Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/miscdevice.h>
33#include <linux/wait.h>
34#include <linux/poll.h>
35#include <linux/fs.h>
36#include <linux/slab.h>
37
38#include "rfkill.h"
39
40#define POLL_INTERVAL (5 * HZ)
41
42#define RFKILL_BLOCK_HW BIT(0)
43#define RFKILL_BLOCK_SW BIT(1)
44#define RFKILL_BLOCK_SW_PREV BIT(2)
45#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48#define RFKILL_BLOCK_SW_SETCALL BIT(31)
49
50struct rfkill {
51 spinlock_t lock;
52
53 const char *name;
54 enum rfkill_type type;
55
56 unsigned long state;
57
58 u32 idx;
59
60 bool registered;
61 bool persistent;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77};
78#define to_rfkill(d) container_of(d, struct rfkill, dev)
79
80struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
83};
84
85struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
91};
92
93
94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96MODULE_DESCRIPTION("RF switch support");
97MODULE_LICENSE("GPL");
98
99
100/*
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 *
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
110 */
111static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112static DEFINE_MUTEX(rfkill_global_mutex);
113static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114
115static unsigned int rfkill_default_state = 1;
116module_param_named(default_state, rfkill_default_state, uint, 0444);
117MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
119
120static struct {
121 bool cur, sav;
122} rfkill_global_states[NUM_RFKILL_TYPES];
123
124static bool rfkill_epo_lock_active;
125
126
127#ifdef CONFIG_RFKILL_LEDS
128static void rfkill_led_trigger_event(struct rfkill *rfkill)
129{
130 struct led_trigger *trigger;
131
132 if (!rfkill->registered)
133 return;
134
135 trigger = &rfkill->led_trigger;
136
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
141}
142
143static void rfkill_led_trigger_activate(struct led_classdev *led)
144{
145 struct rfkill *rfkill;
146
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148
149 rfkill_led_trigger_event(rfkill);
150}
151
152static int rfkill_led_trigger_register(struct rfkill *rfkill)
153{
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
158}
159
160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
161{
162 led_trigger_unregister(&rfkill->led_trigger);
163}
164#else
165static void rfkill_led_trigger_event(struct rfkill *rfkill)
166{
167}
168
169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
170{
171 return 0;
172}
173
174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175{
176}
177#endif /* CONFIG_RFKILL_LEDS */
178
179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
181{
182 unsigned long flags;
183
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
187
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
193}
194
195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
196{
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
199
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
209 }
210}
211
212static void rfkill_event(struct rfkill *rfkill)
213{
214 if (!rfkill->registered)
215 return;
216
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
218
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
221}
222
223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
225{
226 unsigned long flags;
227 bool prev, any;
228
229 BUG_ON(!rfkill);
230
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
240
241 rfkill_led_trigger_event(rfkill);
242
243 return any;
244}
245
246/**
247 * rfkill_set_block - wrapper for set_block method
248 *
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
251 *
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
254 */
255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
256{
257 unsigned long flags;
258 int err;
259
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
262
263 /*
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
267 */
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
270
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
276
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
281
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
284
285 err = rfkill->ops->set_block(rfkill->data, blocked);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
289 /*
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
293 */
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
298 }
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
305}
306
307#ifdef CONFIG_RFKILL_INPUT
308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
309
310/**
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
314 *
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
318 *
319 * Caller must have acquired rfkill_global_mutex.
320 */
321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
322{
323 struct rfkill *rfkill;
324
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
329
330 rfkill_set_block(rfkill, blocked);
331 }
332}
333
334/**
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
338 *
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
341 *
342 * Does nothing if the EPO lock is active.
343 */
344void rfkill_switch_all(enum rfkill_type type, bool blocked)
345{
346 if (atomic_read(&rfkill_input_disabled))
347 return;
348
349 mutex_lock(&rfkill_global_mutex);
350
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
353
354 mutex_unlock(&rfkill_global_mutex);
355}
356
357/**
358 * rfkill_epo - emergency power off all transmitters
359 *
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
362 *
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
365 */
366void rfkill_epo(void)
367{
368 struct rfkill *rfkill;
369 int i;
370
371 if (atomic_read(&rfkill_input_disabled))
372 return;
373
374 mutex_lock(&rfkill_global_mutex);
375
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
383 }
384
385 mutex_unlock(&rfkill_global_mutex);
386}
387
388/**
389 * rfkill_restore_states - restore global states
390 *
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
394 */
395void rfkill_restore_states(void)
396{
397 int i;
398
399 if (atomic_read(&rfkill_input_disabled))
400 return;
401
402 mutex_lock(&rfkill_global_mutex);
403
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
408}
409
410/**
411 * rfkill_remove_epo_lock - unlock state changes
412 *
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
415 */
416void rfkill_remove_epo_lock(void)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
424}
425
426/**
427 * rfkill_is_epo_lock_active - returns true EPO is active
428 *
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
432 *
433 * Can be called in atomic context.
434 */
435bool rfkill_is_epo_lock_active(void)
436{
437 return rfkill_epo_lock_active;
438}
439
440/**
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
443 *
444 * Returns the current global state for a given wireless
445 * device type.
446 */
447bool rfkill_get_global_sw_state(const enum rfkill_type type)
448{
449 return rfkill_global_states[type].cur;
450}
451#endif
452
453
454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
455{
456 bool ret, change;
457
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
459
460 if (!rfkill->registered)
461 return ret;
462
463 if (change)
464 schedule_work(&rfkill->uevent_work);
465
466 return ret;
467}
468EXPORT_SYMBOL(rfkill_set_hw_state);
469
470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
471{
472 u32 bit = RFKILL_BLOCK_SW;
473
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
477
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
482}
483
484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
485{
486 unsigned long flags;
487 bool prev, hwblock;
488
489 BUG_ON(!rfkill);
490
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
497
498 if (!rfkill->registered)
499 return blocked;
500
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
503
504 rfkill_led_trigger_event(rfkill);
505
506 return blocked;
507}
508EXPORT_SYMBOL(rfkill_set_sw_state);
509
510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
511{
512 unsigned long flags;
513
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
516
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
521}
522EXPORT_SYMBOL(rfkill_init_sw_state);
523
524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525{
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
544
545 spin_unlock_irqrestore(&rfkill->lock, flags);
546
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
552
553 rfkill_led_trigger_event(rfkill);
554 }
555}
556EXPORT_SYMBOL(rfkill_set_states);
557
558static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
561{
562 struct rfkill *rfkill = to_rfkill(dev);
563
564 return sprintf(buf, "%s\n", rfkill->name);
565}
566
567static const char *rfkill_get_type_str(enum rfkill_type type)
568{
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
570
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
588 }
589}
590
591static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct rfkill *rfkill = to_rfkill(dev);
596
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
598}
599
600static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
603{
604 struct rfkill *rfkill = to_rfkill(dev);
605
606 return sprintf(buf, "%d\n", rfkill->idx);
607}
608
609static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
612{
613 struct rfkill *rfkill = to_rfkill(dev);
614
615 return sprintf(buf, "%d\n", rfkill->persistent);
616}
617
618static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
621{
622 struct rfkill *rfkill = to_rfkill(dev);
623
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
625}
626
627static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
630{
631 struct rfkill *rfkill = to_rfkill(dev);
632
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
634}
635
636static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
639{
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
643
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
646
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
650
651 if (state > 1 )
652 return -EINVAL;
653
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
657
658 return err ?: count;
659}
660
661static u8 user_state_from_blocked(unsigned long state)
662{
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
667
668 return RFKILL_USER_STATE_UNBLOCKED;
669}
670
671static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
674{
675 struct rfkill *rfkill = to_rfkill(dev);
676
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
678}
679
680static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
683{
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
687
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
690
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
694
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
698
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
702
703 return err ?: count;
704}
705
706static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 return sprintf(buf, "%d\n", 0);
711}
712
713static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
716{
717 return -EOPNOTSUPP;
718}
719
720static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
730};
731
732static void rfkill_release(struct device *dev)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 kfree(rfkill);
737}
738
739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
740{
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
745
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
759}
760
761void rfkill_pause_polling(struct rfkill *rfkill)
762{
763 BUG_ON(!rfkill);
764
765 if (!rfkill->ops->poll)
766 return;
767
768 cancel_delayed_work_sync(&rfkill->poll_work);
769}
770EXPORT_SYMBOL(rfkill_pause_polling);
771
772void rfkill_resume_polling(struct rfkill *rfkill)
773{
774 BUG_ON(!rfkill);
775
776 if (!rfkill->ops->poll)
777 return;
778
779 schedule_work(&rfkill->poll_work.work);
780}
781EXPORT_SYMBOL(rfkill_resume_polling);
782
783static int rfkill_suspend(struct device *dev, pm_message_t state)
784{
785 struct rfkill *rfkill = to_rfkill(dev);
786
787 rfkill_pause_polling(rfkill);
788
789 return 0;
790}
791
792static int rfkill_resume(struct device *dev)
793{
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
796
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
800 }
801
802 rfkill_resume_polling(rfkill);
803
804 return 0;
805}
806
807static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
814};
815
816bool rfkill_blocked(struct rfkill *rfkill)
817{
818 unsigned long flags;
819 u32 state;
820
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
824
825 return !!(state & RFKILL_BLOCK_ANY);
826}
827EXPORT_SYMBOL(rfkill_blocked);
828
829
830struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
835{
836 struct rfkill *rfkill;
837 struct device *dev;
838
839 if (WARN_ON(!ops))
840 return NULL;
841
842 if (WARN_ON(!ops->set_block))
843 return NULL;
844
845 if (WARN_ON(!name))
846 return NULL;
847
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
850
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
854
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
861
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
866
867 return rfkill;
868}
869EXPORT_SYMBOL(rfkill_alloc);
870
871static void rfkill_poll(struct work_struct *work)
872{
873 struct rfkill *rfkill;
874
875 rfkill = container_of(work, struct rfkill, poll_work.work);
876
877 /*
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
881 */
882 rfkill->ops->poll(rfkill, rfkill->data);
883
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
886}
887
888static void rfkill_uevent_work(struct work_struct *work)
889{
890 struct rfkill *rfkill;
891
892 rfkill = container_of(work, struct rfkill, uevent_work);
893
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
897}
898
899static void rfkill_sync_work(struct work_struct *work)
900{
901 struct rfkill *rfkill;
902 bool cur;
903
904 rfkill = container_of(work, struct rfkill, sync_work);
905
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
910}
911
912int __must_check rfkill_register(struct rfkill *rfkill)
913{
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
917
918 BUG_ON(!rfkill);
919
920 mutex_lock(&rfkill_global_mutex);
921
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
925 }
926
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
930
931 list_add_tail(&rfkill->node, &rfkill_list);
932
933 error = device_add(dev);
934 if (error)
935 goto remove;
936
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
940
941 rfkill->registered = true;
942
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
946
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
950
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954#ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
956
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959#endif
960 }
961
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
963
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
966
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
974}
975EXPORT_SYMBOL(rfkill_register);
976
977void rfkill_unregister(struct rfkill *rfkill)
978{
979 BUG_ON(!rfkill);
980
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
983
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
986
987 rfkill->registered = false;
988
989 device_del(&rfkill->dev);
990
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
995
996 rfkill_led_trigger_unregister(rfkill);
997}
998EXPORT_SYMBOL(rfkill_unregister);
999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1012
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1016
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1020
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1023 /*
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1026 */
1027
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1034 }
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1038
1039 file->private_data = data;
1040
1041 return nonseekable_open(inode, file);
1042
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1057
1058 poll_wait(file, &data->read_wait, wait);
1059
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1064
1065 return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070 bool r;
1071
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1075
1076 return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1081{
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1086
1087 mutex_lock(&data->mtx);
1088
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1098
1099 if (ret)
1100 goto out;
1101 }
1102
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1105
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1110
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1120{
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1123
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1127
1128 /*
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1132 */
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1136
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1139
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1142
1143 mutex_lock(&rfkill_global_mutex);
1144
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1152 }
1153 }
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1158
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1161
1162 rfkill_set_block(rfkill, ev.soft);
1163 }
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1173
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1177
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188 kfree(data);
1189
1190 return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1196{
1197 struct rfkill_data *data = file->private_data;
1198
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1201
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1204
1205 mutex_lock(&data->mtx);
1206
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1211 }
1212
1213 mutex_unlock(&data->mtx);
1214
1215 return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229#endif
1230 .llseek = no_llseek,
1231};
1232
1233static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241 int error;
1242 int i;
1243
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1250
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1255 }
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1263 }
1264#endif
1265
1266 out:
1267 return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275#endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81 u8 max_size;
82};
83
84
85MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87MODULE_DESCRIPTION("RF switch support");
88MODULE_LICENSE("GPL");
89
90
91/*
92 * The locking here should be made much smarter, we currently have
93 * a bit of a stupid situation because drivers might want to register
94 * the rfkill struct under their own lock, and take this lock during
95 * rfkill method calls -- which will cause an AB-BA deadlock situation.
96 *
97 * To fix that, we need to rework this code here to be mostly lock-free
98 * and only use the mutex for list manipulations, not to protect the
99 * various other global variables. Then we can avoid holding the mutex
100 * around driver operations, and all is happy.
101 */
102static LIST_HEAD(rfkill_list); /* list of registered rf switches */
103static DEFINE_MUTEX(rfkill_global_mutex);
104static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
105
106static unsigned int rfkill_default_state = 1;
107module_param_named(default_state, rfkill_default_state, uint, 0444);
108MODULE_PARM_DESC(default_state,
109 "Default initial state for all radio types, 0 = radio off");
110
111static struct {
112 bool cur, sav;
113} rfkill_global_states[NUM_RFKILL_TYPES];
114
115static bool rfkill_epo_lock_active;
116
117
118#ifdef CONFIG_RFKILL_LEDS
119static void rfkill_led_trigger_event(struct rfkill *rfkill)
120{
121 struct led_trigger *trigger;
122
123 if (!rfkill->registered)
124 return;
125
126 trigger = &rfkill->led_trigger;
127
128 if (rfkill->state & RFKILL_BLOCK_ANY)
129 led_trigger_event(trigger, LED_OFF);
130 else
131 led_trigger_event(trigger, LED_FULL);
132}
133
134static int rfkill_led_trigger_activate(struct led_classdev *led)
135{
136 struct rfkill *rfkill;
137
138 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140 rfkill_led_trigger_event(rfkill);
141
142 return 0;
143}
144
145const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146{
147 return rfkill->led_trigger.name;
148}
149EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152{
153 BUG_ON(!rfkill);
154
155 rfkill->ledtrigname = name;
156}
157EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159static int rfkill_led_trigger_register(struct rfkill *rfkill)
160{
161 rfkill->led_trigger.name = rfkill->ledtrigname
162 ? : dev_name(&rfkill->dev);
163 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164 return led_trigger_register(&rfkill->led_trigger);
165}
166
167static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168{
169 led_trigger_unregister(&rfkill->led_trigger);
170}
171
172static struct led_trigger rfkill_any_led_trigger;
173static struct led_trigger rfkill_none_led_trigger;
174static struct work_struct rfkill_global_led_trigger_work;
175
176static void rfkill_global_led_trigger_worker(struct work_struct *work)
177{
178 enum led_brightness brightness = LED_OFF;
179 struct rfkill *rfkill;
180
181 mutex_lock(&rfkill_global_mutex);
182 list_for_each_entry(rfkill, &rfkill_list, node) {
183 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184 brightness = LED_FULL;
185 break;
186 }
187 }
188 mutex_unlock(&rfkill_global_mutex);
189
190 led_trigger_event(&rfkill_any_led_trigger, brightness);
191 led_trigger_event(&rfkill_none_led_trigger,
192 brightness == LED_OFF ? LED_FULL : LED_OFF);
193}
194
195static void rfkill_global_led_trigger_event(void)
196{
197 schedule_work(&rfkill_global_led_trigger_work);
198}
199
200static int rfkill_global_led_trigger_register(void)
201{
202 int ret;
203
204 INIT_WORK(&rfkill_global_led_trigger_work,
205 rfkill_global_led_trigger_worker);
206
207 rfkill_any_led_trigger.name = "rfkill-any";
208 ret = led_trigger_register(&rfkill_any_led_trigger);
209 if (ret)
210 return ret;
211
212 rfkill_none_led_trigger.name = "rfkill-none";
213 ret = led_trigger_register(&rfkill_none_led_trigger);
214 if (ret)
215 led_trigger_unregister(&rfkill_any_led_trigger);
216 else
217 /* Delay activation until all global triggers are registered */
218 rfkill_global_led_trigger_event();
219
220 return ret;
221}
222
223static void rfkill_global_led_trigger_unregister(void)
224{
225 led_trigger_unregister(&rfkill_none_led_trigger);
226 led_trigger_unregister(&rfkill_any_led_trigger);
227 cancel_work_sync(&rfkill_global_led_trigger_work);
228}
229#else
230static void rfkill_led_trigger_event(struct rfkill *rfkill)
231{
232}
233
234static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235{
236 return 0;
237}
238
239static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240{
241}
242
243static void rfkill_global_led_trigger_event(void)
244{
245}
246
247static int rfkill_global_led_trigger_register(void)
248{
249 return 0;
250}
251
252static void rfkill_global_led_trigger_unregister(void)
253{
254}
255#endif /* CONFIG_RFKILL_LEDS */
256
257static void rfkill_fill_event(struct rfkill_event_ext *ev,
258 struct rfkill *rfkill,
259 enum rfkill_operation op)
260{
261 unsigned long flags;
262
263 ev->idx = rfkill->idx;
264 ev->type = rfkill->type;
265 ev->op = op;
266
267 spin_lock_irqsave(&rfkill->lock, flags);
268 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270 RFKILL_BLOCK_SW_PREV));
271 ev->hard_block_reasons = rfkill->hard_block_reasons;
272 spin_unlock_irqrestore(&rfkill->lock, flags);
273}
274
275static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276{
277 struct rfkill_data *data;
278 struct rfkill_int_event *ev;
279
280 list_for_each_entry(data, &rfkill_fds, list) {
281 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282 if (!ev)
283 continue;
284 rfkill_fill_event(&ev->ev, rfkill, op);
285 mutex_lock(&data->mtx);
286 list_add_tail(&ev->list, &data->events);
287 mutex_unlock(&data->mtx);
288 wake_up_interruptible(&data->read_wait);
289 }
290}
291
292static void rfkill_event(struct rfkill *rfkill)
293{
294 if (!rfkill->registered)
295 return;
296
297 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299 /* also send event to /dev/rfkill */
300 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301}
302
303/**
304 * rfkill_set_block - wrapper for set_block method
305 *
306 * @rfkill: the rfkill struct to use
307 * @blocked: the new software state
308 *
309 * Calls the set_block method (when applicable) and handles notifications
310 * etc. as well.
311 */
312static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313{
314 unsigned long flags;
315 bool prev, curr;
316 int err;
317
318 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319 return;
320
321 /*
322 * Some platforms (...!) generate input events which affect the
323 * _hard_ kill state -- whenever something tries to change the
324 * current software state query the hardware state too.
325 */
326 if (rfkill->ops->query)
327 rfkill->ops->query(rfkill, rfkill->data);
328
329 spin_lock_irqsave(&rfkill->lock, flags);
330 prev = rfkill->state & RFKILL_BLOCK_SW;
331
332 if (prev)
333 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334 else
335 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337 if (blocked)
338 rfkill->state |= RFKILL_BLOCK_SW;
339 else
340 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343 spin_unlock_irqrestore(&rfkill->lock, flags);
344
345 err = rfkill->ops->set_block(rfkill->data, blocked);
346
347 spin_lock_irqsave(&rfkill->lock, flags);
348 if (err) {
349 /*
350 * Failed -- reset status to _PREV, which may be different
351 * from what we have set _PREV to earlier in this function
352 * if rfkill_set_sw_state was invoked.
353 */
354 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355 rfkill->state |= RFKILL_BLOCK_SW;
356 else
357 rfkill->state &= ~RFKILL_BLOCK_SW;
358 }
359 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361 curr = rfkill->state & RFKILL_BLOCK_SW;
362 spin_unlock_irqrestore(&rfkill->lock, flags);
363
364 rfkill_led_trigger_event(rfkill);
365 rfkill_global_led_trigger_event();
366
367 if (prev != curr)
368 rfkill_event(rfkill);
369}
370
371static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372{
373 int i;
374
375 if (type != RFKILL_TYPE_ALL) {
376 rfkill_global_states[type].cur = blocked;
377 return;
378 }
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++)
381 rfkill_global_states[i].cur = blocked;
382}
383
384#ifdef CONFIG_RFKILL_INPUT
385static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387/**
388 * __rfkill_switch_all - Toggle state of all switches of given type
389 * @type: type of interfaces to be affected
390 * @blocked: the new state
391 *
392 * This function sets the state of all switches of given type,
393 * unless a specific switch is suspended.
394 *
395 * Caller must have acquired rfkill_global_mutex.
396 */
397static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398{
399 struct rfkill *rfkill;
400
401 rfkill_update_global_state(type, blocked);
402 list_for_each_entry(rfkill, &rfkill_list, node) {
403 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404 continue;
405
406 rfkill_set_block(rfkill, blocked);
407 }
408}
409
410/**
411 * rfkill_switch_all - Toggle state of all switches of given type
412 * @type: type of interfaces to be affected
413 * @blocked: the new state
414 *
415 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416 * Please refer to __rfkill_switch_all() for details.
417 *
418 * Does nothing if the EPO lock is active.
419 */
420void rfkill_switch_all(enum rfkill_type type, bool blocked)
421{
422 if (atomic_read(&rfkill_input_disabled))
423 return;
424
425 mutex_lock(&rfkill_global_mutex);
426
427 if (!rfkill_epo_lock_active)
428 __rfkill_switch_all(type, blocked);
429
430 mutex_unlock(&rfkill_global_mutex);
431}
432
433/**
434 * rfkill_epo - emergency power off all transmitters
435 *
436 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438 *
439 * The global state before the EPO is saved and can be restored later
440 * using rfkill_restore_states().
441 */
442void rfkill_epo(void)
443{
444 struct rfkill *rfkill;
445 int i;
446
447 if (atomic_read(&rfkill_input_disabled))
448 return;
449
450 mutex_lock(&rfkill_global_mutex);
451
452 rfkill_epo_lock_active = true;
453 list_for_each_entry(rfkill, &rfkill_list, node)
454 rfkill_set_block(rfkill, true);
455
456 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458 rfkill_global_states[i].cur = true;
459 }
460
461 mutex_unlock(&rfkill_global_mutex);
462}
463
464/**
465 * rfkill_restore_states - restore global states
466 *
467 * Restore (and sync switches to) the global state from the
468 * states in rfkill_default_states. This can undo the effects of
469 * a call to rfkill_epo().
470 */
471void rfkill_restore_states(void)
472{
473 int i;
474
475 if (atomic_read(&rfkill_input_disabled))
476 return;
477
478 mutex_lock(&rfkill_global_mutex);
479
480 rfkill_epo_lock_active = false;
481 for (i = 0; i < NUM_RFKILL_TYPES; i++)
482 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483 mutex_unlock(&rfkill_global_mutex);
484}
485
486/**
487 * rfkill_remove_epo_lock - unlock state changes
488 *
489 * Used by rfkill-input manually unlock state changes, when
490 * the EPO switch is deactivated.
491 */
492void rfkill_remove_epo_lock(void)
493{
494 if (atomic_read(&rfkill_input_disabled))
495 return;
496
497 mutex_lock(&rfkill_global_mutex);
498 rfkill_epo_lock_active = false;
499 mutex_unlock(&rfkill_global_mutex);
500}
501
502/**
503 * rfkill_is_epo_lock_active - returns true EPO is active
504 *
505 * Returns 0 (false) if there is NOT an active EPO condition,
506 * and 1 (true) if there is an active EPO condition, which
507 * locks all radios in one of the BLOCKED states.
508 *
509 * Can be called in atomic context.
510 */
511bool rfkill_is_epo_lock_active(void)
512{
513 return rfkill_epo_lock_active;
514}
515
516/**
517 * rfkill_get_global_sw_state - returns global state for a type
518 * @type: the type to get the global state of
519 *
520 * Returns the current global state for a given wireless
521 * device type.
522 */
523bool rfkill_get_global_sw_state(const enum rfkill_type type)
524{
525 return rfkill_global_states[type].cur;
526}
527#endif
528
529bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530 bool blocked, unsigned long reason)
531{
532 unsigned long flags;
533 bool ret, prev;
534
535 BUG_ON(!rfkill);
536
537 if (WARN(reason &
538 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539 "hw_state reason not supported: 0x%lx", reason))
540 return blocked;
541
542 spin_lock_irqsave(&rfkill->lock, flags);
543 prev = !!(rfkill->hard_block_reasons & reason);
544 if (blocked) {
545 rfkill->state |= RFKILL_BLOCK_HW;
546 rfkill->hard_block_reasons |= reason;
547 } else {
548 rfkill->hard_block_reasons &= ~reason;
549 if (!rfkill->hard_block_reasons)
550 rfkill->state &= ~RFKILL_BLOCK_HW;
551 }
552 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553 spin_unlock_irqrestore(&rfkill->lock, flags);
554
555 rfkill_led_trigger_event(rfkill);
556 rfkill_global_led_trigger_event();
557
558 if (rfkill->registered && prev != blocked)
559 schedule_work(&rfkill->uevent_work);
560
561 return ret;
562}
563EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566{
567 u32 bit = RFKILL_BLOCK_SW;
568
569 /* if in a ops->set_block right now, use other bit */
570 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571 bit = RFKILL_BLOCK_SW_PREV;
572
573 if (blocked)
574 rfkill->state |= bit;
575 else
576 rfkill->state &= ~bit;
577}
578
579bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580{
581 unsigned long flags;
582 bool prev, hwblock;
583
584 BUG_ON(!rfkill);
585
586 spin_lock_irqsave(&rfkill->lock, flags);
587 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588 __rfkill_set_sw_state(rfkill, blocked);
589 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590 blocked = blocked || hwblock;
591 spin_unlock_irqrestore(&rfkill->lock, flags);
592
593 if (!rfkill->registered)
594 return blocked;
595
596 if (prev != blocked && !hwblock)
597 schedule_work(&rfkill->uevent_work);
598
599 rfkill_led_trigger_event(rfkill);
600 rfkill_global_led_trigger_event();
601
602 return blocked;
603}
604EXPORT_SYMBOL(rfkill_set_sw_state);
605
606void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607{
608 unsigned long flags;
609
610 BUG_ON(!rfkill);
611 BUG_ON(rfkill->registered);
612
613 spin_lock_irqsave(&rfkill->lock, flags);
614 __rfkill_set_sw_state(rfkill, blocked);
615 rfkill->persistent = true;
616 spin_unlock_irqrestore(&rfkill->lock, flags);
617}
618EXPORT_SYMBOL(rfkill_init_sw_state);
619
620void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621{
622 unsigned long flags;
623 bool swprev, hwprev;
624
625 BUG_ON(!rfkill);
626
627 spin_lock_irqsave(&rfkill->lock, flags);
628
629 /*
630 * No need to care about prev/setblock ... this is for uevent only
631 * and that will get triggered by rfkill_set_block anyway.
632 */
633 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635 __rfkill_set_sw_state(rfkill, sw);
636 if (hw)
637 rfkill->state |= RFKILL_BLOCK_HW;
638 else
639 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641 spin_unlock_irqrestore(&rfkill->lock, flags);
642
643 if (!rfkill->registered) {
644 rfkill->persistent = true;
645 } else {
646 if (swprev != sw || hwprev != hw)
647 schedule_work(&rfkill->uevent_work);
648
649 rfkill_led_trigger_event(rfkill);
650 rfkill_global_led_trigger_event();
651 }
652}
653EXPORT_SYMBOL(rfkill_set_states);
654
655static const char * const rfkill_types[] = {
656 NULL, /* RFKILL_TYPE_ALL */
657 "wlan",
658 "bluetooth",
659 "ultrawideband",
660 "wimax",
661 "wwan",
662 "gps",
663 "fm",
664 "nfc",
665};
666
667enum rfkill_type rfkill_find_type(const char *name)
668{
669 int i;
670
671 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673 if (!name)
674 return RFKILL_TYPE_ALL;
675
676 for (i = 1; i < NUM_RFKILL_TYPES; i++)
677 if (!strcmp(name, rfkill_types[i]))
678 return i;
679 return RFKILL_TYPE_ALL;
680}
681EXPORT_SYMBOL(rfkill_find_type);
682
683static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%s\n", rfkill->name);
689}
690static DEVICE_ATTR_RO(name);
691
692static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693 char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698}
699static DEVICE_ATTR_RO(type);
700
701static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", rfkill->idx);
707}
708static DEVICE_ATTR_RO(index);
709
710static ssize_t persistent_show(struct device *dev,
711 struct device_attribute *attr, char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", rfkill->persistent);
716}
717static DEVICE_ATTR_RO(persistent);
718
719static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721{
722 struct rfkill *rfkill = to_rfkill(dev);
723
724 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725}
726static DEVICE_ATTR_RO(hard);
727
728static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729 char *buf)
730{
731 struct rfkill *rfkill = to_rfkill(dev);
732
733 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734}
735
736static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737 const char *buf, size_t count)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740 unsigned long state;
741 int err;
742
743 if (!capable(CAP_NET_ADMIN))
744 return -EPERM;
745
746 err = kstrtoul(buf, 0, &state);
747 if (err)
748 return err;
749
750 if (state > 1 )
751 return -EINVAL;
752
753 mutex_lock(&rfkill_global_mutex);
754 rfkill_set_block(rfkill, state);
755 mutex_unlock(&rfkill_global_mutex);
756
757 return count;
758}
759static DEVICE_ATTR_RW(soft);
760
761static ssize_t hard_block_reasons_show(struct device *dev,
762 struct device_attribute *attr,
763 char *buf)
764{
765 struct rfkill *rfkill = to_rfkill(dev);
766
767 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768}
769static DEVICE_ATTR_RO(hard_block_reasons);
770
771static u8 user_state_from_blocked(unsigned long state)
772{
773 if (state & RFKILL_BLOCK_HW)
774 return RFKILL_USER_STATE_HARD_BLOCKED;
775 if (state & RFKILL_BLOCK_SW)
776 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778 return RFKILL_USER_STATE_UNBLOCKED;
779}
780
781static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782 char *buf)
783{
784 struct rfkill *rfkill = to_rfkill(dev);
785
786 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787}
788
789static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790 const char *buf, size_t count)
791{
792 struct rfkill *rfkill = to_rfkill(dev);
793 unsigned long state;
794 int err;
795
796 if (!capable(CAP_NET_ADMIN))
797 return -EPERM;
798
799 err = kstrtoul(buf, 0, &state);
800 if (err)
801 return err;
802
803 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804 state != RFKILL_USER_STATE_UNBLOCKED)
805 return -EINVAL;
806
807 mutex_lock(&rfkill_global_mutex);
808 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809 mutex_unlock(&rfkill_global_mutex);
810
811 return count;
812}
813static DEVICE_ATTR_RW(state);
814
815static struct attribute *rfkill_dev_attrs[] = {
816 &dev_attr_name.attr,
817 &dev_attr_type.attr,
818 &dev_attr_index.attr,
819 &dev_attr_persistent.attr,
820 &dev_attr_state.attr,
821 &dev_attr_soft.attr,
822 &dev_attr_hard.attr,
823 &dev_attr_hard_block_reasons.attr,
824 NULL,
825};
826ATTRIBUTE_GROUPS(rfkill_dev);
827
828static void rfkill_release(struct device *dev)
829{
830 struct rfkill *rfkill = to_rfkill(dev);
831
832 kfree(rfkill);
833}
834
835static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
836{
837 struct rfkill *rfkill = to_rfkill(dev);
838 unsigned long flags;
839 unsigned long reasons;
840 u32 state;
841 int error;
842
843 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844 if (error)
845 return error;
846 error = add_uevent_var(env, "RFKILL_TYPE=%s",
847 rfkill_types[rfkill->type]);
848 if (error)
849 return error;
850 spin_lock_irqsave(&rfkill->lock, flags);
851 state = rfkill->state;
852 reasons = rfkill->hard_block_reasons;
853 spin_unlock_irqrestore(&rfkill->lock, flags);
854 error = add_uevent_var(env, "RFKILL_STATE=%d",
855 user_state_from_blocked(state));
856 if (error)
857 return error;
858 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859}
860
861void rfkill_pause_polling(struct rfkill *rfkill)
862{
863 BUG_ON(!rfkill);
864
865 if (!rfkill->ops->poll)
866 return;
867
868 rfkill->polling_paused = true;
869 cancel_delayed_work_sync(&rfkill->poll_work);
870}
871EXPORT_SYMBOL(rfkill_pause_polling);
872
873void rfkill_resume_polling(struct rfkill *rfkill)
874{
875 BUG_ON(!rfkill);
876
877 if (!rfkill->ops->poll)
878 return;
879
880 rfkill->polling_paused = false;
881
882 if (rfkill->suspended)
883 return;
884
885 queue_delayed_work(system_power_efficient_wq,
886 &rfkill->poll_work, 0);
887}
888EXPORT_SYMBOL(rfkill_resume_polling);
889
890#ifdef CONFIG_PM_SLEEP
891static int rfkill_suspend(struct device *dev)
892{
893 struct rfkill *rfkill = to_rfkill(dev);
894
895 rfkill->suspended = true;
896 cancel_delayed_work_sync(&rfkill->poll_work);
897
898 return 0;
899}
900
901static int rfkill_resume(struct device *dev)
902{
903 struct rfkill *rfkill = to_rfkill(dev);
904 bool cur;
905
906 rfkill->suspended = false;
907
908 if (!rfkill->registered)
909 return 0;
910
911 if (!rfkill->persistent) {
912 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913 rfkill_set_block(rfkill, cur);
914 }
915
916 if (rfkill->ops->poll && !rfkill->polling_paused)
917 queue_delayed_work(system_power_efficient_wq,
918 &rfkill->poll_work, 0);
919
920 return 0;
921}
922
923static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924#define RFKILL_PM_OPS (&rfkill_pm_ops)
925#else
926#define RFKILL_PM_OPS NULL
927#endif
928
929static struct class rfkill_class = {
930 .name = "rfkill",
931 .dev_release = rfkill_release,
932 .dev_groups = rfkill_dev_groups,
933 .dev_uevent = rfkill_dev_uevent,
934 .pm = RFKILL_PM_OPS,
935};
936
937bool rfkill_blocked(struct rfkill *rfkill)
938{
939 unsigned long flags;
940 u32 state;
941
942 spin_lock_irqsave(&rfkill->lock, flags);
943 state = rfkill->state;
944 spin_unlock_irqrestore(&rfkill->lock, flags);
945
946 return !!(state & RFKILL_BLOCK_ANY);
947}
948EXPORT_SYMBOL(rfkill_blocked);
949
950bool rfkill_soft_blocked(struct rfkill *rfkill)
951{
952 unsigned long flags;
953 u32 state;
954
955 spin_lock_irqsave(&rfkill->lock, flags);
956 state = rfkill->state;
957 spin_unlock_irqrestore(&rfkill->lock, flags);
958
959 return !!(state & RFKILL_BLOCK_SW);
960}
961EXPORT_SYMBOL(rfkill_soft_blocked);
962
963struct rfkill * __must_check rfkill_alloc(const char *name,
964 struct device *parent,
965 const enum rfkill_type type,
966 const struct rfkill_ops *ops,
967 void *ops_data)
968{
969 struct rfkill *rfkill;
970 struct device *dev;
971
972 if (WARN_ON(!ops))
973 return NULL;
974
975 if (WARN_ON(!ops->set_block))
976 return NULL;
977
978 if (WARN_ON(!name))
979 return NULL;
980
981 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
982 return NULL;
983
984 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
985 if (!rfkill)
986 return NULL;
987
988 spin_lock_init(&rfkill->lock);
989 INIT_LIST_HEAD(&rfkill->node);
990 rfkill->type = type;
991 strcpy(rfkill->name, name);
992 rfkill->ops = ops;
993 rfkill->data = ops_data;
994
995 dev = &rfkill->dev;
996 dev->class = &rfkill_class;
997 dev->parent = parent;
998 device_initialize(dev);
999
1000 return rfkill;
1001}
1002EXPORT_SYMBOL(rfkill_alloc);
1003
1004static void rfkill_poll(struct work_struct *work)
1005{
1006 struct rfkill *rfkill;
1007
1008 rfkill = container_of(work, struct rfkill, poll_work.work);
1009
1010 /*
1011 * Poll hardware state -- driver will use one of the
1012 * rfkill_set{,_hw,_sw}_state functions and use its
1013 * return value to update the current status.
1014 */
1015 rfkill->ops->poll(rfkill, rfkill->data);
1016
1017 queue_delayed_work(system_power_efficient_wq,
1018 &rfkill->poll_work,
1019 round_jiffies_relative(POLL_INTERVAL));
1020}
1021
1022static void rfkill_uevent_work(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, uevent_work);
1027
1028 mutex_lock(&rfkill_global_mutex);
1029 rfkill_event(rfkill);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033static void rfkill_sync_work(struct work_struct *work)
1034{
1035 struct rfkill *rfkill;
1036 bool cur;
1037
1038 rfkill = container_of(work, struct rfkill, sync_work);
1039
1040 mutex_lock(&rfkill_global_mutex);
1041 cur = rfkill_global_states[rfkill->type].cur;
1042 rfkill_set_block(rfkill, cur);
1043 mutex_unlock(&rfkill_global_mutex);
1044}
1045
1046int __must_check rfkill_register(struct rfkill *rfkill)
1047{
1048 static unsigned long rfkill_no;
1049 struct device *dev;
1050 int error;
1051
1052 if (!rfkill)
1053 return -EINVAL;
1054
1055 dev = &rfkill->dev;
1056
1057 mutex_lock(&rfkill_global_mutex);
1058
1059 if (rfkill->registered) {
1060 error = -EALREADY;
1061 goto unlock;
1062 }
1063
1064 rfkill->idx = rfkill_no;
1065 dev_set_name(dev, "rfkill%lu", rfkill_no);
1066 rfkill_no++;
1067
1068 list_add_tail(&rfkill->node, &rfkill_list);
1069
1070 error = device_add(dev);
1071 if (error)
1072 goto remove;
1073
1074 error = rfkill_led_trigger_register(rfkill);
1075 if (error)
1076 goto devdel;
1077
1078 rfkill->registered = true;
1079
1080 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1081 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1082 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1083
1084 if (rfkill->ops->poll)
1085 queue_delayed_work(system_power_efficient_wq,
1086 &rfkill->poll_work,
1087 round_jiffies_relative(POLL_INTERVAL));
1088
1089 if (!rfkill->persistent || rfkill_epo_lock_active) {
1090 schedule_work(&rfkill->sync_work);
1091 } else {
1092#ifdef CONFIG_RFKILL_INPUT
1093 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1094
1095 if (!atomic_read(&rfkill_input_disabled))
1096 __rfkill_switch_all(rfkill->type, soft_blocked);
1097#endif
1098 }
1099
1100 rfkill_global_led_trigger_event();
1101 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1102
1103 mutex_unlock(&rfkill_global_mutex);
1104 return 0;
1105
1106 devdel:
1107 device_del(&rfkill->dev);
1108 remove:
1109 list_del_init(&rfkill->node);
1110 unlock:
1111 mutex_unlock(&rfkill_global_mutex);
1112 return error;
1113}
1114EXPORT_SYMBOL(rfkill_register);
1115
1116void rfkill_unregister(struct rfkill *rfkill)
1117{
1118 BUG_ON(!rfkill);
1119
1120 if (rfkill->ops->poll)
1121 cancel_delayed_work_sync(&rfkill->poll_work);
1122
1123 cancel_work_sync(&rfkill->uevent_work);
1124 cancel_work_sync(&rfkill->sync_work);
1125
1126 rfkill->registered = false;
1127
1128 device_del(&rfkill->dev);
1129
1130 mutex_lock(&rfkill_global_mutex);
1131 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1132 list_del_init(&rfkill->node);
1133 rfkill_global_led_trigger_event();
1134 mutex_unlock(&rfkill_global_mutex);
1135
1136 rfkill_led_trigger_unregister(rfkill);
1137}
1138EXPORT_SYMBOL(rfkill_unregister);
1139
1140void rfkill_destroy(struct rfkill *rfkill)
1141{
1142 if (rfkill)
1143 put_device(&rfkill->dev);
1144}
1145EXPORT_SYMBOL(rfkill_destroy);
1146
1147static int rfkill_fop_open(struct inode *inode, struct file *file)
1148{
1149 struct rfkill_data *data;
1150 struct rfkill *rfkill;
1151 struct rfkill_int_event *ev, *tmp;
1152
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156
1157 data->max_size = RFKILL_EVENT_SIZE_V1;
1158
1159 INIT_LIST_HEAD(&data->events);
1160 mutex_init(&data->mtx);
1161 init_waitqueue_head(&data->read_wait);
1162
1163 mutex_lock(&rfkill_global_mutex);
1164 mutex_lock(&data->mtx);
1165 /*
1166 * start getting events from elsewhere but hold mtx to get
1167 * startup events added first
1168 */
1169
1170 list_for_each_entry(rfkill, &rfkill_list, node) {
1171 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1172 if (!ev)
1173 goto free;
1174 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1175 list_add_tail(&ev->list, &data->events);
1176 }
1177 list_add(&data->list, &rfkill_fds);
1178 mutex_unlock(&data->mtx);
1179 mutex_unlock(&rfkill_global_mutex);
1180
1181 file->private_data = data;
1182
1183 return stream_open(inode, file);
1184
1185 free:
1186 mutex_unlock(&data->mtx);
1187 mutex_unlock(&rfkill_global_mutex);
1188 mutex_destroy(&data->mtx);
1189 list_for_each_entry_safe(ev, tmp, &data->events, list)
1190 kfree(ev);
1191 kfree(data);
1192 return -ENOMEM;
1193}
1194
1195static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1196{
1197 struct rfkill_data *data = file->private_data;
1198 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1199
1200 poll_wait(file, &data->read_wait, wait);
1201
1202 mutex_lock(&data->mtx);
1203 if (!list_empty(&data->events))
1204 res = EPOLLIN | EPOLLRDNORM;
1205 mutex_unlock(&data->mtx);
1206
1207 return res;
1208}
1209
1210static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1211 size_t count, loff_t *pos)
1212{
1213 struct rfkill_data *data = file->private_data;
1214 struct rfkill_int_event *ev;
1215 unsigned long sz;
1216 int ret;
1217
1218 mutex_lock(&data->mtx);
1219
1220 while (list_empty(&data->events)) {
1221 if (file->f_flags & O_NONBLOCK) {
1222 ret = -EAGAIN;
1223 goto out;
1224 }
1225 mutex_unlock(&data->mtx);
1226 /* since we re-check and it just compares pointers,
1227 * using !list_empty() without locking isn't a problem
1228 */
1229 ret = wait_event_interruptible(data->read_wait,
1230 !list_empty(&data->events));
1231 mutex_lock(&data->mtx);
1232
1233 if (ret)
1234 goto out;
1235 }
1236
1237 ev = list_first_entry(&data->events, struct rfkill_int_event,
1238 list);
1239
1240 sz = min_t(unsigned long, sizeof(ev->ev), count);
1241 sz = min_t(unsigned long, sz, data->max_size);
1242 ret = sz;
1243 if (copy_to_user(buf, &ev->ev, sz))
1244 ret = -EFAULT;
1245
1246 list_del(&ev->list);
1247 kfree(ev);
1248 out:
1249 mutex_unlock(&data->mtx);
1250 return ret;
1251}
1252
1253static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1254 size_t count, loff_t *pos)
1255{
1256 struct rfkill_data *data = file->private_data;
1257 struct rfkill *rfkill;
1258 struct rfkill_event_ext ev;
1259 int ret;
1260
1261 /* we don't need the 'hard' variable but accept it */
1262 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1263 return -EINVAL;
1264
1265 /*
1266 * Copy as much data as we can accept into our 'ev' buffer,
1267 * but tell userspace how much we've copied so it can determine
1268 * our API version even in a write() call, if it cares.
1269 */
1270 count = min(count, sizeof(ev));
1271 count = min_t(size_t, count, data->max_size);
1272 if (copy_from_user(&ev, buf, count))
1273 return -EFAULT;
1274
1275 if (ev.type >= NUM_RFKILL_TYPES)
1276 return -EINVAL;
1277
1278 mutex_lock(&rfkill_global_mutex);
1279
1280 switch (ev.op) {
1281 case RFKILL_OP_CHANGE_ALL:
1282 rfkill_update_global_state(ev.type, ev.soft);
1283 list_for_each_entry(rfkill, &rfkill_list, node)
1284 if (rfkill->type == ev.type ||
1285 ev.type == RFKILL_TYPE_ALL)
1286 rfkill_set_block(rfkill, ev.soft);
1287 ret = 0;
1288 break;
1289 case RFKILL_OP_CHANGE:
1290 list_for_each_entry(rfkill, &rfkill_list, node)
1291 if (rfkill->idx == ev.idx &&
1292 (rfkill->type == ev.type ||
1293 ev.type == RFKILL_TYPE_ALL))
1294 rfkill_set_block(rfkill, ev.soft);
1295 ret = 0;
1296 break;
1297 default:
1298 ret = -EINVAL;
1299 break;
1300 }
1301
1302 mutex_unlock(&rfkill_global_mutex);
1303
1304 return ret ?: count;
1305}
1306
1307static int rfkill_fop_release(struct inode *inode, struct file *file)
1308{
1309 struct rfkill_data *data = file->private_data;
1310 struct rfkill_int_event *ev, *tmp;
1311
1312 mutex_lock(&rfkill_global_mutex);
1313 list_del(&data->list);
1314 mutex_unlock(&rfkill_global_mutex);
1315
1316 mutex_destroy(&data->mtx);
1317 list_for_each_entry_safe(ev, tmp, &data->events, list)
1318 kfree(ev);
1319
1320#ifdef CONFIG_RFKILL_INPUT
1321 if (data->input_handler)
1322 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1323 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1324#endif
1325
1326 kfree(data);
1327
1328 return 0;
1329}
1330
1331static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1332 unsigned long arg)
1333{
1334 struct rfkill_data *data = file->private_data;
1335 int ret = -ENOSYS;
1336 u32 size;
1337
1338 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1339 return -ENOSYS;
1340
1341 mutex_lock(&data->mtx);
1342 switch (_IOC_NR(cmd)) {
1343#ifdef CONFIG_RFKILL_INPUT
1344 case RFKILL_IOC_NOINPUT:
1345 if (!data->input_handler) {
1346 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1347 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1348 data->input_handler = true;
1349 }
1350 ret = 0;
1351 break;
1352#endif
1353 case RFKILL_IOC_MAX_SIZE:
1354 if (get_user(size, (__u32 __user *)arg)) {
1355 ret = -EFAULT;
1356 break;
1357 }
1358 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1359 ret = -EINVAL;
1360 break;
1361 }
1362 data->max_size = size;
1363 ret = 0;
1364 break;
1365 default:
1366 break;
1367 }
1368 mutex_unlock(&data->mtx);
1369
1370 return ret;
1371}
1372
1373static const struct file_operations rfkill_fops = {
1374 .owner = THIS_MODULE,
1375 .open = rfkill_fop_open,
1376 .read = rfkill_fop_read,
1377 .write = rfkill_fop_write,
1378 .poll = rfkill_fop_poll,
1379 .release = rfkill_fop_release,
1380 .unlocked_ioctl = rfkill_fop_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 .llseek = no_llseek,
1383};
1384
1385#define RFKILL_NAME "rfkill"
1386
1387static struct miscdevice rfkill_miscdev = {
1388 .fops = &rfkill_fops,
1389 .name = RFKILL_NAME,
1390 .minor = RFKILL_MINOR,
1391};
1392
1393static int __init rfkill_init(void)
1394{
1395 int error;
1396
1397 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1398
1399 error = class_register(&rfkill_class);
1400 if (error)
1401 goto error_class;
1402
1403 error = misc_register(&rfkill_miscdev);
1404 if (error)
1405 goto error_misc;
1406
1407 error = rfkill_global_led_trigger_register();
1408 if (error)
1409 goto error_led_trigger;
1410
1411#ifdef CONFIG_RFKILL_INPUT
1412 error = rfkill_handler_init();
1413 if (error)
1414 goto error_input;
1415#endif
1416
1417 return 0;
1418
1419#ifdef CONFIG_RFKILL_INPUT
1420error_input:
1421 rfkill_global_led_trigger_unregister();
1422#endif
1423error_led_trigger:
1424 misc_deregister(&rfkill_miscdev);
1425error_misc:
1426 class_unregister(&rfkill_class);
1427error_class:
1428 return error;
1429}
1430subsys_initcall(rfkill_init);
1431
1432static void __exit rfkill_exit(void)
1433{
1434#ifdef CONFIG_RFKILL_INPUT
1435 rfkill_handler_exit();
1436#endif
1437 rfkill_global_led_trigger_unregister();
1438 misc_deregister(&rfkill_miscdev);
1439 class_unregister(&rfkill_class);
1440}
1441module_exit(rfkill_exit);
1442
1443MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1444MODULE_ALIAS("devname:" RFKILL_NAME);