Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
 
 
 
 
  28#include <linux/regulator/consumer.h>
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/regulator.h>
  34
  35#include "dummy.h"
 
  36
  37#define rdev_crit(rdev, fmt, ...)					\
  38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  39#define rdev_err(rdev, fmt, ...)					\
  40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_warn(rdev, fmt, ...)					\
  42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_info(rdev, fmt, ...)					\
  44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_dbg(rdev, fmt, ...)					\
  46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47
  48static DEFINE_MUTEX(regulator_list_mutex);
  49static LIST_HEAD(regulator_list);
  50static LIST_HEAD(regulator_map_list);
 
 
  51static bool has_full_constraints;
  52static bool board_wants_dummy_regulator;
  53
  54#ifdef CONFIG_DEBUG_FS
  55static struct dentry *debugfs_root;
  56#endif
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
  78	int uA_load;
  79	int min_uV;
  80	int max_uV;
  81	char *supply_name;
  82	struct device_attribute dev_attr;
  83	struct regulator_dev *rdev;
  84#ifdef CONFIG_DEBUG_FS
  85	struct dentry *debugfs;
  86#endif
 
 
 
 
 
 
 
 
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95				  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97				     int min_uV, int max_uV);
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99					  struct device *dev,
 100					  const char *supply_name);
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104	if (rdev->constraints && rdev->constraints->name)
 105		return rdev->constraints->name;
 106	else if (rdev->desc->name)
 107		return rdev->desc->name;
 108	else
 109		return "";
 110}
 111
 112/* gets the regulator for a given consumer device */
 113static struct regulator *get_device_regulator(struct device *dev)
 114{
 115	struct regulator *regulator = NULL;
 116	struct regulator_dev *rdev;
 117
 118	mutex_lock(&regulator_list_mutex);
 119	list_for_each_entry(rdev, &regulator_list, list) {
 120		mutex_lock(&rdev->mutex);
 121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 122			if (regulator->dev == dev) {
 123				mutex_unlock(&rdev->mutex);
 124				mutex_unlock(&regulator_list_mutex);
 125				return regulator;
 126			}
 127		}
 128		mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 129	}
 130	mutex_unlock(&regulator_list_mutex);
 131	return NULL;
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134/* Platform voltage constraint check */
 135static int regulator_check_voltage(struct regulator_dev *rdev,
 136				   int *min_uV, int *max_uV)
 137{
 138	BUG_ON(*min_uV > *max_uV);
 139
 140	if (!rdev->constraints) {
 141		rdev_err(rdev, "no constraints\n");
 142		return -ENODEV;
 143	}
 144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 145		rdev_err(rdev, "operation not allowed\n");
 146		return -EPERM;
 147	}
 148
 149	if (*max_uV > rdev->constraints->max_uV)
 150		*max_uV = rdev->constraints->max_uV;
 151	if (*min_uV < rdev->constraints->min_uV)
 152		*min_uV = rdev->constraints->min_uV;
 153
 154	if (*min_uV > *max_uV) {
 155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 156			 *min_uV, *max_uV);
 157		return -EINVAL;
 158	}
 159
 160	return 0;
 161}
 162
 163/* Make sure we select a voltage that suits the needs of all
 164 * regulator consumers
 165 */
 166static int regulator_check_consumers(struct regulator_dev *rdev,
 167				     int *min_uV, int *max_uV)
 168{
 169	struct regulator *regulator;
 170
 171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 172		/*
 173		 * Assume consumers that didn't say anything are OK
 174		 * with anything in the constraint range.
 175		 */
 176		if (!regulator->min_uV && !regulator->max_uV)
 177			continue;
 178
 179		if (*max_uV > regulator->max_uV)
 180			*max_uV = regulator->max_uV;
 181		if (*min_uV < regulator->min_uV)
 182			*min_uV = regulator->min_uV;
 183	}
 184
 185	if (*min_uV > *max_uV)
 
 
 186		return -EINVAL;
 
 187
 188	return 0;
 189}
 190
 191/* current constraint check */
 192static int regulator_check_current_limit(struct regulator_dev *rdev,
 193					int *min_uA, int *max_uA)
 194{
 195	BUG_ON(*min_uA > *max_uA);
 196
 197	if (!rdev->constraints) {
 198		rdev_err(rdev, "no constraints\n");
 199		return -ENODEV;
 200	}
 201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 202		rdev_err(rdev, "operation not allowed\n");
 203		return -EPERM;
 204	}
 205
 206	if (*max_uA > rdev->constraints->max_uA)
 207		*max_uA = rdev->constraints->max_uA;
 208	if (*min_uA < rdev->constraints->min_uA)
 209		*min_uA = rdev->constraints->min_uA;
 210
 211	if (*min_uA > *max_uA) {
 212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 213			 *min_uA, *max_uA);
 214		return -EINVAL;
 215	}
 216
 217	return 0;
 218}
 219
 220/* operating mode constraint check */
 221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 222{
 223	switch (*mode) {
 224	case REGULATOR_MODE_FAST:
 225	case REGULATOR_MODE_NORMAL:
 226	case REGULATOR_MODE_IDLE:
 227	case REGULATOR_MODE_STANDBY:
 228		break;
 229	default:
 230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 231		return -EINVAL;
 232	}
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	/* The modes are bitmasks, the most power hungry modes having
 244	 * the lowest values. If the requested mode isn't supported
 245	 * try higher modes. */
 246	while (*mode) {
 247		if (rdev->constraints->valid_modes_mask & *mode)
 248			return 0;
 249		*mode /= 2;
 250	}
 251
 252	return -EINVAL;
 253}
 254
 255/* dynamic regulator mode switching constraint check */
 256static int regulator_check_drms(struct regulator_dev *rdev)
 257{
 258	if (!rdev->constraints) {
 259		rdev_err(rdev, "no constraints\n");
 260		return -ENODEV;
 261	}
 262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 263		rdev_err(rdev, "operation not allowed\n");
 264		return -EPERM;
 265	}
 266	return 0;
 267}
 268
 269static ssize_t device_requested_uA_show(struct device *dev,
 270			     struct device_attribute *attr, char *buf)
 271{
 272	struct regulator *regulator;
 273
 274	regulator = get_device_regulator(dev);
 275	if (regulator == NULL)
 276		return 0;
 277
 278	return sprintf(buf, "%d\n", regulator->uA_load);
 279}
 280
 281static ssize_t regulator_uV_show(struct device *dev,
 282				struct device_attribute *attr, char *buf)
 283{
 284	struct regulator_dev *rdev = dev_get_drvdata(dev);
 285	ssize_t ret;
 286
 287	mutex_lock(&rdev->mutex);
 288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 289	mutex_unlock(&rdev->mutex);
 290
 291	return ret;
 292}
 293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 294
 295static ssize_t regulator_uA_show(struct device *dev,
 296				struct device_attribute *attr, char *buf)
 297{
 298	struct regulator_dev *rdev = dev_get_drvdata(dev);
 299
 300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 301}
 302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 303
 304static ssize_t regulator_name_show(struct device *dev,
 305			     struct device_attribute *attr, char *buf)
 306{
 307	struct regulator_dev *rdev = dev_get_drvdata(dev);
 308
 309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 310}
 
 311
 312static ssize_t regulator_print_opmode(char *buf, int mode)
 313{
 314	switch (mode) {
 315	case REGULATOR_MODE_FAST:
 316		return sprintf(buf, "fast\n");
 317	case REGULATOR_MODE_NORMAL:
 318		return sprintf(buf, "normal\n");
 319	case REGULATOR_MODE_IDLE:
 320		return sprintf(buf, "idle\n");
 321	case REGULATOR_MODE_STANDBY:
 322		return sprintf(buf, "standby\n");
 323	}
 324	return sprintf(buf, "unknown\n");
 325}
 326
 327static ssize_t regulator_opmode_show(struct device *dev,
 328				    struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 333}
 334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 335
 336static ssize_t regulator_print_state(char *buf, int state)
 337{
 338	if (state > 0)
 339		return sprintf(buf, "enabled\n");
 340	else if (state == 0)
 341		return sprintf(buf, "disabled\n");
 342	else
 343		return sprintf(buf, "unknown\n");
 344}
 345
 346static ssize_t regulator_state_show(struct device *dev,
 347				   struct device_attribute *attr, char *buf)
 348{
 349	struct regulator_dev *rdev = dev_get_drvdata(dev);
 350	ssize_t ret;
 351
 352	mutex_lock(&rdev->mutex);
 353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 354	mutex_unlock(&rdev->mutex);
 355
 356	return ret;
 357}
 358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 359
 360static ssize_t regulator_status_show(struct device *dev,
 361				   struct device_attribute *attr, char *buf)
 362{
 363	struct regulator_dev *rdev = dev_get_drvdata(dev);
 364	int status;
 365	char *label;
 366
 367	status = rdev->desc->ops->get_status(rdev);
 368	if (status < 0)
 369		return status;
 370
 371	switch (status) {
 372	case REGULATOR_STATUS_OFF:
 373		label = "off";
 374		break;
 375	case REGULATOR_STATUS_ON:
 376		label = "on";
 377		break;
 378	case REGULATOR_STATUS_ERROR:
 379		label = "error";
 380		break;
 381	case REGULATOR_STATUS_FAST:
 382		label = "fast";
 383		break;
 384	case REGULATOR_STATUS_NORMAL:
 385		label = "normal";
 386		break;
 387	case REGULATOR_STATUS_IDLE:
 388		label = "idle";
 389		break;
 390	case REGULATOR_STATUS_STANDBY:
 391		label = "standby";
 392		break;
 
 
 
 
 
 
 393	default:
 394		return -ERANGE;
 395	}
 396
 397	return sprintf(buf, "%s\n", label);
 398}
 399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 400
 401static ssize_t regulator_min_uA_show(struct device *dev,
 402				    struct device_attribute *attr, char *buf)
 403{
 404	struct regulator_dev *rdev = dev_get_drvdata(dev);
 405
 406	if (!rdev->constraints)
 407		return sprintf(buf, "constraint not defined\n");
 408
 409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 410}
 411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 412
 413static ssize_t regulator_max_uA_show(struct device *dev,
 414				    struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417
 418	if (!rdev->constraints)
 419		return sprintf(buf, "constraint not defined\n");
 420
 421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 422}
 423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 424
 425static ssize_t regulator_min_uV_show(struct device *dev,
 426				    struct device_attribute *attr, char *buf)
 427{
 428	struct regulator_dev *rdev = dev_get_drvdata(dev);
 429
 430	if (!rdev->constraints)
 431		return sprintf(buf, "constraint not defined\n");
 432
 433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 434}
 435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 436
 437static ssize_t regulator_max_uV_show(struct device *dev,
 438				    struct device_attribute *attr, char *buf)
 439{
 440	struct regulator_dev *rdev = dev_get_drvdata(dev);
 441
 442	if (!rdev->constraints)
 443		return sprintf(buf, "constraint not defined\n");
 444
 445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 446}
 447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 448
 449static ssize_t regulator_total_uA_show(struct device *dev,
 450				      struct device_attribute *attr, char *buf)
 451{
 452	struct regulator_dev *rdev = dev_get_drvdata(dev);
 453	struct regulator *regulator;
 454	int uA = 0;
 455
 456	mutex_lock(&rdev->mutex);
 457	list_for_each_entry(regulator, &rdev->consumer_list, list)
 458		uA += regulator->uA_load;
 459	mutex_unlock(&rdev->mutex);
 460	return sprintf(buf, "%d\n", uA);
 461}
 462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 463
 464static ssize_t regulator_num_users_show(struct device *dev,
 465				      struct device_attribute *attr, char *buf)
 466{
 467	struct regulator_dev *rdev = dev_get_drvdata(dev);
 468	return sprintf(buf, "%d\n", rdev->use_count);
 469}
 
 470
 471static ssize_t regulator_type_show(struct device *dev,
 472				  struct device_attribute *attr, char *buf)
 473{
 474	struct regulator_dev *rdev = dev_get_drvdata(dev);
 475
 476	switch (rdev->desc->type) {
 477	case REGULATOR_VOLTAGE:
 478		return sprintf(buf, "voltage\n");
 479	case REGULATOR_CURRENT:
 480		return sprintf(buf, "current\n");
 481	}
 482	return sprintf(buf, "unknown\n");
 483}
 
 484
 485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 486				struct device_attribute *attr, char *buf)
 487{
 488	struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 491}
 492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 493		regulator_suspend_mem_uV_show, NULL);
 494
 495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 496				struct device_attribute *attr, char *buf)
 497{
 498	struct regulator_dev *rdev = dev_get_drvdata(dev);
 499
 500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 501}
 502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 503		regulator_suspend_disk_uV_show, NULL);
 504
 505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 506				struct device_attribute *attr, char *buf)
 507{
 508	struct regulator_dev *rdev = dev_get_drvdata(dev);
 509
 510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 511}
 512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 513		regulator_suspend_standby_uV_show, NULL);
 514
 515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 516				struct device_attribute *attr, char *buf)
 517{
 518	struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520	return regulator_print_opmode(buf,
 521		rdev->constraints->state_mem.mode);
 522}
 523static DEVICE_ATTR(suspend_mem_mode, 0444,
 524		regulator_suspend_mem_mode_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return regulator_print_opmode(buf,
 532		rdev->constraints->state_disk.mode);
 533}
 534static DEVICE_ATTR(suspend_disk_mode, 0444,
 535		regulator_suspend_disk_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 538				struct device_attribute *attr, char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542	return regulator_print_opmode(buf,
 543		rdev->constraints->state_standby.mode);
 544}
 545static DEVICE_ATTR(suspend_standby_mode, 0444,
 546		regulator_suspend_standby_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 549				   struct device_attribute *attr, char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	return regulator_print_state(buf,
 554			rdev->constraints->state_mem.enabled);
 555}
 556static DEVICE_ATTR(suspend_mem_state, 0444,
 557		regulator_suspend_mem_state_show, NULL);
 558
 559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 560				   struct device_attribute *attr, char *buf)
 561{
 562	struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564	return regulator_print_state(buf,
 565			rdev->constraints->state_disk.enabled);
 566}
 567static DEVICE_ATTR(suspend_disk_state, 0444,
 568		regulator_suspend_disk_state_show, NULL);
 569
 570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 571				   struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_state(buf,
 576			rdev->constraints->state_standby.enabled);
 577}
 578static DEVICE_ATTR(suspend_standby_state, 0444,
 579		regulator_suspend_standby_state_show, NULL);
 580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581
 582/*
 583 * These are the only attributes are present for all regulators.
 584 * Other attributes are a function of regulator functionality.
 585 */
 586static struct device_attribute regulator_dev_attrs[] = {
 587	__ATTR(name, 0444, regulator_name_show, NULL),
 588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 589	__ATTR(type, 0444, regulator_type_show, NULL),
 590	__ATTR_NULL,
 591};
 
 592
 593static void regulator_dev_release(struct device *dev)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596	kfree(rdev);
 597}
 598
 599static struct class regulator_class = {
 600	.name = "regulator",
 601	.dev_release = regulator_dev_release,
 602	.dev_attrs = regulator_dev_attrs,
 603};
 604
 605/* Calculate the new optimum regulator operating mode based on the new total
 606 * consumer load. All locks held by caller */
 607static void drms_uA_update(struct regulator_dev *rdev)
 608{
 609	struct regulator *sibling;
 610	int current_uA = 0, output_uV, input_uV, err;
 611	unsigned int mode;
 612
 613	err = regulator_check_drms(rdev);
 614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 615	    (!rdev->desc->ops->get_voltage &&
 616	     !rdev->desc->ops->get_voltage_sel) ||
 617	    !rdev->desc->ops->set_mode)
 618		return;
 619
 620	/* get output voltage */
 621	output_uV = _regulator_get_voltage(rdev);
 622	if (output_uV <= 0)
 623		return;
 624
 625	/* get input voltage */
 626	input_uV = 0;
 627	if (rdev->supply)
 628		input_uV = _regulator_get_voltage(rdev);
 629	if (input_uV <= 0)
 630		input_uV = rdev->constraints->input_uV;
 631	if (input_uV <= 0)
 632		return;
 633
 634	/* calc total requested load */
 635	list_for_each_entry(sibling, &rdev->consumer_list, list)
 636		current_uA += sibling->uA_load;
 637
 638	/* now get the optimum mode for our new total regulator load */
 639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 640						  output_uV, current_uA);
 641
 642	/* check the new mode is allowed */
 643	err = regulator_mode_constrain(rdev, &mode);
 644	if (err == 0)
 645		rdev->desc->ops->set_mode(rdev, mode);
 646}
 647
 648static int suspend_set_state(struct regulator_dev *rdev,
 649	struct regulator_state *rstate)
 650{
 651	int ret = 0;
 652	bool can_set_state;
 653
 654	can_set_state = rdev->desc->ops->set_suspend_enable &&
 655		rdev->desc->ops->set_suspend_disable;
 656
 657	/* If we have no suspend mode configration don't set anything;
 658	 * only warn if the driver actually makes the suspend mode
 659	 * configurable.
 660	 */
 661	if (!rstate->enabled && !rstate->disabled) {
 662		if (can_set_state)
 
 663			rdev_warn(rdev, "No configuration\n");
 664		return 0;
 665	}
 666
 667	if (rstate->enabled && rstate->disabled) {
 668		rdev_err(rdev, "invalid configuration\n");
 669		return -EINVAL;
 670	}
 671
 672	if (!can_set_state) {
 673		rdev_err(rdev, "no way to set suspend state\n");
 674		return -EINVAL;
 675	}
 676
 677	if (rstate->enabled)
 678		ret = rdev->desc->ops->set_suspend_enable(rdev);
 679	else
 680		ret = rdev->desc->ops->set_suspend_disable(rdev);
 
 
 
 681	if (ret < 0) {
 682		rdev_err(rdev, "failed to enabled/disable\n");
 683		return ret;
 684	}
 685
 686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 688		if (ret < 0) {
 689			rdev_err(rdev, "failed to set voltage\n");
 690			return ret;
 691		}
 692	}
 693
 694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 696		if (ret < 0) {
 697			rdev_err(rdev, "failed to set mode\n");
 698			return ret;
 699		}
 700	}
 701	return ret;
 702}
 703
 704/* locks held by caller */
 705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 706{
 707	if (!rdev->constraints)
 708		return -EINVAL;
 709
 710	switch (state) {
 711	case PM_SUSPEND_STANDBY:
 712		return suspend_set_state(rdev,
 713			&rdev->constraints->state_standby);
 714	case PM_SUSPEND_MEM:
 715		return suspend_set_state(rdev,
 716			&rdev->constraints->state_mem);
 717	case PM_SUSPEND_MAX:
 718		return suspend_set_state(rdev,
 719			&rdev->constraints->state_disk);
 720	default:
 721		return -EINVAL;
 722	}
 723}
 724
 725static void print_constraints(struct regulator_dev *rdev)
 726{
 727	struct regulation_constraints *constraints = rdev->constraints;
 728	char buf[80] = "";
 729	int count = 0;
 730	int ret;
 731
 732	if (constraints->min_uV && constraints->max_uV) {
 733		if (constraints->min_uV == constraints->max_uV)
 734			count += sprintf(buf + count, "%d mV ",
 735					 constraints->min_uV / 1000);
 736		else
 737			count += sprintf(buf + count, "%d <--> %d mV ",
 738					 constraints->min_uV / 1000,
 739					 constraints->max_uV / 1000);
 740	}
 741
 742	if (!constraints->min_uV ||
 743	    constraints->min_uV != constraints->max_uV) {
 744		ret = _regulator_get_voltage(rdev);
 745		if (ret > 0)
 746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 747	}
 748
 749	if (constraints->uV_offset)
 750		count += sprintf(buf, "%dmV offset ",
 751				 constraints->uV_offset / 1000);
 752
 753	if (constraints->min_uA && constraints->max_uA) {
 754		if (constraints->min_uA == constraints->max_uA)
 755			count += sprintf(buf + count, "%d mA ",
 756					 constraints->min_uA / 1000);
 757		else
 758			count += sprintf(buf + count, "%d <--> %d mA ",
 759					 constraints->min_uA / 1000,
 760					 constraints->max_uA / 1000);
 761	}
 762
 763	if (!constraints->min_uA ||
 764	    constraints->min_uA != constraints->max_uA) {
 765		ret = _regulator_get_current_limit(rdev);
 766		if (ret > 0)
 767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 768	}
 769
 770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 771		count += sprintf(buf + count, "fast ");
 772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 773		count += sprintf(buf + count, "normal ");
 774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 775		count += sprintf(buf + count, "idle ");
 776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 777		count += sprintf(buf + count, "standby");
 778
 
 
 
 779	rdev_info(rdev, "%s\n", buf);
 
 
 
 
 
 780}
 781
 782static int machine_constraints_voltage(struct regulator_dev *rdev,
 783	struct regulation_constraints *constraints)
 784{
 785	struct regulator_ops *ops = rdev->desc->ops;
 786	int ret;
 787
 788	/* do we need to apply the constraint voltage */
 789	if (rdev->constraints->apply_uV &&
 790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 791		ret = _regulator_do_set_voltage(rdev,
 792						rdev->constraints->min_uV,
 793						rdev->constraints->max_uV);
 794		if (ret < 0) {
 795			rdev_err(rdev, "failed to apply %duV constraint\n",
 796				 rdev->constraints->min_uV);
 797			return ret;
 798		}
 799	}
 800
 801	/* constrain machine-level voltage specs to fit
 802	 * the actual range supported by this regulator.
 803	 */
 804	if (ops->list_voltage && rdev->desc->n_voltages) {
 805		int	count = rdev->desc->n_voltages;
 806		int	i;
 807		int	min_uV = INT_MAX;
 808		int	max_uV = INT_MIN;
 809		int	cmin = constraints->min_uV;
 810		int	cmax = constraints->max_uV;
 811
 812		/* it's safe to autoconfigure fixed-voltage supplies
 813		   and the constraints are used by list_voltage. */
 814		if (count == 1 && !cmin) {
 815			cmin = 1;
 816			cmax = INT_MAX;
 817			constraints->min_uV = cmin;
 818			constraints->max_uV = cmax;
 819		}
 820
 821		/* voltage constraints are optional */
 822		if ((cmin == 0) && (cmax == 0))
 823			return 0;
 824
 825		/* else require explicit machine-level constraints */
 826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 827			rdev_err(rdev, "invalid voltage constraints\n");
 828			return -EINVAL;
 829		}
 830
 831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 832		for (i = 0; i < count; i++) {
 833			int	value;
 834
 835			value = ops->list_voltage(rdev, i);
 836			if (value <= 0)
 837				continue;
 838
 839			/* maybe adjust [min_uV..max_uV] */
 840			if (value >= cmin && value < min_uV)
 841				min_uV = value;
 842			if (value <= cmax && value > max_uV)
 843				max_uV = value;
 844		}
 845
 846		/* final: [min_uV..max_uV] valid iff constraints valid */
 847		if (max_uV < min_uV) {
 848			rdev_err(rdev, "unsupportable voltage constraints\n");
 
 
 849			return -EINVAL;
 850		}
 851
 852		/* use regulator's subset of machine constraints */
 853		if (constraints->min_uV < min_uV) {
 854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 855				 constraints->min_uV, min_uV);
 856			constraints->min_uV = min_uV;
 857		}
 858		if (constraints->max_uV > max_uV) {
 859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 860				 constraints->max_uV, max_uV);
 861			constraints->max_uV = max_uV;
 862		}
 863	}
 864
 865	return 0;
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868/**
 869 * set_machine_constraints - sets regulator constraints
 870 * @rdev: regulator source
 871 * @constraints: constraints to apply
 872 *
 873 * Allows platform initialisation code to define and constrain
 874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 875 * Constraints *must* be set by platform code in order for some
 876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 877 * set_mode.
 878 */
 879static int set_machine_constraints(struct regulator_dev *rdev,
 880	const struct regulation_constraints *constraints)
 881{
 882	int ret = 0;
 883	struct regulator_ops *ops = rdev->desc->ops;
 884
 885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 886				    GFP_KERNEL);
 
 
 
 
 887	if (!rdev->constraints)
 888		return -ENOMEM;
 889
 890	ret = machine_constraints_voltage(rdev, rdev->constraints);
 891	if (ret != 0)
 892		goto out;
 893
 
 
 
 
 894	/* do we need to setup our suspend state */
 895	if (constraints->initial_state) {
 896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 897		if (ret < 0) {
 898			rdev_err(rdev, "failed to set suspend state\n");
 899			goto out;
 900		}
 901	}
 902
 903	if (constraints->initial_mode) {
 904		if (!ops->set_mode) {
 905			rdev_err(rdev, "no set_mode operation\n");
 906			ret = -EINVAL;
 907			goto out;
 908		}
 909
 910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 911		if (ret < 0) {
 912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 913			goto out;
 914		}
 915	}
 916
 917	/* If the constraints say the regulator should be on at this point
 918	 * and we have control then make sure it is enabled.
 919	 */
 920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 921	    ops->enable) {
 922		ret = ops->enable(rdev);
 923		if (ret < 0) {
 924			rdev_err(rdev, "failed to enable\n");
 925			goto out;
 926		}
 927	}
 928
 
 
 
 
 
 
 
 
 
 929	print_constraints(rdev);
 930	return 0;
 931out:
 932	kfree(rdev->constraints);
 933	rdev->constraints = NULL;
 934	return ret;
 935}
 936
 937/**
 938 * set_supply - set regulator supply regulator
 939 * @rdev: regulator name
 940 * @supply_rdev: supply regulator name
 941 *
 942 * Called by platform initialisation code to set the supply regulator for this
 943 * regulator. This ensures that a regulators supply will also be enabled by the
 944 * core if it's child is enabled.
 945 */
 946static int set_supply(struct regulator_dev *rdev,
 947		      struct regulator_dev *supply_rdev)
 948{
 949	int err;
 950
 951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 952
 953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 954	if (IS_ERR(rdev->supply)) {
 955		err = PTR_ERR(rdev->supply);
 956		rdev->supply = NULL;
 957		return err;
 958	}
 
 959
 960	return 0;
 961}
 962
 963/**
 964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 965 * @rdev:         regulator source
 966 * @consumer_dev: device the supply applies to
 967 * @consumer_dev_name: dev_name() string for device supply applies to
 968 * @supply:       symbolic name for supply
 969 *
 970 * Allows platform initialisation code to map physical regulator
 971 * sources to symbolic names for supplies for use by devices.  Devices
 972 * should use these symbolic names to request regulators, avoiding the
 973 * need to provide board-specific regulator names as platform data.
 974 *
 975 * Only one of consumer_dev and consumer_dev_name may be specified.
 976 */
 977static int set_consumer_device_supply(struct regulator_dev *rdev,
 978	struct device *consumer_dev, const char *consumer_dev_name,
 979	const char *supply)
 980{
 981	struct regulator_map *node;
 982	int has_dev;
 983
 984	if (consumer_dev && consumer_dev_name)
 985		return -EINVAL;
 986
 987	if (!consumer_dev_name && consumer_dev)
 988		consumer_dev_name = dev_name(consumer_dev);
 989
 990	if (supply == NULL)
 991		return -EINVAL;
 992
 993	if (consumer_dev_name != NULL)
 994		has_dev = 1;
 995	else
 996		has_dev = 0;
 997
 998	list_for_each_entry(node, &regulator_map_list, list) {
 999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
 
1014		return -EBUSY;
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
1061		return NULL;
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
1125	}
1126#endif
 
 
 
 
 
 
 
 
1127
1128	mutex_unlock(&rdev->mutex);
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
 
 
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164
 
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
 
 
1169
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
1179		}
1180	}
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	}
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188	if (!devname)
1189		devname = "deviceless";
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
 
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
 
1197		rdev = dummy_regulator_rdev;
1198		goto found;
 
 
 
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
1218
1219	regulator = create_regulator(rdev, dev, id);
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
1222		module_put(rdev->owner);
 
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
1233			rdev->use_count = 0;
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
 
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295 */
1296void regulator_put(struct regulator *regulator)
 
 
 
 
 
 
 
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
1304	rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
1322
1323	module_put(rdev->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	if (!rdev->constraints)
1331		return 0;
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
1335	else
1336		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342	int ret, delay;
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
1354				return -EPERM;
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
1398
1399	return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
1417
 
 
 
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438	int ret = 0;
1439
1440	if (WARN(rdev->use_count <= 0,
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
1456				return ret;
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
 
 
 
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
1523	}
1524
1525	return ret;
 
 
 
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
 
 
 
 
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
 
 
 
1580	mutex_lock(&regulator->rdev->mutex);
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
1619
 
 
 
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621		return -EINVAL;
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
 
1650	int i, voltages, ret;
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
 
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
 
1672	unsigned int selector;
 
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
 
 
 
 
 
 
 
 
 
 
 
 
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
1691
1692		selector = 0;
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705			}
1706		}
 
 
 
1707
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
 
 
 
 
1722		}
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
 
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
 
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747
1748	return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
 
 
1773
1774	mutex_lock(&rdev->mutex);
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
1782
 
 
 
 
 
 
 
 
 
 
 
 
 
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
 
 
 
 
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
1805	return ret;
 
 
 
 
 
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
 
 
 
 
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
 
 
 
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
2149
 
 
 
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
2186	}
2187	ret = mode;
2188out:
2189	mutex_unlock(&rdev->mutex);
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
 
 
 
 
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
 
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
 
 
 
 
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
 
 
 
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
 
 
 
 
 
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
2544
2545	return status;
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
2556	}
2557
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
 
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
 
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
 
 
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
2580	struct regulator_dev *rdev;
 
2581	int ret, i;
 
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
2585
 
 
 
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
2610	}
2611
 
 
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
2615
2616	mutex_lock(&regulator_list_mutex);
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
 
 
 
 
 
 
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
 
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
 
 
 
2648	if (ret < 0)
2649		goto scrub;
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
2655
2656	if (init_data->supply_regulator) {
 
 
 
 
 
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
 
 
 
 
 
 
2672			goto scrub;
2673		}
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
 
 
 
 
 
 
 
2678	}
2679
 
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
 
 
 
 
2690		}
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
2694
2695	rdev_init_debugfs(rdev);
2696out:
2697	mutex_unlock(&regulator_list_mutex);
2698	return rdev;
2699
2700unset_supplies:
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
 
 
 
2704	kfree(rdev->constraints);
 
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
 
 
 
 
 
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
 
 
2739	mutex_unlock(&regulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
2769		}
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
2923
2924	regulator_dummy_init();
2925
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
 
 
 
 
 
 
 
 
 
2939	mutex_lock(&regulator_list_mutex);
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
2951
2952		mutex_lock(&rdev->mutex);
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
v3.15
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
 
 
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/of.h>
  28#include <linux/regmap.h>
  29#include <linux/regulator/of_regulator.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/regulator/driver.h>
  32#include <linux/regulator/machine.h>
  33#include <linux/module.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/regulator.h>
  37
  38#include "dummy.h"
  39#include "internal.h"
  40
  41#define rdev_crit(rdev, fmt, ...)					\
  42	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_err(rdev, fmt, ...)					\
  44	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_warn(rdev, fmt, ...)					\
  46	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47#define rdev_info(rdev, fmt, ...)					\
  48	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  49#define rdev_dbg(rdev, fmt, ...)					\
  50	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  51
  52static DEFINE_MUTEX(regulator_list_mutex);
  53static LIST_HEAD(regulator_list);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
 
  58
 
  59static struct dentry *debugfs_root;
 
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67	struct list_head list;
  68	const char *dev_name;   /* The dev_name() for the consumer */
  69	const char *supply;
  70	struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
 
  79	struct list_head list;
  80	int gpio;
  81	u32 enable_count;	/* a number of enabled shared GPIO */
  82	u32 request_count;	/* a number of requested shared GPIO */
  83	unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92	struct list_head list;
  93	struct device *src_dev;
  94	const char *src_supply;
  95	struct device *alias_dev;
  96	const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static void _notifier_call_chain(struct regulator_dev *rdev,
 105				  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107				     int min_uV, int max_uV);
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109					  struct device *dev,
 110					  const char *supply_name);
 111
 112static const char *rdev_get_name(struct regulator_dev *rdev)
 113{
 114	if (rdev->constraints && rdev->constraints->name)
 115		return rdev->constraints->name;
 116	else if (rdev->desc->name)
 117		return rdev->desc->name;
 118	else
 119		return "";
 120}
 121
 122static bool have_full_constraints(void)
 
 123{
 124	return has_full_constraints || of_have_populated_dt();
 125}
 126
 127/**
 128 * of_get_regulator - get a regulator device node based on supply name
 129 * @dev: Device pointer for the consumer (of regulator) device
 130 * @supply: regulator supply name
 131 *
 132 * Extract the regulator device node corresponding to the supply name.
 133 * returns the device node corresponding to the regulator if found, else
 134 * returns NULL.
 135 */
 136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 137{
 138	struct device_node *regnode = NULL;
 139	char prop_name[32]; /* 32 is max size of property name */
 140
 141	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 142
 143	snprintf(prop_name, 32, "%s-supply", supply);
 144	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 145
 146	if (!regnode) {
 147		dev_dbg(dev, "Looking up %s property in node %s failed",
 148				prop_name, dev->of_node->full_name);
 149		return NULL;
 150	}
 151	return regnode;
 152}
 153
 154static int _regulator_can_change_status(struct regulator_dev *rdev)
 155{
 156	if (!rdev->constraints)
 157		return 0;
 158
 159	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
 160		return 1;
 161	else
 162		return 0;
 163}
 164
 165/* Platform voltage constraint check */
 166static int regulator_check_voltage(struct regulator_dev *rdev,
 167				   int *min_uV, int *max_uV)
 168{
 169	BUG_ON(*min_uV > *max_uV);
 170
 171	if (!rdev->constraints) {
 172		rdev_err(rdev, "no constraints\n");
 173		return -ENODEV;
 174	}
 175	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 176		rdev_err(rdev, "operation not allowed\n");
 177		return -EPERM;
 178	}
 179
 180	if (*max_uV > rdev->constraints->max_uV)
 181		*max_uV = rdev->constraints->max_uV;
 182	if (*min_uV < rdev->constraints->min_uV)
 183		*min_uV = rdev->constraints->min_uV;
 184
 185	if (*min_uV > *max_uV) {
 186		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 187			 *min_uV, *max_uV);
 188		return -EINVAL;
 189	}
 190
 191	return 0;
 192}
 193
 194/* Make sure we select a voltage that suits the needs of all
 195 * regulator consumers
 196 */
 197static int regulator_check_consumers(struct regulator_dev *rdev,
 198				     int *min_uV, int *max_uV)
 199{
 200	struct regulator *regulator;
 201
 202	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 203		/*
 204		 * Assume consumers that didn't say anything are OK
 205		 * with anything in the constraint range.
 206		 */
 207		if (!regulator->min_uV && !regulator->max_uV)
 208			continue;
 209
 210		if (*max_uV > regulator->max_uV)
 211			*max_uV = regulator->max_uV;
 212		if (*min_uV < regulator->min_uV)
 213			*min_uV = regulator->min_uV;
 214	}
 215
 216	if (*min_uV > *max_uV) {
 217		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 218			*min_uV, *max_uV);
 219		return -EINVAL;
 220	}
 221
 222	return 0;
 223}
 224
 225/* current constraint check */
 226static int regulator_check_current_limit(struct regulator_dev *rdev,
 227					int *min_uA, int *max_uA)
 228{
 229	BUG_ON(*min_uA > *max_uA);
 230
 231	if (!rdev->constraints) {
 232		rdev_err(rdev, "no constraints\n");
 233		return -ENODEV;
 234	}
 235	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 236		rdev_err(rdev, "operation not allowed\n");
 237		return -EPERM;
 238	}
 239
 240	if (*max_uA > rdev->constraints->max_uA)
 241		*max_uA = rdev->constraints->max_uA;
 242	if (*min_uA < rdev->constraints->min_uA)
 243		*min_uA = rdev->constraints->min_uA;
 244
 245	if (*min_uA > *max_uA) {
 246		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 247			 *min_uA, *max_uA);
 248		return -EINVAL;
 249	}
 250
 251	return 0;
 252}
 253
 254/* operating mode constraint check */
 255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 256{
 257	switch (*mode) {
 258	case REGULATOR_MODE_FAST:
 259	case REGULATOR_MODE_NORMAL:
 260	case REGULATOR_MODE_IDLE:
 261	case REGULATOR_MODE_STANDBY:
 262		break;
 263	default:
 264		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 265		return -EINVAL;
 266	}
 267
 268	if (!rdev->constraints) {
 269		rdev_err(rdev, "no constraints\n");
 270		return -ENODEV;
 271	}
 272	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 273		rdev_err(rdev, "operation not allowed\n");
 274		return -EPERM;
 275	}
 276
 277	/* The modes are bitmasks, the most power hungry modes having
 278	 * the lowest values. If the requested mode isn't supported
 279	 * try higher modes. */
 280	while (*mode) {
 281		if (rdev->constraints->valid_modes_mask & *mode)
 282			return 0;
 283		*mode /= 2;
 284	}
 285
 286	return -EINVAL;
 287}
 288
 289/* dynamic regulator mode switching constraint check */
 290static int regulator_check_drms(struct regulator_dev *rdev)
 291{
 292	if (!rdev->constraints) {
 293		rdev_err(rdev, "no constraints\n");
 294		return -ENODEV;
 295	}
 296	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 297		rdev_err(rdev, "operation not allowed\n");
 298		return -EPERM;
 299	}
 300	return 0;
 301}
 302
 
 
 
 
 
 
 
 
 
 
 
 
 303static ssize_t regulator_uV_show(struct device *dev,
 304				struct device_attribute *attr, char *buf)
 305{
 306	struct regulator_dev *rdev = dev_get_drvdata(dev);
 307	ssize_t ret;
 308
 309	mutex_lock(&rdev->mutex);
 310	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 311	mutex_unlock(&rdev->mutex);
 312
 313	return ret;
 314}
 315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 316
 317static ssize_t regulator_uA_show(struct device *dev,
 318				struct device_attribute *attr, char *buf)
 319{
 320	struct regulator_dev *rdev = dev_get_drvdata(dev);
 321
 322	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 323}
 324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 325
 326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 327			 char *buf)
 328{
 329	struct regulator_dev *rdev = dev_get_drvdata(dev);
 330
 331	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 332}
 333static DEVICE_ATTR_RO(name);
 334
 335static ssize_t regulator_print_opmode(char *buf, int mode)
 336{
 337	switch (mode) {
 338	case REGULATOR_MODE_FAST:
 339		return sprintf(buf, "fast\n");
 340	case REGULATOR_MODE_NORMAL:
 341		return sprintf(buf, "normal\n");
 342	case REGULATOR_MODE_IDLE:
 343		return sprintf(buf, "idle\n");
 344	case REGULATOR_MODE_STANDBY:
 345		return sprintf(buf, "standby\n");
 346	}
 347	return sprintf(buf, "unknown\n");
 348}
 349
 350static ssize_t regulator_opmode_show(struct device *dev,
 351				    struct device_attribute *attr, char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 356}
 357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 358
 359static ssize_t regulator_print_state(char *buf, int state)
 360{
 361	if (state > 0)
 362		return sprintf(buf, "enabled\n");
 363	else if (state == 0)
 364		return sprintf(buf, "disabled\n");
 365	else
 366		return sprintf(buf, "unknown\n");
 367}
 368
 369static ssize_t regulator_state_show(struct device *dev,
 370				   struct device_attribute *attr, char *buf)
 371{
 372	struct regulator_dev *rdev = dev_get_drvdata(dev);
 373	ssize_t ret;
 374
 375	mutex_lock(&rdev->mutex);
 376	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 377	mutex_unlock(&rdev->mutex);
 378
 379	return ret;
 380}
 381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 382
 383static ssize_t regulator_status_show(struct device *dev,
 384				   struct device_attribute *attr, char *buf)
 385{
 386	struct regulator_dev *rdev = dev_get_drvdata(dev);
 387	int status;
 388	char *label;
 389
 390	status = rdev->desc->ops->get_status(rdev);
 391	if (status < 0)
 392		return status;
 393
 394	switch (status) {
 395	case REGULATOR_STATUS_OFF:
 396		label = "off";
 397		break;
 398	case REGULATOR_STATUS_ON:
 399		label = "on";
 400		break;
 401	case REGULATOR_STATUS_ERROR:
 402		label = "error";
 403		break;
 404	case REGULATOR_STATUS_FAST:
 405		label = "fast";
 406		break;
 407	case REGULATOR_STATUS_NORMAL:
 408		label = "normal";
 409		break;
 410	case REGULATOR_STATUS_IDLE:
 411		label = "idle";
 412		break;
 413	case REGULATOR_STATUS_STANDBY:
 414		label = "standby";
 415		break;
 416	case REGULATOR_STATUS_BYPASS:
 417		label = "bypass";
 418		break;
 419	case REGULATOR_STATUS_UNDEFINED:
 420		label = "undefined";
 421		break;
 422	default:
 423		return -ERANGE;
 424	}
 425
 426	return sprintf(buf, "%s\n", label);
 427}
 428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 429
 430static ssize_t regulator_min_uA_show(struct device *dev,
 431				    struct device_attribute *attr, char *buf)
 432{
 433	struct regulator_dev *rdev = dev_get_drvdata(dev);
 434
 435	if (!rdev->constraints)
 436		return sprintf(buf, "constraint not defined\n");
 437
 438	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 439}
 440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 441
 442static ssize_t regulator_max_uA_show(struct device *dev,
 443				    struct device_attribute *attr, char *buf)
 444{
 445	struct regulator_dev *rdev = dev_get_drvdata(dev);
 446
 447	if (!rdev->constraints)
 448		return sprintf(buf, "constraint not defined\n");
 449
 450	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 451}
 452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 453
 454static ssize_t regulator_min_uV_show(struct device *dev,
 455				    struct device_attribute *attr, char *buf)
 456{
 457	struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459	if (!rdev->constraints)
 460		return sprintf(buf, "constraint not defined\n");
 461
 462	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 463}
 464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 465
 466static ssize_t regulator_max_uV_show(struct device *dev,
 467				    struct device_attribute *attr, char *buf)
 468{
 469	struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471	if (!rdev->constraints)
 472		return sprintf(buf, "constraint not defined\n");
 473
 474	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 475}
 476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 477
 478static ssize_t regulator_total_uA_show(struct device *dev,
 479				      struct device_attribute *attr, char *buf)
 480{
 481	struct regulator_dev *rdev = dev_get_drvdata(dev);
 482	struct regulator *regulator;
 483	int uA = 0;
 484
 485	mutex_lock(&rdev->mutex);
 486	list_for_each_entry(regulator, &rdev->consumer_list, list)
 487		uA += regulator->uA_load;
 488	mutex_unlock(&rdev->mutex);
 489	return sprintf(buf, "%d\n", uA);
 490}
 491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 492
 493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 494			      char *buf)
 495{
 496	struct regulator_dev *rdev = dev_get_drvdata(dev);
 497	return sprintf(buf, "%d\n", rdev->use_count);
 498}
 499static DEVICE_ATTR_RO(num_users);
 500
 501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 502			 char *buf)
 503{
 504	struct regulator_dev *rdev = dev_get_drvdata(dev);
 505
 506	switch (rdev->desc->type) {
 507	case REGULATOR_VOLTAGE:
 508		return sprintf(buf, "voltage\n");
 509	case REGULATOR_CURRENT:
 510		return sprintf(buf, "current\n");
 511	}
 512	return sprintf(buf, "unknown\n");
 513}
 514static DEVICE_ATTR_RO(type);
 515
 516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 517				struct device_attribute *attr, char *buf)
 518{
 519	struct regulator_dev *rdev = dev_get_drvdata(dev);
 520
 521	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 522}
 523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 524		regulator_suspend_mem_uV_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 532}
 533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 534		regulator_suspend_disk_uV_show, NULL);
 535
 536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 537				struct device_attribute *attr, char *buf)
 538{
 539	struct regulator_dev *rdev = dev_get_drvdata(dev);
 540
 541	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 542}
 543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 544		regulator_suspend_standby_uV_show, NULL);
 545
 546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 547				struct device_attribute *attr, char *buf)
 548{
 549	struct regulator_dev *rdev = dev_get_drvdata(dev);
 550
 551	return regulator_print_opmode(buf,
 552		rdev->constraints->state_mem.mode);
 553}
 554static DEVICE_ATTR(suspend_mem_mode, 0444,
 555		regulator_suspend_mem_mode_show, NULL);
 556
 557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 558				struct device_attribute *attr, char *buf)
 559{
 560	struct regulator_dev *rdev = dev_get_drvdata(dev);
 561
 562	return regulator_print_opmode(buf,
 563		rdev->constraints->state_disk.mode);
 564}
 565static DEVICE_ATTR(suspend_disk_mode, 0444,
 566		regulator_suspend_disk_mode_show, NULL);
 567
 568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 569				struct device_attribute *attr, char *buf)
 570{
 571	struct regulator_dev *rdev = dev_get_drvdata(dev);
 572
 573	return regulator_print_opmode(buf,
 574		rdev->constraints->state_standby.mode);
 575}
 576static DEVICE_ATTR(suspend_standby_mode, 0444,
 577		regulator_suspend_standby_mode_show, NULL);
 578
 579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 580				   struct device_attribute *attr, char *buf)
 581{
 582	struct regulator_dev *rdev = dev_get_drvdata(dev);
 583
 584	return regulator_print_state(buf,
 585			rdev->constraints->state_mem.enabled);
 586}
 587static DEVICE_ATTR(suspend_mem_state, 0444,
 588		regulator_suspend_mem_state_show, NULL);
 589
 590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 591				   struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594
 595	return regulator_print_state(buf,
 596			rdev->constraints->state_disk.enabled);
 597}
 598static DEVICE_ATTR(suspend_disk_state, 0444,
 599		regulator_suspend_disk_state_show, NULL);
 600
 601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 602				   struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return regulator_print_state(buf,
 607			rdev->constraints->state_standby.enabled);
 608}
 609static DEVICE_ATTR(suspend_standby_state, 0444,
 610		regulator_suspend_standby_state_show, NULL);
 611
 612static ssize_t regulator_bypass_show(struct device *dev,
 613				     struct device_attribute *attr, char *buf)
 614{
 615	struct regulator_dev *rdev = dev_get_drvdata(dev);
 616	const char *report;
 617	bool bypass;
 618	int ret;
 619
 620	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 621
 622	if (ret != 0)
 623		report = "unknown";
 624	else if (bypass)
 625		report = "enabled";
 626	else
 627		report = "disabled";
 628
 629	return sprintf(buf, "%s\n", report);
 630}
 631static DEVICE_ATTR(bypass, 0444,
 632		   regulator_bypass_show, NULL);
 633
 634/*
 635 * These are the only attributes are present for all regulators.
 636 * Other attributes are a function of regulator functionality.
 637 */
 638static struct attribute *regulator_dev_attrs[] = {
 639	&dev_attr_name.attr,
 640	&dev_attr_num_users.attr,
 641	&dev_attr_type.attr,
 642	NULL,
 643};
 644ATTRIBUTE_GROUPS(regulator_dev);
 645
 646static void regulator_dev_release(struct device *dev)
 647{
 648	struct regulator_dev *rdev = dev_get_drvdata(dev);
 649	kfree(rdev);
 650}
 651
 652static struct class regulator_class = {
 653	.name = "regulator",
 654	.dev_release = regulator_dev_release,
 655	.dev_groups = regulator_dev_groups,
 656};
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 660static void drms_uA_update(struct regulator_dev *rdev)
 661{
 662	struct regulator *sibling;
 663	int current_uA = 0, output_uV, input_uV, err;
 664	unsigned int mode;
 665
 666	err = regulator_check_drms(rdev);
 667	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 668	    (!rdev->desc->ops->get_voltage &&
 669	     !rdev->desc->ops->get_voltage_sel) ||
 670	    !rdev->desc->ops->set_mode)
 671		return;
 672
 673	/* get output voltage */
 674	output_uV = _regulator_get_voltage(rdev);
 675	if (output_uV <= 0)
 676		return;
 677
 678	/* get input voltage */
 679	input_uV = 0;
 680	if (rdev->supply)
 681		input_uV = regulator_get_voltage(rdev->supply);
 682	if (input_uV <= 0)
 683		input_uV = rdev->constraints->input_uV;
 684	if (input_uV <= 0)
 685		return;
 686
 687	/* calc total requested load */
 688	list_for_each_entry(sibling, &rdev->consumer_list, list)
 689		current_uA += sibling->uA_load;
 690
 691	/* now get the optimum mode for our new total regulator load */
 692	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 693						  output_uV, current_uA);
 694
 695	/* check the new mode is allowed */
 696	err = regulator_mode_constrain(rdev, &mode);
 697	if (err == 0)
 698		rdev->desc->ops->set_mode(rdev, mode);
 699}
 700
 701static int suspend_set_state(struct regulator_dev *rdev,
 702	struct regulator_state *rstate)
 703{
 704	int ret = 0;
 
 
 
 
 705
 706	/* If we have no suspend mode configration don't set anything;
 707	 * only warn if the driver implements set_suspend_voltage or
 708	 * set_suspend_mode callback.
 709	 */
 710	if (!rstate->enabled && !rstate->disabled) {
 711		if (rdev->desc->ops->set_suspend_voltage ||
 712		    rdev->desc->ops->set_suspend_mode)
 713			rdev_warn(rdev, "No configuration\n");
 714		return 0;
 715	}
 716
 717	if (rstate->enabled && rstate->disabled) {
 718		rdev_err(rdev, "invalid configuration\n");
 719		return -EINVAL;
 720	}
 721
 722	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 723		ret = rdev->desc->ops->set_suspend_enable(rdev);
 724	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 725		ret = rdev->desc->ops->set_suspend_disable(rdev);
 726	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 727		ret = 0;
 728
 729	if (ret < 0) {
 730		rdev_err(rdev, "failed to enabled/disable\n");
 731		return ret;
 732	}
 733
 734	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 735		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 736		if (ret < 0) {
 737			rdev_err(rdev, "failed to set voltage\n");
 738			return ret;
 739		}
 740	}
 741
 742	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 743		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 744		if (ret < 0) {
 745			rdev_err(rdev, "failed to set mode\n");
 746			return ret;
 747		}
 748	}
 749	return ret;
 750}
 751
 752/* locks held by caller */
 753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 754{
 755	if (!rdev->constraints)
 756		return -EINVAL;
 757
 758	switch (state) {
 759	case PM_SUSPEND_STANDBY:
 760		return suspend_set_state(rdev,
 761			&rdev->constraints->state_standby);
 762	case PM_SUSPEND_MEM:
 763		return suspend_set_state(rdev,
 764			&rdev->constraints->state_mem);
 765	case PM_SUSPEND_MAX:
 766		return suspend_set_state(rdev,
 767			&rdev->constraints->state_disk);
 768	default:
 769		return -EINVAL;
 770	}
 771}
 772
 773static void print_constraints(struct regulator_dev *rdev)
 774{
 775	struct regulation_constraints *constraints = rdev->constraints;
 776	char buf[80] = "";
 777	int count = 0;
 778	int ret;
 779
 780	if (constraints->min_uV && constraints->max_uV) {
 781		if (constraints->min_uV == constraints->max_uV)
 782			count += sprintf(buf + count, "%d mV ",
 783					 constraints->min_uV / 1000);
 784		else
 785			count += sprintf(buf + count, "%d <--> %d mV ",
 786					 constraints->min_uV / 1000,
 787					 constraints->max_uV / 1000);
 788	}
 789
 790	if (!constraints->min_uV ||
 791	    constraints->min_uV != constraints->max_uV) {
 792		ret = _regulator_get_voltage(rdev);
 793		if (ret > 0)
 794			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 795	}
 796
 797	if (constraints->uV_offset)
 798		count += sprintf(buf, "%dmV offset ",
 799				 constraints->uV_offset / 1000);
 800
 801	if (constraints->min_uA && constraints->max_uA) {
 802		if (constraints->min_uA == constraints->max_uA)
 803			count += sprintf(buf + count, "%d mA ",
 804					 constraints->min_uA / 1000);
 805		else
 806			count += sprintf(buf + count, "%d <--> %d mA ",
 807					 constraints->min_uA / 1000,
 808					 constraints->max_uA / 1000);
 809	}
 810
 811	if (!constraints->min_uA ||
 812	    constraints->min_uA != constraints->max_uA) {
 813		ret = _regulator_get_current_limit(rdev);
 814		if (ret > 0)
 815			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 816	}
 817
 818	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 819		count += sprintf(buf + count, "fast ");
 820	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 821		count += sprintf(buf + count, "normal ");
 822	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 823		count += sprintf(buf + count, "idle ");
 824	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 825		count += sprintf(buf + count, "standby");
 826
 827	if (!count)
 828		sprintf(buf, "no parameters");
 829
 830	rdev_info(rdev, "%s\n", buf);
 831
 832	if ((constraints->min_uV != constraints->max_uV) &&
 833	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
 834		rdev_warn(rdev,
 835			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 836}
 837
 838static int machine_constraints_voltage(struct regulator_dev *rdev,
 839	struct regulation_constraints *constraints)
 840{
 841	struct regulator_ops *ops = rdev->desc->ops;
 842	int ret;
 843
 844	/* do we need to apply the constraint voltage */
 845	if (rdev->constraints->apply_uV &&
 846	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 847		ret = _regulator_do_set_voltage(rdev,
 848						rdev->constraints->min_uV,
 849						rdev->constraints->max_uV);
 850		if (ret < 0) {
 851			rdev_err(rdev, "failed to apply %duV constraint\n",
 852				 rdev->constraints->min_uV);
 853			return ret;
 854		}
 855	}
 856
 857	/* constrain machine-level voltage specs to fit
 858	 * the actual range supported by this regulator.
 859	 */
 860	if (ops->list_voltage && rdev->desc->n_voltages) {
 861		int	count = rdev->desc->n_voltages;
 862		int	i;
 863		int	min_uV = INT_MAX;
 864		int	max_uV = INT_MIN;
 865		int	cmin = constraints->min_uV;
 866		int	cmax = constraints->max_uV;
 867
 868		/* it's safe to autoconfigure fixed-voltage supplies
 869		   and the constraints are used by list_voltage. */
 870		if (count == 1 && !cmin) {
 871			cmin = 1;
 872			cmax = INT_MAX;
 873			constraints->min_uV = cmin;
 874			constraints->max_uV = cmax;
 875		}
 876
 877		/* voltage constraints are optional */
 878		if ((cmin == 0) && (cmax == 0))
 879			return 0;
 880
 881		/* else require explicit machine-level constraints */
 882		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 883			rdev_err(rdev, "invalid voltage constraints\n");
 884			return -EINVAL;
 885		}
 886
 887		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 888		for (i = 0; i < count; i++) {
 889			int	value;
 890
 891			value = ops->list_voltage(rdev, i);
 892			if (value <= 0)
 893				continue;
 894
 895			/* maybe adjust [min_uV..max_uV] */
 896			if (value >= cmin && value < min_uV)
 897				min_uV = value;
 898			if (value <= cmax && value > max_uV)
 899				max_uV = value;
 900		}
 901
 902		/* final: [min_uV..max_uV] valid iff constraints valid */
 903		if (max_uV < min_uV) {
 904			rdev_err(rdev,
 905				 "unsupportable voltage constraints %u-%uuV\n",
 906				 min_uV, max_uV);
 907			return -EINVAL;
 908		}
 909
 910		/* use regulator's subset of machine constraints */
 911		if (constraints->min_uV < min_uV) {
 912			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 913				 constraints->min_uV, min_uV);
 914			constraints->min_uV = min_uV;
 915		}
 916		if (constraints->max_uV > max_uV) {
 917			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 918				 constraints->max_uV, max_uV);
 919			constraints->max_uV = max_uV;
 920		}
 921	}
 922
 923	return 0;
 924}
 925
 926static int machine_constraints_current(struct regulator_dev *rdev,
 927	struct regulation_constraints *constraints)
 928{
 929	struct regulator_ops *ops = rdev->desc->ops;
 930	int ret;
 931
 932	if (!constraints->min_uA && !constraints->max_uA)
 933		return 0;
 934
 935	if (constraints->min_uA > constraints->max_uA) {
 936		rdev_err(rdev, "Invalid current constraints\n");
 937		return -EINVAL;
 938	}
 939
 940	if (!ops->set_current_limit || !ops->get_current_limit) {
 941		rdev_warn(rdev, "Operation of current configuration missing\n");
 942		return 0;
 943	}
 944
 945	/* Set regulator current in constraints range */
 946	ret = ops->set_current_limit(rdev, constraints->min_uA,
 947			constraints->max_uA);
 948	if (ret < 0) {
 949		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
 950		return ret;
 951	}
 952
 953	return 0;
 954}
 955
 956static int _regulator_do_enable(struct regulator_dev *rdev);
 957
 958/**
 959 * set_machine_constraints - sets regulator constraints
 960 * @rdev: regulator source
 961 * @constraints: constraints to apply
 962 *
 963 * Allows platform initialisation code to define and constrain
 964 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 965 * Constraints *must* be set by platform code in order for some
 966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 967 * set_mode.
 968 */
 969static int set_machine_constraints(struct regulator_dev *rdev,
 970	const struct regulation_constraints *constraints)
 971{
 972	int ret = 0;
 973	struct regulator_ops *ops = rdev->desc->ops;
 974
 975	if (constraints)
 976		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 977					    GFP_KERNEL);
 978	else
 979		rdev->constraints = kzalloc(sizeof(*constraints),
 980					    GFP_KERNEL);
 981	if (!rdev->constraints)
 982		return -ENOMEM;
 983
 984	ret = machine_constraints_voltage(rdev, rdev->constraints);
 985	if (ret != 0)
 986		goto out;
 987
 988	ret = machine_constraints_current(rdev, rdev->constraints);
 989	if (ret != 0)
 990		goto out;
 991
 992	/* do we need to setup our suspend state */
 993	if (rdev->constraints->initial_state) {
 994		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 995		if (ret < 0) {
 996			rdev_err(rdev, "failed to set suspend state\n");
 997			goto out;
 998		}
 999	}
1000
1001	if (rdev->constraints->initial_mode) {
1002		if (!ops->set_mode) {
1003			rdev_err(rdev, "no set_mode operation\n");
1004			ret = -EINVAL;
1005			goto out;
1006		}
1007
1008		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009		if (ret < 0) {
1010			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011			goto out;
1012		}
1013	}
1014
1015	/* If the constraints say the regulator should be on at this point
1016	 * and we have control then make sure it is enabled.
1017	 */
1018	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019		ret = _regulator_do_enable(rdev);
1020		if (ret < 0 && ret != -EINVAL) {
 
1021			rdev_err(rdev, "failed to enable\n");
1022			goto out;
1023		}
1024	}
1025
1026	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027		&& ops->set_ramp_delay) {
1028		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029		if (ret < 0) {
1030			rdev_err(rdev, "failed to set ramp_delay\n");
1031			goto out;
1032		}
1033	}
1034
1035	print_constraints(rdev);
1036	return 0;
1037out:
1038	kfree(rdev->constraints);
1039	rdev->constraints = NULL;
1040	return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053		      struct regulator_dev *supply_rdev)
1054{
1055	int err;
1056
1057	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060	if (rdev->supply == NULL) {
1061		err = -ENOMEM;
 
1062		return err;
1063	}
1064	supply_rdev->open_count++;
1065
1066	return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev:         regulator source
 
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply:       symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices.  Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
 
 
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081				      const char *consumer_dev_name,
1082				      const char *supply)
1083{
1084	struct regulator_map *node;
1085	int has_dev;
1086
 
 
 
 
 
 
1087	if (supply == NULL)
1088		return -EINVAL;
1089
1090	if (consumer_dev_name != NULL)
1091		has_dev = 1;
1092	else
1093		has_dev = 0;
1094
1095	list_for_each_entry(node, &regulator_map_list, list) {
1096		if (node->dev_name && consumer_dev_name) {
1097			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098				continue;
1099		} else if (node->dev_name || consumer_dev_name) {
1100			continue;
1101		}
1102
1103		if (strcmp(node->supply, supply) != 0)
1104			continue;
1105
1106		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107			 consumer_dev_name,
1108			 dev_name(&node->regulator->dev),
1109			 node->regulator->desc->name,
1110			 supply,
1111			 dev_name(&rdev->dev), rdev_get_name(rdev));
1112		return -EBUSY;
1113	}
1114
1115	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116	if (node == NULL)
1117		return -ENOMEM;
1118
1119	node->regulator = rdev;
1120	node->supply = supply;
1121
1122	if (has_dev) {
1123		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124		if (node->dev_name == NULL) {
1125			kfree(node);
1126			return -ENOMEM;
1127		}
1128	}
1129
1130	list_add(&node->list, &regulator_map_list);
1131	return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136	struct regulator_map *node, *n;
1137
1138	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1139		if (rdev == node->regulator) {
1140			list_del(&node->list);
1141			kfree(node->dev_name);
1142			kfree(node);
1143		}
1144	}
1145}
1146
1147#define REG_STR_SIZE	64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150					  struct device *dev,
1151					  const char *supply_name)
1152{
1153	struct regulator *regulator;
1154	char buf[REG_STR_SIZE];
1155	int err, size;
1156
1157	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158	if (regulator == NULL)
1159		return NULL;
1160
1161	mutex_lock(&rdev->mutex);
1162	regulator->rdev = rdev;
1163	list_add(&regulator->list, &rdev->consumer_list);
1164
1165	if (dev) {
 
 
 
 
 
 
 
1166		regulator->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
1167
1168		/* Add a link to the device sysfs entry */
1169		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170				 dev->kobj.name, supply_name);
1171		if (size >= REG_STR_SIZE)
1172			goto overflow_err;
1173
1174		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175		if (regulator->supply_name == NULL)
1176			goto overflow_err;
1177
1178		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179					buf);
1180		if (err) {
1181			rdev_warn(rdev, "could not add device link %s err %d\n",
1182				  dev->kobj.name, err);
1183			/* non-fatal */
1184		}
1185	} else {
1186		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187		if (regulator->supply_name == NULL)
1188			goto overflow_err;
1189	}
1190
 
1191	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192						rdev->debugfs);
1193	if (!regulator->debugfs) {
1194		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
1195	} else {
1196		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197				   &regulator->uA_load);
1198		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199				   &regulator->min_uV);
1200		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201				   &regulator->max_uV);
1202	}
1203
1204	/*
1205	 * Check now if the regulator is an always on regulator - if
1206	 * it is then we don't need to do nearly so much work for
1207	 * enable/disable calls.
1208	 */
1209	if (!_regulator_can_change_status(rdev) &&
1210	    _regulator_is_enabled(rdev))
1211		regulator->always_on = true;
1212
1213	mutex_unlock(&rdev->mutex);
1214	return regulator;
 
 
 
 
 
 
1215overflow_err:
1216	list_del(&regulator->list);
1217	kfree(regulator);
1218	mutex_unlock(&rdev->mutex);
1219	return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224	if (rdev->constraints && rdev->constraints->enable_time)
1225		return rdev->constraints->enable_time;
1226	if (!rdev->desc->ops->enable_time)
1227		return rdev->desc->enable_time;
1228	return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232		struct device *dev, const char *supply)
 
1233{
1234	struct regulator_supply_alias *map;
1235
1236	list_for_each_entry(map, &regulator_supply_alias_list, list)
1237		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238			return map;
1239
1240	return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245	struct regulator_supply_alias *map;
1246
1247	map = regulator_find_supply_alias(*dev, *supply);
1248	if (map) {
1249		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250				*supply, map->alias_supply,
1251				dev_name(map->alias_dev));
1252		*dev = map->alias_dev;
1253		*supply = map->alias_supply;
1254	}
1255}
1256
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258						  const char *supply,
1259						  int *ret)
1260{
1261	struct regulator_dev *r;
1262	struct device_node *node;
1263	struct regulator_map *map;
 
1264	const char *devname = NULL;
 
1265
1266	regulator_supply_alias(&dev, &supply);
1267
1268	/* first do a dt based lookup */
1269	if (dev && dev->of_node) {
1270		node = of_get_regulator(dev, supply);
1271		if (node) {
1272			list_for_each_entry(r, &regulator_list, list)
1273				if (r->dev.parent &&
1274					node == r->dev.of_node)
1275					return r;
1276			*ret = -EPROBE_DEFER;
1277			return NULL;
1278		} else {
1279			/*
1280			 * If we couldn't even get the node then it's
1281			 * not just that the device didn't register
1282			 * yet, there's no node and we'll never
1283			 * succeed.
1284			 */
1285			*ret = -ENODEV;
1286		}
1287	}
1288
1289	/* if not found, try doing it non-dt way */
1290	if (dev)
1291		devname = dev_name(dev);
1292
1293	list_for_each_entry(r, &regulator_list, list)
1294		if (strcmp(rdev_get_name(r), supply) == 0)
1295			return r;
1296
1297	list_for_each_entry(map, &regulator_map_list, list) {
1298		/* If the mapping has a device set up it must match */
1299		if (map->dev_name &&
1300		    (!devname || strcmp(map->dev_name, devname)))
1301			continue;
1302
1303		if (strcmp(map->supply, supply) == 0)
1304			return map->regulator;
 
 
1305	}
1306
1307
1308	return NULL;
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313					bool exclusive, bool allow_dummy)
1314{
1315	struct regulator_dev *rdev;
1316	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317	const char *devname = NULL;
1318	int ret;
1319
1320	if (id == NULL) {
1321		pr_err("get() with no identifier\n");
1322		return ERR_PTR(-EINVAL);
1323	}
1324
1325	if (dev)
1326		devname = dev_name(dev);
1327
1328	if (have_full_constraints())
1329		ret = -ENODEV;
1330	else
1331		ret = -EPROBE_DEFER;
1332
1333	mutex_lock(&regulator_list_mutex);
1334
1335	rdev = regulator_dev_lookup(dev, id, &ret);
1336	if (rdev)
1337		goto found;
1338
1339	regulator = ERR_PTR(ret);
1340
1341	/*
1342	 * If we have return value from dev_lookup fail, we do not expect to
1343	 * succeed, so, quit with appropriate error value
1344	 */
1345	if (ret && ret != -ENODEV)
1346		goto out;
1347
1348	if (!devname)
1349		devname = "deviceless";
1350
1351	/*
1352	 * Assume that a regulator is physically present and enabled
1353	 * even if it isn't hooked up and just provide a dummy.
1354	 */
1355	if (have_full_constraints() && allow_dummy) {
1356		pr_warn("%s supply %s not found, using dummy regulator\n",
1357			devname, id);
1358
1359		rdev = dummy_regulator_rdev;
1360		goto found;
1361	/* Don't log an error when called from regulator_get_optional() */
1362	} else if (!have_full_constraints() || exclusive) {
1363		dev_warn(dev, "dummy supplies not allowed\n");
1364	}
 
1365
1366	mutex_unlock(&regulator_list_mutex);
1367	return regulator;
1368
1369found:
1370	if (rdev->exclusive) {
1371		regulator = ERR_PTR(-EPERM);
1372		goto out;
1373	}
1374
1375	if (exclusive && rdev->open_count) {
1376		regulator = ERR_PTR(-EBUSY);
1377		goto out;
1378	}
1379
1380	if (!try_module_get(rdev->owner))
1381		goto out;
1382
1383	regulator = create_regulator(rdev, dev, id);
1384	if (regulator == NULL) {
1385		regulator = ERR_PTR(-ENOMEM);
1386		module_put(rdev->owner);
1387		goto out;
1388	}
1389
1390	rdev->open_count++;
1391	if (exclusive) {
1392		rdev->exclusive = 1;
1393
1394		ret = _regulator_is_enabled(rdev);
1395		if (ret > 0)
1396			rdev->use_count = 1;
1397		else
1398			rdev->use_count = 0;
1399	}
1400
1401out:
1402	mutex_unlock(&regulator_list_mutex);
1403
1404	return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged.  It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422	return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno.  Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged.  It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449	return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno.  Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged.  It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478	return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
1483static void _regulator_put(struct regulator *regulator)
1484{
1485	struct regulator_dev *rdev;
1486
1487	if (regulator == NULL || IS_ERR(regulator))
1488		return;
1489
 
1490	rdev = regulator->rdev;
1491
 
1492	debugfs_remove_recursive(regulator->debugfs);
 
1493
1494	/* remove any sysfs entries */
1495	if (regulator->dev)
1496		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
 
 
 
1497	kfree(regulator->supply_name);
1498	list_del(&regulator->list);
1499	kfree(regulator);
1500
1501	rdev->open_count--;
1502	rdev->exclusive = 0;
1503
1504	module_put(rdev->owner);
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517	mutex_lock(&regulator_list_mutex);
1518	_regulator_put(regulator);
1519	mutex_unlock(&regulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536				    struct device *alias_dev,
1537				    const char *alias_id)
1538{
1539	struct regulator_supply_alias *map;
 
1540
1541	map = regulator_find_supply_alias(dev, id);
1542	if (map)
1543		return -EEXIST;
1544
1545	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546	if (!map)
1547		return -ENOMEM;
1548
1549	map->src_dev = dev;
1550	map->src_supply = id;
1551	map->alias_dev = alias_dev;
1552	map->alias_supply = alias_id;
1553
1554	list_add(&map->list, &regulator_supply_alias_list);
1555
1556	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557		id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559	return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573	struct regulator_supply_alias *map;
1574
1575	map = regulator_find_supply_alias(dev, id);
1576	if (map) {
1577		list_del(&map->list);
1578		kfree(map);
1579	}
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation.  If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601					 struct device *alias_dev,
1602					 const char **alias_id,
1603					 int num_id)
1604{
1605	int i;
1606	int ret;
1607
1608	for (i = 0; i < num_id; ++i) {
1609		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610						      alias_id[i]);
1611		if (ret < 0)
1612			goto err;
1613	}
1614
1615	return 0;
1616
1617err:
1618	dev_err(dev,
1619		"Failed to create supply alias %s,%s -> %s,%s\n",
1620		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622	while (--i >= 0)
1623		regulator_unregister_supply_alias(dev, id[i]);
1624
1625	return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640					    const char **id,
1641					    int num_id)
1642{
1643	int i;
1644
1645	for (i = 0; i < num_id; ++i)
1646		regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653				const struct regulator_config *config)
1654{
1655	struct regulator_enable_gpio *pin;
1656	int ret;
1657
1658	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1659		if (pin->gpio == config->ena_gpio) {
1660			rdev_dbg(rdev, "GPIO %d is already used\n",
1661				config->ena_gpio);
1662			goto update_ena_gpio_to_rdev;
1663		}
1664	}
1665
1666	ret = gpio_request_one(config->ena_gpio,
1667				GPIOF_DIR_OUT | config->ena_gpio_flags,
1668				rdev_get_name(rdev));
1669	if (ret)
1670		return ret;
1671
1672	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673	if (pin == NULL) {
1674		gpio_free(config->ena_gpio);
1675		return -ENOMEM;
1676	}
1677
1678	pin->gpio = config->ena_gpio;
1679	pin->ena_gpio_invert = config->ena_gpio_invert;
1680	list_add(&pin->list, &regulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683	pin->request_count++;
1684	rdev->ena_pin = pin;
1685	return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690	struct regulator_enable_gpio *pin, *n;
1691
1692	if (!rdev->ena_pin)
1693		return;
1694
1695	/* Free the GPIO only in case of no use */
1696	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1697		if (pin->gpio == rdev->ena_pin->gpio) {
1698			if (pin->request_count <= 1) {
1699				pin->request_count = 0;
1700				gpio_free(pin->gpio);
1701				list_del(&pin->list);
1702				kfree(pin);
1703			} else {
1704				pin->request_count--;
1705			}
1706		}
1707	}
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720	struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722	if (!pin)
1723		return -EINVAL;
1724
1725	if (enable) {
1726		/* Enable GPIO at initial use */
1727		if (pin->enable_count == 0)
1728			gpio_set_value_cansleep(pin->gpio,
1729						!pin->ena_gpio_invert);
1730
1731		pin->enable_count++;
1732	} else {
1733		if (pin->enable_count > 1) {
1734			pin->enable_count--;
1735			return 0;
1736		}
1737
1738		/* Disable GPIO if not used */
1739		if (pin->enable_count <= 1) {
1740			gpio_set_value_cansleep(pin->gpio,
1741						pin->ena_gpio_invert);
1742			pin->enable_count = 0;
1743		}
1744	}
1745
1746	return 0;
1747}
1748
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751	int ret, delay;
1752
1753	/* Query before enabling in case configuration dependent.  */
1754	ret = _regulator_get_enable_time(rdev);
1755	if (ret >= 0) {
1756		delay = ret;
1757	} else {
1758		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759		delay = 0;
1760	}
1761
1762	trace_regulator_enable(rdev_get_name(rdev));
1763
1764	if (rdev->ena_pin) {
1765		ret = regulator_ena_gpio_ctrl(rdev, true);
1766		if (ret < 0)
1767			return ret;
1768		rdev->ena_gpio_state = 1;
1769	} else if (rdev->desc->ops->enable) {
1770		ret = rdev->desc->ops->enable(rdev);
1771		if (ret < 0)
1772			return ret;
1773	} else {
1774		return -EINVAL;
1775	}
1776
1777	/* Allow the regulator to ramp; it would be useful to extend
1778	 * this for bulk operations so that the regulators can ramp
1779	 * together.  */
1780	trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782	/*
1783	 * Delay for the requested amount of time as per the guidelines in:
1784	 *
1785	 *     Documentation/timers/timers-howto.txt
1786	 *
1787	 * The assumption here is that regulators will never be enabled in
1788	 * atomic context and therefore sleeping functions can be used.
1789	 */
1790	if (delay) {
1791		unsigned int ms = delay / 1000;
1792		unsigned int us = delay % 1000;
1793
1794		if (ms > 0) {
1795			/*
1796			 * For small enough values, handle super-millisecond
1797			 * delays in the usleep_range() call below.
1798			 */
1799			if (ms < 20)
1800				us += ms * 1000;
1801			else
1802				msleep(ms);
1803		}
1804
1805		/*
1806		 * Give the scheduler some room to coalesce with any other
1807		 * wakeup sources. For delays shorter than 10 us, don't even
1808		 * bother setting up high-resolution timers and just busy-
1809		 * loop.
1810		 */
1811		if (us >= 10)
1812			usleep_range(us, us + 100);
1813		else
1814			udelay(us);
1815	}
1816
1817	trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819	return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
1825	int ret;
1826
1827	/* check voltage and requested load before enabling */
1828	if (rdev->constraints &&
1829	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830		drms_uA_update(rdev);
1831
1832	if (rdev->use_count == 0) {
1833		/* The regulator may on if it's not switchable or left on */
1834		ret = _regulator_is_enabled(rdev);
1835		if (ret == -EINVAL || ret == 0) {
1836			if (!_regulator_can_change_status(rdev))
1837				return -EPERM;
1838
1839			ret = _regulator_do_enable(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840			if (ret < 0)
1841				return ret;
1842
 
 
 
 
 
 
 
 
 
 
 
1843		} else if (ret < 0) {
1844			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845			return ret;
1846		}
1847		/* Fallthrough on positive return values - already enabled */
1848	}
1849
1850	rdev->use_count++;
1851
1852	return 0;
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value.  Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868	struct regulator_dev *rdev = regulator->rdev;
1869	int ret = 0;
1870
1871	if (regulator->always_on)
1872		return 0;
1873
1874	if (rdev->supply) {
1875		ret = regulator_enable(rdev->supply);
1876		if (ret != 0)
1877			return ret;
1878	}
1879
1880	mutex_lock(&rdev->mutex);
1881	ret = _regulator_enable(rdev);
1882	mutex_unlock(&rdev->mutex);
1883
1884	if (ret != 0 && rdev->supply)
1885		regulator_disable(rdev->supply);
1886
1887	return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893	int ret;
1894
1895	trace_regulator_disable(rdev_get_name(rdev));
1896
1897	if (rdev->ena_pin) {
1898		ret = regulator_ena_gpio_ctrl(rdev, false);
1899		if (ret < 0)
1900			return ret;
1901		rdev->ena_gpio_state = 0;
1902
1903	} else if (rdev->desc->ops->disable) {
1904		ret = rdev->desc->ops->disable(rdev);
1905		if (ret != 0)
1906			return ret;
1907	}
1908
1909	trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911	return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
1917	int ret = 0;
1918
1919	if (WARN(rdev->use_count <= 0,
1920		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921		return -EIO;
1922
1923	/* are we the last user and permitted to disable ? */
1924	if (rdev->use_count == 1 &&
1925	    (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927		/* we are last user */
1928		if (_regulator_can_change_status(rdev)) {
1929			ret = _regulator_do_disable(rdev);
 
 
 
1930			if (ret < 0) {
1931				rdev_err(rdev, "failed to disable\n");
1932				return ret;
1933			}
 
 
 
1934			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935					NULL);
1936		}
1937
1938		rdev->use_count = 0;
1939	} else if (rdev->use_count > 1) {
1940
1941		if (rdev->constraints &&
1942			(rdev->constraints->valid_ops_mask &
1943			REGULATOR_CHANGE_DRMS))
1944			drms_uA_update(rdev);
1945
1946		rdev->use_count--;
1947	}
1948
1949	return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current.  Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966	struct regulator_dev *rdev = regulator->rdev;
1967	int ret = 0;
1968
1969	if (regulator->always_on)
1970		return 0;
1971
1972	mutex_lock(&rdev->mutex);
1973	ret = _regulator_disable(rdev);
1974	mutex_unlock(&rdev->mutex);
1975
1976	if (ret == 0 && rdev->supply)
1977		regulator_disable(rdev->supply);
1978
1979	return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986	int ret = 0;
1987
1988	ret = _regulator_do_disable(rdev);
1989	if (ret < 0) {
1990		rdev_err(rdev, "failed to force disable\n");
1991		return ret;
 
 
 
 
 
 
 
1992	}
1993
1994	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995			REGULATOR_EVENT_DISABLE, NULL);
1996
1997	return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011	struct regulator_dev *rdev = regulator->rdev;
2012	int ret;
2013
2014	mutex_lock(&rdev->mutex);
2015	regulator->uA_load = 0;
2016	ret = _regulator_force_disable(regulator->rdev);
2017	mutex_unlock(&rdev->mutex);
2018
2019	if (rdev->supply)
2020		while (rdev->open_count--)
2021			regulator_disable(rdev->supply);
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030						  disable_work.work);
2031	int count, i, ret;
2032
2033	mutex_lock(&rdev->mutex);
2034
2035	BUG_ON(!rdev->deferred_disables);
2036
2037	count = rdev->deferred_disables;
2038	rdev->deferred_disables = 0;
2039
2040	for (i = 0; i < count; i++) {
2041		ret = _regulator_disable(rdev);
2042		if (ret != 0)
2043			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044	}
2045
2046	mutex_unlock(&rdev->mutex);
2047
2048	if (rdev->supply) {
2049		for (i = 0; i < count; i++) {
2050			ret = regulator_disable(rdev->supply);
2051			if (ret != 0) {
2052				rdev_err(rdev,
2053					 "Supply disable failed: %d\n", ret);
2054			}
2055		}
2056	}
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay.  This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073	struct regulator_dev *rdev = regulator->rdev;
2074	int ret;
2075
2076	if (regulator->always_on)
2077		return 0;
2078
2079	if (!ms)
2080		return regulator_disable(regulator);
2081
2082	mutex_lock(&rdev->mutex);
2083	rdev->deferred_disables++;
2084	mutex_unlock(&rdev->mutex);
2085
2086	ret = queue_delayed_work(system_power_efficient_wq,
2087				 &rdev->disable_work,
2088				 msecs_to_jiffies(ms));
2089	if (ret < 0)
2090		return ret;
2091	else
2092		return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098	/* A GPIO control always takes precedence */
2099	if (rdev->ena_pin)
2100		return rdev->ena_gpio_state;
2101
2102	/* If we don't know then assume that the regulator is always on */
2103	if (!rdev->desc->ops->is_enabled)
2104		return 1;
2105
2106	return rdev->desc->ops->is_enabled(rdev);
2107}
2108
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123	int ret;
2124
2125	if (regulator->always_on)
2126		return 1;
2127
2128	mutex_lock(&regulator->rdev->mutex);
2129	ret = _regulator_is_enabled(regulator->rdev);
2130	mutex_unlock(&regulator->rdev->mutex);
2131
2132	return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147	struct regulator_dev	*rdev = regulator->rdev;
2148
2149	if (rdev->constraints &&
2150	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152			return 1;
2153
2154		if (rdev->desc->continuous_voltage_range &&
2155		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2157			return 1;
2158	}
2159
2160	return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno.  Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174	struct regulator_dev	*rdev = regulator->rdev;
2175
2176	return rdev->desc->n_voltages ? : -EINVAL;
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192	struct regulator_dev	*rdev = regulator->rdev;
2193	struct regulator_ops	*ops = rdev->desc->ops;
2194	int			ret;
2195
2196	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197		return rdev->desc->fixed_uV;
2198
2199	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200		return -EINVAL;
2201
2202	mutex_lock(&rdev->mutex);
2203	ret = ops->list_voltage(rdev, selector);
2204	mutex_unlock(&rdev->mutex);
2205
2206	if (ret > 0) {
2207		if (ret < rdev->constraints->min_uV)
2208			ret = 0;
2209		else if (ret > rdev->constraints->max_uV)
2210			ret = 0;
2211	}
2212
2213	return ret;
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226	struct regulator_dev *rdev = regulator->rdev;
2227
2228	return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242				   int min_uV, int max_uV)
2243{
2244	struct regulator_dev *rdev = regulator->rdev;
2245	int i, voltages, ret;
2246
2247	/* If we can't change voltage check the current voltage */
2248	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249		ret = regulator_get_voltage(regulator);
2250		if (ret >= 0)
2251			return min_uV <= ret && ret <= max_uV;
2252		else
2253			return ret;
2254	}
2255
2256	/* Any voltage within constrains range is fine? */
2257	if (rdev->desc->continuous_voltage_range)
2258		return min_uV >= rdev->constraints->min_uV &&
2259				max_uV <= rdev->constraints->max_uV;
2260
2261	ret = regulator_count_voltages(regulator);
2262	if (ret < 0)
2263		return ret;
2264	voltages = ret;
2265
2266	for (i = 0; i < voltages; i++) {
2267		ret = regulator_list_voltage(regulator, i);
2268
2269		if (ret >= min_uV && ret <= max_uV)
2270			return 1;
2271	}
2272
2273	return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278				     int min_uV, int max_uV)
2279{
2280	int ret;
2281	int delay = 0;
2282	int best_val = 0;
2283	unsigned int selector;
2284	int old_selector = -1;
2285
2286	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288	min_uV += rdev->constraints->uV_offset;
2289	max_uV += rdev->constraints->uV_offset;
2290
2291	/*
2292	 * If we can't obtain the old selector there is not enough
2293	 * info to call set_voltage_time_sel().
2294	 */
2295	if (_regulator_is_enabled(rdev) &&
2296	    rdev->desc->ops->set_voltage_time_sel &&
2297	    rdev->desc->ops->get_voltage_sel) {
2298		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299		if (old_selector < 0)
2300			return old_selector;
2301	}
2302
2303	if (rdev->desc->ops->set_voltage) {
2304		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305						   &selector);
2306
2307		if (ret >= 0) {
2308			if (rdev->desc->ops->list_voltage)
2309				best_val = rdev->desc->ops->list_voltage(rdev,
2310									 selector);
2311			else
2312				best_val = _regulator_get_voltage(rdev);
2313		}
 
 
 
 
 
 
 
 
 
 
 
2314
2315	} else if (rdev->desc->ops->set_voltage_sel) {
2316		if (rdev->desc->ops->map_voltage) {
2317			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318							   max_uV);
2319		} else {
2320			if (rdev->desc->ops->list_voltage ==
2321			    regulator_list_voltage_linear)
2322				ret = regulator_map_voltage_linear(rdev,
2323								min_uV, max_uV);
2324			else
2325				ret = regulator_map_voltage_iterate(rdev,
2326								min_uV, max_uV);
2327		}
2328
2329		if (ret >= 0) {
2330			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331			if (min_uV <= best_val && max_uV >= best_val) {
2332				selector = ret;
2333				if (old_selector == selector)
2334					ret = 0;
2335				else
2336					ret = rdev->desc->ops->set_voltage_sel(
2337								rdev, ret);
2338			} else {
2339				ret = -EINVAL;
2340			}
2341		}
2342	} else {
2343		ret = -EINVAL;
2344	}
2345
2346	/* Call set_voltage_time_sel if successfully obtained old_selector */
2347	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348		&& old_selector != selector) {
 
 
 
 
2349
2350		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
 
 
 
 
2351						old_selector, selector);
2352		if (delay < 0) {
2353			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354				  delay);
2355			delay = 0;
2356		}
2357
2358		/* Insert any necessary delays */
2359		if (delay >= 1000) {
2360			mdelay(delay / 1000);
2361			udelay(delay % 1000);
2362		} else if (delay) {
2363			udelay(delay);
2364		}
 
 
2365	}
2366
2367	if (ret == 0 && best_val >= 0) {
2368		unsigned long data = best_val;
 
 
 
 
 
2369
 
2370		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371				     (void *)data);
2372	}
2373
2374	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376	return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398{
2399	struct regulator_dev *rdev = regulator->rdev;
2400	int ret = 0;
2401	int old_min_uV, old_max_uV;
2402	int current_uV;
2403
2404	mutex_lock(&rdev->mutex);
2405
2406	/* If we're setting the same range as last time the change
2407	 * should be a noop (some cpufreq implementations use the same
2408	 * voltage for multiple frequencies, for example).
2409	 */
2410	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411		goto out;
2412
2413	/* If we're trying to set a range that overlaps the current voltage,
2414	 * return succesfully even though the regulator does not support
2415	 * changing the voltage.
2416	 */
2417	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418		current_uV = _regulator_get_voltage(rdev);
2419		if (min_uV <= current_uV && current_uV <= max_uV) {
2420			regulator->min_uV = min_uV;
2421			regulator->max_uV = max_uV;
2422			goto out;
2423		}
2424	}
2425
2426	/* sanity check */
2427	if (!rdev->desc->ops->set_voltage &&
2428	    !rdev->desc->ops->set_voltage_sel) {
2429		ret = -EINVAL;
2430		goto out;
2431	}
2432
2433	/* constraints check */
2434	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435	if (ret < 0)
2436		goto out;
2437
2438	/* restore original values in case of error */
2439	old_min_uV = regulator->min_uV;
2440	old_max_uV = regulator->max_uV;
2441	regulator->min_uV = min_uV;
2442	regulator->max_uV = max_uV;
2443
2444	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445	if (ret < 0)
2446		goto out2;
2447
2448	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449	if (ret < 0)
2450		goto out2;
2451
2452out:
2453	mutex_unlock(&rdev->mutex);
2454	return ret;
2455out2:
2456	regulator->min_uV = old_min_uV;
2457	regulator->max_uV = old_max_uV;
2458	mutex_unlock(&rdev->mutex);
2459	return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474			       int old_uV, int new_uV)
2475{
2476	struct regulator_dev	*rdev = regulator->rdev;
2477	struct regulator_ops	*ops = rdev->desc->ops;
2478	int old_sel = -1;
2479	int new_sel = -1;
2480	int voltage;
2481	int i;
2482
2483	/* Currently requires operations to do this */
2484	if (!ops->list_voltage || !ops->set_voltage_time_sel
2485	    || !rdev->desc->n_voltages)
2486		return -EINVAL;
2487
2488	for (i = 0; i < rdev->desc->n_voltages; i++) {
2489		/* We only look for exact voltage matches here */
2490		voltage = regulator_list_voltage(regulator, i);
2491		if (voltage < 0)
2492			return -EINVAL;
2493		if (voltage == 0)
2494			continue;
2495		if (voltage == old_uV)
2496			old_sel = i;
2497		if (voltage == new_uV)
2498			new_sel = i;
2499	}
2500
2501	if (old_sel < 0 || new_sel < 0)
2502		return -EINVAL;
2503
2504	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521				   unsigned int old_selector,
2522				   unsigned int new_selector)
2523{
2524	unsigned int ramp_delay = 0;
2525	int old_volt, new_volt;
2526
2527	if (rdev->constraints->ramp_delay)
2528		ramp_delay = rdev->constraints->ramp_delay;
2529	else if (rdev->desc->ramp_delay)
2530		ramp_delay = rdev->desc->ramp_delay;
2531
2532	if (ramp_delay == 0) {
2533		rdev_warn(rdev, "ramp_delay not set\n");
2534		return 0;
2535	}
2536
2537	/* sanity check */
2538	if (!rdev->desc->ops->list_voltage)
2539		return -EINVAL;
2540
2541	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage.  This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558	struct regulator_dev *rdev = regulator->rdev;
2559	int ret, min_uV, max_uV;
2560
2561	mutex_lock(&rdev->mutex);
2562
2563	if (!rdev->desc->ops->set_voltage &&
2564	    !rdev->desc->ops->set_voltage_sel) {
2565		ret = -EINVAL;
2566		goto out;
2567	}
2568
2569	/* This is only going to work if we've had a voltage configured. */
2570	if (!regulator->min_uV && !regulator->max_uV) {
2571		ret = -EINVAL;
2572		goto out;
2573	}
2574
2575	min_uV = regulator->min_uV;
2576	max_uV = regulator->max_uV;
2577
2578	/* This should be a paranoia check... */
2579	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580	if (ret < 0)
2581		goto out;
2582
2583	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584	if (ret < 0)
2585		goto out;
2586
2587	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2588
2589out:
2590	mutex_unlock(&rdev->mutex);
2591	return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597	int sel, ret;
2598
2599	if (rdev->desc->ops->get_voltage_sel) {
2600		sel = rdev->desc->ops->get_voltage_sel(rdev);
2601		if (sel < 0)
2602			return sel;
2603		ret = rdev->desc->ops->list_voltage(rdev, sel);
2604	} else if (rdev->desc->ops->get_voltage) {
2605		ret = rdev->desc->ops->get_voltage(rdev);
2606	} else if (rdev->desc->ops->list_voltage) {
2607		ret = rdev->desc->ops->list_voltage(rdev, 0);
2608	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609		ret = rdev->desc->fixed_uV;
2610	} else {
2611		return -EINVAL;
2612	}
2613
2614	if (ret < 0)
2615		return ret;
2616	return ret - rdev->constraints->uV_offset;
2617}
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
2630	int ret;
2631
2632	mutex_lock(&regulator->rdev->mutex);
2633
2634	ret = _regulator_get_voltage(regulator->rdev);
2635
2636	mutex_unlock(&regulator->rdev->mutex);
2637
2638	return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659			       int min_uA, int max_uA)
2660{
2661	struct regulator_dev *rdev = regulator->rdev;
2662	int ret;
2663
2664	mutex_lock(&rdev->mutex);
2665
2666	/* sanity check */
2667	if (!rdev->desc->ops->set_current_limit) {
2668		ret = -EINVAL;
2669		goto out;
2670	}
2671
2672	/* constraints check */
2673	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674	if (ret < 0)
2675		goto out;
2676
2677	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679	mutex_unlock(&rdev->mutex);
2680	return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686	int ret;
2687
2688	mutex_lock(&rdev->mutex);
2689
2690	/* sanity check */
2691	if (!rdev->desc->ops->get_current_limit) {
2692		ret = -EINVAL;
2693		goto out;
2694	}
2695
2696	ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698	mutex_unlock(&rdev->mutex);
2699	return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713	return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730	struct regulator_dev *rdev = regulator->rdev;
2731	int ret;
2732	int regulator_curr_mode;
2733
2734	mutex_lock(&rdev->mutex);
2735
2736	/* sanity check */
2737	if (!rdev->desc->ops->set_mode) {
2738		ret = -EINVAL;
2739		goto out;
2740	}
2741
2742	/* return if the same mode is requested */
2743	if (rdev->desc->ops->get_mode) {
2744		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745		if (regulator_curr_mode == mode) {
2746			ret = 0;
2747			goto out;
2748		}
2749	}
2750
2751	/* constraints check */
2752	ret = regulator_mode_constrain(rdev, &mode);
2753	if (ret < 0)
2754		goto out;
2755
2756	ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758	mutex_unlock(&rdev->mutex);
2759	return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765	int ret;
2766
2767	mutex_lock(&rdev->mutex);
2768
2769	/* sanity check */
2770	if (!rdev->desc->ops->get_mode) {
2771		ret = -EINVAL;
2772		goto out;
2773	}
2774
2775	ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777	mutex_unlock(&rdev->mutex);
2778	return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789	return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 *    o Device is opened / closed.
2809 *    o Device I/O is about to begin or has just finished.
2810 *    o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821	struct regulator_dev *rdev = regulator->rdev;
2822	struct regulator *consumer;
2823	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824	unsigned int mode;
2825
2826	if (rdev->supply)
2827		input_uV = regulator_get_voltage(rdev->supply);
2828
2829	mutex_lock(&rdev->mutex);
2830
2831	/*
2832	 * first check to see if we can set modes at all, otherwise just
2833	 * tell the consumer everything is OK.
2834	 */
2835	regulator->uA_load = uA_load;
2836	ret = regulator_check_drms(rdev);
2837	if (ret < 0) {
2838		ret = 0;
2839		goto out;
2840	}
2841
2842	if (!rdev->desc->ops->get_optimum_mode)
2843		goto out;
2844
2845	/*
2846	 * we can actually do this so any errors are indicators of
2847	 * potential real failure.
2848	 */
2849	ret = -EINVAL;
2850
2851	if (!rdev->desc->ops->set_mode)
2852		goto out;
2853
2854	/* get output voltage */
2855	output_uV = _regulator_get_voltage(rdev);
2856	if (output_uV <= 0) {
2857		rdev_err(rdev, "invalid output voltage found\n");
2858		goto out;
2859	}
2860
2861	/* No supply? Use constraint voltage */
 
 
 
2862	if (input_uV <= 0)
2863		input_uV = rdev->constraints->input_uV;
2864	if (input_uV <= 0) {
2865		rdev_err(rdev, "invalid input voltage found\n");
2866		goto out;
2867	}
2868
2869	/* calc total requested load for this regulator */
2870	list_for_each_entry(consumer, &rdev->consumer_list, list)
2871		total_uA_load += consumer->uA_load;
2872
2873	mode = rdev->desc->ops->get_optimum_mode(rdev,
2874						 input_uV, output_uV,
2875						 total_uA_load);
2876	ret = regulator_mode_constrain(rdev, &mode);
2877	if (ret < 0) {
2878		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879			 total_uA_load, input_uV, output_uV);
2880		goto out;
2881	}
2882
2883	ret = rdev->desc->ops->set_mode(rdev, mode);
2884	if (ret < 0) {
2885		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886		goto out;
2887	}
2888	ret = mode;
2889out:
2890	mutex_unlock(&rdev->mutex);
2891	return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this.  Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908	struct regulator_dev *rdev = regulator->rdev;
2909	int ret = 0;
2910
2911	if (!rdev->desc->ops->set_bypass)
2912		return 0;
2913
2914	if (rdev->constraints &&
2915	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916		return 0;
2917
2918	mutex_lock(&rdev->mutex);
2919
2920	if (enable && !regulator->bypass) {
2921		rdev->bypass_count++;
2922
2923		if (rdev->bypass_count == rdev->open_count) {
2924			ret = rdev->desc->ops->set_bypass(rdev, enable);
2925			if (ret != 0)
2926				rdev->bypass_count--;
2927		}
2928
2929	} else if (!enable && regulator->bypass) {
2930		rdev->bypass_count--;
2931
2932		if (rdev->bypass_count != rdev->open_count) {
2933			ret = rdev->desc->ops->set_bypass(rdev, enable);
2934			if (ret != 0)
2935				rdev->bypass_count++;
2936		}
2937	}
2938
2939	if (ret == 0)
2940		regulator->bypass = enable;
2941
2942	mutex_unlock(&rdev->mutex);
2943
2944	return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956			      struct notifier_block *nb)
2957{
2958	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2959						nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971				struct notifier_block *nb)
2972{
2973	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2974						  nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982				  unsigned long event, void *data)
2983{
2984	/* call rdev chain first */
2985	blocking_notifier_call_chain(&rdev->notifier, event, data);
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev:           Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers:     Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation.  If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003		       struct regulator_bulk_data *consumers)
3004{
3005	int i;
3006	int ret;
3007
3008	for (i = 0; i < num_consumers; i++)
3009		consumers[i].consumer = NULL;
3010
3011	for (i = 0; i < num_consumers; i++) {
3012		consumers[i].consumer = regulator_get(dev,
3013						      consumers[i].supply);
3014		if (IS_ERR(consumers[i].consumer)) {
3015			ret = PTR_ERR(consumers[i].consumer);
3016			dev_err(dev, "Failed to get supply '%s': %d\n",
3017				consumers[i].supply, ret);
3018			consumers[i].consumer = NULL;
3019			goto err;
3020		}
3021	}
3022
3023	return 0;
3024
3025err:
3026	while (--i >= 0)
3027		regulator_put(consumers[i].consumer);
3028
3029	return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035	struct regulator_bulk_data *bulk = data;
3036
3037	bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers:     Consumer data; clients are stored here.
3045 * @return         0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call.  If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053			  struct regulator_bulk_data *consumers)
3054{
3055	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056	int i;
3057	int ret = 0;
3058
3059	for (i = 0; i < num_consumers; i++) {
3060		if (consumers[i].consumer->always_on)
3061			consumers[i].ret = 0;
3062		else
3063			async_schedule_domain(regulator_bulk_enable_async,
3064					      &consumers[i], &async_domain);
3065	}
3066
3067	async_synchronize_full_domain(&async_domain);
3068
3069	/* If any consumer failed we need to unwind any that succeeded */
3070	for (i = 0; i < num_consumers; i++) {
3071		if (consumers[i].ret != 0) {
3072			ret = consumers[i].ret;
3073			goto err;
3074		}
3075	}
3076
3077	return 0;
3078
3079err:
3080	for (i = 0; i < num_consumers; i++) {
3081		if (consumers[i].ret < 0)
3082			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083			       consumers[i].ret);
3084		else
3085			regulator_disable(consumers[i].consumer);
3086	}
3087
3088	return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers:     Consumer data; clients are stored here.
3097 * @return         0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call.  If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105			   struct regulator_bulk_data *consumers)
3106{
3107	int i;
3108	int ret, r;
3109
3110	for (i = num_consumers - 1; i >= 0; --i) {
3111		ret = regulator_disable(consumers[i].consumer);
3112		if (ret != 0)
3113			goto err;
3114	}
3115
3116	return 0;
3117
3118err:
3119	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120	for (++i; i < num_consumers; ++i) {
3121		r = regulator_enable(consumers[i].consumer);
3122		if (r != 0)
3123			pr_err("Failed to reename %s: %d\n",
3124			       consumers[i].supply, r);
3125	}
3126
3127	return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers:     Consumer data; clients are stored here.
3136 * @return         0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146			   struct regulator_bulk_data *consumers)
3147{
3148	int i;
3149	int ret;
3150
3151	for (i = 0; i < num_consumers; i++)
3152		consumers[i].ret =
3153			    regulator_force_disable(consumers[i].consumer);
3154
3155	for (i = 0; i < num_consumers; i++) {
3156		if (consumers[i].ret != 0) {
3157			ret = consumers[i].ret;
3158			goto out;
3159		}
3160	}
3161
3162	return 0;
3163out:
3164	return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers:     Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178			 struct regulator_bulk_data *consumers)
3179{
3180	int i;
3181
3182	for (i = 0; i < num_consumers; i++) {
3183		regulator_put(consumers[i].consumer);
3184		consumers[i].consumer = NULL;
3185	}
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200				  unsigned long event, void *data)
3201{
3202	_notifier_call_chain(rdev, event, data);
3203	return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217	switch (mode) {
3218	case REGULATOR_MODE_FAST:
3219		return REGULATOR_STATUS_FAST;
3220	case REGULATOR_MODE_NORMAL:
3221		return REGULATOR_STATUS_NORMAL;
3222	case REGULATOR_MODE_IDLE:
3223		return REGULATOR_STATUS_IDLE;
3224	case REGULATOR_MODE_STANDBY:
3225		return REGULATOR_STATUS_STANDBY;
3226	default:
3227		return REGULATOR_STATUS_UNDEFINED;
3228	}
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
3237{
3238	struct device		*dev = &rdev->dev;
3239	struct regulator_ops	*ops = rdev->desc->ops;
3240	int			status = 0;
3241
3242	/* some attributes need specific methods to be displayed */
3243	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247		status = device_create_file(dev, &dev_attr_microvolts);
3248		if (status < 0)
3249			return status;
3250	}
3251	if (ops->get_current_limit) {
3252		status = device_create_file(dev, &dev_attr_microamps);
3253		if (status < 0)
3254			return status;
3255	}
3256	if (ops->get_mode) {
3257		status = device_create_file(dev, &dev_attr_opmode);
3258		if (status < 0)
3259			return status;
3260	}
3261	if (rdev->ena_pin || ops->is_enabled) {
3262		status = device_create_file(dev, &dev_attr_state);
3263		if (status < 0)
3264			return status;
3265	}
3266	if (ops->get_status) {
3267		status = device_create_file(dev, &dev_attr_status);
3268		if (status < 0)
3269			return status;
3270	}
3271	if (ops->get_bypass) {
3272		status = device_create_file(dev, &dev_attr_bypass);
3273		if (status < 0)
3274			return status;
3275	}
3276
3277	/* some attributes are type-specific */
3278	if (rdev->desc->type == REGULATOR_CURRENT) {
3279		status = device_create_file(dev, &dev_attr_requested_microamps);
3280		if (status < 0)
3281			return status;
3282	}
3283
3284	/* all the other attributes exist to support constraints;
3285	 * don't show them if there are no constraints, or if the
3286	 * relevant supporting methods are missing.
3287	 */
3288	if (!rdev->constraints)
3289		return status;
3290
3291	/* constraints need specific supporting methods */
3292	if (ops->set_voltage || ops->set_voltage_sel) {
3293		status = device_create_file(dev, &dev_attr_min_microvolts);
3294		if (status < 0)
3295			return status;
3296		status = device_create_file(dev, &dev_attr_max_microvolts);
3297		if (status < 0)
3298			return status;
3299	}
3300	if (ops->set_current_limit) {
3301		status = device_create_file(dev, &dev_attr_min_microamps);
3302		if (status < 0)
3303			return status;
3304		status = device_create_file(dev, &dev_attr_max_microamps);
3305		if (status < 0)
3306			return status;
3307	}
3308
 
 
 
 
3309	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310	if (status < 0)
3311		return status;
3312	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313	if (status < 0)
3314		return status;
3315	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316	if (status < 0)
3317		return status;
3318
3319	if (ops->set_suspend_voltage) {
3320		status = device_create_file(dev,
3321				&dev_attr_suspend_standby_microvolts);
3322		if (status < 0)
3323			return status;
3324		status = device_create_file(dev,
3325				&dev_attr_suspend_mem_microvolts);
3326		if (status < 0)
3327			return status;
3328		status = device_create_file(dev,
3329				&dev_attr_suspend_disk_microvolts);
3330		if (status < 0)
3331			return status;
3332	}
3333
3334	if (ops->set_suspend_mode) {
3335		status = device_create_file(dev,
3336				&dev_attr_suspend_standby_mode);
3337		if (status < 0)
3338			return status;
3339		status = device_create_file(dev,
3340				&dev_attr_suspend_mem_mode);
3341		if (status < 0)
3342			return status;
3343		status = device_create_file(dev,
3344				&dev_attr_suspend_disk_mode);
3345		if (status < 0)
3346			return status;
3347	}
3348
3349	return status;
3350}
3351
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
 
3354	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355	if (!rdev->debugfs) {
3356		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
3357		return;
3358	}
3359
3360	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361			   &rdev->use_count);
3362	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363			   &rdev->open_count);
3364	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365			   &rdev->bypass_count);
3366}
3367
3368/**
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
 
 
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379		   const struct regulator_config *config)
3380{
3381	const struct regulation_constraints *constraints = NULL;
3382	const struct regulator_init_data *init_data;
3383	static atomic_t regulator_no = ATOMIC_INIT(0);
3384	struct regulator_dev *rdev;
3385	struct device *dev;
3386	int ret, i;
3387	const char *supply = NULL;
3388
3389	if (regulator_desc == NULL || config == NULL)
3390		return ERR_PTR(-EINVAL);
3391
3392	dev = config->dev;
3393	WARN_ON(!dev);
3394
3395	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396		return ERR_PTR(-EINVAL);
3397
3398	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399	    regulator_desc->type != REGULATOR_CURRENT)
3400		return ERR_PTR(-EINVAL);
3401
 
 
 
3402	/* Only one of each should be implemented */
3403	WARN_ON(regulator_desc->ops->get_voltage &&
3404		regulator_desc->ops->get_voltage_sel);
3405	WARN_ON(regulator_desc->ops->set_voltage &&
3406		regulator_desc->ops->set_voltage_sel);
3407
3408	/* If we're using selectors we must implement list_voltage. */
3409	if (regulator_desc->ops->get_voltage_sel &&
3410	    !regulator_desc->ops->list_voltage) {
3411		return ERR_PTR(-EINVAL);
3412	}
3413	if (regulator_desc->ops->set_voltage_sel &&
3414	    !regulator_desc->ops->list_voltage) {
3415		return ERR_PTR(-EINVAL);
3416	}
3417
3418	init_data = config->init_data;
3419
3420	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421	if (rdev == NULL)
3422		return ERR_PTR(-ENOMEM);
3423
3424	mutex_lock(&regulator_list_mutex);
3425
3426	mutex_init(&rdev->mutex);
3427	rdev->reg_data = config->driver_data;
3428	rdev->owner = regulator_desc->owner;
3429	rdev->desc = regulator_desc;
3430	if (config->regmap)
3431		rdev->regmap = config->regmap;
3432	else if (dev_get_regmap(dev, NULL))
3433		rdev->regmap = dev_get_regmap(dev, NULL);
3434	else if (dev->parent)
3435		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436	INIT_LIST_HEAD(&rdev->consumer_list);
3437	INIT_LIST_HEAD(&rdev->list);
3438	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441	/* preform any regulator specific init */
3442	if (init_data && init_data->regulator_init) {
3443		ret = init_data->regulator_init(rdev->reg_data);
3444		if (ret < 0)
3445			goto clean;
3446	}
3447
3448	/* register with sysfs */
3449	rdev->dev.class = &regulator_class;
3450	rdev->dev.of_node = config->of_node;
3451	rdev->dev.parent = dev;
3452	dev_set_name(&rdev->dev, "regulator.%d",
3453		     atomic_inc_return(&regulator_no) - 1);
3454	ret = device_register(&rdev->dev);
3455	if (ret != 0) {
3456		put_device(&rdev->dev);
3457		goto clean;
3458	}
3459
3460	dev_set_drvdata(&rdev->dev, rdev);
3461
3462	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463		ret = regulator_ena_gpio_request(rdev, config);
3464		if (ret != 0) {
3465			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466				 config->ena_gpio, ret);
3467			goto wash;
3468		}
3469
3470		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471			rdev->ena_gpio_state = 1;
3472
3473		if (config->ena_gpio_invert)
3474			rdev->ena_gpio_state = !rdev->ena_gpio_state;
3475	}
3476
3477	/* set regulator constraints */
3478	if (init_data)
3479		constraints = &init_data->constraints;
3480
3481	ret = set_machine_constraints(rdev, constraints);
3482	if (ret < 0)
3483		goto scrub;
3484
3485	/* add attributes supported by this regulator */
3486	ret = add_regulator_attributes(rdev);
3487	if (ret < 0)
3488		goto scrub;
3489
3490	if (init_data && init_data->supply_regulator)
3491		supply = init_data->supply_regulator;
3492	else if (regulator_desc->supply_name)
3493		supply = regulator_desc->supply_name;
3494
3495	if (supply) {
3496		struct regulator_dev *r;
 
3497
3498		r = regulator_dev_lookup(dev, supply, &ret);
 
 
 
 
 
 
3499
3500		if (ret == -ENODEV) {
3501			/*
3502			 * No supply was specified for this regulator and
3503			 * there will never be one.
3504			 */
3505			ret = 0;
3506			goto add_dev;
3507		} else if (!r) {
3508			dev_err(dev, "Failed to find supply %s\n", supply);
3509			ret = -EPROBE_DEFER;
3510			goto scrub;
3511		}
3512
3513		ret = set_supply(rdev, r);
3514		if (ret < 0)
3515			goto scrub;
3516
3517		/* Enable supply if rail is enabled */
3518		if (_regulator_is_enabled(rdev)) {
3519			ret = regulator_enable(rdev->supply);
3520			if (ret < 0)
3521				goto scrub;
3522		}
3523	}
3524
3525add_dev:
3526	/* add consumers devices */
3527	if (init_data) {
3528		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529			ret = set_consumer_device_supply(rdev,
3530				init_data->consumer_supplies[i].dev_name,
 
 
 
3531				init_data->consumer_supplies[i].supply);
3532			if (ret < 0) {
3533				dev_err(dev, "Failed to set supply %s\n",
3534					init_data->consumer_supplies[i].supply);
3535				goto unset_supplies;
3536			}
3537		}
3538	}
3539
3540	list_add(&rdev->list, &regulator_list);
3541
3542	rdev_init_debugfs(rdev);
3543out:
3544	mutex_unlock(&regulator_list_mutex);
3545	return rdev;
3546
3547unset_supplies:
3548	unset_regulator_supplies(rdev);
3549
3550scrub:
3551	if (rdev->supply)
3552		_regulator_put(rdev->supply);
3553	regulator_ena_gpio_free(rdev);
3554	kfree(rdev->constraints);
3555wash:
3556	device_unregister(&rdev->dev);
3557	/* device core frees rdev */
3558	rdev = ERR_PTR(ret);
3559	goto out;
3560
3561clean:
3562	kfree(rdev);
3563	rdev = ERR_PTR(ret);
3564	goto out;
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576	if (rdev == NULL)
3577		return;
3578
3579	if (rdev->supply) {
3580		while (rdev->use_count--)
3581			regulator_disable(rdev->supply);
3582		regulator_put(rdev->supply);
3583	}
3584	mutex_lock(&regulator_list_mutex);
 
3585	debugfs_remove_recursive(rdev->debugfs);
3586	flush_work(&rdev->disable_work.work);
3587	WARN_ON(rdev->open_count);
3588	unset_regulator_supplies(rdev);
3589	list_del(&rdev->list);
 
 
 
3590	kfree(rdev->constraints);
3591	regulator_ena_gpio_free(rdev);
3592	device_unregister(&rdev->dev);
3593	mutex_unlock(&regulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606	struct regulator_dev *rdev;
3607	int ret = 0;
3608
3609	/* ON is handled by regulator active state */
3610	if (state == PM_SUSPEND_ON)
3611		return -EINVAL;
3612
3613	mutex_lock(&regulator_list_mutex);
3614	list_for_each_entry(rdev, &regulator_list, list) {
3615
3616		mutex_lock(&rdev->mutex);
3617		ret = suspend_prepare(rdev, state);
3618		mutex_unlock(&rdev->mutex);
3619
3620		if (ret < 0) {
3621			rdev_err(rdev, "failed to prepare\n");
3622			goto out;
3623		}
3624	}
3625out:
3626	mutex_unlock(&regulator_list_mutex);
3627	return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639	struct regulator_dev *rdev;
3640	int ret = 0, error;
3641
3642	mutex_lock(&regulator_list_mutex);
3643	list_for_each_entry(rdev, &regulator_list, list) {
 
 
3644		mutex_lock(&rdev->mutex);
3645		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3646			error = _regulator_do_enable(rdev);
 
3647			if (error)
3648				ret = error;
3649		} else {
3650			if (!have_full_constraints())
3651				goto unlock;
3652			if (!_regulator_is_enabled(rdev))
 
 
3653				goto unlock;
3654
3655			error = _regulator_do_disable(rdev);
3656			if (error)
3657				ret = error;
3658		}
3659unlock:
3660		mutex_unlock(&rdev->mutex);
3661	}
3662	mutex_unlock(&regulator_list_mutex);
3663	return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3666
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680	has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693	return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706	return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717	regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727	return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733	return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739	return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745				    size_t count, loff_t *ppos)
3746{
3747	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748	ssize_t len, ret = 0;
3749	struct regulator_map *map;
3750
3751	if (!buf)
3752		return -ENOMEM;
3753
3754	list_for_each_entry(map, &regulator_map_list, list) {
3755		len = snprintf(buf + ret, PAGE_SIZE - ret,
3756			       "%s -> %s.%s\n",
3757			       rdev_get_name(map->regulator), map->dev_name,
3758			       map->supply);
3759		if (len >= 0)
3760			ret += len;
3761		if (ret > PAGE_SIZE) {
3762			ret = PAGE_SIZE;
3763			break;
3764		}
3765	}
3766
3767	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3768
3769	kfree(buf);
3770
3771	return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777	.read = supply_map_read_file,
3778	.llseek = default_llseek,
3779#endif
3780};
3781
3782static int __init regulator_init(void)
3783{
3784	int ret;
3785
3786	ret = class_register(&regulator_class);
3787
 
3788	debugfs_root = debugfs_create_dir("regulator", NULL);
3789	if (!debugfs_root)
3790		pr_warn("regulator: Failed to create debugfs directory\n");
3791
3792	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793			    &supply_map_fops);
3794
3795	regulator_dummy_init();
3796
3797	return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805	struct regulator_dev *rdev;
3806	struct regulator_ops *ops;
3807	struct regulation_constraints *c;
3808	int enabled, ret;
3809
3810	/*
3811	 * Since DT doesn't provide an idiomatic mechanism for
3812	 * enabling full constraints and since it's much more natural
3813	 * with DT to provide them just assume that a DT enabled
3814	 * system has full constraints.
3815	 */
3816	if (of_have_populated_dt())
3817		has_full_constraints = true;
3818
3819	mutex_lock(&regulator_list_mutex);
3820
3821	/* If we have a full configuration then disable any regulators
3822	 * which are not in use or always_on.  This will become the
3823	 * default behaviour in the future.
3824	 */
3825	list_for_each_entry(rdev, &regulator_list, list) {
3826		ops = rdev->desc->ops;
3827		c = rdev->constraints;
3828
3829		if (c && c->always_on)
3830			continue;
3831
3832		mutex_lock(&rdev->mutex);
3833
3834		if (rdev->use_count)
3835			goto unlock;
3836
3837		/* If we can't read the status assume it's on. */
3838		if (ops->is_enabled)
3839			enabled = ops->is_enabled(rdev);
3840		else
3841			enabled = 1;
3842
3843		if (!enabled)
3844			goto unlock;
3845
3846		if (have_full_constraints()) {
3847			/* We log since this may kill the system if it
3848			 * goes wrong. */
3849			rdev_info(rdev, "disabling\n");
3850			ret = _regulator_do_disable(rdev);
3851			if (ret != 0)
3852				rdev_err(rdev, "couldn't disable: %d\n", ret);
 
3853		} else {
3854			/* The intention is that in future we will
3855			 * assume that full constraints are provided
3856			 * so warn even if we aren't going to do
3857			 * anything here.
3858			 */
3859			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860		}
3861
3862unlock:
3863		mutex_unlock(&rdev->mutex);
3864	}
3865
3866	mutex_unlock(&regulator_list_mutex);
3867
3868	return 0;
3869}
3870late_initcall(regulator_init_complete);