Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#define pr_fmt(fmt) "%s: " fmt, __func__
  17
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/debugfs.h>
  21#include <linux/device.h>
  22#include <linux/slab.h>
  23#include <linux/async.h>
  24#include <linux/err.h>
  25#include <linux/mutex.h>
  26#include <linux/suspend.h>
  27#include <linux/delay.h>
 
 
 
 
 
  28#include <linux/regulator/consumer.h>
  29#include <linux/regulator/driver.h>
  30#include <linux/regulator/machine.h>
 
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/regulator.h>
  34
  35#include "dummy.h"
 
  36
  37#define rdev_crit(rdev, fmt, ...)					\
  38	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  39#define rdev_err(rdev, fmt, ...)					\
  40	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  41#define rdev_warn(rdev, fmt, ...)					\
  42	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  43#define rdev_info(rdev, fmt, ...)					\
  44	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  45#define rdev_dbg(rdev, fmt, ...)					\
  46	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  47
  48static DEFINE_MUTEX(regulator_list_mutex);
  49static LIST_HEAD(regulator_list);
  50static LIST_HEAD(regulator_map_list);
 
 
  51static bool has_full_constraints;
  52static bool board_wants_dummy_regulator;
  53
  54#ifdef CONFIG_DEBUG_FS
  55static struct dentry *debugfs_root;
  56#endif
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator
  72 *
  73 * One for each consumer device.
  74 */
  75struct regulator {
  76	struct device *dev;
  77	struct list_head list;
  78	int uA_load;
  79	int min_uV;
  80	int max_uV;
  81	char *supply_name;
  82	struct device_attribute dev_attr;
  83	struct regulator_dev *rdev;
  84#ifdef CONFIG_DEBUG_FS
  85	struct dentry *debugfs;
  86#endif
 
 
 
 
 
 
 
 
  87};
  88
  89static int _regulator_is_enabled(struct regulator_dev *rdev);
  90static int _regulator_disable(struct regulator_dev *rdev);
  91static int _regulator_get_voltage(struct regulator_dev *rdev);
  92static int _regulator_get_current_limit(struct regulator_dev *rdev);
  93static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  94static void _notifier_call_chain(struct regulator_dev *rdev,
  95				  unsigned long event, void *data);
  96static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  97				     int min_uV, int max_uV);
  98static struct regulator *create_regulator(struct regulator_dev *rdev,
  99					  struct device *dev,
 100					  const char *supply_name);
 
 101
 102static const char *rdev_get_name(struct regulator_dev *rdev)
 103{
 104	if (rdev->constraints && rdev->constraints->name)
 105		return rdev->constraints->name;
 106	else if (rdev->desc->name)
 107		return rdev->desc->name;
 108	else
 109		return "";
 110}
 111
 112/* gets the regulator for a given consumer device */
 113static struct regulator *get_device_regulator(struct device *dev)
 114{
 115	struct regulator *regulator = NULL;
 116	struct regulator_dev *rdev;
 117
 118	mutex_lock(&regulator_list_mutex);
 119	list_for_each_entry(rdev, &regulator_list, list) {
 120		mutex_lock(&rdev->mutex);
 121		list_for_each_entry(regulator, &rdev->consumer_list, list) {
 122			if (regulator->dev == dev) {
 123				mutex_unlock(&rdev->mutex);
 124				mutex_unlock(&regulator_list_mutex);
 125				return regulator;
 126			}
 127		}
 128		mutex_unlock(&rdev->mutex);
 129	}
 130	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 131	return NULL;
 132}
 133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134/* Platform voltage constraint check */
 135static int regulator_check_voltage(struct regulator_dev *rdev,
 136				   int *min_uV, int *max_uV)
 137{
 138	BUG_ON(*min_uV > *max_uV);
 139
 140	if (!rdev->constraints) {
 141		rdev_err(rdev, "no constraints\n");
 142		return -ENODEV;
 143	}
 144	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
 145		rdev_err(rdev, "operation not allowed\n");
 146		return -EPERM;
 147	}
 148
 149	if (*max_uV > rdev->constraints->max_uV)
 150		*max_uV = rdev->constraints->max_uV;
 151	if (*min_uV < rdev->constraints->min_uV)
 152		*min_uV = rdev->constraints->min_uV;
 153
 154	if (*min_uV > *max_uV) {
 155		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 156			 *min_uV, *max_uV);
 157		return -EINVAL;
 158	}
 159
 160	return 0;
 161}
 162
 
 
 
 
 
 
 163/* Make sure we select a voltage that suits the needs of all
 164 * regulator consumers
 165 */
 166static int regulator_check_consumers(struct regulator_dev *rdev,
 167				     int *min_uV, int *max_uV)
 
 168{
 169	struct regulator *regulator;
 
 170
 171	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 
 172		/*
 173		 * Assume consumers that didn't say anything are OK
 174		 * with anything in the constraint range.
 175		 */
 176		if (!regulator->min_uV && !regulator->max_uV)
 177			continue;
 178
 179		if (*max_uV > regulator->max_uV)
 180			*max_uV = regulator->max_uV;
 181		if (*min_uV < regulator->min_uV)
 182			*min_uV = regulator->min_uV;
 183	}
 184
 185	if (*min_uV > *max_uV)
 
 
 186		return -EINVAL;
 
 187
 188	return 0;
 189}
 190
 191/* current constraint check */
 192static int regulator_check_current_limit(struct regulator_dev *rdev,
 193					int *min_uA, int *max_uA)
 194{
 195	BUG_ON(*min_uA > *max_uA);
 196
 197	if (!rdev->constraints) {
 198		rdev_err(rdev, "no constraints\n");
 199		return -ENODEV;
 200	}
 201	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
 202		rdev_err(rdev, "operation not allowed\n");
 203		return -EPERM;
 204	}
 205
 206	if (*max_uA > rdev->constraints->max_uA)
 207		*max_uA = rdev->constraints->max_uA;
 208	if (*min_uA < rdev->constraints->min_uA)
 209		*min_uA = rdev->constraints->min_uA;
 210
 211	if (*min_uA > *max_uA) {
 212		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 213			 *min_uA, *max_uA);
 214		return -EINVAL;
 215	}
 216
 217	return 0;
 218}
 219
 220/* operating mode constraint check */
 221static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
 
 222{
 223	switch (*mode) {
 224	case REGULATOR_MODE_FAST:
 225	case REGULATOR_MODE_NORMAL:
 226	case REGULATOR_MODE_IDLE:
 227	case REGULATOR_MODE_STANDBY:
 228		break;
 229	default:
 230		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 231		return -EINVAL;
 232	}
 233
 234	if (!rdev->constraints) {
 235		rdev_err(rdev, "no constraints\n");
 236		return -ENODEV;
 237	}
 238	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
 239		rdev_err(rdev, "operation not allowed\n");
 240		return -EPERM;
 241	}
 242
 243	/* The modes are bitmasks, the most power hungry modes having
 244	 * the lowest values. If the requested mode isn't supported
 245	 * try higher modes. */
 246	while (*mode) {
 247		if (rdev->constraints->valid_modes_mask & *mode)
 248			return 0;
 249		*mode /= 2;
 250	}
 251
 252	return -EINVAL;
 253}
 254
 255/* dynamic regulator mode switching constraint check */
 256static int regulator_check_drms(struct regulator_dev *rdev)
 257{
 258	if (!rdev->constraints) {
 259		rdev_err(rdev, "no constraints\n");
 260		return -ENODEV;
 261	}
 262	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
 263		rdev_err(rdev, "operation not allowed\n");
 264		return -EPERM;
 265	}
 266	return 0;
 267}
 268
 269static ssize_t device_requested_uA_show(struct device *dev,
 270			     struct device_attribute *attr, char *buf)
 271{
 272	struct regulator *regulator;
 273
 274	regulator = get_device_regulator(dev);
 275	if (regulator == NULL)
 276		return 0;
 277
 278	return sprintf(buf, "%d\n", regulator->uA_load);
 
 
 
 
 
 
 
 
 
 279}
 280
 281static ssize_t regulator_uV_show(struct device *dev,
 282				struct device_attribute *attr, char *buf)
 283{
 284	struct regulator_dev *rdev = dev_get_drvdata(dev);
 285	ssize_t ret;
 286
 287	mutex_lock(&rdev->mutex);
 288	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 289	mutex_unlock(&rdev->mutex);
 290
 291	return ret;
 292}
 293static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 294
 295static ssize_t regulator_uA_show(struct device *dev,
 296				struct device_attribute *attr, char *buf)
 297{
 298	struct regulator_dev *rdev = dev_get_drvdata(dev);
 299
 300	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 301}
 302static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 303
 304static ssize_t regulator_name_show(struct device *dev,
 305			     struct device_attribute *attr, char *buf)
 306{
 307	struct regulator_dev *rdev = dev_get_drvdata(dev);
 308
 309	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 310}
 
 311
 312static ssize_t regulator_print_opmode(char *buf, int mode)
 313{
 314	switch (mode) {
 315	case REGULATOR_MODE_FAST:
 316		return sprintf(buf, "fast\n");
 317	case REGULATOR_MODE_NORMAL:
 318		return sprintf(buf, "normal\n");
 319	case REGULATOR_MODE_IDLE:
 320		return sprintf(buf, "idle\n");
 321	case REGULATOR_MODE_STANDBY:
 322		return sprintf(buf, "standby\n");
 323	}
 324	return sprintf(buf, "unknown\n");
 325}
 326
 327static ssize_t regulator_opmode_show(struct device *dev,
 328				    struct device_attribute *attr, char *buf)
 329{
 330	struct regulator_dev *rdev = dev_get_drvdata(dev);
 331
 332	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 333}
 334static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 335
 336static ssize_t regulator_print_state(char *buf, int state)
 337{
 338	if (state > 0)
 339		return sprintf(buf, "enabled\n");
 340	else if (state == 0)
 341		return sprintf(buf, "disabled\n");
 342	else
 343		return sprintf(buf, "unknown\n");
 344}
 345
 346static ssize_t regulator_state_show(struct device *dev,
 347				   struct device_attribute *attr, char *buf)
 348{
 349	struct regulator_dev *rdev = dev_get_drvdata(dev);
 350	ssize_t ret;
 351
 352	mutex_lock(&rdev->mutex);
 353	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 354	mutex_unlock(&rdev->mutex);
 355
 356	return ret;
 357}
 358static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 359
 360static ssize_t regulator_status_show(struct device *dev,
 361				   struct device_attribute *attr, char *buf)
 362{
 363	struct regulator_dev *rdev = dev_get_drvdata(dev);
 364	int status;
 365	char *label;
 366
 367	status = rdev->desc->ops->get_status(rdev);
 368	if (status < 0)
 369		return status;
 370
 371	switch (status) {
 372	case REGULATOR_STATUS_OFF:
 373		label = "off";
 374		break;
 375	case REGULATOR_STATUS_ON:
 376		label = "on";
 377		break;
 378	case REGULATOR_STATUS_ERROR:
 379		label = "error";
 380		break;
 381	case REGULATOR_STATUS_FAST:
 382		label = "fast";
 383		break;
 384	case REGULATOR_STATUS_NORMAL:
 385		label = "normal";
 386		break;
 387	case REGULATOR_STATUS_IDLE:
 388		label = "idle";
 389		break;
 390	case REGULATOR_STATUS_STANDBY:
 391		label = "standby";
 392		break;
 
 
 
 
 
 
 393	default:
 394		return -ERANGE;
 395	}
 396
 397	return sprintf(buf, "%s\n", label);
 398}
 399static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 400
 401static ssize_t regulator_min_uA_show(struct device *dev,
 402				    struct device_attribute *attr, char *buf)
 403{
 404	struct regulator_dev *rdev = dev_get_drvdata(dev);
 405
 406	if (!rdev->constraints)
 407		return sprintf(buf, "constraint not defined\n");
 408
 409	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 410}
 411static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 412
 413static ssize_t regulator_max_uA_show(struct device *dev,
 414				    struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417
 418	if (!rdev->constraints)
 419		return sprintf(buf, "constraint not defined\n");
 420
 421	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 422}
 423static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 424
 425static ssize_t regulator_min_uV_show(struct device *dev,
 426				    struct device_attribute *attr, char *buf)
 427{
 428	struct regulator_dev *rdev = dev_get_drvdata(dev);
 429
 430	if (!rdev->constraints)
 431		return sprintf(buf, "constraint not defined\n");
 432
 433	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 434}
 435static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 436
 437static ssize_t regulator_max_uV_show(struct device *dev,
 438				    struct device_attribute *attr, char *buf)
 439{
 440	struct regulator_dev *rdev = dev_get_drvdata(dev);
 441
 442	if (!rdev->constraints)
 443		return sprintf(buf, "constraint not defined\n");
 444
 445	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 446}
 447static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 448
 449static ssize_t regulator_total_uA_show(struct device *dev,
 450				      struct device_attribute *attr, char *buf)
 451{
 452	struct regulator_dev *rdev = dev_get_drvdata(dev);
 453	struct regulator *regulator;
 454	int uA = 0;
 455
 456	mutex_lock(&rdev->mutex);
 457	list_for_each_entry(regulator, &rdev->consumer_list, list)
 458		uA += regulator->uA_load;
 459	mutex_unlock(&rdev->mutex);
 460	return sprintf(buf, "%d\n", uA);
 461}
 462static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 463
 464static ssize_t regulator_num_users_show(struct device *dev,
 465				      struct device_attribute *attr, char *buf)
 466{
 467	struct regulator_dev *rdev = dev_get_drvdata(dev);
 468	return sprintf(buf, "%d\n", rdev->use_count);
 469}
 
 470
 471static ssize_t regulator_type_show(struct device *dev,
 472				  struct device_attribute *attr, char *buf)
 473{
 474	struct regulator_dev *rdev = dev_get_drvdata(dev);
 475
 476	switch (rdev->desc->type) {
 477	case REGULATOR_VOLTAGE:
 478		return sprintf(buf, "voltage\n");
 479	case REGULATOR_CURRENT:
 480		return sprintf(buf, "current\n");
 481	}
 482	return sprintf(buf, "unknown\n");
 483}
 
 484
 485static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 486				struct device_attribute *attr, char *buf)
 487{
 488	struct regulator_dev *rdev = dev_get_drvdata(dev);
 489
 490	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 491}
 492static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 493		regulator_suspend_mem_uV_show, NULL);
 494
 495static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 496				struct device_attribute *attr, char *buf)
 497{
 498	struct regulator_dev *rdev = dev_get_drvdata(dev);
 499
 500	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 501}
 502static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 503		regulator_suspend_disk_uV_show, NULL);
 504
 505static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 506				struct device_attribute *attr, char *buf)
 507{
 508	struct regulator_dev *rdev = dev_get_drvdata(dev);
 509
 510	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 511}
 512static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 513		regulator_suspend_standby_uV_show, NULL);
 514
 515static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 516				struct device_attribute *attr, char *buf)
 517{
 518	struct regulator_dev *rdev = dev_get_drvdata(dev);
 519
 520	return regulator_print_opmode(buf,
 521		rdev->constraints->state_mem.mode);
 522}
 523static DEVICE_ATTR(suspend_mem_mode, 0444,
 524		regulator_suspend_mem_mode_show, NULL);
 525
 526static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 527				struct device_attribute *attr, char *buf)
 528{
 529	struct regulator_dev *rdev = dev_get_drvdata(dev);
 530
 531	return regulator_print_opmode(buf,
 532		rdev->constraints->state_disk.mode);
 533}
 534static DEVICE_ATTR(suspend_disk_mode, 0444,
 535		regulator_suspend_disk_mode_show, NULL);
 536
 537static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 538				struct device_attribute *attr, char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541
 542	return regulator_print_opmode(buf,
 543		rdev->constraints->state_standby.mode);
 544}
 545static DEVICE_ATTR(suspend_standby_mode, 0444,
 546		regulator_suspend_standby_mode_show, NULL);
 547
 548static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 549				   struct device_attribute *attr, char *buf)
 550{
 551	struct regulator_dev *rdev = dev_get_drvdata(dev);
 552
 553	return regulator_print_state(buf,
 554			rdev->constraints->state_mem.enabled);
 555}
 556static DEVICE_ATTR(suspend_mem_state, 0444,
 557		regulator_suspend_mem_state_show, NULL);
 558
 559static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 560				   struct device_attribute *attr, char *buf)
 561{
 562	struct regulator_dev *rdev = dev_get_drvdata(dev);
 563
 564	return regulator_print_state(buf,
 565			rdev->constraints->state_disk.enabled);
 566}
 567static DEVICE_ATTR(suspend_disk_state, 0444,
 568		regulator_suspend_disk_state_show, NULL);
 569
 570static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 571				   struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return regulator_print_state(buf,
 576			rdev->constraints->state_standby.enabled);
 577}
 578static DEVICE_ATTR(suspend_standby_state, 0444,
 579		regulator_suspend_standby_state_show, NULL);
 580
 581
 582/*
 583 * These are the only attributes are present for all regulators.
 584 * Other attributes are a function of regulator functionality.
 585 */
 586static struct device_attribute regulator_dev_attrs[] = {
 587	__ATTR(name, 0444, regulator_name_show, NULL),
 588	__ATTR(num_users, 0444, regulator_num_users_show, NULL),
 589	__ATTR(type, 0444, regulator_type_show, NULL),
 590	__ATTR_NULL,
 591};
 592
 593static void regulator_dev_release(struct device *dev)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596	kfree(rdev);
 597}
 
 598
 599static struct class regulator_class = {
 600	.name = "regulator",
 601	.dev_release = regulator_dev_release,
 602	.dev_attrs = regulator_dev_attrs,
 603};
 
 
 
 
 
 
 
 
 604
 605/* Calculate the new optimum regulator operating mode based on the new total
 606 * consumer load. All locks held by caller */
 607static void drms_uA_update(struct regulator_dev *rdev)
 608{
 609	struct regulator *sibling;
 610	int current_uA = 0, output_uV, input_uV, err;
 611	unsigned int mode;
 612
 613	err = regulator_check_drms(rdev);
 614	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
 615	    (!rdev->desc->ops->get_voltage &&
 616	     !rdev->desc->ops->get_voltage_sel) ||
 617	    !rdev->desc->ops->set_mode)
 618		return;
 619
 620	/* get output voltage */
 621	output_uV = _regulator_get_voltage(rdev);
 622	if (output_uV <= 0)
 623		return;
 
 
 624
 625	/* get input voltage */
 626	input_uV = 0;
 627	if (rdev->supply)
 628		input_uV = _regulator_get_voltage(rdev);
 629	if (input_uV <= 0)
 630		input_uV = rdev->constraints->input_uV;
 631	if (input_uV <= 0)
 632		return;
 633
 634	/* calc total requested load */
 635	list_for_each_entry(sibling, &rdev->consumer_list, list)
 636		current_uA += sibling->uA_load;
 637
 638	/* now get the optimum mode for our new total regulator load */
 639	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 640						  output_uV, current_uA);
 641
 642	/* check the new mode is allowed */
 643	err = regulator_mode_constrain(rdev, &mode);
 644	if (err == 0)
 645		rdev->desc->ops->set_mode(rdev, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646}
 647
 648static int suspend_set_state(struct regulator_dev *rdev,
 649	struct regulator_state *rstate)
 650{
 651	int ret = 0;
 652	bool can_set_state;
 653
 654	can_set_state = rdev->desc->ops->set_suspend_enable &&
 655		rdev->desc->ops->set_suspend_disable;
 
 656
 657	/* If we have no suspend mode configration don't set anything;
 658	 * only warn if the driver actually makes the suspend mode
 659	 * configurable.
 660	 */
 661	if (!rstate->enabled && !rstate->disabled) {
 662		if (can_set_state)
 
 
 663			rdev_warn(rdev, "No configuration\n");
 664		return 0;
 665	}
 666
 667	if (rstate->enabled && rstate->disabled) {
 668		rdev_err(rdev, "invalid configuration\n");
 669		return -EINVAL;
 670	}
 671
 672	if (!can_set_state) {
 673		rdev_err(rdev, "no way to set suspend state\n");
 674		return -EINVAL;
 675	}
 676
 677	if (rstate->enabled)
 678		ret = rdev->desc->ops->set_suspend_enable(rdev);
 679	else
 
 680		ret = rdev->desc->ops->set_suspend_disable(rdev);
 
 
 
 681	if (ret < 0) {
 682		rdev_err(rdev, "failed to enabled/disable\n");
 683		return ret;
 684	}
 685
 686	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 687		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 688		if (ret < 0) {
 689			rdev_err(rdev, "failed to set voltage\n");
 690			return ret;
 691		}
 692	}
 693
 694	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 695		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 696		if (ret < 0) {
 697			rdev_err(rdev, "failed to set mode\n");
 698			return ret;
 699		}
 700	}
 701	return ret;
 702}
 703
 704/* locks held by caller */
 705static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
 706{
 707	if (!rdev->constraints)
 708		return -EINVAL;
 709
 710	switch (state) {
 711	case PM_SUSPEND_STANDBY:
 712		return suspend_set_state(rdev,
 713			&rdev->constraints->state_standby);
 714	case PM_SUSPEND_MEM:
 715		return suspend_set_state(rdev,
 716			&rdev->constraints->state_mem);
 717	case PM_SUSPEND_MAX:
 718		return suspend_set_state(rdev,
 719			&rdev->constraints->state_disk);
 720	default:
 721		return -EINVAL;
 722	}
 723}
 724
 725static void print_constraints(struct regulator_dev *rdev)
 726{
 727	struct regulation_constraints *constraints = rdev->constraints;
 728	char buf[80] = "";
 
 729	int count = 0;
 730	int ret;
 731
 732	if (constraints->min_uV && constraints->max_uV) {
 733		if (constraints->min_uV == constraints->max_uV)
 734			count += sprintf(buf + count, "%d mV ",
 735					 constraints->min_uV / 1000);
 736		else
 737			count += sprintf(buf + count, "%d <--> %d mV ",
 738					 constraints->min_uV / 1000,
 739					 constraints->max_uV / 1000);
 
 740	}
 741
 742	if (!constraints->min_uV ||
 743	    constraints->min_uV != constraints->max_uV) {
 744		ret = _regulator_get_voltage(rdev);
 745		if (ret > 0)
 746			count += sprintf(buf + count, "at %d mV ", ret / 1000);
 
 747	}
 748
 749	if (constraints->uV_offset)
 750		count += sprintf(buf, "%dmV offset ",
 751				 constraints->uV_offset / 1000);
 752
 753	if (constraints->min_uA && constraints->max_uA) {
 754		if (constraints->min_uA == constraints->max_uA)
 755			count += sprintf(buf + count, "%d mA ",
 756					 constraints->min_uA / 1000);
 757		else
 758			count += sprintf(buf + count, "%d <--> %d mA ",
 759					 constraints->min_uA / 1000,
 760					 constraints->max_uA / 1000);
 
 761	}
 762
 763	if (!constraints->min_uA ||
 764	    constraints->min_uA != constraints->max_uA) {
 765		ret = _regulator_get_current_limit(rdev);
 766		if (ret > 0)
 767			count += sprintf(buf + count, "at %d mA ", ret / 1000);
 
 768	}
 769
 770	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 771		count += sprintf(buf + count, "fast ");
 772	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 773		count += sprintf(buf + count, "normal ");
 774	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 775		count += sprintf(buf + count, "idle ");
 776	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 777		count += sprintf(buf + count, "standby");
 
 
 
 
 
 778
 779	rdev_info(rdev, "%s\n", buf);
 
 
 
 780}
 781
 782static int machine_constraints_voltage(struct regulator_dev *rdev,
 783	struct regulation_constraints *constraints)
 784{
 785	struct regulator_ops *ops = rdev->desc->ops;
 786	int ret;
 787
 788	/* do we need to apply the constraint voltage */
 789	if (rdev->constraints->apply_uV &&
 790	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
 791		ret = _regulator_do_set_voltage(rdev,
 792						rdev->constraints->min_uV,
 793						rdev->constraints->max_uV);
 794		if (ret < 0) {
 795			rdev_err(rdev, "failed to apply %duV constraint\n",
 796				 rdev->constraints->min_uV);
 797			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798		}
 799	}
 800
 801	/* constrain machine-level voltage specs to fit
 802	 * the actual range supported by this regulator.
 803	 */
 804	if (ops->list_voltage && rdev->desc->n_voltages) {
 805		int	count = rdev->desc->n_voltages;
 806		int	i;
 807		int	min_uV = INT_MAX;
 808		int	max_uV = INT_MIN;
 809		int	cmin = constraints->min_uV;
 810		int	cmax = constraints->max_uV;
 811
 812		/* it's safe to autoconfigure fixed-voltage supplies
 813		   and the constraints are used by list_voltage. */
 814		if (count == 1 && !cmin) {
 815			cmin = 1;
 816			cmax = INT_MAX;
 817			constraints->min_uV = cmin;
 818			constraints->max_uV = cmax;
 819		}
 820
 821		/* voltage constraints are optional */
 822		if ((cmin == 0) && (cmax == 0))
 823			return 0;
 824
 825		/* else require explicit machine-level constraints */
 826		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 827			rdev_err(rdev, "invalid voltage constraints\n");
 828			return -EINVAL;
 829		}
 830
 831		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 832		for (i = 0; i < count; i++) {
 833			int	value;
 834
 835			value = ops->list_voltage(rdev, i);
 836			if (value <= 0)
 837				continue;
 838
 839			/* maybe adjust [min_uV..max_uV] */
 840			if (value >= cmin && value < min_uV)
 841				min_uV = value;
 842			if (value <= cmax && value > max_uV)
 843				max_uV = value;
 844		}
 845
 846		/* final: [min_uV..max_uV] valid iff constraints valid */
 847		if (max_uV < min_uV) {
 848			rdev_err(rdev, "unsupportable voltage constraints\n");
 
 
 849			return -EINVAL;
 850		}
 851
 852		/* use regulator's subset of machine constraints */
 853		if (constraints->min_uV < min_uV) {
 854			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 855				 constraints->min_uV, min_uV);
 856			constraints->min_uV = min_uV;
 857		}
 858		if (constraints->max_uV > max_uV) {
 859			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 860				 constraints->max_uV, max_uV);
 861			constraints->max_uV = max_uV;
 862		}
 863	}
 864
 865	return 0;
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868/**
 869 * set_machine_constraints - sets regulator constraints
 870 * @rdev: regulator source
 871 * @constraints: constraints to apply
 872 *
 873 * Allows platform initialisation code to define and constrain
 874 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 875 * Constraints *must* be set by platform code in order for some
 876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 877 * set_mode.
 878 */
 879static int set_machine_constraints(struct regulator_dev *rdev,
 880	const struct regulation_constraints *constraints)
 881{
 882	int ret = 0;
 883	struct regulator_ops *ops = rdev->desc->ops;
 884
 885	rdev->constraints = kmemdup(constraints, sizeof(*constraints),
 886				    GFP_KERNEL);
 
 
 
 
 887	if (!rdev->constraints)
 888		return -ENOMEM;
 889
 890	ret = machine_constraints_voltage(rdev, rdev->constraints);
 891	if (ret != 0)
 892		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	/* do we need to setup our suspend state */
 895	if (constraints->initial_state) {
 896		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
 897		if (ret < 0) {
 898			rdev_err(rdev, "failed to set suspend state\n");
 899			goto out;
 900		}
 901	}
 902
 903	if (constraints->initial_mode) {
 904		if (!ops->set_mode) {
 905			rdev_err(rdev, "no set_mode operation\n");
 906			ret = -EINVAL;
 907			goto out;
 908		}
 909
 910		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
 911		if (ret < 0) {
 912			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
 913			goto out;
 914		}
 915	}
 916
 917	/* If the constraints say the regulator should be on at this point
 918	 * and we have control then make sure it is enabled.
 919	 */
 920	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
 921	    ops->enable) {
 922		ret = ops->enable(rdev);
 923		if (ret < 0) {
 924			rdev_err(rdev, "failed to enable\n");
 925			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926		}
 927	}
 928
 929	print_constraints(rdev);
 930	return 0;
 931out:
 932	kfree(rdev->constraints);
 933	rdev->constraints = NULL;
 934	return ret;
 935}
 936
 937/**
 938 * set_supply - set regulator supply regulator
 939 * @rdev: regulator name
 940 * @supply_rdev: supply regulator name
 941 *
 942 * Called by platform initialisation code to set the supply regulator for this
 943 * regulator. This ensures that a regulators supply will also be enabled by the
 944 * core if it's child is enabled.
 945 */
 946static int set_supply(struct regulator_dev *rdev,
 947		      struct regulator_dev *supply_rdev)
 948{
 949	int err;
 950
 951	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
 952
 
 
 
 953	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
 954	if (IS_ERR(rdev->supply)) {
 955		err = PTR_ERR(rdev->supply);
 956		rdev->supply = NULL;
 957		return err;
 958	}
 
 959
 960	return 0;
 961}
 962
 963/**
 964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
 965 * @rdev:         regulator source
 966 * @consumer_dev: device the supply applies to
 967 * @consumer_dev_name: dev_name() string for device supply applies to
 968 * @supply:       symbolic name for supply
 969 *
 970 * Allows platform initialisation code to map physical regulator
 971 * sources to symbolic names for supplies for use by devices.  Devices
 972 * should use these symbolic names to request regulators, avoiding the
 973 * need to provide board-specific regulator names as platform data.
 974 *
 975 * Only one of consumer_dev and consumer_dev_name may be specified.
 976 */
 977static int set_consumer_device_supply(struct regulator_dev *rdev,
 978	struct device *consumer_dev, const char *consumer_dev_name,
 979	const char *supply)
 980{
 981	struct regulator_map *node;
 982	int has_dev;
 983
 984	if (consumer_dev && consumer_dev_name)
 985		return -EINVAL;
 986
 987	if (!consumer_dev_name && consumer_dev)
 988		consumer_dev_name = dev_name(consumer_dev);
 989
 990	if (supply == NULL)
 991		return -EINVAL;
 992
 993	if (consumer_dev_name != NULL)
 994		has_dev = 1;
 995	else
 996		has_dev = 0;
 997
 998	list_for_each_entry(node, &regulator_map_list, list) {
 999		if (node->dev_name && consumer_dev_name) {
1000			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001				continue;
1002		} else if (node->dev_name || consumer_dev_name) {
1003			continue;
1004		}
1005
1006		if (strcmp(node->supply, supply) != 0)
1007			continue;
1008
1009		dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010			dev_name(&node->regulator->dev),
1011			node->regulator->desc->name,
1012			supply,
1013			dev_name(&rdev->dev), rdev_get_name(rdev));
 
1014		return -EBUSY;
1015	}
1016
1017	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018	if (node == NULL)
1019		return -ENOMEM;
1020
1021	node->regulator = rdev;
1022	node->supply = supply;
1023
1024	if (has_dev) {
1025		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026		if (node->dev_name == NULL) {
1027			kfree(node);
1028			return -ENOMEM;
1029		}
1030	}
1031
1032	list_add(&node->list, &regulator_map_list);
1033	return 0;
1034}
1035
1036static void unset_regulator_supplies(struct regulator_dev *rdev)
1037{
1038	struct regulator_map *node, *n;
1039
1040	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041		if (rdev == node->regulator) {
1042			list_del(&node->list);
1043			kfree(node->dev_name);
1044			kfree(node);
1045		}
1046	}
1047}
1048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049#define REG_STR_SIZE	64
1050
1051static struct regulator *create_regulator(struct regulator_dev *rdev,
1052					  struct device *dev,
1053					  const char *supply_name)
1054{
1055	struct regulator *regulator;
1056	char buf[REG_STR_SIZE];
1057	int err, size;
1058
1059	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060	if (regulator == NULL)
1061		return NULL;
1062
1063	mutex_lock(&rdev->mutex);
1064	regulator->rdev = rdev;
1065	list_add(&regulator->list, &rdev->consumer_list);
1066
1067	if (dev) {
1068		/* create a 'requested_microamps_name' sysfs entry */
1069		size = scnprintf(buf, REG_STR_SIZE,
1070				 "microamps_requested_%s-%s",
1071				 dev_name(dev), supply_name);
1072		if (size >= REG_STR_SIZE)
1073			goto overflow_err;
1074
1075		regulator->dev = dev;
1076		sysfs_attr_init(&regulator->dev_attr.attr);
1077		regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078		if (regulator->dev_attr.attr.name == NULL)
1079			goto attr_name_err;
1080
1081		regulator->dev_attr.attr.mode = 0444;
1082		regulator->dev_attr.show = device_requested_uA_show;
1083		err = device_create_file(dev, &regulator->dev_attr);
1084		if (err < 0) {
1085			rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086			goto attr_name_err;
1087		}
1088
1089		/* also add a link to the device sysfs entry */
1090		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091				 dev->kobj.name, supply_name);
1092		if (size >= REG_STR_SIZE)
1093			goto attr_err;
1094
1095		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096		if (regulator->supply_name == NULL)
1097			goto attr_err;
1098
1099		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100					buf);
1101		if (err) {
1102			rdev_warn(rdev, "could not add device link %s err %d\n",
1103				  dev->kobj.name, err);
1104			goto link_name_err;
1105		}
1106	} else {
1107		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108		if (regulator->supply_name == NULL)
1109			goto attr_err;
1110	}
1111
1112#ifdef CONFIG_DEBUG_FS
1113	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114						rdev->debugfs);
1115	if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116		rdev_warn(rdev, "Failed to create debugfs directory\n");
1117		regulator->debugfs = NULL;
1118	} else {
1119		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120				   &regulator->uA_load);
1121		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122				   &regulator->min_uV);
1123		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124				   &regulator->max_uV);
 
 
 
1125	}
1126#endif
 
 
 
 
 
 
 
 
1127
1128	mutex_unlock(&rdev->mutex);
1129	return regulator;
1130link_name_err:
1131	kfree(regulator->supply_name);
1132attr_err:
1133	device_remove_file(regulator->dev, &regulator->dev_attr);
1134attr_name_err:
1135	kfree(regulator->dev_attr.attr.name);
1136overflow_err:
1137	list_del(&regulator->list);
1138	kfree(regulator);
1139	mutex_unlock(&rdev->mutex);
1140	return NULL;
1141}
1142
1143static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144{
 
 
1145	if (!rdev->desc->ops->enable_time)
1146		return 0;
1147	return rdev->desc->ops->enable_time(rdev);
1148}
1149
1150/* Internal regulator request function */
1151static struct regulator *_regulator_get(struct device *dev, const char *id,
1152					int exclusive)
1153{
1154	struct regulator_dev *rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155	struct regulator_map *map;
1156	struct regulator *regulator = ERR_PTR(-ENODEV);
1157	const char *devname = NULL;
1158	int ret;
1159
1160	if (id == NULL) {
1161		pr_err("get() with no identifier\n");
1162		return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164
 
1165	if (dev)
1166		devname = dev_name(dev);
1167
1168	mutex_lock(&regulator_list_mutex);
1169
1170	list_for_each_entry(map, &regulator_map_list, list) {
1171		/* If the mapping has a device set up it must match */
1172		if (map->dev_name &&
1173		    (!devname || strcmp(map->dev_name, devname)))
1174			continue;
1175
1176		if (strcmp(map->supply, id) == 0) {
1177			rdev = map->regulator;
1178			goto found;
 
1179		}
1180	}
 
1181
1182	if (board_wants_dummy_regulator) {
1183		rdev = dummy_regulator_rdev;
1184		goto found;
1185	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186
1187#ifdef CONFIG_REGULATOR_DUMMY
1188	if (!devname)
1189		devname = "deviceless";
 
 
 
 
 
 
1190
1191	/* If the board didn't flag that it was fully constrained then
1192	 * substitute in a dummy regulator so consumers can continue.
 
 
 
1193	 */
1194	if (!has_full_constraints) {
1195		pr_warn("%s supply %s not found, using dummy regulator\n",
1196			devname, id);
1197		rdev = dummy_regulator_rdev;
1198		goto found;
1199	}
1200#endif
1201
1202	mutex_unlock(&regulator_list_mutex);
1203	return regulator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204
1205found:
1206	if (rdev->exclusive) {
1207		regulator = ERR_PTR(-EPERM);
1208		goto out;
 
1209	}
1210
1211	if (exclusive && rdev->open_count) {
1212		regulator = ERR_PTR(-EBUSY);
1213		goto out;
 
1214	}
1215
1216	if (!try_module_get(rdev->owner))
1217		goto out;
 
 
 
 
 
 
 
 
 
 
1218
1219	regulator = create_regulator(rdev, dev, id);
1220	if (regulator == NULL) {
1221		regulator = ERR_PTR(-ENOMEM);
 
1222		module_put(rdev->owner);
 
1223	}
1224
1225	rdev->open_count++;
1226	if (exclusive) {
1227		rdev->exclusive = 1;
1228
1229		ret = _regulator_is_enabled(rdev);
1230		if (ret > 0)
1231			rdev->use_count = 1;
1232		else
1233			rdev->use_count = 0;
1234	}
1235
1236out:
1237	mutex_unlock(&regulator_list_mutex);
1238
1239	return regulator;
1240}
1241
1242/**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged.  It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255struct regulator *regulator_get(struct device *dev, const char *id)
1256{
1257	return _regulator_get(dev, id, 0);
1258}
1259EXPORT_SYMBOL_GPL(regulator_get);
1260
1261/**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno.  Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged.  It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283{
1284	return _regulator_get(dev, id, 1);
1285}
1286EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288/**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
 
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
 
 
 
 
 
 
 
 
 
 
 
1295 */
1296void regulator_put(struct regulator *regulator)
 
 
 
 
 
 
 
1297{
1298	struct regulator_dev *rdev;
1299
1300	if (regulator == NULL || IS_ERR(regulator))
1301		return;
1302
1303	mutex_lock(&regulator_list_mutex);
 
1304	rdev = regulator->rdev;
1305
1306#ifdef CONFIG_DEBUG_FS
1307	debugfs_remove_recursive(regulator->debugfs);
1308#endif
1309
1310	/* remove any sysfs entries */
1311	if (regulator->dev) {
1312		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313		device_remove_file(regulator->dev, &regulator->dev_attr);
1314		kfree(regulator->dev_attr.attr.name);
1315	}
1316	kfree(regulator->supply_name);
1317	list_del(&regulator->list);
1318	kfree(regulator);
1319
1320	rdev->open_count--;
1321	rdev->exclusive = 0;
 
 
 
 
 
1322
1323	module_put(rdev->owner);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	mutex_unlock(&regulator_list_mutex);
1325}
1326EXPORT_SYMBOL_GPL(regulator_put);
1327
1328static int _regulator_can_change_status(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	if (!rdev->constraints)
1331		return 0;
1332
1333	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	else
1336		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
1338
1339/* locks held by regulator_enable() */
1340static int _regulator_enable(struct regulator_dev *rdev)
1341{
1342	int ret, delay;
 
 
1343
1344	/* check voltage and requested load before enabling */
1345	if (rdev->constraints &&
1346	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347		drms_uA_update(rdev);
1348
1349	if (rdev->use_count == 0) {
1350		/* The regulator may on if it's not switchable or left on */
1351		ret = _regulator_is_enabled(rdev);
1352		if (ret == -EINVAL || ret == 0) {
1353			if (!_regulator_can_change_status(rdev))
 
1354				return -EPERM;
1355
1356			if (!rdev->desc->ops->enable)
1357				return -EINVAL;
1358
1359			/* Query before enabling in case configuration
1360			 * dependent.  */
1361			ret = _regulator_get_enable_time(rdev);
1362			if (ret >= 0) {
1363				delay = ret;
1364			} else {
1365				rdev_warn(rdev, "enable_time() failed: %d\n",
1366					   ret);
1367				delay = 0;
1368			}
1369
1370			trace_regulator_enable(rdev_get_name(rdev));
1371
1372			/* Allow the regulator to ramp; it would be useful
1373			 * to extend this for bulk operations so that the
1374			 * regulators can ramp together.  */
1375			ret = rdev->desc->ops->enable(rdev);
1376			if (ret < 0)
1377				return ret;
1378
1379			trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381			if (delay >= 1000) {
1382				mdelay(delay / 1000);
1383				udelay(delay % 1000);
1384			} else if (delay) {
1385				udelay(delay);
1386			}
1387
1388			trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390		} else if (ret < 0) {
1391			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392			return ret;
1393		}
1394		/* Fallthrough on positive return values - already enabled */
1395	}
1396
1397	rdev->use_count++;
1398
1399	return 0;
1400}
1401
1402/**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value.  Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413int regulator_enable(struct regulator *regulator)
1414{
1415	struct regulator_dev *rdev = regulator->rdev;
1416	int ret = 0;
1417
 
 
 
1418	if (rdev->supply) {
1419		ret = regulator_enable(rdev->supply);
1420		if (ret != 0)
1421			return ret;
1422	}
1423
1424	mutex_lock(&rdev->mutex);
1425	ret = _regulator_enable(rdev);
1426	mutex_unlock(&rdev->mutex);
1427
1428	if (ret != 0)
1429		regulator_disable(rdev->supply);
1430
1431	return ret;
1432}
1433EXPORT_SYMBOL_GPL(regulator_enable);
1434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435/* locks held by regulator_disable() */
1436static int _regulator_disable(struct regulator_dev *rdev)
1437{
1438	int ret = 0;
1439
 
 
1440	if (WARN(rdev->use_count <= 0,
1441		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442		return -EIO;
1443
1444	/* are we the last user and permitted to disable ? */
1445	if (rdev->use_count == 1 &&
1446	    (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448		/* we are last user */
1449		if (_regulator_can_change_status(rdev) &&
1450		    rdev->desc->ops->disable) {
1451			trace_regulator_disable(rdev_get_name(rdev));
 
 
 
1452
1453			ret = rdev->desc->ops->disable(rdev);
1454			if (ret < 0) {
1455				rdev_err(rdev, "failed to disable\n");
 
 
 
1456				return ret;
1457			}
1458
1459			trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462					     NULL);
1463		}
1464
1465		rdev->use_count = 0;
1466	} else if (rdev->use_count > 1) {
1467
1468		if (rdev->constraints &&
1469			(rdev->constraints->valid_ops_mask &
1470			REGULATOR_CHANGE_DRMS))
1471			drms_uA_update(rdev);
1472
1473		rdev->use_count--;
1474	}
1475
1476	return ret;
1477}
1478
1479/**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current.  Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491int regulator_disable(struct regulator *regulator)
1492{
1493	struct regulator_dev *rdev = regulator->rdev;
1494	int ret = 0;
1495
 
 
 
1496	mutex_lock(&rdev->mutex);
1497	ret = _regulator_disable(rdev);
1498	mutex_unlock(&rdev->mutex);
1499
1500	if (ret == 0 && rdev->supply)
1501		regulator_disable(rdev->supply);
1502
1503	return ret;
1504}
1505EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507/* locks held by regulator_force_disable() */
1508static int _regulator_force_disable(struct regulator_dev *rdev)
1509{
1510	int ret = 0;
1511
1512	/* force disable */
1513	if (rdev->desc->ops->disable) {
1514		/* ah well, who wants to live forever... */
1515		ret = rdev->desc->ops->disable(rdev);
1516		if (ret < 0) {
1517			rdev_err(rdev, "failed to force disable\n");
1518			return ret;
1519		}
1520		/* notify other consumers that power has been forced off */
 
1521		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522			REGULATOR_EVENT_DISABLE, NULL);
 
1523	}
1524
1525	return ret;
 
 
 
1526}
1527
1528/**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537int regulator_force_disable(struct regulator *regulator)
1538{
1539	struct regulator_dev *rdev = regulator->rdev;
1540	int ret;
1541
1542	mutex_lock(&rdev->mutex);
1543	regulator->uA_load = 0;
1544	ret = _regulator_force_disable(regulator->rdev);
1545	mutex_unlock(&rdev->mutex);
1546
1547	if (rdev->supply)
1548		while (rdev->open_count--)
1549			regulator_disable(rdev->supply);
1550
1551	return ret;
1552}
1553EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int _regulator_is_enabled(struct regulator_dev *rdev)
1556{
 
 
 
 
1557	/* If we don't know then assume that the regulator is always on */
1558	if (!rdev->desc->ops->is_enabled)
1559		return 1;
1560
1561	return rdev->desc->ops->is_enabled(rdev);
1562}
1563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564/**
1565 * regulator_is_enabled - is the regulator output enabled
1566 * @regulator: regulator source
1567 *
1568 * Returns positive if the regulator driver backing the source/client
1569 * has requested that the device be enabled, zero if it hasn't, else a
1570 * negative errno code.
1571 *
1572 * Note that the device backing this regulator handle can have multiple
1573 * users, so it might be enabled even if regulator_enable() was never
1574 * called for this particular source.
1575 */
1576int regulator_is_enabled(struct regulator *regulator)
1577{
1578	int ret;
1579
 
 
 
1580	mutex_lock(&regulator->rdev->mutex);
1581	ret = _regulator_is_enabled(regulator->rdev);
1582	mutex_unlock(&regulator->rdev->mutex);
1583
1584	return ret;
1585}
1586EXPORT_SYMBOL_GPL(regulator_is_enabled);
1587
1588/**
1589 * regulator_count_voltages - count regulator_list_voltage() selectors
1590 * @regulator: regulator source
1591 *
1592 * Returns number of selectors, or negative errno.  Selectors are
1593 * numbered starting at zero, and typically correspond to bitfields
1594 * in hardware registers.
1595 */
1596int regulator_count_voltages(struct regulator *regulator)
1597{
1598	struct regulator_dev	*rdev = regulator->rdev;
1599
1600	return rdev->desc->n_voltages ? : -EINVAL;
 
 
 
 
 
 
1601}
1602EXPORT_SYMBOL_GPL(regulator_count_voltages);
1603
1604/**
1605 * regulator_list_voltage - enumerate supported voltages
1606 * @regulator: regulator source
1607 * @selector: identify voltage to list
1608 * Context: can sleep
1609 *
1610 * Returns a voltage that can be passed to @regulator_set_voltage(),
1611 * zero if this selector code can't be used on this system, or a
1612 * negative errno.
1613 */
1614int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1615{
1616	struct regulator_dev	*rdev = regulator->rdev;
1617	struct regulator_ops	*ops = rdev->desc->ops;
1618	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
1620	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621		return -EINVAL;
 
 
1622
1623	mutex_lock(&rdev->mutex);
1624	ret = ops->list_voltage(rdev, selector);
1625	mutex_unlock(&rdev->mutex);
1626
1627	if (ret > 0) {
1628		if (ret < rdev->constraints->min_uV)
1629			ret = 0;
1630		else if (ret > rdev->constraints->max_uV)
1631			ret = 0;
1632	}
 
 
 
 
1633
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(regulator_list_voltage);
1637
1638/**
1639 * regulator_is_supported_voltage - check if a voltage range can be supported
1640 *
1641 * @regulator: Regulator to check.
1642 * @min_uV: Minimum required voltage in uV.
1643 * @max_uV: Maximum required voltage in uV.
1644 *
1645 * Returns a boolean or a negative error code.
1646 */
1647int regulator_is_supported_voltage(struct regulator *regulator,
1648				   int min_uV, int max_uV)
1649{
 
1650	int i, voltages, ret;
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652	ret = regulator_count_voltages(regulator);
1653	if (ret < 0)
1654		return ret;
1655	voltages = ret;
1656
1657	for (i = 0; i < voltages; i++) {
1658		ret = regulator_list_voltage(regulator, i);
1659
1660		if (ret >= min_uV && ret <= max_uV)
1661			return 1;
1662	}
1663
1664	return 0;
1665}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666
1667static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1668				     int min_uV, int max_uV)
1669{
1670	int ret;
1671	int delay = 0;
 
1672	unsigned int selector;
 
 
 
1673
1674	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1675
1676	min_uV += rdev->constraints->uV_offset;
1677	max_uV += rdev->constraints->uV_offset;
1678
1679	if (rdev->desc->ops->set_voltage) {
1680		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1681						   &selector);
1682
1683		if (rdev->desc->ops->list_voltage)
1684			selector = rdev->desc->ops->list_voltage(rdev,
1685								 selector);
1686		else
1687			selector = -1;
1688	} else if (rdev->desc->ops->set_voltage_sel) {
1689		int best_val = INT_MAX;
1690		int i;
1691
1692		selector = 0;
1693
1694		/* Find the smallest voltage that falls within the specified
1695		 * range.
1696		 */
1697		for (i = 0; i < rdev->desc->n_voltages; i++) {
1698			ret = rdev->desc->ops->list_voltage(rdev, i);
1699			if (ret < 0)
1700				continue;
1701
1702			if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1703				best_val = ret;
1704				selector = i;
 
 
 
 
 
 
 
 
 
 
1705			}
1706		}
 
 
 
1707
 
 
 
 
1708		/*
1709		 * If we can't obtain the old selector there is not enough
1710		 * info to call set_voltage_time_sel().
1711		 */
1712		if (rdev->desc->ops->set_voltage_time_sel &&
1713		    rdev->desc->ops->get_voltage_sel) {
1714			unsigned int old_selector = 0;
1715
1716			ret = rdev->desc->ops->get_voltage_sel(rdev);
1717			if (ret < 0)
1718				return ret;
1719			old_selector = ret;
1720			delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1721						old_selector, selector);
 
 
1722		}
 
1723
1724		if (best_val != INT_MAX) {
1725			ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1726			selector = best_val;
1727		} else {
1728			ret = -EINVAL;
1729		}
1730	} else {
1731		ret = -EINVAL;
1732	}
1733
1734	/* Insert any necessary delays */
1735	if (delay >= 1000) {
1736		mdelay(delay / 1000);
1737		udelay(delay % 1000);
1738	} else if (delay) {
1739		udelay(delay);
1740	}
1741
1742	if (ret == 0)
 
 
1743		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1744				     NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
1746	trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
 
 
 
 
1747
1748	return ret;
1749}
1750
1751/**
1752 * regulator_set_voltage - set regulator output voltage
1753 * @regulator: regulator source
1754 * @min_uV: Minimum required voltage in uV
1755 * @max_uV: Maximum acceptable voltage in uV
1756 *
1757 * Sets a voltage regulator to the desired output voltage. This can be set
1758 * during any regulator state. IOW, regulator can be disabled or enabled.
1759 *
1760 * If the regulator is enabled then the voltage will change to the new value
1761 * immediately otherwise if the regulator is disabled the regulator will
1762 * output at the new voltage when enabled.
1763 *
1764 * NOTE: If the regulator is shared between several devices then the lowest
1765 * request voltage that meets the system constraints will be used.
1766 * Regulator system constraints must be set for this regulator before
1767 * calling this function otherwise this call will fail.
1768 */
1769int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1770{
1771	struct regulator_dev *rdev = regulator->rdev;
1772	int ret = 0;
1773
1774	mutex_lock(&rdev->mutex);
1775
1776	/* If we're setting the same range as last time the change
1777	 * should be a noop (some cpufreq implementations use the same
1778	 * voltage for multiple frequencies, for example).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779	 */
1780	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1781		goto out;
 
 
 
1782
1783	/* sanity check */
1784	if (!rdev->desc->ops->set_voltage &&
1785	    !rdev->desc->ops->set_voltage_sel) {
1786		ret = -EINVAL;
1787		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1788	}
1789
1790	/* constraints check */
1791	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1792	if (ret < 0)
1793		goto out;
1794	regulator->min_uV = min_uV;
1795	regulator->max_uV = max_uV;
1796
1797	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1798	if (ret < 0)
1799		goto out;
 
1800
1801	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
 
 
 
 
 
1802
1803out:
1804	mutex_unlock(&rdev->mutex);
1805	return ret;
1806}
1807EXPORT_SYMBOL_GPL(regulator_set_voltage);
1808
1809/**
1810 * regulator_set_voltage_time - get raise/fall time
1811 * @regulator: regulator source
1812 * @old_uV: starting voltage in microvolts
1813 * @new_uV: target voltage in microvolts
1814 *
1815 * Provided with the starting and ending voltage, this function attempts to
1816 * calculate the time in microseconds required to rise or fall to this new
1817 * voltage.
1818 */
1819int regulator_set_voltage_time(struct regulator *regulator,
1820			       int old_uV, int new_uV)
1821{
1822	struct regulator_dev	*rdev = regulator->rdev;
1823	struct regulator_ops	*ops = rdev->desc->ops;
1824	int old_sel = -1;
1825	int new_sel = -1;
1826	int voltage;
1827	int i;
1828
 
 
 
 
 
1829	/* Currently requires operations to do this */
1830	if (!ops->list_voltage || !ops->set_voltage_time_sel
1831	    || !rdev->desc->n_voltages)
1832		return -EINVAL;
1833
1834	for (i = 0; i < rdev->desc->n_voltages; i++) {
1835		/* We only look for exact voltage matches here */
1836		voltage = regulator_list_voltage(regulator, i);
1837		if (voltage < 0)
1838			return -EINVAL;
1839		if (voltage == 0)
1840			continue;
1841		if (voltage == old_uV)
1842			old_sel = i;
1843		if (voltage == new_uV)
1844			new_sel = i;
1845	}
1846
1847	if (old_sel < 0 || new_sel < 0)
1848		return -EINVAL;
1849
1850	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1851}
1852EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1853
1854/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855 * regulator_sync_voltage - re-apply last regulator output voltage
1856 * @regulator: regulator source
1857 *
1858 * Re-apply the last configured voltage.  This is intended to be used
1859 * where some external control source the consumer is cooperating with
1860 * has caused the configured voltage to change.
1861 */
1862int regulator_sync_voltage(struct regulator *regulator)
1863{
1864	struct regulator_dev *rdev = regulator->rdev;
 
1865	int ret, min_uV, max_uV;
1866
1867	mutex_lock(&rdev->mutex);
1868
1869	if (!rdev->desc->ops->set_voltage &&
1870	    !rdev->desc->ops->set_voltage_sel) {
1871		ret = -EINVAL;
1872		goto out;
1873	}
1874
1875	/* This is only going to work if we've had a voltage configured. */
1876	if (!regulator->min_uV && !regulator->max_uV) {
1877		ret = -EINVAL;
1878		goto out;
1879	}
1880
1881	min_uV = regulator->min_uV;
1882	max_uV = regulator->max_uV;
1883
1884	/* This should be a paranoia check... */
1885	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1886	if (ret < 0)
1887		goto out;
1888
1889	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1890	if (ret < 0)
1891		goto out;
1892
1893	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1894
1895out:
1896	mutex_unlock(&rdev->mutex);
1897	return ret;
1898}
1899EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1900
1901static int _regulator_get_voltage(struct regulator_dev *rdev)
1902{
1903	int sel, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904
1905	if (rdev->desc->ops->get_voltage_sel) {
1906		sel = rdev->desc->ops->get_voltage_sel(rdev);
1907		if (sel < 0)
1908			return sel;
1909		ret = rdev->desc->ops->list_voltage(rdev, sel);
1910	} else if (rdev->desc->ops->get_voltage) {
1911		ret = rdev->desc->ops->get_voltage(rdev);
 
 
 
 
 
 
1912	} else {
1913		return -EINVAL;
1914	}
1915
1916	if (ret < 0)
1917		return ret;
1918	return ret - rdev->constraints->uV_offset;
1919}
1920
1921/**
1922 * regulator_get_voltage - get regulator output voltage
1923 * @regulator: regulator source
1924 *
1925 * This returns the current regulator voltage in uV.
1926 *
1927 * NOTE: If the regulator is disabled it will return the voltage value. This
1928 * function should not be used to determine regulator state.
1929 */
1930int regulator_get_voltage(struct regulator *regulator)
1931{
1932	int ret;
1933
1934	mutex_lock(&regulator->rdev->mutex);
1935
1936	ret = _regulator_get_voltage(regulator->rdev);
1937
1938	mutex_unlock(&regulator->rdev->mutex);
1939
1940	return ret;
1941}
1942EXPORT_SYMBOL_GPL(regulator_get_voltage);
1943
1944/**
1945 * regulator_set_current_limit - set regulator output current limit
1946 * @regulator: regulator source
1947 * @min_uA: Minimuum supported current in uA
1948 * @max_uA: Maximum supported current in uA
1949 *
1950 * Sets current sink to the desired output current. This can be set during
1951 * any regulator state. IOW, regulator can be disabled or enabled.
1952 *
1953 * If the regulator is enabled then the current will change to the new value
1954 * immediately otherwise if the regulator is disabled the regulator will
1955 * output at the new current when enabled.
1956 *
1957 * NOTE: Regulator system constraints must be set for this regulator before
1958 * calling this function otherwise this call will fail.
1959 */
1960int regulator_set_current_limit(struct regulator *regulator,
1961			       int min_uA, int max_uA)
1962{
1963	struct regulator_dev *rdev = regulator->rdev;
1964	int ret;
1965
1966	mutex_lock(&rdev->mutex);
1967
1968	/* sanity check */
1969	if (!rdev->desc->ops->set_current_limit) {
1970		ret = -EINVAL;
1971		goto out;
1972	}
1973
1974	/* constraints check */
1975	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1976	if (ret < 0)
1977		goto out;
1978
1979	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1980out:
1981	mutex_unlock(&rdev->mutex);
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1985
1986static int _regulator_get_current_limit(struct regulator_dev *rdev)
1987{
1988	int ret;
1989
1990	mutex_lock(&rdev->mutex);
1991
1992	/* sanity check */
1993	if (!rdev->desc->ops->get_current_limit) {
1994		ret = -EINVAL;
1995		goto out;
1996	}
1997
1998	ret = rdev->desc->ops->get_current_limit(rdev);
1999out:
2000	mutex_unlock(&rdev->mutex);
2001	return ret;
2002}
2003
2004/**
2005 * regulator_get_current_limit - get regulator output current
2006 * @regulator: regulator source
2007 *
2008 * This returns the current supplied by the specified current sink in uA.
2009 *
2010 * NOTE: If the regulator is disabled it will return the current value. This
2011 * function should not be used to determine regulator state.
2012 */
2013int regulator_get_current_limit(struct regulator *regulator)
2014{
2015	return _regulator_get_current_limit(regulator->rdev);
2016}
2017EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2018
2019/**
2020 * regulator_set_mode - set regulator operating mode
2021 * @regulator: regulator source
2022 * @mode: operating mode - one of the REGULATOR_MODE constants
2023 *
2024 * Set regulator operating mode to increase regulator efficiency or improve
2025 * regulation performance.
2026 *
2027 * NOTE: Regulator system constraints must be set for this regulator before
2028 * calling this function otherwise this call will fail.
2029 */
2030int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2031{
2032	struct regulator_dev *rdev = regulator->rdev;
2033	int ret;
2034	int regulator_curr_mode;
2035
2036	mutex_lock(&rdev->mutex);
2037
2038	/* sanity check */
2039	if (!rdev->desc->ops->set_mode) {
2040		ret = -EINVAL;
2041		goto out;
2042	}
2043
2044	/* return if the same mode is requested */
2045	if (rdev->desc->ops->get_mode) {
2046		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2047		if (regulator_curr_mode == mode) {
2048			ret = 0;
2049			goto out;
2050		}
2051	}
2052
2053	/* constraints check */
2054	ret = regulator_mode_constrain(rdev, &mode);
2055	if (ret < 0)
2056		goto out;
2057
2058	ret = rdev->desc->ops->set_mode(rdev, mode);
2059out:
2060	mutex_unlock(&rdev->mutex);
2061	return ret;
2062}
2063EXPORT_SYMBOL_GPL(regulator_set_mode);
2064
2065static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2066{
2067	int ret;
2068
2069	mutex_lock(&rdev->mutex);
2070
2071	/* sanity check */
2072	if (!rdev->desc->ops->get_mode) {
2073		ret = -EINVAL;
2074		goto out;
2075	}
2076
2077	ret = rdev->desc->ops->get_mode(rdev);
2078out:
2079	mutex_unlock(&rdev->mutex);
2080	return ret;
2081}
2082
2083/**
2084 * regulator_get_mode - get regulator operating mode
2085 * @regulator: regulator source
2086 *
2087 * Get the current regulator operating mode.
2088 */
2089unsigned int regulator_get_mode(struct regulator *regulator)
2090{
2091	return _regulator_get_mode(regulator->rdev);
2092}
2093EXPORT_SYMBOL_GPL(regulator_get_mode);
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095/**
2096 * regulator_set_optimum_mode - set regulator optimum operating mode
2097 * @regulator: regulator source
2098 * @uA_load: load current
2099 *
2100 * Notifies the regulator core of a new device load. This is then used by
2101 * DRMS (if enabled by constraints) to set the most efficient regulator
2102 * operating mode for the new regulator loading.
2103 *
2104 * Consumer devices notify their supply regulator of the maximum power
2105 * they will require (can be taken from device datasheet in the power
2106 * consumption tables) when they change operational status and hence power
2107 * state. Examples of operational state changes that can affect power
2108 * consumption are :-
2109 *
2110 *    o Device is opened / closed.
2111 *    o Device I/O is about to begin or has just finished.
2112 *    o Device is idling in between work.
2113 *
2114 * This information is also exported via sysfs to userspace.
2115 *
2116 * DRMS will sum the total requested load on the regulator and change
2117 * to the most efficient operating mode if platform constraints allow.
2118 *
2119 * Returns the new regulator mode or error.
2120 */
2121int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2122{
2123	struct regulator_dev *rdev = regulator->rdev;
2124	struct regulator *consumer;
2125	int ret, output_uV, input_uV, total_uA_load = 0;
2126	unsigned int mode;
2127
2128	mutex_lock(&rdev->mutex);
2129
2130	/*
2131	 * first check to see if we can set modes at all, otherwise just
2132	 * tell the consumer everything is OK.
2133	 */
2134	regulator->uA_load = uA_load;
2135	ret = regulator_check_drms(rdev);
2136	if (ret < 0) {
2137		ret = 0;
2138		goto out;
2139	}
2140
2141	if (!rdev->desc->ops->get_optimum_mode)
2142		goto out;
 
2143
2144	/*
2145	 * we can actually do this so any errors are indicators of
2146	 * potential real failure.
2147	 */
2148	ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
2149
2150	/* get output voltage */
2151	output_uV = _regulator_get_voltage(rdev);
2152	if (output_uV <= 0) {
2153		rdev_err(rdev, "invalid output voltage found\n");
2154		goto out;
2155	}
2156
2157	/* get input voltage */
2158	input_uV = 0;
2159	if (rdev->supply)
2160		input_uV = regulator_get_voltage(rdev->supply);
2161	if (input_uV <= 0)
2162		input_uV = rdev->constraints->input_uV;
2163	if (input_uV <= 0) {
2164		rdev_err(rdev, "invalid input voltage found\n");
2165		goto out;
2166	}
2167
2168	/* calc total requested load for this regulator */
2169	list_for_each_entry(consumer, &rdev->consumer_list, list)
2170		total_uA_load += consumer->uA_load;
2171
2172	mode = rdev->desc->ops->get_optimum_mode(rdev,
2173						 input_uV, output_uV,
2174						 total_uA_load);
2175	ret = regulator_mode_constrain(rdev, &mode);
2176	if (ret < 0) {
2177		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2178			 total_uA_load, input_uV, output_uV);
2179		goto out;
2180	}
2181
2182	ret = rdev->desc->ops->set_mode(rdev, mode);
2183	if (ret < 0) {
2184		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2185		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	}
2187	ret = mode;
2188out:
 
 
2189	mutex_unlock(&rdev->mutex);
 
2190	return ret;
2191}
2192EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2193
2194/**
2195 * regulator_register_notifier - register regulator event notifier
2196 * @regulator: regulator source
2197 * @nb: notifier block
2198 *
2199 * Register notifier block to receive regulator events.
2200 */
2201int regulator_register_notifier(struct regulator *regulator,
2202			      struct notifier_block *nb)
2203{
2204	return blocking_notifier_chain_register(&regulator->rdev->notifier,
2205						nb);
2206}
2207EXPORT_SYMBOL_GPL(regulator_register_notifier);
2208
2209/**
2210 * regulator_unregister_notifier - unregister regulator event notifier
2211 * @regulator: regulator source
2212 * @nb: notifier block
2213 *
2214 * Unregister regulator event notifier block.
2215 */
2216int regulator_unregister_notifier(struct regulator *regulator,
2217				struct notifier_block *nb)
2218{
2219	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2220						  nb);
2221}
2222EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2223
2224/* notify regulator consumers and downstream regulator consumers.
2225 * Note mutex must be held by caller.
2226 */
2227static void _notifier_call_chain(struct regulator_dev *rdev,
2228				  unsigned long event, void *data)
2229{
2230	/* call rdev chain first */
2231	blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2232}
2233
2234/**
2235 * regulator_bulk_get - get multiple regulator consumers
2236 *
2237 * @dev:           Device to supply
2238 * @num_consumers: Number of consumers to register
2239 * @consumers:     Configuration of consumers; clients are stored here.
2240 *
2241 * @return 0 on success, an errno on failure.
2242 *
2243 * This helper function allows drivers to get several regulator
2244 * consumers in one operation.  If any of the regulators cannot be
2245 * acquired then any regulators that were allocated will be freed
2246 * before returning to the caller.
2247 */
2248int regulator_bulk_get(struct device *dev, int num_consumers,
2249		       struct regulator_bulk_data *consumers)
2250{
2251	int i;
2252	int ret;
2253
2254	for (i = 0; i < num_consumers; i++)
2255		consumers[i].consumer = NULL;
2256
2257	for (i = 0; i < num_consumers; i++) {
2258		consumers[i].consumer = regulator_get(dev,
2259						      consumers[i].supply);
2260		if (IS_ERR(consumers[i].consumer)) {
2261			ret = PTR_ERR(consumers[i].consumer);
2262			dev_err(dev, "Failed to get supply '%s': %d\n",
2263				consumers[i].supply, ret);
2264			consumers[i].consumer = NULL;
2265			goto err;
2266		}
2267	}
2268
2269	return 0;
2270
2271err:
2272	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2273		regulator_put(consumers[i].consumer);
2274
2275	return ret;
2276}
2277EXPORT_SYMBOL_GPL(regulator_bulk_get);
2278
2279static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2280{
2281	struct regulator_bulk_data *bulk = data;
2282
2283	bulk->ret = regulator_enable(bulk->consumer);
2284}
2285
2286/**
2287 * regulator_bulk_enable - enable multiple regulator consumers
2288 *
2289 * @num_consumers: Number of consumers
2290 * @consumers:     Consumer data; clients are stored here.
2291 * @return         0 on success, an errno on failure
2292 *
2293 * This convenience API allows consumers to enable multiple regulator
2294 * clients in a single API call.  If any consumers cannot be enabled
2295 * then any others that were enabled will be disabled again prior to
2296 * return.
2297 */
2298int regulator_bulk_enable(int num_consumers,
2299			  struct regulator_bulk_data *consumers)
2300{
2301	LIST_HEAD(async_domain);
2302	int i;
2303	int ret = 0;
2304
2305	for (i = 0; i < num_consumers; i++)
2306		async_schedule_domain(regulator_bulk_enable_async,
2307				      &consumers[i], &async_domain);
 
 
 
 
2308
2309	async_synchronize_full_domain(&async_domain);
2310
2311	/* If any consumer failed we need to unwind any that succeeded */
2312	for (i = 0; i < num_consumers; i++) {
2313		if (consumers[i].ret != 0) {
2314			ret = consumers[i].ret;
2315			goto err;
2316		}
2317	}
2318
2319	return 0;
2320
2321err:
2322	for (i = 0; i < num_consumers; i++)
2323		if (consumers[i].ret == 0)
2324			regulator_disable(consumers[i].consumer);
 
2325		else
2326			pr_err("Failed to enable %s: %d\n",
2327			       consumers[i].supply, consumers[i].ret);
2328
2329	return ret;
2330}
2331EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2332
2333/**
2334 * regulator_bulk_disable - disable multiple regulator consumers
2335 *
2336 * @num_consumers: Number of consumers
2337 * @consumers:     Consumer data; clients are stored here.
2338 * @return         0 on success, an errno on failure
2339 *
2340 * This convenience API allows consumers to disable multiple regulator
2341 * clients in a single API call.  If any consumers cannot be enabled
2342 * then any others that were disabled will be disabled again prior to
2343 * return.
2344 */
2345int regulator_bulk_disable(int num_consumers,
2346			   struct regulator_bulk_data *consumers)
2347{
2348	int i;
2349	int ret;
2350
2351	for (i = 0; i < num_consumers; i++) {
2352		ret = regulator_disable(consumers[i].consumer);
2353		if (ret != 0)
2354			goto err;
2355	}
2356
2357	return 0;
2358
2359err:
2360	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2361	for (--i; i >= 0; --i)
2362		regulator_enable(consumers[i].consumer);
 
 
 
 
2363
2364	return ret;
2365}
2366EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2367
2368/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369 * regulator_bulk_free - free multiple regulator consumers
2370 *
2371 * @num_consumers: Number of consumers
2372 * @consumers:     Consumer data; clients are stored here.
2373 *
2374 * This convenience API allows consumers to free multiple regulator
2375 * clients in a single API call.
2376 */
2377void regulator_bulk_free(int num_consumers,
2378			 struct regulator_bulk_data *consumers)
2379{
2380	int i;
2381
2382	for (i = 0; i < num_consumers; i++) {
2383		regulator_put(consumers[i].consumer);
2384		consumers[i].consumer = NULL;
2385	}
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_free);
2388
2389/**
2390 * regulator_notifier_call_chain - call regulator event notifier
2391 * @rdev: regulator source
2392 * @event: notifier block
2393 * @data: callback-specific data.
2394 *
2395 * Called by regulator drivers to notify clients a regulator event has
2396 * occurred. We also notify regulator clients downstream.
2397 * Note lock must be held by caller.
2398 */
2399int regulator_notifier_call_chain(struct regulator_dev *rdev,
2400				  unsigned long event, void *data)
2401{
 
 
2402	_notifier_call_chain(rdev, event, data);
2403	return NOTIFY_DONE;
2404
2405}
2406EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2407
2408/**
2409 * regulator_mode_to_status - convert a regulator mode into a status
2410 *
2411 * @mode: Mode to convert
2412 *
2413 * Convert a regulator mode into a status.
2414 */
2415int regulator_mode_to_status(unsigned int mode)
2416{
2417	switch (mode) {
2418	case REGULATOR_MODE_FAST:
2419		return REGULATOR_STATUS_FAST;
2420	case REGULATOR_MODE_NORMAL:
2421		return REGULATOR_STATUS_NORMAL;
2422	case REGULATOR_MODE_IDLE:
2423		return REGULATOR_STATUS_IDLE;
2424	case REGULATOR_STATUS_STANDBY:
2425		return REGULATOR_STATUS_STANDBY;
2426	default:
2427		return 0;
2428	}
2429}
2430EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432/*
2433 * To avoid cluttering sysfs (and memory) with useless state, only
2434 * create attributes that can be meaningfully displayed.
2435 */
2436static int add_regulator_attributes(struct regulator_dev *rdev)
 
2437{
2438	struct device		*dev = &rdev->dev;
2439	struct regulator_ops	*ops = rdev->desc->ops;
2440	int			status = 0;
 
 
 
 
 
 
 
2441
2442	/* some attributes need specific methods to be displayed */
2443	if (ops->get_voltage || ops->get_voltage_sel) {
2444		status = device_create_file(dev, &dev_attr_microvolts);
2445		if (status < 0)
2446			return status;
2447	}
2448	if (ops->get_current_limit) {
2449		status = device_create_file(dev, &dev_attr_microamps);
2450		if (status < 0)
2451			return status;
2452	}
2453	if (ops->get_mode) {
2454		status = device_create_file(dev, &dev_attr_opmode);
2455		if (status < 0)
2456			return status;
2457	}
2458	if (ops->is_enabled) {
2459		status = device_create_file(dev, &dev_attr_state);
2460		if (status < 0)
2461			return status;
2462	}
2463	if (ops->get_status) {
2464		status = device_create_file(dev, &dev_attr_status);
2465		if (status < 0)
2466			return status;
2467	}
2468
2469	/* some attributes are type-specific */
2470	if (rdev->desc->type == REGULATOR_CURRENT) {
2471		status = device_create_file(dev, &dev_attr_requested_microamps);
2472		if (status < 0)
2473			return status;
2474	}
2475
2476	/* all the other attributes exist to support constraints;
2477	 * don't show them if there are no constraints, or if the
2478	 * relevant supporting methods are missing.
2479	 */
2480	if (!rdev->constraints)
2481		return status;
2482
2483	/* constraints need specific supporting methods */
2484	if (ops->set_voltage || ops->set_voltage_sel) {
2485		status = device_create_file(dev, &dev_attr_min_microvolts);
2486		if (status < 0)
2487			return status;
2488		status = device_create_file(dev, &dev_attr_max_microvolts);
2489		if (status < 0)
2490			return status;
2491	}
2492	if (ops->set_current_limit) {
2493		status = device_create_file(dev, &dev_attr_min_microamps);
2494		if (status < 0)
2495			return status;
2496		status = device_create_file(dev, &dev_attr_max_microamps);
2497		if (status < 0)
2498			return status;
2499	}
2500
2501	/* suspend mode constraints need multiple supporting methods */
2502	if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2503		return status;
2504
2505	status = device_create_file(dev, &dev_attr_suspend_standby_state);
2506	if (status < 0)
2507		return status;
2508	status = device_create_file(dev, &dev_attr_suspend_mem_state);
2509	if (status < 0)
2510		return status;
2511	status = device_create_file(dev, &dev_attr_suspend_disk_state);
2512	if (status < 0)
2513		return status;
2514
2515	if (ops->set_suspend_voltage) {
2516		status = device_create_file(dev,
2517				&dev_attr_suspend_standby_microvolts);
2518		if (status < 0)
2519			return status;
2520		status = device_create_file(dev,
2521				&dev_attr_suspend_mem_microvolts);
2522		if (status < 0)
2523			return status;
2524		status = device_create_file(dev,
2525				&dev_attr_suspend_disk_microvolts);
2526		if (status < 0)
2527			return status;
2528	}
2529
2530	if (ops->set_suspend_mode) {
2531		status = device_create_file(dev,
2532				&dev_attr_suspend_standby_mode);
2533		if (status < 0)
2534			return status;
2535		status = device_create_file(dev,
2536				&dev_attr_suspend_mem_mode);
2537		if (status < 0)
2538			return status;
2539		status = device_create_file(dev,
2540				&dev_attr_suspend_disk_mode);
2541		if (status < 0)
2542			return status;
2543	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544
2545	return status;
 
 
2546}
2547
2548static void rdev_init_debugfs(struct regulator_dev *rdev)
2549{
2550#ifdef CONFIG_DEBUG_FS
2551	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2552	if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
 
 
 
 
 
 
 
 
 
 
2553		rdev_warn(rdev, "Failed to create debugfs directory\n");
2554		rdev->debugfs = NULL;
2555		return;
2556	}
2557
2558	debugfs_create_u32("use_count", 0444, rdev->debugfs,
2559			   &rdev->use_count);
2560	debugfs_create_u32("open_count", 0444, rdev->debugfs,
2561			   &rdev->open_count);
2562#endif
 
 
 
 
 
 
 
 
 
 
 
2563}
2564
2565/**
2566 * regulator_register - register regulator
2567 * @regulator_desc: regulator to register
2568 * @dev: struct device for the regulator
2569 * @init_data: platform provided init data, passed through by driver
2570 * @driver_data: private regulator data
2571 *
2572 * Called by regulator drivers to register a regulator.
2573 * Returns 0 on success.
 
2574 */
2575struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2576	struct device *dev, const struct regulator_init_data *init_data,
2577	void *driver_data)
2578{
2579	static atomic_t regulator_no = ATOMIC_INIT(0);
 
 
 
2580	struct regulator_dev *rdev;
 
2581	int ret, i;
2582
2583	if (regulator_desc == NULL)
2584		return ERR_PTR(-EINVAL);
2585
 
 
 
2586	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2587		return ERR_PTR(-EINVAL);
2588
2589	if (regulator_desc->type != REGULATOR_VOLTAGE &&
2590	    regulator_desc->type != REGULATOR_CURRENT)
2591		return ERR_PTR(-EINVAL);
2592
2593	if (!init_data)
2594		return ERR_PTR(-EINVAL);
2595
2596	/* Only one of each should be implemented */
2597	WARN_ON(regulator_desc->ops->get_voltage &&
2598		regulator_desc->ops->get_voltage_sel);
2599	WARN_ON(regulator_desc->ops->set_voltage &&
2600		regulator_desc->ops->set_voltage_sel);
2601
2602	/* If we're using selectors we must implement list_voltage. */
2603	if (regulator_desc->ops->get_voltage_sel &&
2604	    !regulator_desc->ops->list_voltage) {
2605		return ERR_PTR(-EINVAL);
2606	}
2607	if (regulator_desc->ops->set_voltage_sel &&
2608	    !regulator_desc->ops->list_voltage) {
2609		return ERR_PTR(-EINVAL);
2610	}
2611
2612	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2613	if (rdev == NULL)
2614		return ERR_PTR(-ENOMEM);
2615
2616	mutex_lock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618	mutex_init(&rdev->mutex);
2619	rdev->reg_data = driver_data;
2620	rdev->owner = regulator_desc->owner;
2621	rdev->desc = regulator_desc;
 
 
 
 
 
 
2622	INIT_LIST_HEAD(&rdev->consumer_list);
2623	INIT_LIST_HEAD(&rdev->list);
2624	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
 
2625
2626	/* preform any regulator specific init */
2627	if (init_data->regulator_init) {
2628		ret = init_data->regulator_init(rdev->reg_data);
2629		if (ret < 0)
2630			goto clean;
2631	}
2632
 
 
 
 
 
 
 
 
 
 
 
 
 
2633	/* register with sysfs */
2634	rdev->dev.class = &regulator_class;
2635	rdev->dev.parent = dev;
2636	dev_set_name(&rdev->dev, "regulator.%d",
2637		     atomic_inc_return(&regulator_no) - 1);
2638	ret = device_register(&rdev->dev);
2639	if (ret != 0) {
2640		put_device(&rdev->dev);
2641		goto clean;
2642	}
2643
2644	dev_set_drvdata(&rdev->dev, rdev);
2645
2646	/* set regulator constraints */
2647	ret = set_machine_constraints(rdev, &init_data->constraints);
2648	if (ret < 0)
2649		goto scrub;
2650
2651	/* add attributes supported by this regulator */
2652	ret = add_regulator_attributes(rdev);
2653	if (ret < 0)
2654		goto scrub;
2655
2656	if (init_data->supply_regulator) {
2657		struct regulator_dev *r;
2658		int found = 0;
2659
2660		list_for_each_entry(r, &regulator_list, list) {
2661			if (strcmp(rdev_get_name(r),
2662				   init_data->supply_regulator) == 0) {
2663				found = 1;
2664				break;
2665			}
2666		}
2667
2668		if (!found) {
2669			dev_err(dev, "Failed to find supply %s\n",
2670				init_data->supply_regulator);
2671			ret = -ENODEV;
2672			goto scrub;
2673		}
2674
2675		ret = set_supply(rdev, r);
2676		if (ret < 0)
2677			goto scrub;
2678	}
2679
2680	/* add consumers devices */
2681	for (i = 0; i < init_data->num_consumer_supplies; i++) {
2682		ret = set_consumer_device_supply(rdev,
2683			init_data->consumer_supplies[i].dev,
2684			init_data->consumer_supplies[i].dev_name,
2685			init_data->consumer_supplies[i].supply);
2686		if (ret < 0) {
2687			dev_err(dev, "Failed to set supply %s\n",
2688				init_data->consumer_supplies[i].supply);
2689			goto unset_supplies;
 
 
 
 
 
2690		}
 
2691	}
2692
2693	list_add(&rdev->list, &regulator_list);
 
 
 
 
 
 
 
 
 
2694
 
2695	rdev_init_debugfs(rdev);
2696out:
2697	mutex_unlock(&regulator_list_mutex);
 
 
 
2698	return rdev;
2699
2700unset_supplies:
 
2701	unset_regulator_supplies(rdev);
2702
2703scrub:
2704	kfree(rdev->constraints);
2705	device_unregister(&rdev->dev);
2706	/* device core frees rdev */
2707	rdev = ERR_PTR(ret);
2708	goto out;
2709
2710clean:
2711	kfree(rdev);
2712	rdev = ERR_PTR(ret);
2713	goto out;
2714}
2715EXPORT_SYMBOL_GPL(regulator_register);
2716
2717/**
2718 * regulator_unregister - unregister regulator
2719 * @rdev: regulator to unregister
2720 *
2721 * Called by regulator drivers to unregister a regulator.
2722 */
2723void regulator_unregister(struct regulator_dev *rdev)
2724{
2725	if (rdev == NULL)
2726		return;
2727
 
 
 
 
 
2728	mutex_lock(&regulator_list_mutex);
2729#ifdef CONFIG_DEBUG_FS
2730	debugfs_remove_recursive(rdev->debugfs);
2731#endif
2732	WARN_ON(rdev->open_count);
2733	unset_regulator_supplies(rdev);
2734	list_del(&rdev->list);
2735	if (rdev->supply)
2736		regulator_put(rdev->supply);
2737	device_unregister(&rdev->dev);
2738	kfree(rdev->constraints);
2739	mutex_unlock(&regulator_list_mutex);
 
2740}
2741EXPORT_SYMBOL_GPL(regulator_unregister);
2742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2743/**
2744 * regulator_suspend_prepare - prepare regulators for system wide suspend
2745 * @state: system suspend state
2746 *
2747 * Configure each regulator with it's suspend operating parameters for state.
2748 * This will usually be called by machine suspend code prior to supending.
2749 */
2750int regulator_suspend_prepare(suspend_state_t state)
 
 
 
 
 
 
 
 
2751{
2752	struct regulator_dev *rdev;
2753	int ret = 0;
 
 
 
2754
2755	/* ON is handled by regulator active state */
2756	if (state == PM_SUSPEND_ON)
2757		return -EINVAL;
2758
2759	mutex_lock(&regulator_list_mutex);
2760	list_for_each_entry(rdev, &regulator_list, list) {
2761
2762		mutex_lock(&rdev->mutex);
2763		ret = suspend_prepare(rdev, state);
2764		mutex_unlock(&rdev->mutex);
 
 
 
2765
2766		if (ret < 0) {
2767			rdev_err(rdev, "failed to prepare\n");
2768			goto out;
2769		}
2770	}
2771out:
2772	mutex_unlock(&regulator_list_mutex);
2773	return ret;
2774}
2775EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2776
2777/**
2778 * regulator_suspend_finish - resume regulators from system wide suspend
2779 *
2780 * Turn on regulators that might be turned off by regulator_suspend_prepare
2781 * and that should be turned on according to the regulators properties.
2782 */
2783int regulator_suspend_finish(void)
2784{
2785	struct regulator_dev *rdev;
2786	int ret = 0, error;
2787
2788	mutex_lock(&regulator_list_mutex);
2789	list_for_each_entry(rdev, &regulator_list, list) {
2790		struct regulator_ops *ops = rdev->desc->ops;
2791
2792		mutex_lock(&rdev->mutex);
2793		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2794				ops->enable) {
2795			error = ops->enable(rdev);
2796			if (error)
2797				ret = error;
2798		} else {
2799			if (!has_full_constraints)
2800				goto unlock;
2801			if (!ops->disable)
2802				goto unlock;
2803			if (ops->is_enabled && !ops->is_enabled(rdev))
2804				goto unlock;
2805
2806			error = ops->disable(rdev);
2807			if (error)
2808				ret = error;
2809		}
2810unlock:
2811		mutex_unlock(&rdev->mutex);
2812	}
2813	mutex_unlock(&regulator_list_mutex);
2814	return ret;
2815}
2816EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2818/**
2819 * regulator_has_full_constraints - the system has fully specified constraints
2820 *
2821 * Calling this function will cause the regulator API to disable all
2822 * regulators which have a zero use count and don't have an always_on
2823 * constraint in a late_initcall.
2824 *
2825 * The intention is that this will become the default behaviour in a
2826 * future kernel release so users are encouraged to use this facility
2827 * now.
2828 */
2829void regulator_has_full_constraints(void)
2830{
2831	has_full_constraints = 1;
2832}
2833EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2834
2835/**
2836 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2837 *
2838 * Calling this function will cause the regulator API to provide a
2839 * dummy regulator to consumers if no physical regulator is found,
2840 * allowing most consumers to proceed as though a regulator were
2841 * configured.  This allows systems such as those with software
2842 * controllable regulators for the CPU core only to be brought up more
2843 * readily.
2844 */
2845void regulator_use_dummy_regulator(void)
2846{
2847	board_wants_dummy_regulator = true;
2848}
2849EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2850
2851/**
2852 * rdev_get_drvdata - get rdev regulator driver data
2853 * @rdev: regulator
2854 *
2855 * Get rdev regulator driver private data. This call can be used in the
2856 * regulator driver context.
2857 */
2858void *rdev_get_drvdata(struct regulator_dev *rdev)
2859{
2860	return rdev->reg_data;
2861}
2862EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2863
2864/**
2865 * regulator_get_drvdata - get regulator driver data
2866 * @regulator: regulator
2867 *
2868 * Get regulator driver private data. This call can be used in the consumer
2869 * driver context when non API regulator specific functions need to be called.
2870 */
2871void *regulator_get_drvdata(struct regulator *regulator)
2872{
2873	return regulator->rdev->reg_data;
2874}
2875EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2876
2877/**
2878 * regulator_set_drvdata - set regulator driver data
2879 * @regulator: regulator
2880 * @data: data
2881 */
2882void regulator_set_drvdata(struct regulator *regulator, void *data)
2883{
2884	regulator->rdev->reg_data = data;
2885}
2886EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2887
2888/**
2889 * regulator_get_id - get regulator ID
2890 * @rdev: regulator
2891 */
2892int rdev_get_id(struct regulator_dev *rdev)
2893{
2894	return rdev->desc->id;
2895}
2896EXPORT_SYMBOL_GPL(rdev_get_id);
2897
2898struct device *rdev_get_dev(struct regulator_dev *rdev)
2899{
2900	return &rdev->dev;
2901}
2902EXPORT_SYMBOL_GPL(rdev_get_dev);
2903
2904void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2905{
2906	return reg_init_data->driver_data;
2907}
2908EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910static int __init regulator_init(void)
2911{
2912	int ret;
2913
2914	ret = class_register(&regulator_class);
2915
2916#ifdef CONFIG_DEBUG_FS
2917	debugfs_root = debugfs_create_dir("regulator", NULL);
2918	if (IS_ERR(debugfs_root) || !debugfs_root) {
2919		pr_warn("regulator: Failed to create debugfs directory\n");
2920		debugfs_root = NULL;
2921	}
2922#endif
 
 
 
2923
2924	regulator_dummy_init();
2925
2926	return ret;
2927}
2928
2929/* init early to allow our consumers to complete system booting */
2930core_initcall(regulator_init);
2931
2932static int __init regulator_init_complete(void)
2933{
2934	struct regulator_dev *rdev;
2935	struct regulator_ops *ops;
2936	struct regulation_constraints *c;
2937	int enabled, ret;
2938
2939	mutex_lock(&regulator_list_mutex);
2940
2941	/* If we have a full configuration then disable any regulators
2942	 * which are not in use or always_on.  This will become the
2943	 * default behaviour in the future.
2944	 */
2945	list_for_each_entry(rdev, &regulator_list, list) {
2946		ops = rdev->desc->ops;
2947		c = rdev->constraints;
2948
2949		if (!ops->disable || (c && c->always_on))
2950			continue;
2951
2952		mutex_lock(&rdev->mutex);
2953
2954		if (rdev->use_count)
2955			goto unlock;
2956
2957		/* If we can't read the status assume it's on. */
2958		if (ops->is_enabled)
2959			enabled = ops->is_enabled(rdev);
2960		else
2961			enabled = 1;
2962
2963		if (!enabled)
2964			goto unlock;
2965
2966		if (has_full_constraints) {
2967			/* We log since this may kill the system if it
2968			 * goes wrong. */
2969			rdev_info(rdev, "disabling\n");
2970			ret = ops->disable(rdev);
2971			if (ret != 0) {
2972				rdev_err(rdev, "couldn't disable: %d\n", ret);
2973			}
2974		} else {
2975			/* The intention is that in future we will
2976			 * assume that full constraints are provided
2977			 * so warn even if we aren't going to do
2978			 * anything here.
2979			 */
2980			rdev_warn(rdev, "incomplete constraints, leaving on\n");
2981		}
2982
2983unlock:
2984		mutex_unlock(&rdev->mutex);
2985	}
2986
2987	mutex_unlock(&regulator_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988
2989	return 0;
2990}
2991late_initcall(regulator_init_complete);
v4.17
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
 
 
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
  53static DEFINE_MUTEX(regulator_list_mutex);
 
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
  57static bool has_full_constraints;
 
  58
 
  59static struct dentry *debugfs_root;
 
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67	struct list_head list;
  68	const char *dev_name;   /* The dev_name() for the consumer */
  69	const char *supply;
  70	struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
 
  79	struct list_head list;
  80	struct gpio_desc *gpiod;
  81	u32 enable_count;	/* a number of enabled shared GPIO */
  82	u32 request_count;	/* a number of requested shared GPIO */
  83	unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92	struct list_head list;
  93	struct device *src_dev;
  94	const char *src_supply;
  95	struct device *alias_dev;
  96	const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static int _notifier_call_chain(struct regulator_dev *rdev,
 105				  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107				     int min_uV, int max_uV);
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109					  struct device *dev,
 110					  const char *supply_name);
 111static void _regulator_put(struct regulator *regulator);
 112
 113static const char *rdev_get_name(struct regulator_dev *rdev)
 114{
 115	if (rdev->constraints && rdev->constraints->name)
 116		return rdev->constraints->name;
 117	else if (rdev->desc->name)
 118		return rdev->desc->name;
 119	else
 120		return "";
 121}
 122
 123static bool have_full_constraints(void)
 
 124{
 125	return has_full_constraints || of_have_populated_dt();
 126}
 127
 128static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 129{
 130	if (!rdev->constraints) {
 131		rdev_err(rdev, "no constraints\n");
 132		return false;
 
 
 
 
 
 
 133	}
 134
 135	if (rdev->constraints->valid_ops_mask & ops)
 136		return true;
 137
 138	return false;
 139}
 140
 141static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 142{
 143	if (rdev && rdev->supply)
 144		return rdev->supply->rdev;
 145
 146	return NULL;
 147}
 148
 149/**
 150 * regulator_lock_supply - lock a regulator and its supplies
 151 * @rdev:         regulator source
 152 */
 153static void regulator_lock_supply(struct regulator_dev *rdev)
 154{
 155	int i;
 156
 157	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 158		mutex_lock_nested(&rdev->mutex, i);
 159}
 160
 161/**
 162 * regulator_unlock_supply - unlock a regulator and its supplies
 163 * @rdev:         regulator source
 164 */
 165static void regulator_unlock_supply(struct regulator_dev *rdev)
 166{
 167	struct regulator *supply;
 168
 169	while (1) {
 170		mutex_unlock(&rdev->mutex);
 171		supply = rdev->supply;
 172
 173		if (!rdev->supply)
 174			return;
 175
 176		rdev = supply->rdev;
 177	}
 178}
 179
 180/**
 181 * of_get_regulator - get a regulator device node based on supply name
 182 * @dev: Device pointer for the consumer (of regulator) device
 183 * @supply: regulator supply name
 184 *
 185 * Extract the regulator device node corresponding to the supply name.
 186 * returns the device node corresponding to the regulator if found, else
 187 * returns NULL.
 188 */
 189static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 190{
 191	struct device_node *regnode = NULL;
 192	char prop_name[32]; /* 32 is max size of property name */
 193
 194	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 195
 196	snprintf(prop_name, 32, "%s-supply", supply);
 197	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 198
 199	if (!regnode) {
 200		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 201				prop_name, dev->of_node);
 202		return NULL;
 203	}
 204	return regnode;
 205}
 206
 207/* Platform voltage constraint check */
 208static int regulator_check_voltage(struct regulator_dev *rdev,
 209				   int *min_uV, int *max_uV)
 210{
 211	BUG_ON(*min_uV > *max_uV);
 212
 213	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 214		rdev_err(rdev, "voltage operation not allowed\n");
 
 
 
 
 215		return -EPERM;
 216	}
 217
 218	if (*max_uV > rdev->constraints->max_uV)
 219		*max_uV = rdev->constraints->max_uV;
 220	if (*min_uV < rdev->constraints->min_uV)
 221		*min_uV = rdev->constraints->min_uV;
 222
 223	if (*min_uV > *max_uV) {
 224		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 225			 *min_uV, *max_uV);
 226		return -EINVAL;
 227	}
 228
 229	return 0;
 230}
 231
 232/* return 0 if the state is valid */
 233static int regulator_check_states(suspend_state_t state)
 234{
 235	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 236}
 237
 238/* Make sure we select a voltage that suits the needs of all
 239 * regulator consumers
 240 */
 241static int regulator_check_consumers(struct regulator_dev *rdev,
 242				     int *min_uV, int *max_uV,
 243				     suspend_state_t state)
 244{
 245	struct regulator *regulator;
 246	struct regulator_voltage *voltage;
 247
 248	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 249		voltage = &regulator->voltage[state];
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!voltage->min_uV && !voltage->max_uV)
 255			continue;
 256
 257		if (*max_uV > voltage->max_uV)
 258			*max_uV = voltage->max_uV;
 259		if (*min_uV < voltage->min_uV)
 260			*min_uV = voltage->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 279		rdev_err(rdev, "current operation not allowed\n");
 
 
 
 
 280		return -EPERM;
 281	}
 282
 283	if (*max_uA > rdev->constraints->max_uA)
 284		*max_uA = rdev->constraints->max_uA;
 285	if (*min_uA < rdev->constraints->min_uA)
 286		*min_uA = rdev->constraints->min_uA;
 287
 288	if (*min_uA > *max_uA) {
 289		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 290			 *min_uA, *max_uA);
 291		return -EINVAL;
 292	}
 293
 294	return 0;
 295}
 296
 297/* operating mode constraint check */
 298static int regulator_mode_constrain(struct regulator_dev *rdev,
 299				    unsigned int *mode)
 300{
 301	switch (*mode) {
 302	case REGULATOR_MODE_FAST:
 303	case REGULATOR_MODE_NORMAL:
 304	case REGULATOR_MODE_IDLE:
 305	case REGULATOR_MODE_STANDBY:
 306		break;
 307	default:
 308		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 309		return -EINVAL;
 310	}
 311
 312	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 313		rdev_err(rdev, "mode operation not allowed\n");
 
 
 
 
 314		return -EPERM;
 315	}
 316
 317	/* The modes are bitmasks, the most power hungry modes having
 318	 * the lowest values. If the requested mode isn't supported
 319	 * try higher modes. */
 320	while (*mode) {
 321		if (rdev->constraints->valid_modes_mask & *mode)
 322			return 0;
 323		*mode /= 2;
 324	}
 325
 326	return -EINVAL;
 327}
 328
 329static inline struct regulator_state *
 330regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 331{
 332	if (rdev->constraints == NULL)
 333		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335	switch (state) {
 336	case PM_SUSPEND_STANDBY:
 337		return &rdev->constraints->state_standby;
 338	case PM_SUSPEND_MEM:
 339		return &rdev->constraints->state_mem;
 340	case PM_SUSPEND_MAX:
 341		return &rdev->constraints->state_disk;
 342	default:
 343		return NULL;
 344	}
 345}
 346
 347static ssize_t regulator_uV_show(struct device *dev,
 348				struct device_attribute *attr, char *buf)
 349{
 350	struct regulator_dev *rdev = dev_get_drvdata(dev);
 351	ssize_t ret;
 352
 353	mutex_lock(&rdev->mutex);
 354	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 355	mutex_unlock(&rdev->mutex);
 356
 357	return ret;
 358}
 359static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 360
 361static ssize_t regulator_uA_show(struct device *dev,
 362				struct device_attribute *attr, char *buf)
 363{
 364	struct regulator_dev *rdev = dev_get_drvdata(dev);
 365
 366	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 367}
 368static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 369
 370static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 371			 char *buf)
 372{
 373	struct regulator_dev *rdev = dev_get_drvdata(dev);
 374
 375	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 376}
 377static DEVICE_ATTR_RO(name);
 378
 379static ssize_t regulator_print_opmode(char *buf, int mode)
 380{
 381	switch (mode) {
 382	case REGULATOR_MODE_FAST:
 383		return sprintf(buf, "fast\n");
 384	case REGULATOR_MODE_NORMAL:
 385		return sprintf(buf, "normal\n");
 386	case REGULATOR_MODE_IDLE:
 387		return sprintf(buf, "idle\n");
 388	case REGULATOR_MODE_STANDBY:
 389		return sprintf(buf, "standby\n");
 390	}
 391	return sprintf(buf, "unknown\n");
 392}
 393
 394static ssize_t regulator_opmode_show(struct device *dev,
 395				    struct device_attribute *attr, char *buf)
 396{
 397	struct regulator_dev *rdev = dev_get_drvdata(dev);
 398
 399	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 400}
 401static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 402
 403static ssize_t regulator_print_state(char *buf, int state)
 404{
 405	if (state > 0)
 406		return sprintf(buf, "enabled\n");
 407	else if (state == 0)
 408		return sprintf(buf, "disabled\n");
 409	else
 410		return sprintf(buf, "unknown\n");
 411}
 412
 413static ssize_t regulator_state_show(struct device *dev,
 414				   struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417	ssize_t ret;
 418
 419	mutex_lock(&rdev->mutex);
 420	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 421	mutex_unlock(&rdev->mutex);
 422
 423	return ret;
 424}
 425static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 426
 427static ssize_t regulator_status_show(struct device *dev,
 428				   struct device_attribute *attr, char *buf)
 429{
 430	struct regulator_dev *rdev = dev_get_drvdata(dev);
 431	int status;
 432	char *label;
 433
 434	status = rdev->desc->ops->get_status(rdev);
 435	if (status < 0)
 436		return status;
 437
 438	switch (status) {
 439	case REGULATOR_STATUS_OFF:
 440		label = "off";
 441		break;
 442	case REGULATOR_STATUS_ON:
 443		label = "on";
 444		break;
 445	case REGULATOR_STATUS_ERROR:
 446		label = "error";
 447		break;
 448	case REGULATOR_STATUS_FAST:
 449		label = "fast";
 450		break;
 451	case REGULATOR_STATUS_NORMAL:
 452		label = "normal";
 453		break;
 454	case REGULATOR_STATUS_IDLE:
 455		label = "idle";
 456		break;
 457	case REGULATOR_STATUS_STANDBY:
 458		label = "standby";
 459		break;
 460	case REGULATOR_STATUS_BYPASS:
 461		label = "bypass";
 462		break;
 463	case REGULATOR_STATUS_UNDEFINED:
 464		label = "undefined";
 465		break;
 466	default:
 467		return -ERANGE;
 468	}
 469
 470	return sprintf(buf, "%s\n", label);
 471}
 472static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 473
 474static ssize_t regulator_min_uA_show(struct device *dev,
 475				    struct device_attribute *attr, char *buf)
 476{
 477	struct regulator_dev *rdev = dev_get_drvdata(dev);
 478
 479	if (!rdev->constraints)
 480		return sprintf(buf, "constraint not defined\n");
 481
 482	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 483}
 484static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 485
 486static ssize_t regulator_max_uA_show(struct device *dev,
 487				    struct device_attribute *attr, char *buf)
 488{
 489	struct regulator_dev *rdev = dev_get_drvdata(dev);
 490
 491	if (!rdev->constraints)
 492		return sprintf(buf, "constraint not defined\n");
 493
 494	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 495}
 496static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 497
 498static ssize_t regulator_min_uV_show(struct device *dev,
 499				    struct device_attribute *attr, char *buf)
 500{
 501	struct regulator_dev *rdev = dev_get_drvdata(dev);
 502
 503	if (!rdev->constraints)
 504		return sprintf(buf, "constraint not defined\n");
 505
 506	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 507}
 508static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 509
 510static ssize_t regulator_max_uV_show(struct device *dev,
 511				    struct device_attribute *attr, char *buf)
 512{
 513	struct regulator_dev *rdev = dev_get_drvdata(dev);
 514
 515	if (!rdev->constraints)
 516		return sprintf(buf, "constraint not defined\n");
 517
 518	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 519}
 520static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 521
 522static ssize_t regulator_total_uA_show(struct device *dev,
 523				      struct device_attribute *attr, char *buf)
 524{
 525	struct regulator_dev *rdev = dev_get_drvdata(dev);
 526	struct regulator *regulator;
 527	int uA = 0;
 528
 529	mutex_lock(&rdev->mutex);
 530	list_for_each_entry(regulator, &rdev->consumer_list, list)
 531		uA += regulator->uA_load;
 532	mutex_unlock(&rdev->mutex);
 533	return sprintf(buf, "%d\n", uA);
 534}
 535static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 536
 537static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 538			      char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541	return sprintf(buf, "%d\n", rdev->use_count);
 542}
 543static DEVICE_ATTR_RO(num_users);
 544
 545static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 546			 char *buf)
 547{
 548	struct regulator_dev *rdev = dev_get_drvdata(dev);
 549
 550	switch (rdev->desc->type) {
 551	case REGULATOR_VOLTAGE:
 552		return sprintf(buf, "voltage\n");
 553	case REGULATOR_CURRENT:
 554		return sprintf(buf, "current\n");
 555	}
 556	return sprintf(buf, "unknown\n");
 557}
 558static DEVICE_ATTR_RO(type);
 559
 560static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 561				struct device_attribute *attr, char *buf)
 562{
 563	struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 566}
 567static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 568		regulator_suspend_mem_uV_show, NULL);
 569
 570static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 571				struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 576}
 577static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 578		regulator_suspend_disk_uV_show, NULL);
 579
 580static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 581				struct device_attribute *attr, char *buf)
 582{
 583	struct regulator_dev *rdev = dev_get_drvdata(dev);
 584
 585	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 586}
 587static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 588		regulator_suspend_standby_uV_show, NULL);
 589
 590static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 591				struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594
 595	return regulator_print_opmode(buf,
 596		rdev->constraints->state_mem.mode);
 597}
 598static DEVICE_ATTR(suspend_mem_mode, 0444,
 599		regulator_suspend_mem_mode_show, NULL);
 600
 601static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 602				struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return regulator_print_opmode(buf,
 607		rdev->constraints->state_disk.mode);
 608}
 609static DEVICE_ATTR(suspend_disk_mode, 0444,
 610		regulator_suspend_disk_mode_show, NULL);
 611
 612static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 613				struct device_attribute *attr, char *buf)
 614{
 615	struct regulator_dev *rdev = dev_get_drvdata(dev);
 616
 617	return regulator_print_opmode(buf,
 618		rdev->constraints->state_standby.mode);
 619}
 620static DEVICE_ATTR(suspend_standby_mode, 0444,
 621		regulator_suspend_standby_mode_show, NULL);
 622
 623static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 624				   struct device_attribute *attr, char *buf)
 625{
 626	struct regulator_dev *rdev = dev_get_drvdata(dev);
 627
 628	return regulator_print_state(buf,
 629			rdev->constraints->state_mem.enabled);
 630}
 631static DEVICE_ATTR(suspend_mem_state, 0444,
 632		regulator_suspend_mem_state_show, NULL);
 633
 634static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 635				   struct device_attribute *attr, char *buf)
 636{
 637	struct regulator_dev *rdev = dev_get_drvdata(dev);
 638
 639	return regulator_print_state(buf,
 640			rdev->constraints->state_disk.enabled);
 641}
 642static DEVICE_ATTR(suspend_disk_state, 0444,
 643		regulator_suspend_disk_state_show, NULL);
 644
 645static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 646				   struct device_attribute *attr, char *buf)
 647{
 648	struct regulator_dev *rdev = dev_get_drvdata(dev);
 649
 650	return regulator_print_state(buf,
 651			rdev->constraints->state_standby.enabled);
 652}
 653static DEVICE_ATTR(suspend_standby_state, 0444,
 654		regulator_suspend_standby_state_show, NULL);
 655
 656static ssize_t regulator_bypass_show(struct device *dev,
 657				     struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 658{
 659	struct regulator_dev *rdev = dev_get_drvdata(dev);
 660	const char *report;
 661	bool bypass;
 662	int ret;
 663
 664	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 665
 666	if (ret != 0)
 667		report = "unknown";
 668	else if (bypass)
 669		report = "enabled";
 670	else
 671		report = "disabled";
 672
 673	return sprintf(buf, "%s\n", report);
 674}
 675static DEVICE_ATTR(bypass, 0444,
 676		   regulator_bypass_show, NULL);
 677
 678/* Calculate the new optimum regulator operating mode based on the new total
 679 * consumer load. All locks held by caller */
 680static int drms_uA_update(struct regulator_dev *rdev)
 681{
 682	struct regulator *sibling;
 683	int current_uA = 0, output_uV, input_uV, err;
 684	unsigned int mode;
 685
 686	lockdep_assert_held_once(&rdev->mutex);
 
 
 
 
 
 687
 688	/*
 689	 * first check to see if we can set modes at all, otherwise just
 690	 * tell the consumer everything is OK.
 691	 */
 692	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 693		return 0;
 694
 695	if (!rdev->desc->ops->get_optimum_mode &&
 696	    !rdev->desc->ops->set_load)
 697		return 0;
 698
 699	if (!rdev->desc->ops->set_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return -EINVAL;
 
 702
 703	/* calc total requested load */
 704	list_for_each_entry(sibling, &rdev->consumer_list, list)
 705		current_uA += sibling->uA_load;
 706
 707	current_uA += rdev->constraints->system_load;
 708
 709	if (rdev->desc->ops->set_load) {
 710		/* set the optimum mode for our new total regulator load */
 711		err = rdev->desc->ops->set_load(rdev, current_uA);
 712		if (err < 0)
 713			rdev_err(rdev, "failed to set load %d\n", current_uA);
 714	} else {
 715		/* get output voltage */
 716		output_uV = _regulator_get_voltage(rdev);
 717		if (output_uV <= 0) {
 718			rdev_err(rdev, "invalid output voltage found\n");
 719			return -EINVAL;
 720		}
 721
 722		/* get input voltage */
 723		input_uV = 0;
 724		if (rdev->supply)
 725			input_uV = regulator_get_voltage(rdev->supply);
 726		if (input_uV <= 0)
 727			input_uV = rdev->constraints->input_uV;
 728		if (input_uV <= 0) {
 729			rdev_err(rdev, "invalid input voltage found\n");
 730			return -EINVAL;
 731		}
 732
 733		/* now get the optimum mode for our new total regulator load */
 734		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 735							 output_uV, current_uA);
 736
 737		/* check the new mode is allowed */
 738		err = regulator_mode_constrain(rdev, &mode);
 739		if (err < 0) {
 740			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 741				 current_uA, input_uV, output_uV);
 742			return err;
 743		}
 744
 745		err = rdev->desc->ops->set_mode(rdev, mode);
 746		if (err < 0)
 747			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 748	}
 749
 750	return err;
 751}
 752
 753static int suspend_set_state(struct regulator_dev *rdev,
 754				    suspend_state_t state)
 755{
 756	int ret = 0;
 757	struct regulator_state *rstate;
 758
 759	rstate = regulator_get_suspend_state(rdev, state);
 760	if (rstate == NULL)
 761		return 0;
 762
 763	/* If we have no suspend mode configration don't set anything;
 764	 * only warn if the driver implements set_suspend_voltage or
 765	 * set_suspend_mode callback.
 766	 */
 767	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 768	    rstate->enabled != DISABLE_IN_SUSPEND) {
 769		if (rdev->desc->ops->set_suspend_voltage ||
 770		    rdev->desc->ops->set_suspend_mode)
 771			rdev_warn(rdev, "No configuration\n");
 772		return 0;
 773	}
 774
 775	if (rstate->enabled == ENABLE_IN_SUSPEND &&
 776		rdev->desc->ops->set_suspend_enable)
 
 
 
 
 
 
 
 
 
 777		ret = rdev->desc->ops->set_suspend_enable(rdev);
 778	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
 779		rdev->desc->ops->set_suspend_disable)
 780		ret = rdev->desc->ops->set_suspend_disable(rdev);
 781	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 782		ret = 0;
 783
 784	if (ret < 0) {
 785		rdev_err(rdev, "failed to enabled/disable\n");
 786		return ret;
 787	}
 788
 789	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 790		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 791		if (ret < 0) {
 792			rdev_err(rdev, "failed to set voltage\n");
 793			return ret;
 794		}
 795	}
 796
 797	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 798		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 799		if (ret < 0) {
 800			rdev_err(rdev, "failed to set mode\n");
 801			return ret;
 802		}
 803	}
 
 
 
 
 
 
 
 
 804
 805	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 806}
 807
 808static void print_constraints(struct regulator_dev *rdev)
 809{
 810	struct regulation_constraints *constraints = rdev->constraints;
 811	char buf[160] = "";
 812	size_t len = sizeof(buf) - 1;
 813	int count = 0;
 814	int ret;
 815
 816	if (constraints->min_uV && constraints->max_uV) {
 817		if (constraints->min_uV == constraints->max_uV)
 818			count += scnprintf(buf + count, len - count, "%d mV ",
 819					   constraints->min_uV / 1000);
 820		else
 821			count += scnprintf(buf + count, len - count,
 822					   "%d <--> %d mV ",
 823					   constraints->min_uV / 1000,
 824					   constraints->max_uV / 1000);
 825	}
 826
 827	if (!constraints->min_uV ||
 828	    constraints->min_uV != constraints->max_uV) {
 829		ret = _regulator_get_voltage(rdev);
 830		if (ret > 0)
 831			count += scnprintf(buf + count, len - count,
 832					   "at %d mV ", ret / 1000);
 833	}
 834
 835	if (constraints->uV_offset)
 836		count += scnprintf(buf + count, len - count, "%dmV offset ",
 837				   constraints->uV_offset / 1000);
 838
 839	if (constraints->min_uA && constraints->max_uA) {
 840		if (constraints->min_uA == constraints->max_uA)
 841			count += scnprintf(buf + count, len - count, "%d mA ",
 842					   constraints->min_uA / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mA ",
 846					   constraints->min_uA / 1000,
 847					   constraints->max_uA / 1000);
 848	}
 849
 850	if (!constraints->min_uA ||
 851	    constraints->min_uA != constraints->max_uA) {
 852		ret = _regulator_get_current_limit(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mA ", ret / 1000);
 856	}
 857
 858	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 859		count += scnprintf(buf + count, len - count, "fast ");
 860	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 861		count += scnprintf(buf + count, len - count, "normal ");
 862	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 863		count += scnprintf(buf + count, len - count, "idle ");
 864	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 865		count += scnprintf(buf + count, len - count, "standby");
 866
 867	if (!count)
 868		scnprintf(buf, len, "no parameters");
 869
 870	rdev_dbg(rdev, "%s\n", buf);
 871
 872	if ((constraints->min_uV != constraints->max_uV) &&
 873	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 874		rdev_warn(rdev,
 875			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 876}
 877
 878static int machine_constraints_voltage(struct regulator_dev *rdev,
 879	struct regulation_constraints *constraints)
 880{
 881	const struct regulator_ops *ops = rdev->desc->ops;
 882	int ret;
 883
 884	/* do we need to apply the constraint voltage */
 885	if (rdev->constraints->apply_uV &&
 886	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
 887		int target_min, target_max;
 888		int current_uV = _regulator_get_voltage(rdev);
 889		if (current_uV < 0) {
 890			rdev_err(rdev,
 891				 "failed to get the current voltage(%d)\n",
 892				 current_uV);
 893			return current_uV;
 894		}
 895
 896		/*
 897		 * If we're below the minimum voltage move up to the
 898		 * minimum voltage, if we're above the maximum voltage
 899		 * then move down to the maximum.
 900		 */
 901		target_min = current_uV;
 902		target_max = current_uV;
 903
 904		if (current_uV < rdev->constraints->min_uV) {
 905			target_min = rdev->constraints->min_uV;
 906			target_max = rdev->constraints->min_uV;
 907		}
 908
 909		if (current_uV > rdev->constraints->max_uV) {
 910			target_min = rdev->constraints->max_uV;
 911			target_max = rdev->constraints->max_uV;
 912		}
 913
 914		if (target_min != current_uV || target_max != current_uV) {
 915			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 916				  current_uV, target_min, target_max);
 917			ret = _regulator_do_set_voltage(
 918				rdev, target_min, target_max);
 919			if (ret < 0) {
 920				rdev_err(rdev,
 921					"failed to apply %d-%duV constraint(%d)\n",
 922					target_min, target_max, ret);
 923				return ret;
 924			}
 925		}
 926	}
 927
 928	/* constrain machine-level voltage specs to fit
 929	 * the actual range supported by this regulator.
 930	 */
 931	if (ops->list_voltage && rdev->desc->n_voltages) {
 932		int	count = rdev->desc->n_voltages;
 933		int	i;
 934		int	min_uV = INT_MAX;
 935		int	max_uV = INT_MIN;
 936		int	cmin = constraints->min_uV;
 937		int	cmax = constraints->max_uV;
 938
 939		/* it's safe to autoconfigure fixed-voltage supplies
 940		   and the constraints are used by list_voltage. */
 941		if (count == 1 && !cmin) {
 942			cmin = 1;
 943			cmax = INT_MAX;
 944			constraints->min_uV = cmin;
 945			constraints->max_uV = cmax;
 946		}
 947
 948		/* voltage constraints are optional */
 949		if ((cmin == 0) && (cmax == 0))
 950			return 0;
 951
 952		/* else require explicit machine-level constraints */
 953		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 954			rdev_err(rdev, "invalid voltage constraints\n");
 955			return -EINVAL;
 956		}
 957
 958		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 959		for (i = 0; i < count; i++) {
 960			int	value;
 961
 962			value = ops->list_voltage(rdev, i);
 963			if (value <= 0)
 964				continue;
 965
 966			/* maybe adjust [min_uV..max_uV] */
 967			if (value >= cmin && value < min_uV)
 968				min_uV = value;
 969			if (value <= cmax && value > max_uV)
 970				max_uV = value;
 971		}
 972
 973		/* final: [min_uV..max_uV] valid iff constraints valid */
 974		if (max_uV < min_uV) {
 975			rdev_err(rdev,
 976				 "unsupportable voltage constraints %u-%uuV\n",
 977				 min_uV, max_uV);
 978			return -EINVAL;
 979		}
 980
 981		/* use regulator's subset of machine constraints */
 982		if (constraints->min_uV < min_uV) {
 983			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 984				 constraints->min_uV, min_uV);
 985			constraints->min_uV = min_uV;
 986		}
 987		if (constraints->max_uV > max_uV) {
 988			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 989				 constraints->max_uV, max_uV);
 990			constraints->max_uV = max_uV;
 991		}
 992	}
 993
 994	return 0;
 995}
 996
 997static int machine_constraints_current(struct regulator_dev *rdev,
 998	struct regulation_constraints *constraints)
 999{
1000	const struct regulator_ops *ops = rdev->desc->ops;
1001	int ret;
1002
1003	if (!constraints->min_uA && !constraints->max_uA)
1004		return 0;
1005
1006	if (constraints->min_uA > constraints->max_uA) {
1007		rdev_err(rdev, "Invalid current constraints\n");
1008		return -EINVAL;
1009	}
1010
1011	if (!ops->set_current_limit || !ops->get_current_limit) {
1012		rdev_warn(rdev, "Operation of current configuration missing\n");
1013		return 0;
1014	}
1015
1016	/* Set regulator current in constraints range */
1017	ret = ops->set_current_limit(rdev, constraints->min_uA,
1018			constraints->max_uA);
1019	if (ret < 0) {
1020		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1021		return ret;
1022	}
1023
1024	return 0;
1025}
1026
1027static int _regulator_do_enable(struct regulator_dev *rdev);
1028
1029/**
1030 * set_machine_constraints - sets regulator constraints
1031 * @rdev: regulator source
1032 * @constraints: constraints to apply
1033 *
1034 * Allows platform initialisation code to define and constrain
1035 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1036 * Constraints *must* be set by platform code in order for some
1037 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1038 * set_mode.
1039 */
1040static int set_machine_constraints(struct regulator_dev *rdev,
1041	const struct regulation_constraints *constraints)
1042{
1043	int ret = 0;
1044	const struct regulator_ops *ops = rdev->desc->ops;
1045
1046	if (constraints)
1047		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1048					    GFP_KERNEL);
1049	else
1050		rdev->constraints = kzalloc(sizeof(*constraints),
1051					    GFP_KERNEL);
1052	if (!rdev->constraints)
1053		return -ENOMEM;
1054
1055	ret = machine_constraints_voltage(rdev, rdev->constraints);
1056	if (ret != 0)
1057		return ret;
1058
1059	ret = machine_constraints_current(rdev, rdev->constraints);
1060	if (ret != 0)
1061		return ret;
1062
1063	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1064		ret = ops->set_input_current_limit(rdev,
1065						   rdev->constraints->ilim_uA);
1066		if (ret < 0) {
1067			rdev_err(rdev, "failed to set input limit\n");
1068			return ret;
1069		}
1070	}
1071
1072	/* do we need to setup our suspend state */
1073	if (rdev->constraints->initial_state) {
1074		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1075		if (ret < 0) {
1076			rdev_err(rdev, "failed to set suspend state\n");
1077			return ret;
1078		}
1079	}
1080
1081	if (rdev->constraints->initial_mode) {
1082		if (!ops->set_mode) {
1083			rdev_err(rdev, "no set_mode operation\n");
1084			return -EINVAL;
 
1085		}
1086
1087		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1088		if (ret < 0) {
1089			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1090			return ret;
1091		}
1092	}
1093
1094	/* If the constraints say the regulator should be on at this point
1095	 * and we have control then make sure it is enabled.
1096	 */
1097	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1098		ret = _regulator_do_enable(rdev);
1099		if (ret < 0 && ret != -EINVAL) {
 
1100			rdev_err(rdev, "failed to enable\n");
1101			return ret;
1102		}
1103	}
1104
1105	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1106		&& ops->set_ramp_delay) {
1107		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1108		if (ret < 0) {
1109			rdev_err(rdev, "failed to set ramp_delay\n");
1110			return ret;
1111		}
1112	}
1113
1114	if (rdev->constraints->pull_down && ops->set_pull_down) {
1115		ret = ops->set_pull_down(rdev);
1116		if (ret < 0) {
1117			rdev_err(rdev, "failed to set pull down\n");
1118			return ret;
1119		}
1120	}
1121
1122	if (rdev->constraints->soft_start && ops->set_soft_start) {
1123		ret = ops->set_soft_start(rdev);
1124		if (ret < 0) {
1125			rdev_err(rdev, "failed to set soft start\n");
1126			return ret;
1127		}
1128	}
1129
1130	if (rdev->constraints->over_current_protection
1131		&& ops->set_over_current_protection) {
1132		ret = ops->set_over_current_protection(rdev);
1133		if (ret < 0) {
1134			rdev_err(rdev, "failed to set over current protection\n");
1135			return ret;
1136		}
1137	}
1138
1139	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1140		bool ad_state = (rdev->constraints->active_discharge ==
1141			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1142
1143		ret = ops->set_active_discharge(rdev, ad_state);
1144		if (ret < 0) {
1145			rdev_err(rdev, "failed to set active discharge\n");
1146			return ret;
1147		}
1148	}
1149
1150	print_constraints(rdev);
1151	return 0;
 
 
 
 
1152}
1153
1154/**
1155 * set_supply - set regulator supply regulator
1156 * @rdev: regulator name
1157 * @supply_rdev: supply regulator name
1158 *
1159 * Called by platform initialisation code to set the supply regulator for this
1160 * regulator. This ensures that a regulators supply will also be enabled by the
1161 * core if it's child is enabled.
1162 */
1163static int set_supply(struct regulator_dev *rdev,
1164		      struct regulator_dev *supply_rdev)
1165{
1166	int err;
1167
1168	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1169
1170	if (!try_module_get(supply_rdev->owner))
1171		return -ENODEV;
1172
1173	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1174	if (rdev->supply == NULL) {
1175		err = -ENOMEM;
 
1176		return err;
1177	}
1178	supply_rdev->open_count++;
1179
1180	return 0;
1181}
1182
1183/**
1184 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1185 * @rdev:         regulator source
 
1186 * @consumer_dev_name: dev_name() string for device supply applies to
1187 * @supply:       symbolic name for supply
1188 *
1189 * Allows platform initialisation code to map physical regulator
1190 * sources to symbolic names for supplies for use by devices.  Devices
1191 * should use these symbolic names to request regulators, avoiding the
1192 * need to provide board-specific regulator names as platform data.
 
 
1193 */
1194static int set_consumer_device_supply(struct regulator_dev *rdev,
1195				      const char *consumer_dev_name,
1196				      const char *supply)
1197{
1198	struct regulator_map *node;
1199	int has_dev;
1200
 
 
 
 
 
 
1201	if (supply == NULL)
1202		return -EINVAL;
1203
1204	if (consumer_dev_name != NULL)
1205		has_dev = 1;
1206	else
1207		has_dev = 0;
1208
1209	list_for_each_entry(node, &regulator_map_list, list) {
1210		if (node->dev_name && consumer_dev_name) {
1211			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1212				continue;
1213		} else if (node->dev_name || consumer_dev_name) {
1214			continue;
1215		}
1216
1217		if (strcmp(node->supply, supply) != 0)
1218			continue;
1219
1220		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1221			 consumer_dev_name,
1222			 dev_name(&node->regulator->dev),
1223			 node->regulator->desc->name,
1224			 supply,
1225			 dev_name(&rdev->dev), rdev_get_name(rdev));
1226		return -EBUSY;
1227	}
1228
1229	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230	if (node == NULL)
1231		return -ENOMEM;
1232
1233	node->regulator = rdev;
1234	node->supply = supply;
1235
1236	if (has_dev) {
1237		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1238		if (node->dev_name == NULL) {
1239			kfree(node);
1240			return -ENOMEM;
1241		}
1242	}
1243
1244	list_add(&node->list, &regulator_map_list);
1245	return 0;
1246}
1247
1248static void unset_regulator_supplies(struct regulator_dev *rdev)
1249{
1250	struct regulator_map *node, *n;
1251
1252	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1253		if (rdev == node->regulator) {
1254			list_del(&node->list);
1255			kfree(node->dev_name);
1256			kfree(node);
1257		}
1258	}
1259}
1260
1261#ifdef CONFIG_DEBUG_FS
1262static ssize_t constraint_flags_read_file(struct file *file,
1263					  char __user *user_buf,
1264					  size_t count, loff_t *ppos)
1265{
1266	const struct regulator *regulator = file->private_data;
1267	const struct regulation_constraints *c = regulator->rdev->constraints;
1268	char *buf;
1269	ssize_t ret;
1270
1271	if (!c)
1272		return 0;
1273
1274	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275	if (!buf)
1276		return -ENOMEM;
1277
1278	ret = snprintf(buf, PAGE_SIZE,
1279			"always_on: %u\n"
1280			"boot_on: %u\n"
1281			"apply_uV: %u\n"
1282			"ramp_disable: %u\n"
1283			"soft_start: %u\n"
1284			"pull_down: %u\n"
1285			"over_current_protection: %u\n",
1286			c->always_on,
1287			c->boot_on,
1288			c->apply_uV,
1289			c->ramp_disable,
1290			c->soft_start,
1291			c->pull_down,
1292			c->over_current_protection);
1293
1294	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1295	kfree(buf);
1296
1297	return ret;
1298}
1299
1300#endif
1301
1302static const struct file_operations constraint_flags_fops = {
1303#ifdef CONFIG_DEBUG_FS
1304	.open = simple_open,
1305	.read = constraint_flags_read_file,
1306	.llseek = default_llseek,
1307#endif
1308};
1309
1310#define REG_STR_SIZE	64
1311
1312static struct regulator *create_regulator(struct regulator_dev *rdev,
1313					  struct device *dev,
1314					  const char *supply_name)
1315{
1316	struct regulator *regulator;
1317	char buf[REG_STR_SIZE];
1318	int err, size;
1319
1320	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1321	if (regulator == NULL)
1322		return NULL;
1323
1324	mutex_lock(&rdev->mutex);
1325	regulator->rdev = rdev;
1326	list_add(&regulator->list, &rdev->consumer_list);
1327
1328	if (dev) {
 
 
 
 
 
 
 
1329		regulator->dev = dev;
 
 
 
 
 
 
 
 
 
 
 
 
1330
1331		/* Add a link to the device sysfs entry */
1332		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1333				dev->kobj.name, supply_name);
1334		if (size >= REG_STR_SIZE)
1335			goto overflow_err;
1336
1337		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1338		if (regulator->supply_name == NULL)
1339			goto overflow_err;
1340
1341		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1342					buf);
1343		if (err) {
1344			rdev_dbg(rdev, "could not add device link %s err %d\n",
1345				  dev->kobj.name, err);
1346			/* non-fatal */
1347		}
1348	} else {
1349		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1350		if (regulator->supply_name == NULL)
1351			goto overflow_err;
1352	}
1353
 
1354	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1355						rdev->debugfs);
1356	if (!regulator->debugfs) {
1357		rdev_dbg(rdev, "Failed to create debugfs directory\n");
 
1358	} else {
1359		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1360				   &regulator->uA_load);
1361		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1362				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1363		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1364				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1365		debugfs_create_file("constraint_flags", 0444,
1366				    regulator->debugfs, regulator,
1367				    &constraint_flags_fops);
1368	}
1369
1370	/*
1371	 * Check now if the regulator is an always on regulator - if
1372	 * it is then we don't need to do nearly so much work for
1373	 * enable/disable calls.
1374	 */
1375	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1376	    _regulator_is_enabled(rdev))
1377		regulator->always_on = true;
1378
1379	mutex_unlock(&rdev->mutex);
1380	return regulator;
 
 
 
 
 
 
1381overflow_err:
1382	list_del(&regulator->list);
1383	kfree(regulator);
1384	mutex_unlock(&rdev->mutex);
1385	return NULL;
1386}
1387
1388static int _regulator_get_enable_time(struct regulator_dev *rdev)
1389{
1390	if (rdev->constraints && rdev->constraints->enable_time)
1391		return rdev->constraints->enable_time;
1392	if (!rdev->desc->ops->enable_time)
1393		return rdev->desc->enable_time;
1394	return rdev->desc->ops->enable_time(rdev);
1395}
1396
1397static struct regulator_supply_alias *regulator_find_supply_alias(
1398		struct device *dev, const char *supply)
 
1399{
1400	struct regulator_supply_alias *map;
1401
1402	list_for_each_entry(map, &regulator_supply_alias_list, list)
1403		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1404			return map;
1405
1406	return NULL;
1407}
1408
1409static void regulator_supply_alias(struct device **dev, const char **supply)
1410{
1411	struct regulator_supply_alias *map;
1412
1413	map = regulator_find_supply_alias(*dev, *supply);
1414	if (map) {
1415		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1416				*supply, map->alias_supply,
1417				dev_name(map->alias_dev));
1418		*dev = map->alias_dev;
1419		*supply = map->alias_supply;
1420	}
1421}
1422
1423static int regulator_match(struct device *dev, const void *data)
1424{
1425	struct regulator_dev *r = dev_to_rdev(dev);
1426
1427	return strcmp(rdev_get_name(r), data) == 0;
1428}
1429
1430static struct regulator_dev *regulator_lookup_by_name(const char *name)
1431{
1432	struct device *dev;
1433
1434	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1435
1436	return dev ? dev_to_rdev(dev) : NULL;
1437}
1438
1439/**
1440 * regulator_dev_lookup - lookup a regulator device.
1441 * @dev: device for regulator "consumer".
1442 * @supply: Supply name or regulator ID.
1443 *
1444 * If successful, returns a struct regulator_dev that corresponds to the name
1445 * @supply and with the embedded struct device refcount incremented by one.
1446 * The refcount must be dropped by calling put_device().
1447 * On failure one of the following ERR-PTR-encoded values is returned:
1448 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1449 * in the future.
1450 */
1451static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1452						  const char *supply)
1453{
1454	struct regulator_dev *r = NULL;
1455	struct device_node *node;
1456	struct regulator_map *map;
 
1457	const char *devname = NULL;
 
1458
1459	regulator_supply_alias(&dev, &supply);
1460
1461	/* first do a dt based lookup */
1462	if (dev && dev->of_node) {
1463		node = of_get_regulator(dev, supply);
1464		if (node) {
1465			r = of_find_regulator_by_node(node);
1466			if (r)
1467				return r;
1468
1469			/*
1470			 * We have a node, but there is no device.
1471			 * assume it has not registered yet.
1472			 */
1473			return ERR_PTR(-EPROBE_DEFER);
1474		}
1475	}
1476
1477	/* if not found, try doing it non-dt way */
1478	if (dev)
1479		devname = dev_name(dev);
1480
1481	mutex_lock(&regulator_list_mutex);
 
1482	list_for_each_entry(map, &regulator_map_list, list) {
1483		/* If the mapping has a device set up it must match */
1484		if (map->dev_name &&
1485		    (!devname || strcmp(map->dev_name, devname)))
1486			continue;
1487
1488		if (strcmp(map->supply, supply) == 0 &&
1489		    get_device(&map->regulator->dev)) {
1490			r = map->regulator;
1491			break;
1492		}
1493	}
1494	mutex_unlock(&regulator_list_mutex);
1495
1496	if (r)
1497		return r;
1498
1499	r = regulator_lookup_by_name(supply);
1500	if (r)
1501		return r;
1502
1503	return ERR_PTR(-ENODEV);
1504}
1505
1506static int regulator_resolve_supply(struct regulator_dev *rdev)
1507{
1508	struct regulator_dev *r;
1509	struct device *dev = rdev->dev.parent;
1510	int ret;
1511
1512	/* No supply to resovle? */
1513	if (!rdev->supply_name)
1514		return 0;
1515
1516	/* Supply already resolved? */
1517	if (rdev->supply)
1518		return 0;
1519
1520	r = regulator_dev_lookup(dev, rdev->supply_name);
1521	if (IS_ERR(r)) {
1522		ret = PTR_ERR(r);
1523
1524		/* Did the lookup explicitly defer for us? */
1525		if (ret == -EPROBE_DEFER)
1526			return ret;
1527
1528		if (have_full_constraints()) {
1529			r = dummy_regulator_rdev;
1530			get_device(&r->dev);
1531		} else {
1532			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1533				rdev->supply_name, rdev->desc->name);
1534			return -EPROBE_DEFER;
1535		}
1536	}
1537
1538	/*
1539	 * If the supply's parent device is not the same as the
1540	 * regulator's parent device, then ensure the parent device
1541	 * is bound before we resolve the supply, in case the parent
1542	 * device get probe deferred and unregisters the supply.
1543	 */
1544	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1545		if (!device_is_bound(r->dev.parent)) {
1546			put_device(&r->dev);
1547			return -EPROBE_DEFER;
1548		}
1549	}
 
1550
1551	/* Recursively resolve the supply of the supply */
1552	ret = regulator_resolve_supply(r);
1553	if (ret < 0) {
1554		put_device(&r->dev);
1555		return ret;
1556	}
1557
1558	ret = set_supply(rdev, r);
1559	if (ret < 0) {
1560		put_device(&r->dev);
1561		return ret;
1562	}
1563
1564	/* Cascade always-on state to supply */
1565	if (_regulator_is_enabled(rdev)) {
1566		ret = regulator_enable(rdev->supply);
1567		if (ret < 0) {
1568			_regulator_put(rdev->supply);
1569			rdev->supply = NULL;
1570			return ret;
1571		}
1572	}
1573
1574	return 0;
1575}
1576
1577/* Internal regulator request function */
1578struct regulator *_regulator_get(struct device *dev, const char *id,
1579				 enum regulator_get_type get_type)
1580{
1581	struct regulator_dev *rdev;
1582	struct regulator *regulator;
1583	const char *devname = dev ? dev_name(dev) : "deviceless";
1584	int ret;
1585
1586	if (get_type >= MAX_GET_TYPE) {
1587		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1588		return ERR_PTR(-EINVAL);
1589	}
1590
1591	if (id == NULL) {
1592		pr_err("get() with no identifier\n");
1593		return ERR_PTR(-EINVAL);
1594	}
1595
1596	rdev = regulator_dev_lookup(dev, id);
1597	if (IS_ERR(rdev)) {
1598		ret = PTR_ERR(rdev);
1599
1600		/*
1601		 * If regulator_dev_lookup() fails with error other
1602		 * than -ENODEV our job here is done, we simply return it.
1603		 */
1604		if (ret != -ENODEV)
1605			return ERR_PTR(ret);
1606
1607		if (!have_full_constraints()) {
1608			dev_warn(dev,
1609				 "incomplete constraints, dummy supplies not allowed\n");
1610			return ERR_PTR(-ENODEV);
1611		}
1612
1613		switch (get_type) {
1614		case NORMAL_GET:
1615			/*
1616			 * Assume that a regulator is physically present and
1617			 * enabled, even if it isn't hooked up, and just
1618			 * provide a dummy.
1619			 */
1620			dev_warn(dev,
1621				 "%s supply %s not found, using dummy regulator\n",
1622				 devname, id);
1623			rdev = dummy_regulator_rdev;
1624			get_device(&rdev->dev);
1625			break;
1626
1627		case EXCLUSIVE_GET:
1628			dev_warn(dev,
1629				 "dummy supplies not allowed for exclusive requests\n");
1630			/* fall through */
1631
1632		default:
1633			return ERR_PTR(-ENODEV);
1634		}
1635	}
1636
 
1637	if (rdev->exclusive) {
1638		regulator = ERR_PTR(-EPERM);
1639		put_device(&rdev->dev);
1640		return regulator;
1641	}
1642
1643	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1644		regulator = ERR_PTR(-EBUSY);
1645		put_device(&rdev->dev);
1646		return regulator;
1647	}
1648
1649	ret = regulator_resolve_supply(rdev);
1650	if (ret < 0) {
1651		regulator = ERR_PTR(ret);
1652		put_device(&rdev->dev);
1653		return regulator;
1654	}
1655
1656	if (!try_module_get(rdev->owner)) {
1657		regulator = ERR_PTR(-EPROBE_DEFER);
1658		put_device(&rdev->dev);
1659		return regulator;
1660	}
1661
1662	regulator = create_regulator(rdev, dev, id);
1663	if (regulator == NULL) {
1664		regulator = ERR_PTR(-ENOMEM);
1665		put_device(&rdev->dev);
1666		module_put(rdev->owner);
1667		return regulator;
1668	}
1669
1670	rdev->open_count++;
1671	if (get_type == EXCLUSIVE_GET) {
1672		rdev->exclusive = 1;
1673
1674		ret = _regulator_is_enabled(rdev);
1675		if (ret > 0)
1676			rdev->use_count = 1;
1677		else
1678			rdev->use_count = 0;
1679	}
1680
 
 
 
1681	return regulator;
1682}
1683
1684/**
1685 * regulator_get - lookup and obtain a reference to a regulator.
1686 * @dev: device for regulator "consumer"
1687 * @id: Supply name or regulator ID.
1688 *
1689 * Returns a struct regulator corresponding to the regulator producer,
1690 * or IS_ERR() condition containing errno.
1691 *
1692 * Use of supply names configured via regulator_set_device_supply() is
1693 * strongly encouraged.  It is recommended that the supply name used
1694 * should match the name used for the supply and/or the relevant
1695 * device pins in the datasheet.
1696 */
1697struct regulator *regulator_get(struct device *dev, const char *id)
1698{
1699	return _regulator_get(dev, id, NORMAL_GET);
1700}
1701EXPORT_SYMBOL_GPL(regulator_get);
1702
1703/**
1704 * regulator_get_exclusive - obtain exclusive access to a regulator.
1705 * @dev: device for regulator "consumer"
1706 * @id: Supply name or regulator ID.
1707 *
1708 * Returns a struct regulator corresponding to the regulator producer,
1709 * or IS_ERR() condition containing errno.  Other consumers will be
1710 * unable to obtain this regulator while this reference is held and the
1711 * use count for the regulator will be initialised to reflect the current
1712 * state of the regulator.
1713 *
1714 * This is intended for use by consumers which cannot tolerate shared
1715 * use of the regulator such as those which need to force the
1716 * regulator off for correct operation of the hardware they are
1717 * controlling.
1718 *
1719 * Use of supply names configured via regulator_set_device_supply() is
1720 * strongly encouraged.  It is recommended that the supply name used
1721 * should match the name used for the supply and/or the relevant
1722 * device pins in the datasheet.
1723 */
1724struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725{
1726	return _regulator_get(dev, id, EXCLUSIVE_GET);
1727}
1728EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729
1730/**
1731 * regulator_get_optional - obtain optional access to a regulator.
1732 * @dev: device for regulator "consumer"
1733 * @id: Supply name or regulator ID.
1734 *
1735 * Returns a struct regulator corresponding to the regulator producer,
1736 * or IS_ERR() condition containing errno.
1737 *
1738 * This is intended for use by consumers for devices which can have
1739 * some supplies unconnected in normal use, such as some MMC devices.
1740 * It can allow the regulator core to provide stub supplies for other
1741 * supplies requested using normal regulator_get() calls without
1742 * disrupting the operation of drivers that can handle absent
1743 * supplies.
1744 *
1745 * Use of supply names configured via regulator_set_device_supply() is
1746 * strongly encouraged.  It is recommended that the supply name used
1747 * should match the name used for the supply and/or the relevant
1748 * device pins in the datasheet.
1749 */
1750struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751{
1752	return _regulator_get(dev, id, OPTIONAL_GET);
1753}
1754EXPORT_SYMBOL_GPL(regulator_get_optional);
1755
1756/* regulator_list_mutex lock held by regulator_put() */
1757static void _regulator_put(struct regulator *regulator)
1758{
1759	struct regulator_dev *rdev;
1760
1761	if (IS_ERR_OR_NULL(regulator))
1762		return;
1763
1764	lockdep_assert_held_once(&regulator_list_mutex);
1765
1766	rdev = regulator->rdev;
1767
 
1768	debugfs_remove_recursive(regulator->debugfs);
 
1769
1770	/* remove any sysfs entries */
1771	if (regulator->dev)
1772		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773	mutex_lock(&rdev->mutex);
 
 
 
1774	list_del(&regulator->list);
 
1775
1776	rdev->open_count--;
1777	rdev->exclusive = 0;
1778	put_device(&rdev->dev);
1779	mutex_unlock(&rdev->mutex);
1780
1781	kfree_const(regulator->supply_name);
1782	kfree(regulator);
1783
1784	module_put(rdev->owner);
1785}
1786
1787/**
1788 * regulator_put - "free" the regulator source
1789 * @regulator: regulator source
1790 *
1791 * Note: drivers must ensure that all regulator_enable calls made on this
1792 * regulator source are balanced by regulator_disable calls prior to calling
1793 * this function.
1794 */
1795void regulator_put(struct regulator *regulator)
1796{
1797	mutex_lock(&regulator_list_mutex);
1798	_regulator_put(regulator);
1799	mutex_unlock(&regulator_list_mutex);
1800}
1801EXPORT_SYMBOL_GPL(regulator_put);
1802
1803/**
1804 * regulator_register_supply_alias - Provide device alias for supply lookup
1805 *
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 * @alias_dev: device that should be used to lookup the supply
1809 * @alias_id: Supply name or regulator ID that should be used to lookup the
1810 * supply
1811 *
1812 * All lookups for id on dev will instead be conducted for alias_id on
1813 * alias_dev.
1814 */
1815int regulator_register_supply_alias(struct device *dev, const char *id,
1816				    struct device *alias_dev,
1817				    const char *alias_id)
1818{
1819	struct regulator_supply_alias *map;
 
1820
1821	map = regulator_find_supply_alias(dev, id);
1822	if (map)
1823		return -EEXIST;
1824
1825	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826	if (!map)
1827		return -ENOMEM;
1828
1829	map->src_dev = dev;
1830	map->src_supply = id;
1831	map->alias_dev = alias_dev;
1832	map->alias_supply = alias_id;
1833
1834	list_add(&map->list, &regulator_supply_alias_list);
1835
1836	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837		id, dev_name(dev), alias_id, dev_name(alias_dev));
1838
1839	return 0;
1840}
1841EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842
1843/**
1844 * regulator_unregister_supply_alias - Remove device alias
1845 *
1846 * @dev: device that will be given as the regulator "consumer"
1847 * @id: Supply name or regulator ID
1848 *
1849 * Remove a lookup alias if one exists for id on dev.
1850 */
1851void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852{
1853	struct regulator_supply_alias *map;
1854
1855	map = regulator_find_supply_alias(dev, id);
1856	if (map) {
1857		list_del(&map->list);
1858		kfree(map);
1859	}
1860}
1861EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862
1863/**
1864 * regulator_bulk_register_supply_alias - register multiple aliases
1865 *
1866 * @dev: device that will be given as the regulator "consumer"
1867 * @id: List of supply names or regulator IDs
1868 * @alias_dev: device that should be used to lookup the supply
1869 * @alias_id: List of supply names or regulator IDs that should be used to
1870 * lookup the supply
1871 * @num_id: Number of aliases to register
1872 *
1873 * @return 0 on success, an errno on failure.
1874 *
1875 * This helper function allows drivers to register several supply
1876 * aliases in one operation.  If any of the aliases cannot be
1877 * registered any aliases that were registered will be removed
1878 * before returning to the caller.
1879 */
1880int regulator_bulk_register_supply_alias(struct device *dev,
1881					 const char *const *id,
1882					 struct device *alias_dev,
1883					 const char *const *alias_id,
1884					 int num_id)
1885{
1886	int i;
1887	int ret;
1888
1889	for (i = 0; i < num_id; ++i) {
1890		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891						      alias_id[i]);
1892		if (ret < 0)
1893			goto err;
1894	}
1895
1896	return 0;
1897
1898err:
1899	dev_err(dev,
1900		"Failed to create supply alias %s,%s -> %s,%s\n",
1901		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902
1903	while (--i >= 0)
1904		regulator_unregister_supply_alias(dev, id[i]);
1905
1906	return ret;
1907}
1908EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909
1910/**
1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912 *
1913 * @dev: device that will be given as the regulator "consumer"
1914 * @id: List of supply names or regulator IDs
1915 * @num_id: Number of aliases to unregister
1916 *
1917 * This helper function allows drivers to unregister several supply
1918 * aliases in one operation.
1919 */
1920void regulator_bulk_unregister_supply_alias(struct device *dev,
1921					    const char *const *id,
1922					    int num_id)
1923{
1924	int i;
1925
1926	for (i = 0; i < num_id; ++i)
1927		regulator_unregister_supply_alias(dev, id[i]);
1928}
1929EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930
1931
1932/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934				const struct regulator_config *config)
1935{
1936	struct regulator_enable_gpio *pin;
1937	struct gpio_desc *gpiod;
1938	int ret;
1939
1940	if (config->ena_gpiod)
1941		gpiod = config->ena_gpiod;
1942	else
1943		gpiod = gpio_to_desc(config->ena_gpio);
1944
1945	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == gpiod) {
1947			rdev_dbg(rdev, "GPIO %d is already used\n",
1948				config->ena_gpio);
1949			goto update_ena_gpio_to_rdev;
1950		}
1951	}
1952
1953	if (!config->ena_gpiod) {
1954		ret = gpio_request_one(config->ena_gpio,
1955				       GPIOF_DIR_OUT | config->ena_gpio_flags,
1956				       rdev_get_name(rdev));
1957		if (ret)
1958			return ret;
1959	}
1960
1961	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1962	if (pin == NULL) {
1963		if (!config->ena_gpiod)
1964			gpio_free(config->ena_gpio);
1965		return -ENOMEM;
1966	}
1967
1968	pin->gpiod = gpiod;
1969	pin->ena_gpio_invert = config->ena_gpio_invert;
1970	list_add(&pin->list, &regulator_ena_gpio_list);
1971
1972update_ena_gpio_to_rdev:
1973	pin->request_count++;
1974	rdev->ena_pin = pin;
1975	return 0;
1976}
1977
1978static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1979{
1980	struct regulator_enable_gpio *pin, *n;
1981
1982	if (!rdev->ena_pin)
1983		return;
1984
1985	/* Free the GPIO only in case of no use */
1986	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1987		if (pin->gpiod == rdev->ena_pin->gpiod) {
1988			if (pin->request_count <= 1) {
1989				pin->request_count = 0;
1990				gpiod_put(pin->gpiod);
1991				list_del(&pin->list);
1992				kfree(pin);
1993				rdev->ena_pin = NULL;
1994				return;
1995			} else {
1996				pin->request_count--;
1997			}
1998		}
1999	}
2000}
2001
2002/**
2003 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2004 * @rdev: regulator_dev structure
2005 * @enable: enable GPIO at initial use?
2006 *
2007 * GPIO is enabled in case of initial use. (enable_count is 0)
2008 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2009 */
2010static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2011{
2012	struct regulator_enable_gpio *pin = rdev->ena_pin;
2013
2014	if (!pin)
2015		return -EINVAL;
2016
2017	if (enable) {
2018		/* Enable GPIO at initial use */
2019		if (pin->enable_count == 0)
2020			gpiod_set_value_cansleep(pin->gpiod,
2021						 !pin->ena_gpio_invert);
2022
2023		pin->enable_count++;
2024	} else {
2025		if (pin->enable_count > 1) {
2026			pin->enable_count--;
2027			return 0;
2028		}
2029
2030		/* Disable GPIO if not used */
2031		if (pin->enable_count <= 1) {
2032			gpiod_set_value_cansleep(pin->gpiod,
2033						 pin->ena_gpio_invert);
2034			pin->enable_count = 0;
2035		}
2036	}
2037
2038	return 0;
2039}
2040
2041/**
2042 * _regulator_enable_delay - a delay helper function
2043 * @delay: time to delay in microseconds
2044 *
2045 * Delay for the requested amount of time as per the guidelines in:
2046 *
2047 *     Documentation/timers/timers-howto.txt
2048 *
2049 * The assumption here is that regulators will never be enabled in
2050 * atomic context and therefore sleeping functions can be used.
2051 */
2052static void _regulator_enable_delay(unsigned int delay)
2053{
2054	unsigned int ms = delay / 1000;
2055	unsigned int us = delay % 1000;
2056
2057	if (ms > 0) {
2058		/*
2059		 * For small enough values, handle super-millisecond
2060		 * delays in the usleep_range() call below.
2061		 */
2062		if (ms < 20)
2063			us += ms * 1000;
2064		else
2065			msleep(ms);
2066	}
2067
2068	/*
2069	 * Give the scheduler some room to coalesce with any other
2070	 * wakeup sources. For delays shorter than 10 us, don't even
2071	 * bother setting up high-resolution timers and just busy-
2072	 * loop.
2073	 */
2074	if (us >= 10)
2075		usleep_range(us, us + 100);
2076	else
2077		udelay(us);
2078}
2079
2080static int _regulator_do_enable(struct regulator_dev *rdev)
2081{
2082	int ret, delay;
2083
2084	/* Query before enabling in case configuration dependent.  */
2085	ret = _regulator_get_enable_time(rdev);
2086	if (ret >= 0) {
2087		delay = ret;
2088	} else {
2089		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2090		delay = 0;
2091	}
2092
2093	trace_regulator_enable(rdev_get_name(rdev));
2094
2095	if (rdev->desc->off_on_delay) {
2096		/* if needed, keep a distance of off_on_delay from last time
2097		 * this regulator was disabled.
2098		 */
2099		unsigned long start_jiffy = jiffies;
2100		unsigned long intended, max_delay, remaining;
2101
2102		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2103		intended = rdev->last_off_jiffy + max_delay;
2104
2105		if (time_before(start_jiffy, intended)) {
2106			/* calc remaining jiffies to deal with one-time
2107			 * timer wrapping.
2108			 * in case of multiple timer wrapping, either it can be
2109			 * detected by out-of-range remaining, or it cannot be
2110			 * detected and we gets a panelty of
2111			 * _regulator_enable_delay().
2112			 */
2113			remaining = intended - start_jiffy;
2114			if (remaining <= max_delay)
2115				_regulator_enable_delay(
2116						jiffies_to_usecs(remaining));
2117		}
2118	}
2119
2120	if (rdev->ena_pin) {
2121		if (!rdev->ena_gpio_state) {
2122			ret = regulator_ena_gpio_ctrl(rdev, true);
2123			if (ret < 0)
2124				return ret;
2125			rdev->ena_gpio_state = 1;
2126		}
2127	} else if (rdev->desc->ops->enable) {
2128		ret = rdev->desc->ops->enable(rdev);
2129		if (ret < 0)
2130			return ret;
2131	} else {
2132		return -EINVAL;
2133	}
2134
2135	/* Allow the regulator to ramp; it would be useful to extend
2136	 * this for bulk operations so that the regulators can ramp
2137	 * together.  */
2138	trace_regulator_enable_delay(rdev_get_name(rdev));
2139
2140	_regulator_enable_delay(delay);
2141
2142	trace_regulator_enable_complete(rdev_get_name(rdev));
2143
2144	return 0;
2145}
2146
2147/* locks held by regulator_enable() */
2148static int _regulator_enable(struct regulator_dev *rdev)
2149{
2150	int ret;
2151
2152	lockdep_assert_held_once(&rdev->mutex);
2153
2154	/* check voltage and requested load before enabling */
2155	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
2156		drms_uA_update(rdev);
2157
2158	if (rdev->use_count == 0) {
2159		/* The regulator may on if it's not switchable or left on */
2160		ret = _regulator_is_enabled(rdev);
2161		if (ret == -EINVAL || ret == 0) {
2162			if (!regulator_ops_is_valid(rdev,
2163					REGULATOR_CHANGE_STATUS))
2164				return -EPERM;
2165
2166			ret = _regulator_do_enable(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167			if (ret < 0)
2168				return ret;
2169
2170			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2171					     NULL);
 
 
 
 
 
 
 
 
 
2172		} else if (ret < 0) {
2173			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2174			return ret;
2175		}
2176		/* Fallthrough on positive return values - already enabled */
2177	}
2178
2179	rdev->use_count++;
2180
2181	return 0;
2182}
2183
2184/**
2185 * regulator_enable - enable regulator output
2186 * @regulator: regulator source
2187 *
2188 * Request that the regulator be enabled with the regulator output at
2189 * the predefined voltage or current value.  Calls to regulator_enable()
2190 * must be balanced with calls to regulator_disable().
2191 *
2192 * NOTE: the output value can be set by other drivers, boot loader or may be
2193 * hardwired in the regulator.
2194 */
2195int regulator_enable(struct regulator *regulator)
2196{
2197	struct regulator_dev *rdev = regulator->rdev;
2198	int ret = 0;
2199
2200	if (regulator->always_on)
2201		return 0;
2202
2203	if (rdev->supply) {
2204		ret = regulator_enable(rdev->supply);
2205		if (ret != 0)
2206			return ret;
2207	}
2208
2209	mutex_lock(&rdev->mutex);
2210	ret = _regulator_enable(rdev);
2211	mutex_unlock(&rdev->mutex);
2212
2213	if (ret != 0 && rdev->supply)
2214		regulator_disable(rdev->supply);
2215
2216	return ret;
2217}
2218EXPORT_SYMBOL_GPL(regulator_enable);
2219
2220static int _regulator_do_disable(struct regulator_dev *rdev)
2221{
2222	int ret;
2223
2224	trace_regulator_disable(rdev_get_name(rdev));
2225
2226	if (rdev->ena_pin) {
2227		if (rdev->ena_gpio_state) {
2228			ret = regulator_ena_gpio_ctrl(rdev, false);
2229			if (ret < 0)
2230				return ret;
2231			rdev->ena_gpio_state = 0;
2232		}
2233
2234	} else if (rdev->desc->ops->disable) {
2235		ret = rdev->desc->ops->disable(rdev);
2236		if (ret != 0)
2237			return ret;
2238	}
2239
2240	/* cares about last_off_jiffy only if off_on_delay is required by
2241	 * device.
2242	 */
2243	if (rdev->desc->off_on_delay)
2244		rdev->last_off_jiffy = jiffies;
2245
2246	trace_regulator_disable_complete(rdev_get_name(rdev));
2247
2248	return 0;
2249}
2250
2251/* locks held by regulator_disable() */
2252static int _regulator_disable(struct regulator_dev *rdev)
2253{
2254	int ret = 0;
2255
2256	lockdep_assert_held_once(&rdev->mutex);
2257
2258	if (WARN(rdev->use_count <= 0,
2259		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2260		return -EIO;
2261
2262	/* are we the last user and permitted to disable ? */
2263	if (rdev->use_count == 1 &&
2264	    (rdev->constraints && !rdev->constraints->always_on)) {
2265
2266		/* we are last user */
2267		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2268			ret = _notifier_call_chain(rdev,
2269						   REGULATOR_EVENT_PRE_DISABLE,
2270						   NULL);
2271			if (ret & NOTIFY_STOP_MASK)
2272				return -EINVAL;
2273
2274			ret = _regulator_do_disable(rdev);
2275			if (ret < 0) {
2276				rdev_err(rdev, "failed to disable\n");
2277				_notifier_call_chain(rdev,
2278						REGULATOR_EVENT_ABORT_DISABLE,
2279						NULL);
2280				return ret;
2281			}
 
 
 
2282			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2283					NULL);
2284		}
2285
2286		rdev->use_count = 0;
2287	} else if (rdev->use_count > 1) {
2288		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
 
 
2289			drms_uA_update(rdev);
2290
2291		rdev->use_count--;
2292	}
2293
2294	return ret;
2295}
2296
2297/**
2298 * regulator_disable - disable regulator output
2299 * @regulator: regulator source
2300 *
2301 * Disable the regulator output voltage or current.  Calls to
2302 * regulator_enable() must be balanced with calls to
2303 * regulator_disable().
2304 *
2305 * NOTE: this will only disable the regulator output if no other consumer
2306 * devices have it enabled, the regulator device supports disabling and
2307 * machine constraints permit this operation.
2308 */
2309int regulator_disable(struct regulator *regulator)
2310{
2311	struct regulator_dev *rdev = regulator->rdev;
2312	int ret = 0;
2313
2314	if (regulator->always_on)
2315		return 0;
2316
2317	mutex_lock(&rdev->mutex);
2318	ret = _regulator_disable(rdev);
2319	mutex_unlock(&rdev->mutex);
2320
2321	if (ret == 0 && rdev->supply)
2322		regulator_disable(rdev->supply);
2323
2324	return ret;
2325}
2326EXPORT_SYMBOL_GPL(regulator_disable);
2327
2328/* locks held by regulator_force_disable() */
2329static int _regulator_force_disable(struct regulator_dev *rdev)
2330{
2331	int ret = 0;
2332
2333	lockdep_assert_held_once(&rdev->mutex);
2334
2335	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336			REGULATOR_EVENT_PRE_DISABLE, NULL);
2337	if (ret & NOTIFY_STOP_MASK)
2338		return -EINVAL;
2339
2340	ret = _regulator_do_disable(rdev);
2341	if (ret < 0) {
2342		rdev_err(rdev, "failed to force disable\n");
2343		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2344				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2345		return ret;
2346	}
2347
2348	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349			REGULATOR_EVENT_DISABLE, NULL);
2350
2351	return 0;
2352}
2353
2354/**
2355 * regulator_force_disable - force disable regulator output
2356 * @regulator: regulator source
2357 *
2358 * Forcibly disable the regulator output voltage or current.
2359 * NOTE: this *will* disable the regulator output even if other consumer
2360 * devices have it enabled. This should be used for situations when device
2361 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2362 */
2363int regulator_force_disable(struct regulator *regulator)
2364{
2365	struct regulator_dev *rdev = regulator->rdev;
2366	int ret;
2367
2368	mutex_lock(&rdev->mutex);
2369	regulator->uA_load = 0;
2370	ret = _regulator_force_disable(regulator->rdev);
2371	mutex_unlock(&rdev->mutex);
2372
2373	if (rdev->supply)
2374		while (rdev->open_count--)
2375			regulator_disable(rdev->supply);
2376
2377	return ret;
2378}
2379EXPORT_SYMBOL_GPL(regulator_force_disable);
2380
2381static void regulator_disable_work(struct work_struct *work)
2382{
2383	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2384						  disable_work.work);
2385	int count, i, ret;
2386
2387	mutex_lock(&rdev->mutex);
2388
2389	BUG_ON(!rdev->deferred_disables);
2390
2391	count = rdev->deferred_disables;
2392	rdev->deferred_disables = 0;
2393
2394	/*
2395	 * Workqueue functions queue the new work instance while the previous
2396	 * work instance is being processed. Cancel the queued work instance
2397	 * as the work instance under processing does the job of the queued
2398	 * work instance.
2399	 */
2400	cancel_delayed_work(&rdev->disable_work);
2401
2402	for (i = 0; i < count; i++) {
2403		ret = _regulator_disable(rdev);
2404		if (ret != 0)
2405			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2406	}
2407
2408	mutex_unlock(&rdev->mutex);
2409
2410	if (rdev->supply) {
2411		for (i = 0; i < count; i++) {
2412			ret = regulator_disable(rdev->supply);
2413			if (ret != 0) {
2414				rdev_err(rdev,
2415					 "Supply disable failed: %d\n", ret);
2416			}
2417		}
2418	}
2419}
2420
2421/**
2422 * regulator_disable_deferred - disable regulator output with delay
2423 * @regulator: regulator source
2424 * @ms: miliseconds until the regulator is disabled
2425 *
2426 * Execute regulator_disable() on the regulator after a delay.  This
2427 * is intended for use with devices that require some time to quiesce.
2428 *
2429 * NOTE: this will only disable the regulator output if no other consumer
2430 * devices have it enabled, the regulator device supports disabling and
2431 * machine constraints permit this operation.
2432 */
2433int regulator_disable_deferred(struct regulator *regulator, int ms)
2434{
2435	struct regulator_dev *rdev = regulator->rdev;
2436
2437	if (regulator->always_on)
2438		return 0;
2439
2440	if (!ms)
2441		return regulator_disable(regulator);
2442
2443	mutex_lock(&rdev->mutex);
2444	rdev->deferred_disables++;
2445	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2446			 msecs_to_jiffies(ms));
2447	mutex_unlock(&rdev->mutex);
2448
2449	return 0;
2450}
2451EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2452
2453static int _regulator_is_enabled(struct regulator_dev *rdev)
2454{
2455	/* A GPIO control always takes precedence */
2456	if (rdev->ena_pin)
2457		return rdev->ena_gpio_state;
2458
2459	/* If we don't know then assume that the regulator is always on */
2460	if (!rdev->desc->ops->is_enabled)
2461		return 1;
2462
2463	return rdev->desc->ops->is_enabled(rdev);
2464}
2465
2466static int _regulator_list_voltage(struct regulator_dev *rdev,
2467				   unsigned selector, int lock)
2468{
2469	const struct regulator_ops *ops = rdev->desc->ops;
2470	int ret;
2471
2472	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2473		return rdev->desc->fixed_uV;
2474
2475	if (ops->list_voltage) {
2476		if (selector >= rdev->desc->n_voltages)
2477			return -EINVAL;
2478		if (lock)
2479			mutex_lock(&rdev->mutex);
2480		ret = ops->list_voltage(rdev, selector);
2481		if (lock)
2482			mutex_unlock(&rdev->mutex);
2483	} else if (rdev->is_switch && rdev->supply) {
2484		ret = _regulator_list_voltage(rdev->supply->rdev,
2485					      selector, lock);
2486	} else {
2487		return -EINVAL;
2488	}
2489
2490	if (ret > 0) {
2491		if (ret < rdev->constraints->min_uV)
2492			ret = 0;
2493		else if (ret > rdev->constraints->max_uV)
2494			ret = 0;
2495	}
2496
2497	return ret;
2498}
2499
2500/**
2501 * regulator_is_enabled - is the regulator output enabled
2502 * @regulator: regulator source
2503 *
2504 * Returns positive if the regulator driver backing the source/client
2505 * has requested that the device be enabled, zero if it hasn't, else a
2506 * negative errno code.
2507 *
2508 * Note that the device backing this regulator handle can have multiple
2509 * users, so it might be enabled even if regulator_enable() was never
2510 * called for this particular source.
2511 */
2512int regulator_is_enabled(struct regulator *regulator)
2513{
2514	int ret;
2515
2516	if (regulator->always_on)
2517		return 1;
2518
2519	mutex_lock(&regulator->rdev->mutex);
2520	ret = _regulator_is_enabled(regulator->rdev);
2521	mutex_unlock(&regulator->rdev->mutex);
2522
2523	return ret;
2524}
2525EXPORT_SYMBOL_GPL(regulator_is_enabled);
2526
2527/**
2528 * regulator_count_voltages - count regulator_list_voltage() selectors
2529 * @regulator: regulator source
2530 *
2531 * Returns number of selectors, or negative errno.  Selectors are
2532 * numbered starting at zero, and typically correspond to bitfields
2533 * in hardware registers.
2534 */
2535int regulator_count_voltages(struct regulator *regulator)
2536{
2537	struct regulator_dev	*rdev = regulator->rdev;
2538
2539	if (rdev->desc->n_voltages)
2540		return rdev->desc->n_voltages;
2541
2542	if (!rdev->is_switch || !rdev->supply)
2543		return -EINVAL;
2544
2545	return regulator_count_voltages(rdev->supply);
2546}
2547EXPORT_SYMBOL_GPL(regulator_count_voltages);
2548
2549/**
2550 * regulator_list_voltage - enumerate supported voltages
2551 * @regulator: regulator source
2552 * @selector: identify voltage to list
2553 * Context: can sleep
2554 *
2555 * Returns a voltage that can be passed to @regulator_set_voltage(),
2556 * zero if this selector code can't be used on this system, or a
2557 * negative errno.
2558 */
2559int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2560{
2561	return _regulator_list_voltage(regulator->rdev, selector, 1);
2562}
2563EXPORT_SYMBOL_GPL(regulator_list_voltage);
2564
2565/**
2566 * regulator_get_regmap - get the regulator's register map
2567 * @regulator: regulator source
2568 *
2569 * Returns the register map for the given regulator, or an ERR_PTR value
2570 * if the regulator doesn't use regmap.
2571 */
2572struct regmap *regulator_get_regmap(struct regulator *regulator)
2573{
2574	struct regmap *map = regulator->rdev->regmap;
2575
2576	return map ? map : ERR_PTR(-EOPNOTSUPP);
2577}
2578
2579/**
2580 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2581 * @regulator: regulator source
2582 * @vsel_reg: voltage selector register, output parameter
2583 * @vsel_mask: mask for voltage selector bitfield, output parameter
2584 *
2585 * Returns the hardware register offset and bitmask used for setting the
2586 * regulator voltage. This might be useful when configuring voltage-scaling
2587 * hardware or firmware that can make I2C requests behind the kernel's back,
2588 * for example.
2589 *
2590 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2591 * and 0 is returned, otherwise a negative errno is returned.
2592 */
2593int regulator_get_hardware_vsel_register(struct regulator *regulator,
2594					 unsigned *vsel_reg,
2595					 unsigned *vsel_mask)
2596{
2597	struct regulator_dev *rdev = regulator->rdev;
2598	const struct regulator_ops *ops = rdev->desc->ops;
2599
2600	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2601		return -EOPNOTSUPP;
2602
2603	*vsel_reg = rdev->desc->vsel_reg;
2604	*vsel_mask = rdev->desc->vsel_mask;
2605
2606	 return 0;
2607}
2608EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2609
2610/**
2611 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2612 * @regulator: regulator source
2613 * @selector: identify voltage to list
2614 *
2615 * Converts the selector to a hardware-specific voltage selector that can be
2616 * directly written to the regulator registers. The address of the voltage
2617 * register can be determined by calling @regulator_get_hardware_vsel_register.
2618 *
2619 * On error a negative errno is returned.
2620 */
2621int regulator_list_hardware_vsel(struct regulator *regulator,
2622				 unsigned selector)
2623{
2624	struct regulator_dev *rdev = regulator->rdev;
2625	const struct regulator_ops *ops = rdev->desc->ops;
2626
2627	if (selector >= rdev->desc->n_voltages)
2628		return -EINVAL;
2629	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2630		return -EOPNOTSUPP;
2631
2632	return selector;
2633}
2634EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2635
2636/**
2637 * regulator_get_linear_step - return the voltage step size between VSEL values
2638 * @regulator: regulator source
2639 *
2640 * Returns the voltage step size between VSEL values for linear
2641 * regulators, or return 0 if the regulator isn't a linear regulator.
2642 */
2643unsigned int regulator_get_linear_step(struct regulator *regulator)
2644{
2645	struct regulator_dev *rdev = regulator->rdev;
2646
2647	return rdev->desc->uV_step;
2648}
2649EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2650
2651/**
2652 * regulator_is_supported_voltage - check if a voltage range can be supported
2653 *
2654 * @regulator: Regulator to check.
2655 * @min_uV: Minimum required voltage in uV.
2656 * @max_uV: Maximum required voltage in uV.
2657 *
2658 * Returns a boolean or a negative error code.
2659 */
2660int regulator_is_supported_voltage(struct regulator *regulator,
2661				   int min_uV, int max_uV)
2662{
2663	struct regulator_dev *rdev = regulator->rdev;
2664	int i, voltages, ret;
2665
2666	/* If we can't change voltage check the current voltage */
2667	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2668		ret = regulator_get_voltage(regulator);
2669		if (ret >= 0)
2670			return min_uV <= ret && ret <= max_uV;
2671		else
2672			return ret;
2673	}
2674
2675	/* Any voltage within constrains range is fine? */
2676	if (rdev->desc->continuous_voltage_range)
2677		return min_uV >= rdev->constraints->min_uV &&
2678				max_uV <= rdev->constraints->max_uV;
2679
2680	ret = regulator_count_voltages(regulator);
2681	if (ret < 0)
2682		return ret;
2683	voltages = ret;
2684
2685	for (i = 0; i < voltages; i++) {
2686		ret = regulator_list_voltage(regulator, i);
2687
2688		if (ret >= min_uV && ret <= max_uV)
2689			return 1;
2690	}
2691
2692	return 0;
2693}
2694EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2695
2696static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2697				 int max_uV)
2698{
2699	const struct regulator_desc *desc = rdev->desc;
2700
2701	if (desc->ops->map_voltage)
2702		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2703
2704	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2705		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2706
2707	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2708		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2709
2710	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2711}
2712
2713static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2714				       int min_uV, int max_uV,
2715				       unsigned *selector)
2716{
2717	struct pre_voltage_change_data data;
2718	int ret;
2719
2720	data.old_uV = _regulator_get_voltage(rdev);
2721	data.min_uV = min_uV;
2722	data.max_uV = max_uV;
2723	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2724				   &data);
2725	if (ret & NOTIFY_STOP_MASK)
2726		return -EINVAL;
2727
2728	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2729	if (ret >= 0)
2730		return ret;
2731
2732	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2733			     (void *)data.old_uV);
2734
2735	return ret;
2736}
2737
2738static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2739					   int uV, unsigned selector)
2740{
2741	struct pre_voltage_change_data data;
2742	int ret;
2743
2744	data.old_uV = _regulator_get_voltage(rdev);
2745	data.min_uV = uV;
2746	data.max_uV = uV;
2747	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2748				   &data);
2749	if (ret & NOTIFY_STOP_MASK)
2750		return -EINVAL;
2751
2752	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2753	if (ret >= 0)
2754		return ret;
2755
2756	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2757			     (void *)data.old_uV);
2758
2759	return ret;
2760}
2761
2762static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2763				       int old_uV, int new_uV)
2764{
2765	unsigned int ramp_delay = 0;
2766
2767	if (rdev->constraints->ramp_delay)
2768		ramp_delay = rdev->constraints->ramp_delay;
2769	else if (rdev->desc->ramp_delay)
2770		ramp_delay = rdev->desc->ramp_delay;
2771	else if (rdev->constraints->settling_time)
2772		return rdev->constraints->settling_time;
2773	else if (rdev->constraints->settling_time_up &&
2774		 (new_uV > old_uV))
2775		return rdev->constraints->settling_time_up;
2776	else if (rdev->constraints->settling_time_down &&
2777		 (new_uV < old_uV))
2778		return rdev->constraints->settling_time_down;
2779
2780	if (ramp_delay == 0) {
2781		rdev_dbg(rdev, "ramp_delay not set\n");
2782		return 0;
2783	}
2784
2785	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2786}
2787
2788static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2789				     int min_uV, int max_uV)
2790{
2791	int ret;
2792	int delay = 0;
2793	int best_val = 0;
2794	unsigned int selector;
2795	int old_selector = -1;
2796	const struct regulator_ops *ops = rdev->desc->ops;
2797	int old_uV = _regulator_get_voltage(rdev);
2798
2799	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2800
2801	min_uV += rdev->constraints->uV_offset;
2802	max_uV += rdev->constraints->uV_offset;
2803
2804	/*
2805	 * If we can't obtain the old selector there is not enough
2806	 * info to call set_voltage_time_sel().
2807	 */
2808	if (_regulator_is_enabled(rdev) &&
2809	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2810		old_selector = ops->get_voltage_sel(rdev);
2811		if (old_selector < 0)
2812			return old_selector;
2813	}
2814
2815	if (ops->set_voltage) {
2816		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2817						  &selector);
2818
2819		if (ret >= 0) {
2820			if (ops->list_voltage)
2821				best_val = ops->list_voltage(rdev,
2822							     selector);
2823			else
2824				best_val = _regulator_get_voltage(rdev);
2825		}
2826
2827	} else if (ops->set_voltage_sel) {
2828		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2829		if (ret >= 0) {
2830			best_val = ops->list_voltage(rdev, ret);
2831			if (min_uV <= best_val && max_uV >= best_val) {
2832				selector = ret;
2833				if (old_selector == selector)
2834					ret = 0;
2835				else
2836					ret = _regulator_call_set_voltage_sel(
2837						rdev, best_val, selector);
2838			} else {
2839				ret = -EINVAL;
2840			}
2841		}
2842	} else {
2843		ret = -EINVAL;
2844	}
2845
2846	if (ret)
2847		goto out;
2848
2849	if (ops->set_voltage_time_sel) {
2850		/*
2851		 * Call set_voltage_time_sel if successfully obtained
2852		 * old_selector
2853		 */
2854		if (old_selector >= 0 && old_selector != selector)
2855			delay = ops->set_voltage_time_sel(rdev, old_selector,
2856							  selector);
2857	} else {
2858		if (old_uV != best_val) {
2859			if (ops->set_voltage_time)
2860				delay = ops->set_voltage_time(rdev, old_uV,
2861							      best_val);
2862			else
2863				delay = _regulator_set_voltage_time(rdev,
2864								    old_uV,
2865								    best_val);
2866		}
2867	}
2868
2869	if (delay < 0) {
2870		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2871		delay = 0;
 
 
 
 
 
2872	}
2873
2874	/* Insert any necessary delays */
2875	if (delay >= 1000) {
2876		mdelay(delay / 1000);
2877		udelay(delay % 1000);
2878	} else if (delay) {
2879		udelay(delay);
2880	}
2881
2882	if (best_val >= 0) {
2883		unsigned long data = best_val;
2884
2885		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2886				     (void *)data);
2887	}
2888
2889out:
2890	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2891
2892	return ret;
2893}
2894
2895static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2896				  int min_uV, int max_uV, suspend_state_t state)
2897{
2898	struct regulator_state *rstate;
2899	int uV, sel;
2900
2901	rstate = regulator_get_suspend_state(rdev, state);
2902	if (rstate == NULL)
2903		return -EINVAL;
2904
2905	if (min_uV < rstate->min_uV)
2906		min_uV = rstate->min_uV;
2907	if (max_uV > rstate->max_uV)
2908		max_uV = rstate->max_uV;
2909
2910	sel = regulator_map_voltage(rdev, min_uV, max_uV);
2911	if (sel < 0)
2912		return sel;
2913
2914	uV = rdev->desc->ops->list_voltage(rdev, sel);
2915	if (uV >= min_uV && uV <= max_uV)
2916		rstate->uV = uV;
2917
2918	return 0;
2919}
2920
2921static int regulator_set_voltage_unlocked(struct regulator *regulator,
2922					  int min_uV, int max_uV,
2923					  suspend_state_t state)
2924{
2925	struct regulator_dev *rdev = regulator->rdev;
2926	struct regulator_voltage *voltage = &regulator->voltage[state];
2927	int ret = 0;
2928	int old_min_uV, old_max_uV;
2929	int current_uV;
2930	int best_supply_uV = 0;
2931	int supply_change_uV = 0;
2932
2933	/* If we're setting the same range as last time the change
2934	 * should be a noop (some cpufreq implementations use the same
2935	 * voltage for multiple frequencies, for example).
2936	 */
2937	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
2938		goto out;
2939
2940	/* If we're trying to set a range that overlaps the current voltage,
2941	 * return successfully even though the regulator does not support
2942	 * changing the voltage.
2943	 */
2944	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2945		current_uV = _regulator_get_voltage(rdev);
2946		if (min_uV <= current_uV && current_uV <= max_uV) {
2947			voltage->min_uV = min_uV;
2948			voltage->max_uV = max_uV;
2949			goto out;
2950		}
2951	}
2952
2953	/* sanity check */
2954	if (!rdev->desc->ops->set_voltage &&
2955	    !rdev->desc->ops->set_voltage_sel) {
2956		ret = -EINVAL;
2957		goto out;
2958	}
2959
2960	/* constraints check */
2961	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2962	if (ret < 0)
2963		goto out;
2964
2965	/* restore original values in case of error */
2966	old_min_uV = voltage->min_uV;
2967	old_max_uV = voltage->max_uV;
2968	voltage->min_uV = min_uV;
2969	voltage->max_uV = max_uV;
2970
2971	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
2972	if (ret < 0)
2973		goto out2;
2974
2975	if (rdev->supply &&
2976	    regulator_ops_is_valid(rdev->supply->rdev,
2977				   REGULATOR_CHANGE_VOLTAGE) &&
2978	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2979					   rdev->desc->ops->get_voltage_sel))) {
2980		int current_supply_uV;
2981		int selector;
2982
2983		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2984		if (selector < 0) {
2985			ret = selector;
2986			goto out2;
2987		}
2988
2989		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
2990		if (best_supply_uV < 0) {
2991			ret = best_supply_uV;
2992			goto out2;
2993		}
2994
2995		best_supply_uV += rdev->desc->min_dropout_uV;
2996
2997		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2998		if (current_supply_uV < 0) {
2999			ret = current_supply_uV;
3000			goto out2;
3001		}
3002
3003		supply_change_uV = best_supply_uV - current_supply_uV;
3004	}
3005
3006	if (supply_change_uV > 0) {
3007		ret = regulator_set_voltage_unlocked(rdev->supply,
3008				best_supply_uV, INT_MAX, state);
3009		if (ret) {
3010			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3011					ret);
3012			goto out2;
3013		}
3014	}
3015
3016	if (state == PM_SUSPEND_ON)
3017		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3018	else
3019		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3020							max_uV, state);
3021	if (ret < 0)
3022		goto out2;
3023
3024	if (supply_change_uV < 0) {
3025		ret = regulator_set_voltage_unlocked(rdev->supply,
3026				best_supply_uV, INT_MAX, state);
3027		if (ret)
3028			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3029					ret);
3030		/* No need to fail here */
3031		ret = 0;
3032	}
3033
3034out:
3035	return ret;
3036out2:
3037	voltage->min_uV = old_min_uV;
3038	voltage->max_uV = old_max_uV;
3039
3040	return ret;
3041}
3042
3043/**
3044 * regulator_set_voltage - set regulator output voltage
3045 * @regulator: regulator source
3046 * @min_uV: Minimum required voltage in uV
3047 * @max_uV: Maximum acceptable voltage in uV
3048 *
3049 * Sets a voltage regulator to the desired output voltage. This can be set
3050 * during any regulator state. IOW, regulator can be disabled or enabled.
3051 *
3052 * If the regulator is enabled then the voltage will change to the new value
3053 * immediately otherwise if the regulator is disabled the regulator will
3054 * output at the new voltage when enabled.
3055 *
3056 * NOTE: If the regulator is shared between several devices then the lowest
3057 * request voltage that meets the system constraints will be used.
3058 * Regulator system constraints must be set for this regulator before
3059 * calling this function otherwise this call will fail.
3060 */
3061int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3062{
 
3063	int ret = 0;
3064
3065	regulator_lock_supply(regulator->rdev);
3066
3067	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3068					     PM_SUSPEND_ON);
3069
3070	regulator_unlock_supply(regulator->rdev);
3071
3072	return ret;
3073}
3074EXPORT_SYMBOL_GPL(regulator_set_voltage);
3075
3076static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3077					   suspend_state_t state, bool en)
3078{
3079	struct regulator_state *rstate;
3080
3081	rstate = regulator_get_suspend_state(rdev, state);
3082	if (rstate == NULL)
3083		return -EINVAL;
3084
3085	if (!rstate->changeable)
3086		return -EPERM;
3087
3088	rstate->enabled = en;
3089
3090	return 0;
3091}
3092
3093int regulator_suspend_enable(struct regulator_dev *rdev,
3094				    suspend_state_t state)
3095{
3096	return regulator_suspend_toggle(rdev, state, true);
3097}
3098EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3099
3100int regulator_suspend_disable(struct regulator_dev *rdev,
3101				     suspend_state_t state)
3102{
3103	struct regulator *regulator;
3104	struct regulator_voltage *voltage;
3105
3106	/*
3107	 * if any consumer wants this regulator device keeping on in
3108	 * suspend states, don't set it as disabled.
3109	 */
3110	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3111		voltage = &regulator->voltage[state];
3112		if (voltage->min_uV || voltage->max_uV)
3113			return 0;
3114	}
3115
3116	return regulator_suspend_toggle(rdev, state, false);
3117}
3118EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3119
3120static int _regulator_set_suspend_voltage(struct regulator *regulator,
3121					  int min_uV, int max_uV,
3122					  suspend_state_t state)
3123{
3124	struct regulator_dev *rdev = regulator->rdev;
3125	struct regulator_state *rstate;
3126
3127	rstate = regulator_get_suspend_state(rdev, state);
3128	if (rstate == NULL)
3129		return -EINVAL;
3130
3131	if (rstate->min_uV == rstate->max_uV) {
3132		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3133		return -EPERM;
3134	}
3135
3136	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3137}
 
 
 
 
3138
3139int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3140				  int max_uV, suspend_state_t state)
3141{
3142	int ret = 0;
3143
3144	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3145	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3146		return -EINVAL;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3151					     max_uV, state);
3152
3153	regulator_unlock_supply(regulator->rdev);
3154
 
 
3155	return ret;
3156}
3157EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3158
3159/**
3160 * regulator_set_voltage_time - get raise/fall time
3161 * @regulator: regulator source
3162 * @old_uV: starting voltage in microvolts
3163 * @new_uV: target voltage in microvolts
3164 *
3165 * Provided with the starting and ending voltage, this function attempts to
3166 * calculate the time in microseconds required to rise or fall to this new
3167 * voltage.
3168 */
3169int regulator_set_voltage_time(struct regulator *regulator,
3170			       int old_uV, int new_uV)
3171{
3172	struct regulator_dev *rdev = regulator->rdev;
3173	const struct regulator_ops *ops = rdev->desc->ops;
3174	int old_sel = -1;
3175	int new_sel = -1;
3176	int voltage;
3177	int i;
3178
3179	if (ops->set_voltage_time)
3180		return ops->set_voltage_time(rdev, old_uV, new_uV);
3181	else if (!ops->set_voltage_time_sel)
3182		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3183
3184	/* Currently requires operations to do this */
3185	if (!ops->list_voltage || !rdev->desc->n_voltages)
 
3186		return -EINVAL;
3187
3188	for (i = 0; i < rdev->desc->n_voltages; i++) {
3189		/* We only look for exact voltage matches here */
3190		voltage = regulator_list_voltage(regulator, i);
3191		if (voltage < 0)
3192			return -EINVAL;
3193		if (voltage == 0)
3194			continue;
3195		if (voltage == old_uV)
3196			old_sel = i;
3197		if (voltage == new_uV)
3198			new_sel = i;
3199	}
3200
3201	if (old_sel < 0 || new_sel < 0)
3202		return -EINVAL;
3203
3204	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3205}
3206EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3207
3208/**
3209 * regulator_set_voltage_time_sel - get raise/fall time
3210 * @rdev: regulator source device
3211 * @old_selector: selector for starting voltage
3212 * @new_selector: selector for target voltage
3213 *
3214 * Provided with the starting and target voltage selectors, this function
3215 * returns time in microseconds required to rise or fall to this new voltage
3216 *
3217 * Drivers providing ramp_delay in regulation_constraints can use this as their
3218 * set_voltage_time_sel() operation.
3219 */
3220int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3221				   unsigned int old_selector,
3222				   unsigned int new_selector)
3223{
3224	int old_volt, new_volt;
3225
3226	/* sanity check */
3227	if (!rdev->desc->ops->list_voltage)
3228		return -EINVAL;
3229
3230	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3231	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3232
3233	if (rdev->desc->ops->set_voltage_time)
3234		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3235							 new_volt);
3236	else
3237		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3238}
3239EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3240
3241/**
3242 * regulator_sync_voltage - re-apply last regulator output voltage
3243 * @regulator: regulator source
3244 *
3245 * Re-apply the last configured voltage.  This is intended to be used
3246 * where some external control source the consumer is cooperating with
3247 * has caused the configured voltage to change.
3248 */
3249int regulator_sync_voltage(struct regulator *regulator)
3250{
3251	struct regulator_dev *rdev = regulator->rdev;
3252	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3253	int ret, min_uV, max_uV;
3254
3255	mutex_lock(&rdev->mutex);
3256
3257	if (!rdev->desc->ops->set_voltage &&
3258	    !rdev->desc->ops->set_voltage_sel) {
3259		ret = -EINVAL;
3260		goto out;
3261	}
3262
3263	/* This is only going to work if we've had a voltage configured. */
3264	if (!voltage->min_uV && !voltage->max_uV) {
3265		ret = -EINVAL;
3266		goto out;
3267	}
3268
3269	min_uV = voltage->min_uV;
3270	max_uV = voltage->max_uV;
3271
3272	/* This should be a paranoia check... */
3273	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3274	if (ret < 0)
3275		goto out;
3276
3277	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3278	if (ret < 0)
3279		goto out;
3280
3281	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3282
3283out:
3284	mutex_unlock(&rdev->mutex);
3285	return ret;
3286}
3287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3288
3289static int _regulator_get_voltage(struct regulator_dev *rdev)
3290{
3291	int sel, ret;
3292	bool bypassed;
3293
3294	if (rdev->desc->ops->get_bypass) {
3295		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3296		if (ret < 0)
3297			return ret;
3298		if (bypassed) {
3299			/* if bypassed the regulator must have a supply */
3300			if (!rdev->supply) {
3301				rdev_err(rdev,
3302					 "bypassed regulator has no supply!\n");
3303				return -EPROBE_DEFER;
3304			}
3305
3306			return _regulator_get_voltage(rdev->supply->rdev);
3307		}
3308	}
3309
3310	if (rdev->desc->ops->get_voltage_sel) {
3311		sel = rdev->desc->ops->get_voltage_sel(rdev);
3312		if (sel < 0)
3313			return sel;
3314		ret = rdev->desc->ops->list_voltage(rdev, sel);
3315	} else if (rdev->desc->ops->get_voltage) {
3316		ret = rdev->desc->ops->get_voltage(rdev);
3317	} else if (rdev->desc->ops->list_voltage) {
3318		ret = rdev->desc->ops->list_voltage(rdev, 0);
3319	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3320		ret = rdev->desc->fixed_uV;
3321	} else if (rdev->supply) {
3322		ret = _regulator_get_voltage(rdev->supply->rdev);
3323	} else {
3324		return -EINVAL;
3325	}
3326
3327	if (ret < 0)
3328		return ret;
3329	return ret - rdev->constraints->uV_offset;
3330}
3331
3332/**
3333 * regulator_get_voltage - get regulator output voltage
3334 * @regulator: regulator source
3335 *
3336 * This returns the current regulator voltage in uV.
3337 *
3338 * NOTE: If the regulator is disabled it will return the voltage value. This
3339 * function should not be used to determine regulator state.
3340 */
3341int regulator_get_voltage(struct regulator *regulator)
3342{
3343	int ret;
3344
3345	regulator_lock_supply(regulator->rdev);
3346
3347	ret = _regulator_get_voltage(regulator->rdev);
3348
3349	regulator_unlock_supply(regulator->rdev);
3350
3351	return ret;
3352}
3353EXPORT_SYMBOL_GPL(regulator_get_voltage);
3354
3355/**
3356 * regulator_set_current_limit - set regulator output current limit
3357 * @regulator: regulator source
3358 * @min_uA: Minimum supported current in uA
3359 * @max_uA: Maximum supported current in uA
3360 *
3361 * Sets current sink to the desired output current. This can be set during
3362 * any regulator state. IOW, regulator can be disabled or enabled.
3363 *
3364 * If the regulator is enabled then the current will change to the new value
3365 * immediately otherwise if the regulator is disabled the regulator will
3366 * output at the new current when enabled.
3367 *
3368 * NOTE: Regulator system constraints must be set for this regulator before
3369 * calling this function otherwise this call will fail.
3370 */
3371int regulator_set_current_limit(struct regulator *regulator,
3372			       int min_uA, int max_uA)
3373{
3374	struct regulator_dev *rdev = regulator->rdev;
3375	int ret;
3376
3377	mutex_lock(&rdev->mutex);
3378
3379	/* sanity check */
3380	if (!rdev->desc->ops->set_current_limit) {
3381		ret = -EINVAL;
3382		goto out;
3383	}
3384
3385	/* constraints check */
3386	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3387	if (ret < 0)
3388		goto out;
3389
3390	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3391out:
3392	mutex_unlock(&rdev->mutex);
3393	return ret;
3394}
3395EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3396
3397static int _regulator_get_current_limit(struct regulator_dev *rdev)
3398{
3399	int ret;
3400
3401	mutex_lock(&rdev->mutex);
3402
3403	/* sanity check */
3404	if (!rdev->desc->ops->get_current_limit) {
3405		ret = -EINVAL;
3406		goto out;
3407	}
3408
3409	ret = rdev->desc->ops->get_current_limit(rdev);
3410out:
3411	mutex_unlock(&rdev->mutex);
3412	return ret;
3413}
3414
3415/**
3416 * regulator_get_current_limit - get regulator output current
3417 * @regulator: regulator source
3418 *
3419 * This returns the current supplied by the specified current sink in uA.
3420 *
3421 * NOTE: If the regulator is disabled it will return the current value. This
3422 * function should not be used to determine regulator state.
3423 */
3424int regulator_get_current_limit(struct regulator *regulator)
3425{
3426	return _regulator_get_current_limit(regulator->rdev);
3427}
3428EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3429
3430/**
3431 * regulator_set_mode - set regulator operating mode
3432 * @regulator: regulator source
3433 * @mode: operating mode - one of the REGULATOR_MODE constants
3434 *
3435 * Set regulator operating mode to increase regulator efficiency or improve
3436 * regulation performance.
3437 *
3438 * NOTE: Regulator system constraints must be set for this regulator before
3439 * calling this function otherwise this call will fail.
3440 */
3441int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3442{
3443	struct regulator_dev *rdev = regulator->rdev;
3444	int ret;
3445	int regulator_curr_mode;
3446
3447	mutex_lock(&rdev->mutex);
3448
3449	/* sanity check */
3450	if (!rdev->desc->ops->set_mode) {
3451		ret = -EINVAL;
3452		goto out;
3453	}
3454
3455	/* return if the same mode is requested */
3456	if (rdev->desc->ops->get_mode) {
3457		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3458		if (regulator_curr_mode == mode) {
3459			ret = 0;
3460			goto out;
3461		}
3462	}
3463
3464	/* constraints check */
3465	ret = regulator_mode_constrain(rdev, &mode);
3466	if (ret < 0)
3467		goto out;
3468
3469	ret = rdev->desc->ops->set_mode(rdev, mode);
3470out:
3471	mutex_unlock(&rdev->mutex);
3472	return ret;
3473}
3474EXPORT_SYMBOL_GPL(regulator_set_mode);
3475
3476static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3477{
3478	int ret;
3479
3480	mutex_lock(&rdev->mutex);
3481
3482	/* sanity check */
3483	if (!rdev->desc->ops->get_mode) {
3484		ret = -EINVAL;
3485		goto out;
3486	}
3487
3488	ret = rdev->desc->ops->get_mode(rdev);
3489out:
3490	mutex_unlock(&rdev->mutex);
3491	return ret;
3492}
3493
3494/**
3495 * regulator_get_mode - get regulator operating mode
3496 * @regulator: regulator source
3497 *
3498 * Get the current regulator operating mode.
3499 */
3500unsigned int regulator_get_mode(struct regulator *regulator)
3501{
3502	return _regulator_get_mode(regulator->rdev);
3503}
3504EXPORT_SYMBOL_GPL(regulator_get_mode);
3505
3506static int _regulator_get_error_flags(struct regulator_dev *rdev,
3507					unsigned int *flags)
3508{
3509	int ret;
3510
3511	mutex_lock(&rdev->mutex);
3512
3513	/* sanity check */
3514	if (!rdev->desc->ops->get_error_flags) {
3515		ret = -EINVAL;
3516		goto out;
3517	}
3518
3519	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3520out:
3521	mutex_unlock(&rdev->mutex);
3522	return ret;
3523}
3524
3525/**
3526 * regulator_get_error_flags - get regulator error information
3527 * @regulator: regulator source
3528 * @flags: pointer to store error flags
3529 *
3530 * Get the current regulator error information.
3531 */
3532int regulator_get_error_flags(struct regulator *regulator,
3533				unsigned int *flags)
3534{
3535	return _regulator_get_error_flags(regulator->rdev, flags);
3536}
3537EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3538
3539/**
3540 * regulator_set_load - set regulator load
3541 * @regulator: regulator source
3542 * @uA_load: load current
3543 *
3544 * Notifies the regulator core of a new device load. This is then used by
3545 * DRMS (if enabled by constraints) to set the most efficient regulator
3546 * operating mode for the new regulator loading.
3547 *
3548 * Consumer devices notify their supply regulator of the maximum power
3549 * they will require (can be taken from device datasheet in the power
3550 * consumption tables) when they change operational status and hence power
3551 * state. Examples of operational state changes that can affect power
3552 * consumption are :-
3553 *
3554 *    o Device is opened / closed.
3555 *    o Device I/O is about to begin or has just finished.
3556 *    o Device is idling in between work.
3557 *
3558 * This information is also exported via sysfs to userspace.
3559 *
3560 * DRMS will sum the total requested load on the regulator and change
3561 * to the most efficient operating mode if platform constraints allow.
3562 *
3563 * On error a negative errno is returned.
3564 */
3565int regulator_set_load(struct regulator *regulator, int uA_load)
3566{
3567	struct regulator_dev *rdev = regulator->rdev;
3568	int ret;
 
 
3569
3570	mutex_lock(&rdev->mutex);
 
 
 
 
 
3571	regulator->uA_load = uA_load;
3572	ret = drms_uA_update(rdev);
3573	mutex_unlock(&rdev->mutex);
 
 
 
3574
3575	return ret;
3576}
3577EXPORT_SYMBOL_GPL(regulator_set_load);
3578
3579/**
3580 * regulator_allow_bypass - allow the regulator to go into bypass mode
3581 *
3582 * @regulator: Regulator to configure
3583 * @enable: enable or disable bypass mode
3584 *
3585 * Allow the regulator to go into bypass mode if all other consumers
3586 * for the regulator also enable bypass mode and the machine
3587 * constraints allow this.  Bypass mode means that the regulator is
3588 * simply passing the input directly to the output with no regulation.
3589 */
3590int regulator_allow_bypass(struct regulator *regulator, bool enable)
3591{
3592	struct regulator_dev *rdev = regulator->rdev;
3593	int ret = 0;
3594
3595	if (!rdev->desc->ops->set_bypass)
3596		return 0;
 
 
 
 
3597
3598	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3599		return 0;
 
 
 
 
 
 
 
 
3600
3601	mutex_lock(&rdev->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
3602
3603	if (enable && !regulator->bypass) {
3604		rdev->bypass_count++;
3605
3606		if (rdev->bypass_count == rdev->open_count) {
3607			ret = rdev->desc->ops->set_bypass(rdev, enable);
3608			if (ret != 0)
3609				rdev->bypass_count--;
3610		}
3611
3612	} else if (!enable && regulator->bypass) {
3613		rdev->bypass_count--;
3614
3615		if (rdev->bypass_count != rdev->open_count) {
3616			ret = rdev->desc->ops->set_bypass(rdev, enable);
3617			if (ret != 0)
3618				rdev->bypass_count++;
3619		}
3620	}
3621
3622	if (ret == 0)
3623		regulator->bypass = enable;
3624
3625	mutex_unlock(&rdev->mutex);
3626
3627	return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3630
3631/**
3632 * regulator_register_notifier - register regulator event notifier
3633 * @regulator: regulator source
3634 * @nb: notifier block
3635 *
3636 * Register notifier block to receive regulator events.
3637 */
3638int regulator_register_notifier(struct regulator *regulator,
3639			      struct notifier_block *nb)
3640{
3641	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3642						nb);
3643}
3644EXPORT_SYMBOL_GPL(regulator_register_notifier);
3645
3646/**
3647 * regulator_unregister_notifier - unregister regulator event notifier
3648 * @regulator: regulator source
3649 * @nb: notifier block
3650 *
3651 * Unregister regulator event notifier block.
3652 */
3653int regulator_unregister_notifier(struct regulator *regulator,
3654				struct notifier_block *nb)
3655{
3656	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3657						  nb);
3658}
3659EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3660
3661/* notify regulator consumers and downstream regulator consumers.
3662 * Note mutex must be held by caller.
3663 */
3664static int _notifier_call_chain(struct regulator_dev *rdev,
3665				  unsigned long event, void *data)
3666{
3667	/* call rdev chain first */
3668	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3669}
3670
3671/**
3672 * regulator_bulk_get - get multiple regulator consumers
3673 *
3674 * @dev:           Device to supply
3675 * @num_consumers: Number of consumers to register
3676 * @consumers:     Configuration of consumers; clients are stored here.
3677 *
3678 * @return 0 on success, an errno on failure.
3679 *
3680 * This helper function allows drivers to get several regulator
3681 * consumers in one operation.  If any of the regulators cannot be
3682 * acquired then any regulators that were allocated will be freed
3683 * before returning to the caller.
3684 */
3685int regulator_bulk_get(struct device *dev, int num_consumers,
3686		       struct regulator_bulk_data *consumers)
3687{
3688	int i;
3689	int ret;
3690
3691	for (i = 0; i < num_consumers; i++)
3692		consumers[i].consumer = NULL;
3693
3694	for (i = 0; i < num_consumers; i++) {
3695		consumers[i].consumer = regulator_get(dev,
3696						      consumers[i].supply);
3697		if (IS_ERR(consumers[i].consumer)) {
3698			ret = PTR_ERR(consumers[i].consumer);
3699			dev_err(dev, "Failed to get supply '%s': %d\n",
3700				consumers[i].supply, ret);
3701			consumers[i].consumer = NULL;
3702			goto err;
3703		}
3704	}
3705
3706	return 0;
3707
3708err:
3709	while (--i >= 0)
3710		regulator_put(consumers[i].consumer);
3711
3712	return ret;
3713}
3714EXPORT_SYMBOL_GPL(regulator_bulk_get);
3715
3716static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3717{
3718	struct regulator_bulk_data *bulk = data;
3719
3720	bulk->ret = regulator_enable(bulk->consumer);
3721}
3722
3723/**
3724 * regulator_bulk_enable - enable multiple regulator consumers
3725 *
3726 * @num_consumers: Number of consumers
3727 * @consumers:     Consumer data; clients are stored here.
3728 * @return         0 on success, an errno on failure
3729 *
3730 * This convenience API allows consumers to enable multiple regulator
3731 * clients in a single API call.  If any consumers cannot be enabled
3732 * then any others that were enabled will be disabled again prior to
3733 * return.
3734 */
3735int regulator_bulk_enable(int num_consumers,
3736			  struct regulator_bulk_data *consumers)
3737{
3738	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3739	int i;
3740	int ret = 0;
3741
3742	for (i = 0; i < num_consumers; i++) {
3743		if (consumers[i].consumer->always_on)
3744			consumers[i].ret = 0;
3745		else
3746			async_schedule_domain(regulator_bulk_enable_async,
3747					      &consumers[i], &async_domain);
3748	}
3749
3750	async_synchronize_full_domain(&async_domain);
3751
3752	/* If any consumer failed we need to unwind any that succeeded */
3753	for (i = 0; i < num_consumers; i++) {
3754		if (consumers[i].ret != 0) {
3755			ret = consumers[i].ret;
3756			goto err;
3757		}
3758	}
3759
3760	return 0;
3761
3762err:
3763	for (i = 0; i < num_consumers; i++) {
3764		if (consumers[i].ret < 0)
3765			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3766			       consumers[i].ret);
3767		else
3768			regulator_disable(consumers[i].consumer);
3769	}
3770
3771	return ret;
3772}
3773EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3774
3775/**
3776 * regulator_bulk_disable - disable multiple regulator consumers
3777 *
3778 * @num_consumers: Number of consumers
3779 * @consumers:     Consumer data; clients are stored here.
3780 * @return         0 on success, an errno on failure
3781 *
3782 * This convenience API allows consumers to disable multiple regulator
3783 * clients in a single API call.  If any consumers cannot be disabled
3784 * then any others that were disabled will be enabled again prior to
3785 * return.
3786 */
3787int regulator_bulk_disable(int num_consumers,
3788			   struct regulator_bulk_data *consumers)
3789{
3790	int i;
3791	int ret, r;
3792
3793	for (i = num_consumers - 1; i >= 0; --i) {
3794		ret = regulator_disable(consumers[i].consumer);
3795		if (ret != 0)
3796			goto err;
3797	}
3798
3799	return 0;
3800
3801err:
3802	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3803	for (++i; i < num_consumers; ++i) {
3804		r = regulator_enable(consumers[i].consumer);
3805		if (r != 0)
3806			pr_err("Failed to re-enable %s: %d\n",
3807			       consumers[i].supply, r);
3808	}
3809
3810	return ret;
3811}
3812EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3813
3814/**
3815 * regulator_bulk_force_disable - force disable multiple regulator consumers
3816 *
3817 * @num_consumers: Number of consumers
3818 * @consumers:     Consumer data; clients are stored here.
3819 * @return         0 on success, an errno on failure
3820 *
3821 * This convenience API allows consumers to forcibly disable multiple regulator
3822 * clients in a single API call.
3823 * NOTE: This should be used for situations when device damage will
3824 * likely occur if the regulators are not disabled (e.g. over temp).
3825 * Although regulator_force_disable function call for some consumers can
3826 * return error numbers, the function is called for all consumers.
3827 */
3828int regulator_bulk_force_disable(int num_consumers,
3829			   struct regulator_bulk_data *consumers)
3830{
3831	int i;
3832	int ret = 0;
3833
3834	for (i = 0; i < num_consumers; i++) {
3835		consumers[i].ret =
3836			    regulator_force_disable(consumers[i].consumer);
3837
3838		/* Store first error for reporting */
3839		if (consumers[i].ret && !ret)
3840			ret = consumers[i].ret;
3841	}
3842
3843	return ret;
3844}
3845EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3846
3847/**
3848 * regulator_bulk_free - free multiple regulator consumers
3849 *
3850 * @num_consumers: Number of consumers
3851 * @consumers:     Consumer data; clients are stored here.
3852 *
3853 * This convenience API allows consumers to free multiple regulator
3854 * clients in a single API call.
3855 */
3856void regulator_bulk_free(int num_consumers,
3857			 struct regulator_bulk_data *consumers)
3858{
3859	int i;
3860
3861	for (i = 0; i < num_consumers; i++) {
3862		regulator_put(consumers[i].consumer);
3863		consumers[i].consumer = NULL;
3864	}
3865}
3866EXPORT_SYMBOL_GPL(regulator_bulk_free);
3867
3868/**
3869 * regulator_notifier_call_chain - call regulator event notifier
3870 * @rdev: regulator source
3871 * @event: notifier block
3872 * @data: callback-specific data.
3873 *
3874 * Called by regulator drivers to notify clients a regulator event has
3875 * occurred. We also notify regulator clients downstream.
3876 * Note lock must be held by caller.
3877 */
3878int regulator_notifier_call_chain(struct regulator_dev *rdev,
3879				  unsigned long event, void *data)
3880{
3881	lockdep_assert_held_once(&rdev->mutex);
3882
3883	_notifier_call_chain(rdev, event, data);
3884	return NOTIFY_DONE;
3885
3886}
3887EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3888
3889/**
3890 * regulator_mode_to_status - convert a regulator mode into a status
3891 *
3892 * @mode: Mode to convert
3893 *
3894 * Convert a regulator mode into a status.
3895 */
3896int regulator_mode_to_status(unsigned int mode)
3897{
3898	switch (mode) {
3899	case REGULATOR_MODE_FAST:
3900		return REGULATOR_STATUS_FAST;
3901	case REGULATOR_MODE_NORMAL:
3902		return REGULATOR_STATUS_NORMAL;
3903	case REGULATOR_MODE_IDLE:
3904		return REGULATOR_STATUS_IDLE;
3905	case REGULATOR_MODE_STANDBY:
3906		return REGULATOR_STATUS_STANDBY;
3907	default:
3908		return REGULATOR_STATUS_UNDEFINED;
3909	}
3910}
3911EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3912
3913static struct attribute *regulator_dev_attrs[] = {
3914	&dev_attr_name.attr,
3915	&dev_attr_num_users.attr,
3916	&dev_attr_type.attr,
3917	&dev_attr_microvolts.attr,
3918	&dev_attr_microamps.attr,
3919	&dev_attr_opmode.attr,
3920	&dev_attr_state.attr,
3921	&dev_attr_status.attr,
3922	&dev_attr_bypass.attr,
3923	&dev_attr_requested_microamps.attr,
3924	&dev_attr_min_microvolts.attr,
3925	&dev_attr_max_microvolts.attr,
3926	&dev_attr_min_microamps.attr,
3927	&dev_attr_max_microamps.attr,
3928	&dev_attr_suspend_standby_state.attr,
3929	&dev_attr_suspend_mem_state.attr,
3930	&dev_attr_suspend_disk_state.attr,
3931	&dev_attr_suspend_standby_microvolts.attr,
3932	&dev_attr_suspend_mem_microvolts.attr,
3933	&dev_attr_suspend_disk_microvolts.attr,
3934	&dev_attr_suspend_standby_mode.attr,
3935	&dev_attr_suspend_mem_mode.attr,
3936	&dev_attr_suspend_disk_mode.attr,
3937	NULL
3938};
3939
3940/*
3941 * To avoid cluttering sysfs (and memory) with useless state, only
3942 * create attributes that can be meaningfully displayed.
3943 */
3944static umode_t regulator_attr_is_visible(struct kobject *kobj,
3945					 struct attribute *attr, int idx)
3946{
3947	struct device *dev = kobj_to_dev(kobj);
3948	struct regulator_dev *rdev = dev_to_rdev(dev);
3949	const struct regulator_ops *ops = rdev->desc->ops;
3950	umode_t mode = attr->mode;
3951
3952	/* these three are always present */
3953	if (attr == &dev_attr_name.attr ||
3954	    attr == &dev_attr_num_users.attr ||
3955	    attr == &dev_attr_type.attr)
3956		return mode;
3957
3958	/* some attributes need specific methods to be displayed */
3959	if (attr == &dev_attr_microvolts.attr) {
3960		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3961		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3962		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3963		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3964			return mode;
3965		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3966	}
3967
3968	if (attr == &dev_attr_microamps.attr)
3969		return ops->get_current_limit ? mode : 0;
 
 
 
 
3970
3971	if (attr == &dev_attr_opmode.attr)
3972		return ops->get_mode ? mode : 0;
 
 
 
 
3973
3974	if (attr == &dev_attr_state.attr)
3975		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3976
3977	if (attr == &dev_attr_status.attr)
3978		return ops->get_status ? mode : 0;
 
3979
3980	if (attr == &dev_attr_bypass.attr)
3981		return ops->get_bypass ? mode : 0;
 
 
 
 
 
 
 
3982
3983	/* some attributes are type-specific */
3984	if (attr == &dev_attr_requested_microamps.attr)
3985		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3986
3987	/* constraints need specific supporting methods */
3988	if (attr == &dev_attr_min_microvolts.attr ||
3989	    attr == &dev_attr_max_microvolts.attr)
3990		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3991
3992	if (attr == &dev_attr_min_microamps.attr ||
3993	    attr == &dev_attr_max_microamps.attr)
3994		return ops->set_current_limit ? mode : 0;
3995
3996	if (attr == &dev_attr_suspend_standby_state.attr ||
3997	    attr == &dev_attr_suspend_mem_state.attr ||
3998	    attr == &dev_attr_suspend_disk_state.attr)
3999		return mode;
4000
4001	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4002	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4003	    attr == &dev_attr_suspend_disk_microvolts.attr)
4004		return ops->set_suspend_voltage ? mode : 0;
4005
4006	if (attr == &dev_attr_suspend_standby_mode.attr ||
4007	    attr == &dev_attr_suspend_mem_mode.attr ||
4008	    attr == &dev_attr_suspend_disk_mode.attr)
4009		return ops->set_suspend_mode ? mode : 0;
4010
4011	return mode;
4012}
4013
4014static const struct attribute_group regulator_dev_group = {
4015	.attrs = regulator_dev_attrs,
4016	.is_visible = regulator_attr_is_visible,
4017};
4018
4019static const struct attribute_group *regulator_dev_groups[] = {
4020	&regulator_dev_group,
4021	NULL
4022};
4023
4024static void regulator_dev_release(struct device *dev)
4025{
4026	struct regulator_dev *rdev = dev_get_drvdata(dev);
4027
4028	kfree(rdev->constraints);
4029	of_node_put(rdev->dev.of_node);
4030	kfree(rdev);
4031}
4032
4033static void rdev_init_debugfs(struct regulator_dev *rdev)
4034{
4035	struct device *parent = rdev->dev.parent;
4036	const char *rname = rdev_get_name(rdev);
4037	char name[NAME_MAX];
4038
4039	/* Avoid duplicate debugfs directory names */
4040	if (parent && rname == rdev->desc->name) {
4041		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4042			 rname);
4043		rname = name;
4044	}
4045
4046	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4047	if (!rdev->debugfs) {
4048		rdev_warn(rdev, "Failed to create debugfs directory\n");
 
4049		return;
4050	}
4051
4052	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4053			   &rdev->use_count);
4054	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4055			   &rdev->open_count);
4056	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4057			   &rdev->bypass_count);
4058}
4059
4060static int regulator_register_resolve_supply(struct device *dev, void *data)
4061{
4062	struct regulator_dev *rdev = dev_to_rdev(dev);
4063
4064	if (regulator_resolve_supply(rdev))
4065		rdev_dbg(rdev, "unable to resolve supply\n");
4066
4067	return 0;
4068}
4069
4070/**
4071 * regulator_register - register regulator
4072 * @regulator_desc: regulator to register
4073 * @cfg: runtime configuration for regulator
 
 
4074 *
4075 * Called by regulator drivers to register a regulator.
4076 * Returns a valid pointer to struct regulator_dev on success
4077 * or an ERR_PTR() on error.
4078 */
4079struct regulator_dev *
4080regulator_register(const struct regulator_desc *regulator_desc,
4081		   const struct regulator_config *cfg)
4082{
4083	const struct regulation_constraints *constraints = NULL;
4084	const struct regulator_init_data *init_data;
4085	struct regulator_config *config = NULL;
4086	static atomic_t regulator_no = ATOMIC_INIT(-1);
4087	struct regulator_dev *rdev;
4088	struct device *dev;
4089	int ret, i;
4090
4091	if (regulator_desc == NULL || cfg == NULL)
4092		return ERR_PTR(-EINVAL);
4093
4094	dev = cfg->dev;
4095	WARN_ON(!dev);
4096
4097	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4098		return ERR_PTR(-EINVAL);
4099
4100	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4101	    regulator_desc->type != REGULATOR_CURRENT)
4102		return ERR_PTR(-EINVAL);
4103
 
 
 
4104	/* Only one of each should be implemented */
4105	WARN_ON(regulator_desc->ops->get_voltage &&
4106		regulator_desc->ops->get_voltage_sel);
4107	WARN_ON(regulator_desc->ops->set_voltage &&
4108		regulator_desc->ops->set_voltage_sel);
4109
4110	/* If we're using selectors we must implement list_voltage. */
4111	if (regulator_desc->ops->get_voltage_sel &&
4112	    !regulator_desc->ops->list_voltage) {
4113		return ERR_PTR(-EINVAL);
4114	}
4115	if (regulator_desc->ops->set_voltage_sel &&
4116	    !regulator_desc->ops->list_voltage) {
4117		return ERR_PTR(-EINVAL);
4118	}
4119
4120	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4121	if (rdev == NULL)
4122		return ERR_PTR(-ENOMEM);
4123
4124	/*
4125	 * Duplicate the config so the driver could override it after
4126	 * parsing init data.
4127	 */
4128	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4129	if (config == NULL) {
4130		kfree(rdev);
4131		return ERR_PTR(-ENOMEM);
4132	}
4133
4134	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4135					       &rdev->dev.of_node);
4136	if (!init_data) {
4137		init_data = config->init_data;
4138		rdev->dev.of_node = of_node_get(config->of_node);
4139	}
4140
4141	mutex_init(&rdev->mutex);
4142	rdev->reg_data = config->driver_data;
4143	rdev->owner = regulator_desc->owner;
4144	rdev->desc = regulator_desc;
4145	if (config->regmap)
4146		rdev->regmap = config->regmap;
4147	else if (dev_get_regmap(dev, NULL))
4148		rdev->regmap = dev_get_regmap(dev, NULL);
4149	else if (dev->parent)
4150		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4151	INIT_LIST_HEAD(&rdev->consumer_list);
4152	INIT_LIST_HEAD(&rdev->list);
4153	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4154	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4155
4156	/* preform any regulator specific init */
4157	if (init_data && init_data->regulator_init) {
4158		ret = init_data->regulator_init(rdev->reg_data);
4159		if (ret < 0)
4160			goto clean;
4161	}
4162
4163	if (config->ena_gpiod ||
4164	    ((config->ena_gpio || config->ena_gpio_initialized) &&
4165	     gpio_is_valid(config->ena_gpio))) {
4166		mutex_lock(&regulator_list_mutex);
4167		ret = regulator_ena_gpio_request(rdev, config);
4168		mutex_unlock(&regulator_list_mutex);
4169		if (ret != 0) {
4170			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4171				 config->ena_gpio, ret);
4172			goto clean;
4173		}
4174	}
4175
4176	/* register with sysfs */
4177	rdev->dev.class = &regulator_class;
4178	rdev->dev.parent = dev;
4179	dev_set_name(&rdev->dev, "regulator.%lu",
4180		    (unsigned long) atomic_inc_return(&regulator_no));
 
 
 
 
 
 
 
4181
4182	/* set regulator constraints */
4183	if (init_data)
4184		constraints = &init_data->constraints;
 
4185
4186	if (init_data && init_data->supply_regulator)
4187		rdev->supply_name = init_data->supply_regulator;
4188	else if (regulator_desc->supply_name)
4189		rdev->supply_name = regulator_desc->supply_name;
4190
4191	/*
4192	 * Attempt to resolve the regulator supply, if specified,
4193	 * but don't return an error if we fail because we will try
4194	 * to resolve it again later as more regulators are added.
4195	 */
4196	if (regulator_resolve_supply(rdev))
4197		rdev_dbg(rdev, "unable to resolve supply\n");
 
 
 
 
 
 
 
 
 
 
 
4198
4199	ret = set_machine_constraints(rdev, constraints);
4200	if (ret < 0)
4201		goto wash;
 
4202
4203	/* add consumers devices */
4204	if (init_data) {
4205		mutex_lock(&regulator_list_mutex);
4206		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4207			ret = set_consumer_device_supply(rdev,
4208				init_data->consumer_supplies[i].dev_name,
 
 
4209				init_data->consumer_supplies[i].supply);
4210			if (ret < 0) {
4211				mutex_unlock(&regulator_list_mutex);
4212				dev_err(dev, "Failed to set supply %s\n",
4213					init_data->consumer_supplies[i].supply);
4214				goto unset_supplies;
4215			}
4216		}
4217		mutex_unlock(&regulator_list_mutex);
4218	}
4219
4220	if (!rdev->desc->ops->get_voltage &&
4221	    !rdev->desc->ops->list_voltage &&
4222	    !rdev->desc->fixed_uV)
4223		rdev->is_switch = true;
4224
4225	ret = device_register(&rdev->dev);
4226	if (ret != 0) {
4227		put_device(&rdev->dev);
4228		goto unset_supplies;
4229	}
4230
4231	dev_set_drvdata(&rdev->dev, rdev);
4232	rdev_init_debugfs(rdev);
4233
4234	/* try to resolve regulators supply since a new one was registered */
4235	class_for_each_device(&regulator_class, NULL, NULL,
4236			      regulator_register_resolve_supply);
4237	kfree(config);
4238	return rdev;
4239
4240unset_supplies:
4241	mutex_lock(&regulator_list_mutex);
4242	unset_regulator_supplies(rdev);
4243	mutex_unlock(&regulator_list_mutex);
4244wash:
4245	kfree(rdev->constraints);
4246	mutex_lock(&regulator_list_mutex);
4247	regulator_ena_gpio_free(rdev);
4248	mutex_unlock(&regulator_list_mutex);
 
 
4249clean:
4250	kfree(rdev);
4251	kfree(config);
4252	return ERR_PTR(ret);
4253}
4254EXPORT_SYMBOL_GPL(regulator_register);
4255
4256/**
4257 * regulator_unregister - unregister regulator
4258 * @rdev: regulator to unregister
4259 *
4260 * Called by regulator drivers to unregister a regulator.
4261 */
4262void regulator_unregister(struct regulator_dev *rdev)
4263{
4264	if (rdev == NULL)
4265		return;
4266
4267	if (rdev->supply) {
4268		while (rdev->use_count--)
4269			regulator_disable(rdev->supply);
4270		regulator_put(rdev->supply);
4271	}
4272	mutex_lock(&regulator_list_mutex);
 
4273	debugfs_remove_recursive(rdev->debugfs);
4274	flush_work(&rdev->disable_work.work);
4275	WARN_ON(rdev->open_count);
4276	unset_regulator_supplies(rdev);
4277	list_del(&rdev->list);
4278	regulator_ena_gpio_free(rdev);
 
 
 
4279	mutex_unlock(&regulator_list_mutex);
4280	device_unregister(&rdev->dev);
4281}
4282EXPORT_SYMBOL_GPL(regulator_unregister);
4283
4284#ifdef CONFIG_SUSPEND
4285static int _regulator_suspend_late(struct device *dev, void *data)
4286{
4287	struct regulator_dev *rdev = dev_to_rdev(dev);
4288	suspend_state_t *state = data;
4289	int ret;
4290
4291	mutex_lock(&rdev->mutex);
4292	ret = suspend_set_state(rdev, *state);
4293	mutex_unlock(&rdev->mutex);
4294
4295	return ret;
4296}
4297
4298/**
4299 * regulator_suspend_late - prepare regulators for system wide suspend
4300 * @state: system suspend state
4301 *
4302 * Configure each regulator with it's suspend operating parameters for state.
 
4303 */
4304static int regulator_suspend_late(struct device *dev)
4305{
4306	suspend_state_t state = pm_suspend_target_state;
4307
4308	return class_for_each_device(&regulator_class, NULL, &state,
4309				     _regulator_suspend_late);
4310}
4311
4312static int _regulator_resume_early(struct device *dev, void *data)
4313{
 
4314	int ret = 0;
4315	struct regulator_dev *rdev = dev_to_rdev(dev);
4316	suspend_state_t *state = data;
4317	struct regulator_state *rstate;
4318
4319	rstate = regulator_get_suspend_state(rdev, *state);
4320	if (rstate == NULL)
4321		return 0;
4322
4323	mutex_lock(&rdev->mutex);
 
4324
4325	if (rdev->desc->ops->resume_early &&
4326	    (rstate->enabled == ENABLE_IN_SUSPEND ||
4327	     rstate->enabled == DISABLE_IN_SUSPEND))
4328		ret = rdev->desc->ops->resume_early(rdev);
4329
4330	mutex_unlock(&rdev->mutex);
4331
 
 
 
 
 
 
 
4332	return ret;
4333}
 
4334
4335static int regulator_resume_early(struct device *dev)
 
 
 
 
 
 
4336{
4337	suspend_state_t state = pm_suspend_target_state;
 
 
 
 
 
4338
4339	return class_for_each_device(&regulator_class, NULL, &state,
4340				     _regulator_resume_early);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4341}
 
4342
4343#else /* !CONFIG_SUSPEND */
4344
4345#define regulator_suspend_late	NULL
4346#define regulator_resume_early	NULL
4347
4348#endif /* !CONFIG_SUSPEND */
4349
4350#ifdef CONFIG_PM
4351static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4352	.suspend_late	= regulator_suspend_late,
4353	.resume_early	= regulator_resume_early,
4354};
4355#endif
4356
4357struct class regulator_class = {
4358	.name = "regulator",
4359	.dev_release = regulator_dev_release,
4360	.dev_groups = regulator_dev_groups,
4361#ifdef CONFIG_PM
4362	.pm = &regulator_pm_ops,
4363#endif
4364};
4365/**
4366 * regulator_has_full_constraints - the system has fully specified constraints
4367 *
4368 * Calling this function will cause the regulator API to disable all
4369 * regulators which have a zero use count and don't have an always_on
4370 * constraint in a late_initcall.
4371 *
4372 * The intention is that this will become the default behaviour in a
4373 * future kernel release so users are encouraged to use this facility
4374 * now.
4375 */
4376void regulator_has_full_constraints(void)
4377{
4378	has_full_constraints = 1;
4379}
4380EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4381
4382/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4383 * rdev_get_drvdata - get rdev regulator driver data
4384 * @rdev: regulator
4385 *
4386 * Get rdev regulator driver private data. This call can be used in the
4387 * regulator driver context.
4388 */
4389void *rdev_get_drvdata(struct regulator_dev *rdev)
4390{
4391	return rdev->reg_data;
4392}
4393EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4394
4395/**
4396 * regulator_get_drvdata - get regulator driver data
4397 * @regulator: regulator
4398 *
4399 * Get regulator driver private data. This call can be used in the consumer
4400 * driver context when non API regulator specific functions need to be called.
4401 */
4402void *regulator_get_drvdata(struct regulator *regulator)
4403{
4404	return regulator->rdev->reg_data;
4405}
4406EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4407
4408/**
4409 * regulator_set_drvdata - set regulator driver data
4410 * @regulator: regulator
4411 * @data: data
4412 */
4413void regulator_set_drvdata(struct regulator *regulator, void *data)
4414{
4415	regulator->rdev->reg_data = data;
4416}
4417EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4418
4419/**
4420 * regulator_get_id - get regulator ID
4421 * @rdev: regulator
4422 */
4423int rdev_get_id(struct regulator_dev *rdev)
4424{
4425	return rdev->desc->id;
4426}
4427EXPORT_SYMBOL_GPL(rdev_get_id);
4428
4429struct device *rdev_get_dev(struct regulator_dev *rdev)
4430{
4431	return &rdev->dev;
4432}
4433EXPORT_SYMBOL_GPL(rdev_get_dev);
4434
4435void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4436{
4437	return reg_init_data->driver_data;
4438}
4439EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4440
4441#ifdef CONFIG_DEBUG_FS
4442static int supply_map_show(struct seq_file *sf, void *data)
4443{
4444	struct regulator_map *map;
4445
4446	list_for_each_entry(map, &regulator_map_list, list) {
4447		seq_printf(sf, "%s -> %s.%s\n",
4448				rdev_get_name(map->regulator), map->dev_name,
4449				map->supply);
4450	}
4451
4452	return 0;
4453}
4454
4455static int supply_map_open(struct inode *inode, struct file *file)
4456{
4457	return single_open(file, supply_map_show, inode->i_private);
4458}
4459#endif
4460
4461static const struct file_operations supply_map_fops = {
4462#ifdef CONFIG_DEBUG_FS
4463	.open = supply_map_open,
4464	.read = seq_read,
4465	.llseek = seq_lseek,
4466	.release = single_release,
4467#endif
4468};
4469
4470#ifdef CONFIG_DEBUG_FS
4471struct summary_data {
4472	struct seq_file *s;
4473	struct regulator_dev *parent;
4474	int level;
4475};
4476
4477static void regulator_summary_show_subtree(struct seq_file *s,
4478					   struct regulator_dev *rdev,
4479					   int level);
4480
4481static int regulator_summary_show_children(struct device *dev, void *data)
4482{
4483	struct regulator_dev *rdev = dev_to_rdev(dev);
4484	struct summary_data *summary_data = data;
4485
4486	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4487		regulator_summary_show_subtree(summary_data->s, rdev,
4488					       summary_data->level + 1);
4489
4490	return 0;
4491}
4492
4493static void regulator_summary_show_subtree(struct seq_file *s,
4494					   struct regulator_dev *rdev,
4495					   int level)
4496{
4497	struct regulation_constraints *c;
4498	struct regulator *consumer;
4499	struct summary_data summary_data;
4500
4501	if (!rdev)
4502		return;
4503
4504	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4505		   level * 3 + 1, "",
4506		   30 - level * 3, rdev_get_name(rdev),
4507		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4508
4509	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4510	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4511
4512	c = rdev->constraints;
4513	if (c) {
4514		switch (rdev->desc->type) {
4515		case REGULATOR_VOLTAGE:
4516			seq_printf(s, "%5dmV %5dmV ",
4517				   c->min_uV / 1000, c->max_uV / 1000);
4518			break;
4519		case REGULATOR_CURRENT:
4520			seq_printf(s, "%5dmA %5dmA ",
4521				   c->min_uA / 1000, c->max_uA / 1000);
4522			break;
4523		}
4524	}
4525
4526	seq_puts(s, "\n");
4527
4528	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4529		if (consumer->dev && consumer->dev->class == &regulator_class)
4530			continue;
4531
4532		seq_printf(s, "%*s%-*s ",
4533			   (level + 1) * 3 + 1, "",
4534			   30 - (level + 1) * 3,
4535			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4536
4537		switch (rdev->desc->type) {
4538		case REGULATOR_VOLTAGE:
4539			seq_printf(s, "%37dmV %5dmV",
4540				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4541				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4542			break;
4543		case REGULATOR_CURRENT:
4544			break;
4545		}
4546
4547		seq_puts(s, "\n");
4548	}
4549
4550	summary_data.s = s;
4551	summary_data.level = level;
4552	summary_data.parent = rdev;
4553
4554	class_for_each_device(&regulator_class, NULL, &summary_data,
4555			      regulator_summary_show_children);
4556}
4557
4558static int regulator_summary_show_roots(struct device *dev, void *data)
4559{
4560	struct regulator_dev *rdev = dev_to_rdev(dev);
4561	struct seq_file *s = data;
4562
4563	if (!rdev->supply)
4564		regulator_summary_show_subtree(s, rdev, 0);
4565
4566	return 0;
4567}
4568
4569static int regulator_summary_show(struct seq_file *s, void *data)
4570{
4571	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4572	seq_puts(s, "-------------------------------------------------------------------------------\n");
4573
4574	class_for_each_device(&regulator_class, NULL, s,
4575			      regulator_summary_show_roots);
4576
4577	return 0;
4578}
4579
4580static int regulator_summary_open(struct inode *inode, struct file *file)
4581{
4582	return single_open(file, regulator_summary_show, inode->i_private);
4583}
4584#endif
4585
4586static const struct file_operations regulator_summary_fops = {
4587#ifdef CONFIG_DEBUG_FS
4588	.open		= regulator_summary_open,
4589	.read		= seq_read,
4590	.llseek		= seq_lseek,
4591	.release	= single_release,
4592#endif
4593};
4594
4595static int __init regulator_init(void)
4596{
4597	int ret;
4598
4599	ret = class_register(&regulator_class);
4600
 
4601	debugfs_root = debugfs_create_dir("regulator", NULL);
4602	if (!debugfs_root)
4603		pr_warn("regulator: Failed to create debugfs directory\n");
4604
4605	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4606			    &supply_map_fops);
4607
4608	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4609			    NULL, &regulator_summary_fops);
4610
4611	regulator_dummy_init();
4612
4613	return ret;
4614}
4615
4616/* init early to allow our consumers to complete system booting */
4617core_initcall(regulator_init);
4618
4619static int __init regulator_late_cleanup(struct device *dev, void *data)
4620{
4621	struct regulator_dev *rdev = dev_to_rdev(dev);
4622	const struct regulator_ops *ops = rdev->desc->ops;
4623	struct regulation_constraints *c = rdev->constraints;
4624	int enabled, ret;
4625
4626	if (c && c->always_on)
4627		return 0;
 
 
 
 
 
 
 
4628
4629	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4630		return 0;
4631
4632	mutex_lock(&rdev->mutex);
4633
4634	if (rdev->use_count)
4635		goto unlock;
4636
4637	/* If we can't read the status assume it's on. */
4638	if (ops->is_enabled)
4639		enabled = ops->is_enabled(rdev);
4640	else
4641		enabled = 1;
4642
4643	if (!enabled)
4644		goto unlock;
4645
4646	if (have_full_constraints()) {
4647		/* We log since this may kill the system if it goes
4648		 * wrong. */
4649		rdev_info(rdev, "disabling\n");
4650		ret = _regulator_do_disable(rdev);
4651		if (ret != 0)
4652			rdev_err(rdev, "couldn't disable: %d\n", ret);
4653	} else {
4654		/* The intention is that in future we will
4655		 * assume that full constraints are provided
4656		 * so warn even if we aren't going to do
4657		 * anything here.
4658		 */
4659		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4660	}
 
4661
4662unlock:
4663	mutex_unlock(&rdev->mutex);
 
4664
4665	return 0;
4666}
4667
4668static int __init regulator_init_complete(void)
4669{
4670	/*
4671	 * Since DT doesn't provide an idiomatic mechanism for
4672	 * enabling full constraints and since it's much more natural
4673	 * with DT to provide them just assume that a DT enabled
4674	 * system has full constraints.
4675	 */
4676	if (of_have_populated_dt())
4677		has_full_constraints = true;
4678
4679	/*
4680	 * Regulators may had failed to resolve their input supplies
4681	 * when were registered, either because the input supply was
4682	 * not registered yet or because its parent device was not
4683	 * bound yet. So attempt to resolve the input supplies for
4684	 * pending regulators before trying to disable unused ones.
4685	 */
4686	class_for_each_device(&regulator_class, NULL, NULL,
4687			      regulator_register_resolve_supply);
4688
4689	/* If we have a full configuration then disable any regulators
4690	 * we have permission to change the status for and which are
4691	 * not in use or always_on.  This is effectively the default
4692	 * for DT and ACPI as they have full constraints.
4693	 */
4694	class_for_each_device(&regulator_class, NULL, NULL,
4695			      regulator_late_cleanup);
4696
4697	return 0;
4698}
4699late_initcall_sync(regulator_init_complete);