Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
 
 
 
 
 
  28#include <linux/regulator/consumer.h>
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/regulator.h>
  34
  35#include "dummy.h"
 
  36
  37#define rdev_crit(rdev, fmt, ...)					\
  38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  39#define rdev_err(rdev, fmt, ...)					\
  40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_warn(rdev, fmt, ...)					\
  42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_info(rdev, fmt, ...)					\
  44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_dbg(rdev, fmt, ...)					\
  46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47
  48static DEFINE_MUTEX(regulator_list_mutex);
  49static LIST_HEAD(regulator_list);
  50static LIST_HEAD(regulator_map_list);
 
 
  51static bool has_full_constraints;
  52static bool board_wants_dummy_regulator;
  53
  54#ifdef CONFIG_DEBUG_FS
  55static struct dentry *debugfs_root;
  56#endif
 
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
  78	int uA_load;
  79	int min_uV;
  80	int max_uV;
  81	char *supply_name;
  82	struct device_attribute dev_attr;
  83	struct regulator_dev *rdev;
  84#ifdef CONFIG_DEBUG_FS
  85	struct dentry *debugfs;
  86#endif
 
 
 
 
 
 
 
 
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95				  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97				     int min_uV, int max_uV);
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99					  struct device *dev,
 100					  const char *supply_name);
 
 
 
 
 
 
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104	if (rdev->constraints && rdev->constraints->name)
 105		return rdev->constraints->name;
 106	else if (rdev->desc->name)
 107		return rdev->desc->name;
 108	else
 109		return "";
 110}
 111
 112/* gets the regulator for a given consumer device */
 113static struct regulator *get_device_regulator(struct device *dev)
 114{
 115	struct regulator *regulator = NULL;
 116	struct regulator_dev *rdev;
 117
 118	mutex_lock(&regulator_list_mutex);
 119	list_for_each_entry(rdev, &regulator_list, list) {
 120		mutex_lock(&rdev->mutex);
 121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 122			if (regulator->dev == dev) {
 123				mutex_unlock(&rdev->mutex);
 124				mutex_unlock(&regulator_list_mutex);
 125				return regulator;
 126			}
 127		}
 128		mutex_unlock(&rdev->mutex);
 129	}
 130	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 131	return NULL;
 132}
 133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134/* Platform voltage constraint check */
 135static int regulator_check_voltage(struct regulator_dev *rdev,
 136				   int *min_uV, int *max_uV)
 137{
 138	BUG_ON(*min_uV > *max_uV);
 139
 140	if (!rdev->constraints) {
 141		rdev_err(rdev, "no constraints\n");
 142		return -ENODEV;
 143	}
 144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 145		rdev_err(rdev, "operation not allowed\n");
 146		return -EPERM;
 147	}
 148
 149	if (*max_uV > rdev->constraints->max_uV)
 150		*max_uV = rdev->constraints->max_uV;
 151	if (*min_uV < rdev->constraints->min_uV)
 152		*min_uV = rdev->constraints->min_uV;
 153
 154	if (*min_uV > *max_uV) {
 155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 156			 *min_uV, *max_uV);
 157		return -EINVAL;
 158	}
 159
 160	return 0;
 161}
 162
 163/* Make sure we select a voltage that suits the needs of all
 164 * regulator consumers
 165 */
 166static int regulator_check_consumers(struct regulator_dev *rdev,
 167				     int *min_uV, int *max_uV)
 168{
 169	struct regulator *regulator;
 170
 171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 172		/*
 173		 * Assume consumers that didn't say anything are OK
 174		 * with anything in the constraint range.
 175		 */
 176		if (!regulator->min_uV && !regulator->max_uV)
 177			continue;
 178
 179		if (*max_uV > regulator->max_uV)
 180			*max_uV = regulator->max_uV;
 181		if (*min_uV < regulator->min_uV)
 182			*min_uV = regulator->min_uV;
 183	}
 184
 185	if (*min_uV > *max_uV)
 
 
 186		return -EINVAL;
 
 187
 188	return 0;
 189}
 190
 191/* current constraint check */
 192static int regulator_check_current_limit(struct regulator_dev *rdev,
 193					int *min_uA, int *max_uA)
 194{
 195	BUG_ON(*min_uA > *max_uA);
 196
 197	if (!rdev->constraints) {
 198		rdev_err(rdev, "no constraints\n");
 199		return -ENODEV;
 200	}
 201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 202		rdev_err(rdev, "operation not allowed\n");
 203		return -EPERM;
 204	}
 205
 206	if (*max_uA > rdev->constraints->max_uA)
 207		*max_uA = rdev->constraints->max_uA;
 208	if (*min_uA < rdev->constraints->min_uA)
 209		*min_uA = rdev->constraints->min_uA;
 210
 211	if (*min_uA > *max_uA) {
 212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 213			 *min_uA, *max_uA);
 214		return -EINVAL;
 215	}
 216
 217	return 0;
 218}
 219
 220/* operating mode constraint check */
 221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 222{
 223	switch (*mode) {
 224	case REGULATOR_MODE_FAST:
 225	case REGULATOR_MODE_NORMAL:
 226	case REGULATOR_MODE_IDLE:
 227	case REGULATOR_MODE_STANDBY:
 228		break;
 229	default:
 230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 231		return -EINVAL;
 232	}
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	/* The modes are bitmasks, the most power hungry modes having
 244	 * the lowest values. If the requested mode isn't supported
 245	 * try higher modes. */
 246	while (*mode) {
 247		if (rdev->constraints->valid_modes_mask & *mode)
 248			return 0;
 249		*mode /= 2;
 250	}
 251
 252	return -EINVAL;
 253}
 254
 255/* dynamic regulator mode switching constraint check */
 256static int regulator_check_drms(struct regulator_dev *rdev)
 257{
 258	if (!rdev->constraints) {
 259		rdev_err(rdev, "no constraints\n");
 260		return -ENODEV;
 261	}
 262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 263		rdev_err(rdev, "operation not allowed\n");
 264		return -EPERM;
 265	}
 266	return 0;
 267}
 268
 269static ssize_t device_requested_uA_show(struct device *dev,
 270			     struct device_attribute *attr, char *buf)
 271{
 272	struct regulator *regulator;
 273
 274	regulator = get_device_regulator(dev);
 275	if (regulator == NULL)
 276		return 0;
 277
 278	return sprintf(buf, "%d\n", regulator->uA_load);
 279}
 280
 281static ssize_t regulator_uV_show(struct device *dev,
 282				struct device_attribute *attr, char *buf)
 283{
 284	struct regulator_dev *rdev = dev_get_drvdata(dev);
 285	ssize_t ret;
 286
 287	mutex_lock(&rdev->mutex);
 288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 289	mutex_unlock(&rdev->mutex);
 290
 291	return ret;
 292}
 293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 294
 295static ssize_t regulator_uA_show(struct device *dev,
 296				struct device_attribute *attr, char *buf)
 297{
 298	struct regulator_dev *rdev = dev_get_drvdata(dev);
 299
 300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 301}
 302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 303
 304static ssize_t regulator_name_show(struct device *dev,
 305			     struct device_attribute *attr, char *buf)
 306{
 307	struct regulator_dev *rdev = dev_get_drvdata(dev);
 308
 309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 310}
 
 311
 312static ssize_t regulator_print_opmode(char *buf, int mode)
 313{
 314	switch (mode) {
 315	case REGULATOR_MODE_FAST:
 316		return sprintf(buf, "fast\n");
 317	case REGULATOR_MODE_NORMAL:
 318		return sprintf(buf, "normal\n");
 319	case REGULATOR_MODE_IDLE:
 320		return sprintf(buf, "idle\n");
 321	case REGULATOR_MODE_STANDBY:
 322		return sprintf(buf, "standby\n");
 323	}
 324	return sprintf(buf, "unknown\n");
 325}
 326
 327static ssize_t regulator_opmode_show(struct device *dev,
 328				    struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 333}
 334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 335
 336static ssize_t regulator_print_state(char *buf, int state)
 337{
 338	if (state > 0)
 339		return sprintf(buf, "enabled\n");
 340	else if (state == 0)
 341		return sprintf(buf, "disabled\n");
 342	else
 343		return sprintf(buf, "unknown\n");
 344}
 345
 346static ssize_t regulator_state_show(struct device *dev,
 347				   struct device_attribute *attr, char *buf)
 348{
 349	struct regulator_dev *rdev = dev_get_drvdata(dev);
 350	ssize_t ret;
 351
 352	mutex_lock(&rdev->mutex);
 353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 354	mutex_unlock(&rdev->mutex);
 355
 356	return ret;
 357}
 358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 359
 360static ssize_t regulator_status_show(struct device *dev,
 361				   struct device_attribute *attr, char *buf)
 362{
 363	struct regulator_dev *rdev = dev_get_drvdata(dev);
 364	int status;
 365	char *label;
 366
 367	status = rdev->desc->ops->get_status(rdev);
 368	if (status < 0)
 369		return status;
 370
 371	switch (status) {
 372	case REGULATOR_STATUS_OFF:
 373		label = "off";
 374		break;
 375	case REGULATOR_STATUS_ON:
 376		label = "on";
 377		break;
 378	case REGULATOR_STATUS_ERROR:
 379		label = "error";
 380		break;
 381	case REGULATOR_STATUS_FAST:
 382		label = "fast";
 383		break;
 384	case REGULATOR_STATUS_NORMAL:
 385		label = "normal";
 386		break;
 387	case REGULATOR_STATUS_IDLE:
 388		label = "idle";
 389		break;
 390	case REGULATOR_STATUS_STANDBY:
 391		label = "standby";
 392		break;
 
 
 
 
 
 
 393	default:
 394		return -ERANGE;
 395	}
 396
 397	return sprintf(buf, "%s\n", label);
 398}
 399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 400
 401static ssize_t regulator_min_uA_show(struct device *dev,
 402				    struct device_attribute *attr, char *buf)
 403{
 404	struct regulator_dev *rdev = dev_get_drvdata(dev);
 405
 406	if (!rdev->constraints)
 407		return sprintf(buf, "constraint not defined\n");
 408
 409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 410}
 411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 412
 413static ssize_t regulator_max_uA_show(struct device *dev,
 414				    struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417
 418	if (!rdev->constraints)
 419		return sprintf(buf, "constraint not defined\n");
 420
 421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 422}
 423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 424
 425static ssize_t regulator_min_uV_show(struct device *dev,
 426				    struct device_attribute *attr, char *buf)
 427{
 428	struct regulator_dev *rdev = dev_get_drvdata(dev);
 429
 430	if (!rdev->constraints)
 431		return sprintf(buf, "constraint not defined\n");
 432
 433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 434}
 435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 436
 437static ssize_t regulator_max_uV_show(struct device *dev,
 438				    struct device_attribute *attr, char *buf)
 439{
 440	struct regulator_dev *rdev = dev_get_drvdata(dev);
 441
 442	if (!rdev->constraints)
 443		return sprintf(buf, "constraint not defined\n");
 444
 445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 446}
 447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 448
 449static ssize_t regulator_total_uA_show(struct device *dev,
 450				      struct device_attribute *attr, char *buf)
 451{
 452	struct regulator_dev *rdev = dev_get_drvdata(dev);
 453	struct regulator *regulator;
 454	int uA = 0;
 455
 456	mutex_lock(&rdev->mutex);
 457	list_for_each_entry(regulator, &rdev->consumer_list, list)
 458		uA += regulator->uA_load;
 459	mutex_unlock(&rdev->mutex);
 460	return sprintf(buf, "%d\n", uA);
 461}
 462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 463
 464static ssize_t regulator_num_users_show(struct device *dev,
 465				      struct device_attribute *attr, char *buf)
 466{
 467	struct regulator_dev *rdev = dev_get_drvdata(dev);
 468	return sprintf(buf, "%d\n", rdev->use_count);
 469}
 
 470
 471static ssize_t regulator_type_show(struct device *dev,
 472				  struct device_attribute *attr, char *buf)
 473{
 474	struct regulator_dev *rdev = dev_get_drvdata(dev);
 475
 476	switch (rdev->desc->type) {
 477	case REGULATOR_VOLTAGE:
 478		return sprintf(buf, "voltage\n");
 479	case REGULATOR_CURRENT:
 480		return sprintf(buf, "current\n");
 481	}
 482	return sprintf(buf, "unknown\n");
 483}
 
 484
 485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 486				struct device_attribute *attr, char *buf)
 487{
 488	struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 491}
 492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 493		regulator_suspend_mem_uV_show, NULL);
 494
 495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 496				struct device_attribute *attr, char *buf)
 497{
 498	struct regulator_dev *rdev = dev_get_drvdata(dev);
 499
 500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 501}
 502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 503		regulator_suspend_disk_uV_show, NULL);
 504
 505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 506				struct device_attribute *attr, char *buf)
 507{
 508	struct regulator_dev *rdev = dev_get_drvdata(dev);
 509
 510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 511}
 512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 513		regulator_suspend_standby_uV_show, NULL);
 514
 515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 516				struct device_attribute *attr, char *buf)
 517{
 518	struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520	return regulator_print_opmode(buf,
 521		rdev->constraints->state_mem.mode);
 522}
 523static DEVICE_ATTR(suspend_mem_mode, 0444,
 524		regulator_suspend_mem_mode_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return regulator_print_opmode(buf,
 532		rdev->constraints->state_disk.mode);
 533}
 534static DEVICE_ATTR(suspend_disk_mode, 0444,
 535		regulator_suspend_disk_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 538				struct device_attribute *attr, char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542	return regulator_print_opmode(buf,
 543		rdev->constraints->state_standby.mode);
 544}
 545static DEVICE_ATTR(suspend_standby_mode, 0444,
 546		regulator_suspend_standby_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 549				   struct device_attribute *attr, char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	return regulator_print_state(buf,
 554			rdev->constraints->state_mem.enabled);
 555}
 556static DEVICE_ATTR(suspend_mem_state, 0444,
 557		regulator_suspend_mem_state_show, NULL);
 558
 559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 560				   struct device_attribute *attr, char *buf)
 561{
 562	struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564	return regulator_print_state(buf,
 565			rdev->constraints->state_disk.enabled);
 566}
 567static DEVICE_ATTR(suspend_disk_state, 0444,
 568		regulator_suspend_disk_state_show, NULL);
 569
 570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 571				   struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_state(buf,
 576			rdev->constraints->state_standby.enabled);
 577}
 578static DEVICE_ATTR(suspend_standby_state, 0444,
 579		regulator_suspend_standby_state_show, NULL);
 580
 581
 582/*
 583 * These are the only attributes are present for all regulators.
 584 * Other attributes are a function of regulator functionality.
 585 */
 586static struct device_attribute regulator_dev_attrs[] = {
 587	__ATTR(name, 0444, regulator_name_show, NULL),
 588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 589	__ATTR(type, 0444, regulator_type_show, NULL),
 590	__ATTR_NULL,
 591};
 592
 593static void regulator_dev_release(struct device *dev)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596	kfree(rdev);
 597}
 
 598
 599static struct class regulator_class = {
 600	.name = "regulator",
 601	.dev_release = regulator_dev_release,
 602	.dev_attrs = regulator_dev_attrs,
 603};
 
 
 
 
 
 
 
 
 604
 605/* Calculate the new optimum regulator operating mode based on the new total
 606 * consumer load. All locks held by caller */
 607static void drms_uA_update(struct regulator_dev *rdev)
 608{
 609	struct regulator *sibling;
 610	int current_uA = 0, output_uV, input_uV, err;
 611	unsigned int mode;
 612
 613	err = regulator_check_drms(rdev);
 614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 615	    (!rdev->desc->ops->get_voltage &&
 616	     !rdev->desc->ops->get_voltage_sel) ||
 617	    !rdev->desc->ops->set_mode)
 618		return;
 619
 620	/* get output voltage */
 621	output_uV = _regulator_get_voltage(rdev);
 622	if (output_uV <= 0)
 623		return;
 
 
 624
 625	/* get input voltage */
 626	input_uV = 0;
 627	if (rdev->supply)
 628		input_uV = _regulator_get_voltage(rdev);
 629	if (input_uV <= 0)
 630		input_uV = rdev->constraints->input_uV;
 631	if (input_uV <= 0)
 632		return;
 633
 634	/* calc total requested load */
 635	list_for_each_entry(sibling, &rdev->consumer_list, list)
 636		current_uA += sibling->uA_load;
 637
 638	/* now get the optimum mode for our new total regulator load */
 639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 640						  output_uV, current_uA);
 641
 642	/* check the new mode is allowed */
 643	err = regulator_mode_constrain(rdev, &mode);
 644	if (err == 0)
 645		rdev->desc->ops->set_mode(rdev, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646}
 647
 648static int suspend_set_state(struct regulator_dev *rdev,
 649	struct regulator_state *rstate)
 650{
 651	int ret = 0;
 652	bool can_set_state;
 653
 654	can_set_state = rdev->desc->ops->set_suspend_enable &&
 655		rdev->desc->ops->set_suspend_disable;
 656
 657	/* If we have no suspend mode configration don't set anything;
 658	 * only warn if the driver actually makes the suspend mode
 659	 * configurable.
 660	 */
 661	if (!rstate->enabled && !rstate->disabled) {
 662		if (can_set_state)
 
 663			rdev_warn(rdev, "No configuration\n");
 664		return 0;
 665	}
 666
 667	if (rstate->enabled && rstate->disabled) {
 668		rdev_err(rdev, "invalid configuration\n");
 669		return -EINVAL;
 670	}
 671
 672	if (!can_set_state) {
 673		rdev_err(rdev, "no way to set suspend state\n");
 674		return -EINVAL;
 675	}
 676
 677	if (rstate->enabled)
 678		ret = rdev->desc->ops->set_suspend_enable(rdev);
 679	else
 680		ret = rdev->desc->ops->set_suspend_disable(rdev);
 
 
 
 681	if (ret < 0) {
 682		rdev_err(rdev, "failed to enabled/disable\n");
 683		return ret;
 684	}
 685
 686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 688		if (ret < 0) {
 689			rdev_err(rdev, "failed to set voltage\n");
 690			return ret;
 691		}
 692	}
 693
 694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 696		if (ret < 0) {
 697			rdev_err(rdev, "failed to set mode\n");
 698			return ret;
 699		}
 700	}
 701	return ret;
 702}
 703
 704/* locks held by caller */
 705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 706{
 707	if (!rdev->constraints)
 708		return -EINVAL;
 709
 710	switch (state) {
 711	case PM_SUSPEND_STANDBY:
 712		return suspend_set_state(rdev,
 713			&rdev->constraints->state_standby);
 714	case PM_SUSPEND_MEM:
 715		return suspend_set_state(rdev,
 716			&rdev->constraints->state_mem);
 717	case PM_SUSPEND_MAX:
 718		return suspend_set_state(rdev,
 719			&rdev->constraints->state_disk);
 720	default:
 721		return -EINVAL;
 722	}
 723}
 724
 725static void print_constraints(struct regulator_dev *rdev)
 726{
 727	struct regulation_constraints *constraints = rdev->constraints;
 728	char buf[80] = "";
 
 729	int count = 0;
 730	int ret;
 731
 732	if (constraints->min_uV && constraints->max_uV) {
 733		if (constraints->min_uV == constraints->max_uV)
 734			count += sprintf(buf + count, "%d mV ",
 735					 constraints->min_uV / 1000);
 736		else
 737			count += sprintf(buf + count, "%d <--> %d mV ",
 738					 constraints->min_uV / 1000,
 739					 constraints->max_uV / 1000);
 
 740	}
 741
 742	if (!constraints->min_uV ||
 743	    constraints->min_uV != constraints->max_uV) {
 744		ret = _regulator_get_voltage(rdev);
 745		if (ret > 0)
 746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 747	}
 748
 749	if (constraints->uV_offset)
 750		count += sprintf(buf, "%dmV offset ",
 751				 constraints->uV_offset / 1000);
 752
 753	if (constraints->min_uA && constraints->max_uA) {
 754		if (constraints->min_uA == constraints->max_uA)
 755			count += sprintf(buf + count, "%d mA ",
 756					 constraints->min_uA / 1000);
 757		else
 758			count += sprintf(buf + count, "%d <--> %d mA ",
 759					 constraints->min_uA / 1000,
 760					 constraints->max_uA / 1000);
 
 761	}
 762
 763	if (!constraints->min_uA ||
 764	    constraints->min_uA != constraints->max_uA) {
 765		ret = _regulator_get_current_limit(rdev);
 766		if (ret > 0)
 767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 768	}
 769
 770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 771		count += sprintf(buf + count, "fast ");
 772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 773		count += sprintf(buf + count, "normal ");
 774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 775		count += sprintf(buf + count, "idle ");
 776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 777		count += sprintf(buf + count, "standby");
 
 
 
 
 
 778
 779	rdev_info(rdev, "%s\n", buf);
 
 
 
 780}
 781
 782static int machine_constraints_voltage(struct regulator_dev *rdev,
 783	struct regulation_constraints *constraints)
 784{
 785	struct regulator_ops *ops = rdev->desc->ops;
 786	int ret;
 787
 788	/* do we need to apply the constraint voltage */
 789	if (rdev->constraints->apply_uV &&
 790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 791		ret = _regulator_do_set_voltage(rdev,
 792						rdev->constraints->min_uV,
 793						rdev->constraints->max_uV);
 794		if (ret < 0) {
 795			rdev_err(rdev, "failed to apply %duV constraint\n",
 796				 rdev->constraints->min_uV);
 797			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798		}
 799	}
 800
 801	/* constrain machine-level voltage specs to fit
 802	 * the actual range supported by this regulator.
 803	 */
 804	if (ops->list_voltage && rdev->desc->n_voltages) {
 805		int	count = rdev->desc->n_voltages;
 806		int	i;
 807		int	min_uV = INT_MAX;
 808		int	max_uV = INT_MIN;
 809		int	cmin = constraints->min_uV;
 810		int	cmax = constraints->max_uV;
 811
 812		/* it's safe to autoconfigure fixed-voltage supplies
 813		   and the constraints are used by list_voltage. */
 814		if (count == 1 && !cmin) {
 815			cmin = 1;
 816			cmax = INT_MAX;
 817			constraints->min_uV = cmin;
 818			constraints->max_uV = cmax;
 819		}
 820
 821		/* voltage constraints are optional */
 822		if ((cmin == 0) && (cmax == 0))
 823			return 0;
 824
 825		/* else require explicit machine-level constraints */
 826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 827			rdev_err(rdev, "invalid voltage constraints\n");
 828			return -EINVAL;
 829		}
 830
 831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 832		for (i = 0; i < count; i++) {
 833			int	value;
 834
 835			value = ops->list_voltage(rdev, i);
 836			if (value <= 0)
 837				continue;
 838
 839			/* maybe adjust [min_uV..max_uV] */
 840			if (value >= cmin && value < min_uV)
 841				min_uV = value;
 842			if (value <= cmax && value > max_uV)
 843				max_uV = value;
 844		}
 845
 846		/* final: [min_uV..max_uV] valid iff constraints valid */
 847		if (max_uV < min_uV) {
 848			rdev_err(rdev, "unsupportable voltage constraints\n");
 
 
 849			return -EINVAL;
 850		}
 851
 852		/* use regulator's subset of machine constraints */
 853		if (constraints->min_uV < min_uV) {
 854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 855				 constraints->min_uV, min_uV);
 856			constraints->min_uV = min_uV;
 857		}
 858		if (constraints->max_uV > max_uV) {
 859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 860				 constraints->max_uV, max_uV);
 861			constraints->max_uV = max_uV;
 862		}
 863	}
 864
 865	return 0;
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868/**
 869 * set_machine_constraints - sets regulator constraints
 870 * @rdev: regulator source
 871 * @constraints: constraints to apply
 872 *
 873 * Allows platform initialisation code to define and constrain
 874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 875 * Constraints *must* be set by platform code in order for some
 876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 877 * set_mode.
 878 */
 879static int set_machine_constraints(struct regulator_dev *rdev,
 880	const struct regulation_constraints *constraints)
 881{
 882	int ret = 0;
 883	struct regulator_ops *ops = rdev->desc->ops;
 884
 885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 886				    GFP_KERNEL);
 
 
 
 
 887	if (!rdev->constraints)
 888		return -ENOMEM;
 889
 890	ret = machine_constraints_voltage(rdev, rdev->constraints);
 891	if (ret != 0)
 892		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* do we need to setup our suspend state */
 895	if (constraints->initial_state) {
 896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 897		if (ret < 0) {
 898			rdev_err(rdev, "failed to set suspend state\n");
 899			goto out;
 900		}
 901	}
 902
 903	if (constraints->initial_mode) {
 904		if (!ops->set_mode) {
 905			rdev_err(rdev, "no set_mode operation\n");
 906			ret = -EINVAL;
 907			goto out;
 908		}
 909
 910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 911		if (ret < 0) {
 912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 913			goto out;
 914		}
 915	}
 916
 917	/* If the constraints say the regulator should be on at this point
 918	 * and we have control then make sure it is enabled.
 919	 */
 920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 921	    ops->enable) {
 922		ret = ops->enable(rdev);
 923		if (ret < 0) {
 924			rdev_err(rdev, "failed to enable\n");
 925			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926		}
 927	}
 928
 929	print_constraints(rdev);
 930	return 0;
 931out:
 932	kfree(rdev->constraints);
 933	rdev->constraints = NULL;
 934	return ret;
 935}
 936
 937/**
 938 * set_supply - set regulator supply regulator
 939 * @rdev: regulator name
 940 * @supply_rdev: supply regulator name
 941 *
 942 * Called by platform initialisation code to set the supply regulator for this
 943 * regulator. This ensures that a regulators supply will also be enabled by the
 944 * core if it's child is enabled.
 945 */
 946static int set_supply(struct regulator_dev *rdev,
 947		      struct regulator_dev *supply_rdev)
 948{
 949	int err;
 950
 951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 952
 
 
 
 953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 954	if (IS_ERR(rdev->supply)) {
 955		err = PTR_ERR(rdev->supply);
 956		rdev->supply = NULL;
 957		return err;
 958	}
 
 959
 960	return 0;
 961}
 962
 963/**
 964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 965 * @rdev:         regulator source
 966 * @consumer_dev: device the supply applies to
 967 * @consumer_dev_name: dev_name() string for device supply applies to
 968 * @supply:       symbolic name for supply
 969 *
 970 * Allows platform initialisation code to map physical regulator
 971 * sources to symbolic names for supplies for use by devices.  Devices
 972 * should use these symbolic names to request regulators, avoiding the
 973 * need to provide board-specific regulator names as platform data.
 974 *
 975 * Only one of consumer_dev and consumer_dev_name may be specified.
 976 */
 977static int set_consumer_device_supply(struct regulator_dev *rdev,
 978	struct device *consumer_dev, const char *consumer_dev_name,
 979	const char *supply)
 980{
 981	struct regulator_map *node;
 982	int has_dev;
 983
 984	if (consumer_dev && consumer_dev_name)
 985		return -EINVAL;
 986
 987	if (!consumer_dev_name && consumer_dev)
 988		consumer_dev_name = dev_name(consumer_dev);
 989
 990	if (supply == NULL)
 991		return -EINVAL;
 992
 993	if (consumer_dev_name != NULL)
 994		has_dev = 1;
 995	else
 996		has_dev = 0;
 997
 998	list_for_each_entry(node, &regulator_map_list, list) {
 999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
 
1014		return -EBUSY;
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
1061		return NULL;
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
 
 
 
1125	}
1126#endif
 
 
 
 
 
 
 
 
1127
1128	mutex_unlock(&rdev->mutex);
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
 
 
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164
 
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
 
 
1169
 
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
 
1179		}
1180	}
 
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	}
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188	if (!devname)
1189		devname = "deviceless";
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
 
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
 
1197		rdev = dummy_regulator_rdev;
 
1198		goto found;
 
 
 
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
 
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
 
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
 
 
 
 
 
 
 
 
 
1218
1219	regulator = create_regulator(rdev, dev, id);
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
 
1222		module_put(rdev->owner);
 
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
1233			rdev->use_count = 0;
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
 
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
 
 
 
 
 
 
 
 
 
 
 
1295 */
1296void regulator_put(struct regulator *regulator)
 
 
 
 
 
 
 
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
 
1304	rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
 
 
 
 
 
1322
1323	module_put(rdev->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	if (!rdev->constraints)
1331		return 0;
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	else
1336		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342	int ret, delay;
 
 
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
 
1354				return -EPERM;
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
1398
1399	return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
1417
 
 
 
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438	int ret = 0;
1439
 
 
1440	if (WARN(rdev->use_count <= 0,
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
 
 
 
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
 
 
 
1456				return ret;
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
 
 
 
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
 
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
 
1523	}
1524
1525	return ret;
 
 
 
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
 
 
 
 
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
 
 
 
1580	mutex_lock(&regulator->rdev->mutex);
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1621		return -EINVAL;
 
 
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
 
 
 
 
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
 
1650	int i, voltages, ret;
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
 
1672	unsigned int selector;
 
 
 
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
1691
1692		selector = 0;
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
 
 
 
 
 
 
 
 
 
 
1705			}
1706		}
 
 
 
1707
 
 
 
 
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
 
 
1722		}
 
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
 
 
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
 
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
 
1747
1748	return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
1773
1774	mutex_lock(&rdev->mutex);
 
 
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
1782
 
 
 
 
 
 
 
 
 
 
 
 
 
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
 
 
 
 
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
 
 
 
 
 
 
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805	return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
 
 
 
 
 
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
 
 
 
 
 
 
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
 
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
2149
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	}
2187	ret = mode;
2188out:
 
 
2189	mutex_unlock(&rdev->mutex);
 
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
 
 
 
 
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
 
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
 
 
 
 
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
 
 
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
 
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
 
 
 
 
 
 
 
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
 
 
 
 
 
 
 
 
 
 
 
2544
2545	return status;
 
 
 
 
 
 
2546}
2547
 
 
 
 
 
 
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
 
 
 
 
 
 
 
 
 
 
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
2556	}
2557
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
 
 
 
 
 
 
 
 
 
 
 
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
 
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
 
 
 
2580	struct regulator_dev *rdev;
 
2581	int ret, i;
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
2585
 
 
 
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
2610	}
2611
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
2615
2616	mutex_lock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
 
 
 
 
 
 
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
 
 
 
 
 
 
 
 
 
 
 
 
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
2648	if (ret < 0)
2649		goto scrub;
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
2655
2656	if (init_data->supply_regulator) {
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
2672			goto scrub;
2673		}
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
2678	}
2679
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
 
 
 
 
 
2690		}
 
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
 
 
 
 
2694
 
2695	rdev_init_debugfs(rdev);
2696out:
2697	mutex_unlock(&regulator_list_mutex);
 
 
 
2698	return rdev;
2699
2700unset_supplies:
 
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
2704	kfree(rdev->constraints);
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
 
 
 
 
 
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
2739	mutex_unlock(&regulator_list_mutex);
 
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
 
 
 
 
 
 
 
 
 
 
 
 
 
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
 
 
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
 
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
 
 
 
 
 
2769		}
 
 
 
 
 
 
 
 
 
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
 
 
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
 
 
 
2923
2924	regulator_dummy_init();
2925
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
2939	mutex_lock(&regulator_list_mutex);
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
2951
2952		mutex_lock(&rdev->mutex);
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
v4.10.11
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
 
 
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
 
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
 
  58
 
  59static struct dentry *debugfs_root;
  60
  61static struct class regulator_class;
  62
  63/*
  64 * struct regulator_map
  65 *
  66 * Used to provide symbolic supply names to devices.
  67 */
  68struct regulator_map {
  69	struct list_head list;
  70	const char *dev_name;   /* The dev_name() for the consumer */
  71	const char *supply;
  72	struct regulator_dev *regulator;
  73};
  74
  75/*
  76 * struct regulator_enable_gpio
  77 *
  78 * Management for shared enable GPIO pin
  79 */
  80struct regulator_enable_gpio {
 
  81	struct list_head list;
  82	struct gpio_desc *gpiod;
  83	u32 enable_count;	/* a number of enabled shared GPIO */
  84	u32 request_count;	/* a number of requested shared GPIO */
  85	unsigned int ena_gpio_invert:1;
  86};
  87
  88/*
  89 * struct regulator_supply_alias
  90 *
  91 * Used to map lookups for a supply onto an alternative device.
  92 */
  93struct regulator_supply_alias {
  94	struct list_head list;
  95	struct device *src_dev;
  96	const char *src_supply;
  97	struct device *alias_dev;
  98	const char *alias_supply;
  99};
 100
 101static int _regulator_is_enabled(struct regulator_dev *rdev);
 102static int _regulator_disable(struct regulator_dev *rdev);
 103static int _regulator_get_voltage(struct regulator_dev *rdev);
 104static int _regulator_get_current_limit(struct regulator_dev *rdev);
 105static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 106static int _notifier_call_chain(struct regulator_dev *rdev,
 107				  unsigned long event, void *data);
 108static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 109				     int min_uV, int max_uV);
 110static struct regulator *create_regulator(struct regulator_dev *rdev,
 111					  struct device *dev,
 112					  const char *supply_name);
 113static void _regulator_put(struct regulator *regulator);
 114
 115static struct regulator_dev *dev_to_rdev(struct device *dev)
 116{
 117	return container_of(dev, struct regulator_dev, dev);
 118}
 119
 120static const char *rdev_get_name(struct regulator_dev *rdev)
 121{
 122	if (rdev->constraints && rdev->constraints->name)
 123		return rdev->constraints->name;
 124	else if (rdev->desc->name)
 125		return rdev->desc->name;
 126	else
 127		return "";
 128}
 129
 130static bool have_full_constraints(void)
 
 131{
 132	return has_full_constraints || of_have_populated_dt();
 133}
 134
 135static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 136{
 137	if (!rdev->constraints) {
 138		rdev_err(rdev, "no constraints\n");
 139		return false;
 
 
 
 
 
 
 140	}
 141
 142	if (rdev->constraints->valid_ops_mask & ops)
 143		return true;
 144
 145	return false;
 146}
 147
 148static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 149{
 150	if (rdev && rdev->supply)
 151		return rdev->supply->rdev;
 152
 153	return NULL;
 154}
 155
 156/**
 157 * regulator_lock_supply - lock a regulator and its supplies
 158 * @rdev:         regulator source
 159 */
 160static void regulator_lock_supply(struct regulator_dev *rdev)
 161{
 162	int i;
 163
 164	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 165		mutex_lock_nested(&rdev->mutex, i);
 166}
 167
 168/**
 169 * regulator_unlock_supply - unlock a regulator and its supplies
 170 * @rdev:         regulator source
 171 */
 172static void regulator_unlock_supply(struct regulator_dev *rdev)
 173{
 174	struct regulator *supply;
 175
 176	while (1) {
 177		mutex_unlock(&rdev->mutex);
 178		supply = rdev->supply;
 179
 180		if (!rdev->supply)
 181			return;
 182
 183		rdev = supply->rdev;
 184	}
 185}
 186
 187/**
 188 * of_get_regulator - get a regulator device node based on supply name
 189 * @dev: Device pointer for the consumer (of regulator) device
 190 * @supply: regulator supply name
 191 *
 192 * Extract the regulator device node corresponding to the supply name.
 193 * returns the device node corresponding to the regulator if found, else
 194 * returns NULL.
 195 */
 196static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 197{
 198	struct device_node *regnode = NULL;
 199	char prop_name[32]; /* 32 is max size of property name */
 200
 201	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 202
 203	snprintf(prop_name, 32, "%s-supply", supply);
 204	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 205
 206	if (!regnode) {
 207		dev_dbg(dev, "Looking up %s property in node %s failed\n",
 208				prop_name, dev->of_node->full_name);
 209		return NULL;
 210	}
 211	return regnode;
 212}
 213
 214/* Platform voltage constraint check */
 215static int regulator_check_voltage(struct regulator_dev *rdev,
 216				   int *min_uV, int *max_uV)
 217{
 218	BUG_ON(*min_uV > *max_uV);
 219
 220	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 221		rdev_err(rdev, "voltage operation not allowed\n");
 
 
 
 
 222		return -EPERM;
 223	}
 224
 225	if (*max_uV > rdev->constraints->max_uV)
 226		*max_uV = rdev->constraints->max_uV;
 227	if (*min_uV < rdev->constraints->min_uV)
 228		*min_uV = rdev->constraints->min_uV;
 229
 230	if (*min_uV > *max_uV) {
 231		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 232			 *min_uV, *max_uV);
 233		return -EINVAL;
 234	}
 235
 236	return 0;
 237}
 238
 239/* Make sure we select a voltage that suits the needs of all
 240 * regulator consumers
 241 */
 242static int regulator_check_consumers(struct regulator_dev *rdev,
 243				     int *min_uV, int *max_uV)
 244{
 245	struct regulator *regulator;
 246
 247	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 248		/*
 249		 * Assume consumers that didn't say anything are OK
 250		 * with anything in the constraint range.
 251		 */
 252		if (!regulator->min_uV && !regulator->max_uV)
 253			continue;
 254
 255		if (*max_uV > regulator->max_uV)
 256			*max_uV = regulator->max_uV;
 257		if (*min_uV < regulator->min_uV)
 258			*min_uV = regulator->min_uV;
 259	}
 260
 261	if (*min_uV > *max_uV) {
 262		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 263			*min_uV, *max_uV);
 264		return -EINVAL;
 265	}
 266
 267	return 0;
 268}
 269
 270/* current constraint check */
 271static int regulator_check_current_limit(struct regulator_dev *rdev,
 272					int *min_uA, int *max_uA)
 273{
 274	BUG_ON(*min_uA > *max_uA);
 275
 276	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 277		rdev_err(rdev, "current operation not allowed\n");
 
 
 
 
 278		return -EPERM;
 279	}
 280
 281	if (*max_uA > rdev->constraints->max_uA)
 282		*max_uA = rdev->constraints->max_uA;
 283	if (*min_uA < rdev->constraints->min_uA)
 284		*min_uA = rdev->constraints->min_uA;
 285
 286	if (*min_uA > *max_uA) {
 287		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 288			 *min_uA, *max_uA);
 289		return -EINVAL;
 290	}
 291
 292	return 0;
 293}
 294
 295/* operating mode constraint check */
 296static int regulator_mode_constrain(struct regulator_dev *rdev,
 297				    unsigned int *mode)
 298{
 299	switch (*mode) {
 300	case REGULATOR_MODE_FAST:
 301	case REGULATOR_MODE_NORMAL:
 302	case REGULATOR_MODE_IDLE:
 303	case REGULATOR_MODE_STANDBY:
 304		break;
 305	default:
 306		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 307		return -EINVAL;
 308	}
 309
 310	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 311		rdev_err(rdev, "mode operation not allowed\n");
 
 
 
 
 312		return -EPERM;
 313	}
 314
 315	/* The modes are bitmasks, the most power hungry modes having
 316	 * the lowest values. If the requested mode isn't supported
 317	 * try higher modes. */
 318	while (*mode) {
 319		if (rdev->constraints->valid_modes_mask & *mode)
 320			return 0;
 321		*mode /= 2;
 322	}
 323
 324	return -EINVAL;
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327static ssize_t regulator_uV_show(struct device *dev,
 328				struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331	ssize_t ret;
 332
 333	mutex_lock(&rdev->mutex);
 334	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 335	mutex_unlock(&rdev->mutex);
 336
 337	return ret;
 338}
 339static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 340
 341static ssize_t regulator_uA_show(struct device *dev,
 342				struct device_attribute *attr, char *buf)
 343{
 344	struct regulator_dev *rdev = dev_get_drvdata(dev);
 345
 346	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 347}
 348static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 349
 350static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 351			 char *buf)
 352{
 353	struct regulator_dev *rdev = dev_get_drvdata(dev);
 354
 355	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 356}
 357static DEVICE_ATTR_RO(name);
 358
 359static ssize_t regulator_print_opmode(char *buf, int mode)
 360{
 361	switch (mode) {
 362	case REGULATOR_MODE_FAST:
 363		return sprintf(buf, "fast\n");
 364	case REGULATOR_MODE_NORMAL:
 365		return sprintf(buf, "normal\n");
 366	case REGULATOR_MODE_IDLE:
 367		return sprintf(buf, "idle\n");
 368	case REGULATOR_MODE_STANDBY:
 369		return sprintf(buf, "standby\n");
 370	}
 371	return sprintf(buf, "unknown\n");
 372}
 373
 374static ssize_t regulator_opmode_show(struct device *dev,
 375				    struct device_attribute *attr, char *buf)
 376{
 377	struct regulator_dev *rdev = dev_get_drvdata(dev);
 378
 379	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 380}
 381static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 382
 383static ssize_t regulator_print_state(char *buf, int state)
 384{
 385	if (state > 0)
 386		return sprintf(buf, "enabled\n");
 387	else if (state == 0)
 388		return sprintf(buf, "disabled\n");
 389	else
 390		return sprintf(buf, "unknown\n");
 391}
 392
 393static ssize_t regulator_state_show(struct device *dev,
 394				   struct device_attribute *attr, char *buf)
 395{
 396	struct regulator_dev *rdev = dev_get_drvdata(dev);
 397	ssize_t ret;
 398
 399	mutex_lock(&rdev->mutex);
 400	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 401	mutex_unlock(&rdev->mutex);
 402
 403	return ret;
 404}
 405static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 406
 407static ssize_t regulator_status_show(struct device *dev,
 408				   struct device_attribute *attr, char *buf)
 409{
 410	struct regulator_dev *rdev = dev_get_drvdata(dev);
 411	int status;
 412	char *label;
 413
 414	status = rdev->desc->ops->get_status(rdev);
 415	if (status < 0)
 416		return status;
 417
 418	switch (status) {
 419	case REGULATOR_STATUS_OFF:
 420		label = "off";
 421		break;
 422	case REGULATOR_STATUS_ON:
 423		label = "on";
 424		break;
 425	case REGULATOR_STATUS_ERROR:
 426		label = "error";
 427		break;
 428	case REGULATOR_STATUS_FAST:
 429		label = "fast";
 430		break;
 431	case REGULATOR_STATUS_NORMAL:
 432		label = "normal";
 433		break;
 434	case REGULATOR_STATUS_IDLE:
 435		label = "idle";
 436		break;
 437	case REGULATOR_STATUS_STANDBY:
 438		label = "standby";
 439		break;
 440	case REGULATOR_STATUS_BYPASS:
 441		label = "bypass";
 442		break;
 443	case REGULATOR_STATUS_UNDEFINED:
 444		label = "undefined";
 445		break;
 446	default:
 447		return -ERANGE;
 448	}
 449
 450	return sprintf(buf, "%s\n", label);
 451}
 452static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 453
 454static ssize_t regulator_min_uA_show(struct device *dev,
 455				    struct device_attribute *attr, char *buf)
 456{
 457	struct regulator_dev *rdev = dev_get_drvdata(dev);
 458
 459	if (!rdev->constraints)
 460		return sprintf(buf, "constraint not defined\n");
 461
 462	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 463}
 464static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 465
 466static ssize_t regulator_max_uA_show(struct device *dev,
 467				    struct device_attribute *attr, char *buf)
 468{
 469	struct regulator_dev *rdev = dev_get_drvdata(dev);
 470
 471	if (!rdev->constraints)
 472		return sprintf(buf, "constraint not defined\n");
 473
 474	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 475}
 476static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 477
 478static ssize_t regulator_min_uV_show(struct device *dev,
 479				    struct device_attribute *attr, char *buf)
 480{
 481	struct regulator_dev *rdev = dev_get_drvdata(dev);
 482
 483	if (!rdev->constraints)
 484		return sprintf(buf, "constraint not defined\n");
 485
 486	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 487}
 488static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 489
 490static ssize_t regulator_max_uV_show(struct device *dev,
 491				    struct device_attribute *attr, char *buf)
 492{
 493	struct regulator_dev *rdev = dev_get_drvdata(dev);
 494
 495	if (!rdev->constraints)
 496		return sprintf(buf, "constraint not defined\n");
 497
 498	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 499}
 500static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 501
 502static ssize_t regulator_total_uA_show(struct device *dev,
 503				      struct device_attribute *attr, char *buf)
 504{
 505	struct regulator_dev *rdev = dev_get_drvdata(dev);
 506	struct regulator *regulator;
 507	int uA = 0;
 508
 509	mutex_lock(&rdev->mutex);
 510	list_for_each_entry(regulator, &rdev->consumer_list, list)
 511		uA += regulator->uA_load;
 512	mutex_unlock(&rdev->mutex);
 513	return sprintf(buf, "%d\n", uA);
 514}
 515static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 516
 517static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 518			      char *buf)
 519{
 520	struct regulator_dev *rdev = dev_get_drvdata(dev);
 521	return sprintf(buf, "%d\n", rdev->use_count);
 522}
 523static DEVICE_ATTR_RO(num_users);
 524
 525static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 526			 char *buf)
 527{
 528	struct regulator_dev *rdev = dev_get_drvdata(dev);
 529
 530	switch (rdev->desc->type) {
 531	case REGULATOR_VOLTAGE:
 532		return sprintf(buf, "voltage\n");
 533	case REGULATOR_CURRENT:
 534		return sprintf(buf, "current\n");
 535	}
 536	return sprintf(buf, "unknown\n");
 537}
 538static DEVICE_ATTR_RO(type);
 539
 540static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 541				struct device_attribute *attr, char *buf)
 542{
 543	struct regulator_dev *rdev = dev_get_drvdata(dev);
 544
 545	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 546}
 547static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 548		regulator_suspend_mem_uV_show, NULL);
 549
 550static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 551				struct device_attribute *attr, char *buf)
 552{
 553	struct regulator_dev *rdev = dev_get_drvdata(dev);
 554
 555	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 556}
 557static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 558		regulator_suspend_disk_uV_show, NULL);
 559
 560static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 561				struct device_attribute *attr, char *buf)
 562{
 563	struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 566}
 567static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 568		regulator_suspend_standby_uV_show, NULL);
 569
 570static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 571				struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_opmode(buf,
 576		rdev->constraints->state_mem.mode);
 577}
 578static DEVICE_ATTR(suspend_mem_mode, 0444,
 579		regulator_suspend_mem_mode_show, NULL);
 580
 581static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 582				struct device_attribute *attr, char *buf)
 583{
 584	struct regulator_dev *rdev = dev_get_drvdata(dev);
 585
 586	return regulator_print_opmode(buf,
 587		rdev->constraints->state_disk.mode);
 588}
 589static DEVICE_ATTR(suspend_disk_mode, 0444,
 590		regulator_suspend_disk_mode_show, NULL);
 591
 592static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 593				struct device_attribute *attr, char *buf)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597	return regulator_print_opmode(buf,
 598		rdev->constraints->state_standby.mode);
 599}
 600static DEVICE_ATTR(suspend_standby_mode, 0444,
 601		regulator_suspend_standby_mode_show, NULL);
 602
 603static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 604				   struct device_attribute *attr, char *buf)
 605{
 606	struct regulator_dev *rdev = dev_get_drvdata(dev);
 607
 608	return regulator_print_state(buf,
 609			rdev->constraints->state_mem.enabled);
 610}
 611static DEVICE_ATTR(suspend_mem_state, 0444,
 612		regulator_suspend_mem_state_show, NULL);
 613
 614static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 615				   struct device_attribute *attr, char *buf)
 616{
 617	struct regulator_dev *rdev = dev_get_drvdata(dev);
 618
 619	return regulator_print_state(buf,
 620			rdev->constraints->state_disk.enabled);
 621}
 622static DEVICE_ATTR(suspend_disk_state, 0444,
 623		regulator_suspend_disk_state_show, NULL);
 624
 625static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 626				   struct device_attribute *attr, char *buf)
 627{
 628	struct regulator_dev *rdev = dev_get_drvdata(dev);
 629
 630	return regulator_print_state(buf,
 631			rdev->constraints->state_standby.enabled);
 632}
 633static DEVICE_ATTR(suspend_standby_state, 0444,
 634		regulator_suspend_standby_state_show, NULL);
 635
 636static ssize_t regulator_bypass_show(struct device *dev,
 637				     struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 638{
 639	struct regulator_dev *rdev = dev_get_drvdata(dev);
 640	const char *report;
 641	bool bypass;
 642	int ret;
 643
 644	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 645
 646	if (ret != 0)
 647		report = "unknown";
 648	else if (bypass)
 649		report = "enabled";
 650	else
 651		report = "disabled";
 652
 653	return sprintf(buf, "%s\n", report);
 654}
 655static DEVICE_ATTR(bypass, 0444,
 656		   regulator_bypass_show, NULL);
 657
 658/* Calculate the new optimum regulator operating mode based on the new total
 659 * consumer load. All locks held by caller */
 660static int drms_uA_update(struct regulator_dev *rdev)
 661{
 662	struct regulator *sibling;
 663	int current_uA = 0, output_uV, input_uV, err;
 664	unsigned int mode;
 665
 666	lockdep_assert_held_once(&rdev->mutex);
 
 
 
 
 
 667
 668	/*
 669	 * first check to see if we can set modes at all, otherwise just
 670	 * tell the consumer everything is OK.
 671	 */
 672	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 673		return 0;
 674
 675	if (!rdev->desc->ops->get_optimum_mode &&
 676	    !rdev->desc->ops->set_load)
 677		return 0;
 678
 679	if (!rdev->desc->ops->set_mode &&
 680	    !rdev->desc->ops->set_load)
 681		return -EINVAL;
 
 682
 683	/* calc total requested load */
 684	list_for_each_entry(sibling, &rdev->consumer_list, list)
 685		current_uA += sibling->uA_load;
 686
 687	current_uA += rdev->constraints->system_load;
 688
 689	if (rdev->desc->ops->set_load) {
 690		/* set the optimum mode for our new total regulator load */
 691		err = rdev->desc->ops->set_load(rdev, current_uA);
 692		if (err < 0)
 693			rdev_err(rdev, "failed to set load %d\n", current_uA);
 694	} else {
 695		/* get output voltage */
 696		output_uV = _regulator_get_voltage(rdev);
 697		if (output_uV <= 0) {
 698			rdev_err(rdev, "invalid output voltage found\n");
 699			return -EINVAL;
 700		}
 701
 702		/* get input voltage */
 703		input_uV = 0;
 704		if (rdev->supply)
 705			input_uV = regulator_get_voltage(rdev->supply);
 706		if (input_uV <= 0)
 707			input_uV = rdev->constraints->input_uV;
 708		if (input_uV <= 0) {
 709			rdev_err(rdev, "invalid input voltage found\n");
 710			return -EINVAL;
 711		}
 712
 713		/* now get the optimum mode for our new total regulator load */
 714		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 715							 output_uV, current_uA);
 716
 717		/* check the new mode is allowed */
 718		err = regulator_mode_constrain(rdev, &mode);
 719		if (err < 0) {
 720			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 721				 current_uA, input_uV, output_uV);
 722			return err;
 723		}
 724
 725		err = rdev->desc->ops->set_mode(rdev, mode);
 726		if (err < 0)
 727			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 728	}
 729
 730	return err;
 731}
 732
 733static int suspend_set_state(struct regulator_dev *rdev,
 734	struct regulator_state *rstate)
 735{
 736	int ret = 0;
 
 
 
 
 737
 738	/* If we have no suspend mode configration don't set anything;
 739	 * only warn if the driver implements set_suspend_voltage or
 740	 * set_suspend_mode callback.
 741	 */
 742	if (!rstate->enabled && !rstate->disabled) {
 743		if (rdev->desc->ops->set_suspend_voltage ||
 744		    rdev->desc->ops->set_suspend_mode)
 745			rdev_warn(rdev, "No configuration\n");
 746		return 0;
 747	}
 748
 749	if (rstate->enabled && rstate->disabled) {
 750		rdev_err(rdev, "invalid configuration\n");
 751		return -EINVAL;
 752	}
 753
 754	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 755		ret = rdev->desc->ops->set_suspend_enable(rdev);
 756	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
 757		ret = rdev->desc->ops->set_suspend_disable(rdev);
 758	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 759		ret = 0;
 760
 761	if (ret < 0) {
 762		rdev_err(rdev, "failed to enabled/disable\n");
 763		return ret;
 764	}
 765
 766	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 767		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 768		if (ret < 0) {
 769			rdev_err(rdev, "failed to set voltage\n");
 770			return ret;
 771		}
 772	}
 773
 774	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 775		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 776		if (ret < 0) {
 777			rdev_err(rdev, "failed to set mode\n");
 778			return ret;
 779		}
 780	}
 781	return ret;
 782}
 783
 784/* locks held by caller */
 785static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 786{
 787	if (!rdev->constraints)
 788		return -EINVAL;
 789
 790	switch (state) {
 791	case PM_SUSPEND_STANDBY:
 792		return suspend_set_state(rdev,
 793			&rdev->constraints->state_standby);
 794	case PM_SUSPEND_MEM:
 795		return suspend_set_state(rdev,
 796			&rdev->constraints->state_mem);
 797	case PM_SUSPEND_MAX:
 798		return suspend_set_state(rdev,
 799			&rdev->constraints->state_disk);
 800	default:
 801		return -EINVAL;
 802	}
 803}
 804
 805static void print_constraints(struct regulator_dev *rdev)
 806{
 807	struct regulation_constraints *constraints = rdev->constraints;
 808	char buf[160] = "";
 809	size_t len = sizeof(buf) - 1;
 810	int count = 0;
 811	int ret;
 812
 813	if (constraints->min_uV && constraints->max_uV) {
 814		if (constraints->min_uV == constraints->max_uV)
 815			count += scnprintf(buf + count, len - count, "%d mV ",
 816					   constraints->min_uV / 1000);
 817		else
 818			count += scnprintf(buf + count, len - count,
 819					   "%d <--> %d mV ",
 820					   constraints->min_uV / 1000,
 821					   constraints->max_uV / 1000);
 822	}
 823
 824	if (!constraints->min_uV ||
 825	    constraints->min_uV != constraints->max_uV) {
 826		ret = _regulator_get_voltage(rdev);
 827		if (ret > 0)
 828			count += scnprintf(buf + count, len - count,
 829					   "at %d mV ", ret / 1000);
 830	}
 831
 832	if (constraints->uV_offset)
 833		count += scnprintf(buf + count, len - count, "%dmV offset ",
 834				   constraints->uV_offset / 1000);
 835
 836	if (constraints->min_uA && constraints->max_uA) {
 837		if (constraints->min_uA == constraints->max_uA)
 838			count += scnprintf(buf + count, len - count, "%d mA ",
 839					   constraints->min_uA / 1000);
 840		else
 841			count += scnprintf(buf + count, len - count,
 842					   "%d <--> %d mA ",
 843					   constraints->min_uA / 1000,
 844					   constraints->max_uA / 1000);
 845	}
 846
 847	if (!constraints->min_uA ||
 848	    constraints->min_uA != constraints->max_uA) {
 849		ret = _regulator_get_current_limit(rdev);
 850		if (ret > 0)
 851			count += scnprintf(buf + count, len - count,
 852					   "at %d mA ", ret / 1000);
 853	}
 854
 855	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 856		count += scnprintf(buf + count, len - count, "fast ");
 857	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 858		count += scnprintf(buf + count, len - count, "normal ");
 859	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 860		count += scnprintf(buf + count, len - count, "idle ");
 861	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 862		count += scnprintf(buf + count, len - count, "standby");
 863
 864	if (!count)
 865		scnprintf(buf, len, "no parameters");
 866
 867	rdev_dbg(rdev, "%s\n", buf);
 868
 869	if ((constraints->min_uV != constraints->max_uV) &&
 870	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 871		rdev_warn(rdev,
 872			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 873}
 874
 875static int machine_constraints_voltage(struct regulator_dev *rdev,
 876	struct regulation_constraints *constraints)
 877{
 878	const struct regulator_ops *ops = rdev->desc->ops;
 879	int ret;
 880
 881	/* do we need to apply the constraint voltage */
 882	if (rdev->constraints->apply_uV &&
 883	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
 884		int target_min, target_max;
 885		int current_uV = _regulator_get_voltage(rdev);
 886		if (current_uV < 0) {
 887			rdev_err(rdev,
 888				 "failed to get the current voltage(%d)\n",
 889				 current_uV);
 890			return current_uV;
 891		}
 892
 893		/*
 894		 * If we're below the minimum voltage move up to the
 895		 * minimum voltage, if we're above the maximum voltage
 896		 * then move down to the maximum.
 897		 */
 898		target_min = current_uV;
 899		target_max = current_uV;
 900
 901		if (current_uV < rdev->constraints->min_uV) {
 902			target_min = rdev->constraints->min_uV;
 903			target_max = rdev->constraints->min_uV;
 904		}
 905
 906		if (current_uV > rdev->constraints->max_uV) {
 907			target_min = rdev->constraints->max_uV;
 908			target_max = rdev->constraints->max_uV;
 909		}
 910
 911		if (target_min != current_uV || target_max != current_uV) {
 912			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 913				  current_uV, target_min, target_max);
 914			ret = _regulator_do_set_voltage(
 915				rdev, target_min, target_max);
 916			if (ret < 0) {
 917				rdev_err(rdev,
 918					"failed to apply %d-%duV constraint(%d)\n",
 919					target_min, target_max, ret);
 920				return ret;
 921			}
 922		}
 923	}
 924
 925	/* constrain machine-level voltage specs to fit
 926	 * the actual range supported by this regulator.
 927	 */
 928	if (ops->list_voltage && rdev->desc->n_voltages) {
 929		int	count = rdev->desc->n_voltages;
 930		int	i;
 931		int	min_uV = INT_MAX;
 932		int	max_uV = INT_MIN;
 933		int	cmin = constraints->min_uV;
 934		int	cmax = constraints->max_uV;
 935
 936		/* it's safe to autoconfigure fixed-voltage supplies
 937		   and the constraints are used by list_voltage. */
 938		if (count == 1 && !cmin) {
 939			cmin = 1;
 940			cmax = INT_MAX;
 941			constraints->min_uV = cmin;
 942			constraints->max_uV = cmax;
 943		}
 944
 945		/* voltage constraints are optional */
 946		if ((cmin == 0) && (cmax == 0))
 947			return 0;
 948
 949		/* else require explicit machine-level constraints */
 950		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 951			rdev_err(rdev, "invalid voltage constraints\n");
 952			return -EINVAL;
 953		}
 954
 955		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 956		for (i = 0; i < count; i++) {
 957			int	value;
 958
 959			value = ops->list_voltage(rdev, i);
 960			if (value <= 0)
 961				continue;
 962
 963			/* maybe adjust [min_uV..max_uV] */
 964			if (value >= cmin && value < min_uV)
 965				min_uV = value;
 966			if (value <= cmax && value > max_uV)
 967				max_uV = value;
 968		}
 969
 970		/* final: [min_uV..max_uV] valid iff constraints valid */
 971		if (max_uV < min_uV) {
 972			rdev_err(rdev,
 973				 "unsupportable voltage constraints %u-%uuV\n",
 974				 min_uV, max_uV);
 975			return -EINVAL;
 976		}
 977
 978		/* use regulator's subset of machine constraints */
 979		if (constraints->min_uV < min_uV) {
 980			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 981				 constraints->min_uV, min_uV);
 982			constraints->min_uV = min_uV;
 983		}
 984		if (constraints->max_uV > max_uV) {
 985			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 986				 constraints->max_uV, max_uV);
 987			constraints->max_uV = max_uV;
 988		}
 989	}
 990
 991	return 0;
 992}
 993
 994static int machine_constraints_current(struct regulator_dev *rdev,
 995	struct regulation_constraints *constraints)
 996{
 997	const struct regulator_ops *ops = rdev->desc->ops;
 998	int ret;
 999
1000	if (!constraints->min_uA && !constraints->max_uA)
1001		return 0;
1002
1003	if (constraints->min_uA > constraints->max_uA) {
1004		rdev_err(rdev, "Invalid current constraints\n");
1005		return -EINVAL;
1006	}
1007
1008	if (!ops->set_current_limit || !ops->get_current_limit) {
1009		rdev_warn(rdev, "Operation of current configuration missing\n");
1010		return 0;
1011	}
1012
1013	/* Set regulator current in constraints range */
1014	ret = ops->set_current_limit(rdev, constraints->min_uA,
1015			constraints->max_uA);
1016	if (ret < 0) {
1017		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018		return ret;
1019	}
1020
1021	return 0;
1022}
1023
1024static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026/**
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1030 *
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035 * set_mode.
1036 */
1037static int set_machine_constraints(struct regulator_dev *rdev,
1038	const struct regulation_constraints *constraints)
1039{
1040	int ret = 0;
1041	const struct regulator_ops *ops = rdev->desc->ops;
1042
1043	if (constraints)
1044		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045					    GFP_KERNEL);
1046	else
1047		rdev->constraints = kzalloc(sizeof(*constraints),
1048					    GFP_KERNEL);
1049	if (!rdev->constraints)
1050		return -ENOMEM;
1051
1052	ret = machine_constraints_voltage(rdev, rdev->constraints);
1053	if (ret != 0)
1054		return ret;
1055
1056	ret = machine_constraints_current(rdev, rdev->constraints);
1057	if (ret != 0)
1058		return ret;
1059
1060	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061		ret = ops->set_input_current_limit(rdev,
1062						   rdev->constraints->ilim_uA);
1063		if (ret < 0) {
1064			rdev_err(rdev, "failed to set input limit\n");
1065			return ret;
1066		}
1067	}
1068
1069	/* do we need to setup our suspend state */
1070	if (rdev->constraints->initial_state) {
1071		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072		if (ret < 0) {
1073			rdev_err(rdev, "failed to set suspend state\n");
1074			return ret;
1075		}
1076	}
1077
1078	if (rdev->constraints->initial_mode) {
1079		if (!ops->set_mode) {
1080			rdev_err(rdev, "no set_mode operation\n");
1081			return -EINVAL;
 
1082		}
1083
1084		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085		if (ret < 0) {
1086			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087			return ret;
1088		}
1089	}
1090
1091	/* If the constraints say the regulator should be on at this point
1092	 * and we have control then make sure it is enabled.
1093	 */
1094	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095		ret = _regulator_do_enable(rdev);
1096		if (ret < 0 && ret != -EINVAL) {
 
1097			rdev_err(rdev, "failed to enable\n");
1098			return ret;
1099		}
1100	}
1101
1102	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103		&& ops->set_ramp_delay) {
1104		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105		if (ret < 0) {
1106			rdev_err(rdev, "failed to set ramp_delay\n");
1107			return ret;
1108		}
1109	}
1110
1111	if (rdev->constraints->pull_down && ops->set_pull_down) {
1112		ret = ops->set_pull_down(rdev);
1113		if (ret < 0) {
1114			rdev_err(rdev, "failed to set pull down\n");
1115			return ret;
1116		}
1117	}
1118
1119	if (rdev->constraints->soft_start && ops->set_soft_start) {
1120		ret = ops->set_soft_start(rdev);
1121		if (ret < 0) {
1122			rdev_err(rdev, "failed to set soft start\n");
1123			return ret;
1124		}
1125	}
1126
1127	if (rdev->constraints->over_current_protection
1128		&& ops->set_over_current_protection) {
1129		ret = ops->set_over_current_protection(rdev);
1130		if (ret < 0) {
1131			rdev_err(rdev, "failed to set over current protection\n");
1132			return ret;
1133		}
1134	}
1135
1136	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137		bool ad_state = (rdev->constraints->active_discharge ==
1138			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140		ret = ops->set_active_discharge(rdev, ad_state);
1141		if (ret < 0) {
1142			rdev_err(rdev, "failed to set active discharge\n");
1143			return ret;
1144		}
1145	}
1146
1147	print_constraints(rdev);
1148	return 0;
 
 
 
 
1149}
1150
1151/**
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1155 *
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1159 */
1160static int set_supply(struct regulator_dev *rdev,
1161		      struct regulator_dev *supply_rdev)
1162{
1163	int err;
1164
1165	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167	if (!try_module_get(supply_rdev->owner))
1168		return -ENODEV;
1169
1170	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171	if (rdev->supply == NULL) {
1172		err = -ENOMEM;
 
1173		return err;
1174	}
1175	supply_rdev->open_count++;
1176
1177	return 0;
1178}
1179
1180/**
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev:         regulator source
 
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply:       symbolic name for supply
1185 *
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices.  Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
 
 
1190 */
1191static int set_consumer_device_supply(struct regulator_dev *rdev,
1192				      const char *consumer_dev_name,
1193				      const char *supply)
1194{
1195	struct regulator_map *node;
1196	int has_dev;
1197
 
 
 
 
 
 
1198	if (supply == NULL)
1199		return -EINVAL;
1200
1201	if (consumer_dev_name != NULL)
1202		has_dev = 1;
1203	else
1204		has_dev = 0;
1205
1206	list_for_each_entry(node, &regulator_map_list, list) {
1207		if (node->dev_name && consumer_dev_name) {
1208			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209				continue;
1210		} else if (node->dev_name || consumer_dev_name) {
1211			continue;
1212		}
1213
1214		if (strcmp(node->supply, supply) != 0)
1215			continue;
1216
1217		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218			 consumer_dev_name,
1219			 dev_name(&node->regulator->dev),
1220			 node->regulator->desc->name,
1221			 supply,
1222			 dev_name(&rdev->dev), rdev_get_name(rdev));
1223		return -EBUSY;
1224	}
1225
1226	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227	if (node == NULL)
1228		return -ENOMEM;
1229
1230	node->regulator = rdev;
1231	node->supply = supply;
1232
1233	if (has_dev) {
1234		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235		if (node->dev_name == NULL) {
1236			kfree(node);
1237			return -ENOMEM;
1238		}
1239	}
1240
1241	list_add(&node->list, &regulator_map_list);
1242	return 0;
1243}
1244
1245static void unset_regulator_supplies(struct regulator_dev *rdev)
1246{
1247	struct regulator_map *node, *n;
1248
1249	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250		if (rdev == node->regulator) {
1251			list_del(&node->list);
1252			kfree(node->dev_name);
1253			kfree(node);
1254		}
1255	}
1256}
1257
1258#ifdef CONFIG_DEBUG_FS
1259static ssize_t constraint_flags_read_file(struct file *file,
1260					  char __user *user_buf,
1261					  size_t count, loff_t *ppos)
1262{
1263	const struct regulator *regulator = file->private_data;
1264	const struct regulation_constraints *c = regulator->rdev->constraints;
1265	char *buf;
1266	ssize_t ret;
1267
1268	if (!c)
1269		return 0;
1270
1271	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272	if (!buf)
1273		return -ENOMEM;
1274
1275	ret = snprintf(buf, PAGE_SIZE,
1276			"always_on: %u\n"
1277			"boot_on: %u\n"
1278			"apply_uV: %u\n"
1279			"ramp_disable: %u\n"
1280			"soft_start: %u\n"
1281			"pull_down: %u\n"
1282			"over_current_protection: %u\n",
1283			c->always_on,
1284			c->boot_on,
1285			c->apply_uV,
1286			c->ramp_disable,
1287			c->soft_start,
1288			c->pull_down,
1289			c->over_current_protection);
1290
1291	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292	kfree(buf);
1293
1294	return ret;
1295}
1296
1297#endif
1298
1299static const struct file_operations constraint_flags_fops = {
1300#ifdef CONFIG_DEBUG_FS
1301	.open = simple_open,
1302	.read = constraint_flags_read_file,
1303	.llseek = default_llseek,
1304#endif
1305};
1306
1307#define REG_STR_SIZE	64
1308
1309static struct regulator *create_regulator(struct regulator_dev *rdev,
1310					  struct device *dev,
1311					  const char *supply_name)
1312{
1313	struct regulator *regulator;
1314	char buf[REG_STR_SIZE];
1315	int err, size;
1316
1317	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318	if (regulator == NULL)
1319		return NULL;
1320
1321	mutex_lock(&rdev->mutex);
1322	regulator->rdev = rdev;
1323	list_add(&regulator->list, &rdev->consumer_list);
1324
1325	if (dev) {
 
 
 
 
 
 
 
1326		regulator->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
1327
1328		/* Add a link to the device sysfs entry */
1329		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330				 dev->kobj.name, supply_name);
1331		if (size >= REG_STR_SIZE)
1332			goto overflow_err;
1333
1334		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335		if (regulator->supply_name == NULL)
1336			goto overflow_err;
1337
1338		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339					buf);
1340		if (err) {
1341			rdev_dbg(rdev, "could not add device link %s err %d\n",
1342				  dev->kobj.name, err);
1343			/* non-fatal */
1344		}
1345	} else {
1346		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347		if (regulator->supply_name == NULL)
1348			goto overflow_err;
1349	}
1350
 
1351	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352						rdev->debugfs);
1353	if (!regulator->debugfs) {
1354		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
1355	} else {
1356		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357				   &regulator->uA_load);
1358		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359				   &regulator->min_uV);
1360		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361				   &regulator->max_uV);
1362		debugfs_create_file("constraint_flags", 0444,
1363				    regulator->debugfs, regulator,
1364				    &constraint_flags_fops);
1365	}
1366
1367	/*
1368	 * Check now if the regulator is an always on regulator - if
1369	 * it is then we don't need to do nearly so much work for
1370	 * enable/disable calls.
1371	 */
1372	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373	    _regulator_is_enabled(rdev))
1374		regulator->always_on = true;
1375
1376	mutex_unlock(&rdev->mutex);
1377	return regulator;
 
 
 
 
 
 
1378overflow_err:
1379	list_del(&regulator->list);
1380	kfree(regulator);
1381	mutex_unlock(&rdev->mutex);
1382	return NULL;
1383}
1384
1385static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386{
1387	if (rdev->constraints && rdev->constraints->enable_time)
1388		return rdev->constraints->enable_time;
1389	if (!rdev->desc->ops->enable_time)
1390		return rdev->desc->enable_time;
1391	return rdev->desc->ops->enable_time(rdev);
1392}
1393
1394static struct regulator_supply_alias *regulator_find_supply_alias(
1395		struct device *dev, const char *supply)
 
1396{
1397	struct regulator_supply_alias *map;
1398
1399	list_for_each_entry(map, &regulator_supply_alias_list, list)
1400		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401			return map;
1402
1403	return NULL;
1404}
1405
1406static void regulator_supply_alias(struct device **dev, const char **supply)
1407{
1408	struct regulator_supply_alias *map;
1409
1410	map = regulator_find_supply_alias(*dev, *supply);
1411	if (map) {
1412		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413				*supply, map->alias_supply,
1414				dev_name(map->alias_dev));
1415		*dev = map->alias_dev;
1416		*supply = map->alias_supply;
1417	}
1418}
1419
1420static int of_node_match(struct device *dev, const void *data)
1421{
1422	return dev->of_node == data;
1423}
1424
1425static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426{
1427	struct device *dev;
1428
1429	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431	return dev ? dev_to_rdev(dev) : NULL;
1432}
1433
1434static int regulator_match(struct device *dev, const void *data)
1435{
1436	struct regulator_dev *r = dev_to_rdev(dev);
1437
1438	return strcmp(rdev_get_name(r), data) == 0;
1439}
1440
1441static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442{
1443	struct device *dev;
1444
1445	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447	return dev ? dev_to_rdev(dev) : NULL;
1448}
1449
1450/**
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455 * lookup could succeed in the future.
1456 *
1457 * If successful, returns a struct regulator_dev that corresponds to the name
1458 * @supply and with the embedded struct device refcount incremented by one,
1459 * or NULL on failure. The refcount must be dropped by calling put_device().
1460 */
1461static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462						  const char *supply,
1463						  int *ret)
1464{
1465	struct regulator_dev *r;
1466	struct device_node *node;
1467	struct regulator_map *map;
 
1468	const char *devname = NULL;
 
1469
1470	regulator_supply_alias(&dev, &supply);
1471
1472	/* first do a dt based lookup */
1473	if (dev && dev->of_node) {
1474		node = of_get_regulator(dev, supply);
1475		if (node) {
1476			r = of_find_regulator_by_node(node);
1477			if (r)
1478				return r;
1479			*ret = -EPROBE_DEFER;
1480			return NULL;
1481		} else {
1482			/*
1483			 * If we couldn't even get the node then it's
1484			 * not just that the device didn't register
1485			 * yet, there's no node and we'll never
1486			 * succeed.
1487			 */
1488			*ret = -ENODEV;
1489		}
1490	}
1491
1492	/* if not found, try doing it non-dt way */
1493	if (dev)
1494		devname = dev_name(dev);
1495
1496	r = regulator_lookup_by_name(supply);
1497	if (r)
1498		return r;
1499
1500	mutex_lock(&regulator_list_mutex);
1501	list_for_each_entry(map, &regulator_map_list, list) {
1502		/* If the mapping has a device set up it must match */
1503		if (map->dev_name &&
1504		    (!devname || strcmp(map->dev_name, devname)))
1505			continue;
1506
1507		if (strcmp(map->supply, supply) == 0 &&
1508		    get_device(&map->regulator->dev)) {
1509			mutex_unlock(&regulator_list_mutex);
1510			return map->regulator;
1511		}
1512	}
1513	mutex_unlock(&regulator_list_mutex);
1514
1515	return NULL;
1516}
1517
1518static int regulator_resolve_supply(struct regulator_dev *rdev)
1519{
1520	struct regulator_dev *r;
1521	struct device *dev = rdev->dev.parent;
1522	int ret;
1523
1524	/* No supply to resovle? */
1525	if (!rdev->supply_name)
1526		return 0;
1527
1528	/* Supply already resolved? */
1529	if (rdev->supply)
1530		return 0;
1531
1532	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533	if (!r) {
1534		if (ret == -ENODEV) {
1535			/*
1536			 * No supply was specified for this regulator and
1537			 * there will never be one.
1538			 */
1539			return 0;
1540		}
1541
1542		/* Did the lookup explicitly defer for us? */
1543		if (ret == -EPROBE_DEFER)
1544			return ret;
1545
1546		if (have_full_constraints()) {
1547			r = dummy_regulator_rdev;
1548			get_device(&r->dev);
1549		} else {
1550			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551				rdev->supply_name, rdev->desc->name);
1552			return -EPROBE_DEFER;
1553		}
1554	}
1555
1556	/* Recursively resolve the supply of the supply */
1557	ret = regulator_resolve_supply(r);
1558	if (ret < 0) {
1559		put_device(&r->dev);
1560		return ret;
1561	}
1562
1563	ret = set_supply(rdev, r);
1564	if (ret < 0) {
1565		put_device(&r->dev);
1566		return ret;
1567	}
1568
1569	/* Cascade always-on state to supply */
1570	if (_regulator_is_enabled(rdev)) {
1571		ret = regulator_enable(rdev->supply);
1572		if (ret < 0) {
1573			_regulator_put(rdev->supply);
1574			rdev->supply = NULL;
1575			return ret;
1576		}
1577	}
1578
1579	return 0;
1580}
1581
1582/* Internal regulator request function */
1583static struct regulator *_regulator_get(struct device *dev, const char *id,
1584					bool exclusive, bool allow_dummy)
1585{
1586	struct regulator_dev *rdev;
1587	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1588	const char *devname = NULL;
1589	int ret;
1590
1591	if (id == NULL) {
1592		pr_err("get() with no identifier\n");
1593		return ERR_PTR(-EINVAL);
1594	}
1595
1596	if (dev)
1597		devname = dev_name(dev);
1598
1599	if (have_full_constraints())
1600		ret = -ENODEV;
1601	else
1602		ret = -EPROBE_DEFER;
1603
1604	rdev = regulator_dev_lookup(dev, id, &ret);
1605	if (rdev)
1606		goto found;
1607
1608	regulator = ERR_PTR(ret);
1609
1610	/*
1611	 * If we have return value from dev_lookup fail, we do not expect to
1612	 * succeed, so, quit with appropriate error value
1613	 */
1614	if (ret && ret != -ENODEV)
1615		return regulator;
1616
1617	if (!devname)
1618		devname = "deviceless";
1619
1620	/*
1621	 * Assume that a regulator is physically present and enabled
1622	 * even if it isn't hooked up and just provide a dummy.
1623	 */
1624	if (have_full_constraints() && allow_dummy) {
1625		pr_warn("%s supply %s not found, using dummy regulator\n",
1626			devname, id);
1627
1628		rdev = dummy_regulator_rdev;
1629		get_device(&rdev->dev);
1630		goto found;
1631	/* Don't log an error when called from regulator_get_optional() */
1632	} else if (!have_full_constraints() || exclusive) {
1633		dev_warn(dev, "dummy supplies not allowed\n");
1634	}
 
1635
 
1636	return regulator;
1637
1638found:
1639	if (rdev->exclusive) {
1640		regulator = ERR_PTR(-EPERM);
1641		put_device(&rdev->dev);
1642		return regulator;
1643	}
1644
1645	if (exclusive && rdev->open_count) {
1646		regulator = ERR_PTR(-EBUSY);
1647		put_device(&rdev->dev);
1648		return regulator;
1649	}
1650
1651	ret = regulator_resolve_supply(rdev);
1652	if (ret < 0) {
1653		regulator = ERR_PTR(ret);
1654		put_device(&rdev->dev);
1655		return regulator;
1656	}
1657
1658	if (!try_module_get(rdev->owner)) {
1659		put_device(&rdev->dev);
1660		return regulator;
1661	}
1662
1663	regulator = create_regulator(rdev, dev, id);
1664	if (regulator == NULL) {
1665		regulator = ERR_PTR(-ENOMEM);
1666		put_device(&rdev->dev);
1667		module_put(rdev->owner);
1668		return regulator;
1669	}
1670
1671	rdev->open_count++;
1672	if (exclusive) {
1673		rdev->exclusive = 1;
1674
1675		ret = _regulator_is_enabled(rdev);
1676		if (ret > 0)
1677			rdev->use_count = 1;
1678		else
1679			rdev->use_count = 0;
1680	}
1681
 
 
 
1682	return regulator;
1683}
1684
1685/**
1686 * regulator_get - lookup and obtain a reference to a regulator.
1687 * @dev: device for regulator "consumer"
1688 * @id: Supply name or regulator ID.
1689 *
1690 * Returns a struct regulator corresponding to the regulator producer,
1691 * or IS_ERR() condition containing errno.
1692 *
1693 * Use of supply names configured via regulator_set_device_supply() is
1694 * strongly encouraged.  It is recommended that the supply name used
1695 * should match the name used for the supply and/or the relevant
1696 * device pins in the datasheet.
1697 */
1698struct regulator *regulator_get(struct device *dev, const char *id)
1699{
1700	return _regulator_get(dev, id, false, true);
1701}
1702EXPORT_SYMBOL_GPL(regulator_get);
1703
1704/**
1705 * regulator_get_exclusive - obtain exclusive access to a regulator.
1706 * @dev: device for regulator "consumer"
1707 * @id: Supply name or regulator ID.
1708 *
1709 * Returns a struct regulator corresponding to the regulator producer,
1710 * or IS_ERR() condition containing errno.  Other consumers will be
1711 * unable to obtain this regulator while this reference is held and the
1712 * use count for the regulator will be initialised to reflect the current
1713 * state of the regulator.
1714 *
1715 * This is intended for use by consumers which cannot tolerate shared
1716 * use of the regulator such as those which need to force the
1717 * regulator off for correct operation of the hardware they are
1718 * controlling.
1719 *
1720 * Use of supply names configured via regulator_set_device_supply() is
1721 * strongly encouraged.  It is recommended that the supply name used
1722 * should match the name used for the supply and/or the relevant
1723 * device pins in the datasheet.
1724 */
1725struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726{
1727	return _regulator_get(dev, id, true, false);
1728}
1729EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1730
1731/**
1732 * regulator_get_optional - obtain optional access to a regulator.
1733 * @dev: device for regulator "consumer"
1734 * @id: Supply name or regulator ID.
1735 *
1736 * Returns a struct regulator corresponding to the regulator producer,
1737 * or IS_ERR() condition containing errno.
1738 *
1739 * This is intended for use by consumers for devices which can have
1740 * some supplies unconnected in normal use, such as some MMC devices.
1741 * It can allow the regulator core to provide stub supplies for other
1742 * supplies requested using normal regulator_get() calls without
1743 * disrupting the operation of drivers that can handle absent
1744 * supplies.
1745 *
1746 * Use of supply names configured via regulator_set_device_supply() is
1747 * strongly encouraged.  It is recommended that the supply name used
1748 * should match the name used for the supply and/or the relevant
1749 * device pins in the datasheet.
1750 */
1751struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752{
1753	return _regulator_get(dev, id, false, false);
1754}
1755EXPORT_SYMBOL_GPL(regulator_get_optional);
1756
1757/* regulator_list_mutex lock held by regulator_put() */
1758static void _regulator_put(struct regulator *regulator)
1759{
1760	struct regulator_dev *rdev;
1761
1762	if (IS_ERR_OR_NULL(regulator))
1763		return;
1764
1765	lockdep_assert_held_once(&regulator_list_mutex);
1766
1767	rdev = regulator->rdev;
1768
 
1769	debugfs_remove_recursive(regulator->debugfs);
 
1770
1771	/* remove any sysfs entries */
1772	if (regulator->dev)
1773		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1774	mutex_lock(&rdev->mutex);
 
 
 
1775	list_del(&regulator->list);
 
1776
1777	rdev->open_count--;
1778	rdev->exclusive = 0;
1779	put_device(&rdev->dev);
1780	mutex_unlock(&rdev->mutex);
1781
1782	kfree(regulator->supply_name);
1783	kfree(regulator);
1784
1785	module_put(rdev->owner);
1786}
1787
1788/**
1789 * regulator_put - "free" the regulator source
1790 * @regulator: regulator source
1791 *
1792 * Note: drivers must ensure that all regulator_enable calls made on this
1793 * regulator source are balanced by regulator_disable calls prior to calling
1794 * this function.
1795 */
1796void regulator_put(struct regulator *regulator)
1797{
1798	mutex_lock(&regulator_list_mutex);
1799	_regulator_put(regulator);
1800	mutex_unlock(&regulator_list_mutex);
1801}
1802EXPORT_SYMBOL_GPL(regulator_put);
1803
1804/**
1805 * regulator_register_supply_alias - Provide device alias for supply lookup
1806 *
1807 * @dev: device that will be given as the regulator "consumer"
1808 * @id: Supply name or regulator ID
1809 * @alias_dev: device that should be used to lookup the supply
1810 * @alias_id: Supply name or regulator ID that should be used to lookup the
1811 * supply
1812 *
1813 * All lookups for id on dev will instead be conducted for alias_id on
1814 * alias_dev.
1815 */
1816int regulator_register_supply_alias(struct device *dev, const char *id,
1817				    struct device *alias_dev,
1818				    const char *alias_id)
1819{
1820	struct regulator_supply_alias *map;
1821
1822	map = regulator_find_supply_alias(dev, id);
1823	if (map)
1824		return -EEXIST;
1825
1826	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1827	if (!map)
1828		return -ENOMEM;
1829
1830	map->src_dev = dev;
1831	map->src_supply = id;
1832	map->alias_dev = alias_dev;
1833	map->alias_supply = alias_id;
1834
1835	list_add(&map->list, &regulator_supply_alias_list);
1836
1837	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1838		id, dev_name(dev), alias_id, dev_name(alias_dev));
1839
1840	return 0;
1841}
1842EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1843
1844/**
1845 * regulator_unregister_supply_alias - Remove device alias
1846 *
1847 * @dev: device that will be given as the regulator "consumer"
1848 * @id: Supply name or regulator ID
1849 *
1850 * Remove a lookup alias if one exists for id on dev.
1851 */
1852void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853{
1854	struct regulator_supply_alias *map;
 
1855
1856	map = regulator_find_supply_alias(dev, id);
1857	if (map) {
1858		list_del(&map->list);
1859		kfree(map);
1860	}
1861}
1862EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1863
1864/**
1865 * regulator_bulk_register_supply_alias - register multiple aliases
1866 *
1867 * @dev: device that will be given as the regulator "consumer"
1868 * @id: List of supply names or regulator IDs
1869 * @alias_dev: device that should be used to lookup the supply
1870 * @alias_id: List of supply names or regulator IDs that should be used to
1871 * lookup the supply
1872 * @num_id: Number of aliases to register
1873 *
1874 * @return 0 on success, an errno on failure.
1875 *
1876 * This helper function allows drivers to register several supply
1877 * aliases in one operation.  If any of the aliases cannot be
1878 * registered any aliases that were registered will be removed
1879 * before returning to the caller.
1880 */
1881int regulator_bulk_register_supply_alias(struct device *dev,
1882					 const char *const *id,
1883					 struct device *alias_dev,
1884					 const char *const *alias_id,
1885					 int num_id)
1886{
1887	int i;
1888	int ret;
1889
1890	for (i = 0; i < num_id; ++i) {
1891		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1892						      alias_id[i]);
1893		if (ret < 0)
1894			goto err;
1895	}
1896
1897	return 0;
1898
1899err:
1900	dev_err(dev,
1901		"Failed to create supply alias %s,%s -> %s,%s\n",
1902		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903
1904	while (--i >= 0)
1905		regulator_unregister_supply_alias(dev, id[i]);
1906
1907	return ret;
1908}
1909EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1910
1911/**
1912 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913 *
1914 * @dev: device that will be given as the regulator "consumer"
1915 * @id: List of supply names or regulator IDs
1916 * @num_id: Number of aliases to unregister
1917 *
1918 * This helper function allows drivers to unregister several supply
1919 * aliases in one operation.
1920 */
1921void regulator_bulk_unregister_supply_alias(struct device *dev,
1922					    const char *const *id,
1923					    int num_id)
1924{
1925	int i;
1926
1927	for (i = 0; i < num_id; ++i)
1928		regulator_unregister_supply_alias(dev, id[i]);
1929}
1930EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1931
1932
1933/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1934static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1935				const struct regulator_config *config)
1936{
1937	struct regulator_enable_gpio *pin;
1938	struct gpio_desc *gpiod;
1939	int ret;
1940
1941	gpiod = gpio_to_desc(config->ena_gpio);
1942
1943	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1944		if (pin->gpiod == gpiod) {
1945			rdev_dbg(rdev, "GPIO %d is already used\n",
1946				config->ena_gpio);
1947			goto update_ena_gpio_to_rdev;
1948		}
1949	}
1950
1951	ret = gpio_request_one(config->ena_gpio,
1952				GPIOF_DIR_OUT | config->ena_gpio_flags,
1953				rdev_get_name(rdev));
1954	if (ret)
1955		return ret;
1956
1957	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1958	if (pin == NULL) {
1959		gpio_free(config->ena_gpio);
1960		return -ENOMEM;
1961	}
1962
1963	pin->gpiod = gpiod;
1964	pin->ena_gpio_invert = config->ena_gpio_invert;
1965	list_add(&pin->list, &regulator_ena_gpio_list);
1966
1967update_ena_gpio_to_rdev:
1968	pin->request_count++;
1969	rdev->ena_pin = pin;
1970	return 0;
1971}
1972
1973static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974{
1975	struct regulator_enable_gpio *pin, *n;
1976
1977	if (!rdev->ena_pin)
1978		return;
1979
1980	/* Free the GPIO only in case of no use */
1981	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1982		if (pin->gpiod == rdev->ena_pin->gpiod) {
1983			if (pin->request_count <= 1) {
1984				pin->request_count = 0;
1985				gpiod_put(pin->gpiod);
1986				list_del(&pin->list);
1987				kfree(pin);
1988				rdev->ena_pin = NULL;
1989				return;
1990			} else {
1991				pin->request_count--;
1992			}
1993		}
1994	}
1995}
1996
1997/**
1998 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1999 * @rdev: regulator_dev structure
2000 * @enable: enable GPIO at initial use?
2001 *
2002 * GPIO is enabled in case of initial use. (enable_count is 0)
2003 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004 */
2005static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006{
2007	struct regulator_enable_gpio *pin = rdev->ena_pin;
2008
2009	if (!pin)
2010		return -EINVAL;
2011
2012	if (enable) {
2013		/* Enable GPIO at initial use */
2014		if (pin->enable_count == 0)
2015			gpiod_set_value_cansleep(pin->gpiod,
2016						 !pin->ena_gpio_invert);
2017
2018		pin->enable_count++;
2019	} else {
2020		if (pin->enable_count > 1) {
2021			pin->enable_count--;
2022			return 0;
2023		}
2024
2025		/* Disable GPIO if not used */
2026		if (pin->enable_count <= 1) {
2027			gpiod_set_value_cansleep(pin->gpiod,
2028						 pin->ena_gpio_invert);
2029			pin->enable_count = 0;
2030		}
2031	}
2032
2033	return 0;
2034}
2035
2036/**
2037 * _regulator_enable_delay - a delay helper function
2038 * @delay: time to delay in microseconds
2039 *
2040 * Delay for the requested amount of time as per the guidelines in:
2041 *
2042 *     Documentation/timers/timers-howto.txt
2043 *
2044 * The assumption here is that regulators will never be enabled in
2045 * atomic context and therefore sleeping functions can be used.
2046 */
2047static void _regulator_enable_delay(unsigned int delay)
2048{
2049	unsigned int ms = delay / 1000;
2050	unsigned int us = delay % 1000;
2051
2052	if (ms > 0) {
2053		/*
2054		 * For small enough values, handle super-millisecond
2055		 * delays in the usleep_range() call below.
2056		 */
2057		if (ms < 20)
2058			us += ms * 1000;
2059		else
2060			msleep(ms);
2061	}
2062
2063	/*
2064	 * Give the scheduler some room to coalesce with any other
2065	 * wakeup sources. For delays shorter than 10 us, don't even
2066	 * bother setting up high-resolution timers and just busy-
2067	 * loop.
2068	 */
2069	if (us >= 10)
2070		usleep_range(us, us + 100);
2071	else
2072		udelay(us);
2073}
2074
2075static int _regulator_do_enable(struct regulator_dev *rdev)
2076{
2077	int ret, delay;
2078
2079	/* Query before enabling in case configuration dependent.  */
2080	ret = _regulator_get_enable_time(rdev);
2081	if (ret >= 0) {
2082		delay = ret;
2083	} else {
2084		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2085		delay = 0;
2086	}
2087
2088	trace_regulator_enable(rdev_get_name(rdev));
2089
2090	if (rdev->desc->off_on_delay) {
2091		/* if needed, keep a distance of off_on_delay from last time
2092		 * this regulator was disabled.
2093		 */
2094		unsigned long start_jiffy = jiffies;
2095		unsigned long intended, max_delay, remaining;
2096
2097		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2098		intended = rdev->last_off_jiffy + max_delay;
2099
2100		if (time_before(start_jiffy, intended)) {
2101			/* calc remaining jiffies to deal with one-time
2102			 * timer wrapping.
2103			 * in case of multiple timer wrapping, either it can be
2104			 * detected by out-of-range remaining, or it cannot be
2105			 * detected and we gets a panelty of
2106			 * _regulator_enable_delay().
2107			 */
2108			remaining = intended - start_jiffy;
2109			if (remaining <= max_delay)
2110				_regulator_enable_delay(
2111						jiffies_to_usecs(remaining));
2112		}
2113	}
2114
2115	if (rdev->ena_pin) {
2116		if (!rdev->ena_gpio_state) {
2117			ret = regulator_ena_gpio_ctrl(rdev, true);
2118			if (ret < 0)
2119				return ret;
2120			rdev->ena_gpio_state = 1;
2121		}
2122	} else if (rdev->desc->ops->enable) {
2123		ret = rdev->desc->ops->enable(rdev);
2124		if (ret < 0)
2125			return ret;
2126	} else {
2127		return -EINVAL;
2128	}
2129
2130	/* Allow the regulator to ramp; it would be useful to extend
2131	 * this for bulk operations so that the regulators can ramp
2132	 * together.  */
2133	trace_regulator_enable_delay(rdev_get_name(rdev));
2134
2135	_regulator_enable_delay(delay);
2136
2137	trace_regulator_enable_complete(rdev_get_name(rdev));
2138
2139	return 0;
2140}
2141
2142/* locks held by regulator_enable() */
2143static int _regulator_enable(struct regulator_dev *rdev)
2144{
2145	int ret;
2146
2147	lockdep_assert_held_once(&rdev->mutex);
2148
2149	/* check voltage and requested load before enabling */
2150	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
2151		drms_uA_update(rdev);
2152
2153	if (rdev->use_count == 0) {
2154		/* The regulator may on if it's not switchable or left on */
2155		ret = _regulator_is_enabled(rdev);
2156		if (ret == -EINVAL || ret == 0) {
2157			if (!regulator_ops_is_valid(rdev,
2158					REGULATOR_CHANGE_STATUS))
2159				return -EPERM;
2160
2161			ret = _regulator_do_enable(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162			if (ret < 0)
2163				return ret;
2164
 
 
 
 
 
 
 
 
 
 
 
2165		} else if (ret < 0) {
2166			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2167			return ret;
2168		}
2169		/* Fallthrough on positive return values - already enabled */
2170	}
2171
2172	rdev->use_count++;
2173
2174	return 0;
2175}
2176
2177/**
2178 * regulator_enable - enable regulator output
2179 * @regulator: regulator source
2180 *
2181 * Request that the regulator be enabled with the regulator output at
2182 * the predefined voltage or current value.  Calls to regulator_enable()
2183 * must be balanced with calls to regulator_disable().
2184 *
2185 * NOTE: the output value can be set by other drivers, boot loader or may be
2186 * hardwired in the regulator.
2187 */
2188int regulator_enable(struct regulator *regulator)
2189{
2190	struct regulator_dev *rdev = regulator->rdev;
2191	int ret = 0;
2192
2193	if (regulator->always_on)
2194		return 0;
2195
2196	if (rdev->supply) {
2197		ret = regulator_enable(rdev->supply);
2198		if (ret != 0)
2199			return ret;
2200	}
2201
2202	mutex_lock(&rdev->mutex);
2203	ret = _regulator_enable(rdev);
2204	mutex_unlock(&rdev->mutex);
2205
2206	if (ret != 0 && rdev->supply)
2207		regulator_disable(rdev->supply);
2208
2209	return ret;
2210}
2211EXPORT_SYMBOL_GPL(regulator_enable);
2212
2213static int _regulator_do_disable(struct regulator_dev *rdev)
2214{
2215	int ret;
2216
2217	trace_regulator_disable(rdev_get_name(rdev));
2218
2219	if (rdev->ena_pin) {
2220		if (rdev->ena_gpio_state) {
2221			ret = regulator_ena_gpio_ctrl(rdev, false);
2222			if (ret < 0)
2223				return ret;
2224			rdev->ena_gpio_state = 0;
2225		}
2226
2227	} else if (rdev->desc->ops->disable) {
2228		ret = rdev->desc->ops->disable(rdev);
2229		if (ret != 0)
2230			return ret;
2231	}
2232
2233	/* cares about last_off_jiffy only if off_on_delay is required by
2234	 * device.
2235	 */
2236	if (rdev->desc->off_on_delay)
2237		rdev->last_off_jiffy = jiffies;
2238
2239	trace_regulator_disable_complete(rdev_get_name(rdev));
2240
2241	return 0;
2242}
2243
2244/* locks held by regulator_disable() */
2245static int _regulator_disable(struct regulator_dev *rdev)
2246{
2247	int ret = 0;
2248
2249	lockdep_assert_held_once(&rdev->mutex);
2250
2251	if (WARN(rdev->use_count <= 0,
2252		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2253		return -EIO;
2254
2255	/* are we the last user and permitted to disable ? */
2256	if (rdev->use_count == 1 &&
2257	    (rdev->constraints && !rdev->constraints->always_on)) {
2258
2259		/* we are last user */
2260		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2261			ret = _notifier_call_chain(rdev,
2262						   REGULATOR_EVENT_PRE_DISABLE,
2263						   NULL);
2264			if (ret & NOTIFY_STOP_MASK)
2265				return -EINVAL;
2266
2267			ret = _regulator_do_disable(rdev);
2268			if (ret < 0) {
2269				rdev_err(rdev, "failed to disable\n");
2270				_notifier_call_chain(rdev,
2271						REGULATOR_EVENT_ABORT_DISABLE,
2272						NULL);
2273				return ret;
2274			}
 
 
 
2275			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2276					NULL);
2277		}
2278
2279		rdev->use_count = 0;
2280	} else if (rdev->use_count > 1) {
2281		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
 
 
2282			drms_uA_update(rdev);
2283
2284		rdev->use_count--;
2285	}
2286
2287	return ret;
2288}
2289
2290/**
2291 * regulator_disable - disable regulator output
2292 * @regulator: regulator source
2293 *
2294 * Disable the regulator output voltage or current.  Calls to
2295 * regulator_enable() must be balanced with calls to
2296 * regulator_disable().
2297 *
2298 * NOTE: this will only disable the regulator output if no other consumer
2299 * devices have it enabled, the regulator device supports disabling and
2300 * machine constraints permit this operation.
2301 */
2302int regulator_disable(struct regulator *regulator)
2303{
2304	struct regulator_dev *rdev = regulator->rdev;
2305	int ret = 0;
2306
2307	if (regulator->always_on)
2308		return 0;
2309
2310	mutex_lock(&rdev->mutex);
2311	ret = _regulator_disable(rdev);
2312	mutex_unlock(&rdev->mutex);
2313
2314	if (ret == 0 && rdev->supply)
2315		regulator_disable(rdev->supply);
2316
2317	return ret;
2318}
2319EXPORT_SYMBOL_GPL(regulator_disable);
2320
2321/* locks held by regulator_force_disable() */
2322static int _regulator_force_disable(struct regulator_dev *rdev)
2323{
2324	int ret = 0;
2325
2326	lockdep_assert_held_once(&rdev->mutex);
2327
2328	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2329			REGULATOR_EVENT_PRE_DISABLE, NULL);
2330	if (ret & NOTIFY_STOP_MASK)
2331		return -EINVAL;
2332
2333	ret = _regulator_do_disable(rdev);
2334	if (ret < 0) {
2335		rdev_err(rdev, "failed to force disable\n");
2336		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2338		return ret;
2339	}
2340
2341	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342			REGULATOR_EVENT_DISABLE, NULL);
2343
2344	return 0;
2345}
2346
2347/**
2348 * regulator_force_disable - force disable regulator output
2349 * @regulator: regulator source
2350 *
2351 * Forcibly disable the regulator output voltage or current.
2352 * NOTE: this *will* disable the regulator output even if other consumer
2353 * devices have it enabled. This should be used for situations when device
2354 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355 */
2356int regulator_force_disable(struct regulator *regulator)
2357{
2358	struct regulator_dev *rdev = regulator->rdev;
2359	int ret;
2360
2361	mutex_lock(&rdev->mutex);
2362	regulator->uA_load = 0;
2363	ret = _regulator_force_disable(regulator->rdev);
2364	mutex_unlock(&rdev->mutex);
2365
2366	if (rdev->supply)
2367		while (rdev->open_count--)
2368			regulator_disable(rdev->supply);
2369
2370	return ret;
2371}
2372EXPORT_SYMBOL_GPL(regulator_force_disable);
2373
2374static void regulator_disable_work(struct work_struct *work)
2375{
2376	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2377						  disable_work.work);
2378	int count, i, ret;
2379
2380	mutex_lock(&rdev->mutex);
2381
2382	BUG_ON(!rdev->deferred_disables);
2383
2384	count = rdev->deferred_disables;
2385	rdev->deferred_disables = 0;
2386
2387	for (i = 0; i < count; i++) {
2388		ret = _regulator_disable(rdev);
2389		if (ret != 0)
2390			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2391	}
2392
2393	mutex_unlock(&rdev->mutex);
2394
2395	if (rdev->supply) {
2396		for (i = 0; i < count; i++) {
2397			ret = regulator_disable(rdev->supply);
2398			if (ret != 0) {
2399				rdev_err(rdev,
2400					 "Supply disable failed: %d\n", ret);
2401			}
2402		}
2403	}
2404}
2405
2406/**
2407 * regulator_disable_deferred - disable regulator output with delay
2408 * @regulator: regulator source
2409 * @ms: miliseconds until the regulator is disabled
2410 *
2411 * Execute regulator_disable() on the regulator after a delay.  This
2412 * is intended for use with devices that require some time to quiesce.
2413 *
2414 * NOTE: this will only disable the regulator output if no other consumer
2415 * devices have it enabled, the regulator device supports disabling and
2416 * machine constraints permit this operation.
2417 */
2418int regulator_disable_deferred(struct regulator *regulator, int ms)
2419{
2420	struct regulator_dev *rdev = regulator->rdev;
2421
2422	if (regulator->always_on)
2423		return 0;
2424
2425	if (!ms)
2426		return regulator_disable(regulator);
2427
2428	mutex_lock(&rdev->mutex);
2429	rdev->deferred_disables++;
2430	mutex_unlock(&rdev->mutex);
2431
2432	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2433			   msecs_to_jiffies(ms));
2434	return 0;
2435}
2436EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437
2438static int _regulator_is_enabled(struct regulator_dev *rdev)
2439{
2440	/* A GPIO control always takes precedence */
2441	if (rdev->ena_pin)
2442		return rdev->ena_gpio_state;
2443
2444	/* If we don't know then assume that the regulator is always on */
2445	if (!rdev->desc->ops->is_enabled)
2446		return 1;
2447
2448	return rdev->desc->ops->is_enabled(rdev);
2449}
2450
2451static int _regulator_list_voltage(struct regulator *regulator,
2452				    unsigned selector, int lock)
2453{
2454	struct regulator_dev *rdev = regulator->rdev;
2455	const struct regulator_ops *ops = rdev->desc->ops;
2456	int ret;
2457
2458	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2459		return rdev->desc->fixed_uV;
2460
2461	if (ops->list_voltage) {
2462		if (selector >= rdev->desc->n_voltages)
2463			return -EINVAL;
2464		if (lock)
2465			mutex_lock(&rdev->mutex);
2466		ret = ops->list_voltage(rdev, selector);
2467		if (lock)
2468			mutex_unlock(&rdev->mutex);
2469	} else if (rdev->supply) {
2470		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2471	} else {
2472		return -EINVAL;
2473	}
2474
2475	if (ret > 0) {
2476		if (ret < rdev->constraints->min_uV)
2477			ret = 0;
2478		else if (ret > rdev->constraints->max_uV)
2479			ret = 0;
2480	}
2481
2482	return ret;
2483}
2484
2485/**
2486 * regulator_is_enabled - is the regulator output enabled
2487 * @regulator: regulator source
2488 *
2489 * Returns positive if the regulator driver backing the source/client
2490 * has requested that the device be enabled, zero if it hasn't, else a
2491 * negative errno code.
2492 *
2493 * Note that the device backing this regulator handle can have multiple
2494 * users, so it might be enabled even if regulator_enable() was never
2495 * called for this particular source.
2496 */
2497int regulator_is_enabled(struct regulator *regulator)
2498{
2499	int ret;
2500
2501	if (regulator->always_on)
2502		return 1;
2503
2504	mutex_lock(&regulator->rdev->mutex);
2505	ret = _regulator_is_enabled(regulator->rdev);
2506	mutex_unlock(&regulator->rdev->mutex);
2507
2508	return ret;
2509}
2510EXPORT_SYMBOL_GPL(regulator_is_enabled);
2511
2512/**
2513 * regulator_count_voltages - count regulator_list_voltage() selectors
2514 * @regulator: regulator source
2515 *
2516 * Returns number of selectors, or negative errno.  Selectors are
2517 * numbered starting at zero, and typically correspond to bitfields
2518 * in hardware registers.
2519 */
2520int regulator_count_voltages(struct regulator *regulator)
2521{
2522	struct regulator_dev	*rdev = regulator->rdev;
2523
2524	if (rdev->desc->n_voltages)
2525		return rdev->desc->n_voltages;
2526
2527	if (!rdev->supply)
2528		return -EINVAL;
2529
2530	return regulator_count_voltages(rdev->supply);
2531}
2532EXPORT_SYMBOL_GPL(regulator_count_voltages);
2533
2534/**
2535 * regulator_list_voltage - enumerate supported voltages
2536 * @regulator: regulator source
2537 * @selector: identify voltage to list
2538 * Context: can sleep
2539 *
2540 * Returns a voltage that can be passed to @regulator_set_voltage(),
2541 * zero if this selector code can't be used on this system, or a
2542 * negative errno.
2543 */
2544int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545{
2546	return _regulator_list_voltage(regulator, selector, 1);
2547}
2548EXPORT_SYMBOL_GPL(regulator_list_voltage);
2549
2550/**
2551 * regulator_get_regmap - get the regulator's register map
2552 * @regulator: regulator source
2553 *
2554 * Returns the register map for the given regulator, or an ERR_PTR value
2555 * if the regulator doesn't use regmap.
2556 */
2557struct regmap *regulator_get_regmap(struct regulator *regulator)
2558{
2559	struct regmap *map = regulator->rdev->regmap;
2560
2561	return map ? map : ERR_PTR(-EOPNOTSUPP);
2562}
2563
2564/**
2565 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2566 * @regulator: regulator source
2567 * @vsel_reg: voltage selector register, output parameter
2568 * @vsel_mask: mask for voltage selector bitfield, output parameter
2569 *
2570 * Returns the hardware register offset and bitmask used for setting the
2571 * regulator voltage. This might be useful when configuring voltage-scaling
2572 * hardware or firmware that can make I2C requests behind the kernel's back,
2573 * for example.
2574 *
2575 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2576 * and 0 is returned, otherwise a negative errno is returned.
2577 */
2578int regulator_get_hardware_vsel_register(struct regulator *regulator,
2579					 unsigned *vsel_reg,
2580					 unsigned *vsel_mask)
2581{
2582	struct regulator_dev *rdev = regulator->rdev;
2583	const struct regulator_ops *ops = rdev->desc->ops;
2584
2585	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2586		return -EOPNOTSUPP;
2587
2588	 *vsel_reg = rdev->desc->vsel_reg;
2589	 *vsel_mask = rdev->desc->vsel_mask;
2590
2591	 return 0;
2592}
2593EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2594
2595/**
2596 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2597 * @regulator: regulator source
2598 * @selector: identify voltage to list
2599 *
2600 * Converts the selector to a hardware-specific voltage selector that can be
2601 * directly written to the regulator registers. The address of the voltage
2602 * register can be determined by calling @regulator_get_hardware_vsel_register.
2603 *
2604 * On error a negative errno is returned.
2605 */
2606int regulator_list_hardware_vsel(struct regulator *regulator,
2607				 unsigned selector)
2608{
2609	struct regulator_dev *rdev = regulator->rdev;
2610	const struct regulator_ops *ops = rdev->desc->ops;
2611
2612	if (selector >= rdev->desc->n_voltages)
2613		return -EINVAL;
2614	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2615		return -EOPNOTSUPP;
2616
2617	return selector;
2618}
2619EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2620
2621/**
2622 * regulator_get_linear_step - return the voltage step size between VSEL values
2623 * @regulator: regulator source
2624 *
2625 * Returns the voltage step size between VSEL values for linear
2626 * regulators, or return 0 if the regulator isn't a linear regulator.
2627 */
2628unsigned int regulator_get_linear_step(struct regulator *regulator)
2629{
2630	struct regulator_dev *rdev = regulator->rdev;
2631
2632	return rdev->desc->uV_step;
2633}
2634EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2635
2636/**
2637 * regulator_is_supported_voltage - check if a voltage range can be supported
2638 *
2639 * @regulator: Regulator to check.
2640 * @min_uV: Minimum required voltage in uV.
2641 * @max_uV: Maximum required voltage in uV.
2642 *
2643 * Returns a boolean or a negative error code.
2644 */
2645int regulator_is_supported_voltage(struct regulator *regulator,
2646				   int min_uV, int max_uV)
2647{
2648	struct regulator_dev *rdev = regulator->rdev;
2649	int i, voltages, ret;
2650
2651	/* If we can't change voltage check the current voltage */
2652	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2653		ret = regulator_get_voltage(regulator);
2654		if (ret >= 0)
2655			return min_uV <= ret && ret <= max_uV;
2656		else
2657			return ret;
2658	}
2659
2660	/* Any voltage within constrains range is fine? */
2661	if (rdev->desc->continuous_voltage_range)
2662		return min_uV >= rdev->constraints->min_uV &&
2663				max_uV <= rdev->constraints->max_uV;
2664
2665	ret = regulator_count_voltages(regulator);
2666	if (ret < 0)
2667		return ret;
2668	voltages = ret;
2669
2670	for (i = 0; i < voltages; i++) {
2671		ret = regulator_list_voltage(regulator, i);
2672
2673		if (ret >= min_uV && ret <= max_uV)
2674			return 1;
2675	}
2676
2677	return 0;
2678}
2679EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680
2681static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2682				 int max_uV)
2683{
2684	const struct regulator_desc *desc = rdev->desc;
2685
2686	if (desc->ops->map_voltage)
2687		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688
2689	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2690		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691
2692	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2693		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694
2695	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2696}
2697
2698static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2699				       int min_uV, int max_uV,
2700				       unsigned *selector)
2701{
2702	struct pre_voltage_change_data data;
2703	int ret;
2704
2705	data.old_uV = _regulator_get_voltage(rdev);
2706	data.min_uV = min_uV;
2707	data.max_uV = max_uV;
2708	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2709				   &data);
2710	if (ret & NOTIFY_STOP_MASK)
2711		return -EINVAL;
2712
2713	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2714	if (ret >= 0)
2715		return ret;
2716
2717	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2718			     (void *)data.old_uV);
2719
2720	return ret;
2721}
2722
2723static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2724					   int uV, unsigned selector)
2725{
2726	struct pre_voltage_change_data data;
2727	int ret;
2728
2729	data.old_uV = _regulator_get_voltage(rdev);
2730	data.min_uV = uV;
2731	data.max_uV = uV;
2732	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2733				   &data);
2734	if (ret & NOTIFY_STOP_MASK)
2735		return -EINVAL;
2736
2737	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2738	if (ret >= 0)
2739		return ret;
2740
2741	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2742			     (void *)data.old_uV);
2743
2744	return ret;
2745}
2746
2747static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2748				       int old_uV, int new_uV)
2749{
2750	unsigned int ramp_delay = 0;
2751
2752	if (rdev->constraints->ramp_delay)
2753		ramp_delay = rdev->constraints->ramp_delay;
2754	else if (rdev->desc->ramp_delay)
2755		ramp_delay = rdev->desc->ramp_delay;
2756
2757	if (ramp_delay == 0) {
2758		rdev_dbg(rdev, "ramp_delay not set\n");
2759		return 0;
2760	}
2761
2762	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2763}
2764
2765static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2766				     int min_uV, int max_uV)
2767{
2768	int ret;
2769	int delay = 0;
2770	int best_val = 0;
2771	unsigned int selector;
2772	int old_selector = -1;
2773	const struct regulator_ops *ops = rdev->desc->ops;
2774	int old_uV = _regulator_get_voltage(rdev);
2775
2776	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777
2778	min_uV += rdev->constraints->uV_offset;
2779	max_uV += rdev->constraints->uV_offset;
2780
2781	/*
2782	 * If we can't obtain the old selector there is not enough
2783	 * info to call set_voltage_time_sel().
2784	 */
2785	if (_regulator_is_enabled(rdev) &&
2786	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2787		old_selector = ops->get_voltage_sel(rdev);
2788		if (old_selector < 0)
2789			return old_selector;
2790	}
2791
2792	if (ops->set_voltage) {
2793		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2794						  &selector);
2795
2796		if (ret >= 0) {
2797			if (ops->list_voltage)
2798				best_val = ops->list_voltage(rdev,
2799							     selector);
2800			else
2801				best_val = _regulator_get_voltage(rdev);
2802		}
2803
2804	} else if (ops->set_voltage_sel) {
2805		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2806		if (ret >= 0) {
2807			best_val = ops->list_voltage(rdev, ret);
2808			if (min_uV <= best_val && max_uV >= best_val) {
2809				selector = ret;
2810				if (old_selector == selector)
2811					ret = 0;
2812				else
2813					ret = _regulator_call_set_voltage_sel(
2814						rdev, best_val, selector);
2815			} else {
2816				ret = -EINVAL;
2817			}
2818		}
2819	} else {
2820		ret = -EINVAL;
2821	}
2822
2823	if (ret)
2824		goto out;
2825
2826	if (ops->set_voltage_time_sel) {
2827		/*
2828		 * Call set_voltage_time_sel if successfully obtained
2829		 * old_selector
2830		 */
2831		if (old_selector >= 0 && old_selector != selector)
2832			delay = ops->set_voltage_time_sel(rdev, old_selector,
2833							  selector);
2834	} else {
2835		if (old_uV != best_val) {
2836			if (ops->set_voltage_time)
2837				delay = ops->set_voltage_time(rdev, old_uV,
2838							      best_val);
2839			else
2840				delay = _regulator_set_voltage_time(rdev,
2841								    old_uV,
2842								    best_val);
2843		}
2844	}
2845
2846	if (delay < 0) {
2847		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2848		delay = 0;
 
 
 
 
 
2849	}
2850
2851	/* Insert any necessary delays */
2852	if (delay >= 1000) {
2853		mdelay(delay / 1000);
2854		udelay(delay % 1000);
2855	} else if (delay) {
2856		udelay(delay);
2857	}
2858
2859	if (best_val >= 0) {
2860		unsigned long data = best_val;
2861
2862		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2863				     (void *)data);
2864	}
2865
2866out:
2867	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868
2869	return ret;
2870}
2871
2872static int regulator_set_voltage_unlocked(struct regulator *regulator,
2873					  int min_uV, int max_uV)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2874{
2875	struct regulator_dev *rdev = regulator->rdev;
2876	int ret = 0;
2877	int old_min_uV, old_max_uV;
2878	int current_uV;
2879	int best_supply_uV = 0;
2880	int supply_change_uV = 0;
2881
2882	/* If we're setting the same range as last time the change
2883	 * should be a noop (some cpufreq implementations use the same
2884	 * voltage for multiple frequencies, for example).
2885	 */
2886	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2887		goto out;
2888
2889	/* If we're trying to set a range that overlaps the current voltage,
2890	 * return successfully even though the regulator does not support
2891	 * changing the voltage.
2892	 */
2893	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2894		current_uV = _regulator_get_voltage(rdev);
2895		if (min_uV <= current_uV && current_uV <= max_uV) {
2896			regulator->min_uV = min_uV;
2897			regulator->max_uV = max_uV;
2898			goto out;
2899		}
2900	}
2901
2902	/* sanity check */
2903	if (!rdev->desc->ops->set_voltage &&
2904	    !rdev->desc->ops->set_voltage_sel) {
2905		ret = -EINVAL;
2906		goto out;
2907	}
2908
2909	/* constraints check */
2910	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2911	if (ret < 0)
2912		goto out;
2913
2914	/* restore original values in case of error */
2915	old_min_uV = regulator->min_uV;
2916	old_max_uV = regulator->max_uV;
2917	regulator->min_uV = min_uV;
2918	regulator->max_uV = max_uV;
2919
2920	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921	if (ret < 0)
2922		goto out2;
2923
2924	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2925				!rdev->desc->ops->get_voltage)) {
2926		int current_supply_uV;
2927		int selector;
2928
2929		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2930		if (selector < 0) {
2931			ret = selector;
2932			goto out2;
2933		}
2934
2935		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2936		if (best_supply_uV < 0) {
2937			ret = best_supply_uV;
2938			goto out2;
2939		}
2940
2941		best_supply_uV += rdev->desc->min_dropout_uV;
2942
2943		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2944		if (current_supply_uV < 0) {
2945			ret = current_supply_uV;
2946			goto out2;
2947		}
2948
2949		supply_change_uV = best_supply_uV - current_supply_uV;
2950	}
2951
2952	if (supply_change_uV > 0) {
2953		ret = regulator_set_voltage_unlocked(rdev->supply,
2954				best_supply_uV, INT_MAX);
2955		if (ret) {
2956			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2957					ret);
2958			goto out2;
2959		}
2960	}
2961
2962	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2963	if (ret < 0)
2964		goto out2;
2965
2966	if (supply_change_uV < 0) {
2967		ret = regulator_set_voltage_unlocked(rdev->supply,
2968				best_supply_uV, INT_MAX);
2969		if (ret)
2970			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2971					ret);
2972		/* No need to fail here */
2973		ret = 0;
2974	}
2975
2976out:
2977	return ret;
2978out2:
2979	regulator->min_uV = old_min_uV;
2980	regulator->max_uV = old_max_uV;
2981
2982	return ret;
2983}
2984
2985/**
2986 * regulator_set_voltage - set regulator output voltage
2987 * @regulator: regulator source
2988 * @min_uV: Minimum required voltage in uV
2989 * @max_uV: Maximum acceptable voltage in uV
2990 *
2991 * Sets a voltage regulator to the desired output voltage. This can be set
2992 * during any regulator state. IOW, regulator can be disabled or enabled.
2993 *
2994 * If the regulator is enabled then the voltage will change to the new value
2995 * immediately otherwise if the regulator is disabled the regulator will
2996 * output at the new voltage when enabled.
2997 *
2998 * NOTE: If the regulator is shared between several devices then the lowest
2999 * request voltage that meets the system constraints will be used.
3000 * Regulator system constraints must be set for this regulator before
3001 * calling this function otherwise this call will fail.
3002 */
3003int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004{
3005	int ret = 0;
3006
3007	regulator_lock_supply(regulator->rdev);
3008
3009	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3010
3011	regulator_unlock_supply(regulator->rdev);
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(regulator_set_voltage);
3016
3017/**
3018 * regulator_set_voltage_time - get raise/fall time
3019 * @regulator: regulator source
3020 * @old_uV: starting voltage in microvolts
3021 * @new_uV: target voltage in microvolts
3022 *
3023 * Provided with the starting and ending voltage, this function attempts to
3024 * calculate the time in microseconds required to rise or fall to this new
3025 * voltage.
3026 */
3027int regulator_set_voltage_time(struct regulator *regulator,
3028			       int old_uV, int new_uV)
3029{
3030	struct regulator_dev *rdev = regulator->rdev;
3031	const struct regulator_ops *ops = rdev->desc->ops;
3032	int old_sel = -1;
3033	int new_sel = -1;
3034	int voltage;
3035	int i;
3036
3037	if (ops->set_voltage_time)
3038		return ops->set_voltage_time(rdev, old_uV, new_uV);
3039	else if (!ops->set_voltage_time_sel)
3040		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041
3042	/* Currently requires operations to do this */
3043	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
3044		return -EINVAL;
3045
3046	for (i = 0; i < rdev->desc->n_voltages; i++) {
3047		/* We only look for exact voltage matches here */
3048		voltage = regulator_list_voltage(regulator, i);
3049		if (voltage < 0)
3050			return -EINVAL;
3051		if (voltage == 0)
3052			continue;
3053		if (voltage == old_uV)
3054			old_sel = i;
3055		if (voltage == new_uV)
3056			new_sel = i;
3057	}
3058
3059	if (old_sel < 0 || new_sel < 0)
3060		return -EINVAL;
3061
3062	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063}
3064EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3065
3066/**
3067 * regulator_set_voltage_time_sel - get raise/fall time
3068 * @rdev: regulator source device
3069 * @old_selector: selector for starting voltage
3070 * @new_selector: selector for target voltage
3071 *
3072 * Provided with the starting and target voltage selectors, this function
3073 * returns time in microseconds required to rise or fall to this new voltage
3074 *
3075 * Drivers providing ramp_delay in regulation_constraints can use this as their
3076 * set_voltage_time_sel() operation.
3077 */
3078int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3079				   unsigned int old_selector,
3080				   unsigned int new_selector)
3081{
3082	int old_volt, new_volt;
3083
3084	/* sanity check */
3085	if (!rdev->desc->ops->list_voltage)
3086		return -EINVAL;
3087
3088	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3089	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090
3091	if (rdev->desc->ops->set_voltage_time)
3092		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3093							 new_volt);
3094	else
3095		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096}
3097EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3098
3099/**
3100 * regulator_sync_voltage - re-apply last regulator output voltage
3101 * @regulator: regulator source
3102 *
3103 * Re-apply the last configured voltage.  This is intended to be used
3104 * where some external control source the consumer is cooperating with
3105 * has caused the configured voltage to change.
3106 */
3107int regulator_sync_voltage(struct regulator *regulator)
3108{
3109	struct regulator_dev *rdev = regulator->rdev;
3110	int ret, min_uV, max_uV;
3111
3112	mutex_lock(&rdev->mutex);
3113
3114	if (!rdev->desc->ops->set_voltage &&
3115	    !rdev->desc->ops->set_voltage_sel) {
3116		ret = -EINVAL;
3117		goto out;
3118	}
3119
3120	/* This is only going to work if we've had a voltage configured. */
3121	if (!regulator->min_uV && !regulator->max_uV) {
3122		ret = -EINVAL;
3123		goto out;
3124	}
3125
3126	min_uV = regulator->min_uV;
3127	max_uV = regulator->max_uV;
3128
3129	/* This should be a paranoia check... */
3130	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3131	if (ret < 0)
3132		goto out;
3133
3134	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3135	if (ret < 0)
3136		goto out;
3137
3138	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3139
3140out:
3141	mutex_unlock(&rdev->mutex);
3142	return ret;
3143}
3144EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145
3146static int _regulator_get_voltage(struct regulator_dev *rdev)
3147{
3148	int sel, ret;
3149	bool bypassed;
3150
3151	if (rdev->desc->ops->get_bypass) {
3152		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3153		if (ret < 0)
3154			return ret;
3155		if (bypassed) {
3156			/* if bypassed the regulator must have a supply */
3157			if (!rdev->supply) {
3158				rdev_err(rdev,
3159					 "bypassed regulator has no supply!\n");
3160				return -EPROBE_DEFER;
3161			}
3162
3163			return _regulator_get_voltage(rdev->supply->rdev);
3164		}
3165	}
3166
3167	if (rdev->desc->ops->get_voltage_sel) {
3168		sel = rdev->desc->ops->get_voltage_sel(rdev);
3169		if (sel < 0)
3170			return sel;
3171		ret = rdev->desc->ops->list_voltage(rdev, sel);
3172	} else if (rdev->desc->ops->get_voltage) {
3173		ret = rdev->desc->ops->get_voltage(rdev);
3174	} else if (rdev->desc->ops->list_voltage) {
3175		ret = rdev->desc->ops->list_voltage(rdev, 0);
3176	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3177		ret = rdev->desc->fixed_uV;
3178	} else if (rdev->supply) {
3179		ret = _regulator_get_voltage(rdev->supply->rdev);
3180	} else {
3181		return -EINVAL;
3182	}
3183
3184	if (ret < 0)
3185		return ret;
3186	return ret - rdev->constraints->uV_offset;
3187}
3188
3189/**
3190 * regulator_get_voltage - get regulator output voltage
3191 * @regulator: regulator source
3192 *
3193 * This returns the current regulator voltage in uV.
3194 *
3195 * NOTE: If the regulator is disabled it will return the voltage value. This
3196 * function should not be used to determine regulator state.
3197 */
3198int regulator_get_voltage(struct regulator *regulator)
3199{
3200	int ret;
3201
3202	regulator_lock_supply(regulator->rdev);
3203
3204	ret = _regulator_get_voltage(regulator->rdev);
3205
3206	regulator_unlock_supply(regulator->rdev);
3207
3208	return ret;
3209}
3210EXPORT_SYMBOL_GPL(regulator_get_voltage);
3211
3212/**
3213 * regulator_set_current_limit - set regulator output current limit
3214 * @regulator: regulator source
3215 * @min_uA: Minimum supported current in uA
3216 * @max_uA: Maximum supported current in uA
3217 *
3218 * Sets current sink to the desired output current. This can be set during
3219 * any regulator state. IOW, regulator can be disabled or enabled.
3220 *
3221 * If the regulator is enabled then the current will change to the new value
3222 * immediately otherwise if the regulator is disabled the regulator will
3223 * output at the new current when enabled.
3224 *
3225 * NOTE: Regulator system constraints must be set for this regulator before
3226 * calling this function otherwise this call will fail.
3227 */
3228int regulator_set_current_limit(struct regulator *regulator,
3229			       int min_uA, int max_uA)
3230{
3231	struct regulator_dev *rdev = regulator->rdev;
3232	int ret;
3233
3234	mutex_lock(&rdev->mutex);
3235
3236	/* sanity check */
3237	if (!rdev->desc->ops->set_current_limit) {
3238		ret = -EINVAL;
3239		goto out;
3240	}
3241
3242	/* constraints check */
3243	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3244	if (ret < 0)
3245		goto out;
3246
3247	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3248out:
3249	mutex_unlock(&rdev->mutex);
3250	return ret;
3251}
3252EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253
3254static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255{
3256	int ret;
3257
3258	mutex_lock(&rdev->mutex);
3259
3260	/* sanity check */
3261	if (!rdev->desc->ops->get_current_limit) {
3262		ret = -EINVAL;
3263		goto out;
3264	}
3265
3266	ret = rdev->desc->ops->get_current_limit(rdev);
3267out:
3268	mutex_unlock(&rdev->mutex);
3269	return ret;
3270}
3271
3272/**
3273 * regulator_get_current_limit - get regulator output current
3274 * @regulator: regulator source
3275 *
3276 * This returns the current supplied by the specified current sink in uA.
3277 *
3278 * NOTE: If the regulator is disabled it will return the current value. This
3279 * function should not be used to determine regulator state.
3280 */
3281int regulator_get_current_limit(struct regulator *regulator)
3282{
3283	return _regulator_get_current_limit(regulator->rdev);
3284}
3285EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3286
3287/**
3288 * regulator_set_mode - set regulator operating mode
3289 * @regulator: regulator source
3290 * @mode: operating mode - one of the REGULATOR_MODE constants
3291 *
3292 * Set regulator operating mode to increase regulator efficiency or improve
3293 * regulation performance.
3294 *
3295 * NOTE: Regulator system constraints must be set for this regulator before
3296 * calling this function otherwise this call will fail.
3297 */
3298int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299{
3300	struct regulator_dev *rdev = regulator->rdev;
3301	int ret;
3302	int regulator_curr_mode;
3303
3304	mutex_lock(&rdev->mutex);
3305
3306	/* sanity check */
3307	if (!rdev->desc->ops->set_mode) {
3308		ret = -EINVAL;
3309		goto out;
3310	}
3311
3312	/* return if the same mode is requested */
3313	if (rdev->desc->ops->get_mode) {
3314		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3315		if (regulator_curr_mode == mode) {
3316			ret = 0;
3317			goto out;
3318		}
3319	}
3320
3321	/* constraints check */
3322	ret = regulator_mode_constrain(rdev, &mode);
3323	if (ret < 0)
3324		goto out;
3325
3326	ret = rdev->desc->ops->set_mode(rdev, mode);
3327out:
3328	mutex_unlock(&rdev->mutex);
3329	return ret;
3330}
3331EXPORT_SYMBOL_GPL(regulator_set_mode);
3332
3333static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334{
3335	int ret;
3336
3337	mutex_lock(&rdev->mutex);
3338
3339	/* sanity check */
3340	if (!rdev->desc->ops->get_mode) {
3341		ret = -EINVAL;
3342		goto out;
3343	}
3344
3345	ret = rdev->desc->ops->get_mode(rdev);
3346out:
3347	mutex_unlock(&rdev->mutex);
3348	return ret;
3349}
3350
3351/**
3352 * regulator_get_mode - get regulator operating mode
3353 * @regulator: regulator source
3354 *
3355 * Get the current regulator operating mode.
3356 */
3357unsigned int regulator_get_mode(struct regulator *regulator)
3358{
3359	return _regulator_get_mode(regulator->rdev);
3360}
3361EXPORT_SYMBOL_GPL(regulator_get_mode);
3362
3363static int _regulator_get_error_flags(struct regulator_dev *rdev,
3364					unsigned int *flags)
3365{
3366	int ret;
3367
3368	mutex_lock(&rdev->mutex);
3369
3370	/* sanity check */
3371	if (!rdev->desc->ops->get_error_flags) {
3372		ret = -EINVAL;
3373		goto out;
3374	}
3375
3376	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3377out:
3378	mutex_unlock(&rdev->mutex);
3379	return ret;
3380}
3381
3382/**
3383 * regulator_get_error_flags - get regulator error information
3384 * @regulator: regulator source
3385 * @flags: pointer to store error flags
3386 *
3387 * Get the current regulator error information.
3388 */
3389int regulator_get_error_flags(struct regulator *regulator,
3390				unsigned int *flags)
3391{
3392	return _regulator_get_error_flags(regulator->rdev, flags);
3393}
3394EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3395
3396/**
3397 * regulator_set_load - set regulator load
3398 * @regulator: regulator source
3399 * @uA_load: load current
3400 *
3401 * Notifies the regulator core of a new device load. This is then used by
3402 * DRMS (if enabled by constraints) to set the most efficient regulator
3403 * operating mode for the new regulator loading.
3404 *
3405 * Consumer devices notify their supply regulator of the maximum power
3406 * they will require (can be taken from device datasheet in the power
3407 * consumption tables) when they change operational status and hence power
3408 * state. Examples of operational state changes that can affect power
3409 * consumption are :-
3410 *
3411 *    o Device is opened / closed.
3412 *    o Device I/O is about to begin or has just finished.
3413 *    o Device is idling in between work.
3414 *
3415 * This information is also exported via sysfs to userspace.
3416 *
3417 * DRMS will sum the total requested load on the regulator and change
3418 * to the most efficient operating mode if platform constraints allow.
3419 *
3420 * On error a negative errno is returned.
3421 */
3422int regulator_set_load(struct regulator *regulator, int uA_load)
3423{
3424	struct regulator_dev *rdev = regulator->rdev;
3425	int ret;
 
 
3426
3427	mutex_lock(&rdev->mutex);
 
 
 
 
 
3428	regulator->uA_load = uA_load;
3429	ret = drms_uA_update(rdev);
3430	mutex_unlock(&rdev->mutex);
 
 
 
3431
3432	return ret;
3433}
3434EXPORT_SYMBOL_GPL(regulator_set_load);
3435
3436/**
3437 * regulator_allow_bypass - allow the regulator to go into bypass mode
3438 *
3439 * @regulator: Regulator to configure
3440 * @enable: enable or disable bypass mode
3441 *
3442 * Allow the regulator to go into bypass mode if all other consumers
3443 * for the regulator also enable bypass mode and the machine
3444 * constraints allow this.  Bypass mode means that the regulator is
3445 * simply passing the input directly to the output with no regulation.
3446 */
3447int regulator_allow_bypass(struct regulator *regulator, bool enable)
3448{
3449	struct regulator_dev *rdev = regulator->rdev;
3450	int ret = 0;
3451
3452	if (!rdev->desc->ops->set_bypass)
3453		return 0;
 
 
 
 
3454
3455	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3456		return 0;
 
 
 
 
 
 
 
 
3457
3458	mutex_lock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
3459
3460	if (enable && !regulator->bypass) {
3461		rdev->bypass_count++;
3462
3463		if (rdev->bypass_count == rdev->open_count) {
3464			ret = rdev->desc->ops->set_bypass(rdev, enable);
3465			if (ret != 0)
3466				rdev->bypass_count--;
3467		}
3468
3469	} else if (!enable && regulator->bypass) {
3470		rdev->bypass_count--;
3471
3472		if (rdev->bypass_count != rdev->open_count) {
3473			ret = rdev->desc->ops->set_bypass(rdev, enable);
3474			if (ret != 0)
3475				rdev->bypass_count++;
3476		}
3477	}
3478
3479	if (ret == 0)
3480		regulator->bypass = enable;
3481
3482	mutex_unlock(&rdev->mutex);
3483
3484	return ret;
3485}
3486EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3487
3488/**
3489 * regulator_register_notifier - register regulator event notifier
3490 * @regulator: regulator source
3491 * @nb: notifier block
3492 *
3493 * Register notifier block to receive regulator events.
3494 */
3495int regulator_register_notifier(struct regulator *regulator,
3496			      struct notifier_block *nb)
3497{
3498	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3499						nb);
3500}
3501EXPORT_SYMBOL_GPL(regulator_register_notifier);
3502
3503/**
3504 * regulator_unregister_notifier - unregister regulator event notifier
3505 * @regulator: regulator source
3506 * @nb: notifier block
3507 *
3508 * Unregister regulator event notifier block.
3509 */
3510int regulator_unregister_notifier(struct regulator *regulator,
3511				struct notifier_block *nb)
3512{
3513	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3514						  nb);
3515}
3516EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3517
3518/* notify regulator consumers and downstream regulator consumers.
3519 * Note mutex must be held by caller.
3520 */
3521static int _notifier_call_chain(struct regulator_dev *rdev,
3522				  unsigned long event, void *data)
3523{
3524	/* call rdev chain first */
3525	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3526}
3527
3528/**
3529 * regulator_bulk_get - get multiple regulator consumers
3530 *
3531 * @dev:           Device to supply
3532 * @num_consumers: Number of consumers to register
3533 * @consumers:     Configuration of consumers; clients are stored here.
3534 *
3535 * @return 0 on success, an errno on failure.
3536 *
3537 * This helper function allows drivers to get several regulator
3538 * consumers in one operation.  If any of the regulators cannot be
3539 * acquired then any regulators that were allocated will be freed
3540 * before returning to the caller.
3541 */
3542int regulator_bulk_get(struct device *dev, int num_consumers,
3543		       struct regulator_bulk_data *consumers)
3544{
3545	int i;
3546	int ret;
3547
3548	for (i = 0; i < num_consumers; i++)
3549		consumers[i].consumer = NULL;
3550
3551	for (i = 0; i < num_consumers; i++) {
3552		consumers[i].consumer = regulator_get(dev,
3553						      consumers[i].supply);
3554		if (IS_ERR(consumers[i].consumer)) {
3555			ret = PTR_ERR(consumers[i].consumer);
3556			dev_err(dev, "Failed to get supply '%s': %d\n",
3557				consumers[i].supply, ret);
3558			consumers[i].consumer = NULL;
3559			goto err;
3560		}
3561	}
3562
3563	return 0;
3564
3565err:
3566	while (--i >= 0)
3567		regulator_put(consumers[i].consumer);
3568
3569	return ret;
3570}
3571EXPORT_SYMBOL_GPL(regulator_bulk_get);
3572
3573static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3574{
3575	struct regulator_bulk_data *bulk = data;
3576
3577	bulk->ret = regulator_enable(bulk->consumer);
3578}
3579
3580/**
3581 * regulator_bulk_enable - enable multiple regulator consumers
3582 *
3583 * @num_consumers: Number of consumers
3584 * @consumers:     Consumer data; clients are stored here.
3585 * @return         0 on success, an errno on failure
3586 *
3587 * This convenience API allows consumers to enable multiple regulator
3588 * clients in a single API call.  If any consumers cannot be enabled
3589 * then any others that were enabled will be disabled again prior to
3590 * return.
3591 */
3592int regulator_bulk_enable(int num_consumers,
3593			  struct regulator_bulk_data *consumers)
3594{
3595	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3596	int i;
3597	int ret = 0;
3598
3599	for (i = 0; i < num_consumers; i++) {
3600		if (consumers[i].consumer->always_on)
3601			consumers[i].ret = 0;
3602		else
3603			async_schedule_domain(regulator_bulk_enable_async,
3604					      &consumers[i], &async_domain);
3605	}
3606
3607	async_synchronize_full_domain(&async_domain);
3608
3609	/* If any consumer failed we need to unwind any that succeeded */
3610	for (i = 0; i < num_consumers; i++) {
3611		if (consumers[i].ret != 0) {
3612			ret = consumers[i].ret;
3613			goto err;
3614		}
3615	}
3616
3617	return 0;
3618
3619err:
3620	for (i = 0; i < num_consumers; i++) {
3621		if (consumers[i].ret < 0)
3622			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3623			       consumers[i].ret);
3624		else
3625			regulator_disable(consumers[i].consumer);
3626	}
3627
3628	return ret;
3629}
3630EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3631
3632/**
3633 * regulator_bulk_disable - disable multiple regulator consumers
3634 *
3635 * @num_consumers: Number of consumers
3636 * @consumers:     Consumer data; clients are stored here.
3637 * @return         0 on success, an errno on failure
3638 *
3639 * This convenience API allows consumers to disable multiple regulator
3640 * clients in a single API call.  If any consumers cannot be disabled
3641 * then any others that were disabled will be enabled again prior to
3642 * return.
3643 */
3644int regulator_bulk_disable(int num_consumers,
3645			   struct regulator_bulk_data *consumers)
3646{
3647	int i;
3648	int ret, r;
3649
3650	for (i = num_consumers - 1; i >= 0; --i) {
3651		ret = regulator_disable(consumers[i].consumer);
3652		if (ret != 0)
3653			goto err;
3654	}
3655
3656	return 0;
3657
3658err:
3659	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3660	for (++i; i < num_consumers; ++i) {
3661		r = regulator_enable(consumers[i].consumer);
3662		if (r != 0)
3663			pr_err("Failed to reename %s: %d\n",
3664			       consumers[i].supply, r);
3665	}
3666
3667	return ret;
3668}
3669EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3670
3671/**
3672 * regulator_bulk_force_disable - force disable multiple regulator consumers
3673 *
3674 * @num_consumers: Number of consumers
3675 * @consumers:     Consumer data; clients are stored here.
3676 * @return         0 on success, an errno on failure
3677 *
3678 * This convenience API allows consumers to forcibly disable multiple regulator
3679 * clients in a single API call.
3680 * NOTE: This should be used for situations when device damage will
3681 * likely occur if the regulators are not disabled (e.g. over temp).
3682 * Although regulator_force_disable function call for some consumers can
3683 * return error numbers, the function is called for all consumers.
3684 */
3685int regulator_bulk_force_disable(int num_consumers,
3686			   struct regulator_bulk_data *consumers)
3687{
3688	int i;
3689	int ret;
3690
3691	for (i = 0; i < num_consumers; i++)
3692		consumers[i].ret =
3693			    regulator_force_disable(consumers[i].consumer);
3694
3695	for (i = 0; i < num_consumers; i++) {
3696		if (consumers[i].ret != 0) {
3697			ret = consumers[i].ret;
3698			goto out;
3699		}
3700	}
3701
3702	return 0;
3703out:
3704	return ret;
3705}
3706EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3707
3708/**
3709 * regulator_bulk_free - free multiple regulator consumers
3710 *
3711 * @num_consumers: Number of consumers
3712 * @consumers:     Consumer data; clients are stored here.
3713 *
3714 * This convenience API allows consumers to free multiple regulator
3715 * clients in a single API call.
3716 */
3717void regulator_bulk_free(int num_consumers,
3718			 struct regulator_bulk_data *consumers)
3719{
3720	int i;
3721
3722	for (i = 0; i < num_consumers; i++) {
3723		regulator_put(consumers[i].consumer);
3724		consumers[i].consumer = NULL;
3725	}
3726}
3727EXPORT_SYMBOL_GPL(regulator_bulk_free);
3728
3729/**
3730 * regulator_notifier_call_chain - call regulator event notifier
3731 * @rdev: regulator source
3732 * @event: notifier block
3733 * @data: callback-specific data.
3734 *
3735 * Called by regulator drivers to notify clients a regulator event has
3736 * occurred. We also notify regulator clients downstream.
3737 * Note lock must be held by caller.
3738 */
3739int regulator_notifier_call_chain(struct regulator_dev *rdev,
3740				  unsigned long event, void *data)
3741{
3742	lockdep_assert_held_once(&rdev->mutex);
3743
3744	_notifier_call_chain(rdev, event, data);
3745	return NOTIFY_DONE;
3746
3747}
3748EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3749
3750/**
3751 * regulator_mode_to_status - convert a regulator mode into a status
3752 *
3753 * @mode: Mode to convert
3754 *
3755 * Convert a regulator mode into a status.
3756 */
3757int regulator_mode_to_status(unsigned int mode)
3758{
3759	switch (mode) {
3760	case REGULATOR_MODE_FAST:
3761		return REGULATOR_STATUS_FAST;
3762	case REGULATOR_MODE_NORMAL:
3763		return REGULATOR_STATUS_NORMAL;
3764	case REGULATOR_MODE_IDLE:
3765		return REGULATOR_STATUS_IDLE;
3766	case REGULATOR_MODE_STANDBY:
3767		return REGULATOR_STATUS_STANDBY;
3768	default:
3769		return REGULATOR_STATUS_UNDEFINED;
3770	}
3771}
3772EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3773
3774static struct attribute *regulator_dev_attrs[] = {
3775	&dev_attr_name.attr,
3776	&dev_attr_num_users.attr,
3777	&dev_attr_type.attr,
3778	&dev_attr_microvolts.attr,
3779	&dev_attr_microamps.attr,
3780	&dev_attr_opmode.attr,
3781	&dev_attr_state.attr,
3782	&dev_attr_status.attr,
3783	&dev_attr_bypass.attr,
3784	&dev_attr_requested_microamps.attr,
3785	&dev_attr_min_microvolts.attr,
3786	&dev_attr_max_microvolts.attr,
3787	&dev_attr_min_microamps.attr,
3788	&dev_attr_max_microamps.attr,
3789	&dev_attr_suspend_standby_state.attr,
3790	&dev_attr_suspend_mem_state.attr,
3791	&dev_attr_suspend_disk_state.attr,
3792	&dev_attr_suspend_standby_microvolts.attr,
3793	&dev_attr_suspend_mem_microvolts.attr,
3794	&dev_attr_suspend_disk_microvolts.attr,
3795	&dev_attr_suspend_standby_mode.attr,
3796	&dev_attr_suspend_mem_mode.attr,
3797	&dev_attr_suspend_disk_mode.attr,
3798	NULL
3799};
3800
3801/*
3802 * To avoid cluttering sysfs (and memory) with useless state, only
3803 * create attributes that can be meaningfully displayed.
3804 */
3805static umode_t regulator_attr_is_visible(struct kobject *kobj,
3806					 struct attribute *attr, int idx)
3807{
3808	struct device *dev = kobj_to_dev(kobj);
3809	struct regulator_dev *rdev = dev_to_rdev(dev);
3810	const struct regulator_ops *ops = rdev->desc->ops;
3811	umode_t mode = attr->mode;
3812
3813	/* these three are always present */
3814	if (attr == &dev_attr_name.attr ||
3815	    attr == &dev_attr_num_users.attr ||
3816	    attr == &dev_attr_type.attr)
3817		return mode;
3818
3819	/* some attributes need specific methods to be displayed */
3820	if (attr == &dev_attr_microvolts.attr) {
3821		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3822		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3823		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3824		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3825			return mode;
3826		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3827	}
3828
3829	if (attr == &dev_attr_microamps.attr)
3830		return ops->get_current_limit ? mode : 0;
 
 
 
 
3831
3832	if (attr == &dev_attr_opmode.attr)
3833		return ops->get_mode ? mode : 0;
 
 
 
 
3834
3835	if (attr == &dev_attr_state.attr)
3836		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3837
3838	if (attr == &dev_attr_status.attr)
3839		return ops->get_status ? mode : 0;
 
3840
3841	if (attr == &dev_attr_bypass.attr)
3842		return ops->get_bypass ? mode : 0;
 
 
 
 
 
 
 
3843
3844	/* some attributes are type-specific */
3845	if (attr == &dev_attr_requested_microamps.attr)
3846		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3847
3848	/* constraints need specific supporting methods */
3849	if (attr == &dev_attr_min_microvolts.attr ||
3850	    attr == &dev_attr_max_microvolts.attr)
3851		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3852
3853	if (attr == &dev_attr_min_microamps.attr ||
3854	    attr == &dev_attr_max_microamps.attr)
3855		return ops->set_current_limit ? mode : 0;
3856
3857	if (attr == &dev_attr_suspend_standby_state.attr ||
3858	    attr == &dev_attr_suspend_mem_state.attr ||
3859	    attr == &dev_attr_suspend_disk_state.attr)
3860		return mode;
3861
3862	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3863	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3864	    attr == &dev_attr_suspend_disk_microvolts.attr)
3865		return ops->set_suspend_voltage ? mode : 0;
3866
3867	if (attr == &dev_attr_suspend_standby_mode.attr ||
3868	    attr == &dev_attr_suspend_mem_mode.attr ||
3869	    attr == &dev_attr_suspend_disk_mode.attr)
3870		return ops->set_suspend_mode ? mode : 0;
3871
3872	return mode;
3873}
3874
3875static const struct attribute_group regulator_dev_group = {
3876	.attrs = regulator_dev_attrs,
3877	.is_visible = regulator_attr_is_visible,
3878};
3879
3880static const struct attribute_group *regulator_dev_groups[] = {
3881	&regulator_dev_group,
3882	NULL
3883};
3884
3885static void regulator_dev_release(struct device *dev)
3886{
3887	struct regulator_dev *rdev = dev_get_drvdata(dev);
3888
3889	kfree(rdev->constraints);
3890	of_node_put(rdev->dev.of_node);
3891	kfree(rdev);
3892}
3893
3894static struct class regulator_class = {
3895	.name = "regulator",
3896	.dev_release = regulator_dev_release,
3897	.dev_groups = regulator_dev_groups,
3898};
3899
3900static void rdev_init_debugfs(struct regulator_dev *rdev)
3901{
3902	struct device *parent = rdev->dev.parent;
3903	const char *rname = rdev_get_name(rdev);
3904	char name[NAME_MAX];
3905
3906	/* Avoid duplicate debugfs directory names */
3907	if (parent && rname == rdev->desc->name) {
3908		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3909			 rname);
3910		rname = name;
3911	}
3912
3913	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3914	if (!rdev->debugfs) {
3915		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
3916		return;
3917	}
3918
3919	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3920			   &rdev->use_count);
3921	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3922			   &rdev->open_count);
3923	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3924			   &rdev->bypass_count);
3925}
3926
3927static int regulator_register_resolve_supply(struct device *dev, void *data)
3928{
3929	struct regulator_dev *rdev = dev_to_rdev(dev);
3930
3931	if (regulator_resolve_supply(rdev))
3932		rdev_dbg(rdev, "unable to resolve supply\n");
3933
3934	return 0;
3935}
3936
3937/**
3938 * regulator_register - register regulator
3939 * @regulator_desc: regulator to register
3940 * @cfg: runtime configuration for regulator
 
 
3941 *
3942 * Called by regulator drivers to register a regulator.
3943 * Returns a valid pointer to struct regulator_dev on success
3944 * or an ERR_PTR() on error.
3945 */
3946struct regulator_dev *
3947regulator_register(const struct regulator_desc *regulator_desc,
3948		   const struct regulator_config *cfg)
3949{
3950	const struct regulation_constraints *constraints = NULL;
3951	const struct regulator_init_data *init_data;
3952	struct regulator_config *config = NULL;
3953	static atomic_t regulator_no = ATOMIC_INIT(-1);
3954	struct regulator_dev *rdev;
3955	struct device *dev;
3956	int ret, i;
3957
3958	if (regulator_desc == NULL || cfg == NULL)
3959		return ERR_PTR(-EINVAL);
3960
3961	dev = cfg->dev;
3962	WARN_ON(!dev);
3963
3964	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3965		return ERR_PTR(-EINVAL);
3966
3967	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3968	    regulator_desc->type != REGULATOR_CURRENT)
3969		return ERR_PTR(-EINVAL);
3970
 
 
 
3971	/* Only one of each should be implemented */
3972	WARN_ON(regulator_desc->ops->get_voltage &&
3973		regulator_desc->ops->get_voltage_sel);
3974	WARN_ON(regulator_desc->ops->set_voltage &&
3975		regulator_desc->ops->set_voltage_sel);
3976
3977	/* If we're using selectors we must implement list_voltage. */
3978	if (regulator_desc->ops->get_voltage_sel &&
3979	    !regulator_desc->ops->list_voltage) {
3980		return ERR_PTR(-EINVAL);
3981	}
3982	if (regulator_desc->ops->set_voltage_sel &&
3983	    !regulator_desc->ops->list_voltage) {
3984		return ERR_PTR(-EINVAL);
3985	}
3986
3987	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3988	if (rdev == NULL)
3989		return ERR_PTR(-ENOMEM);
3990
3991	/*
3992	 * Duplicate the config so the driver could override it after
3993	 * parsing init data.
3994	 */
3995	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3996	if (config == NULL) {
3997		kfree(rdev);
3998		return ERR_PTR(-ENOMEM);
3999	}
4000
4001	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4002					       &rdev->dev.of_node);
4003	if (!init_data) {
4004		init_data = config->init_data;
4005		rdev->dev.of_node = of_node_get(config->of_node);
4006	}
4007
4008	mutex_init(&rdev->mutex);
4009	rdev->reg_data = config->driver_data;
4010	rdev->owner = regulator_desc->owner;
4011	rdev->desc = regulator_desc;
4012	if (config->regmap)
4013		rdev->regmap = config->regmap;
4014	else if (dev_get_regmap(dev, NULL))
4015		rdev->regmap = dev_get_regmap(dev, NULL);
4016	else if (dev->parent)
4017		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4018	INIT_LIST_HEAD(&rdev->consumer_list);
4019	INIT_LIST_HEAD(&rdev->list);
4020	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4021	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4022
4023	/* preform any regulator specific init */
4024	if (init_data && init_data->regulator_init) {
4025		ret = init_data->regulator_init(rdev->reg_data);
4026		if (ret < 0)
4027			goto clean;
4028	}
4029
4030	if ((config->ena_gpio || config->ena_gpio_initialized) &&
4031	    gpio_is_valid(config->ena_gpio)) {
4032		mutex_lock(&regulator_list_mutex);
4033		ret = regulator_ena_gpio_request(rdev, config);
4034		mutex_unlock(&regulator_list_mutex);
4035		if (ret != 0) {
4036			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4037				 config->ena_gpio, ret);
4038			goto clean;
4039		}
4040	}
4041
4042	/* register with sysfs */
4043	rdev->dev.class = &regulator_class;
4044	rdev->dev.parent = dev;
4045	dev_set_name(&rdev->dev, "regulator.%lu",
4046		    (unsigned long) atomic_inc_return(&regulator_no));
 
 
 
 
 
 
 
4047
4048	/* set regulator constraints */
4049	if (init_data)
4050		constraints = &init_data->constraints;
 
4051
4052	if (init_data && init_data->supply_regulator)
4053		rdev->supply_name = init_data->supply_regulator;
4054	else if (regulator_desc->supply_name)
4055		rdev->supply_name = regulator_desc->supply_name;
4056
4057	/*
4058	 * Attempt to resolve the regulator supply, if specified,
4059	 * but don't return an error if we fail because we will try
4060	 * to resolve it again later as more regulators are added.
4061	 */
4062	if (regulator_resolve_supply(rdev))
4063		rdev_dbg(rdev, "unable to resolve supply\n");
 
 
 
 
 
 
 
 
 
 
 
4064
4065	ret = set_machine_constraints(rdev, constraints);
4066	if (ret < 0)
4067		goto wash;
 
4068
4069	/* add consumers devices */
4070	if (init_data) {
4071		mutex_lock(&regulator_list_mutex);
4072		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4073			ret = set_consumer_device_supply(rdev,
4074				init_data->consumer_supplies[i].dev_name,
 
 
4075				init_data->consumer_supplies[i].supply);
4076			if (ret < 0) {
4077				mutex_unlock(&regulator_list_mutex);
4078				dev_err(dev, "Failed to set supply %s\n",
4079					init_data->consumer_supplies[i].supply);
4080				goto unset_supplies;
4081			}
4082		}
4083		mutex_unlock(&regulator_list_mutex);
4084	}
4085
4086	ret = device_register(&rdev->dev);
4087	if (ret != 0) {
4088		put_device(&rdev->dev);
4089		goto unset_supplies;
4090	}
4091
4092	dev_set_drvdata(&rdev->dev, rdev);
4093	rdev_init_debugfs(rdev);
4094
4095	/* try to resolve regulators supply since a new one was registered */
4096	class_for_each_device(&regulator_class, NULL, NULL,
4097			      regulator_register_resolve_supply);
4098	kfree(config);
4099	return rdev;
4100
4101unset_supplies:
4102	mutex_lock(&regulator_list_mutex);
4103	unset_regulator_supplies(rdev);
4104	mutex_unlock(&regulator_list_mutex);
4105wash:
4106	kfree(rdev->constraints);
4107	mutex_lock(&regulator_list_mutex);
4108	regulator_ena_gpio_free(rdev);
4109	mutex_unlock(&regulator_list_mutex);
 
 
4110clean:
4111	kfree(rdev);
4112	kfree(config);
4113	return ERR_PTR(ret);
4114}
4115EXPORT_SYMBOL_GPL(regulator_register);
4116
4117/**
4118 * regulator_unregister - unregister regulator
4119 * @rdev: regulator to unregister
4120 *
4121 * Called by regulator drivers to unregister a regulator.
4122 */
4123void regulator_unregister(struct regulator_dev *rdev)
4124{
4125	if (rdev == NULL)
4126		return;
4127
4128	if (rdev->supply) {
4129		while (rdev->use_count--)
4130			regulator_disable(rdev->supply);
4131		regulator_put(rdev->supply);
4132	}
4133	mutex_lock(&regulator_list_mutex);
 
4134	debugfs_remove_recursive(rdev->debugfs);
4135	flush_work(&rdev->disable_work.work);
4136	WARN_ON(rdev->open_count);
4137	unset_regulator_supplies(rdev);
4138	list_del(&rdev->list);
4139	regulator_ena_gpio_free(rdev);
 
 
 
4140	mutex_unlock(&regulator_list_mutex);
4141	device_unregister(&rdev->dev);
4142}
4143EXPORT_SYMBOL_GPL(regulator_unregister);
4144
4145static int _regulator_suspend_prepare(struct device *dev, void *data)
4146{
4147	struct regulator_dev *rdev = dev_to_rdev(dev);
4148	const suspend_state_t *state = data;
4149	int ret;
4150
4151	mutex_lock(&rdev->mutex);
4152	ret = suspend_prepare(rdev, *state);
4153	mutex_unlock(&rdev->mutex);
4154
4155	return ret;
4156}
4157
4158/**
4159 * regulator_suspend_prepare - prepare regulators for system wide suspend
4160 * @state: system suspend state
4161 *
4162 * Configure each regulator with it's suspend operating parameters for state.
4163 * This will usually be called by machine suspend code prior to supending.
4164 */
4165int regulator_suspend_prepare(suspend_state_t state)
4166{
 
 
 
4167	/* ON is handled by regulator active state */
4168	if (state == PM_SUSPEND_ON)
4169		return -EINVAL;
4170
4171	return class_for_each_device(&regulator_class, NULL, &state,
4172				     _regulator_suspend_prepare);
4173}
4174EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4175
4176static int _regulator_suspend_finish(struct device *dev, void *data)
4177{
4178	struct regulator_dev *rdev = dev_to_rdev(dev);
4179	int ret;
4180
4181	mutex_lock(&rdev->mutex);
4182	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4183		if (!_regulator_is_enabled(rdev)) {
4184			ret = _regulator_do_enable(rdev);
4185			if (ret)
4186				dev_err(dev,
4187					"Failed to resume regulator %d\n",
4188					ret);
4189		}
4190	} else {
4191		if (!have_full_constraints())
4192			goto unlock;
4193		if (!_regulator_is_enabled(rdev))
4194			goto unlock;
4195
4196		ret = _regulator_do_disable(rdev);
4197		if (ret)
4198			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4199	}
4200unlock:
4201	mutex_unlock(&rdev->mutex);
4202
4203	/* Keep processing regulators in spite of any errors */
4204	return 0;
4205}
 
4206
4207/**
4208 * regulator_suspend_finish - resume regulators from system wide suspend
4209 *
4210 * Turn on regulators that might be turned off by regulator_suspend_prepare
4211 * and that should be turned on according to the regulators properties.
4212 */
4213int regulator_suspend_finish(void)
4214{
4215	return class_for_each_device(&regulator_class, NULL, NULL,
4216				     _regulator_suspend_finish);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4217}
4218EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4219
4220/**
4221 * regulator_has_full_constraints - the system has fully specified constraints
4222 *
4223 * Calling this function will cause the regulator API to disable all
4224 * regulators which have a zero use count and don't have an always_on
4225 * constraint in a late_initcall.
4226 *
4227 * The intention is that this will become the default behaviour in a
4228 * future kernel release so users are encouraged to use this facility
4229 * now.
4230 */
4231void regulator_has_full_constraints(void)
4232{
4233	has_full_constraints = 1;
4234}
4235EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4236
4237/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4238 * rdev_get_drvdata - get rdev regulator driver data
4239 * @rdev: regulator
4240 *
4241 * Get rdev regulator driver private data. This call can be used in the
4242 * regulator driver context.
4243 */
4244void *rdev_get_drvdata(struct regulator_dev *rdev)
4245{
4246	return rdev->reg_data;
4247}
4248EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4249
4250/**
4251 * regulator_get_drvdata - get regulator driver data
4252 * @regulator: regulator
4253 *
4254 * Get regulator driver private data. This call can be used in the consumer
4255 * driver context when non API regulator specific functions need to be called.
4256 */
4257void *regulator_get_drvdata(struct regulator *regulator)
4258{
4259	return regulator->rdev->reg_data;
4260}
4261EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4262
4263/**
4264 * regulator_set_drvdata - set regulator driver data
4265 * @regulator: regulator
4266 * @data: data
4267 */
4268void regulator_set_drvdata(struct regulator *regulator, void *data)
4269{
4270	regulator->rdev->reg_data = data;
4271}
4272EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4273
4274/**
4275 * regulator_get_id - get regulator ID
4276 * @rdev: regulator
4277 */
4278int rdev_get_id(struct regulator_dev *rdev)
4279{
4280	return rdev->desc->id;
4281}
4282EXPORT_SYMBOL_GPL(rdev_get_id);
4283
4284struct device *rdev_get_dev(struct regulator_dev *rdev)
4285{
4286	return &rdev->dev;
4287}
4288EXPORT_SYMBOL_GPL(rdev_get_dev);
4289
4290void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4291{
4292	return reg_init_data->driver_data;
4293}
4294EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4295
4296#ifdef CONFIG_DEBUG_FS
4297static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4298				    size_t count, loff_t *ppos)
4299{
4300	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4301	ssize_t len, ret = 0;
4302	struct regulator_map *map;
4303
4304	if (!buf)
4305		return -ENOMEM;
4306
4307	list_for_each_entry(map, &regulator_map_list, list) {
4308		len = snprintf(buf + ret, PAGE_SIZE - ret,
4309			       "%s -> %s.%s\n",
4310			       rdev_get_name(map->regulator), map->dev_name,
4311			       map->supply);
4312		if (len >= 0)
4313			ret += len;
4314		if (ret > PAGE_SIZE) {
4315			ret = PAGE_SIZE;
4316			break;
4317		}
4318	}
4319
4320	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4321
4322	kfree(buf);
4323
4324	return ret;
4325}
4326#endif
4327
4328static const struct file_operations supply_map_fops = {
4329#ifdef CONFIG_DEBUG_FS
4330	.read = supply_map_read_file,
4331	.llseek = default_llseek,
4332#endif
4333};
4334
4335#ifdef CONFIG_DEBUG_FS
4336struct summary_data {
4337	struct seq_file *s;
4338	struct regulator_dev *parent;
4339	int level;
4340};
4341
4342static void regulator_summary_show_subtree(struct seq_file *s,
4343					   struct regulator_dev *rdev,
4344					   int level);
4345
4346static int regulator_summary_show_children(struct device *dev, void *data)
4347{
4348	struct regulator_dev *rdev = dev_to_rdev(dev);
4349	struct summary_data *summary_data = data;
4350
4351	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4352		regulator_summary_show_subtree(summary_data->s, rdev,
4353					       summary_data->level + 1);
4354
4355	return 0;
4356}
4357
4358static void regulator_summary_show_subtree(struct seq_file *s,
4359					   struct regulator_dev *rdev,
4360					   int level)
4361{
4362	struct regulation_constraints *c;
4363	struct regulator *consumer;
4364	struct summary_data summary_data;
4365
4366	if (!rdev)
4367		return;
4368
4369	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4370		   level * 3 + 1, "",
4371		   30 - level * 3, rdev_get_name(rdev),
4372		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4373
4374	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4375	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4376
4377	c = rdev->constraints;
4378	if (c) {
4379		switch (rdev->desc->type) {
4380		case REGULATOR_VOLTAGE:
4381			seq_printf(s, "%5dmV %5dmV ",
4382				   c->min_uV / 1000, c->max_uV / 1000);
4383			break;
4384		case REGULATOR_CURRENT:
4385			seq_printf(s, "%5dmA %5dmA ",
4386				   c->min_uA / 1000, c->max_uA / 1000);
4387			break;
4388		}
4389	}
4390
4391	seq_puts(s, "\n");
4392
4393	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4394		if (consumer->dev && consumer->dev->class == &regulator_class)
4395			continue;
4396
4397		seq_printf(s, "%*s%-*s ",
4398			   (level + 1) * 3 + 1, "",
4399			   30 - (level + 1) * 3,
4400			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4401
4402		switch (rdev->desc->type) {
4403		case REGULATOR_VOLTAGE:
4404			seq_printf(s, "%37dmV %5dmV",
4405				   consumer->min_uV / 1000,
4406				   consumer->max_uV / 1000);
4407			break;
4408		case REGULATOR_CURRENT:
4409			break;
4410		}
4411
4412		seq_puts(s, "\n");
4413	}
4414
4415	summary_data.s = s;
4416	summary_data.level = level;
4417	summary_data.parent = rdev;
4418
4419	class_for_each_device(&regulator_class, NULL, &summary_data,
4420			      regulator_summary_show_children);
4421}
4422
4423static int regulator_summary_show_roots(struct device *dev, void *data)
4424{
4425	struct regulator_dev *rdev = dev_to_rdev(dev);
4426	struct seq_file *s = data;
4427
4428	if (!rdev->supply)
4429		regulator_summary_show_subtree(s, rdev, 0);
4430
4431	return 0;
4432}
4433
4434static int regulator_summary_show(struct seq_file *s, void *data)
4435{
4436	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4437	seq_puts(s, "-------------------------------------------------------------------------------\n");
4438
4439	class_for_each_device(&regulator_class, NULL, s,
4440			      regulator_summary_show_roots);
4441
4442	return 0;
4443}
4444
4445static int regulator_summary_open(struct inode *inode, struct file *file)
4446{
4447	return single_open(file, regulator_summary_show, inode->i_private);
4448}
4449#endif
4450
4451static const struct file_operations regulator_summary_fops = {
4452#ifdef CONFIG_DEBUG_FS
4453	.open		= regulator_summary_open,
4454	.read		= seq_read,
4455	.llseek		= seq_lseek,
4456	.release	= single_release,
4457#endif
4458};
4459
4460static int __init regulator_init(void)
4461{
4462	int ret;
4463
4464	ret = class_register(&regulator_class);
4465
 
4466	debugfs_root = debugfs_create_dir("regulator", NULL);
4467	if (!debugfs_root)
4468		pr_warn("regulator: Failed to create debugfs directory\n");
4469
4470	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4471			    &supply_map_fops);
4472
4473	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4474			    NULL, &regulator_summary_fops);
4475
4476	regulator_dummy_init();
4477
4478	return ret;
4479}
4480
4481/* init early to allow our consumers to complete system booting */
4482core_initcall(regulator_init);
4483
4484static int __init regulator_late_cleanup(struct device *dev, void *data)
4485{
4486	struct regulator_dev *rdev = dev_to_rdev(dev);
4487	const struct regulator_ops *ops = rdev->desc->ops;
4488	struct regulation_constraints *c = rdev->constraints;
4489	int enabled, ret;
4490
4491	if (c && c->always_on)
4492		return 0;
 
 
 
 
 
 
 
4493
4494	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4495		return 0;
4496
4497	mutex_lock(&rdev->mutex);
4498
4499	if (rdev->use_count)
4500		goto unlock;
4501
4502	/* If we can't read the status assume it's on. */
4503	if (ops->is_enabled)
4504		enabled = ops->is_enabled(rdev);
4505	else
4506		enabled = 1;
4507
4508	if (!enabled)
4509		goto unlock;
4510
4511	if (have_full_constraints()) {
4512		/* We log since this may kill the system if it goes
4513		 * wrong. */
4514		rdev_info(rdev, "disabling\n");
4515		ret = _regulator_do_disable(rdev);
4516		if (ret != 0)
4517			rdev_err(rdev, "couldn't disable: %d\n", ret);
4518	} else {
4519		/* The intention is that in future we will
4520		 * assume that full constraints are provided
4521		 * so warn even if we aren't going to do
4522		 * anything here.
4523		 */
4524		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4525	}
 
4526
4527unlock:
4528	mutex_unlock(&rdev->mutex);
 
4529
4530	return 0;
4531}
4532
4533static int __init regulator_init_complete(void)
4534{
4535	/*
4536	 * Since DT doesn't provide an idiomatic mechanism for
4537	 * enabling full constraints and since it's much more natural
4538	 * with DT to provide them just assume that a DT enabled
4539	 * system has full constraints.
4540	 */
4541	if (of_have_populated_dt())
4542		has_full_constraints = true;
4543
4544	/* If we have a full configuration then disable any regulators
4545	 * we have permission to change the status for and which are
4546	 * not in use or always_on.  This is effectively the default
4547	 * for DT and ACPI as they have full constraints.
4548	 */
4549	class_for_each_device(&regulator_class, NULL, NULL,
4550			      regulator_late_cleanup);
4551
4552	return 0;
4553}
4554late_initcall_sync(regulator_init_complete);