Loading...
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#define pr_fmt(fmt) "%s: " fmt, __func__
17
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/debugfs.h>
21#include <linux/device.h>
22#include <linux/slab.h>
23#include <linux/async.h>
24#include <linux/err.h>
25#include <linux/mutex.h>
26#include <linux/suspend.h>
27#include <linux/delay.h>
28#include <linux/regulator/consumer.h>
29#include <linux/regulator/driver.h>
30#include <linux/regulator/machine.h>
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/regulator.h>
34
35#include "dummy.h"
36
37#define rdev_crit(rdev, fmt, ...) \
38 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39#define rdev_err(rdev, fmt, ...) \
40 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41#define rdev_warn(rdev, fmt, ...) \
42 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_info(rdev, fmt, ...) \
44 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_dbg(rdev, fmt, ...) \
46 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48static DEFINE_MUTEX(regulator_list_mutex);
49static LIST_HEAD(regulator_list);
50static LIST_HEAD(regulator_map_list);
51static bool has_full_constraints;
52static bool board_wants_dummy_regulator;
53
54#ifdef CONFIG_DEBUG_FS
55static struct dentry *debugfs_root;
56#endif
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75struct regulator {
76 struct device *dev;
77 struct list_head list;
78 int uA_load;
79 int min_uV;
80 int max_uV;
81 char *supply_name;
82 struct device_attribute dev_attr;
83 struct regulator_dev *rdev;
84#ifdef CONFIG_DEBUG_FS
85 struct dentry *debugfs;
86#endif
87};
88
89static int _regulator_is_enabled(struct regulator_dev *rdev);
90static int _regulator_disable(struct regulator_dev *rdev);
91static int _regulator_get_voltage(struct regulator_dev *rdev);
92static int _regulator_get_current_limit(struct regulator_dev *rdev);
93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
101
102static const char *rdev_get_name(struct regulator_dev *rdev)
103{
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
110}
111
112/* gets the regulator for a given consumer device */
113static struct regulator *get_device_regulator(struct device *dev)
114{
115 struct regulator *regulator = NULL;
116 struct regulator_dev *rdev;
117
118 mutex_lock(®ulator_list_mutex);
119 list_for_each_entry(rdev, ®ulator_list, list) {
120 mutex_lock(&rdev->mutex);
121 list_for_each_entry(regulator, &rdev->consumer_list, list) {
122 if (regulator->dev == dev) {
123 mutex_unlock(&rdev->mutex);
124 mutex_unlock(®ulator_list_mutex);
125 return regulator;
126 }
127 }
128 mutex_unlock(&rdev->mutex);
129 }
130 mutex_unlock(®ulator_list_mutex);
131 return NULL;
132}
133
134/* Platform voltage constraint check */
135static int regulator_check_voltage(struct regulator_dev *rdev,
136 int *min_uV, int *max_uV)
137{
138 BUG_ON(*min_uV > *max_uV);
139
140 if (!rdev->constraints) {
141 rdev_err(rdev, "no constraints\n");
142 return -ENODEV;
143 }
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145 rdev_err(rdev, "operation not allowed\n");
146 return -EPERM;
147 }
148
149 if (*max_uV > rdev->constraints->max_uV)
150 *max_uV = rdev->constraints->max_uV;
151 if (*min_uV < rdev->constraints->min_uV)
152 *min_uV = rdev->constraints->min_uV;
153
154 if (*min_uV > *max_uV) {
155 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156 *min_uV, *max_uV);
157 return -EINVAL;
158 }
159
160 return 0;
161}
162
163/* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
165 */
166static int regulator_check_consumers(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168{
169 struct regulator *regulator;
170
171 list_for_each_entry(regulator, &rdev->consumer_list, list) {
172 /*
173 * Assume consumers that didn't say anything are OK
174 * with anything in the constraint range.
175 */
176 if (!regulator->min_uV && !regulator->max_uV)
177 continue;
178
179 if (*max_uV > regulator->max_uV)
180 *max_uV = regulator->max_uV;
181 if (*min_uV < regulator->min_uV)
182 *min_uV = regulator->min_uV;
183 }
184
185 if (*min_uV > *max_uV)
186 return -EINVAL;
187
188 return 0;
189}
190
191/* current constraint check */
192static int regulator_check_current_limit(struct regulator_dev *rdev,
193 int *min_uA, int *max_uA)
194{
195 BUG_ON(*min_uA > *max_uA);
196
197 if (!rdev->constraints) {
198 rdev_err(rdev, "no constraints\n");
199 return -ENODEV;
200 }
201 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202 rdev_err(rdev, "operation not allowed\n");
203 return -EPERM;
204 }
205
206 if (*max_uA > rdev->constraints->max_uA)
207 *max_uA = rdev->constraints->max_uA;
208 if (*min_uA < rdev->constraints->min_uA)
209 *min_uA = rdev->constraints->min_uA;
210
211 if (*min_uA > *max_uA) {
212 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213 *min_uA, *max_uA);
214 return -EINVAL;
215 }
216
217 return 0;
218}
219
220/* operating mode constraint check */
221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222{
223 switch (*mode) {
224 case REGULATOR_MODE_FAST:
225 case REGULATOR_MODE_NORMAL:
226 case REGULATOR_MODE_IDLE:
227 case REGULATOR_MODE_STANDBY:
228 break;
229 default:
230 rdev_err(rdev, "invalid mode %x specified\n", *mode);
231 return -EINVAL;
232 }
233
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
241 }
242
243 /* The modes are bitmasks, the most power hungry modes having
244 * the lowest values. If the requested mode isn't supported
245 * try higher modes. */
246 while (*mode) {
247 if (rdev->constraints->valid_modes_mask & *mode)
248 return 0;
249 *mode /= 2;
250 }
251
252 return -EINVAL;
253}
254
255/* dynamic regulator mode switching constraint check */
256static int regulator_check_drms(struct regulator_dev *rdev)
257{
258 if (!rdev->constraints) {
259 rdev_err(rdev, "no constraints\n");
260 return -ENODEV;
261 }
262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263 rdev_err(rdev, "operation not allowed\n");
264 return -EPERM;
265 }
266 return 0;
267}
268
269static ssize_t device_requested_uA_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct regulator *regulator;
273
274 regulator = get_device_regulator(dev);
275 if (regulator == NULL)
276 return 0;
277
278 return sprintf(buf, "%d\n", regulator->uA_load);
279}
280
281static ssize_t regulator_uV_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct regulator_dev *rdev = dev_get_drvdata(dev);
285 ssize_t ret;
286
287 mutex_lock(&rdev->mutex);
288 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289 mutex_unlock(&rdev->mutex);
290
291 return ret;
292}
293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294
295static ssize_t regulator_uA_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
297{
298 struct regulator_dev *rdev = dev_get_drvdata(dev);
299
300 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301}
302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303
304static ssize_t regulator_name_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306{
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308
309 return sprintf(buf, "%s\n", rdev_get_name(rdev));
310}
311
312static ssize_t regulator_print_opmode(char *buf, int mode)
313{
314 switch (mode) {
315 case REGULATOR_MODE_FAST:
316 return sprintf(buf, "fast\n");
317 case REGULATOR_MODE_NORMAL:
318 return sprintf(buf, "normal\n");
319 case REGULATOR_MODE_IDLE:
320 return sprintf(buf, "idle\n");
321 case REGULATOR_MODE_STANDBY:
322 return sprintf(buf, "standby\n");
323 }
324 return sprintf(buf, "unknown\n");
325}
326
327static ssize_t regulator_opmode_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329{
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333}
334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335
336static ssize_t regulator_print_state(char *buf, int state)
337{
338 if (state > 0)
339 return sprintf(buf, "enabled\n");
340 else if (state == 0)
341 return sprintf(buf, "disabled\n");
342 else
343 return sprintf(buf, "unknown\n");
344}
345
346static ssize_t regulator_state_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348{
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350 ssize_t ret;
351
352 mutex_lock(&rdev->mutex);
353 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354 mutex_unlock(&rdev->mutex);
355
356 return ret;
357}
358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359
360static ssize_t regulator_status_show(struct device *dev,
361 struct device_attribute *attr, char *buf)
362{
363 struct regulator_dev *rdev = dev_get_drvdata(dev);
364 int status;
365 char *label;
366
367 status = rdev->desc->ops->get_status(rdev);
368 if (status < 0)
369 return status;
370
371 switch (status) {
372 case REGULATOR_STATUS_OFF:
373 label = "off";
374 break;
375 case REGULATOR_STATUS_ON:
376 label = "on";
377 break;
378 case REGULATOR_STATUS_ERROR:
379 label = "error";
380 break;
381 case REGULATOR_STATUS_FAST:
382 label = "fast";
383 break;
384 case REGULATOR_STATUS_NORMAL:
385 label = "normal";
386 break;
387 case REGULATOR_STATUS_IDLE:
388 label = "idle";
389 break;
390 case REGULATOR_STATUS_STANDBY:
391 label = "standby";
392 break;
393 default:
394 return -ERANGE;
395 }
396
397 return sprintf(buf, "%s\n", label);
398}
399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400
401static ssize_t regulator_min_uA_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406 if (!rdev->constraints)
407 return sprintf(buf, "constraint not defined\n");
408
409 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410}
411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412
413static ssize_t regulator_max_uA_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415{
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418 if (!rdev->constraints)
419 return sprintf(buf, "constraint not defined\n");
420
421 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422}
423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424
425static ssize_t regulator_min_uV_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427{
428 struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430 if (!rdev->constraints)
431 return sprintf(buf, "constraint not defined\n");
432
433 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434}
435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436
437static ssize_t regulator_max_uV_show(struct device *dev,
438 struct device_attribute *attr, char *buf)
439{
440 struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442 if (!rdev->constraints)
443 return sprintf(buf, "constraint not defined\n");
444
445 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446}
447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448
449static ssize_t regulator_total_uA_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
451{
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 struct regulator *regulator;
454 int uA = 0;
455
456 mutex_lock(&rdev->mutex);
457 list_for_each_entry(regulator, &rdev->consumer_list, list)
458 uA += regulator->uA_load;
459 mutex_unlock(&rdev->mutex);
460 return sprintf(buf, "%d\n", uA);
461}
462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463
464static ssize_t regulator_num_users_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466{
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
468 return sprintf(buf, "%d\n", rdev->use_count);
469}
470
471static ssize_t regulator_type_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473{
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476 switch (rdev->desc->type) {
477 case REGULATOR_VOLTAGE:
478 return sprintf(buf, "voltage\n");
479 case REGULATOR_CURRENT:
480 return sprintf(buf, "current\n");
481 }
482 return sprintf(buf, "unknown\n");
483}
484
485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
487{
488 struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491}
492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493 regulator_suspend_mem_uV_show, NULL);
494
495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
497{
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501}
502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503 regulator_suspend_disk_uV_show, NULL);
504
505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506 struct device_attribute *attr, char *buf)
507{
508 struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511}
512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513 regulator_suspend_standby_uV_show, NULL);
514
515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
517{
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520 return regulator_print_opmode(buf,
521 rdev->constraints->state_mem.mode);
522}
523static DEVICE_ATTR(suspend_mem_mode, 0444,
524 regulator_suspend_mem_mode_show, NULL);
525
526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528{
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_disk.mode);
533}
534static DEVICE_ATTR(suspend_disk_mode, 0444,
535 regulator_suspend_disk_mode_show, NULL);
536
537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539{
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_standby.mode);
544}
545static DEVICE_ATTR(suspend_standby_mode, 0444,
546 regulator_suspend_standby_mode_show, NULL);
547
548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550{
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 return regulator_print_state(buf,
554 rdev->constraints->state_mem.enabled);
555}
556static DEVICE_ATTR(suspend_mem_state, 0444,
557 regulator_suspend_mem_state_show, NULL);
558
559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561{
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return regulator_print_state(buf,
565 rdev->constraints->state_disk.enabled);
566}
567static DEVICE_ATTR(suspend_disk_state, 0444,
568 regulator_suspend_disk_state_show, NULL);
569
570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572{
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_state(buf,
576 rdev->constraints->state_standby.enabled);
577}
578static DEVICE_ATTR(suspend_standby_state, 0444,
579 regulator_suspend_standby_state_show, NULL);
580
581
582/*
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
585 */
586static struct device_attribute regulator_dev_attrs[] = {
587 __ATTR(name, 0444, regulator_name_show, NULL),
588 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
589 __ATTR(type, 0444, regulator_type_show, NULL),
590 __ATTR_NULL,
591};
592
593static void regulator_dev_release(struct device *dev)
594{
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 kfree(rdev);
597}
598
599static struct class regulator_class = {
600 .name = "regulator",
601 .dev_release = regulator_dev_release,
602 .dev_attrs = regulator_dev_attrs,
603};
604
605/* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607static void drms_uA_update(struct regulator_dev *rdev)
608{
609 struct regulator *sibling;
610 int current_uA = 0, output_uV, input_uV, err;
611 unsigned int mode;
612
613 err = regulator_check_drms(rdev);
614 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615 (!rdev->desc->ops->get_voltage &&
616 !rdev->desc->ops->get_voltage_sel) ||
617 !rdev->desc->ops->set_mode)
618 return;
619
620 /* get output voltage */
621 output_uV = _regulator_get_voltage(rdev);
622 if (output_uV <= 0)
623 return;
624
625 /* get input voltage */
626 input_uV = 0;
627 if (rdev->supply)
628 input_uV = _regulator_get_voltage(rdev);
629 if (input_uV <= 0)
630 input_uV = rdev->constraints->input_uV;
631 if (input_uV <= 0)
632 return;
633
634 /* calc total requested load */
635 list_for_each_entry(sibling, &rdev->consumer_list, list)
636 current_uA += sibling->uA_load;
637
638 /* now get the optimum mode for our new total regulator load */
639 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640 output_uV, current_uA);
641
642 /* check the new mode is allowed */
643 err = regulator_mode_constrain(rdev, &mode);
644 if (err == 0)
645 rdev->desc->ops->set_mode(rdev, mode);
646}
647
648static int suspend_set_state(struct regulator_dev *rdev,
649 struct regulator_state *rstate)
650{
651 int ret = 0;
652 bool can_set_state;
653
654 can_set_state = rdev->desc->ops->set_suspend_enable &&
655 rdev->desc->ops->set_suspend_disable;
656
657 /* If we have no suspend mode configration don't set anything;
658 * only warn if the driver actually makes the suspend mode
659 * configurable.
660 */
661 if (!rstate->enabled && !rstate->disabled) {
662 if (can_set_state)
663 rdev_warn(rdev, "No configuration\n");
664 return 0;
665 }
666
667 if (rstate->enabled && rstate->disabled) {
668 rdev_err(rdev, "invalid configuration\n");
669 return -EINVAL;
670 }
671
672 if (!can_set_state) {
673 rdev_err(rdev, "no way to set suspend state\n");
674 return -EINVAL;
675 }
676
677 if (rstate->enabled)
678 ret = rdev->desc->ops->set_suspend_enable(rdev);
679 else
680 ret = rdev->desc->ops->set_suspend_disable(rdev);
681 if (ret < 0) {
682 rdev_err(rdev, "failed to enabled/disable\n");
683 return ret;
684 }
685
686 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688 if (ret < 0) {
689 rdev_err(rdev, "failed to set voltage\n");
690 return ret;
691 }
692 }
693
694 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696 if (ret < 0) {
697 rdev_err(rdev, "failed to set mode\n");
698 return ret;
699 }
700 }
701 return ret;
702}
703
704/* locks held by caller */
705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706{
707 if (!rdev->constraints)
708 return -EINVAL;
709
710 switch (state) {
711 case PM_SUSPEND_STANDBY:
712 return suspend_set_state(rdev,
713 &rdev->constraints->state_standby);
714 case PM_SUSPEND_MEM:
715 return suspend_set_state(rdev,
716 &rdev->constraints->state_mem);
717 case PM_SUSPEND_MAX:
718 return suspend_set_state(rdev,
719 &rdev->constraints->state_disk);
720 default:
721 return -EINVAL;
722 }
723}
724
725static void print_constraints(struct regulator_dev *rdev)
726{
727 struct regulation_constraints *constraints = rdev->constraints;
728 char buf[80] = "";
729 int count = 0;
730 int ret;
731
732 if (constraints->min_uV && constraints->max_uV) {
733 if (constraints->min_uV == constraints->max_uV)
734 count += sprintf(buf + count, "%d mV ",
735 constraints->min_uV / 1000);
736 else
737 count += sprintf(buf + count, "%d <--> %d mV ",
738 constraints->min_uV / 1000,
739 constraints->max_uV / 1000);
740 }
741
742 if (!constraints->min_uV ||
743 constraints->min_uV != constraints->max_uV) {
744 ret = _regulator_get_voltage(rdev);
745 if (ret > 0)
746 count += sprintf(buf + count, "at %d mV ", ret / 1000);
747 }
748
749 if (constraints->uV_offset)
750 count += sprintf(buf, "%dmV offset ",
751 constraints->uV_offset / 1000);
752
753 if (constraints->min_uA && constraints->max_uA) {
754 if (constraints->min_uA == constraints->max_uA)
755 count += sprintf(buf + count, "%d mA ",
756 constraints->min_uA / 1000);
757 else
758 count += sprintf(buf + count, "%d <--> %d mA ",
759 constraints->min_uA / 1000,
760 constraints->max_uA / 1000);
761 }
762
763 if (!constraints->min_uA ||
764 constraints->min_uA != constraints->max_uA) {
765 ret = _regulator_get_current_limit(rdev);
766 if (ret > 0)
767 count += sprintf(buf + count, "at %d mA ", ret / 1000);
768 }
769
770 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771 count += sprintf(buf + count, "fast ");
772 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773 count += sprintf(buf + count, "normal ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775 count += sprintf(buf + count, "idle ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777 count += sprintf(buf + count, "standby");
778
779 rdev_info(rdev, "%s\n", buf);
780}
781
782static int machine_constraints_voltage(struct regulator_dev *rdev,
783 struct regulation_constraints *constraints)
784{
785 struct regulator_ops *ops = rdev->desc->ops;
786 int ret;
787
788 /* do we need to apply the constraint voltage */
789 if (rdev->constraints->apply_uV &&
790 rdev->constraints->min_uV == rdev->constraints->max_uV) {
791 ret = _regulator_do_set_voltage(rdev,
792 rdev->constraints->min_uV,
793 rdev->constraints->max_uV);
794 if (ret < 0) {
795 rdev_err(rdev, "failed to apply %duV constraint\n",
796 rdev->constraints->min_uV);
797 return ret;
798 }
799 }
800
801 /* constrain machine-level voltage specs to fit
802 * the actual range supported by this regulator.
803 */
804 if (ops->list_voltage && rdev->desc->n_voltages) {
805 int count = rdev->desc->n_voltages;
806 int i;
807 int min_uV = INT_MAX;
808 int max_uV = INT_MIN;
809 int cmin = constraints->min_uV;
810 int cmax = constraints->max_uV;
811
812 /* it's safe to autoconfigure fixed-voltage supplies
813 and the constraints are used by list_voltage. */
814 if (count == 1 && !cmin) {
815 cmin = 1;
816 cmax = INT_MAX;
817 constraints->min_uV = cmin;
818 constraints->max_uV = cmax;
819 }
820
821 /* voltage constraints are optional */
822 if ((cmin == 0) && (cmax == 0))
823 return 0;
824
825 /* else require explicit machine-level constraints */
826 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827 rdev_err(rdev, "invalid voltage constraints\n");
828 return -EINVAL;
829 }
830
831 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 for (i = 0; i < count; i++) {
833 int value;
834
835 value = ops->list_voltage(rdev, i);
836 if (value <= 0)
837 continue;
838
839 /* maybe adjust [min_uV..max_uV] */
840 if (value >= cmin && value < min_uV)
841 min_uV = value;
842 if (value <= cmax && value > max_uV)
843 max_uV = value;
844 }
845
846 /* final: [min_uV..max_uV] valid iff constraints valid */
847 if (max_uV < min_uV) {
848 rdev_err(rdev, "unsupportable voltage constraints\n");
849 return -EINVAL;
850 }
851
852 /* use regulator's subset of machine constraints */
853 if (constraints->min_uV < min_uV) {
854 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855 constraints->min_uV, min_uV);
856 constraints->min_uV = min_uV;
857 }
858 if (constraints->max_uV > max_uV) {
859 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860 constraints->max_uV, max_uV);
861 constraints->max_uV = max_uV;
862 }
863 }
864
865 return 0;
866}
867
868/**
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
872 *
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
877 * set_mode.
878 */
879static int set_machine_constraints(struct regulator_dev *rdev,
880 const struct regulation_constraints *constraints)
881{
882 int ret = 0;
883 struct regulator_ops *ops = rdev->desc->ops;
884
885 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886 GFP_KERNEL);
887 if (!rdev->constraints)
888 return -ENOMEM;
889
890 ret = machine_constraints_voltage(rdev, rdev->constraints);
891 if (ret != 0)
892 goto out;
893
894 /* do we need to setup our suspend state */
895 if (constraints->initial_state) {
896 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897 if (ret < 0) {
898 rdev_err(rdev, "failed to set suspend state\n");
899 goto out;
900 }
901 }
902
903 if (constraints->initial_mode) {
904 if (!ops->set_mode) {
905 rdev_err(rdev, "no set_mode operation\n");
906 ret = -EINVAL;
907 goto out;
908 }
909
910 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911 if (ret < 0) {
912 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913 goto out;
914 }
915 }
916
917 /* If the constraints say the regulator should be on at this point
918 * and we have control then make sure it is enabled.
919 */
920 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921 ops->enable) {
922 ret = ops->enable(rdev);
923 if (ret < 0) {
924 rdev_err(rdev, "failed to enable\n");
925 goto out;
926 }
927 }
928
929 print_constraints(rdev);
930 return 0;
931out:
932 kfree(rdev->constraints);
933 rdev->constraints = NULL;
934 return ret;
935}
936
937/**
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
941 *
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
945 */
946static int set_supply(struct regulator_dev *rdev,
947 struct regulator_dev *supply_rdev)
948{
949 int err;
950
951 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952
953 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954 if (IS_ERR(rdev->supply)) {
955 err = PTR_ERR(rdev->supply);
956 rdev->supply = NULL;
957 return err;
958 }
959
960 return 0;
961}
962
963/**
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev: regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply: symbolic name for supply
969 *
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices. Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
974 *
975 * Only one of consumer_dev and consumer_dev_name may be specified.
976 */
977static int set_consumer_device_supply(struct regulator_dev *rdev,
978 struct device *consumer_dev, const char *consumer_dev_name,
979 const char *supply)
980{
981 struct regulator_map *node;
982 int has_dev;
983
984 if (consumer_dev && consumer_dev_name)
985 return -EINVAL;
986
987 if (!consumer_dev_name && consumer_dev)
988 consumer_dev_name = dev_name(consumer_dev);
989
990 if (supply == NULL)
991 return -EINVAL;
992
993 if (consumer_dev_name != NULL)
994 has_dev = 1;
995 else
996 has_dev = 0;
997
998 list_for_each_entry(node, ®ulator_map_list, list) {
999 if (node->dev_name && consumer_dev_name) {
1000 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001 continue;
1002 } else if (node->dev_name || consumer_dev_name) {
1003 continue;
1004 }
1005
1006 if (strcmp(node->supply, supply) != 0)
1007 continue;
1008
1009 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010 dev_name(&node->regulator->dev),
1011 node->regulator->desc->name,
1012 supply,
1013 dev_name(&rdev->dev), rdev_get_name(rdev));
1014 return -EBUSY;
1015 }
1016
1017 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018 if (node == NULL)
1019 return -ENOMEM;
1020
1021 node->regulator = rdev;
1022 node->supply = supply;
1023
1024 if (has_dev) {
1025 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026 if (node->dev_name == NULL) {
1027 kfree(node);
1028 return -ENOMEM;
1029 }
1030 }
1031
1032 list_add(&node->list, ®ulator_map_list);
1033 return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038 struct regulator_map *node, *n;
1039
1040 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1041 if (rdev == node->regulator) {
1042 list_del(&node->list);
1043 kfree(node->dev_name);
1044 kfree(node);
1045 }
1046 }
1047}
1048
1049#define REG_STR_SIZE 64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052 struct device *dev,
1053 const char *supply_name)
1054{
1055 struct regulator *regulator;
1056 char buf[REG_STR_SIZE];
1057 int err, size;
1058
1059 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060 if (regulator == NULL)
1061 return NULL;
1062
1063 mutex_lock(&rdev->mutex);
1064 regulator->rdev = rdev;
1065 list_add(®ulator->list, &rdev->consumer_list);
1066
1067 if (dev) {
1068 /* create a 'requested_microamps_name' sysfs entry */
1069 size = scnprintf(buf, REG_STR_SIZE,
1070 "microamps_requested_%s-%s",
1071 dev_name(dev), supply_name);
1072 if (size >= REG_STR_SIZE)
1073 goto overflow_err;
1074
1075 regulator->dev = dev;
1076 sysfs_attr_init(®ulator->dev_attr.attr);
1077 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078 if (regulator->dev_attr.attr.name == NULL)
1079 goto attr_name_err;
1080
1081 regulator->dev_attr.attr.mode = 0444;
1082 regulator->dev_attr.show = device_requested_uA_show;
1083 err = device_create_file(dev, ®ulator->dev_attr);
1084 if (err < 0) {
1085 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086 goto attr_name_err;
1087 }
1088
1089 /* also add a link to the device sysfs entry */
1090 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091 dev->kobj.name, supply_name);
1092 if (size >= REG_STR_SIZE)
1093 goto attr_err;
1094
1095 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096 if (regulator->supply_name == NULL)
1097 goto attr_err;
1098
1099 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100 buf);
1101 if (err) {
1102 rdev_warn(rdev, "could not add device link %s err %d\n",
1103 dev->kobj.name, err);
1104 goto link_name_err;
1105 }
1106 } else {
1107 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108 if (regulator->supply_name == NULL)
1109 goto attr_err;
1110 }
1111
1112#ifdef CONFIG_DEBUG_FS
1113 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114 rdev->debugfs);
1115 if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116 rdev_warn(rdev, "Failed to create debugfs directory\n");
1117 regulator->debugfs = NULL;
1118 } else {
1119 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120 ®ulator->uA_load);
1121 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122 ®ulator->min_uV);
1123 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124 ®ulator->max_uV);
1125 }
1126#endif
1127
1128 mutex_unlock(&rdev->mutex);
1129 return regulator;
1130link_name_err:
1131 kfree(regulator->supply_name);
1132attr_err:
1133 device_remove_file(regulator->dev, ®ulator->dev_attr);
1134attr_name_err:
1135 kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137 list_del(®ulator->list);
1138 kfree(regulator);
1139 mutex_unlock(&rdev->mutex);
1140 return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
1145 if (!rdev->desc->ops->enable_time)
1146 return 0;
1147 return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152 int exclusive)
1153{
1154 struct regulator_dev *rdev;
1155 struct regulator_map *map;
1156 struct regulator *regulator = ERR_PTR(-ENODEV);
1157 const char *devname = NULL;
1158 int ret;
1159
1160 if (id == NULL) {
1161 pr_err("get() with no identifier\n");
1162 return regulator;
1163 }
1164
1165 if (dev)
1166 devname = dev_name(dev);
1167
1168 mutex_lock(®ulator_list_mutex);
1169
1170 list_for_each_entry(map, ®ulator_map_list, list) {
1171 /* If the mapping has a device set up it must match */
1172 if (map->dev_name &&
1173 (!devname || strcmp(map->dev_name, devname)))
1174 continue;
1175
1176 if (strcmp(map->supply, id) == 0) {
1177 rdev = map->regulator;
1178 goto found;
1179 }
1180 }
1181
1182 if (board_wants_dummy_regulator) {
1183 rdev = dummy_regulator_rdev;
1184 goto found;
1185 }
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188 if (!devname)
1189 devname = "deviceless";
1190
1191 /* If the board didn't flag that it was fully constrained then
1192 * substitute in a dummy regulator so consumers can continue.
1193 */
1194 if (!has_full_constraints) {
1195 pr_warn("%s supply %s not found, using dummy regulator\n",
1196 devname, id);
1197 rdev = dummy_regulator_rdev;
1198 goto found;
1199 }
1200#endif
1201
1202 mutex_unlock(®ulator_list_mutex);
1203 return regulator;
1204
1205found:
1206 if (rdev->exclusive) {
1207 regulator = ERR_PTR(-EPERM);
1208 goto out;
1209 }
1210
1211 if (exclusive && rdev->open_count) {
1212 regulator = ERR_PTR(-EBUSY);
1213 goto out;
1214 }
1215
1216 if (!try_module_get(rdev->owner))
1217 goto out;
1218
1219 regulator = create_regulator(rdev, dev, id);
1220 if (regulator == NULL) {
1221 regulator = ERR_PTR(-ENOMEM);
1222 module_put(rdev->owner);
1223 }
1224
1225 rdev->open_count++;
1226 if (exclusive) {
1227 rdev->exclusive = 1;
1228
1229 ret = _regulator_is_enabled(rdev);
1230 if (ret > 0)
1231 rdev->use_count = 1;
1232 else
1233 rdev->use_count = 0;
1234 }
1235
1236out:
1237 mutex_unlock(®ulator_list_mutex);
1238
1239 return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged. It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257 return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno. Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged. It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284 return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1295 */
1296void regulator_put(struct regulator *regulator)
1297{
1298 struct regulator_dev *rdev;
1299
1300 if (regulator == NULL || IS_ERR(regulator))
1301 return;
1302
1303 mutex_lock(®ulator_list_mutex);
1304 rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307 debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310 /* remove any sysfs entries */
1311 if (regulator->dev) {
1312 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313 device_remove_file(regulator->dev, ®ulator->dev_attr);
1314 kfree(regulator->dev_attr.attr.name);
1315 }
1316 kfree(regulator->supply_name);
1317 list_del(®ulator->list);
1318 kfree(regulator);
1319
1320 rdev->open_count--;
1321 rdev->exclusive = 0;
1322
1323 module_put(rdev->owner);
1324 mutex_unlock(®ulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
1329{
1330 if (!rdev->constraints)
1331 return 0;
1332
1333 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334 return 1;
1335 else
1336 return 0;
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342 int ret, delay;
1343
1344 /* check voltage and requested load before enabling */
1345 if (rdev->constraints &&
1346 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347 drms_uA_update(rdev);
1348
1349 if (rdev->use_count == 0) {
1350 /* The regulator may on if it's not switchable or left on */
1351 ret = _regulator_is_enabled(rdev);
1352 if (ret == -EINVAL || ret == 0) {
1353 if (!_regulator_can_change_status(rdev))
1354 return -EPERM;
1355
1356 if (!rdev->desc->ops->enable)
1357 return -EINVAL;
1358
1359 /* Query before enabling in case configuration
1360 * dependent. */
1361 ret = _regulator_get_enable_time(rdev);
1362 if (ret >= 0) {
1363 delay = ret;
1364 } else {
1365 rdev_warn(rdev, "enable_time() failed: %d\n",
1366 ret);
1367 delay = 0;
1368 }
1369
1370 trace_regulator_enable(rdev_get_name(rdev));
1371
1372 /* Allow the regulator to ramp; it would be useful
1373 * to extend this for bulk operations so that the
1374 * regulators can ramp together. */
1375 ret = rdev->desc->ops->enable(rdev);
1376 if (ret < 0)
1377 return ret;
1378
1379 trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381 if (delay >= 1000) {
1382 mdelay(delay / 1000);
1383 udelay(delay % 1000);
1384 } else if (delay) {
1385 udelay(delay);
1386 }
1387
1388 trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390 } else if (ret < 0) {
1391 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392 return ret;
1393 }
1394 /* Fallthrough on positive return values - already enabled */
1395 }
1396
1397 rdev->use_count++;
1398
1399 return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value. Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415 struct regulator_dev *rdev = regulator->rdev;
1416 int ret = 0;
1417
1418 if (rdev->supply) {
1419 ret = regulator_enable(rdev->supply);
1420 if (ret != 0)
1421 return ret;
1422 }
1423
1424 mutex_lock(&rdev->mutex);
1425 ret = _regulator_enable(rdev);
1426 mutex_unlock(&rdev->mutex);
1427
1428 if (ret != 0)
1429 regulator_disable(rdev->supply);
1430
1431 return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438 int ret = 0;
1439
1440 if (WARN(rdev->use_count <= 0,
1441 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442 return -EIO;
1443
1444 /* are we the last user and permitted to disable ? */
1445 if (rdev->use_count == 1 &&
1446 (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448 /* we are last user */
1449 if (_regulator_can_change_status(rdev) &&
1450 rdev->desc->ops->disable) {
1451 trace_regulator_disable(rdev_get_name(rdev));
1452
1453 ret = rdev->desc->ops->disable(rdev);
1454 if (ret < 0) {
1455 rdev_err(rdev, "failed to disable\n");
1456 return ret;
1457 }
1458
1459 trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462 NULL);
1463 }
1464
1465 rdev->use_count = 0;
1466 } else if (rdev->use_count > 1) {
1467
1468 if (rdev->constraints &&
1469 (rdev->constraints->valid_ops_mask &
1470 REGULATOR_CHANGE_DRMS))
1471 drms_uA_update(rdev);
1472
1473 rdev->use_count--;
1474 }
1475
1476 return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current. Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493 struct regulator_dev *rdev = regulator->rdev;
1494 int ret = 0;
1495
1496 mutex_lock(&rdev->mutex);
1497 ret = _regulator_disable(rdev);
1498 mutex_unlock(&rdev->mutex);
1499
1500 if (ret == 0 && rdev->supply)
1501 regulator_disable(rdev->supply);
1502
1503 return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510 int ret = 0;
1511
1512 /* force disable */
1513 if (rdev->desc->ops->disable) {
1514 /* ah well, who wants to live forever... */
1515 ret = rdev->desc->ops->disable(rdev);
1516 if (ret < 0) {
1517 rdev_err(rdev, "failed to force disable\n");
1518 return ret;
1519 }
1520 /* notify other consumers that power has been forced off */
1521 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522 REGULATOR_EVENT_DISABLE, NULL);
1523 }
1524
1525 return ret;
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539 struct regulator_dev *rdev = regulator->rdev;
1540 int ret;
1541
1542 mutex_lock(&rdev->mutex);
1543 regulator->uA_load = 0;
1544 ret = _regulator_force_disable(regulator->rdev);
1545 mutex_unlock(&rdev->mutex);
1546
1547 if (rdev->supply)
1548 while (rdev->open_count--)
1549 regulator_disable(rdev->supply);
1550
1551 return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
1557 /* If we don't know then assume that the regulator is always on */
1558 if (!rdev->desc->ops->is_enabled)
1559 return 1;
1560
1561 return rdev->desc->ops->is_enabled(rdev);
1562}
1563
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578 int ret;
1579
1580 mutex_lock(®ulator->rdev->mutex);
1581 ret = _regulator_is_enabled(regulator->rdev);
1582 mutex_unlock(®ulator->rdev->mutex);
1583
1584 return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno. Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598 struct regulator_dev *rdev = regulator->rdev;
1599
1600 return rdev->desc->n_voltages ? : -EINVAL;
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616 struct regulator_dev *rdev = regulator->rdev;
1617 struct regulator_ops *ops = rdev->desc->ops;
1618 int ret;
1619
1620 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621 return -EINVAL;
1622
1623 mutex_lock(&rdev->mutex);
1624 ret = ops->list_voltage(rdev, selector);
1625 mutex_unlock(&rdev->mutex);
1626
1627 if (ret > 0) {
1628 if (ret < rdev->constraints->min_uV)
1629 ret = 0;
1630 else if (ret > rdev->constraints->max_uV)
1631 ret = 0;
1632 }
1633
1634 return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648 int min_uV, int max_uV)
1649{
1650 int i, voltages, ret;
1651
1652 ret = regulator_count_voltages(regulator);
1653 if (ret < 0)
1654 return ret;
1655 voltages = ret;
1656
1657 for (i = 0; i < voltages; i++) {
1658 ret = regulator_list_voltage(regulator, i);
1659
1660 if (ret >= min_uV && ret <= max_uV)
1661 return 1;
1662 }
1663
1664 return 0;
1665}
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668 int min_uV, int max_uV)
1669{
1670 int ret;
1671 int delay = 0;
1672 unsigned int selector;
1673
1674 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676 min_uV += rdev->constraints->uV_offset;
1677 max_uV += rdev->constraints->uV_offset;
1678
1679 if (rdev->desc->ops->set_voltage) {
1680 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681 &selector);
1682
1683 if (rdev->desc->ops->list_voltage)
1684 selector = rdev->desc->ops->list_voltage(rdev,
1685 selector);
1686 else
1687 selector = -1;
1688 } else if (rdev->desc->ops->set_voltage_sel) {
1689 int best_val = INT_MAX;
1690 int i;
1691
1692 selector = 0;
1693
1694 /* Find the smallest voltage that falls within the specified
1695 * range.
1696 */
1697 for (i = 0; i < rdev->desc->n_voltages; i++) {
1698 ret = rdev->desc->ops->list_voltage(rdev, i);
1699 if (ret < 0)
1700 continue;
1701
1702 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703 best_val = ret;
1704 selector = i;
1705 }
1706 }
1707
1708 /*
1709 * If we can't obtain the old selector there is not enough
1710 * info to call set_voltage_time_sel().
1711 */
1712 if (rdev->desc->ops->set_voltage_time_sel &&
1713 rdev->desc->ops->get_voltage_sel) {
1714 unsigned int old_selector = 0;
1715
1716 ret = rdev->desc->ops->get_voltage_sel(rdev);
1717 if (ret < 0)
1718 return ret;
1719 old_selector = ret;
1720 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721 old_selector, selector);
1722 }
1723
1724 if (best_val != INT_MAX) {
1725 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726 selector = best_val;
1727 } else {
1728 ret = -EINVAL;
1729 }
1730 } else {
1731 ret = -EINVAL;
1732 }
1733
1734 /* Insert any necessary delays */
1735 if (delay >= 1000) {
1736 mdelay(delay / 1000);
1737 udelay(delay % 1000);
1738 } else if (delay) {
1739 udelay(delay);
1740 }
1741
1742 if (ret == 0)
1743 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744 NULL);
1745
1746 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1747
1748 return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771 struct regulator_dev *rdev = regulator->rdev;
1772 int ret = 0;
1773
1774 mutex_lock(&rdev->mutex);
1775
1776 /* If we're setting the same range as last time the change
1777 * should be a noop (some cpufreq implementations use the same
1778 * voltage for multiple frequencies, for example).
1779 */
1780 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781 goto out;
1782
1783 /* sanity check */
1784 if (!rdev->desc->ops->set_voltage &&
1785 !rdev->desc->ops->set_voltage_sel) {
1786 ret = -EINVAL;
1787 goto out;
1788 }
1789
1790 /* constraints check */
1791 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792 if (ret < 0)
1793 goto out;
1794 regulator->min_uV = min_uV;
1795 regulator->max_uV = max_uV;
1796
1797 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798 if (ret < 0)
1799 goto out;
1800
1801 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1802
1803out:
1804 mutex_unlock(&rdev->mutex);
1805 return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820 int old_uV, int new_uV)
1821{
1822 struct regulator_dev *rdev = regulator->rdev;
1823 struct regulator_ops *ops = rdev->desc->ops;
1824 int old_sel = -1;
1825 int new_sel = -1;
1826 int voltage;
1827 int i;
1828
1829 /* Currently requires operations to do this */
1830 if (!ops->list_voltage || !ops->set_voltage_time_sel
1831 || !rdev->desc->n_voltages)
1832 return -EINVAL;
1833
1834 for (i = 0; i < rdev->desc->n_voltages; i++) {
1835 /* We only look for exact voltage matches here */
1836 voltage = regulator_list_voltage(regulator, i);
1837 if (voltage < 0)
1838 return -EINVAL;
1839 if (voltage == 0)
1840 continue;
1841 if (voltage == old_uV)
1842 old_sel = i;
1843 if (voltage == new_uV)
1844 new_sel = i;
1845 }
1846
1847 if (old_sel < 0 || new_sel < 0)
1848 return -EINVAL;
1849
1850 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage. This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864 struct regulator_dev *rdev = regulator->rdev;
1865 int ret, min_uV, max_uV;
1866
1867 mutex_lock(&rdev->mutex);
1868
1869 if (!rdev->desc->ops->set_voltage &&
1870 !rdev->desc->ops->set_voltage_sel) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874
1875 /* This is only going to work if we've had a voltage configured. */
1876 if (!regulator->min_uV && !regulator->max_uV) {
1877 ret = -EINVAL;
1878 goto out;
1879 }
1880
1881 min_uV = regulator->min_uV;
1882 max_uV = regulator->max_uV;
1883
1884 /* This should be a paranoia check... */
1885 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886 if (ret < 0)
1887 goto out;
1888
1889 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890 if (ret < 0)
1891 goto out;
1892
1893 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896 mutex_unlock(&rdev->mutex);
1897 return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903 int sel, ret;
1904
1905 if (rdev->desc->ops->get_voltage_sel) {
1906 sel = rdev->desc->ops->get_voltage_sel(rdev);
1907 if (sel < 0)
1908 return sel;
1909 ret = rdev->desc->ops->list_voltage(rdev, sel);
1910 } else if (rdev->desc->ops->get_voltage) {
1911 ret = rdev->desc->ops->get_voltage(rdev);
1912 } else {
1913 return -EINVAL;
1914 }
1915
1916 if (ret < 0)
1917 return ret;
1918 return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932 int ret;
1933
1934 mutex_lock(®ulator->rdev->mutex);
1935
1936 ret = _regulator_get_voltage(regulator->rdev);
1937
1938 mutex_unlock(®ulator->rdev->mutex);
1939
1940 return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961 int min_uA, int max_uA)
1962{
1963 struct regulator_dev *rdev = regulator->rdev;
1964 int ret;
1965
1966 mutex_lock(&rdev->mutex);
1967
1968 /* sanity check */
1969 if (!rdev->desc->ops->set_current_limit) {
1970 ret = -EINVAL;
1971 goto out;
1972 }
1973
1974 /* constraints check */
1975 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976 if (ret < 0)
1977 goto out;
1978
1979 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981 mutex_unlock(&rdev->mutex);
1982 return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988 int ret;
1989
1990 mutex_lock(&rdev->mutex);
1991
1992 /* sanity check */
1993 if (!rdev->desc->ops->get_current_limit) {
1994 ret = -EINVAL;
1995 goto out;
1996 }
1997
1998 ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000 mutex_unlock(&rdev->mutex);
2001 return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015 return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032 struct regulator_dev *rdev = regulator->rdev;
2033 int ret;
2034 int regulator_curr_mode;
2035
2036 mutex_lock(&rdev->mutex);
2037
2038 /* sanity check */
2039 if (!rdev->desc->ops->set_mode) {
2040 ret = -EINVAL;
2041 goto out;
2042 }
2043
2044 /* return if the same mode is requested */
2045 if (rdev->desc->ops->get_mode) {
2046 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047 if (regulator_curr_mode == mode) {
2048 ret = 0;
2049 goto out;
2050 }
2051 }
2052
2053 /* constraints check */
2054 ret = regulator_mode_constrain(rdev, &mode);
2055 if (ret < 0)
2056 goto out;
2057
2058 ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060 mutex_unlock(&rdev->mutex);
2061 return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067 int ret;
2068
2069 mutex_lock(&rdev->mutex);
2070
2071 /* sanity check */
2072 if (!rdev->desc->ops->get_mode) {
2073 ret = -EINVAL;
2074 goto out;
2075 }
2076
2077 ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079 mutex_unlock(&rdev->mutex);
2080 return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091 return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 * o Device is opened / closed.
2111 * o Device I/O is about to begin or has just finished.
2112 * o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123 struct regulator_dev *rdev = regulator->rdev;
2124 struct regulator *consumer;
2125 int ret, output_uV, input_uV, total_uA_load = 0;
2126 unsigned int mode;
2127
2128 mutex_lock(&rdev->mutex);
2129
2130 /*
2131 * first check to see if we can set modes at all, otherwise just
2132 * tell the consumer everything is OK.
2133 */
2134 regulator->uA_load = uA_load;
2135 ret = regulator_check_drms(rdev);
2136 if (ret < 0) {
2137 ret = 0;
2138 goto out;
2139 }
2140
2141 if (!rdev->desc->ops->get_optimum_mode)
2142 goto out;
2143
2144 /*
2145 * we can actually do this so any errors are indicators of
2146 * potential real failure.
2147 */
2148 ret = -EINVAL;
2149
2150 /* get output voltage */
2151 output_uV = _regulator_get_voltage(rdev);
2152 if (output_uV <= 0) {
2153 rdev_err(rdev, "invalid output voltage found\n");
2154 goto out;
2155 }
2156
2157 /* get input voltage */
2158 input_uV = 0;
2159 if (rdev->supply)
2160 input_uV = regulator_get_voltage(rdev->supply);
2161 if (input_uV <= 0)
2162 input_uV = rdev->constraints->input_uV;
2163 if (input_uV <= 0) {
2164 rdev_err(rdev, "invalid input voltage found\n");
2165 goto out;
2166 }
2167
2168 /* calc total requested load for this regulator */
2169 list_for_each_entry(consumer, &rdev->consumer_list, list)
2170 total_uA_load += consumer->uA_load;
2171
2172 mode = rdev->desc->ops->get_optimum_mode(rdev,
2173 input_uV, output_uV,
2174 total_uA_load);
2175 ret = regulator_mode_constrain(rdev, &mode);
2176 if (ret < 0) {
2177 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178 total_uA_load, input_uV, output_uV);
2179 goto out;
2180 }
2181
2182 ret = rdev->desc->ops->set_mode(rdev, mode);
2183 if (ret < 0) {
2184 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185 goto out;
2186 }
2187 ret = mode;
2188out:
2189 mutex_unlock(&rdev->mutex);
2190 return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202 struct notifier_block *nb)
2203{
2204 return blocking_notifier_chain_register(®ulator->rdev->notifier,
2205 nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217 struct notifier_block *nb)
2218{
2219 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
2220 nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228 unsigned long event, void *data)
2229{
2230 /* call rdev chain first */
2231 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev: Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers: Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation. If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249 struct regulator_bulk_data *consumers)
2250{
2251 int i;
2252 int ret;
2253
2254 for (i = 0; i < num_consumers; i++)
2255 consumers[i].consumer = NULL;
2256
2257 for (i = 0; i < num_consumers; i++) {
2258 consumers[i].consumer = regulator_get(dev,
2259 consumers[i].supply);
2260 if (IS_ERR(consumers[i].consumer)) {
2261 ret = PTR_ERR(consumers[i].consumer);
2262 dev_err(dev, "Failed to get supply '%s': %d\n",
2263 consumers[i].supply, ret);
2264 consumers[i].consumer = NULL;
2265 goto err;
2266 }
2267 }
2268
2269 return 0;
2270
2271err:
2272 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273 regulator_put(consumers[i].consumer);
2274
2275 return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281 struct regulator_bulk_data *bulk = data;
2282
2283 bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers: Consumer data; clients are stored here.
2291 * @return 0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call. If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299 struct regulator_bulk_data *consumers)
2300{
2301 LIST_HEAD(async_domain);
2302 int i;
2303 int ret = 0;
2304
2305 for (i = 0; i < num_consumers; i++)
2306 async_schedule_domain(regulator_bulk_enable_async,
2307 &consumers[i], &async_domain);
2308
2309 async_synchronize_full_domain(&async_domain);
2310
2311 /* If any consumer failed we need to unwind any that succeeded */
2312 for (i = 0; i < num_consumers; i++) {
2313 if (consumers[i].ret != 0) {
2314 ret = consumers[i].ret;
2315 goto err;
2316 }
2317 }
2318
2319 return 0;
2320
2321err:
2322 for (i = 0; i < num_consumers; i++)
2323 if (consumers[i].ret == 0)
2324 regulator_disable(consumers[i].consumer);
2325 else
2326 pr_err("Failed to enable %s: %d\n",
2327 consumers[i].supply, consumers[i].ret);
2328
2329 return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers: Consumer data; clients are stored here.
2338 * @return 0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call. If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346 struct regulator_bulk_data *consumers)
2347{
2348 int i;
2349 int ret;
2350
2351 for (i = 0; i < num_consumers; i++) {
2352 ret = regulator_disable(consumers[i].consumer);
2353 if (ret != 0)
2354 goto err;
2355 }
2356
2357 return 0;
2358
2359err:
2360 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361 for (--i; i >= 0; --i)
2362 regulator_enable(consumers[i].consumer);
2363
2364 return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers: Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378 struct regulator_bulk_data *consumers)
2379{
2380 int i;
2381
2382 for (i = 0; i < num_consumers; i++) {
2383 regulator_put(consumers[i].consumer);
2384 consumers[i].consumer = NULL;
2385 }
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400 unsigned long event, void *data)
2401{
2402 _notifier_call_chain(rdev, event, data);
2403 return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417 switch (mode) {
2418 case REGULATOR_MODE_FAST:
2419 return REGULATOR_STATUS_FAST;
2420 case REGULATOR_MODE_NORMAL:
2421 return REGULATOR_STATUS_NORMAL;
2422 case REGULATOR_MODE_IDLE:
2423 return REGULATOR_STATUS_IDLE;
2424 case REGULATOR_STATUS_STANDBY:
2425 return REGULATOR_STATUS_STANDBY;
2426 default:
2427 return 0;
2428 }
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
2437{
2438 struct device *dev = &rdev->dev;
2439 struct regulator_ops *ops = rdev->desc->ops;
2440 int status = 0;
2441
2442 /* some attributes need specific methods to be displayed */
2443 if (ops->get_voltage || ops->get_voltage_sel) {
2444 status = device_create_file(dev, &dev_attr_microvolts);
2445 if (status < 0)
2446 return status;
2447 }
2448 if (ops->get_current_limit) {
2449 status = device_create_file(dev, &dev_attr_microamps);
2450 if (status < 0)
2451 return status;
2452 }
2453 if (ops->get_mode) {
2454 status = device_create_file(dev, &dev_attr_opmode);
2455 if (status < 0)
2456 return status;
2457 }
2458 if (ops->is_enabled) {
2459 status = device_create_file(dev, &dev_attr_state);
2460 if (status < 0)
2461 return status;
2462 }
2463 if (ops->get_status) {
2464 status = device_create_file(dev, &dev_attr_status);
2465 if (status < 0)
2466 return status;
2467 }
2468
2469 /* some attributes are type-specific */
2470 if (rdev->desc->type == REGULATOR_CURRENT) {
2471 status = device_create_file(dev, &dev_attr_requested_microamps);
2472 if (status < 0)
2473 return status;
2474 }
2475
2476 /* all the other attributes exist to support constraints;
2477 * don't show them if there are no constraints, or if the
2478 * relevant supporting methods are missing.
2479 */
2480 if (!rdev->constraints)
2481 return status;
2482
2483 /* constraints need specific supporting methods */
2484 if (ops->set_voltage || ops->set_voltage_sel) {
2485 status = device_create_file(dev, &dev_attr_min_microvolts);
2486 if (status < 0)
2487 return status;
2488 status = device_create_file(dev, &dev_attr_max_microvolts);
2489 if (status < 0)
2490 return status;
2491 }
2492 if (ops->set_current_limit) {
2493 status = device_create_file(dev, &dev_attr_min_microamps);
2494 if (status < 0)
2495 return status;
2496 status = device_create_file(dev, &dev_attr_max_microamps);
2497 if (status < 0)
2498 return status;
2499 }
2500
2501 /* suspend mode constraints need multiple supporting methods */
2502 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503 return status;
2504
2505 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506 if (status < 0)
2507 return status;
2508 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509 if (status < 0)
2510 return status;
2511 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512 if (status < 0)
2513 return status;
2514
2515 if (ops->set_suspend_voltage) {
2516 status = device_create_file(dev,
2517 &dev_attr_suspend_standby_microvolts);
2518 if (status < 0)
2519 return status;
2520 status = device_create_file(dev,
2521 &dev_attr_suspend_mem_microvolts);
2522 if (status < 0)
2523 return status;
2524 status = device_create_file(dev,
2525 &dev_attr_suspend_disk_microvolts);
2526 if (status < 0)
2527 return status;
2528 }
2529
2530 if (ops->set_suspend_mode) {
2531 status = device_create_file(dev,
2532 &dev_attr_suspend_standby_mode);
2533 if (status < 0)
2534 return status;
2535 status = device_create_file(dev,
2536 &dev_attr_suspend_mem_mode);
2537 if (status < 0)
2538 return status;
2539 status = device_create_file(dev,
2540 &dev_attr_suspend_disk_mode);
2541 if (status < 0)
2542 return status;
2543 }
2544
2545 return status;
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2553 rdev_warn(rdev, "Failed to create debugfs directory\n");
2554 rdev->debugfs = NULL;
2555 return;
2556 }
2557
2558 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559 &rdev->use_count);
2560 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561 &rdev->open_count);
2562#endif
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576 struct device *dev, const struct regulator_init_data *init_data,
2577 void *driver_data)
2578{
2579 static atomic_t regulator_no = ATOMIC_INIT(0);
2580 struct regulator_dev *rdev;
2581 int ret, i;
2582
2583 if (regulator_desc == NULL)
2584 return ERR_PTR(-EINVAL);
2585
2586 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587 return ERR_PTR(-EINVAL);
2588
2589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590 regulator_desc->type != REGULATOR_CURRENT)
2591 return ERR_PTR(-EINVAL);
2592
2593 if (!init_data)
2594 return ERR_PTR(-EINVAL);
2595
2596 /* Only one of each should be implemented */
2597 WARN_ON(regulator_desc->ops->get_voltage &&
2598 regulator_desc->ops->get_voltage_sel);
2599 WARN_ON(regulator_desc->ops->set_voltage &&
2600 regulator_desc->ops->set_voltage_sel);
2601
2602 /* If we're using selectors we must implement list_voltage. */
2603 if (regulator_desc->ops->get_voltage_sel &&
2604 !regulator_desc->ops->list_voltage) {
2605 return ERR_PTR(-EINVAL);
2606 }
2607 if (regulator_desc->ops->set_voltage_sel &&
2608 !regulator_desc->ops->list_voltage) {
2609 return ERR_PTR(-EINVAL);
2610 }
2611
2612 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613 if (rdev == NULL)
2614 return ERR_PTR(-ENOMEM);
2615
2616 mutex_lock(®ulator_list_mutex);
2617
2618 mutex_init(&rdev->mutex);
2619 rdev->reg_data = driver_data;
2620 rdev->owner = regulator_desc->owner;
2621 rdev->desc = regulator_desc;
2622 INIT_LIST_HEAD(&rdev->consumer_list);
2623 INIT_LIST_HEAD(&rdev->list);
2624 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2625
2626 /* preform any regulator specific init */
2627 if (init_data->regulator_init) {
2628 ret = init_data->regulator_init(rdev->reg_data);
2629 if (ret < 0)
2630 goto clean;
2631 }
2632
2633 /* register with sysfs */
2634 rdev->dev.class = ®ulator_class;
2635 rdev->dev.parent = dev;
2636 dev_set_name(&rdev->dev, "regulator.%d",
2637 atomic_inc_return(®ulator_no) - 1);
2638 ret = device_register(&rdev->dev);
2639 if (ret != 0) {
2640 put_device(&rdev->dev);
2641 goto clean;
2642 }
2643
2644 dev_set_drvdata(&rdev->dev, rdev);
2645
2646 /* set regulator constraints */
2647 ret = set_machine_constraints(rdev, &init_data->constraints);
2648 if (ret < 0)
2649 goto scrub;
2650
2651 /* add attributes supported by this regulator */
2652 ret = add_regulator_attributes(rdev);
2653 if (ret < 0)
2654 goto scrub;
2655
2656 if (init_data->supply_regulator) {
2657 struct regulator_dev *r;
2658 int found = 0;
2659
2660 list_for_each_entry(r, ®ulator_list, list) {
2661 if (strcmp(rdev_get_name(r),
2662 init_data->supply_regulator) == 0) {
2663 found = 1;
2664 break;
2665 }
2666 }
2667
2668 if (!found) {
2669 dev_err(dev, "Failed to find supply %s\n",
2670 init_data->supply_regulator);
2671 ret = -ENODEV;
2672 goto scrub;
2673 }
2674
2675 ret = set_supply(rdev, r);
2676 if (ret < 0)
2677 goto scrub;
2678 }
2679
2680 /* add consumers devices */
2681 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682 ret = set_consumer_device_supply(rdev,
2683 init_data->consumer_supplies[i].dev,
2684 init_data->consumer_supplies[i].dev_name,
2685 init_data->consumer_supplies[i].supply);
2686 if (ret < 0) {
2687 dev_err(dev, "Failed to set supply %s\n",
2688 init_data->consumer_supplies[i].supply);
2689 goto unset_supplies;
2690 }
2691 }
2692
2693 list_add(&rdev->list, ®ulator_list);
2694
2695 rdev_init_debugfs(rdev);
2696out:
2697 mutex_unlock(®ulator_list_mutex);
2698 return rdev;
2699
2700unset_supplies:
2701 unset_regulator_supplies(rdev);
2702
2703scrub:
2704 kfree(rdev->constraints);
2705 device_unregister(&rdev->dev);
2706 /* device core frees rdev */
2707 rdev = ERR_PTR(ret);
2708 goto out;
2709
2710clean:
2711 kfree(rdev);
2712 rdev = ERR_PTR(ret);
2713 goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725 if (rdev == NULL)
2726 return;
2727
2728 mutex_lock(®ulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730 debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732 WARN_ON(rdev->open_count);
2733 unset_regulator_supplies(rdev);
2734 list_del(&rdev->list);
2735 if (rdev->supply)
2736 regulator_put(rdev->supply);
2737 device_unregister(&rdev->dev);
2738 kfree(rdev->constraints);
2739 mutex_unlock(®ulator_list_mutex);
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752 struct regulator_dev *rdev;
2753 int ret = 0;
2754
2755 /* ON is handled by regulator active state */
2756 if (state == PM_SUSPEND_ON)
2757 return -EINVAL;
2758
2759 mutex_lock(®ulator_list_mutex);
2760 list_for_each_entry(rdev, ®ulator_list, list) {
2761
2762 mutex_lock(&rdev->mutex);
2763 ret = suspend_prepare(rdev, state);
2764 mutex_unlock(&rdev->mutex);
2765
2766 if (ret < 0) {
2767 rdev_err(rdev, "failed to prepare\n");
2768 goto out;
2769 }
2770 }
2771out:
2772 mutex_unlock(®ulator_list_mutex);
2773 return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785 struct regulator_dev *rdev;
2786 int ret = 0, error;
2787
2788 mutex_lock(®ulator_list_mutex);
2789 list_for_each_entry(rdev, ®ulator_list, list) {
2790 struct regulator_ops *ops = rdev->desc->ops;
2791
2792 mutex_lock(&rdev->mutex);
2793 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2794 ops->enable) {
2795 error = ops->enable(rdev);
2796 if (error)
2797 ret = error;
2798 } else {
2799 if (!has_full_constraints)
2800 goto unlock;
2801 if (!ops->disable)
2802 goto unlock;
2803 if (ops->is_enabled && !ops->is_enabled(rdev))
2804 goto unlock;
2805
2806 error = ops->disable(rdev);
2807 if (error)
2808 ret = error;
2809 }
2810unlock:
2811 mutex_unlock(&rdev->mutex);
2812 }
2813 mutex_unlock(®ulator_list_mutex);
2814 return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831 has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured. This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847 board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860 return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873 return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884 regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894 return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900 return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906 return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
2910static int __init regulator_init(void)
2911{
2912 int ret;
2913
2914 ret = class_register(®ulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917 debugfs_root = debugfs_create_dir("regulator", NULL);
2918 if (IS_ERR(debugfs_root) || !debugfs_root) {
2919 pr_warn("regulator: Failed to create debugfs directory\n");
2920 debugfs_root = NULL;
2921 }
2922#endif
2923
2924 regulator_dummy_init();
2925
2926 return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934 struct regulator_dev *rdev;
2935 struct regulator_ops *ops;
2936 struct regulation_constraints *c;
2937 int enabled, ret;
2938
2939 mutex_lock(®ulator_list_mutex);
2940
2941 /* If we have a full configuration then disable any regulators
2942 * which are not in use or always_on. This will become the
2943 * default behaviour in the future.
2944 */
2945 list_for_each_entry(rdev, ®ulator_list, list) {
2946 ops = rdev->desc->ops;
2947 c = rdev->constraints;
2948
2949 if (!ops->disable || (c && c->always_on))
2950 continue;
2951
2952 mutex_lock(&rdev->mutex);
2953
2954 if (rdev->use_count)
2955 goto unlock;
2956
2957 /* If we can't read the status assume it's on. */
2958 if (ops->is_enabled)
2959 enabled = ops->is_enabled(rdev);
2960 else
2961 enabled = 1;
2962
2963 if (!enabled)
2964 goto unlock;
2965
2966 if (has_full_constraints) {
2967 /* We log since this may kill the system if it
2968 * goes wrong. */
2969 rdev_info(rdev, "disabling\n");
2970 ret = ops->disable(rdev);
2971 if (ret != 0) {
2972 rdev_err(rdev, "couldn't disable: %d\n", ret);
2973 }
2974 } else {
2975 /* The intention is that in future we will
2976 * assume that full constraints are provided
2977 * so warn even if we aren't going to do
2978 * anything here.
2979 */
2980 rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981 }
2982
2983unlock:
2984 mutex_unlock(&rdev->mutex);
2985 }
2986
2987 mutex_unlock(®ulator_list_mutex);
2988
2989 return 0;
2990}
2991late_initcall(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_current_limit(struct regulator_dev *rdev);
87static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88static int _notifier_call_chain(struct regulator_dev *rdev,
89 unsigned long event, void *data);
90static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 int min_uV, int max_uV);
92static int regulator_balance_voltage(struct regulator_dev *rdev,
93 suspend_state_t state);
94static struct regulator *create_regulator(struct regulator_dev *rdev,
95 struct device *dev,
96 const char *supply_name);
97static void destroy_regulator(struct regulator *regulator);
98static void _regulator_put(struct regulator *regulator);
99
100const char *rdev_get_name(struct regulator_dev *rdev)
101{
102 if (rdev->constraints && rdev->constraints->name)
103 return rdev->constraints->name;
104 else if (rdev->desc->name)
105 return rdev->desc->name;
106 else
107 return "";
108}
109EXPORT_SYMBOL_GPL(rdev_get_name);
110
111static bool have_full_constraints(void)
112{
113 return has_full_constraints || of_have_populated_dt();
114}
115
116static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117{
118 if (!rdev->constraints) {
119 rdev_err(rdev, "no constraints\n");
120 return false;
121 }
122
123 if (rdev->constraints->valid_ops_mask & ops)
124 return true;
125
126 return false;
127}
128
129/**
130 * regulator_lock_nested - lock a single regulator
131 * @rdev: regulator source
132 * @ww_ctx: w/w mutex acquire context
133 *
134 * This function can be called many times by one task on
135 * a single regulator and its mutex will be locked only
136 * once. If a task, which is calling this function is other
137 * than the one, which initially locked the mutex, it will
138 * wait on mutex.
139 */
140static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 struct ww_acquire_ctx *ww_ctx)
142{
143 bool lock = false;
144 int ret = 0;
145
146 mutex_lock(®ulator_nesting_mutex);
147
148 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
149 if (rdev->mutex_owner == current)
150 rdev->ref_cnt++;
151 else
152 lock = true;
153
154 if (lock) {
155 mutex_unlock(®ulator_nesting_mutex);
156 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 mutex_lock(®ulator_nesting_mutex);
158 }
159 } else {
160 lock = true;
161 }
162
163 if (lock && ret != -EDEADLK) {
164 rdev->ref_cnt++;
165 rdev->mutex_owner = current;
166 }
167
168 mutex_unlock(®ulator_nesting_mutex);
169
170 return ret;
171}
172
173/**
174 * regulator_lock - lock a single regulator
175 * @rdev: regulator source
176 *
177 * This function can be called many times by one task on
178 * a single regulator and its mutex will be locked only
179 * once. If a task, which is calling this function is other
180 * than the one, which initially locked the mutex, it will
181 * wait on mutex.
182 */
183static void regulator_lock(struct regulator_dev *rdev)
184{
185 regulator_lock_nested(rdev, NULL);
186}
187
188/**
189 * regulator_unlock - unlock a single regulator
190 * @rdev: regulator_source
191 *
192 * This function unlocks the mutex when the
193 * reference counter reaches 0.
194 */
195static void regulator_unlock(struct regulator_dev *rdev)
196{
197 mutex_lock(®ulator_nesting_mutex);
198
199 if (--rdev->ref_cnt == 0) {
200 rdev->mutex_owner = NULL;
201 ww_mutex_unlock(&rdev->mutex);
202 }
203
204 WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206 mutex_unlock(®ulator_nesting_mutex);
207}
208
209static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210{
211 struct regulator_dev *c_rdev;
212 int i;
213
214 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217 if (rdev->supply->rdev == c_rdev)
218 return true;
219 }
220
221 return false;
222}
223
224static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 unsigned int n_coupled)
226{
227 struct regulator_dev *c_rdev, *supply_rdev;
228 int i, supply_n_coupled;
229
230 for (i = n_coupled; i > 0; i--) {
231 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233 if (!c_rdev)
234 continue;
235
236 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 supply_rdev = c_rdev->supply->rdev;
238 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240 regulator_unlock_recursive(supply_rdev,
241 supply_n_coupled);
242 }
243
244 regulator_unlock(c_rdev);
245 }
246}
247
248static int regulator_lock_recursive(struct regulator_dev *rdev,
249 struct regulator_dev **new_contended_rdev,
250 struct regulator_dev **old_contended_rdev,
251 struct ww_acquire_ctx *ww_ctx)
252{
253 struct regulator_dev *c_rdev;
254 int i, err;
255
256 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259 if (!c_rdev)
260 continue;
261
262 if (c_rdev != *old_contended_rdev) {
263 err = regulator_lock_nested(c_rdev, ww_ctx);
264 if (err) {
265 if (err == -EDEADLK) {
266 *new_contended_rdev = c_rdev;
267 goto err_unlock;
268 }
269
270 /* shouldn't happen */
271 WARN_ON_ONCE(err != -EALREADY);
272 }
273 } else {
274 *old_contended_rdev = NULL;
275 }
276
277 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 err = regulator_lock_recursive(c_rdev->supply->rdev,
279 new_contended_rdev,
280 old_contended_rdev,
281 ww_ctx);
282 if (err) {
283 regulator_unlock(c_rdev);
284 goto err_unlock;
285 }
286 }
287 }
288
289 return 0;
290
291err_unlock:
292 regulator_unlock_recursive(rdev, i);
293
294 return err;
295}
296
297/**
298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299 * regulators
300 * @rdev: regulator source
301 * @ww_ctx: w/w mutex acquire context
302 *
303 * Unlock all regulators related with rdev by coupling or supplying.
304 */
305static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 struct ww_acquire_ctx *ww_ctx)
307{
308 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 ww_acquire_fini(ww_ctx);
310}
311
312/**
313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314 * @rdev: regulator source
315 * @ww_ctx: w/w mutex acquire context
316 *
317 * This function as a wrapper on regulator_lock_recursive(), which locks
318 * all regulators related with rdev by coupling or supplying.
319 */
320static void regulator_lock_dependent(struct regulator_dev *rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *new_contended_rdev = NULL;
324 struct regulator_dev *old_contended_rdev = NULL;
325 int err;
326
327 mutex_lock(®ulator_list_mutex);
328
329 ww_acquire_init(ww_ctx, ®ulator_ww_class);
330
331 do {
332 if (new_contended_rdev) {
333 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 old_contended_rdev = new_contended_rdev;
335 old_contended_rdev->ref_cnt++;
336 }
337
338 err = regulator_lock_recursive(rdev,
339 &new_contended_rdev,
340 &old_contended_rdev,
341 ww_ctx);
342
343 if (old_contended_rdev)
344 regulator_unlock(old_contended_rdev);
345
346 } while (err == -EDEADLK);
347
348 ww_acquire_done(ww_ctx);
349
350 mutex_unlock(®ulator_list_mutex);
351}
352
353/**
354 * of_get_child_regulator - get a child regulator device node
355 * based on supply name
356 * @parent: Parent device node
357 * @prop_name: Combination regulator supply name and "-supply"
358 *
359 * Traverse all child nodes.
360 * Extract the child regulator device node corresponding to the supply name.
361 * returns the device node corresponding to the regulator if found, else
362 * returns NULL.
363 */
364static struct device_node *of_get_child_regulator(struct device_node *parent,
365 const char *prop_name)
366{
367 struct device_node *regnode = NULL;
368 struct device_node *child = NULL;
369
370 for_each_child_of_node(parent, child) {
371 regnode = of_parse_phandle(child, prop_name, 0);
372
373 if (!regnode) {
374 regnode = of_get_child_regulator(child, prop_name);
375 if (regnode)
376 goto err_node_put;
377 } else {
378 goto err_node_put;
379 }
380 }
381 return NULL;
382
383err_node_put:
384 of_node_put(child);
385 return regnode;
386}
387
388/**
389 * of_get_regulator - get a regulator device node based on supply name
390 * @dev: Device pointer for the consumer (of regulator) device
391 * @supply: regulator supply name
392 *
393 * Extract the regulator device node corresponding to the supply name.
394 * returns the device node corresponding to the regulator if found, else
395 * returns NULL.
396 */
397static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398{
399 struct device_node *regnode = NULL;
400 char prop_name[64]; /* 64 is max size of property name */
401
402 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404 snprintf(prop_name, 64, "%s-supply", supply);
405 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407 if (!regnode) {
408 regnode = of_get_child_regulator(dev->of_node, prop_name);
409 if (regnode)
410 return regnode;
411
412 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 prop_name, dev->of_node);
414 return NULL;
415 }
416 return regnode;
417}
418
419/* Platform voltage constraint check */
420int regulator_check_voltage(struct regulator_dev *rdev,
421 int *min_uV, int *max_uV)
422{
423 BUG_ON(*min_uV > *max_uV);
424
425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 rdev_err(rdev, "voltage operation not allowed\n");
427 return -EPERM;
428 }
429
430 if (*max_uV > rdev->constraints->max_uV)
431 *max_uV = rdev->constraints->max_uV;
432 if (*min_uV < rdev->constraints->min_uV)
433 *min_uV = rdev->constraints->min_uV;
434
435 if (*min_uV > *max_uV) {
436 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437 *min_uV, *max_uV);
438 return -EINVAL;
439 }
440
441 return 0;
442}
443
444/* return 0 if the state is valid */
445static int regulator_check_states(suspend_state_t state)
446{
447 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448}
449
450/* Make sure we select a voltage that suits the needs of all
451 * regulator consumers
452 */
453int regulator_check_consumers(struct regulator_dev *rdev,
454 int *min_uV, int *max_uV,
455 suspend_state_t state)
456{
457 struct regulator *regulator;
458 struct regulator_voltage *voltage;
459
460 list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 voltage = ®ulator->voltage[state];
462 /*
463 * Assume consumers that didn't say anything are OK
464 * with anything in the constraint range.
465 */
466 if (!voltage->min_uV && !voltage->max_uV)
467 continue;
468
469 if (*max_uV > voltage->max_uV)
470 *max_uV = voltage->max_uV;
471 if (*min_uV < voltage->min_uV)
472 *min_uV = voltage->min_uV;
473 }
474
475 if (*min_uV > *max_uV) {
476 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477 *min_uV, *max_uV);
478 return -EINVAL;
479 }
480
481 return 0;
482}
483
484/* current constraint check */
485static int regulator_check_current_limit(struct regulator_dev *rdev,
486 int *min_uA, int *max_uA)
487{
488 BUG_ON(*min_uA > *max_uA);
489
490 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 rdev_err(rdev, "current operation not allowed\n");
492 return -EPERM;
493 }
494
495 if (*max_uA > rdev->constraints->max_uA)
496 *max_uA = rdev->constraints->max_uA;
497 if (*min_uA < rdev->constraints->min_uA)
498 *min_uA = rdev->constraints->min_uA;
499
500 if (*min_uA > *max_uA) {
501 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502 *min_uA, *max_uA);
503 return -EINVAL;
504 }
505
506 return 0;
507}
508
509/* operating mode constraint check */
510static int regulator_mode_constrain(struct regulator_dev *rdev,
511 unsigned int *mode)
512{
513 switch (*mode) {
514 case REGULATOR_MODE_FAST:
515 case REGULATOR_MODE_NORMAL:
516 case REGULATOR_MODE_IDLE:
517 case REGULATOR_MODE_STANDBY:
518 break;
519 default:
520 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 return -EINVAL;
522 }
523
524 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 rdev_err(rdev, "mode operation not allowed\n");
526 return -EPERM;
527 }
528
529 /* The modes are bitmasks, the most power hungry modes having
530 * the lowest values. If the requested mode isn't supported
531 * try higher modes.
532 */
533 while (*mode) {
534 if (rdev->constraints->valid_modes_mask & *mode)
535 return 0;
536 *mode /= 2;
537 }
538
539 return -EINVAL;
540}
541
542static inline struct regulator_state *
543regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544{
545 if (rdev->constraints == NULL)
546 return NULL;
547
548 switch (state) {
549 case PM_SUSPEND_STANDBY:
550 return &rdev->constraints->state_standby;
551 case PM_SUSPEND_MEM:
552 return &rdev->constraints->state_mem;
553 case PM_SUSPEND_MAX:
554 return &rdev->constraints->state_disk;
555 default:
556 return NULL;
557 }
558}
559
560static const struct regulator_state *
561regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562{
563 const struct regulator_state *rstate;
564
565 rstate = regulator_get_suspend_state(rdev, state);
566 if (rstate == NULL)
567 return NULL;
568
569 /* If we have no suspend mode configuration don't set anything;
570 * only warn if the driver implements set_suspend_voltage or
571 * set_suspend_mode callback.
572 */
573 if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 rstate->enabled != DISABLE_IN_SUSPEND) {
575 if (rdev->desc->ops->set_suspend_voltage ||
576 rdev->desc->ops->set_suspend_mode)
577 rdev_warn(rdev, "No configuration\n");
578 return NULL;
579 }
580
581 return rstate;
582}
583
584static ssize_t microvolts_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586{
587 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 int uV;
589
590 regulator_lock(rdev);
591 uV = regulator_get_voltage_rdev(rdev);
592 regulator_unlock(rdev);
593
594 if (uV < 0)
595 return uV;
596 return sprintf(buf, "%d\n", uV);
597}
598static DEVICE_ATTR_RO(microvolts);
599
600static ssize_t microamps_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602{
603 struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606}
607static DEVICE_ATTR_RO(microamps);
608
609static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610 char *buf)
611{
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%s\n", rdev_get_name(rdev));
615}
616static DEVICE_ATTR_RO(name);
617
618static const char *regulator_opmode_to_str(int mode)
619{
620 switch (mode) {
621 case REGULATOR_MODE_FAST:
622 return "fast";
623 case REGULATOR_MODE_NORMAL:
624 return "normal";
625 case REGULATOR_MODE_IDLE:
626 return "idle";
627 case REGULATOR_MODE_STANDBY:
628 return "standby";
629 }
630 return "unknown";
631}
632
633static ssize_t regulator_print_opmode(char *buf, int mode)
634{
635 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636}
637
638static ssize_t opmode_show(struct device *dev,
639 struct device_attribute *attr, char *buf)
640{
641 struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644}
645static DEVICE_ATTR_RO(opmode);
646
647static ssize_t regulator_print_state(char *buf, int state)
648{
649 if (state > 0)
650 return sprintf(buf, "enabled\n");
651 else if (state == 0)
652 return sprintf(buf, "disabled\n");
653 else
654 return sprintf(buf, "unknown\n");
655}
656
657static ssize_t state_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659{
660 struct regulator_dev *rdev = dev_get_drvdata(dev);
661 ssize_t ret;
662
663 regulator_lock(rdev);
664 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 regulator_unlock(rdev);
666
667 return ret;
668}
669static DEVICE_ATTR_RO(state);
670
671static ssize_t status_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
673{
674 struct regulator_dev *rdev = dev_get_drvdata(dev);
675 int status;
676 char *label;
677
678 status = rdev->desc->ops->get_status(rdev);
679 if (status < 0)
680 return status;
681
682 switch (status) {
683 case REGULATOR_STATUS_OFF:
684 label = "off";
685 break;
686 case REGULATOR_STATUS_ON:
687 label = "on";
688 break;
689 case REGULATOR_STATUS_ERROR:
690 label = "error";
691 break;
692 case REGULATOR_STATUS_FAST:
693 label = "fast";
694 break;
695 case REGULATOR_STATUS_NORMAL:
696 label = "normal";
697 break;
698 case REGULATOR_STATUS_IDLE:
699 label = "idle";
700 break;
701 case REGULATOR_STATUS_STANDBY:
702 label = "standby";
703 break;
704 case REGULATOR_STATUS_BYPASS:
705 label = "bypass";
706 break;
707 case REGULATOR_STATUS_UNDEFINED:
708 label = "undefined";
709 break;
710 default:
711 return -ERANGE;
712 }
713
714 return sprintf(buf, "%s\n", label);
715}
716static DEVICE_ATTR_RO(status);
717
718static ssize_t min_microamps_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720{
721 struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723 if (!rdev->constraints)
724 return sprintf(buf, "constraint not defined\n");
725
726 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727}
728static DEVICE_ATTR_RO(min_microamps);
729
730static ssize_t max_microamps_show(struct device *dev,
731 struct device_attribute *attr, char *buf)
732{
733 struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735 if (!rdev->constraints)
736 return sprintf(buf, "constraint not defined\n");
737
738 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739}
740static DEVICE_ATTR_RO(max_microamps);
741
742static ssize_t min_microvolts_show(struct device *dev,
743 struct device_attribute *attr, char *buf)
744{
745 struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747 if (!rdev->constraints)
748 return sprintf(buf, "constraint not defined\n");
749
750 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751}
752static DEVICE_ATTR_RO(min_microvolts);
753
754static ssize_t max_microvolts_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
756{
757 struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759 if (!rdev->constraints)
760 return sprintf(buf, "constraint not defined\n");
761
762 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763}
764static DEVICE_ATTR_RO(max_microvolts);
765
766static ssize_t requested_microamps_show(struct device *dev,
767 struct device_attribute *attr, char *buf)
768{
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 struct regulator *regulator;
771 int uA = 0;
772
773 regulator_lock(rdev);
774 list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 if (regulator->enable_count)
776 uA += regulator->uA_load;
777 }
778 regulator_unlock(rdev);
779 return sprintf(buf, "%d\n", uA);
780}
781static DEVICE_ATTR_RO(requested_microamps);
782
783static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784 char *buf)
785{
786 struct regulator_dev *rdev = dev_get_drvdata(dev);
787 return sprintf(buf, "%d\n", rdev->use_count);
788}
789static DEVICE_ATTR_RO(num_users);
790
791static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792 char *buf)
793{
794 struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796 switch (rdev->desc->type) {
797 case REGULATOR_VOLTAGE:
798 return sprintf(buf, "voltage\n");
799 case REGULATOR_CURRENT:
800 return sprintf(buf, "current\n");
801 }
802 return sprintf(buf, "unknown\n");
803}
804static DEVICE_ATTR_RO(type);
805
806static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808{
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812}
813static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817{
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821}
822static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
826{
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830}
831static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833static ssize_t suspend_mem_mode_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835{
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838 return regulator_print_opmode(buf,
839 rdev->constraints->state_mem.mode);
840}
841static DEVICE_ATTR_RO(suspend_mem_mode);
842
843static ssize_t suspend_disk_mode_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
845{
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848 return regulator_print_opmode(buf,
849 rdev->constraints->state_disk.mode);
850}
851static DEVICE_ATTR_RO(suspend_disk_mode);
852
853static ssize_t suspend_standby_mode_show(struct device *dev,
854 struct device_attribute *attr, char *buf)
855{
856 struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858 return regulator_print_opmode(buf,
859 rdev->constraints->state_standby.mode);
860}
861static DEVICE_ATTR_RO(suspend_standby_mode);
862
863static ssize_t suspend_mem_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865{
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_mem.enabled);
870}
871static DEVICE_ATTR_RO(suspend_mem_state);
872
873static ssize_t suspend_disk_state_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875{
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return regulator_print_state(buf,
879 rdev->constraints->state_disk.enabled);
880}
881static DEVICE_ATTR_RO(suspend_disk_state);
882
883static ssize_t suspend_standby_state_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885{
886 struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888 return regulator_print_state(buf,
889 rdev->constraints->state_standby.enabled);
890}
891static DEVICE_ATTR_RO(suspend_standby_state);
892
893static ssize_t bypass_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897 const char *report;
898 bool bypass;
899 int ret;
900
901 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903 if (ret != 0)
904 report = "unknown";
905 else if (bypass)
906 report = "enabled";
907 else
908 report = "disabled";
909
910 return sprintf(buf, "%s\n", report);
911}
912static DEVICE_ATTR_RO(bypass);
913
914/* Calculate the new optimum regulator operating mode based on the new total
915 * consumer load. All locks held by caller
916 */
917static int drms_uA_update(struct regulator_dev *rdev)
918{
919 struct regulator *sibling;
920 int current_uA = 0, output_uV, input_uV, err;
921 unsigned int mode;
922
923 /*
924 * first check to see if we can set modes at all, otherwise just
925 * tell the consumer everything is OK.
926 */
927 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 rdev_dbg(rdev, "DRMS operation not allowed\n");
929 return 0;
930 }
931
932 if (!rdev->desc->ops->get_optimum_mode &&
933 !rdev->desc->ops->set_load)
934 return 0;
935
936 if (!rdev->desc->ops->set_mode &&
937 !rdev->desc->ops->set_load)
938 return -EINVAL;
939
940 /* calc total requested load */
941 list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 if (sibling->enable_count)
943 current_uA += sibling->uA_load;
944 }
945
946 current_uA += rdev->constraints->system_load;
947
948 if (rdev->desc->ops->set_load) {
949 /* set the optimum mode for our new total regulator load */
950 err = rdev->desc->ops->set_load(rdev, current_uA);
951 if (err < 0)
952 rdev_err(rdev, "failed to set load %d: %pe\n",
953 current_uA, ERR_PTR(err));
954 } else {
955 /* get output voltage */
956 output_uV = regulator_get_voltage_rdev(rdev);
957 if (output_uV <= 0) {
958 rdev_err(rdev, "invalid output voltage found\n");
959 return -EINVAL;
960 }
961
962 /* get input voltage */
963 input_uV = 0;
964 if (rdev->supply)
965 input_uV = regulator_get_voltage(rdev->supply);
966 if (input_uV <= 0)
967 input_uV = rdev->constraints->input_uV;
968 if (input_uV <= 0) {
969 rdev_err(rdev, "invalid input voltage found\n");
970 return -EINVAL;
971 }
972
973 /* now get the optimum mode for our new total regulator load */
974 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 output_uV, current_uA);
976
977 /* check the new mode is allowed */
978 err = regulator_mode_constrain(rdev, &mode);
979 if (err < 0) {
980 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 current_uA, input_uV, output_uV, ERR_PTR(err));
982 return err;
983 }
984
985 err = rdev->desc->ops->set_mode(rdev, mode);
986 if (err < 0)
987 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988 mode, ERR_PTR(err));
989 }
990
991 return err;
992}
993
994static int __suspend_set_state(struct regulator_dev *rdev,
995 const struct regulator_state *rstate)
996{
997 int ret = 0;
998
999 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 rdev->desc->ops->set_suspend_enable)
1001 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 rdev->desc->ops->set_suspend_disable)
1004 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006 ret = 0;
1007
1008 if (ret < 0) {
1009 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 return ret;
1011 }
1012
1013 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 return ret;
1018 }
1019 }
1020
1021 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023 if (ret < 0) {
1024 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 return ret;
1026 }
1027 }
1028
1029 return ret;
1030}
1031
1032static int suspend_set_initial_state(struct regulator_dev *rdev)
1033{
1034 const struct regulator_state *rstate;
1035
1036 rstate = regulator_get_suspend_state_check(rdev,
1037 rdev->constraints->initial_state);
1038 if (!rstate)
1039 return 0;
1040
1041 return __suspend_set_state(rdev, rstate);
1042}
1043
1044#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045static void print_constraints_debug(struct regulator_dev *rdev)
1046{
1047 struct regulation_constraints *constraints = rdev->constraints;
1048 char buf[160] = "";
1049 size_t len = sizeof(buf) - 1;
1050 int count = 0;
1051 int ret;
1052
1053 if (constraints->min_uV && constraints->max_uV) {
1054 if (constraints->min_uV == constraints->max_uV)
1055 count += scnprintf(buf + count, len - count, "%d mV ",
1056 constraints->min_uV / 1000);
1057 else
1058 count += scnprintf(buf + count, len - count,
1059 "%d <--> %d mV ",
1060 constraints->min_uV / 1000,
1061 constraints->max_uV / 1000);
1062 }
1063
1064 if (!constraints->min_uV ||
1065 constraints->min_uV != constraints->max_uV) {
1066 ret = regulator_get_voltage_rdev(rdev);
1067 if (ret > 0)
1068 count += scnprintf(buf + count, len - count,
1069 "at %d mV ", ret / 1000);
1070 }
1071
1072 if (constraints->uV_offset)
1073 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 constraints->uV_offset / 1000);
1075
1076 if (constraints->min_uA && constraints->max_uA) {
1077 if (constraints->min_uA == constraints->max_uA)
1078 count += scnprintf(buf + count, len - count, "%d mA ",
1079 constraints->min_uA / 1000);
1080 else
1081 count += scnprintf(buf + count, len - count,
1082 "%d <--> %d mA ",
1083 constraints->min_uA / 1000,
1084 constraints->max_uA / 1000);
1085 }
1086
1087 if (!constraints->min_uA ||
1088 constraints->min_uA != constraints->max_uA) {
1089 ret = _regulator_get_current_limit(rdev);
1090 if (ret > 0)
1091 count += scnprintf(buf + count, len - count,
1092 "at %d mA ", ret / 1000);
1093 }
1094
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 count += scnprintf(buf + count, len - count, "fast ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 count += scnprintf(buf + count, len - count, "normal ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 count += scnprintf(buf + count, len - count, "idle ");
1101 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 count += scnprintf(buf + count, len - count, "standby ");
1103
1104 if (!count)
1105 count = scnprintf(buf, len, "no parameters");
1106 else
1107 --count;
1108
1109 count += scnprintf(buf + count, len - count, ", %s",
1110 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112 rdev_dbg(rdev, "%s\n", buf);
1113}
1114#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118static void print_constraints(struct regulator_dev *rdev)
1119{
1120 struct regulation_constraints *constraints = rdev->constraints;
1121
1122 print_constraints_debug(rdev);
1123
1124 if ((constraints->min_uV != constraints->max_uV) &&
1125 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 rdev_warn(rdev,
1127 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128}
1129
1130static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 struct regulation_constraints *constraints)
1132{
1133 const struct regulator_ops *ops = rdev->desc->ops;
1134 int ret;
1135
1136 /* do we need to apply the constraint voltage */
1137 if (rdev->constraints->apply_uV &&
1138 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 int target_min, target_max;
1140 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142 if (current_uV == -ENOTRECOVERABLE) {
1143 /* This regulator can't be read and must be initialized */
1144 rdev_info(rdev, "Setting %d-%duV\n",
1145 rdev->constraints->min_uV,
1146 rdev->constraints->max_uV);
1147 _regulator_do_set_voltage(rdev,
1148 rdev->constraints->min_uV,
1149 rdev->constraints->max_uV);
1150 current_uV = regulator_get_voltage_rdev(rdev);
1151 }
1152
1153 if (current_uV < 0) {
1154 rdev_err(rdev,
1155 "failed to get the current voltage: %pe\n",
1156 ERR_PTR(current_uV));
1157 return current_uV;
1158 }
1159
1160 /*
1161 * If we're below the minimum voltage move up to the
1162 * minimum voltage, if we're above the maximum voltage
1163 * then move down to the maximum.
1164 */
1165 target_min = current_uV;
1166 target_max = current_uV;
1167
1168 if (current_uV < rdev->constraints->min_uV) {
1169 target_min = rdev->constraints->min_uV;
1170 target_max = rdev->constraints->min_uV;
1171 }
1172
1173 if (current_uV > rdev->constraints->max_uV) {
1174 target_min = rdev->constraints->max_uV;
1175 target_max = rdev->constraints->max_uV;
1176 }
1177
1178 if (target_min != current_uV || target_max != current_uV) {
1179 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180 current_uV, target_min, target_max);
1181 ret = _regulator_do_set_voltage(
1182 rdev, target_min, target_max);
1183 if (ret < 0) {
1184 rdev_err(rdev,
1185 "failed to apply %d-%duV constraint: %pe\n",
1186 target_min, target_max, ERR_PTR(ret));
1187 return ret;
1188 }
1189 }
1190 }
1191
1192 /* constrain machine-level voltage specs to fit
1193 * the actual range supported by this regulator.
1194 */
1195 if (ops->list_voltage && rdev->desc->n_voltages) {
1196 int count = rdev->desc->n_voltages;
1197 int i;
1198 int min_uV = INT_MAX;
1199 int max_uV = INT_MIN;
1200 int cmin = constraints->min_uV;
1201 int cmax = constraints->max_uV;
1202
1203 /* it's safe to autoconfigure fixed-voltage supplies
1204 * and the constraints are used by list_voltage.
1205 */
1206 if (count == 1 && !cmin) {
1207 cmin = 1;
1208 cmax = INT_MAX;
1209 constraints->min_uV = cmin;
1210 constraints->max_uV = cmax;
1211 }
1212
1213 /* voltage constraints are optional */
1214 if ((cmin == 0) && (cmax == 0))
1215 return 0;
1216
1217 /* else require explicit machine-level constraints */
1218 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219 rdev_err(rdev, "invalid voltage constraints\n");
1220 return -EINVAL;
1221 }
1222
1223 /* no need to loop voltages if range is continuous */
1224 if (rdev->desc->continuous_voltage_range)
1225 return 0;
1226
1227 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228 for (i = 0; i < count; i++) {
1229 int value;
1230
1231 value = ops->list_voltage(rdev, i);
1232 if (value <= 0)
1233 continue;
1234
1235 /* maybe adjust [min_uV..max_uV] */
1236 if (value >= cmin && value < min_uV)
1237 min_uV = value;
1238 if (value <= cmax && value > max_uV)
1239 max_uV = value;
1240 }
1241
1242 /* final: [min_uV..max_uV] valid iff constraints valid */
1243 if (max_uV < min_uV) {
1244 rdev_err(rdev,
1245 "unsupportable voltage constraints %u-%uuV\n",
1246 min_uV, max_uV);
1247 return -EINVAL;
1248 }
1249
1250 /* use regulator's subset of machine constraints */
1251 if (constraints->min_uV < min_uV) {
1252 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253 constraints->min_uV, min_uV);
1254 constraints->min_uV = min_uV;
1255 }
1256 if (constraints->max_uV > max_uV) {
1257 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258 constraints->max_uV, max_uV);
1259 constraints->max_uV = max_uV;
1260 }
1261 }
1262
1263 return 0;
1264}
1265
1266static int machine_constraints_current(struct regulator_dev *rdev,
1267 struct regulation_constraints *constraints)
1268{
1269 const struct regulator_ops *ops = rdev->desc->ops;
1270 int ret;
1271
1272 if (!constraints->min_uA && !constraints->max_uA)
1273 return 0;
1274
1275 if (constraints->min_uA > constraints->max_uA) {
1276 rdev_err(rdev, "Invalid current constraints\n");
1277 return -EINVAL;
1278 }
1279
1280 if (!ops->set_current_limit || !ops->get_current_limit) {
1281 rdev_warn(rdev, "Operation of current configuration missing\n");
1282 return 0;
1283 }
1284
1285 /* Set regulator current in constraints range */
1286 ret = ops->set_current_limit(rdev, constraints->min_uA,
1287 constraints->max_uA);
1288 if (ret < 0) {
1289 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290 return ret;
1291 }
1292
1293 return 0;
1294}
1295
1296static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298static int notif_set_limit(struct regulator_dev *rdev,
1299 int (*set)(struct regulator_dev *, int, int, bool),
1300 int limit, int severity)
1301{
1302 bool enable;
1303
1304 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305 enable = false;
1306 limit = 0;
1307 } else {
1308 enable = true;
1309 }
1310
1311 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312 limit = 0;
1313
1314 return set(rdev, limit, severity, enable);
1315}
1316
1317static int handle_notify_limits(struct regulator_dev *rdev,
1318 int (*set)(struct regulator_dev *, int, int, bool),
1319 struct notification_limit *limits)
1320{
1321 int ret = 0;
1322
1323 if (!set)
1324 return -EOPNOTSUPP;
1325
1326 if (limits->prot)
1327 ret = notif_set_limit(rdev, set, limits->prot,
1328 REGULATOR_SEVERITY_PROT);
1329 if (ret)
1330 return ret;
1331
1332 if (limits->err)
1333 ret = notif_set_limit(rdev, set, limits->err,
1334 REGULATOR_SEVERITY_ERR);
1335 if (ret)
1336 return ret;
1337
1338 if (limits->warn)
1339 ret = notif_set_limit(rdev, set, limits->warn,
1340 REGULATOR_SEVERITY_WARN);
1341
1342 return ret;
1343}
1344/**
1345 * set_machine_constraints - sets regulator constraints
1346 * @rdev: regulator source
1347 *
1348 * Allows platform initialisation code to define and constrain
1349 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1350 * Constraints *must* be set by platform code in order for some
1351 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352 * set_mode.
1353 */
1354static int set_machine_constraints(struct regulator_dev *rdev)
1355{
1356 int ret = 0;
1357 const struct regulator_ops *ops = rdev->desc->ops;
1358
1359 ret = machine_constraints_voltage(rdev, rdev->constraints);
1360 if (ret != 0)
1361 return ret;
1362
1363 ret = machine_constraints_current(rdev, rdev->constraints);
1364 if (ret != 0)
1365 return ret;
1366
1367 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368 ret = ops->set_input_current_limit(rdev,
1369 rdev->constraints->ilim_uA);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372 return ret;
1373 }
1374 }
1375
1376 /* do we need to setup our suspend state */
1377 if (rdev->constraints->initial_state) {
1378 ret = suspend_set_initial_state(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->initial_mode) {
1386 if (!ops->set_mode) {
1387 rdev_err(rdev, "no set_mode operation\n");
1388 return -EINVAL;
1389 }
1390
1391 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392 if (ret < 0) {
1393 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394 return ret;
1395 }
1396 } else if (rdev->constraints->system_load) {
1397 /*
1398 * We'll only apply the initial system load if an
1399 * initial mode wasn't specified.
1400 */
1401 drms_uA_update(rdev);
1402 }
1403
1404 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405 && ops->set_ramp_delay) {
1406 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407 if (ret < 0) {
1408 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409 return ret;
1410 }
1411 }
1412
1413 if (rdev->constraints->pull_down && ops->set_pull_down) {
1414 ret = ops->set_pull_down(rdev);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 if (rdev->constraints->soft_start && ops->set_soft_start) {
1422 ret = ops->set_soft_start(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 /*
1430 * Existing logic does not warn if over_current_protection is given as
1431 * a constraint but driver does not support that. I think we should
1432 * warn about this type of issues as it is possible someone changes
1433 * PMIC on board to another type - and the another PMIC's driver does
1434 * not support setting protection. Board composer may happily believe
1435 * the DT limits are respected - especially if the new PMIC HW also
1436 * supports protection but the driver does not. I won't change the logic
1437 * without hearing more experienced opinion on this though.
1438 *
1439 * If warning is seen as a good idea then we can merge handling the
1440 * over-curret protection and detection and get rid of this special
1441 * handling.
1442 */
1443 if (rdev->constraints->over_current_protection
1444 && ops->set_over_current_protection) {
1445 int lim = rdev->constraints->over_curr_limits.prot;
1446
1447 ret = ops->set_over_current_protection(rdev, lim,
1448 REGULATOR_SEVERITY_PROT,
1449 true);
1450 if (ret < 0) {
1451 rdev_err(rdev, "failed to set over current protection: %pe\n",
1452 ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->over_current_detection)
1458 ret = handle_notify_limits(rdev,
1459 ops->set_over_current_protection,
1460 &rdev->constraints->over_curr_limits);
1461 if (ret) {
1462 if (ret != -EOPNOTSUPP) {
1463 rdev_err(rdev, "failed to set over current limits: %pe\n",
1464 ERR_PTR(ret));
1465 return ret;
1466 }
1467 rdev_warn(rdev,
1468 "IC does not support requested over-current limits\n");
1469 }
1470
1471 if (rdev->constraints->over_voltage_detection)
1472 ret = handle_notify_limits(rdev,
1473 ops->set_over_voltage_protection,
1474 &rdev->constraints->over_voltage_limits);
1475 if (ret) {
1476 if (ret != -EOPNOTSUPP) {
1477 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478 ERR_PTR(ret));
1479 return ret;
1480 }
1481 rdev_warn(rdev,
1482 "IC does not support requested over voltage limits\n");
1483 }
1484
1485 if (rdev->constraints->under_voltage_detection)
1486 ret = handle_notify_limits(rdev,
1487 ops->set_under_voltage_protection,
1488 &rdev->constraints->under_voltage_limits);
1489 if (ret) {
1490 if (ret != -EOPNOTSUPP) {
1491 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492 ERR_PTR(ret));
1493 return ret;
1494 }
1495 rdev_warn(rdev,
1496 "IC does not support requested under voltage limits\n");
1497 }
1498
1499 if (rdev->constraints->over_temp_detection)
1500 ret = handle_notify_limits(rdev,
1501 ops->set_thermal_protection,
1502 &rdev->constraints->temp_limits);
1503 if (ret) {
1504 if (ret != -EOPNOTSUPP) {
1505 rdev_err(rdev, "failed to set temperature limits %pe\n",
1506 ERR_PTR(ret));
1507 return ret;
1508 }
1509 rdev_warn(rdev,
1510 "IC does not support requested temperature limits\n");
1511 }
1512
1513 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514 bool ad_state = (rdev->constraints->active_discharge ==
1515 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517 ret = ops->set_active_discharge(rdev, ad_state);
1518 if (ret < 0) {
1519 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520 return ret;
1521 }
1522 }
1523
1524 /* If the constraints say the regulator should be on at this point
1525 * and we have control then make sure it is enabled.
1526 */
1527 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528 /* If we want to enable this regulator, make sure that we know
1529 * the supplying regulator.
1530 */
1531 if (rdev->supply_name && !rdev->supply)
1532 return -EPROBE_DEFER;
1533
1534 if (rdev->supply) {
1535 ret = regulator_enable(rdev->supply);
1536 if (ret < 0) {
1537 _regulator_put(rdev->supply);
1538 rdev->supply = NULL;
1539 return ret;
1540 }
1541 }
1542
1543 ret = _regulator_do_enable(rdev);
1544 if (ret < 0 && ret != -EINVAL) {
1545 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546 return ret;
1547 }
1548
1549 if (rdev->constraints->always_on)
1550 rdev->use_count++;
1551 } else if (rdev->desc->off_on_delay) {
1552 rdev->last_off = ktime_get();
1553 }
1554
1555 print_constraints(rdev);
1556 return 0;
1557}
1558
1559/**
1560 * set_supply - set regulator supply regulator
1561 * @rdev: regulator name
1562 * @supply_rdev: supply regulator name
1563 *
1564 * Called by platform initialisation code to set the supply regulator for this
1565 * regulator. This ensures that a regulators supply will also be enabled by the
1566 * core if it's child is enabled.
1567 */
1568static int set_supply(struct regulator_dev *rdev,
1569 struct regulator_dev *supply_rdev)
1570{
1571 int err;
1572
1573 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574
1575 if (!try_module_get(supply_rdev->owner))
1576 return -ENODEV;
1577
1578 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579 if (rdev->supply == NULL) {
1580 err = -ENOMEM;
1581 return err;
1582 }
1583 supply_rdev->open_count++;
1584
1585 return 0;
1586}
1587
1588/**
1589 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590 * @rdev: regulator source
1591 * @consumer_dev_name: dev_name() string for device supply applies to
1592 * @supply: symbolic name for supply
1593 *
1594 * Allows platform initialisation code to map physical regulator
1595 * sources to symbolic names for supplies for use by devices. Devices
1596 * should use these symbolic names to request regulators, avoiding the
1597 * need to provide board-specific regulator names as platform data.
1598 */
1599static int set_consumer_device_supply(struct regulator_dev *rdev,
1600 const char *consumer_dev_name,
1601 const char *supply)
1602{
1603 struct regulator_map *node, *new_node;
1604 int has_dev;
1605
1606 if (supply == NULL)
1607 return -EINVAL;
1608
1609 if (consumer_dev_name != NULL)
1610 has_dev = 1;
1611 else
1612 has_dev = 0;
1613
1614 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615 if (new_node == NULL)
1616 return -ENOMEM;
1617
1618 new_node->regulator = rdev;
1619 new_node->supply = supply;
1620
1621 if (has_dev) {
1622 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623 if (new_node->dev_name == NULL) {
1624 kfree(new_node);
1625 return -ENOMEM;
1626 }
1627 }
1628
1629 mutex_lock(®ulator_list_mutex);
1630 list_for_each_entry(node, ®ulator_map_list, list) {
1631 if (node->dev_name && consumer_dev_name) {
1632 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633 continue;
1634 } else if (node->dev_name || consumer_dev_name) {
1635 continue;
1636 }
1637
1638 if (strcmp(node->supply, supply) != 0)
1639 continue;
1640
1641 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642 consumer_dev_name,
1643 dev_name(&node->regulator->dev),
1644 node->regulator->desc->name,
1645 supply,
1646 dev_name(&rdev->dev), rdev_get_name(rdev));
1647 goto fail;
1648 }
1649
1650 list_add(&new_node->list, ®ulator_map_list);
1651 mutex_unlock(®ulator_list_mutex);
1652
1653 return 0;
1654
1655fail:
1656 mutex_unlock(®ulator_list_mutex);
1657 kfree(new_node->dev_name);
1658 kfree(new_node);
1659 return -EBUSY;
1660}
1661
1662static void unset_regulator_supplies(struct regulator_dev *rdev)
1663{
1664 struct regulator_map *node, *n;
1665
1666 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1667 if (rdev == node->regulator) {
1668 list_del(&node->list);
1669 kfree(node->dev_name);
1670 kfree(node);
1671 }
1672 }
1673}
1674
1675#ifdef CONFIG_DEBUG_FS
1676static ssize_t constraint_flags_read_file(struct file *file,
1677 char __user *user_buf,
1678 size_t count, loff_t *ppos)
1679{
1680 const struct regulator *regulator = file->private_data;
1681 const struct regulation_constraints *c = regulator->rdev->constraints;
1682 char *buf;
1683 ssize_t ret;
1684
1685 if (!c)
1686 return 0;
1687
1688 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689 if (!buf)
1690 return -ENOMEM;
1691
1692 ret = snprintf(buf, PAGE_SIZE,
1693 "always_on: %u\n"
1694 "boot_on: %u\n"
1695 "apply_uV: %u\n"
1696 "ramp_disable: %u\n"
1697 "soft_start: %u\n"
1698 "pull_down: %u\n"
1699 "over_current_protection: %u\n",
1700 c->always_on,
1701 c->boot_on,
1702 c->apply_uV,
1703 c->ramp_disable,
1704 c->soft_start,
1705 c->pull_down,
1706 c->over_current_protection);
1707
1708 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709 kfree(buf);
1710
1711 return ret;
1712}
1713
1714#endif
1715
1716static const struct file_operations constraint_flags_fops = {
1717#ifdef CONFIG_DEBUG_FS
1718 .open = simple_open,
1719 .read = constraint_flags_read_file,
1720 .llseek = default_llseek,
1721#endif
1722};
1723
1724#define REG_STR_SIZE 64
1725
1726static struct regulator *create_regulator(struct regulator_dev *rdev,
1727 struct device *dev,
1728 const char *supply_name)
1729{
1730 struct regulator *regulator;
1731 int err = 0;
1732
1733 if (dev) {
1734 char buf[REG_STR_SIZE];
1735 int size;
1736
1737 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738 dev->kobj.name, supply_name);
1739 if (size >= REG_STR_SIZE)
1740 return NULL;
1741
1742 supply_name = kstrdup(buf, GFP_KERNEL);
1743 if (supply_name == NULL)
1744 return NULL;
1745 } else {
1746 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747 if (supply_name == NULL)
1748 return NULL;
1749 }
1750
1751 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752 if (regulator == NULL) {
1753 kfree(supply_name);
1754 return NULL;
1755 }
1756
1757 regulator->rdev = rdev;
1758 regulator->supply_name = supply_name;
1759
1760 regulator_lock(rdev);
1761 list_add(®ulator->list, &rdev->consumer_list);
1762 regulator_unlock(rdev);
1763
1764 if (dev) {
1765 regulator->dev = dev;
1766
1767 /* Add a link to the device sysfs entry */
1768 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769 supply_name);
1770 if (err) {
1771 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772 dev->kobj.name, ERR_PTR(err));
1773 /* non-fatal */
1774 }
1775 }
1776
1777 if (err != -EEXIST)
1778 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779 if (!regulator->debugfs) {
1780 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781 } else {
1782 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783 ®ulator->uA_load);
1784 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1786 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1788 debugfs_create_file("constraint_flags", 0444,
1789 regulator->debugfs, regulator,
1790 &constraint_flags_fops);
1791 }
1792
1793 /*
1794 * Check now if the regulator is an always on regulator - if
1795 * it is then we don't need to do nearly so much work for
1796 * enable/disable calls.
1797 */
1798 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799 _regulator_is_enabled(rdev))
1800 regulator->always_on = true;
1801
1802 return regulator;
1803}
1804
1805static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806{
1807 if (rdev->constraints && rdev->constraints->enable_time)
1808 return rdev->constraints->enable_time;
1809 if (rdev->desc->ops->enable_time)
1810 return rdev->desc->ops->enable_time(rdev);
1811 return rdev->desc->enable_time;
1812}
1813
1814static struct regulator_supply_alias *regulator_find_supply_alias(
1815 struct device *dev, const char *supply)
1816{
1817 struct regulator_supply_alias *map;
1818
1819 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1820 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821 return map;
1822
1823 return NULL;
1824}
1825
1826static void regulator_supply_alias(struct device **dev, const char **supply)
1827{
1828 struct regulator_supply_alias *map;
1829
1830 map = regulator_find_supply_alias(*dev, *supply);
1831 if (map) {
1832 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833 *supply, map->alias_supply,
1834 dev_name(map->alias_dev));
1835 *dev = map->alias_dev;
1836 *supply = map->alias_supply;
1837 }
1838}
1839
1840static int regulator_match(struct device *dev, const void *data)
1841{
1842 struct regulator_dev *r = dev_to_rdev(dev);
1843
1844 return strcmp(rdev_get_name(r), data) == 0;
1845}
1846
1847static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848{
1849 struct device *dev;
1850
1851 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1852
1853 return dev ? dev_to_rdev(dev) : NULL;
1854}
1855
1856/**
1857 * regulator_dev_lookup - lookup a regulator device.
1858 * @dev: device for regulator "consumer".
1859 * @supply: Supply name or regulator ID.
1860 *
1861 * If successful, returns a struct regulator_dev that corresponds to the name
1862 * @supply and with the embedded struct device refcount incremented by one.
1863 * The refcount must be dropped by calling put_device().
1864 * On failure one of the following ERR-PTR-encoded values is returned:
1865 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866 * in the future.
1867 */
1868static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869 const char *supply)
1870{
1871 struct regulator_dev *r = NULL;
1872 struct device_node *node;
1873 struct regulator_map *map;
1874 const char *devname = NULL;
1875
1876 regulator_supply_alias(&dev, &supply);
1877
1878 /* first do a dt based lookup */
1879 if (dev && dev->of_node) {
1880 node = of_get_regulator(dev, supply);
1881 if (node) {
1882 r = of_find_regulator_by_node(node);
1883 if (r)
1884 return r;
1885
1886 /*
1887 * We have a node, but there is no device.
1888 * assume it has not registered yet.
1889 */
1890 return ERR_PTR(-EPROBE_DEFER);
1891 }
1892 }
1893
1894 /* if not found, try doing it non-dt way */
1895 if (dev)
1896 devname = dev_name(dev);
1897
1898 mutex_lock(®ulator_list_mutex);
1899 list_for_each_entry(map, ®ulator_map_list, list) {
1900 /* If the mapping has a device set up it must match */
1901 if (map->dev_name &&
1902 (!devname || strcmp(map->dev_name, devname)))
1903 continue;
1904
1905 if (strcmp(map->supply, supply) == 0 &&
1906 get_device(&map->regulator->dev)) {
1907 r = map->regulator;
1908 break;
1909 }
1910 }
1911 mutex_unlock(®ulator_list_mutex);
1912
1913 if (r)
1914 return r;
1915
1916 r = regulator_lookup_by_name(supply);
1917 if (r)
1918 return r;
1919
1920 return ERR_PTR(-ENODEV);
1921}
1922
1923static int regulator_resolve_supply(struct regulator_dev *rdev)
1924{
1925 struct regulator_dev *r;
1926 struct device *dev = rdev->dev.parent;
1927 int ret = 0;
1928
1929 /* No supply to resolve? */
1930 if (!rdev->supply_name)
1931 return 0;
1932
1933 /* Supply already resolved? (fast-path without locking contention) */
1934 if (rdev->supply)
1935 return 0;
1936
1937 r = regulator_dev_lookup(dev, rdev->supply_name);
1938 if (IS_ERR(r)) {
1939 ret = PTR_ERR(r);
1940
1941 /* Did the lookup explicitly defer for us? */
1942 if (ret == -EPROBE_DEFER)
1943 goto out;
1944
1945 if (have_full_constraints()) {
1946 r = dummy_regulator_rdev;
1947 get_device(&r->dev);
1948 } else {
1949 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950 rdev->supply_name, rdev->desc->name);
1951 ret = -EPROBE_DEFER;
1952 goto out;
1953 }
1954 }
1955
1956 if (r == rdev) {
1957 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958 rdev->desc->name, rdev->supply_name);
1959 if (!have_full_constraints()) {
1960 ret = -EINVAL;
1961 goto out;
1962 }
1963 r = dummy_regulator_rdev;
1964 get_device(&r->dev);
1965 }
1966
1967 /*
1968 * If the supply's parent device is not the same as the
1969 * regulator's parent device, then ensure the parent device
1970 * is bound before we resolve the supply, in case the parent
1971 * device get probe deferred and unregisters the supply.
1972 */
1973 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974 if (!device_is_bound(r->dev.parent)) {
1975 put_device(&r->dev);
1976 ret = -EPROBE_DEFER;
1977 goto out;
1978 }
1979 }
1980
1981 /* Recursively resolve the supply of the supply */
1982 ret = regulator_resolve_supply(r);
1983 if (ret < 0) {
1984 put_device(&r->dev);
1985 goto out;
1986 }
1987
1988 /*
1989 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990 * between rdev->supply null check and setting rdev->supply in
1991 * set_supply() from concurrent tasks.
1992 */
1993 regulator_lock(rdev);
1994
1995 /* Supply just resolved by a concurrent task? */
1996 if (rdev->supply) {
1997 regulator_unlock(rdev);
1998 put_device(&r->dev);
1999 goto out;
2000 }
2001
2002 ret = set_supply(rdev, r);
2003 if (ret < 0) {
2004 regulator_unlock(rdev);
2005 put_device(&r->dev);
2006 goto out;
2007 }
2008
2009 regulator_unlock(rdev);
2010
2011 /*
2012 * In set_machine_constraints() we may have turned this regulator on
2013 * but we couldn't propagate to the supply if it hadn't been resolved
2014 * yet. Do it now.
2015 */
2016 if (rdev->use_count) {
2017 ret = regulator_enable(rdev->supply);
2018 if (ret < 0) {
2019 _regulator_put(rdev->supply);
2020 rdev->supply = NULL;
2021 goto out;
2022 }
2023 }
2024
2025out:
2026 return ret;
2027}
2028
2029/* Internal regulator request function */
2030struct regulator *_regulator_get(struct device *dev, const char *id,
2031 enum regulator_get_type get_type)
2032{
2033 struct regulator_dev *rdev;
2034 struct regulator *regulator;
2035 struct device_link *link;
2036 int ret;
2037
2038 if (get_type >= MAX_GET_TYPE) {
2039 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040 return ERR_PTR(-EINVAL);
2041 }
2042
2043 if (id == NULL) {
2044 pr_err("get() with no identifier\n");
2045 return ERR_PTR(-EINVAL);
2046 }
2047
2048 rdev = regulator_dev_lookup(dev, id);
2049 if (IS_ERR(rdev)) {
2050 ret = PTR_ERR(rdev);
2051
2052 /*
2053 * If regulator_dev_lookup() fails with error other
2054 * than -ENODEV our job here is done, we simply return it.
2055 */
2056 if (ret != -ENODEV)
2057 return ERR_PTR(ret);
2058
2059 if (!have_full_constraints()) {
2060 dev_warn(dev,
2061 "incomplete constraints, dummy supplies not allowed\n");
2062 return ERR_PTR(-ENODEV);
2063 }
2064
2065 switch (get_type) {
2066 case NORMAL_GET:
2067 /*
2068 * Assume that a regulator is physically present and
2069 * enabled, even if it isn't hooked up, and just
2070 * provide a dummy.
2071 */
2072 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073 rdev = dummy_regulator_rdev;
2074 get_device(&rdev->dev);
2075 break;
2076
2077 case EXCLUSIVE_GET:
2078 dev_warn(dev,
2079 "dummy supplies not allowed for exclusive requests\n");
2080 fallthrough;
2081
2082 default:
2083 return ERR_PTR(-ENODEV);
2084 }
2085 }
2086
2087 if (rdev->exclusive) {
2088 regulator = ERR_PTR(-EPERM);
2089 put_device(&rdev->dev);
2090 return regulator;
2091 }
2092
2093 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094 regulator = ERR_PTR(-EBUSY);
2095 put_device(&rdev->dev);
2096 return regulator;
2097 }
2098
2099 mutex_lock(®ulator_list_mutex);
2100 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101 mutex_unlock(®ulator_list_mutex);
2102
2103 if (ret != 0) {
2104 regulator = ERR_PTR(-EPROBE_DEFER);
2105 put_device(&rdev->dev);
2106 return regulator;
2107 }
2108
2109 ret = regulator_resolve_supply(rdev);
2110 if (ret < 0) {
2111 regulator = ERR_PTR(ret);
2112 put_device(&rdev->dev);
2113 return regulator;
2114 }
2115
2116 if (!try_module_get(rdev->owner)) {
2117 regulator = ERR_PTR(-EPROBE_DEFER);
2118 put_device(&rdev->dev);
2119 return regulator;
2120 }
2121
2122 regulator = create_regulator(rdev, dev, id);
2123 if (regulator == NULL) {
2124 regulator = ERR_PTR(-ENOMEM);
2125 module_put(rdev->owner);
2126 put_device(&rdev->dev);
2127 return regulator;
2128 }
2129
2130 rdev->open_count++;
2131 if (get_type == EXCLUSIVE_GET) {
2132 rdev->exclusive = 1;
2133
2134 ret = _regulator_is_enabled(rdev);
2135 if (ret > 0)
2136 rdev->use_count = 1;
2137 else
2138 rdev->use_count = 0;
2139 }
2140
2141 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142 if (!IS_ERR_OR_NULL(link))
2143 regulator->device_link = true;
2144
2145 return regulator;
2146}
2147
2148/**
2149 * regulator_get - lookup and obtain a reference to a regulator.
2150 * @dev: device for regulator "consumer"
2151 * @id: Supply name or regulator ID.
2152 *
2153 * Returns a struct regulator corresponding to the regulator producer,
2154 * or IS_ERR() condition containing errno.
2155 *
2156 * Use of supply names configured via set_consumer_device_supply() is
2157 * strongly encouraged. It is recommended that the supply name used
2158 * should match the name used for the supply and/or the relevant
2159 * device pins in the datasheet.
2160 */
2161struct regulator *regulator_get(struct device *dev, const char *id)
2162{
2163 return _regulator_get(dev, id, NORMAL_GET);
2164}
2165EXPORT_SYMBOL_GPL(regulator_get);
2166
2167/**
2168 * regulator_get_exclusive - obtain exclusive access to a regulator.
2169 * @dev: device for regulator "consumer"
2170 * @id: Supply name or regulator ID.
2171 *
2172 * Returns a struct regulator corresponding to the regulator producer,
2173 * or IS_ERR() condition containing errno. Other consumers will be
2174 * unable to obtain this regulator while this reference is held and the
2175 * use count for the regulator will be initialised to reflect the current
2176 * state of the regulator.
2177 *
2178 * This is intended for use by consumers which cannot tolerate shared
2179 * use of the regulator such as those which need to force the
2180 * regulator off for correct operation of the hardware they are
2181 * controlling.
2182 *
2183 * Use of supply names configured via set_consumer_device_supply() is
2184 * strongly encouraged. It is recommended that the supply name used
2185 * should match the name used for the supply and/or the relevant
2186 * device pins in the datasheet.
2187 */
2188struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189{
2190 return _regulator_get(dev, id, EXCLUSIVE_GET);
2191}
2192EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193
2194/**
2195 * regulator_get_optional - obtain optional access to a regulator.
2196 * @dev: device for regulator "consumer"
2197 * @id: Supply name or regulator ID.
2198 *
2199 * Returns a struct regulator corresponding to the regulator producer,
2200 * or IS_ERR() condition containing errno.
2201 *
2202 * This is intended for use by consumers for devices which can have
2203 * some supplies unconnected in normal use, such as some MMC devices.
2204 * It can allow the regulator core to provide stub supplies for other
2205 * supplies requested using normal regulator_get() calls without
2206 * disrupting the operation of drivers that can handle absent
2207 * supplies.
2208 *
2209 * Use of supply names configured via set_consumer_device_supply() is
2210 * strongly encouraged. It is recommended that the supply name used
2211 * should match the name used for the supply and/or the relevant
2212 * device pins in the datasheet.
2213 */
2214struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215{
2216 return _regulator_get(dev, id, OPTIONAL_GET);
2217}
2218EXPORT_SYMBOL_GPL(regulator_get_optional);
2219
2220static void destroy_regulator(struct regulator *regulator)
2221{
2222 struct regulator_dev *rdev = regulator->rdev;
2223
2224 debugfs_remove_recursive(regulator->debugfs);
2225
2226 if (regulator->dev) {
2227 if (regulator->device_link)
2228 device_link_remove(regulator->dev, &rdev->dev);
2229
2230 /* remove any sysfs entries */
2231 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232 }
2233
2234 regulator_lock(rdev);
2235 list_del(®ulator->list);
2236
2237 rdev->open_count--;
2238 rdev->exclusive = 0;
2239 regulator_unlock(rdev);
2240
2241 kfree_const(regulator->supply_name);
2242 kfree(regulator);
2243}
2244
2245/* regulator_list_mutex lock held by regulator_put() */
2246static void _regulator_put(struct regulator *regulator)
2247{
2248 struct regulator_dev *rdev;
2249
2250 if (IS_ERR_OR_NULL(regulator))
2251 return;
2252
2253 lockdep_assert_held_once(®ulator_list_mutex);
2254
2255 /* Docs say you must disable before calling regulator_put() */
2256 WARN_ON(regulator->enable_count);
2257
2258 rdev = regulator->rdev;
2259
2260 destroy_regulator(regulator);
2261
2262 module_put(rdev->owner);
2263 put_device(&rdev->dev);
2264}
2265
2266/**
2267 * regulator_put - "free" the regulator source
2268 * @regulator: regulator source
2269 *
2270 * Note: drivers must ensure that all regulator_enable calls made on this
2271 * regulator source are balanced by regulator_disable calls prior to calling
2272 * this function.
2273 */
2274void regulator_put(struct regulator *regulator)
2275{
2276 mutex_lock(®ulator_list_mutex);
2277 _regulator_put(regulator);
2278 mutex_unlock(®ulator_list_mutex);
2279}
2280EXPORT_SYMBOL_GPL(regulator_put);
2281
2282/**
2283 * regulator_register_supply_alias - Provide device alias for supply lookup
2284 *
2285 * @dev: device that will be given as the regulator "consumer"
2286 * @id: Supply name or regulator ID
2287 * @alias_dev: device that should be used to lookup the supply
2288 * @alias_id: Supply name or regulator ID that should be used to lookup the
2289 * supply
2290 *
2291 * All lookups for id on dev will instead be conducted for alias_id on
2292 * alias_dev.
2293 */
2294int regulator_register_supply_alias(struct device *dev, const char *id,
2295 struct device *alias_dev,
2296 const char *alias_id)
2297{
2298 struct regulator_supply_alias *map;
2299
2300 map = regulator_find_supply_alias(dev, id);
2301 if (map)
2302 return -EEXIST;
2303
2304 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305 if (!map)
2306 return -ENOMEM;
2307
2308 map->src_dev = dev;
2309 map->src_supply = id;
2310 map->alias_dev = alias_dev;
2311 map->alias_supply = alias_id;
2312
2313 list_add(&map->list, ®ulator_supply_alias_list);
2314
2315 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316 id, dev_name(dev), alias_id, dev_name(alias_dev));
2317
2318 return 0;
2319}
2320EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321
2322/**
2323 * regulator_unregister_supply_alias - Remove device alias
2324 *
2325 * @dev: device that will be given as the regulator "consumer"
2326 * @id: Supply name or regulator ID
2327 *
2328 * Remove a lookup alias if one exists for id on dev.
2329 */
2330void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331{
2332 struct regulator_supply_alias *map;
2333
2334 map = regulator_find_supply_alias(dev, id);
2335 if (map) {
2336 list_del(&map->list);
2337 kfree(map);
2338 }
2339}
2340EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341
2342/**
2343 * regulator_bulk_register_supply_alias - register multiple aliases
2344 *
2345 * @dev: device that will be given as the regulator "consumer"
2346 * @id: List of supply names or regulator IDs
2347 * @alias_dev: device that should be used to lookup the supply
2348 * @alias_id: List of supply names or regulator IDs that should be used to
2349 * lookup the supply
2350 * @num_id: Number of aliases to register
2351 *
2352 * @return 0 on success, an errno on failure.
2353 *
2354 * This helper function allows drivers to register several supply
2355 * aliases in one operation. If any of the aliases cannot be
2356 * registered any aliases that were registered will be removed
2357 * before returning to the caller.
2358 */
2359int regulator_bulk_register_supply_alias(struct device *dev,
2360 const char *const *id,
2361 struct device *alias_dev,
2362 const char *const *alias_id,
2363 int num_id)
2364{
2365 int i;
2366 int ret;
2367
2368 for (i = 0; i < num_id; ++i) {
2369 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370 alias_id[i]);
2371 if (ret < 0)
2372 goto err;
2373 }
2374
2375 return 0;
2376
2377err:
2378 dev_err(dev,
2379 "Failed to create supply alias %s,%s -> %s,%s\n",
2380 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381
2382 while (--i >= 0)
2383 regulator_unregister_supply_alias(dev, id[i]);
2384
2385 return ret;
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388
2389/**
2390 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391 *
2392 * @dev: device that will be given as the regulator "consumer"
2393 * @id: List of supply names or regulator IDs
2394 * @num_id: Number of aliases to unregister
2395 *
2396 * This helper function allows drivers to unregister several supply
2397 * aliases in one operation.
2398 */
2399void regulator_bulk_unregister_supply_alias(struct device *dev,
2400 const char *const *id,
2401 int num_id)
2402{
2403 int i;
2404
2405 for (i = 0; i < num_id; ++i)
2406 regulator_unregister_supply_alias(dev, id[i]);
2407}
2408EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409
2410
2411/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413 const struct regulator_config *config)
2414{
2415 struct regulator_enable_gpio *pin, *new_pin;
2416 struct gpio_desc *gpiod;
2417
2418 gpiod = config->ena_gpiod;
2419 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420
2421 mutex_lock(®ulator_list_mutex);
2422
2423 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2424 if (pin->gpiod == gpiod) {
2425 rdev_dbg(rdev, "GPIO is already used\n");
2426 goto update_ena_gpio_to_rdev;
2427 }
2428 }
2429
2430 if (new_pin == NULL) {
2431 mutex_unlock(®ulator_list_mutex);
2432 return -ENOMEM;
2433 }
2434
2435 pin = new_pin;
2436 new_pin = NULL;
2437
2438 pin->gpiod = gpiod;
2439 list_add(&pin->list, ®ulator_ena_gpio_list);
2440
2441update_ena_gpio_to_rdev:
2442 pin->request_count++;
2443 rdev->ena_pin = pin;
2444
2445 mutex_unlock(®ulator_list_mutex);
2446 kfree(new_pin);
2447
2448 return 0;
2449}
2450
2451static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452{
2453 struct regulator_enable_gpio *pin, *n;
2454
2455 if (!rdev->ena_pin)
2456 return;
2457
2458 /* Free the GPIO only in case of no use */
2459 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2460 if (pin != rdev->ena_pin)
2461 continue;
2462
2463 if (--pin->request_count)
2464 break;
2465
2466 gpiod_put(pin->gpiod);
2467 list_del(&pin->list);
2468 kfree(pin);
2469 break;
2470 }
2471
2472 rdev->ena_pin = NULL;
2473}
2474
2475/**
2476 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477 * @rdev: regulator_dev structure
2478 * @enable: enable GPIO at initial use?
2479 *
2480 * GPIO is enabled in case of initial use. (enable_count is 0)
2481 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2482 */
2483static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484{
2485 struct regulator_enable_gpio *pin = rdev->ena_pin;
2486
2487 if (!pin)
2488 return -EINVAL;
2489
2490 if (enable) {
2491 /* Enable GPIO at initial use */
2492 if (pin->enable_count == 0)
2493 gpiod_set_value_cansleep(pin->gpiod, 1);
2494
2495 pin->enable_count++;
2496 } else {
2497 if (pin->enable_count > 1) {
2498 pin->enable_count--;
2499 return 0;
2500 }
2501
2502 /* Disable GPIO if not used */
2503 if (pin->enable_count <= 1) {
2504 gpiod_set_value_cansleep(pin->gpiod, 0);
2505 pin->enable_count = 0;
2506 }
2507 }
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_enable_delay - a delay helper function
2514 * @delay: time to delay in microseconds
2515 *
2516 * Delay for the requested amount of time as per the guidelines in:
2517 *
2518 * Documentation/timers/timers-howto.rst
2519 *
2520 * The assumption here is that regulators will never be enabled in
2521 * atomic context and therefore sleeping functions can be used.
2522 */
2523static void _regulator_enable_delay(unsigned int delay)
2524{
2525 unsigned int ms = delay / 1000;
2526 unsigned int us = delay % 1000;
2527
2528 if (ms > 0) {
2529 /*
2530 * For small enough values, handle super-millisecond
2531 * delays in the usleep_range() call below.
2532 */
2533 if (ms < 20)
2534 us += ms * 1000;
2535 else
2536 msleep(ms);
2537 }
2538
2539 /*
2540 * Give the scheduler some room to coalesce with any other
2541 * wakeup sources. For delays shorter than 10 us, don't even
2542 * bother setting up high-resolution timers and just busy-
2543 * loop.
2544 */
2545 if (us >= 10)
2546 usleep_range(us, us + 100);
2547 else
2548 udelay(us);
2549}
2550
2551/**
2552 * _regulator_check_status_enabled
2553 *
2554 * A helper function to check if the regulator status can be interpreted
2555 * as 'regulator is enabled'.
2556 * @rdev: the regulator device to check
2557 *
2558 * Return:
2559 * * 1 - if status shows regulator is in enabled state
2560 * * 0 - if not enabled state
2561 * * Error Value - as received from ops->get_status()
2562 */
2563static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564{
2565 int ret = rdev->desc->ops->get_status(rdev);
2566
2567 if (ret < 0) {
2568 rdev_info(rdev, "get_status returned error: %d\n", ret);
2569 return ret;
2570 }
2571
2572 switch (ret) {
2573 case REGULATOR_STATUS_OFF:
2574 case REGULATOR_STATUS_ERROR:
2575 case REGULATOR_STATUS_UNDEFINED:
2576 return 0;
2577 default:
2578 return 1;
2579 }
2580}
2581
2582static int _regulator_do_enable(struct regulator_dev *rdev)
2583{
2584 int ret, delay;
2585
2586 /* Query before enabling in case configuration dependent. */
2587 ret = _regulator_get_enable_time(rdev);
2588 if (ret >= 0) {
2589 delay = ret;
2590 } else {
2591 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592 delay = 0;
2593 }
2594
2595 trace_regulator_enable(rdev_get_name(rdev));
2596
2597 if (rdev->desc->off_on_delay && rdev->last_off) {
2598 /* if needed, keep a distance of off_on_delay from last time
2599 * this regulator was disabled.
2600 */
2601 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602 s64 remaining = ktime_us_delta(end, ktime_get());
2603
2604 if (remaining > 0)
2605 _regulator_enable_delay(remaining);
2606 }
2607
2608 if (rdev->ena_pin) {
2609 if (!rdev->ena_gpio_state) {
2610 ret = regulator_ena_gpio_ctrl(rdev, true);
2611 if (ret < 0)
2612 return ret;
2613 rdev->ena_gpio_state = 1;
2614 }
2615 } else if (rdev->desc->ops->enable) {
2616 ret = rdev->desc->ops->enable(rdev);
2617 if (ret < 0)
2618 return ret;
2619 } else {
2620 return -EINVAL;
2621 }
2622
2623 /* Allow the regulator to ramp; it would be useful to extend
2624 * this for bulk operations so that the regulators can ramp
2625 * together.
2626 */
2627 trace_regulator_enable_delay(rdev_get_name(rdev));
2628
2629 /* If poll_enabled_time is set, poll upto the delay calculated
2630 * above, delaying poll_enabled_time uS to check if the regulator
2631 * actually got enabled.
2632 * If the regulator isn't enabled after enable_delay has
2633 * expired, return -ETIMEDOUT.
2634 */
2635 if (rdev->desc->poll_enabled_time) {
2636 unsigned int time_remaining = delay;
2637
2638 while (time_remaining > 0) {
2639 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2640
2641 if (rdev->desc->ops->get_status) {
2642 ret = _regulator_check_status_enabled(rdev);
2643 if (ret < 0)
2644 return ret;
2645 else if (ret)
2646 break;
2647 } else if (rdev->desc->ops->is_enabled(rdev))
2648 break;
2649
2650 time_remaining -= rdev->desc->poll_enabled_time;
2651 }
2652
2653 if (time_remaining <= 0) {
2654 rdev_err(rdev, "Enabled check timed out\n");
2655 return -ETIMEDOUT;
2656 }
2657 } else {
2658 _regulator_enable_delay(delay);
2659 }
2660
2661 trace_regulator_enable_complete(rdev_get_name(rdev));
2662
2663 return 0;
2664}
2665
2666/**
2667 * _regulator_handle_consumer_enable - handle that a consumer enabled
2668 * @regulator: regulator source
2669 *
2670 * Some things on a regulator consumer (like the contribution towards total
2671 * load on the regulator) only have an effect when the consumer wants the
2672 * regulator enabled. Explained in example with two consumers of the same
2673 * regulator:
2674 * consumer A: set_load(100); => total load = 0
2675 * consumer A: regulator_enable(); => total load = 100
2676 * consumer B: set_load(1000); => total load = 100
2677 * consumer B: regulator_enable(); => total load = 1100
2678 * consumer A: regulator_disable(); => total_load = 1000
2679 *
2680 * This function (together with _regulator_handle_consumer_disable) is
2681 * responsible for keeping track of the refcount for a given regulator consumer
2682 * and applying / unapplying these things.
2683 *
2684 * Returns 0 upon no error; -error upon error.
2685 */
2686static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687{
2688 struct regulator_dev *rdev = regulator->rdev;
2689
2690 lockdep_assert_held_once(&rdev->mutex.base);
2691
2692 regulator->enable_count++;
2693 if (regulator->uA_load && regulator->enable_count == 1)
2694 return drms_uA_update(rdev);
2695
2696 return 0;
2697}
2698
2699/**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
2707static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708{
2709 struct regulator_dev *rdev = regulator->rdev;
2710
2711 lockdep_assert_held_once(&rdev->mutex.base);
2712
2713 if (!regulator->enable_count) {
2714 rdev_err(rdev, "Underflow of regulator enable count\n");
2715 return -EINVAL;
2716 }
2717
2718 regulator->enable_count--;
2719 if (regulator->uA_load && regulator->enable_count == 0)
2720 return drms_uA_update(rdev);
2721
2722 return 0;
2723}
2724
2725/* locks held by regulator_enable() */
2726static int _regulator_enable(struct regulator *regulator)
2727{
2728 struct regulator_dev *rdev = regulator->rdev;
2729 int ret;
2730
2731 lockdep_assert_held_once(&rdev->mutex.base);
2732
2733 if (rdev->use_count == 0 && rdev->supply) {
2734 ret = _regulator_enable(rdev->supply);
2735 if (ret < 0)
2736 return ret;
2737 }
2738
2739 /* balance only if there are regulators coupled */
2740 if (rdev->coupling_desc.n_coupled > 1) {
2741 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 if (ret < 0)
2743 goto err_disable_supply;
2744 }
2745
2746 ret = _regulator_handle_consumer_enable(regulator);
2747 if (ret < 0)
2748 goto err_disable_supply;
2749
2750 if (rdev->use_count == 0) {
2751 /*
2752 * The regulator may already be enabled if it's not switchable
2753 * or was left on
2754 */
2755 ret = _regulator_is_enabled(rdev);
2756 if (ret == -EINVAL || ret == 0) {
2757 if (!regulator_ops_is_valid(rdev,
2758 REGULATOR_CHANGE_STATUS)) {
2759 ret = -EPERM;
2760 goto err_consumer_disable;
2761 }
2762
2763 ret = _regulator_do_enable(rdev);
2764 if (ret < 0)
2765 goto err_consumer_disable;
2766
2767 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768 NULL);
2769 } else if (ret < 0) {
2770 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771 goto err_consumer_disable;
2772 }
2773 /* Fallthrough on positive return values - already enabled */
2774 }
2775
2776 rdev->use_count++;
2777
2778 return 0;
2779
2780err_consumer_disable:
2781 _regulator_handle_consumer_disable(regulator);
2782
2783err_disable_supply:
2784 if (rdev->use_count == 0 && rdev->supply)
2785 _regulator_disable(rdev->supply);
2786
2787 return ret;
2788}
2789
2790/**
2791 * regulator_enable - enable regulator output
2792 * @regulator: regulator source
2793 *
2794 * Request that the regulator be enabled with the regulator output at
2795 * the predefined voltage or current value. Calls to regulator_enable()
2796 * must be balanced with calls to regulator_disable().
2797 *
2798 * NOTE: the output value can be set by other drivers, boot loader or may be
2799 * hardwired in the regulator.
2800 */
2801int regulator_enable(struct regulator *regulator)
2802{
2803 struct regulator_dev *rdev = regulator->rdev;
2804 struct ww_acquire_ctx ww_ctx;
2805 int ret;
2806
2807 regulator_lock_dependent(rdev, &ww_ctx);
2808 ret = _regulator_enable(regulator);
2809 regulator_unlock_dependent(rdev, &ww_ctx);
2810
2811 return ret;
2812}
2813EXPORT_SYMBOL_GPL(regulator_enable);
2814
2815static int _regulator_do_disable(struct regulator_dev *rdev)
2816{
2817 int ret;
2818
2819 trace_regulator_disable(rdev_get_name(rdev));
2820
2821 if (rdev->ena_pin) {
2822 if (rdev->ena_gpio_state) {
2823 ret = regulator_ena_gpio_ctrl(rdev, false);
2824 if (ret < 0)
2825 return ret;
2826 rdev->ena_gpio_state = 0;
2827 }
2828
2829 } else if (rdev->desc->ops->disable) {
2830 ret = rdev->desc->ops->disable(rdev);
2831 if (ret != 0)
2832 return ret;
2833 }
2834
2835 if (rdev->desc->off_on_delay)
2836 rdev->last_off = ktime_get();
2837
2838 trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840 return 0;
2841}
2842
2843/* locks held by regulator_disable() */
2844static int _regulator_disable(struct regulator *regulator)
2845{
2846 struct regulator_dev *rdev = regulator->rdev;
2847 int ret = 0;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 if (WARN(rdev->use_count <= 0,
2852 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853 return -EIO;
2854
2855 /* are we the last user and permitted to disable ? */
2856 if (rdev->use_count == 1 &&
2857 (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859 /* we are last user */
2860 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861 ret = _notifier_call_chain(rdev,
2862 REGULATOR_EVENT_PRE_DISABLE,
2863 NULL);
2864 if (ret & NOTIFY_STOP_MASK)
2865 return -EINVAL;
2866
2867 ret = _regulator_do_disable(rdev);
2868 if (ret < 0) {
2869 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870 _notifier_call_chain(rdev,
2871 REGULATOR_EVENT_ABORT_DISABLE,
2872 NULL);
2873 return ret;
2874 }
2875 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876 NULL);
2877 }
2878
2879 rdev->use_count = 0;
2880 } else if (rdev->use_count > 1) {
2881 rdev->use_count--;
2882 }
2883
2884 if (ret == 0)
2885 ret = _regulator_handle_consumer_disable(regulator);
2886
2887 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891 ret = _regulator_disable(rdev->supply);
2892
2893 return ret;
2894}
2895
2896/**
2897 * regulator_disable - disable regulator output
2898 * @regulator: regulator source
2899 *
2900 * Disable the regulator output voltage or current. Calls to
2901 * regulator_enable() must be balanced with calls to
2902 * regulator_disable().
2903 *
2904 * NOTE: this will only disable the regulator output if no other consumer
2905 * devices have it enabled, the regulator device supports disabling and
2906 * machine constraints permit this operation.
2907 */
2908int regulator_disable(struct regulator *regulator)
2909{
2910 struct regulator_dev *rdev = regulator->rdev;
2911 struct ww_acquire_ctx ww_ctx;
2912 int ret;
2913
2914 regulator_lock_dependent(rdev, &ww_ctx);
2915 ret = _regulator_disable(regulator);
2916 regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918 return ret;
2919}
2920EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922/* locks held by regulator_force_disable() */
2923static int _regulator_force_disable(struct regulator_dev *rdev)
2924{
2925 int ret = 0;
2926
2927 lockdep_assert_held_once(&rdev->mutex.base);
2928
2929 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930 REGULATOR_EVENT_PRE_DISABLE, NULL);
2931 if (ret & NOTIFY_STOP_MASK)
2932 return -EINVAL;
2933
2934 ret = _regulator_do_disable(rdev);
2935 if (ret < 0) {
2936 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939 return ret;
2940 }
2941
2942 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943 REGULATOR_EVENT_DISABLE, NULL);
2944
2945 return 0;
2946}
2947
2948/**
2949 * regulator_force_disable - force disable regulator output
2950 * @regulator: regulator source
2951 *
2952 * Forcibly disable the regulator output voltage or current.
2953 * NOTE: this *will* disable the regulator output even if other consumer
2954 * devices have it enabled. This should be used for situations when device
2955 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956 */
2957int regulator_force_disable(struct regulator *regulator)
2958{
2959 struct regulator_dev *rdev = regulator->rdev;
2960 struct ww_acquire_ctx ww_ctx;
2961 int ret;
2962
2963 regulator_lock_dependent(rdev, &ww_ctx);
2964
2965 ret = _regulator_force_disable(regulator->rdev);
2966
2967 if (rdev->coupling_desc.n_coupled > 1)
2968 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970 if (regulator->uA_load) {
2971 regulator->uA_load = 0;
2972 ret = drms_uA_update(rdev);
2973 }
2974
2975 if (rdev->use_count != 0 && rdev->supply)
2976 _regulator_disable(rdev->supply);
2977
2978 regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980 return ret;
2981}
2982EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
2984static void regulator_disable_work(struct work_struct *work)
2985{
2986 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987 disable_work.work);
2988 struct ww_acquire_ctx ww_ctx;
2989 int count, i, ret;
2990 struct regulator *regulator;
2991 int total_count = 0;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994
2995 /*
2996 * Workqueue functions queue the new work instance while the previous
2997 * work instance is being processed. Cancel the queued work instance
2998 * as the work instance under processing does the job of the queued
2999 * work instance.
3000 */
3001 cancel_delayed_work(&rdev->disable_work);
3002
3003 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004 count = regulator->deferred_disables;
3005
3006 if (!count)
3007 continue;
3008
3009 total_count += count;
3010 regulator->deferred_disables = 0;
3011
3012 for (i = 0; i < count; i++) {
3013 ret = _regulator_disable(regulator);
3014 if (ret != 0)
3015 rdev_err(rdev, "Deferred disable failed: %pe\n",
3016 ERR_PTR(ret));
3017 }
3018 }
3019 WARN_ON(!total_count);
3020
3021 if (rdev->coupling_desc.n_coupled > 1)
3022 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024 regulator_unlock_dependent(rdev, &ww_ctx);
3025}
3026
3027/**
3028 * regulator_disable_deferred - disable regulator output with delay
3029 * @regulator: regulator source
3030 * @ms: milliseconds until the regulator is disabled
3031 *
3032 * Execute regulator_disable() on the regulator after a delay. This
3033 * is intended for use with devices that require some time to quiesce.
3034 *
3035 * NOTE: this will only disable the regulator output if no other consumer
3036 * devices have it enabled, the regulator device supports disabling and
3037 * machine constraints permit this operation.
3038 */
3039int regulator_disable_deferred(struct regulator *regulator, int ms)
3040{
3041 struct regulator_dev *rdev = regulator->rdev;
3042
3043 if (!ms)
3044 return regulator_disable(regulator);
3045
3046 regulator_lock(rdev);
3047 regulator->deferred_disables++;
3048 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049 msecs_to_jiffies(ms));
3050 regulator_unlock(rdev);
3051
3052 return 0;
3053}
3054EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
3056static int _regulator_is_enabled(struct regulator_dev *rdev)
3057{
3058 /* A GPIO control always takes precedence */
3059 if (rdev->ena_pin)
3060 return rdev->ena_gpio_state;
3061
3062 /* If we don't know then assume that the regulator is always on */
3063 if (!rdev->desc->ops->is_enabled)
3064 return 1;
3065
3066 return rdev->desc->ops->is_enabled(rdev);
3067}
3068
3069static int _regulator_list_voltage(struct regulator_dev *rdev,
3070 unsigned selector, int lock)
3071{
3072 const struct regulator_ops *ops = rdev->desc->ops;
3073 int ret;
3074
3075 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076 return rdev->desc->fixed_uV;
3077
3078 if (ops->list_voltage) {
3079 if (selector >= rdev->desc->n_voltages)
3080 return -EINVAL;
3081 if (selector < rdev->desc->linear_min_sel)
3082 return 0;
3083 if (lock)
3084 regulator_lock(rdev);
3085 ret = ops->list_voltage(rdev, selector);
3086 if (lock)
3087 regulator_unlock(rdev);
3088 } else if (rdev->is_switch && rdev->supply) {
3089 ret = _regulator_list_voltage(rdev->supply->rdev,
3090 selector, lock);
3091 } else {
3092 return -EINVAL;
3093 }
3094
3095 if (ret > 0) {
3096 if (ret < rdev->constraints->min_uV)
3097 ret = 0;
3098 else if (ret > rdev->constraints->max_uV)
3099 ret = 0;
3100 }
3101
3102 return ret;
3103}
3104
3105/**
3106 * regulator_is_enabled - is the regulator output enabled
3107 * @regulator: regulator source
3108 *
3109 * Returns positive if the regulator driver backing the source/client
3110 * has requested that the device be enabled, zero if it hasn't, else a
3111 * negative errno code.
3112 *
3113 * Note that the device backing this regulator handle can have multiple
3114 * users, so it might be enabled even if regulator_enable() was never
3115 * called for this particular source.
3116 */
3117int regulator_is_enabled(struct regulator *regulator)
3118{
3119 int ret;
3120
3121 if (regulator->always_on)
3122 return 1;
3123
3124 regulator_lock(regulator->rdev);
3125 ret = _regulator_is_enabled(regulator->rdev);
3126 regulator_unlock(regulator->rdev);
3127
3128 return ret;
3129}
3130EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132/**
3133 * regulator_count_voltages - count regulator_list_voltage() selectors
3134 * @regulator: regulator source
3135 *
3136 * Returns number of selectors, or negative errno. Selectors are
3137 * numbered starting at zero, and typically correspond to bitfields
3138 * in hardware registers.
3139 */
3140int regulator_count_voltages(struct regulator *regulator)
3141{
3142 struct regulator_dev *rdev = regulator->rdev;
3143
3144 if (rdev->desc->n_voltages)
3145 return rdev->desc->n_voltages;
3146
3147 if (!rdev->is_switch || !rdev->supply)
3148 return -EINVAL;
3149
3150 return regulator_count_voltages(rdev->supply);
3151}
3152EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154/**
3155 * regulator_list_voltage - enumerate supported voltages
3156 * @regulator: regulator source
3157 * @selector: identify voltage to list
3158 * Context: can sleep
3159 *
3160 * Returns a voltage that can be passed to @regulator_set_voltage(),
3161 * zero if this selector code can't be used on this system, or a
3162 * negative errno.
3163 */
3164int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165{
3166 return _regulator_list_voltage(regulator->rdev, selector, 1);
3167}
3168EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170/**
3171 * regulator_get_regmap - get the regulator's register map
3172 * @regulator: regulator source
3173 *
3174 * Returns the register map for the given regulator, or an ERR_PTR value
3175 * if the regulator doesn't use regmap.
3176 */
3177struct regmap *regulator_get_regmap(struct regulator *regulator)
3178{
3179 struct regmap *map = regulator->rdev->regmap;
3180
3181 return map ? map : ERR_PTR(-EOPNOTSUPP);
3182}
3183
3184/**
3185 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186 * @regulator: regulator source
3187 * @vsel_reg: voltage selector register, output parameter
3188 * @vsel_mask: mask for voltage selector bitfield, output parameter
3189 *
3190 * Returns the hardware register offset and bitmask used for setting the
3191 * regulator voltage. This might be useful when configuring voltage-scaling
3192 * hardware or firmware that can make I2C requests behind the kernel's back,
3193 * for example.
3194 *
3195 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196 * and 0 is returned, otherwise a negative errno is returned.
3197 */
3198int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199 unsigned *vsel_reg,
3200 unsigned *vsel_mask)
3201{
3202 struct regulator_dev *rdev = regulator->rdev;
3203 const struct regulator_ops *ops = rdev->desc->ops;
3204
3205 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206 return -EOPNOTSUPP;
3207
3208 *vsel_reg = rdev->desc->vsel_reg;
3209 *vsel_mask = rdev->desc->vsel_mask;
3210
3211 return 0;
3212}
3213EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215/**
3216 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217 * @regulator: regulator source
3218 * @selector: identify voltage to list
3219 *
3220 * Converts the selector to a hardware-specific voltage selector that can be
3221 * directly written to the regulator registers. The address of the voltage
3222 * register can be determined by calling @regulator_get_hardware_vsel_register.
3223 *
3224 * On error a negative errno is returned.
3225 */
3226int regulator_list_hardware_vsel(struct regulator *regulator,
3227 unsigned selector)
3228{
3229 struct regulator_dev *rdev = regulator->rdev;
3230 const struct regulator_ops *ops = rdev->desc->ops;
3231
3232 if (selector >= rdev->desc->n_voltages)
3233 return -EINVAL;
3234 if (selector < rdev->desc->linear_min_sel)
3235 return 0;
3236 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237 return -EOPNOTSUPP;
3238
3239 return selector;
3240}
3241EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243/**
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
3250unsigned int regulator_get_linear_step(struct regulator *regulator)
3251{
3252 struct regulator_dev *rdev = regulator->rdev;
3253
3254 return rdev->desc->uV_step;
3255}
3256EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258/**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
3266 */
3267int regulator_is_supported_voltage(struct regulator *regulator,
3268 int min_uV, int max_uV)
3269{
3270 struct regulator_dev *rdev = regulator->rdev;
3271 int i, voltages, ret;
3272
3273 /* If we can't change voltage check the current voltage */
3274 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 ret = regulator_get_voltage(regulator);
3276 if (ret >= 0)
3277 return min_uV <= ret && ret <= max_uV;
3278 else
3279 return ret;
3280 }
3281
3282 /* Any voltage within constrains range is fine? */
3283 if (rdev->desc->continuous_voltage_range)
3284 return min_uV >= rdev->constraints->min_uV &&
3285 max_uV <= rdev->constraints->max_uV;
3286
3287 ret = regulator_count_voltages(regulator);
3288 if (ret < 0)
3289 return 0;
3290 voltages = ret;
3291
3292 for (i = 0; i < voltages; i++) {
3293 ret = regulator_list_voltage(regulator, i);
3294
3295 if (ret >= min_uV && ret <= max_uV)
3296 return 1;
3297 }
3298
3299 return 0;
3300}
3301EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304 int max_uV)
3305{
3306 const struct regulator_desc *desc = rdev->desc;
3307
3308 if (desc->ops->map_voltage)
3309 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317 if (desc->ops->list_voltage ==
3318 regulator_list_voltage_pickable_linear_range)
3319 return regulator_map_voltage_pickable_linear_range(rdev,
3320 min_uV, max_uV);
3321
3322 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323}
3324
3325static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326 int min_uV, int max_uV,
3327 unsigned *selector)
3328{
3329 struct pre_voltage_change_data data;
3330 int ret;
3331
3332 data.old_uV = regulator_get_voltage_rdev(rdev);
3333 data.min_uV = min_uV;
3334 data.max_uV = max_uV;
3335 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336 &data);
3337 if (ret & NOTIFY_STOP_MASK)
3338 return -EINVAL;
3339
3340 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341 if (ret >= 0)
3342 return ret;
3343
3344 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345 (void *)data.old_uV);
3346
3347 return ret;
3348}
3349
3350static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351 int uV, unsigned selector)
3352{
3353 struct pre_voltage_change_data data;
3354 int ret;
3355
3356 data.old_uV = regulator_get_voltage_rdev(rdev);
3357 data.min_uV = uV;
3358 data.max_uV = uV;
3359 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360 &data);
3361 if (ret & NOTIFY_STOP_MASK)
3362 return -EINVAL;
3363
3364 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365 if (ret >= 0)
3366 return ret;
3367
3368 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369 (void *)data.old_uV);
3370
3371 return ret;
3372}
3373
3374static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375 int uV, int new_selector)
3376{
3377 const struct regulator_ops *ops = rdev->desc->ops;
3378 int diff, old_sel, curr_sel, ret;
3379
3380 /* Stepping is only needed if the regulator is enabled. */
3381 if (!_regulator_is_enabled(rdev))
3382 goto final_set;
3383
3384 if (!ops->get_voltage_sel)
3385 return -EINVAL;
3386
3387 old_sel = ops->get_voltage_sel(rdev);
3388 if (old_sel < 0)
3389 return old_sel;
3390
3391 diff = new_selector - old_sel;
3392 if (diff == 0)
3393 return 0; /* No change needed. */
3394
3395 if (diff > 0) {
3396 /* Stepping up. */
3397 for (curr_sel = old_sel + rdev->desc->vsel_step;
3398 curr_sel < new_selector;
3399 curr_sel += rdev->desc->vsel_step) {
3400 /*
3401 * Call the callback directly instead of using
3402 * _regulator_call_set_voltage_sel() as we don't
3403 * want to notify anyone yet. Same in the branch
3404 * below.
3405 */
3406 ret = ops->set_voltage_sel(rdev, curr_sel);
3407 if (ret)
3408 goto try_revert;
3409 }
3410 } else {
3411 /* Stepping down. */
3412 for (curr_sel = old_sel - rdev->desc->vsel_step;
3413 curr_sel > new_selector;
3414 curr_sel -= rdev->desc->vsel_step) {
3415 ret = ops->set_voltage_sel(rdev, curr_sel);
3416 if (ret)
3417 goto try_revert;
3418 }
3419 }
3420
3421final_set:
3422 /* The final selector will trigger the notifiers. */
3423 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425try_revert:
3426 /*
3427 * At least try to return to the previous voltage if setting a new
3428 * one failed.
3429 */
3430 (void)ops->set_voltage_sel(rdev, old_sel);
3431 return ret;
3432}
3433
3434static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435 int old_uV, int new_uV)
3436{
3437 unsigned int ramp_delay = 0;
3438
3439 if (rdev->constraints->ramp_delay)
3440 ramp_delay = rdev->constraints->ramp_delay;
3441 else if (rdev->desc->ramp_delay)
3442 ramp_delay = rdev->desc->ramp_delay;
3443 else if (rdev->constraints->settling_time)
3444 return rdev->constraints->settling_time;
3445 else if (rdev->constraints->settling_time_up &&
3446 (new_uV > old_uV))
3447 return rdev->constraints->settling_time_up;
3448 else if (rdev->constraints->settling_time_down &&
3449 (new_uV < old_uV))
3450 return rdev->constraints->settling_time_down;
3451
3452 if (ramp_delay == 0) {
3453 rdev_dbg(rdev, "ramp_delay not set\n");
3454 return 0;
3455 }
3456
3457 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458}
3459
3460static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461 int min_uV, int max_uV)
3462{
3463 int ret;
3464 int delay = 0;
3465 int best_val = 0;
3466 unsigned int selector;
3467 int old_selector = -1;
3468 const struct regulator_ops *ops = rdev->desc->ops;
3469 int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473 min_uV += rdev->constraints->uV_offset;
3474 max_uV += rdev->constraints->uV_offset;
3475
3476 /*
3477 * If we can't obtain the old selector there is not enough
3478 * info to call set_voltage_time_sel().
3479 */
3480 if (_regulator_is_enabled(rdev) &&
3481 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482 old_selector = ops->get_voltage_sel(rdev);
3483 if (old_selector < 0)
3484 return old_selector;
3485 }
3486
3487 if (ops->set_voltage) {
3488 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489 &selector);
3490
3491 if (ret >= 0) {
3492 if (ops->list_voltage)
3493 best_val = ops->list_voltage(rdev,
3494 selector);
3495 else
3496 best_val = regulator_get_voltage_rdev(rdev);
3497 }
3498
3499 } else if (ops->set_voltage_sel) {
3500 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501 if (ret >= 0) {
3502 best_val = ops->list_voltage(rdev, ret);
3503 if (min_uV <= best_val && max_uV >= best_val) {
3504 selector = ret;
3505 if (old_selector == selector)
3506 ret = 0;
3507 else if (rdev->desc->vsel_step)
3508 ret = _regulator_set_voltage_sel_step(
3509 rdev, best_val, selector);
3510 else
3511 ret = _regulator_call_set_voltage_sel(
3512 rdev, best_val, selector);
3513 } else {
3514 ret = -EINVAL;
3515 }
3516 }
3517 } else {
3518 ret = -EINVAL;
3519 }
3520
3521 if (ret)
3522 goto out;
3523
3524 if (ops->set_voltage_time_sel) {
3525 /*
3526 * Call set_voltage_time_sel if successfully obtained
3527 * old_selector
3528 */
3529 if (old_selector >= 0 && old_selector != selector)
3530 delay = ops->set_voltage_time_sel(rdev, old_selector,
3531 selector);
3532 } else {
3533 if (old_uV != best_val) {
3534 if (ops->set_voltage_time)
3535 delay = ops->set_voltage_time(rdev, old_uV,
3536 best_val);
3537 else
3538 delay = _regulator_set_voltage_time(rdev,
3539 old_uV,
3540 best_val);
3541 }
3542 }
3543
3544 if (delay < 0) {
3545 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546 delay = 0;
3547 }
3548
3549 /* Insert any necessary delays */
3550 if (delay >= 1000) {
3551 mdelay(delay / 1000);
3552 udelay(delay % 1000);
3553 } else if (delay) {
3554 udelay(delay);
3555 }
3556
3557 if (best_val >= 0) {
3558 unsigned long data = best_val;
3559
3560 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 (void *)data);
3562 }
3563
3564out:
3565 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567 return ret;
3568}
3569
3570static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571 int min_uV, int max_uV, suspend_state_t state)
3572{
3573 struct regulator_state *rstate;
3574 int uV, sel;
3575
3576 rstate = regulator_get_suspend_state(rdev, state);
3577 if (rstate == NULL)
3578 return -EINVAL;
3579
3580 if (min_uV < rstate->min_uV)
3581 min_uV = rstate->min_uV;
3582 if (max_uV > rstate->max_uV)
3583 max_uV = rstate->max_uV;
3584
3585 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586 if (sel < 0)
3587 return sel;
3588
3589 uV = rdev->desc->ops->list_voltage(rdev, sel);
3590 if (uV >= min_uV && uV <= max_uV)
3591 rstate->uV = uV;
3592
3593 return 0;
3594}
3595
3596static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 int min_uV, int max_uV,
3598 suspend_state_t state)
3599{
3600 struct regulator_dev *rdev = regulator->rdev;
3601 struct regulator_voltage *voltage = ®ulator->voltage[state];
3602 int ret = 0;
3603 int old_min_uV, old_max_uV;
3604 int current_uV;
3605
3606 /* If we're setting the same range as last time the change
3607 * should be a noop (some cpufreq implementations use the same
3608 * voltage for multiple frequencies, for example).
3609 */
3610 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 goto out;
3612
3613 /* If we're trying to set a range that overlaps the current voltage,
3614 * return successfully even though the regulator does not support
3615 * changing the voltage.
3616 */
3617 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618 current_uV = regulator_get_voltage_rdev(rdev);
3619 if (min_uV <= current_uV && current_uV <= max_uV) {
3620 voltage->min_uV = min_uV;
3621 voltage->max_uV = max_uV;
3622 goto out;
3623 }
3624 }
3625
3626 /* sanity check */
3627 if (!rdev->desc->ops->set_voltage &&
3628 !rdev->desc->ops->set_voltage_sel) {
3629 ret = -EINVAL;
3630 goto out;
3631 }
3632
3633 /* constraints check */
3634 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635 if (ret < 0)
3636 goto out;
3637
3638 /* restore original values in case of error */
3639 old_min_uV = voltage->min_uV;
3640 old_max_uV = voltage->max_uV;
3641 voltage->min_uV = min_uV;
3642 voltage->max_uV = max_uV;
3643
3644 /* for not coupled regulators this will just set the voltage */
3645 ret = regulator_balance_voltage(rdev, state);
3646 if (ret < 0) {
3647 voltage->min_uV = old_min_uV;
3648 voltage->max_uV = old_max_uV;
3649 }
3650
3651out:
3652 return ret;
3653}
3654
3655int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656 int max_uV, suspend_state_t state)
3657{
3658 int best_supply_uV = 0;
3659 int supply_change_uV = 0;
3660 int ret;
3661
3662 if (rdev->supply &&
3663 regulator_ops_is_valid(rdev->supply->rdev,
3664 REGULATOR_CHANGE_VOLTAGE) &&
3665 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666 rdev->desc->ops->get_voltage_sel))) {
3667 int current_supply_uV;
3668 int selector;
3669
3670 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671 if (selector < 0) {
3672 ret = selector;
3673 goto out;
3674 }
3675
3676 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 if (best_supply_uV < 0) {
3678 ret = best_supply_uV;
3679 goto out;
3680 }
3681
3682 best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 if (current_supply_uV < 0) {
3686 ret = current_supply_uV;
3687 goto out;
3688 }
3689
3690 supply_change_uV = best_supply_uV - current_supply_uV;
3691 }
3692
3693 if (supply_change_uV > 0) {
3694 ret = regulator_set_voltage_unlocked(rdev->supply,
3695 best_supply_uV, INT_MAX, state);
3696 if (ret) {
3697 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698 ERR_PTR(ret));
3699 goto out;
3700 }
3701 }
3702
3703 if (state == PM_SUSPEND_ON)
3704 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705 else
3706 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707 max_uV, state);
3708 if (ret < 0)
3709 goto out;
3710
3711 if (supply_change_uV < 0) {
3712 ret = regulator_set_voltage_unlocked(rdev->supply,
3713 best_supply_uV, INT_MAX, state);
3714 if (ret)
3715 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716 ERR_PTR(ret));
3717 /* No need to fail here */
3718 ret = 0;
3719 }
3720
3721out:
3722 return ret;
3723}
3724EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727 int *current_uV, int *min_uV)
3728{
3729 struct regulation_constraints *constraints = rdev->constraints;
3730
3731 /* Limit voltage change only if necessary */
3732 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733 return 1;
3734
3735 if (*current_uV < 0) {
3736 *current_uV = regulator_get_voltage_rdev(rdev);
3737
3738 if (*current_uV < 0)
3739 return *current_uV;
3740 }
3741
3742 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743 return 1;
3744
3745 /* Clamp target voltage within the given step */
3746 if (*current_uV < *min_uV)
3747 *min_uV = min(*current_uV + constraints->max_uV_step,
3748 *min_uV);
3749 else
3750 *min_uV = max(*current_uV - constraints->max_uV_step,
3751 *min_uV);
3752
3753 return 0;
3754}
3755
3756static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757 int *current_uV,
3758 int *min_uV, int *max_uV,
3759 suspend_state_t state,
3760 int n_coupled)
3761{
3762 struct coupling_desc *c_desc = &rdev->coupling_desc;
3763 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764 struct regulation_constraints *constraints = rdev->constraints;
3765 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766 int max_current_uV = 0, min_current_uV = INT_MAX;
3767 int highest_min_uV = 0, target_uV, possible_uV;
3768 int i, ret, max_spread;
3769 bool done;
3770
3771 *current_uV = -1;
3772
3773 /*
3774 * If there are no coupled regulators, simply set the voltage
3775 * demanded by consumers.
3776 */
3777 if (n_coupled == 1) {
3778 /*
3779 * If consumers don't provide any demands, set voltage
3780 * to min_uV
3781 */
3782 desired_min_uV = constraints->min_uV;
3783 desired_max_uV = constraints->max_uV;
3784
3785 ret = regulator_check_consumers(rdev,
3786 &desired_min_uV,
3787 &desired_max_uV, state);
3788 if (ret < 0)
3789 return ret;
3790
3791 possible_uV = desired_min_uV;
3792 done = true;
3793
3794 goto finish;
3795 }
3796
3797 /* Find highest min desired voltage */
3798 for (i = 0; i < n_coupled; i++) {
3799 int tmp_min = 0;
3800 int tmp_max = INT_MAX;
3801
3802 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804 ret = regulator_check_consumers(c_rdevs[i],
3805 &tmp_min,
3806 &tmp_max, state);
3807 if (ret < 0)
3808 return ret;
3809
3810 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811 if (ret < 0)
3812 return ret;
3813
3814 highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816 if (i == 0) {
3817 desired_min_uV = tmp_min;
3818 desired_max_uV = tmp_max;
3819 }
3820 }
3821
3822 max_spread = constraints->max_spread[0];
3823
3824 /*
3825 * Let target_uV be equal to the desired one if possible.
3826 * If not, set it to minimum voltage, allowed by other coupled
3827 * regulators.
3828 */
3829 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831 /*
3832 * Find min and max voltages, which currently aren't violating
3833 * max_spread.
3834 */
3835 for (i = 1; i < n_coupled; i++) {
3836 int tmp_act;
3837
3838 if (!_regulator_is_enabled(c_rdevs[i]))
3839 continue;
3840
3841 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 if (tmp_act < 0)
3843 return tmp_act;
3844
3845 min_current_uV = min(tmp_act, min_current_uV);
3846 max_current_uV = max(tmp_act, max_current_uV);
3847 }
3848
3849 /* There aren't any other regulators enabled */
3850 if (max_current_uV == 0) {
3851 possible_uV = target_uV;
3852 } else {
3853 /*
3854 * Correct target voltage, so as it currently isn't
3855 * violating max_spread
3856 */
3857 possible_uV = max(target_uV, max_current_uV - max_spread);
3858 possible_uV = min(possible_uV, min_current_uV + max_spread);
3859 }
3860
3861 if (possible_uV > desired_max_uV)
3862 return -EINVAL;
3863
3864 done = (possible_uV == target_uV);
3865 desired_min_uV = possible_uV;
3866
3867finish:
3868 /* Apply max_uV_step constraint if necessary */
3869 if (state == PM_SUSPEND_ON) {
3870 ret = regulator_limit_voltage_step(rdev, current_uV,
3871 &desired_min_uV);
3872 if (ret < 0)
3873 return ret;
3874
3875 if (ret == 0)
3876 done = false;
3877 }
3878
3879 /* Set current_uV if wasn't done earlier in the code and if necessary */
3880 if (n_coupled > 1 && *current_uV == -1) {
3881
3882 if (_regulator_is_enabled(rdev)) {
3883 ret = regulator_get_voltage_rdev(rdev);
3884 if (ret < 0)
3885 return ret;
3886
3887 *current_uV = ret;
3888 } else {
3889 *current_uV = desired_min_uV;
3890 }
3891 }
3892
3893 *min_uV = desired_min_uV;
3894 *max_uV = desired_max_uV;
3895
3896 return done;
3897}
3898
3899int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900 suspend_state_t state, bool skip_coupled)
3901{
3902 struct regulator_dev **c_rdevs;
3903 struct regulator_dev *best_rdev;
3904 struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906 unsigned int delta, best_delta;
3907 unsigned long c_rdev_done = 0;
3908 bool best_c_rdev_done;
3909
3910 c_rdevs = c_desc->coupled_rdevs;
3911 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913 /*
3914 * Find the best possible voltage change on each loop. Leave the loop
3915 * if there isn't any possible change.
3916 */
3917 do {
3918 best_c_rdev_done = false;
3919 best_delta = 0;
3920 best_min_uV = 0;
3921 best_max_uV = 0;
3922 best_c_rdev = 0;
3923 best_rdev = NULL;
3924
3925 /*
3926 * Find highest difference between optimal voltage
3927 * and current voltage.
3928 */
3929 for (i = 0; i < n_coupled; i++) {
3930 /*
3931 * optimal_uV is the best voltage that can be set for
3932 * i-th regulator at the moment without violating
3933 * max_spread constraint in order to balance
3934 * the coupled voltages.
3935 */
3936 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938 if (test_bit(i, &c_rdev_done))
3939 continue;
3940
3941 ret = regulator_get_optimal_voltage(c_rdevs[i],
3942 ¤t_uV,
3943 &optimal_uV,
3944 &optimal_max_uV,
3945 state, n_coupled);
3946 if (ret < 0)
3947 goto out;
3948
3949 delta = abs(optimal_uV - current_uV);
3950
3951 if (delta && best_delta <= delta) {
3952 best_c_rdev_done = ret;
3953 best_delta = delta;
3954 best_rdev = c_rdevs[i];
3955 best_min_uV = optimal_uV;
3956 best_max_uV = optimal_max_uV;
3957 best_c_rdev = i;
3958 }
3959 }
3960
3961 /* Nothing to change, return successfully */
3962 if (!best_rdev) {
3963 ret = 0;
3964 goto out;
3965 }
3966
3967 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968 best_max_uV, state);
3969
3970 if (ret < 0)
3971 goto out;
3972
3973 if (best_c_rdev_done)
3974 set_bit(best_c_rdev, &c_rdev_done);
3975
3976 } while (n_coupled > 1);
3977
3978out:
3979 return ret;
3980}
3981
3982static int regulator_balance_voltage(struct regulator_dev *rdev,
3983 suspend_state_t state)
3984{
3985 struct coupling_desc *c_desc = &rdev->coupling_desc;
3986 struct regulator_coupler *coupler = c_desc->coupler;
3987 bool skip_coupled = false;
3988
3989 /*
3990 * If system is in a state other than PM_SUSPEND_ON, don't check
3991 * other coupled regulators.
3992 */
3993 if (state != PM_SUSPEND_ON)
3994 skip_coupled = true;
3995
3996 if (c_desc->n_resolved < c_desc->n_coupled) {
3997 rdev_err(rdev, "Not all coupled regulators registered\n");
3998 return -EPERM;
3999 }
4000
4001 /* Invoke custom balancer for customized couplers */
4002 if (coupler && coupler->balance_voltage)
4003 return coupler->balance_voltage(coupler, rdev, state);
4004
4005 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006}
4007
4008/**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
4025 */
4026int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027{
4028 struct ww_acquire_ctx ww_ctx;
4029 int ret;
4030
4031 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034 PM_SUSPEND_ON);
4035
4036 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038 return ret;
4039}
4040EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043 suspend_state_t state, bool en)
4044{
4045 struct regulator_state *rstate;
4046
4047 rstate = regulator_get_suspend_state(rdev, state);
4048 if (rstate == NULL)
4049 return -EINVAL;
4050
4051 if (!rstate->changeable)
4052 return -EPERM;
4053
4054 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056 return 0;
4057}
4058
4059int regulator_suspend_enable(struct regulator_dev *rdev,
4060 suspend_state_t state)
4061{
4062 return regulator_suspend_toggle(rdev, state, true);
4063}
4064EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066int regulator_suspend_disable(struct regulator_dev *rdev,
4067 suspend_state_t state)
4068{
4069 struct regulator *regulator;
4070 struct regulator_voltage *voltage;
4071
4072 /*
4073 * if any consumer wants this regulator device keeping on in
4074 * suspend states, don't set it as disabled.
4075 */
4076 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077 voltage = ®ulator->voltage[state];
4078 if (voltage->min_uV || voltage->max_uV)
4079 return 0;
4080 }
4081
4082 return regulator_suspend_toggle(rdev, state, false);
4083}
4084EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087 int min_uV, int max_uV,
4088 suspend_state_t state)
4089{
4090 struct regulator_dev *rdev = regulator->rdev;
4091 struct regulator_state *rstate;
4092
4093 rstate = regulator_get_suspend_state(rdev, state);
4094 if (rstate == NULL)
4095 return -EINVAL;
4096
4097 if (rstate->min_uV == rstate->max_uV) {
4098 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099 return -EPERM;
4100 }
4101
4102 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103}
4104
4105int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106 int max_uV, suspend_state_t state)
4107{
4108 struct ww_acquire_ctx ww_ctx;
4109 int ret;
4110
4111 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113 return -EINVAL;
4114
4115 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118 max_uV, state);
4119
4120 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122 return ret;
4123}
4124EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126/**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
4135 */
4136int regulator_set_voltage_time(struct regulator *regulator,
4137 int old_uV, int new_uV)
4138{
4139 struct regulator_dev *rdev = regulator->rdev;
4140 const struct regulator_ops *ops = rdev->desc->ops;
4141 int old_sel = -1;
4142 int new_sel = -1;
4143 int voltage;
4144 int i;
4145
4146 if (ops->set_voltage_time)
4147 return ops->set_voltage_time(rdev, old_uV, new_uV);
4148 else if (!ops->set_voltage_time_sel)
4149 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151 /* Currently requires operations to do this */
4152 if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 return -EINVAL;
4154
4155 for (i = 0; i < rdev->desc->n_voltages; i++) {
4156 /* We only look for exact voltage matches here */
4157 if (i < rdev->desc->linear_min_sel)
4158 continue;
4159
4160 if (old_sel >= 0 && new_sel >= 0)
4161 break;
4162
4163 voltage = regulator_list_voltage(regulator, i);
4164 if (voltage < 0)
4165 return -EINVAL;
4166 if (voltage == 0)
4167 continue;
4168 if (voltage == old_uV)
4169 old_sel = i;
4170 if (voltage == new_uV)
4171 new_sel = i;
4172 }
4173
4174 if (old_sel < 0 || new_sel < 0)
4175 return -EINVAL;
4176
4177 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178}
4179EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180
4181/**
4182 * regulator_set_voltage_time_sel - get raise/fall time
4183 * @rdev: regulator source device
4184 * @old_selector: selector for starting voltage
4185 * @new_selector: selector for target voltage
4186 *
4187 * Provided with the starting and target voltage selectors, this function
4188 * returns time in microseconds required to rise or fall to this new voltage
4189 *
4190 * Drivers providing ramp_delay in regulation_constraints can use this as their
4191 * set_voltage_time_sel() operation.
4192 */
4193int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194 unsigned int old_selector,
4195 unsigned int new_selector)
4196{
4197 int old_volt, new_volt;
4198
4199 /* sanity check */
4200 if (!rdev->desc->ops->list_voltage)
4201 return -EINVAL;
4202
4203 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205
4206 if (rdev->desc->ops->set_voltage_time)
4207 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208 new_volt);
4209 else
4210 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211}
4212EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213
4214int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219
4220 if (!rdev->desc->ops->set_voltage &&
4221 !rdev->desc->ops->set_voltage_sel) {
4222 ret = -EINVAL;
4223 goto out;
4224 }
4225
4226 /* balance only, if regulator is coupled */
4227 if (rdev->coupling_desc.n_coupled > 1)
4228 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229 else
4230 ret = -EOPNOTSUPP;
4231
4232out:
4233 regulator_unlock(rdev);
4234 return ret;
4235}
4236
4237/**
4238 * regulator_sync_voltage - re-apply last regulator output voltage
4239 * @regulator: regulator source
4240 *
4241 * Re-apply the last configured voltage. This is intended to be used
4242 * where some external control source the consumer is cooperating with
4243 * has caused the configured voltage to change.
4244 */
4245int regulator_sync_voltage(struct regulator *regulator)
4246{
4247 struct regulator_dev *rdev = regulator->rdev;
4248 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4249 int ret, min_uV, max_uV;
4250
4251 regulator_lock(rdev);
4252
4253 if (!rdev->desc->ops->set_voltage &&
4254 !rdev->desc->ops->set_voltage_sel) {
4255 ret = -EINVAL;
4256 goto out;
4257 }
4258
4259 /* This is only going to work if we've had a voltage configured. */
4260 if (!voltage->min_uV && !voltage->max_uV) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 min_uV = voltage->min_uV;
4266 max_uV = voltage->max_uV;
4267
4268 /* This should be a paranoia check... */
4269 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270 if (ret < 0)
4271 goto out;
4272
4273 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274 if (ret < 0)
4275 goto out;
4276
4277 /* balance only, if regulator is coupled */
4278 if (rdev->coupling_desc.n_coupled > 1)
4279 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280 else
4281 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282
4283out:
4284 regulator_unlock(rdev);
4285 return ret;
4286}
4287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288
4289int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290{
4291 int sel, ret;
4292 bool bypassed;
4293
4294 if (rdev->desc->ops->get_bypass) {
4295 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296 if (ret < 0)
4297 return ret;
4298 if (bypassed) {
4299 /* if bypassed the regulator must have a supply */
4300 if (!rdev->supply) {
4301 rdev_err(rdev,
4302 "bypassed regulator has no supply!\n");
4303 return -EPROBE_DEFER;
4304 }
4305
4306 return regulator_get_voltage_rdev(rdev->supply->rdev);
4307 }
4308 }
4309
4310 if (rdev->desc->ops->get_voltage_sel) {
4311 sel = rdev->desc->ops->get_voltage_sel(rdev);
4312 if (sel < 0)
4313 return sel;
4314 ret = rdev->desc->ops->list_voltage(rdev, sel);
4315 } else if (rdev->desc->ops->get_voltage) {
4316 ret = rdev->desc->ops->get_voltage(rdev);
4317 } else if (rdev->desc->ops->list_voltage) {
4318 ret = rdev->desc->ops->list_voltage(rdev, 0);
4319 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320 ret = rdev->desc->fixed_uV;
4321 } else if (rdev->supply) {
4322 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323 } else if (rdev->supply_name) {
4324 return -EPROBE_DEFER;
4325 } else {
4326 return -EINVAL;
4327 }
4328
4329 if (ret < 0)
4330 return ret;
4331 return ret - rdev->constraints->uV_offset;
4332}
4333EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334
4335/**
4336 * regulator_get_voltage - get regulator output voltage
4337 * @regulator: regulator source
4338 *
4339 * This returns the current regulator voltage in uV.
4340 *
4341 * NOTE: If the regulator is disabled it will return the voltage value. This
4342 * function should not be used to determine regulator state.
4343 */
4344int regulator_get_voltage(struct regulator *regulator)
4345{
4346 struct ww_acquire_ctx ww_ctx;
4347 int ret;
4348
4349 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350 ret = regulator_get_voltage_rdev(regulator->rdev);
4351 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352
4353 return ret;
4354}
4355EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356
4357/**
4358 * regulator_set_current_limit - set regulator output current limit
4359 * @regulator: regulator source
4360 * @min_uA: Minimum supported current in uA
4361 * @max_uA: Maximum supported current in uA
4362 *
4363 * Sets current sink to the desired output current. This can be set during
4364 * any regulator state. IOW, regulator can be disabled or enabled.
4365 *
4366 * If the regulator is enabled then the current will change to the new value
4367 * immediately otherwise if the regulator is disabled the regulator will
4368 * output at the new current when enabled.
4369 *
4370 * NOTE: Regulator system constraints must be set for this regulator before
4371 * calling this function otherwise this call will fail.
4372 */
4373int regulator_set_current_limit(struct regulator *regulator,
4374 int min_uA, int max_uA)
4375{
4376 struct regulator_dev *rdev = regulator->rdev;
4377 int ret;
4378
4379 regulator_lock(rdev);
4380
4381 /* sanity check */
4382 if (!rdev->desc->ops->set_current_limit) {
4383 ret = -EINVAL;
4384 goto out;
4385 }
4386
4387 /* constraints check */
4388 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389 if (ret < 0)
4390 goto out;
4391
4392 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393out:
4394 regulator_unlock(rdev);
4395 return ret;
4396}
4397EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398
4399static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400{
4401 /* sanity check */
4402 if (!rdev->desc->ops->get_current_limit)
4403 return -EINVAL;
4404
4405 return rdev->desc->ops->get_current_limit(rdev);
4406}
4407
4408static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409{
4410 int ret;
4411
4412 regulator_lock(rdev);
4413 ret = _regulator_get_current_limit_unlocked(rdev);
4414 regulator_unlock(rdev);
4415
4416 return ret;
4417}
4418
4419/**
4420 * regulator_get_current_limit - get regulator output current
4421 * @regulator: regulator source
4422 *
4423 * This returns the current supplied by the specified current sink in uA.
4424 *
4425 * NOTE: If the regulator is disabled it will return the current value. This
4426 * function should not be used to determine regulator state.
4427 */
4428int regulator_get_current_limit(struct regulator *regulator)
4429{
4430 return _regulator_get_current_limit(regulator->rdev);
4431}
4432EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433
4434/**
4435 * regulator_set_mode - set regulator operating mode
4436 * @regulator: regulator source
4437 * @mode: operating mode - one of the REGULATOR_MODE constants
4438 *
4439 * Set regulator operating mode to increase regulator efficiency or improve
4440 * regulation performance.
4441 *
4442 * NOTE: Regulator system constraints must be set for this regulator before
4443 * calling this function otherwise this call will fail.
4444 */
4445int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446{
4447 struct regulator_dev *rdev = regulator->rdev;
4448 int ret;
4449 int regulator_curr_mode;
4450
4451 regulator_lock(rdev);
4452
4453 /* sanity check */
4454 if (!rdev->desc->ops->set_mode) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 /* return if the same mode is requested */
4460 if (rdev->desc->ops->get_mode) {
4461 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462 if (regulator_curr_mode == mode) {
4463 ret = 0;
4464 goto out;
4465 }
4466 }
4467
4468 /* constraints check */
4469 ret = regulator_mode_constrain(rdev, &mode);
4470 if (ret < 0)
4471 goto out;
4472
4473 ret = rdev->desc->ops->set_mode(rdev, mode);
4474out:
4475 regulator_unlock(rdev);
4476 return ret;
4477}
4478EXPORT_SYMBOL_GPL(regulator_set_mode);
4479
4480static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481{
4482 /* sanity check */
4483 if (!rdev->desc->ops->get_mode)
4484 return -EINVAL;
4485
4486 return rdev->desc->ops->get_mode(rdev);
4487}
4488
4489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490{
4491 int ret;
4492
4493 regulator_lock(rdev);
4494 ret = _regulator_get_mode_unlocked(rdev);
4495 regulator_unlock(rdev);
4496
4497 return ret;
4498}
4499
4500/**
4501 * regulator_get_mode - get regulator operating mode
4502 * @regulator: regulator source
4503 *
4504 * Get the current regulator operating mode.
4505 */
4506unsigned int regulator_get_mode(struct regulator *regulator)
4507{
4508 return _regulator_get_mode(regulator->rdev);
4509}
4510EXPORT_SYMBOL_GPL(regulator_get_mode);
4511
4512static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513{
4514 int ret = 0;
4515
4516 if (rdev->use_cached_err) {
4517 spin_lock(&rdev->err_lock);
4518 ret = rdev->cached_err;
4519 spin_unlock(&rdev->err_lock);
4520 }
4521 return ret;
4522}
4523
4524static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525 unsigned int *flags)
4526{
4527 int cached_flags, ret = 0;
4528
4529 regulator_lock(rdev);
4530
4531 cached_flags = rdev_get_cached_err_flags(rdev);
4532
4533 if (rdev->desc->ops->get_error_flags)
4534 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535 else if (!rdev->use_cached_err)
4536 ret = -EINVAL;
4537
4538 *flags |= cached_flags;
4539
4540 regulator_unlock(rdev);
4541
4542 return ret;
4543}
4544
4545/**
4546 * regulator_get_error_flags - get regulator error information
4547 * @regulator: regulator source
4548 * @flags: pointer to store error flags
4549 *
4550 * Get the current regulator error information.
4551 */
4552int regulator_get_error_flags(struct regulator *regulator,
4553 unsigned int *flags)
4554{
4555 return _regulator_get_error_flags(regulator->rdev, flags);
4556}
4557EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558
4559/**
4560 * regulator_set_load - set regulator load
4561 * @regulator: regulator source
4562 * @uA_load: load current
4563 *
4564 * Notifies the regulator core of a new device load. This is then used by
4565 * DRMS (if enabled by constraints) to set the most efficient regulator
4566 * operating mode for the new regulator loading.
4567 *
4568 * Consumer devices notify their supply regulator of the maximum power
4569 * they will require (can be taken from device datasheet in the power
4570 * consumption tables) when they change operational status and hence power
4571 * state. Examples of operational state changes that can affect power
4572 * consumption are :-
4573 *
4574 * o Device is opened / closed.
4575 * o Device I/O is about to begin or has just finished.
4576 * o Device is idling in between work.
4577 *
4578 * This information is also exported via sysfs to userspace.
4579 *
4580 * DRMS will sum the total requested load on the regulator and change
4581 * to the most efficient operating mode if platform constraints allow.
4582 *
4583 * NOTE: when a regulator consumer requests to have a regulator
4584 * disabled then any load that consumer requested no longer counts
4585 * toward the total requested load. If the regulator is re-enabled
4586 * then the previously requested load will start counting again.
4587 *
4588 * If a regulator is an always-on regulator then an individual consumer's
4589 * load will still be removed if that consumer is fully disabled.
4590 *
4591 * On error a negative errno is returned.
4592 */
4593int regulator_set_load(struct regulator *regulator, int uA_load)
4594{
4595 struct regulator_dev *rdev = regulator->rdev;
4596 int old_uA_load;
4597 int ret = 0;
4598
4599 regulator_lock(rdev);
4600 old_uA_load = regulator->uA_load;
4601 regulator->uA_load = uA_load;
4602 if (regulator->enable_count && old_uA_load != uA_load) {
4603 ret = drms_uA_update(rdev);
4604 if (ret < 0)
4605 regulator->uA_load = old_uA_load;
4606 }
4607 regulator_unlock(rdev);
4608
4609 return ret;
4610}
4611EXPORT_SYMBOL_GPL(regulator_set_load);
4612
4613/**
4614 * regulator_allow_bypass - allow the regulator to go into bypass mode
4615 *
4616 * @regulator: Regulator to configure
4617 * @enable: enable or disable bypass mode
4618 *
4619 * Allow the regulator to go into bypass mode if all other consumers
4620 * for the regulator also enable bypass mode and the machine
4621 * constraints allow this. Bypass mode means that the regulator is
4622 * simply passing the input directly to the output with no regulation.
4623 */
4624int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625{
4626 struct regulator_dev *rdev = regulator->rdev;
4627 const char *name = rdev_get_name(rdev);
4628 int ret = 0;
4629
4630 if (!rdev->desc->ops->set_bypass)
4631 return 0;
4632
4633 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634 return 0;
4635
4636 regulator_lock(rdev);
4637
4638 if (enable && !regulator->bypass) {
4639 rdev->bypass_count++;
4640
4641 if (rdev->bypass_count == rdev->open_count) {
4642 trace_regulator_bypass_enable(name);
4643
4644 ret = rdev->desc->ops->set_bypass(rdev, enable);
4645 if (ret != 0)
4646 rdev->bypass_count--;
4647 else
4648 trace_regulator_bypass_enable_complete(name);
4649 }
4650
4651 } else if (!enable && regulator->bypass) {
4652 rdev->bypass_count--;
4653
4654 if (rdev->bypass_count != rdev->open_count) {
4655 trace_regulator_bypass_disable(name);
4656
4657 ret = rdev->desc->ops->set_bypass(rdev, enable);
4658 if (ret != 0)
4659 rdev->bypass_count++;
4660 else
4661 trace_regulator_bypass_disable_complete(name);
4662 }
4663 }
4664
4665 if (ret == 0)
4666 regulator->bypass = enable;
4667
4668 regulator_unlock(rdev);
4669
4670 return ret;
4671}
4672EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673
4674/**
4675 * regulator_register_notifier - register regulator event notifier
4676 * @regulator: regulator source
4677 * @nb: notifier block
4678 *
4679 * Register notifier block to receive regulator events.
4680 */
4681int regulator_register_notifier(struct regulator *regulator,
4682 struct notifier_block *nb)
4683{
4684 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4685 nb);
4686}
4687EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688
4689/**
4690 * regulator_unregister_notifier - unregister regulator event notifier
4691 * @regulator: regulator source
4692 * @nb: notifier block
4693 *
4694 * Unregister regulator event notifier block.
4695 */
4696int regulator_unregister_notifier(struct regulator *regulator,
4697 struct notifier_block *nb)
4698{
4699 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4700 nb);
4701}
4702EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703
4704/* notify regulator consumers and downstream regulator consumers.
4705 * Note mutex must be held by caller.
4706 */
4707static int _notifier_call_chain(struct regulator_dev *rdev,
4708 unsigned long event, void *data)
4709{
4710 /* call rdev chain first */
4711 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712}
4713
4714/**
4715 * regulator_bulk_get - get multiple regulator consumers
4716 *
4717 * @dev: Device to supply
4718 * @num_consumers: Number of consumers to register
4719 * @consumers: Configuration of consumers; clients are stored here.
4720 *
4721 * @return 0 on success, an errno on failure.
4722 *
4723 * This helper function allows drivers to get several regulator
4724 * consumers in one operation. If any of the regulators cannot be
4725 * acquired then any regulators that were allocated will be freed
4726 * before returning to the caller.
4727 */
4728int regulator_bulk_get(struct device *dev, int num_consumers,
4729 struct regulator_bulk_data *consumers)
4730{
4731 int i;
4732 int ret;
4733
4734 for (i = 0; i < num_consumers; i++)
4735 consumers[i].consumer = NULL;
4736
4737 for (i = 0; i < num_consumers; i++) {
4738 consumers[i].consumer = regulator_get(dev,
4739 consumers[i].supply);
4740 if (IS_ERR(consumers[i].consumer)) {
4741 ret = PTR_ERR(consumers[i].consumer);
4742 consumers[i].consumer = NULL;
4743 goto err;
4744 }
4745 }
4746
4747 return 0;
4748
4749err:
4750 if (ret != -EPROBE_DEFER)
4751 dev_err(dev, "Failed to get supply '%s': %pe\n",
4752 consumers[i].supply, ERR_PTR(ret));
4753 else
4754 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755 consumers[i].supply);
4756
4757 while (--i >= 0)
4758 regulator_put(consumers[i].consumer);
4759
4760 return ret;
4761}
4762EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763
4764static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765{
4766 struct regulator_bulk_data *bulk = data;
4767
4768 bulk->ret = regulator_enable(bulk->consumer);
4769}
4770
4771/**
4772 * regulator_bulk_enable - enable multiple regulator consumers
4773 *
4774 * @num_consumers: Number of consumers
4775 * @consumers: Consumer data; clients are stored here.
4776 * @return 0 on success, an errno on failure
4777 *
4778 * This convenience API allows consumers to enable multiple regulator
4779 * clients in a single API call. If any consumers cannot be enabled
4780 * then any others that were enabled will be disabled again prior to
4781 * return.
4782 */
4783int regulator_bulk_enable(int num_consumers,
4784 struct regulator_bulk_data *consumers)
4785{
4786 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787 int i;
4788 int ret = 0;
4789
4790 for (i = 0; i < num_consumers; i++) {
4791 async_schedule_domain(regulator_bulk_enable_async,
4792 &consumers[i], &async_domain);
4793 }
4794
4795 async_synchronize_full_domain(&async_domain);
4796
4797 /* If any consumer failed we need to unwind any that succeeded */
4798 for (i = 0; i < num_consumers; i++) {
4799 if (consumers[i].ret != 0) {
4800 ret = consumers[i].ret;
4801 goto err;
4802 }
4803 }
4804
4805 return 0;
4806
4807err:
4808 for (i = 0; i < num_consumers; i++) {
4809 if (consumers[i].ret < 0)
4810 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811 ERR_PTR(consumers[i].ret));
4812 else
4813 regulator_disable(consumers[i].consumer);
4814 }
4815
4816 return ret;
4817}
4818EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819
4820/**
4821 * regulator_bulk_disable - disable multiple regulator consumers
4822 *
4823 * @num_consumers: Number of consumers
4824 * @consumers: Consumer data; clients are stored here.
4825 * @return 0 on success, an errno on failure
4826 *
4827 * This convenience API allows consumers to disable multiple regulator
4828 * clients in a single API call. If any consumers cannot be disabled
4829 * then any others that were disabled will be enabled again prior to
4830 * return.
4831 */
4832int regulator_bulk_disable(int num_consumers,
4833 struct regulator_bulk_data *consumers)
4834{
4835 int i;
4836 int ret, r;
4837
4838 for (i = num_consumers - 1; i >= 0; --i) {
4839 ret = regulator_disable(consumers[i].consumer);
4840 if (ret != 0)
4841 goto err;
4842 }
4843
4844 return 0;
4845
4846err:
4847 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848 for (++i; i < num_consumers; ++i) {
4849 r = regulator_enable(consumers[i].consumer);
4850 if (r != 0)
4851 pr_err("Failed to re-enable %s: %pe\n",
4852 consumers[i].supply, ERR_PTR(r));
4853 }
4854
4855 return ret;
4856}
4857EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858
4859/**
4860 * regulator_bulk_force_disable - force disable multiple regulator consumers
4861 *
4862 * @num_consumers: Number of consumers
4863 * @consumers: Consumer data; clients are stored here.
4864 * @return 0 on success, an errno on failure
4865 *
4866 * This convenience API allows consumers to forcibly disable multiple regulator
4867 * clients in a single API call.
4868 * NOTE: This should be used for situations when device damage will
4869 * likely occur if the regulators are not disabled (e.g. over temp).
4870 * Although regulator_force_disable function call for some consumers can
4871 * return error numbers, the function is called for all consumers.
4872 */
4873int regulator_bulk_force_disable(int num_consumers,
4874 struct regulator_bulk_data *consumers)
4875{
4876 int i;
4877 int ret = 0;
4878
4879 for (i = 0; i < num_consumers; i++) {
4880 consumers[i].ret =
4881 regulator_force_disable(consumers[i].consumer);
4882
4883 /* Store first error for reporting */
4884 if (consumers[i].ret && !ret)
4885 ret = consumers[i].ret;
4886 }
4887
4888 return ret;
4889}
4890EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891
4892/**
4893 * regulator_bulk_free - free multiple regulator consumers
4894 *
4895 * @num_consumers: Number of consumers
4896 * @consumers: Consumer data; clients are stored here.
4897 *
4898 * This convenience API allows consumers to free multiple regulator
4899 * clients in a single API call.
4900 */
4901void regulator_bulk_free(int num_consumers,
4902 struct regulator_bulk_data *consumers)
4903{
4904 int i;
4905
4906 for (i = 0; i < num_consumers; i++) {
4907 regulator_put(consumers[i].consumer);
4908 consumers[i].consumer = NULL;
4909 }
4910}
4911EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912
4913/**
4914 * regulator_notifier_call_chain - call regulator event notifier
4915 * @rdev: regulator source
4916 * @event: notifier block
4917 * @data: callback-specific data.
4918 *
4919 * Called by regulator drivers to notify clients a regulator event has
4920 * occurred.
4921 */
4922int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923 unsigned long event, void *data)
4924{
4925 _notifier_call_chain(rdev, event, data);
4926 return NOTIFY_DONE;
4927
4928}
4929EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930
4931/**
4932 * regulator_mode_to_status - convert a regulator mode into a status
4933 *
4934 * @mode: Mode to convert
4935 *
4936 * Convert a regulator mode into a status.
4937 */
4938int regulator_mode_to_status(unsigned int mode)
4939{
4940 switch (mode) {
4941 case REGULATOR_MODE_FAST:
4942 return REGULATOR_STATUS_FAST;
4943 case REGULATOR_MODE_NORMAL:
4944 return REGULATOR_STATUS_NORMAL;
4945 case REGULATOR_MODE_IDLE:
4946 return REGULATOR_STATUS_IDLE;
4947 case REGULATOR_MODE_STANDBY:
4948 return REGULATOR_STATUS_STANDBY;
4949 default:
4950 return REGULATOR_STATUS_UNDEFINED;
4951 }
4952}
4953EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954
4955static struct attribute *regulator_dev_attrs[] = {
4956 &dev_attr_name.attr,
4957 &dev_attr_num_users.attr,
4958 &dev_attr_type.attr,
4959 &dev_attr_microvolts.attr,
4960 &dev_attr_microamps.attr,
4961 &dev_attr_opmode.attr,
4962 &dev_attr_state.attr,
4963 &dev_attr_status.attr,
4964 &dev_attr_bypass.attr,
4965 &dev_attr_requested_microamps.attr,
4966 &dev_attr_min_microvolts.attr,
4967 &dev_attr_max_microvolts.attr,
4968 &dev_attr_min_microamps.attr,
4969 &dev_attr_max_microamps.attr,
4970 &dev_attr_suspend_standby_state.attr,
4971 &dev_attr_suspend_mem_state.attr,
4972 &dev_attr_suspend_disk_state.attr,
4973 &dev_attr_suspend_standby_microvolts.attr,
4974 &dev_attr_suspend_mem_microvolts.attr,
4975 &dev_attr_suspend_disk_microvolts.attr,
4976 &dev_attr_suspend_standby_mode.attr,
4977 &dev_attr_suspend_mem_mode.attr,
4978 &dev_attr_suspend_disk_mode.attr,
4979 NULL
4980};
4981
4982/*
4983 * To avoid cluttering sysfs (and memory) with useless state, only
4984 * create attributes that can be meaningfully displayed.
4985 */
4986static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987 struct attribute *attr, int idx)
4988{
4989 struct device *dev = kobj_to_dev(kobj);
4990 struct regulator_dev *rdev = dev_to_rdev(dev);
4991 const struct regulator_ops *ops = rdev->desc->ops;
4992 umode_t mode = attr->mode;
4993
4994 /* these three are always present */
4995 if (attr == &dev_attr_name.attr ||
4996 attr == &dev_attr_num_users.attr ||
4997 attr == &dev_attr_type.attr)
4998 return mode;
4999
5000 /* some attributes need specific methods to be displayed */
5001 if (attr == &dev_attr_microvolts.attr) {
5002 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006 return mode;
5007 return 0;
5008 }
5009
5010 if (attr == &dev_attr_microamps.attr)
5011 return ops->get_current_limit ? mode : 0;
5012
5013 if (attr == &dev_attr_opmode.attr)
5014 return ops->get_mode ? mode : 0;
5015
5016 if (attr == &dev_attr_state.attr)
5017 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018
5019 if (attr == &dev_attr_status.attr)
5020 return ops->get_status ? mode : 0;
5021
5022 if (attr == &dev_attr_bypass.attr)
5023 return ops->get_bypass ? mode : 0;
5024
5025 /* constraints need specific supporting methods */
5026 if (attr == &dev_attr_min_microvolts.attr ||
5027 attr == &dev_attr_max_microvolts.attr)
5028 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029
5030 if (attr == &dev_attr_min_microamps.attr ||
5031 attr == &dev_attr_max_microamps.attr)
5032 return ops->set_current_limit ? mode : 0;
5033
5034 if (attr == &dev_attr_suspend_standby_state.attr ||
5035 attr == &dev_attr_suspend_mem_state.attr ||
5036 attr == &dev_attr_suspend_disk_state.attr)
5037 return mode;
5038
5039 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040 attr == &dev_attr_suspend_mem_microvolts.attr ||
5041 attr == &dev_attr_suspend_disk_microvolts.attr)
5042 return ops->set_suspend_voltage ? mode : 0;
5043
5044 if (attr == &dev_attr_suspend_standby_mode.attr ||
5045 attr == &dev_attr_suspend_mem_mode.attr ||
5046 attr == &dev_attr_suspend_disk_mode.attr)
5047 return ops->set_suspend_mode ? mode : 0;
5048
5049 return mode;
5050}
5051
5052static const struct attribute_group regulator_dev_group = {
5053 .attrs = regulator_dev_attrs,
5054 .is_visible = regulator_attr_is_visible,
5055};
5056
5057static const struct attribute_group *regulator_dev_groups[] = {
5058 ®ulator_dev_group,
5059 NULL
5060};
5061
5062static void regulator_dev_release(struct device *dev)
5063{
5064 struct regulator_dev *rdev = dev_get_drvdata(dev);
5065
5066 kfree(rdev->constraints);
5067 of_node_put(rdev->dev.of_node);
5068 kfree(rdev);
5069}
5070
5071static void rdev_init_debugfs(struct regulator_dev *rdev)
5072{
5073 struct device *parent = rdev->dev.parent;
5074 const char *rname = rdev_get_name(rdev);
5075 char name[NAME_MAX];
5076
5077 /* Avoid duplicate debugfs directory names */
5078 if (parent && rname == rdev->desc->name) {
5079 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080 rname);
5081 rname = name;
5082 }
5083
5084 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085 if (!rdev->debugfs) {
5086 rdev_warn(rdev, "Failed to create debugfs directory\n");
5087 return;
5088 }
5089
5090 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091 &rdev->use_count);
5092 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093 &rdev->open_count);
5094 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095 &rdev->bypass_count);
5096}
5097
5098static int regulator_register_resolve_supply(struct device *dev, void *data)
5099{
5100 struct regulator_dev *rdev = dev_to_rdev(dev);
5101
5102 if (regulator_resolve_supply(rdev))
5103 rdev_dbg(rdev, "unable to resolve supply\n");
5104
5105 return 0;
5106}
5107
5108int regulator_coupler_register(struct regulator_coupler *coupler)
5109{
5110 mutex_lock(®ulator_list_mutex);
5111 list_add_tail(&coupler->list, ®ulator_coupler_list);
5112 mutex_unlock(®ulator_list_mutex);
5113
5114 return 0;
5115}
5116
5117static struct regulator_coupler *
5118regulator_find_coupler(struct regulator_dev *rdev)
5119{
5120 struct regulator_coupler *coupler;
5121 int err;
5122
5123 /*
5124 * Note that regulators are appended to the list and the generic
5125 * coupler is registered first, hence it will be attached at last
5126 * if nobody cared.
5127 */
5128 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5129 err = coupler->attach_regulator(coupler, rdev);
5130 if (!err) {
5131 if (!coupler->balance_voltage &&
5132 rdev->coupling_desc.n_coupled > 2)
5133 goto err_unsupported;
5134
5135 return coupler;
5136 }
5137
5138 if (err < 0)
5139 return ERR_PTR(err);
5140
5141 if (err == 1)
5142 continue;
5143
5144 break;
5145 }
5146
5147 return ERR_PTR(-EINVAL);
5148
5149err_unsupported:
5150 if (coupler->detach_regulator)
5151 coupler->detach_regulator(coupler, rdev);
5152
5153 rdev_err(rdev,
5154 "Voltage balancing for multiple regulator couples is unimplemented\n");
5155
5156 return ERR_PTR(-EPERM);
5157}
5158
5159static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160{
5161 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162 struct coupling_desc *c_desc = &rdev->coupling_desc;
5163 int n_coupled = c_desc->n_coupled;
5164 struct regulator_dev *c_rdev;
5165 int i;
5166
5167 for (i = 1; i < n_coupled; i++) {
5168 /* already resolved */
5169 if (c_desc->coupled_rdevs[i])
5170 continue;
5171
5172 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173
5174 if (!c_rdev)
5175 continue;
5176
5177 if (c_rdev->coupling_desc.coupler != coupler) {
5178 rdev_err(rdev, "coupler mismatch with %s\n",
5179 rdev_get_name(c_rdev));
5180 return;
5181 }
5182
5183 c_desc->coupled_rdevs[i] = c_rdev;
5184 c_desc->n_resolved++;
5185
5186 regulator_resolve_coupling(c_rdev);
5187 }
5188}
5189
5190static void regulator_remove_coupling(struct regulator_dev *rdev)
5191{
5192 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194 struct regulator_dev *__c_rdev, *c_rdev;
5195 unsigned int __n_coupled, n_coupled;
5196 int i, k;
5197 int err;
5198
5199 n_coupled = c_desc->n_coupled;
5200
5201 for (i = 1; i < n_coupled; i++) {
5202 c_rdev = c_desc->coupled_rdevs[i];
5203
5204 if (!c_rdev)
5205 continue;
5206
5207 regulator_lock(c_rdev);
5208
5209 __c_desc = &c_rdev->coupling_desc;
5210 __n_coupled = __c_desc->n_coupled;
5211
5212 for (k = 1; k < __n_coupled; k++) {
5213 __c_rdev = __c_desc->coupled_rdevs[k];
5214
5215 if (__c_rdev == rdev) {
5216 __c_desc->coupled_rdevs[k] = NULL;
5217 __c_desc->n_resolved--;
5218 break;
5219 }
5220 }
5221
5222 regulator_unlock(c_rdev);
5223
5224 c_desc->coupled_rdevs[i] = NULL;
5225 c_desc->n_resolved--;
5226 }
5227
5228 if (coupler && coupler->detach_regulator) {
5229 err = coupler->detach_regulator(coupler, rdev);
5230 if (err)
5231 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232 ERR_PTR(err));
5233 }
5234
5235 kfree(rdev->coupling_desc.coupled_rdevs);
5236 rdev->coupling_desc.coupled_rdevs = NULL;
5237}
5238
5239static int regulator_init_coupling(struct regulator_dev *rdev)
5240{
5241 struct regulator_dev **coupled;
5242 int err, n_phandles;
5243
5244 if (!IS_ENABLED(CONFIG_OF))
5245 n_phandles = 0;
5246 else
5247 n_phandles = of_get_n_coupled(rdev);
5248
5249 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250 if (!coupled)
5251 return -ENOMEM;
5252
5253 rdev->coupling_desc.coupled_rdevs = coupled;
5254
5255 /*
5256 * Every regulator should always have coupling descriptor filled with
5257 * at least pointer to itself.
5258 */
5259 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260 rdev->coupling_desc.n_coupled = n_phandles + 1;
5261 rdev->coupling_desc.n_resolved++;
5262
5263 /* regulator isn't coupled */
5264 if (n_phandles == 0)
5265 return 0;
5266
5267 if (!of_check_coupling_data(rdev))
5268 return -EPERM;
5269
5270 mutex_lock(®ulator_list_mutex);
5271 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272 mutex_unlock(®ulator_list_mutex);
5273
5274 if (IS_ERR(rdev->coupling_desc.coupler)) {
5275 err = PTR_ERR(rdev->coupling_desc.coupler);
5276 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277 return err;
5278 }
5279
5280 return 0;
5281}
5282
5283static int generic_coupler_attach(struct regulator_coupler *coupler,
5284 struct regulator_dev *rdev)
5285{
5286 if (rdev->coupling_desc.n_coupled > 2) {
5287 rdev_err(rdev,
5288 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289 return -EPERM;
5290 }
5291
5292 if (!rdev->constraints->always_on) {
5293 rdev_err(rdev,
5294 "Coupling of a non always-on regulator is unimplemented\n");
5295 return -ENOTSUPP;
5296 }
5297
5298 return 0;
5299}
5300
5301static struct regulator_coupler generic_regulator_coupler = {
5302 .attach_regulator = generic_coupler_attach,
5303};
5304
5305/**
5306 * regulator_register - register regulator
5307 * @regulator_desc: regulator to register
5308 * @cfg: runtime configuration for regulator
5309 *
5310 * Called by regulator drivers to register a regulator.
5311 * Returns a valid pointer to struct regulator_dev on success
5312 * or an ERR_PTR() on error.
5313 */
5314struct regulator_dev *
5315regulator_register(const struct regulator_desc *regulator_desc,
5316 const struct regulator_config *cfg)
5317{
5318 const struct regulator_init_data *init_data;
5319 struct regulator_config *config = NULL;
5320 static atomic_t regulator_no = ATOMIC_INIT(-1);
5321 struct regulator_dev *rdev;
5322 bool dangling_cfg_gpiod = false;
5323 bool dangling_of_gpiod = false;
5324 struct device *dev;
5325 int ret, i;
5326
5327 if (cfg == NULL)
5328 return ERR_PTR(-EINVAL);
5329 if (cfg->ena_gpiod)
5330 dangling_cfg_gpiod = true;
5331 if (regulator_desc == NULL) {
5332 ret = -EINVAL;
5333 goto rinse;
5334 }
5335
5336 dev = cfg->dev;
5337 WARN_ON(!dev);
5338
5339 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340 ret = -EINVAL;
5341 goto rinse;
5342 }
5343
5344 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345 regulator_desc->type != REGULATOR_CURRENT) {
5346 ret = -EINVAL;
5347 goto rinse;
5348 }
5349
5350 /* Only one of each should be implemented */
5351 WARN_ON(regulator_desc->ops->get_voltage &&
5352 regulator_desc->ops->get_voltage_sel);
5353 WARN_ON(regulator_desc->ops->set_voltage &&
5354 regulator_desc->ops->set_voltage_sel);
5355
5356 /* If we're using selectors we must implement list_voltage. */
5357 if (regulator_desc->ops->get_voltage_sel &&
5358 !regulator_desc->ops->list_voltage) {
5359 ret = -EINVAL;
5360 goto rinse;
5361 }
5362 if (regulator_desc->ops->set_voltage_sel &&
5363 !regulator_desc->ops->list_voltage) {
5364 ret = -EINVAL;
5365 goto rinse;
5366 }
5367
5368 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369 if (rdev == NULL) {
5370 ret = -ENOMEM;
5371 goto rinse;
5372 }
5373 device_initialize(&rdev->dev);
5374 spin_lock_init(&rdev->err_lock);
5375
5376 /*
5377 * Duplicate the config so the driver could override it after
5378 * parsing init data.
5379 */
5380 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381 if (config == NULL) {
5382 ret = -ENOMEM;
5383 goto clean;
5384 }
5385
5386 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387 &rdev->dev.of_node);
5388
5389 /*
5390 * Sometimes not all resources are probed already so we need to take
5391 * that into account. This happens most the time if the ena_gpiod comes
5392 * from a gpio extender or something else.
5393 */
5394 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395 ret = -EPROBE_DEFER;
5396 goto clean;
5397 }
5398
5399 /*
5400 * We need to keep track of any GPIO descriptor coming from the
5401 * device tree until we have handled it over to the core. If the
5402 * config that was passed in to this function DOES NOT contain
5403 * a descriptor, and the config after this call DOES contain
5404 * a descriptor, we definitely got one from parsing the device
5405 * tree.
5406 */
5407 if (!cfg->ena_gpiod && config->ena_gpiod)
5408 dangling_of_gpiod = true;
5409 if (!init_data) {
5410 init_data = config->init_data;
5411 rdev->dev.of_node = of_node_get(config->of_node);
5412 }
5413
5414 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5415 rdev->reg_data = config->driver_data;
5416 rdev->owner = regulator_desc->owner;
5417 rdev->desc = regulator_desc;
5418 if (config->regmap)
5419 rdev->regmap = config->regmap;
5420 else if (dev_get_regmap(dev, NULL))
5421 rdev->regmap = dev_get_regmap(dev, NULL);
5422 else if (dev->parent)
5423 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424 INIT_LIST_HEAD(&rdev->consumer_list);
5425 INIT_LIST_HEAD(&rdev->list);
5426 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428
5429 /* preform any regulator specific init */
5430 if (init_data && init_data->regulator_init) {
5431 ret = init_data->regulator_init(rdev->reg_data);
5432 if (ret < 0)
5433 goto clean;
5434 }
5435
5436 if (config->ena_gpiod) {
5437 ret = regulator_ena_gpio_request(rdev, config);
5438 if (ret != 0) {
5439 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440 ERR_PTR(ret));
5441 goto clean;
5442 }
5443 /* The regulator core took over the GPIO descriptor */
5444 dangling_cfg_gpiod = false;
5445 dangling_of_gpiod = false;
5446 }
5447
5448 /* register with sysfs */
5449 rdev->dev.class = ®ulator_class;
5450 rdev->dev.parent = dev;
5451 dev_set_name(&rdev->dev, "regulator.%lu",
5452 (unsigned long) atomic_inc_return(®ulator_no));
5453 dev_set_drvdata(&rdev->dev, rdev);
5454
5455 /* set regulator constraints */
5456 if (init_data)
5457 rdev->constraints = kmemdup(&init_data->constraints,
5458 sizeof(*rdev->constraints),
5459 GFP_KERNEL);
5460 else
5461 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462 GFP_KERNEL);
5463 if (!rdev->constraints) {
5464 ret = -ENOMEM;
5465 goto wash;
5466 }
5467
5468 if (init_data && init_data->supply_regulator)
5469 rdev->supply_name = init_data->supply_regulator;
5470 else if (regulator_desc->supply_name)
5471 rdev->supply_name = regulator_desc->supply_name;
5472
5473 ret = set_machine_constraints(rdev);
5474 if (ret == -EPROBE_DEFER) {
5475 /* Regulator might be in bypass mode and so needs its supply
5476 * to set the constraints
5477 */
5478 /* FIXME: this currently triggers a chicken-and-egg problem
5479 * when creating -SUPPLY symlink in sysfs to a regulator
5480 * that is just being created
5481 */
5482 rdev_dbg(rdev, "will resolve supply early: %s\n",
5483 rdev->supply_name);
5484 ret = regulator_resolve_supply(rdev);
5485 if (!ret)
5486 ret = set_machine_constraints(rdev);
5487 else
5488 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489 ERR_PTR(ret));
5490 }
5491 if (ret < 0)
5492 goto wash;
5493
5494 ret = regulator_init_coupling(rdev);
5495 if (ret < 0)
5496 goto wash;
5497
5498 /* add consumers devices */
5499 if (init_data) {
5500 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501 ret = set_consumer_device_supply(rdev,
5502 init_data->consumer_supplies[i].dev_name,
5503 init_data->consumer_supplies[i].supply);
5504 if (ret < 0) {
5505 dev_err(dev, "Failed to set supply %s\n",
5506 init_data->consumer_supplies[i].supply);
5507 goto unset_supplies;
5508 }
5509 }
5510 }
5511
5512 if (!rdev->desc->ops->get_voltage &&
5513 !rdev->desc->ops->list_voltage &&
5514 !rdev->desc->fixed_uV)
5515 rdev->is_switch = true;
5516
5517 ret = device_add(&rdev->dev);
5518 if (ret != 0)
5519 goto unset_supplies;
5520
5521 rdev_init_debugfs(rdev);
5522
5523 /* try to resolve regulators coupling since a new one was registered */
5524 mutex_lock(®ulator_list_mutex);
5525 regulator_resolve_coupling(rdev);
5526 mutex_unlock(®ulator_list_mutex);
5527
5528 /* try to resolve regulators supply since a new one was registered */
5529 class_for_each_device(®ulator_class, NULL, NULL,
5530 regulator_register_resolve_supply);
5531 kfree(config);
5532 return rdev;
5533
5534unset_supplies:
5535 mutex_lock(®ulator_list_mutex);
5536 unset_regulator_supplies(rdev);
5537 regulator_remove_coupling(rdev);
5538 mutex_unlock(®ulator_list_mutex);
5539wash:
5540 kfree(rdev->coupling_desc.coupled_rdevs);
5541 mutex_lock(®ulator_list_mutex);
5542 regulator_ena_gpio_free(rdev);
5543 mutex_unlock(®ulator_list_mutex);
5544clean:
5545 if (dangling_of_gpiod)
5546 gpiod_put(config->ena_gpiod);
5547 kfree(config);
5548 put_device(&rdev->dev);
5549rinse:
5550 if (dangling_cfg_gpiod)
5551 gpiod_put(cfg->ena_gpiod);
5552 return ERR_PTR(ret);
5553}
5554EXPORT_SYMBOL_GPL(regulator_register);
5555
5556/**
5557 * regulator_unregister - unregister regulator
5558 * @rdev: regulator to unregister
5559 *
5560 * Called by regulator drivers to unregister a regulator.
5561 */
5562void regulator_unregister(struct regulator_dev *rdev)
5563{
5564 if (rdev == NULL)
5565 return;
5566
5567 if (rdev->supply) {
5568 while (rdev->use_count--)
5569 regulator_disable(rdev->supply);
5570 regulator_put(rdev->supply);
5571 }
5572
5573 flush_work(&rdev->disable_work.work);
5574
5575 mutex_lock(®ulator_list_mutex);
5576
5577 debugfs_remove_recursive(rdev->debugfs);
5578 WARN_ON(rdev->open_count);
5579 regulator_remove_coupling(rdev);
5580 unset_regulator_supplies(rdev);
5581 list_del(&rdev->list);
5582 regulator_ena_gpio_free(rdev);
5583 device_unregister(&rdev->dev);
5584
5585 mutex_unlock(®ulator_list_mutex);
5586}
5587EXPORT_SYMBOL_GPL(regulator_unregister);
5588
5589#ifdef CONFIG_SUSPEND
5590/**
5591 * regulator_suspend - prepare regulators for system wide suspend
5592 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593 *
5594 * Configure each regulator with it's suspend operating parameters for state.
5595 */
5596static int regulator_suspend(struct device *dev)
5597{
5598 struct regulator_dev *rdev = dev_to_rdev(dev);
5599 suspend_state_t state = pm_suspend_target_state;
5600 int ret;
5601 const struct regulator_state *rstate;
5602
5603 rstate = regulator_get_suspend_state_check(rdev, state);
5604 if (!rstate)
5605 return 0;
5606
5607 regulator_lock(rdev);
5608 ret = __suspend_set_state(rdev, rstate);
5609 regulator_unlock(rdev);
5610
5611 return ret;
5612}
5613
5614static int regulator_resume(struct device *dev)
5615{
5616 suspend_state_t state = pm_suspend_target_state;
5617 struct regulator_dev *rdev = dev_to_rdev(dev);
5618 struct regulator_state *rstate;
5619 int ret = 0;
5620
5621 rstate = regulator_get_suspend_state(rdev, state);
5622 if (rstate == NULL)
5623 return 0;
5624
5625 /* Avoid grabbing the lock if we don't need to */
5626 if (!rdev->desc->ops->resume)
5627 return 0;
5628
5629 regulator_lock(rdev);
5630
5631 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632 rstate->enabled == DISABLE_IN_SUSPEND)
5633 ret = rdev->desc->ops->resume(rdev);
5634
5635 regulator_unlock(rdev);
5636
5637 return ret;
5638}
5639#else /* !CONFIG_SUSPEND */
5640
5641#define regulator_suspend NULL
5642#define regulator_resume NULL
5643
5644#endif /* !CONFIG_SUSPEND */
5645
5646#ifdef CONFIG_PM
5647static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648 .suspend = regulator_suspend,
5649 .resume = regulator_resume,
5650};
5651#endif
5652
5653struct class regulator_class = {
5654 .name = "regulator",
5655 .dev_release = regulator_dev_release,
5656 .dev_groups = regulator_dev_groups,
5657#ifdef CONFIG_PM
5658 .pm = ®ulator_pm_ops,
5659#endif
5660};
5661/**
5662 * regulator_has_full_constraints - the system has fully specified constraints
5663 *
5664 * Calling this function will cause the regulator API to disable all
5665 * regulators which have a zero use count and don't have an always_on
5666 * constraint in a late_initcall.
5667 *
5668 * The intention is that this will become the default behaviour in a
5669 * future kernel release so users are encouraged to use this facility
5670 * now.
5671 */
5672void regulator_has_full_constraints(void)
5673{
5674 has_full_constraints = 1;
5675}
5676EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677
5678/**
5679 * rdev_get_drvdata - get rdev regulator driver data
5680 * @rdev: regulator
5681 *
5682 * Get rdev regulator driver private data. This call can be used in the
5683 * regulator driver context.
5684 */
5685void *rdev_get_drvdata(struct regulator_dev *rdev)
5686{
5687 return rdev->reg_data;
5688}
5689EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690
5691/**
5692 * regulator_get_drvdata - get regulator driver data
5693 * @regulator: regulator
5694 *
5695 * Get regulator driver private data. This call can be used in the consumer
5696 * driver context when non API regulator specific functions need to be called.
5697 */
5698void *regulator_get_drvdata(struct regulator *regulator)
5699{
5700 return regulator->rdev->reg_data;
5701}
5702EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703
5704/**
5705 * regulator_set_drvdata - set regulator driver data
5706 * @regulator: regulator
5707 * @data: data
5708 */
5709void regulator_set_drvdata(struct regulator *regulator, void *data)
5710{
5711 regulator->rdev->reg_data = data;
5712}
5713EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714
5715/**
5716 * rdev_get_id - get regulator ID
5717 * @rdev: regulator
5718 */
5719int rdev_get_id(struct regulator_dev *rdev)
5720{
5721 return rdev->desc->id;
5722}
5723EXPORT_SYMBOL_GPL(rdev_get_id);
5724
5725struct device *rdev_get_dev(struct regulator_dev *rdev)
5726{
5727 return &rdev->dev;
5728}
5729EXPORT_SYMBOL_GPL(rdev_get_dev);
5730
5731struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732{
5733 return rdev->regmap;
5734}
5735EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736
5737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738{
5739 return reg_init_data->driver_data;
5740}
5741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742
5743#ifdef CONFIG_DEBUG_FS
5744static int supply_map_show(struct seq_file *sf, void *data)
5745{
5746 struct regulator_map *map;
5747
5748 list_for_each_entry(map, ®ulator_map_list, list) {
5749 seq_printf(sf, "%s -> %s.%s\n",
5750 rdev_get_name(map->regulator), map->dev_name,
5751 map->supply);
5752 }
5753
5754 return 0;
5755}
5756DEFINE_SHOW_ATTRIBUTE(supply_map);
5757
5758struct summary_data {
5759 struct seq_file *s;
5760 struct regulator_dev *parent;
5761 int level;
5762};
5763
5764static void regulator_summary_show_subtree(struct seq_file *s,
5765 struct regulator_dev *rdev,
5766 int level);
5767
5768static int regulator_summary_show_children(struct device *dev, void *data)
5769{
5770 struct regulator_dev *rdev = dev_to_rdev(dev);
5771 struct summary_data *summary_data = data;
5772
5773 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774 regulator_summary_show_subtree(summary_data->s, rdev,
5775 summary_data->level + 1);
5776
5777 return 0;
5778}
5779
5780static void regulator_summary_show_subtree(struct seq_file *s,
5781 struct regulator_dev *rdev,
5782 int level)
5783{
5784 struct regulation_constraints *c;
5785 struct regulator *consumer;
5786 struct summary_data summary_data;
5787 unsigned int opmode;
5788
5789 if (!rdev)
5790 return;
5791
5792 opmode = _regulator_get_mode_unlocked(rdev);
5793 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794 level * 3 + 1, "",
5795 30 - level * 3, rdev_get_name(rdev),
5796 rdev->use_count, rdev->open_count, rdev->bypass_count,
5797 regulator_opmode_to_str(opmode));
5798
5799 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800 seq_printf(s, "%5dmA ",
5801 _regulator_get_current_limit_unlocked(rdev) / 1000);
5802
5803 c = rdev->constraints;
5804 if (c) {
5805 switch (rdev->desc->type) {
5806 case REGULATOR_VOLTAGE:
5807 seq_printf(s, "%5dmV %5dmV ",
5808 c->min_uV / 1000, c->max_uV / 1000);
5809 break;
5810 case REGULATOR_CURRENT:
5811 seq_printf(s, "%5dmA %5dmA ",
5812 c->min_uA / 1000, c->max_uA / 1000);
5813 break;
5814 }
5815 }
5816
5817 seq_puts(s, "\n");
5818
5819 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820 if (consumer->dev && consumer->dev->class == ®ulator_class)
5821 continue;
5822
5823 seq_printf(s, "%*s%-*s ",
5824 (level + 1) * 3 + 1, "",
5825 30 - (level + 1) * 3,
5826 consumer->supply_name ? consumer->supply_name :
5827 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828
5829 switch (rdev->desc->type) {
5830 case REGULATOR_VOLTAGE:
5831 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832 consumer->enable_count,
5833 consumer->uA_load / 1000,
5834 consumer->uA_load && !consumer->enable_count ?
5835 '*' : ' ',
5836 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838 break;
5839 case REGULATOR_CURRENT:
5840 break;
5841 }
5842
5843 seq_puts(s, "\n");
5844 }
5845
5846 summary_data.s = s;
5847 summary_data.level = level;
5848 summary_data.parent = rdev;
5849
5850 class_for_each_device(®ulator_class, NULL, &summary_data,
5851 regulator_summary_show_children);
5852}
5853
5854struct summary_lock_data {
5855 struct ww_acquire_ctx *ww_ctx;
5856 struct regulator_dev **new_contended_rdev;
5857 struct regulator_dev **old_contended_rdev;
5858};
5859
5860static int regulator_summary_lock_one(struct device *dev, void *data)
5861{
5862 struct regulator_dev *rdev = dev_to_rdev(dev);
5863 struct summary_lock_data *lock_data = data;
5864 int ret = 0;
5865
5866 if (rdev != *lock_data->old_contended_rdev) {
5867 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868
5869 if (ret == -EDEADLK)
5870 *lock_data->new_contended_rdev = rdev;
5871 else
5872 WARN_ON_ONCE(ret);
5873 } else {
5874 *lock_data->old_contended_rdev = NULL;
5875 }
5876
5877 return ret;
5878}
5879
5880static int regulator_summary_unlock_one(struct device *dev, void *data)
5881{
5882 struct regulator_dev *rdev = dev_to_rdev(dev);
5883 struct summary_lock_data *lock_data = data;
5884
5885 if (lock_data) {
5886 if (rdev == *lock_data->new_contended_rdev)
5887 return -EDEADLK;
5888 }
5889
5890 regulator_unlock(rdev);
5891
5892 return 0;
5893}
5894
5895static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896 struct regulator_dev **new_contended_rdev,
5897 struct regulator_dev **old_contended_rdev)
5898{
5899 struct summary_lock_data lock_data;
5900 int ret;
5901
5902 lock_data.ww_ctx = ww_ctx;
5903 lock_data.new_contended_rdev = new_contended_rdev;
5904 lock_data.old_contended_rdev = old_contended_rdev;
5905
5906 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5907 regulator_summary_lock_one);
5908 if (ret)
5909 class_for_each_device(®ulator_class, NULL, &lock_data,
5910 regulator_summary_unlock_one);
5911
5912 return ret;
5913}
5914
5915static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916{
5917 struct regulator_dev *new_contended_rdev = NULL;
5918 struct regulator_dev *old_contended_rdev = NULL;
5919 int err;
5920
5921 mutex_lock(®ulator_list_mutex);
5922
5923 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5924
5925 do {
5926 if (new_contended_rdev) {
5927 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928 old_contended_rdev = new_contended_rdev;
5929 old_contended_rdev->ref_cnt++;
5930 }
5931
5932 err = regulator_summary_lock_all(ww_ctx,
5933 &new_contended_rdev,
5934 &old_contended_rdev);
5935
5936 if (old_contended_rdev)
5937 regulator_unlock(old_contended_rdev);
5938
5939 } while (err == -EDEADLK);
5940
5941 ww_acquire_done(ww_ctx);
5942}
5943
5944static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945{
5946 class_for_each_device(®ulator_class, NULL, NULL,
5947 regulator_summary_unlock_one);
5948 ww_acquire_fini(ww_ctx);
5949
5950 mutex_unlock(®ulator_list_mutex);
5951}
5952
5953static int regulator_summary_show_roots(struct device *dev, void *data)
5954{
5955 struct regulator_dev *rdev = dev_to_rdev(dev);
5956 struct seq_file *s = data;
5957
5958 if (!rdev->supply)
5959 regulator_summary_show_subtree(s, rdev, 0);
5960
5961 return 0;
5962}
5963
5964static int regulator_summary_show(struct seq_file *s, void *data)
5965{
5966 struct ww_acquire_ctx ww_ctx;
5967
5968 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5969 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970
5971 regulator_summary_lock(&ww_ctx);
5972
5973 class_for_each_device(®ulator_class, NULL, s,
5974 regulator_summary_show_roots);
5975
5976 regulator_summary_unlock(&ww_ctx);
5977
5978 return 0;
5979}
5980DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981#endif /* CONFIG_DEBUG_FS */
5982
5983static int __init regulator_init(void)
5984{
5985 int ret;
5986
5987 ret = class_register(®ulator_class);
5988
5989 debugfs_root = debugfs_create_dir("regulator", NULL);
5990 if (!debugfs_root)
5991 pr_warn("regulator: Failed to create debugfs directory\n");
5992
5993#ifdef CONFIG_DEBUG_FS
5994 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995 &supply_map_fops);
5996
5997 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998 NULL, ®ulator_summary_fops);
5999#endif
6000 regulator_dummy_init();
6001
6002 regulator_coupler_register(&generic_regulator_coupler);
6003
6004 return ret;
6005}
6006
6007/* init early to allow our consumers to complete system booting */
6008core_initcall(regulator_init);
6009
6010static int regulator_late_cleanup(struct device *dev, void *data)
6011{
6012 struct regulator_dev *rdev = dev_to_rdev(dev);
6013 const struct regulator_ops *ops = rdev->desc->ops;
6014 struct regulation_constraints *c = rdev->constraints;
6015 int enabled, ret;
6016
6017 if (c && c->always_on)
6018 return 0;
6019
6020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021 return 0;
6022
6023 regulator_lock(rdev);
6024
6025 if (rdev->use_count)
6026 goto unlock;
6027
6028 /* If we can't read the status assume it's always on. */
6029 if (ops->is_enabled)
6030 enabled = ops->is_enabled(rdev);
6031 else
6032 enabled = 1;
6033
6034 /* But if reading the status failed, assume that it's off. */
6035 if (enabled <= 0)
6036 goto unlock;
6037
6038 if (have_full_constraints()) {
6039 /* We log since this may kill the system if it goes
6040 * wrong.
6041 */
6042 rdev_info(rdev, "disabling\n");
6043 ret = _regulator_do_disable(rdev);
6044 if (ret != 0)
6045 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046 } else {
6047 /* The intention is that in future we will
6048 * assume that full constraints are provided
6049 * so warn even if we aren't going to do
6050 * anything here.
6051 */
6052 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053 }
6054
6055unlock:
6056 regulator_unlock(rdev);
6057
6058 return 0;
6059}
6060
6061static void regulator_init_complete_work_function(struct work_struct *work)
6062{
6063 /*
6064 * Regulators may had failed to resolve their input supplies
6065 * when were registered, either because the input supply was
6066 * not registered yet or because its parent device was not
6067 * bound yet. So attempt to resolve the input supplies for
6068 * pending regulators before trying to disable unused ones.
6069 */
6070 class_for_each_device(®ulator_class, NULL, NULL,
6071 regulator_register_resolve_supply);
6072
6073 /* If we have a full configuration then disable any regulators
6074 * we have permission to change the status for and which are
6075 * not in use or always_on. This is effectively the default
6076 * for DT and ACPI as they have full constraints.
6077 */
6078 class_for_each_device(®ulator_class, NULL, NULL,
6079 regulator_late_cleanup);
6080}
6081
6082static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083 regulator_init_complete_work_function);
6084
6085static int __init regulator_init_complete(void)
6086{
6087 /*
6088 * Since DT doesn't provide an idiomatic mechanism for
6089 * enabling full constraints and since it's much more natural
6090 * with DT to provide them just assume that a DT enabled
6091 * system has full constraints.
6092 */
6093 if (of_have_populated_dt())
6094 has_full_constraints = true;
6095
6096 /*
6097 * We punt completion for an arbitrary amount of time since
6098 * systems like distros will load many drivers from userspace
6099 * so consumers might not always be ready yet, this is
6100 * particularly an issue with laptops where this might bounce
6101 * the display off then on. Ideally we'd get a notification
6102 * from userspace when this happens but we don't so just wait
6103 * a bit and hope we waited long enough. It'd be better if
6104 * we'd only do this on systems that need it, and a kernel
6105 * command line option might be useful.
6106 */
6107 schedule_delayed_work(®ulator_init_complete_work,
6108 msecs_to_jiffies(30000));
6109
6110 return 0;
6111}
6112late_initcall_sync(regulator_init_complete);