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986 int ret = 0;
1987
1988 ret = _regulator_do_disable(rdev);
1989 if (ret < 0) {
1990 rdev_err(rdev, "failed to force disable\n");
1991 return ret;
1992 }
1993
1994 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995 REGULATOR_EVENT_DISABLE, NULL);
1996
1997 return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011 struct regulator_dev *rdev = regulator->rdev;
2012 int ret;
2013
2014 mutex_lock(&rdev->mutex);
2015 regulator->uA_load = 0;
2016 ret = _regulator_force_disable(regulator->rdev);
2017 mutex_unlock(&rdev->mutex);
2018
2019 if (rdev->supply)
2020 while (rdev->open_count--)
2021 regulator_disable(rdev->supply);
2022
2023 return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030 disable_work.work);
2031 int count, i, ret;
2032
2033 mutex_lock(&rdev->mutex);
2034
2035 BUG_ON(!rdev->deferred_disables);
2036
2037 count = rdev->deferred_disables;
2038 rdev->deferred_disables = 0;
2039
2040 for (i = 0; i < count; i++) {
2041 ret = _regulator_disable(rdev);
2042 if (ret != 0)
2043 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044 }
2045
2046 mutex_unlock(&rdev->mutex);
2047
2048 if (rdev->supply) {
2049 for (i = 0; i < count; i++) {
2050 ret = regulator_disable(rdev->supply);
2051 if (ret != 0) {
2052 rdev_err(rdev,
2053 "Supply disable failed: %d\n", ret);
2054 }
2055 }
2056 }
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay. This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073 struct regulator_dev *rdev = regulator->rdev;
2074 int ret;
2075
2076 if (regulator->always_on)
2077 return 0;
2078
2079 if (!ms)
2080 return regulator_disable(regulator);
2081
2082 mutex_lock(&rdev->mutex);
2083 rdev->deferred_disables++;
2084 mutex_unlock(&rdev->mutex);
2085
2086 ret = queue_delayed_work(system_power_efficient_wq,
2087 &rdev->disable_work,
2088 msecs_to_jiffies(ms));
2089 if (ret < 0)
2090 return ret;
2091 else
2092 return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098 /* A GPIO control always takes precedence */
2099 if (rdev->ena_pin)
2100 return rdev->ena_gpio_state;
2101
2102 /* If we don't know then assume that the regulator is always on */
2103 if (!rdev->desc->ops->is_enabled)
2104 return 1;
2105
2106 return rdev->desc->ops->is_enabled(rdev);
2107}
2108
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123 int ret;
2124
2125 if (regulator->always_on)
2126 return 1;
2127
2128 mutex_lock(®ulator->rdev->mutex);
2129 ret = _regulator_is_enabled(regulator->rdev);
2130 mutex_unlock(®ulator->rdev->mutex);
2131
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147 struct regulator_dev *rdev = regulator->rdev;
2148
2149 if (rdev->constraints &&
2150 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152 return 1;
2153
2154 if (rdev->desc->continuous_voltage_range &&
2155 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156 rdev->constraints->min_uV != rdev->constraints->max_uV)
2157 return 1;
2158 }
2159
2160 return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno. Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174 struct regulator_dev *rdev = regulator->rdev;
2175
2176 return rdev->desc->n_voltages ? : -EINVAL;
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192 struct regulator_dev *rdev = regulator->rdev;
2193 struct regulator_ops *ops = rdev->desc->ops;
2194 int ret;
2195
2196 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197 return rdev->desc->fixed_uV;
2198
2199 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200 return -EINVAL;
2201
2202 mutex_lock(&rdev->mutex);
2203 ret = ops->list_voltage(rdev, selector);
2204 mutex_unlock(&rdev->mutex);
2205
2206 if (ret > 0) {
2207 if (ret < rdev->constraints->min_uV)
2208 ret = 0;
2209 else if (ret > rdev->constraints->max_uV)
2210 ret = 0;
2211 }
2212
2213 return ret;
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226 struct regulator_dev *rdev = regulator->rdev;
2227
2228 return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242 int min_uV, int max_uV)
2243{
2244 struct regulator_dev *rdev = regulator->rdev;
2245 int i, voltages, ret;
2246
2247 /* If we can't change voltage check the current voltage */
2248 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249 ret = regulator_get_voltage(regulator);
2250 if (ret >= 0)
2251 return min_uV <= ret && ret <= max_uV;
2252 else
2253 return ret;
2254 }
2255
2256 /* Any voltage within constrains range is fine? */
2257 if (rdev->desc->continuous_voltage_range)
2258 return min_uV >= rdev->constraints->min_uV &&
2259 max_uV <= rdev->constraints->max_uV;
2260
2261 ret = regulator_count_voltages(regulator);
2262 if (ret < 0)
2263 return ret;
2264 voltages = ret;
2265
2266 for (i = 0; i < voltages; i++) {
2267 ret = regulator_list_voltage(regulator, i);
2268
2269 if (ret >= min_uV && ret <= max_uV)
2270 return 1;
2271 }
2272
2273 return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278 int min_uV, int max_uV)
2279{
2280 int ret;
2281 int delay = 0;
2282 int best_val = 0;
2283 unsigned int selector;
2284 int old_selector = -1;
2285
2286 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288 min_uV += rdev->constraints->uV_offset;
2289 max_uV += rdev->constraints->uV_offset;
2290
2291 /*
2292 * If we can't obtain the old selector there is not enough
2293 * info to call set_voltage_time_sel().
2294 */
2295 if (_regulator_is_enabled(rdev) &&
2296 rdev->desc->ops->set_voltage_time_sel &&
2297 rdev->desc->ops->get_voltage_sel) {
2298 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299 if (old_selector < 0)
2300 return old_selector;
2301 }
2302
2303 if (rdev->desc->ops->set_voltage) {
2304 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305 &selector);
2306
2307 if (ret >= 0) {
2308 if (rdev->desc->ops->list_voltage)
2309 best_val = rdev->desc->ops->list_voltage(rdev,
2310 selector);
2311 else
2312 best_val = _regulator_get_voltage(rdev);
2313 }
2314
2315 } else if (rdev->desc->ops->set_voltage_sel) {
2316 if (rdev->desc->ops->map_voltage) {
2317 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318 max_uV);
2319 } else {
2320 if (rdev->desc->ops->list_voltage ==
2321 regulator_list_voltage_linear)
2322 ret = regulator_map_voltage_linear(rdev,
2323 min_uV, max_uV);
2324 else
2325 ret = regulator_map_voltage_iterate(rdev,
2326 min_uV, max_uV);
2327 }
2328
2329 if (ret >= 0) {
2330 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331 if (min_uV <= best_val && max_uV >= best_val) {
2332 selector = ret;
2333 if (old_selector == selector)
2334 ret = 0;
2335 else
2336 ret = rdev->desc->ops->set_voltage_sel(
2337 rdev, ret);
2338 } else {
2339 ret = -EINVAL;
2340 }
2341 }
2342 } else {
2343 ret = -EINVAL;
2344 }
2345
2346 /* Call set_voltage_time_sel if successfully obtained old_selector */
2347 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348 && old_selector != selector) {
2349
2350 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351 old_selector, selector);
2352 if (delay < 0) {
2353 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354 delay);
2355 delay = 0;
2356 }
2357
2358 /* Insert any necessary delays */
2359 if (delay >= 1000) {
2360 mdelay(delay / 1000);
2361 udelay(delay % 1000);
2362 } else if (delay) {
2363 udelay(delay);
2364 }
2365 }
2366
2367 if (ret == 0 && best_val >= 0) {
2368 unsigned long data = best_val;
2369
2370 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371 (void *)data);
2372 }
2373
2374 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376 return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398{
2399 struct regulator_dev *rdev = regulator->rdev;
2400 int ret = 0;
2401 int old_min_uV, old_max_uV;
2402 int current_uV;
2403
2404 mutex_lock(&rdev->mutex);
2405
2406 /* If we're setting the same range as last time the change
2407 * should be a noop (some cpufreq implementations use the same
2408 * voltage for multiple frequencies, for example).
2409 */
2410 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411 goto out;
2412
2413 /* If we're trying to set a range that overlaps the current voltage,
2414 * return succesfully even though the regulator does not support
2415 * changing the voltage.
2416 */
2417 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418 current_uV = _regulator_get_voltage(rdev);
2419 if (min_uV <= current_uV && current_uV <= max_uV) {
2420 regulator->min_uV = min_uV;
2421 regulator->max_uV = max_uV;
2422 goto out;
2423 }
2424 }
2425
2426 /* sanity check */
2427 if (!rdev->desc->ops->set_voltage &&
2428 !rdev->desc->ops->set_voltage_sel) {
2429 ret = -EINVAL;
2430 goto out;
2431 }
2432
2433 /* constraints check */
2434 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435 if (ret < 0)
2436 goto out;
2437
2438 /* restore original values in case of error */
2439 old_min_uV = regulator->min_uV;
2440 old_max_uV = regulator->max_uV;
2441 regulator->min_uV = min_uV;
2442 regulator->max_uV = max_uV;
2443
2444 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445 if (ret < 0)
2446 goto out2;
2447
2448 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449 if (ret < 0)
2450 goto out2;
2451
2452out:
2453 mutex_unlock(&rdev->mutex);
2454 return ret;
2455out2:
2456 regulator->min_uV = old_min_uV;
2457 regulator->max_uV = old_max_uV;
2458 mutex_unlock(&rdev->mutex);
2459 return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474 int old_uV, int new_uV)
2475{
2476 struct regulator_dev *rdev = regulator->rdev;
2477 struct regulator_ops *ops = rdev->desc->ops;
2478 int old_sel = -1;
2479 int new_sel = -1;
2480 int voltage;
2481 int i;
2482
2483 /* Currently requires operations to do this */
2484 if (!ops->list_voltage || !ops->set_voltage_time_sel
2485 || !rdev->desc->n_voltages)
2486 return -EINVAL;
2487
2488 for (i = 0; i < rdev->desc->n_voltages; i++) {
2489 /* We only look for exact voltage matches here */
2490 voltage = regulator_list_voltage(regulator, i);
2491 if (voltage < 0)
2492 return -EINVAL;
2493 if (voltage == 0)
2494 continue;
2495 if (voltage == old_uV)
2496 old_sel = i;
2497 if (voltage == new_uV)
2498 new_sel = i;
2499 }
2500
2501 if (old_sel < 0 || new_sel < 0)
2502 return -EINVAL;
2503
2504 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521 unsigned int old_selector,
2522 unsigned int new_selector)
2523{
2524 unsigned int ramp_delay = 0;
2525 int old_volt, new_volt;
2526
2527 if (rdev->constraints->ramp_delay)
2528 ramp_delay = rdev->constraints->ramp_delay;
2529 else if (rdev->desc->ramp_delay)
2530 ramp_delay = rdev->desc->ramp_delay;
2531
2532 if (ramp_delay == 0) {
2533 rdev_warn(rdev, "ramp_delay not set\n");
2534 return 0;
2535 }
2536
2537 /* sanity check */
2538 if (!rdev->desc->ops->list_voltage)
2539 return -EINVAL;
2540
2541 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage. This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558 struct regulator_dev *rdev = regulator->rdev;
2559 int ret, min_uV, max_uV;
2560
2561 mutex_lock(&rdev->mutex);
2562
2563 if (!rdev->desc->ops->set_voltage &&
2564 !rdev->desc->ops->set_voltage_sel) {
2565 ret = -EINVAL;
2566 goto out;
2567 }
2568
2569 /* This is only going to work if we've had a voltage configured. */
2570 if (!regulator->min_uV && !regulator->max_uV) {
2571 ret = -EINVAL;
2572 goto out;
2573 }
2574
2575 min_uV = regulator->min_uV;
2576 max_uV = regulator->max_uV;
2577
2578 /* This should be a paranoia check... */
2579 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580 if (ret < 0)
2581 goto out;
2582
2583 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584 if (ret < 0)
2585 goto out;
2586
2587 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2588
2589out:
2590 mutex_unlock(&rdev->mutex);
2591 return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597 int sel, ret;
2598
2599 if (rdev->desc->ops->get_voltage_sel) {
2600 sel = rdev->desc->ops->get_voltage_sel(rdev);
2601 if (sel < 0)
2602 return sel;
2603 ret = rdev->desc->ops->list_voltage(rdev, sel);
2604 } else if (rdev->desc->ops->get_voltage) {
2605 ret = rdev->desc->ops->get_voltage(rdev);
2606 } else if (rdev->desc->ops->list_voltage) {
2607 ret = rdev->desc->ops->list_voltage(rdev, 0);
2608 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609 ret = rdev->desc->fixed_uV;
2610 } else {
2611 return -EINVAL;
2612 }
2613
2614 if (ret < 0)
2615 return ret;
2616 return ret - rdev->constraints->uV_offset;
2617}
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
2630 int ret;
2631
2632 mutex_lock(®ulator->rdev->mutex);
2633
2634 ret = _regulator_get_voltage(regulator->rdev);
2635
2636 mutex_unlock(®ulator->rdev->mutex);
2637
2638 return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659 int min_uA, int max_uA)
2660{
2661 struct regulator_dev *rdev = regulator->rdev;
2662 int ret;
2663
2664 mutex_lock(&rdev->mutex);
2665
2666 /* sanity check */
2667 if (!rdev->desc->ops->set_current_limit) {
2668 ret = -EINVAL;
2669 goto out;
2670 }
2671
2672 /* constraints check */
2673 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674 if (ret < 0)
2675 goto out;
2676
2677 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679 mutex_unlock(&rdev->mutex);
2680 return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686 int ret;
2687
2688 mutex_lock(&rdev->mutex);
2689
2690 /* sanity check */
2691 if (!rdev->desc->ops->get_current_limit) {
2692 ret = -EINVAL;
2693 goto out;
2694 }
2695
2696 ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698 mutex_unlock(&rdev->mutex);
2699 return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713 return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730 struct regulator_dev *rdev = regulator->rdev;
2731 int ret;
2732 int regulator_curr_mode;
2733
2734 mutex_lock(&rdev->mutex);
2735
2736 /* sanity check */
2737 if (!rdev->desc->ops->set_mode) {
2738 ret = -EINVAL;
2739 goto out;
2740 }
2741
2742 /* return if the same mode is requested */
2743 if (rdev->desc->ops->get_mode) {
2744 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745 if (regulator_curr_mode == mode) {
2746 ret = 0;
2747 goto out;
2748 }
2749 }
2750
2751 /* constraints check */
2752 ret = regulator_mode_constrain(rdev, &mode);
2753 if (ret < 0)
2754 goto out;
2755
2756 ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758 mutex_unlock(&rdev->mutex);
2759 return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765 int ret;
2766
2767 mutex_lock(&rdev->mutex);
2768
2769 /* sanity check */
2770 if (!rdev->desc->ops->get_mode) {
2771 ret = -EINVAL;
2772 goto out;
2773 }
2774
2775 ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777 mutex_unlock(&rdev->mutex);
2778 return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789 return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 * o Device is opened / closed.
2809 * o Device I/O is about to begin or has just finished.
2810 * o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821 struct regulator_dev *rdev = regulator->rdev;
2822 struct regulator *consumer;
2823 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824 unsigned int mode;
2825
2826 if (rdev->supply)
2827 input_uV = regulator_get_voltage(rdev->supply);
2828
2829 mutex_lock(&rdev->mutex);
2830
2831 /*
2832 * first check to see if we can set modes at all, otherwise just
2833 * tell the consumer everything is OK.
2834 */
2835 regulator->uA_load = uA_load;
2836 ret = regulator_check_drms(rdev);
2837 if (ret < 0) {
2838 ret = 0;
2839 goto out;
2840 }
2841
2842 if (!rdev->desc->ops->get_optimum_mode)
2843 goto out;
2844
2845 /*
2846 * we can actually do this so any errors are indicators of
2847 * potential real failure.
2848 */
2849 ret = -EINVAL;
2850
2851 if (!rdev->desc->ops->set_mode)
2852 goto out;
2853
2854 /* get output voltage */
2855 output_uV = _regulator_get_voltage(rdev);
2856 if (output_uV <= 0) {
2857 rdev_err(rdev, "invalid output voltage found\n");
2858 goto out;
2859 }
2860
2861 /* No supply? Use constraint voltage */
2862 if (input_uV <= 0)
2863 input_uV = rdev->constraints->input_uV;
2864 if (input_uV <= 0) {
2865 rdev_err(rdev, "invalid input voltage found\n");
2866 goto out;
2867 }
2868
2869 /* calc total requested load for this regulator */
2870 list_for_each_entry(consumer, &rdev->consumer_list, list)
2871 total_uA_load += consumer->uA_load;
2872
2873 mode = rdev->desc->ops->get_optimum_mode(rdev,
2874 input_uV, output_uV,
2875 total_uA_load);
2876 ret = regulator_mode_constrain(rdev, &mode);
2877 if (ret < 0) {
2878 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879 total_uA_load, input_uV, output_uV);
2880 goto out;
2881 }
2882
2883 ret = rdev->desc->ops->set_mode(rdev, mode);
2884 if (ret < 0) {
2885 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886 goto out;
2887 }
2888 ret = mode;
2889out:
2890 mutex_unlock(&rdev->mutex);
2891 return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this. Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908 struct regulator_dev *rdev = regulator->rdev;
2909 int ret = 0;
2910
2911 if (!rdev->desc->ops->set_bypass)
2912 return 0;
2913
2914 if (rdev->constraints &&
2915 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916 return 0;
2917
2918 mutex_lock(&rdev->mutex);
2919
2920 if (enable && !regulator->bypass) {
2921 rdev->bypass_count++;
2922
2923 if (rdev->bypass_count == rdev->open_count) {
2924 ret = rdev->desc->ops->set_bypass(rdev, enable);
2925 if (ret != 0)
2926 rdev->bypass_count--;
2927 }
2928
2929 } else if (!enable && regulator->bypass) {
2930 rdev->bypass_count--;
2931
2932 if (rdev->bypass_count != rdev->open_count) {
2933 ret = rdev->desc->ops->set_bypass(rdev, enable);
2934 if (ret != 0)
2935 rdev->bypass_count++;
2936 }
2937 }
2938
2939 if (ret == 0)
2940 regulator->bypass = enable;
2941
2942 mutex_unlock(&rdev->mutex);
2943
2944 return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956 struct notifier_block *nb)
2957{
2958 return blocking_notifier_chain_register(®ulator->rdev->notifier,
2959 nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971 struct notifier_block *nb)
2972{
2973 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
2974 nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982 unsigned long event, void *data)
2983{
2984 /* call rdev chain first */
2985 blocking_notifier_call_chain(&rdev->notifier, event, data);
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev: Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers: Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation. If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003 struct regulator_bulk_data *consumers)
3004{
3005 int i;
3006 int ret;
3007
3008 for (i = 0; i < num_consumers; i++)
3009 consumers[i].consumer = NULL;
3010
3011 for (i = 0; i < num_consumers; i++) {
3012 consumers[i].consumer = regulator_get(dev,
3013 consumers[i].supply);
3014 if (IS_ERR(consumers[i].consumer)) {
3015 ret = PTR_ERR(consumers[i].consumer);
3016 dev_err(dev, "Failed to get supply '%s': %d\n",
3017 consumers[i].supply, ret);
3018 consumers[i].consumer = NULL;
3019 goto err;
3020 }
3021 }
3022
3023 return 0;
3024
3025err:
3026 while (--i >= 0)
3027 regulator_put(consumers[i].consumer);
3028
3029 return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035 struct regulator_bulk_data *bulk = data;
3036
3037 bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers: Consumer data; clients are stored here.
3045 * @return 0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call. If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053 struct regulator_bulk_data *consumers)
3054{
3055 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056 int i;
3057 int ret = 0;
3058
3059 for (i = 0; i < num_consumers; i++) {
3060 if (consumers[i].consumer->always_on)
3061 consumers[i].ret = 0;
3062 else
3063 async_schedule_domain(regulator_bulk_enable_async,
3064 &consumers[i], &async_domain);
3065 }
3066
3067 async_synchronize_full_domain(&async_domain);
3068
3069 /* If any consumer failed we need to unwind any that succeeded */
3070 for (i = 0; i < num_consumers; i++) {
3071 if (consumers[i].ret != 0) {
3072 ret = consumers[i].ret;
3073 goto err;
3074 }
3075 }
3076
3077 return 0;
3078
3079err:
3080 for (i = 0; i < num_consumers; i++) {
3081 if (consumers[i].ret < 0)
3082 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083 consumers[i].ret);
3084 else
3085 regulator_disable(consumers[i].consumer);
3086 }
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers: Consumer data; clients are stored here.
3097 * @return 0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call. If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105 struct regulator_bulk_data *consumers)
3106{
3107 int i;
3108 int ret, r;
3109
3110 for (i = num_consumers - 1; i >= 0; --i) {
3111 ret = regulator_disable(consumers[i].consumer);
3112 if (ret != 0)
3113 goto err;
3114 }
3115
3116 return 0;
3117
3118err:
3119 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120 for (++i; i < num_consumers; ++i) {
3121 r = regulator_enable(consumers[i].consumer);
3122 if (r != 0)
3123 pr_err("Failed to reename %s: %d\n",
3124 consumers[i].supply, r);
3125 }
3126
3127 return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers: Consumer data; clients are stored here.
3136 * @return 0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146 struct regulator_bulk_data *consumers)
3147{
3148 int i;
3149 int ret;
3150
3151 for (i = 0; i < num_consumers; i++)
3152 consumers[i].ret =
3153 regulator_force_disable(consumers[i].consumer);
3154
3155 for (i = 0; i < num_consumers; i++) {
3156 if (consumers[i].ret != 0) {
3157 ret = consumers[i].ret;
3158 goto out;
3159 }
3160 }
3161
3162 return 0;
3163out:
3164 return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers: Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178 struct regulator_bulk_data *consumers)
3179{
3180 int i;
3181
3182 for (i = 0; i < num_consumers; i++) {
3183 regulator_put(consumers[i].consumer);
3184 consumers[i].consumer = NULL;
3185 }
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200 unsigned long event, void *data)
3201{
3202 _notifier_call_chain(rdev, event, data);
3203 return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217 switch (mode) {
3218 case REGULATOR_MODE_FAST:
3219 return REGULATOR_STATUS_FAST;
3220 case REGULATOR_MODE_NORMAL:
3221 return REGULATOR_STATUS_NORMAL;
3222 case REGULATOR_MODE_IDLE:
3223 return REGULATOR_STATUS_IDLE;
3224 case REGULATOR_MODE_STANDBY:
3225 return REGULATOR_STATUS_STANDBY;
3226 default:
3227 return REGULATOR_STATUS_UNDEFINED;
3228 }
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
3237{
3238 struct device *dev = &rdev->dev;
3239 struct regulator_ops *ops = rdev->desc->ops;
3240 int status = 0;
3241
3242 /* some attributes need specific methods to be displayed */
3243 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247 status = device_create_file(dev, &dev_attr_microvolts);
3248 if (status < 0)
3249 return status;
3250 }
3251 if (ops->get_current_limit) {
3252 status = device_create_file(dev, &dev_attr_microamps);
3253 if (status < 0)
3254 return status;
3255 }
3256 if (ops->get_mode) {
3257 status = device_create_file(dev, &dev_attr_opmode);
3258 if (status < 0)
3259 return status;
3260 }
3261 if (rdev->ena_pin || ops->is_enabled) {
3262 status = device_create_file(dev, &dev_attr_state);
3263 if (status < 0)
3264 return status;
3265 }
3266 if (ops->get_status) {
3267 status = device_create_file(dev, &dev_attr_status);
3268 if (status < 0)
3269 return status;
3270 }
3271 if (ops->get_bypass) {
3272 status = device_create_file(dev, &dev_attr_bypass);
3273 if (status < 0)
3274 return status;
3275 }
3276
3277 /* some attributes are type-specific */
3278 if (rdev->desc->type == REGULATOR_CURRENT) {
3279 status = device_create_file(dev, &dev_attr_requested_microamps);
3280 if (status < 0)
3281 return status;
3282 }
3283
3284 /* all the other attributes exist to support constraints;
3285 * don't show them if there are no constraints, or if the
3286 * relevant supporting methods are missing.
3287 */
3288 if (!rdev->constraints)
3289 return status;
3290
3291 /* constraints need specific supporting methods */
3292 if (ops->set_voltage || ops->set_voltage_sel) {
3293 status = device_create_file(dev, &dev_attr_min_microvolts);
3294 if (status < 0)
3295 return status;
3296 status = device_create_file(dev, &dev_attr_max_microvolts);
3297 if (status < 0)
3298 return status;
3299 }
3300 if (ops->set_current_limit) {
3301 status = device_create_file(dev, &dev_attr_min_microamps);
3302 if (status < 0)
3303 return status;
3304 status = device_create_file(dev, &dev_attr_max_microamps);
3305 if (status < 0)
3306 return status;
3307 }
3308
3309 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310 if (status < 0)
3311 return status;
3312 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313 if (status < 0)
3314 return status;
3315 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316 if (status < 0)
3317 return status;
3318
3319 if (ops->set_suspend_voltage) {
3320 status = device_create_file(dev,
3321 &dev_attr_suspend_standby_microvolts);
3322 if (status < 0)
3323 return status;
3324 status = device_create_file(dev,
3325 &dev_attr_suspend_mem_microvolts);
3326 if (status < 0)
3327 return status;
3328 status = device_create_file(dev,
3329 &dev_attr_suspend_disk_microvolts);
3330 if (status < 0)
3331 return status;
3332 }
3333
3334 if (ops->set_suspend_mode) {
3335 status = device_create_file(dev,
3336 &dev_attr_suspend_standby_mode);
3337 if (status < 0)
3338 return status;
3339 status = device_create_file(dev,
3340 &dev_attr_suspend_mem_mode);
3341 if (status < 0)
3342 return status;
3343 status = device_create_file(dev,
3344 &dev_attr_suspend_disk_mode);
3345 if (status < 0)
3346 return status;
3347 }
3348
3349 return status;
3350}
3351
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
3354 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355 if (!rdev->debugfs) {
3356 rdev_warn(rdev, "Failed to create debugfs directory\n");
3357 return;
3358 }
3359
3360 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361 &rdev->use_count);
3362 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363 &rdev->open_count);
3364 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365 &rdev->bypass_count);
3366}
3367
3368/**
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379 const struct regulator_config *config)
3380{
3381 const struct regulation_constraints *constraints = NULL;
3382 const struct regulator_init_data *init_data;
3383 static atomic_t regulator_no = ATOMIC_INIT(0);
3384 struct regulator_dev *rdev;
3385 struct device *dev;
3386 int ret, i;
3387 const char *supply = NULL;
3388
3389 if (regulator_desc == NULL || config == NULL)
3390 return ERR_PTR(-EINVAL);
3391
3392 dev = config->dev;
3393 WARN_ON(!dev);
3394
3395 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396 return ERR_PTR(-EINVAL);
3397
3398 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399 regulator_desc->type != REGULATOR_CURRENT)
3400 return ERR_PTR(-EINVAL);
3401
3402 /* Only one of each should be implemented */
3403 WARN_ON(regulator_desc->ops->get_voltage &&
3404 regulator_desc->ops->get_voltage_sel);
3405 WARN_ON(regulator_desc->ops->set_voltage &&
3406 regulator_desc->ops->set_voltage_sel);
3407
3408 /* If we're using selectors we must implement list_voltage. */
3409 if (regulator_desc->ops->get_voltage_sel &&
3410 !regulator_desc->ops->list_voltage) {
3411 return ERR_PTR(-EINVAL);
3412 }
3413 if (regulator_desc->ops->set_voltage_sel &&
3414 !regulator_desc->ops->list_voltage) {
3415 return ERR_PTR(-EINVAL);
3416 }
3417
3418 init_data = config->init_data;
3419
3420 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421 if (rdev == NULL)
3422 return ERR_PTR(-ENOMEM);
3423
3424 mutex_lock(®ulator_list_mutex);
3425
3426 mutex_init(&rdev->mutex);
3427 rdev->reg_data = config->driver_data;
3428 rdev->owner = regulator_desc->owner;
3429 rdev->desc = regulator_desc;
3430 if (config->regmap)
3431 rdev->regmap = config->regmap;
3432 else if (dev_get_regmap(dev, NULL))
3433 rdev->regmap = dev_get_regmap(dev, NULL);
3434 else if (dev->parent)
3435 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436 INIT_LIST_HEAD(&rdev->consumer_list);
3437 INIT_LIST_HEAD(&rdev->list);
3438 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441 /* preform any regulator specific init */
3442 if (init_data && init_data->regulator_init) {
3443 ret = init_data->regulator_init(rdev->reg_data);
3444 if (ret < 0)
3445 goto clean;
3446 }
3447
3448 /* register with sysfs */
3449 rdev->dev.class = ®ulator_class;
3450 rdev->dev.of_node = config->of_node;
3451 rdev->dev.parent = dev;
3452 dev_set_name(&rdev->dev, "regulator.%d",
3453 atomic_inc_return(®ulator_no) - 1);
3454 ret = device_register(&rdev->dev);
3455 if (ret != 0) {
3456 put_device(&rdev->dev);
3457 goto clean;
3458 }
3459
3460 dev_set_drvdata(&rdev->dev, rdev);
3461
3462 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463 ret = regulator_ena_gpio_request(rdev, config);
3464 if (ret != 0) {
3465 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466 config->ena_gpio, ret);
3467 goto wash;
3468 }
3469
3470 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471 rdev->ena_gpio_state = 1;
3472
3473 if (config->ena_gpio_invert)
3474 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3475 }
3476
3477 /* set regulator constraints */
3478 if (init_data)
3479 constraints = &init_data->constraints;
3480
3481 ret = set_machine_constraints(rdev, constraints);
3482 if (ret < 0)
3483 goto scrub;
3484
3485 /* add attributes supported by this regulator */
3486 ret = add_regulator_attributes(rdev);
3487 if (ret < 0)
3488 goto scrub;
3489
3490 if (init_data && init_data->supply_regulator)
3491 supply = init_data->supply_regulator;
3492 else if (regulator_desc->supply_name)
3493 supply = regulator_desc->supply_name;
3494
3495 if (supply) {
3496 struct regulator_dev *r;
3497
3498 r = regulator_dev_lookup(dev, supply, &ret);
3499
3500 if (ret == -ENODEV) {
3501 /*
3502 * No supply was specified for this regulator and
3503 * there will never be one.
3504 */
3505 ret = 0;
3506 goto add_dev;
3507 } else if (!r) {
3508 dev_err(dev, "Failed to find supply %s\n", supply);
3509 ret = -EPROBE_DEFER;
3510 goto scrub;
3511 }
3512
3513 ret = set_supply(rdev, r);
3514 if (ret < 0)
3515 goto scrub;
3516
3517 /* Enable supply if rail is enabled */
3518 if (_regulator_is_enabled(rdev)) {
3519 ret = regulator_enable(rdev->supply);
3520 if (ret < 0)
3521 goto scrub;
3522 }
3523 }
3524
3525add_dev:
3526 /* add consumers devices */
3527 if (init_data) {
3528 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529 ret = set_consumer_device_supply(rdev,
3530 init_data->consumer_supplies[i].dev_name,
3531 init_data->consumer_supplies[i].supply);
3532 if (ret < 0) {
3533 dev_err(dev, "Failed to set supply %s\n",
3534 init_data->consumer_supplies[i].supply);
3535 goto unset_supplies;
3536 }
3537 }
3538 }
3539
3540 list_add(&rdev->list, ®ulator_list);
3541
3542 rdev_init_debugfs(rdev);
3543out:
3544 mutex_unlock(®ulator_list_mutex);
3545 return rdev;
3546
3547unset_supplies:
3548 unset_regulator_supplies(rdev);
3549
3550scrub:
3551 if (rdev->supply)
3552 _regulator_put(rdev->supply);
3553 regulator_ena_gpio_free(rdev);
3554 kfree(rdev->constraints);
3555wash:
3556 device_unregister(&rdev->dev);
3557 /* device core frees rdev */
3558 rdev = ERR_PTR(ret);
3559 goto out;
3560
3561clean:
3562 kfree(rdev);
3563 rdev = ERR_PTR(ret);
3564 goto out;
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576 if (rdev == NULL)
3577 return;
3578
3579 if (rdev->supply) {
3580 while (rdev->use_count--)
3581 regulator_disable(rdev->supply);
3582 regulator_put(rdev->supply);
3583 }
3584 mutex_lock(®ulator_list_mutex);
3585 debugfs_remove_recursive(rdev->debugfs);
3586 flush_work(&rdev->disable_work.work);
3587 WARN_ON(rdev->open_count);
3588 unset_regulator_supplies(rdev);
3589 list_del(&rdev->list);
3590 kfree(rdev->constraints);
3591 regulator_ena_gpio_free(rdev);
3592 device_unregister(&rdev->dev);
3593 mutex_unlock(®ulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606 struct regulator_dev *rdev;
3607 int ret = 0;
3608
3609 /* ON is handled by regulator active state */
3610 if (state == PM_SUSPEND_ON)
3611 return -EINVAL;
3612
3613 mutex_lock(®ulator_list_mutex);
3614 list_for_each_entry(rdev, ®ulator_list, list) {
3615
3616 mutex_lock(&rdev->mutex);
3617 ret = suspend_prepare(rdev, state);
3618 mutex_unlock(&rdev->mutex);
3619
3620 if (ret < 0) {
3621 rdev_err(rdev, "failed to prepare\n");
3622 goto out;
3623 }
3624 }
3625out:
3626 mutex_unlock(®ulator_list_mutex);
3627 return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639 struct regulator_dev *rdev;
3640 int ret = 0, error;
3641
3642 mutex_lock(®ulator_list_mutex);
3643 list_for_each_entry(rdev, ®ulator_list, list) {
3644 mutex_lock(&rdev->mutex);
3645 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3646 error = _regulator_do_enable(rdev);
3647 if (error)
3648 ret = error;
3649 } else {
3650 if (!have_full_constraints())
3651 goto unlock;
3652 if (!_regulator_is_enabled(rdev))
3653 goto unlock;
3654
3655 error = _regulator_do_disable(rdev);
3656 if (error)
3657 ret = error;
3658 }
3659unlock:
3660 mutex_unlock(&rdev->mutex);
3661 }
3662 mutex_unlock(®ulator_list_mutex);
3663 return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3666
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680 has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693 return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706 return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717 regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727 return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733 return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739 return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745 size_t count, loff_t *ppos)
3746{
3747 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748 ssize_t len, ret = 0;
3749 struct regulator_map *map;
3750
3751 if (!buf)
3752 return -ENOMEM;
3753
3754 list_for_each_entry(map, ®ulator_map_list, list) {
3755 len = snprintf(buf + ret, PAGE_SIZE - ret,
3756 "%s -> %s.%s\n",
3757 rdev_get_name(map->regulator), map->dev_name,
3758 map->supply);
3759 if (len >= 0)
3760 ret += len;
3761 if (ret > PAGE_SIZE) {
3762 ret = PAGE_SIZE;
3763 break;
3764 }
3765 }
3766
3767 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3768
3769 kfree(buf);
3770
3771 return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777 .read = supply_map_read_file,
3778 .llseek = default_llseek,
3779#endif
3780};
3781
3782static int __init regulator_init(void)
3783{
3784 int ret;
3785
3786 ret = class_register(®ulator_class);
3787
3788 debugfs_root = debugfs_create_dir("regulator", NULL);
3789 if (!debugfs_root)
3790 pr_warn("regulator: Failed to create debugfs directory\n");
3791
3792 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793 &supply_map_fops);
3794
3795 regulator_dummy_init();
3796
3797 return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805 struct regulator_dev *rdev;
3806 struct regulator_ops *ops;
3807 struct regulation_constraints *c;
3808 int enabled, ret;
3809
3810 /*
3811 * Since DT doesn't provide an idiomatic mechanism for
3812 * enabling full constraints and since it's much more natural
3813 * with DT to provide them just assume that a DT enabled
3814 * system has full constraints.
3815 */
3816 if (of_have_populated_dt())
3817 has_full_constraints = true;
3818
3819 mutex_lock(®ulator_list_mutex);
3820
3821 /* If we have a full configuration then disable any regulators
3822 * which are not in use or always_on. This will become the
3823 * default behaviour in the future.
3824 */
3825 list_for_each_entry(rdev, ®ulator_list, list) {
3826 ops = rdev->desc->ops;
3827 c = rdev->constraints;
3828
3829 if (c && c->always_on)
3830 continue;
3831
3832 mutex_lock(&rdev->mutex);
3833
3834 if (rdev->use_count)
3835 goto unlock;
3836
3837 /* If we can't read the status assume it's on. */
3838 if (ops->is_enabled)
3839 enabled = ops->is_enabled(rdev);
3840 else
3841 enabled = 1;
3842
3843 if (!enabled)
3844 goto unlock;
3845
3846 if (have_full_constraints()) {
3847 /* We log since this may kill the system if it
3848 * goes wrong. */
3849 rdev_info(rdev, "disabling\n");
3850 ret = _regulator_do_disable(rdev);
3851 if (ret != 0)
3852 rdev_err(rdev, "couldn't disable: %d\n", ret);
3853 } else {
3854 /* The intention is that in future we will
3855 * assume that full constraints are provided
3856 * so warn even if we aren't going to do
3857 * anything here.
3858 */
3859 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860 }
3861
3862unlock:
3863 mutex_unlock(&rdev->mutex);
3864 }
3865
3866 mutex_unlock(®ulator_list_mutex);
3867
3868 return 0;
3869}
3870late_initcall(regulator_init_complete);