Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2006 - 2007 Ivo van Doorn
   3 * Copyright (C) 2007 Dmitry Torokhov
   4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the
  18 * Free Software Foundation, Inc.,
  19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/init.h>
  25#include <linux/workqueue.h>
  26#include <linux/capability.h>
  27#include <linux/list.h>
  28#include <linux/mutex.h>
  29#include <linux/rfkill.h>
  30#include <linux/sched.h>
  31#include <linux/spinlock.h>
 
  32#include <linux/miscdevice.h>
  33#include <linux/wait.h>
  34#include <linux/poll.h>
  35#include <linux/fs.h>
  36#include <linux/slab.h>
  37
  38#include "rfkill.h"
  39
  40#define POLL_INTERVAL		(5 * HZ)
  41
  42#define RFKILL_BLOCK_HW		BIT(0)
  43#define RFKILL_BLOCK_SW		BIT(1)
  44#define RFKILL_BLOCK_SW_PREV	BIT(2)
  45#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  46				 RFKILL_BLOCK_SW |\
  47				 RFKILL_BLOCK_SW_PREV)
  48#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  49
  50struct rfkill {
  51	spinlock_t		lock;
  52
  53	const char		*name;
  54	enum rfkill_type	type;
  55
  56	unsigned long		state;
 
  57
  58	u32			idx;
  59
  60	bool			registered;
  61	bool			persistent;
 
 
 
  62
  63	const struct rfkill_ops	*ops;
  64	void			*data;
  65
  66#ifdef CONFIG_RFKILL_LEDS
  67	struct led_trigger	led_trigger;
  68	const char		*ledtrigname;
  69#endif
  70
  71	struct device		dev;
  72	struct list_head	node;
  73
  74	struct delayed_work	poll_work;
  75	struct work_struct	uevent_work;
  76	struct work_struct	sync_work;
 
  77};
  78#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  79
  80struct rfkill_int_event {
  81	struct list_head	list;
  82	struct rfkill_event	ev;
  83};
  84
  85struct rfkill_data {
  86	struct list_head	list;
  87	struct list_head	events;
  88	struct mutex		mtx;
  89	wait_queue_head_t	read_wait;
  90	bool			input_handler;
 
  91};
  92
  93
  94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  96MODULE_DESCRIPTION("RF switch support");
  97MODULE_LICENSE("GPL");
  98
  99
 100/*
 101 * The locking here should be made much smarter, we currently have
 102 * a bit of a stupid situation because drivers might want to register
 103 * the rfkill struct under their own lock, and take this lock during
 104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
 105 *
 106 * To fix that, we need to rework this code here to be mostly lock-free
 107 * and only use the mutex for list manipulations, not to protect the
 108 * various other global variables. Then we can avoid holding the mutex
 109 * around driver operations, and all is happy.
 110 */
 111static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 112static DEFINE_MUTEX(rfkill_global_mutex);
 113static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 114
 115static unsigned int rfkill_default_state = 1;
 116module_param_named(default_state, rfkill_default_state, uint, 0444);
 117MODULE_PARM_DESC(default_state,
 118		 "Default initial state for all radio types, 0 = radio off");
 119
 120static struct {
 121	bool cur, sav;
 122} rfkill_global_states[NUM_RFKILL_TYPES];
 123
 124static bool rfkill_epo_lock_active;
 125
 126
 127#ifdef CONFIG_RFKILL_LEDS
 128static void rfkill_led_trigger_event(struct rfkill *rfkill)
 129{
 130	struct led_trigger *trigger;
 131
 132	if (!rfkill->registered)
 133		return;
 134
 135	trigger = &rfkill->led_trigger;
 136
 137	if (rfkill->state & RFKILL_BLOCK_ANY)
 138		led_trigger_event(trigger, LED_OFF);
 139	else
 140		led_trigger_event(trigger, LED_FULL);
 141}
 142
 143static void rfkill_led_trigger_activate(struct led_classdev *led)
 144{
 145	struct rfkill *rfkill;
 146
 147	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 148
 149	rfkill_led_trigger_event(rfkill);
 
 
 
 
 
 
 
 150}
 
 
 
 
 
 
 
 
 
 151
 152static int rfkill_led_trigger_register(struct rfkill *rfkill)
 153{
 154	rfkill->led_trigger.name = rfkill->ledtrigname
 155					? : dev_name(&rfkill->dev);
 156	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 157	return led_trigger_register(&rfkill->led_trigger);
 158}
 159
 160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 161{
 162	led_trigger_unregister(&rfkill->led_trigger);
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164#else
 165static void rfkill_led_trigger_event(struct rfkill *rfkill)
 166{
 167}
 168
 169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 170{
 171	return 0;
 172}
 173
 174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 175{
 176}
 
 
 
 
 
 
 
 
 
 
 
 
 
 177#endif /* CONFIG_RFKILL_LEDS */
 178
 179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
 
 180			      enum rfkill_operation op)
 181{
 182	unsigned long flags;
 183
 184	ev->idx = rfkill->idx;
 185	ev->type = rfkill->type;
 186	ev->op = op;
 187
 188	spin_lock_irqsave(&rfkill->lock, flags);
 189	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 190	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 191					RFKILL_BLOCK_SW_PREV));
 
 192	spin_unlock_irqrestore(&rfkill->lock, flags);
 193}
 194
 195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 196{
 197	struct rfkill_data *data;
 198	struct rfkill_int_event *ev;
 199
 200	list_for_each_entry(data, &rfkill_fds, list) {
 201		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 202		if (!ev)
 203			continue;
 204		rfkill_fill_event(&ev->ev, rfkill, op);
 205		mutex_lock(&data->mtx);
 206		list_add_tail(&ev->list, &data->events);
 207		mutex_unlock(&data->mtx);
 208		wake_up_interruptible(&data->read_wait);
 209	}
 210}
 211
 212static void rfkill_event(struct rfkill *rfkill)
 213{
 214	if (!rfkill->registered)
 215		return;
 216
 217	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 218
 219	/* also send event to /dev/rfkill */
 220	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 221}
 222
 223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
 224				  bool blocked, bool *change)
 225{
 226	unsigned long flags;
 227	bool prev, any;
 228
 229	BUG_ON(!rfkill);
 230
 231	spin_lock_irqsave(&rfkill->lock, flags);
 232	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
 233	if (blocked)
 234		rfkill->state |= RFKILL_BLOCK_HW;
 235	else
 236		rfkill->state &= ~RFKILL_BLOCK_HW;
 237	*change = prev != blocked;
 238	any = rfkill->state & RFKILL_BLOCK_ANY;
 239	spin_unlock_irqrestore(&rfkill->lock, flags);
 240
 241	rfkill_led_trigger_event(rfkill);
 242
 243	return any;
 244}
 245
 246/**
 247 * rfkill_set_block - wrapper for set_block method
 248 *
 249 * @rfkill: the rfkill struct to use
 250 * @blocked: the new software state
 251 *
 252 * Calls the set_block method (when applicable) and handles notifications
 253 * etc. as well.
 254 */
 255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 256{
 257	unsigned long flags;
 
 258	int err;
 259
 260	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 261		return;
 262
 263	/*
 264	 * Some platforms (...!) generate input events which affect the
 265	 * _hard_ kill state -- whenever something tries to change the
 266	 * current software state query the hardware state too.
 267	 */
 268	if (rfkill->ops->query)
 269		rfkill->ops->query(rfkill, rfkill->data);
 270
 271	spin_lock_irqsave(&rfkill->lock, flags);
 272	if (rfkill->state & RFKILL_BLOCK_SW)
 
 
 273		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 274	else
 275		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 276
 277	if (blocked)
 278		rfkill->state |= RFKILL_BLOCK_SW;
 279	else
 280		rfkill->state &= ~RFKILL_BLOCK_SW;
 281
 282	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 283	spin_unlock_irqrestore(&rfkill->lock, flags);
 284
 285	err = rfkill->ops->set_block(rfkill->data, blocked);
 286
 287	spin_lock_irqsave(&rfkill->lock, flags);
 288	if (err) {
 289		/*
 290		 * Failed -- reset status to _prev, this may be different
 291		 * from what set set _PREV to earlier in this function
 292		 * if rfkill_set_sw_state was invoked.
 293		 */
 294		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 295			rfkill->state |= RFKILL_BLOCK_SW;
 296		else
 297			rfkill->state &= ~RFKILL_BLOCK_SW;
 298	}
 299	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 300	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 
 301	spin_unlock_irqrestore(&rfkill->lock, flags);
 302
 303	rfkill_led_trigger_event(rfkill);
 304	rfkill_event(rfkill);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307#ifdef CONFIG_RFKILL_INPUT
 308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 309
 310/**
 311 * __rfkill_switch_all - Toggle state of all switches of given type
 312 * @type: type of interfaces to be affected
 313 * @state: the new state
 314 *
 315 * This function sets the state of all switches of given type,
 316 * unless a specific switch is claimed by userspace (in which case,
 317 * that switch is left alone) or suspended.
 318 *
 319 * Caller must have acquired rfkill_global_mutex.
 320 */
 321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 322{
 323	struct rfkill *rfkill;
 324
 325	rfkill_global_states[type].cur = blocked;
 326	list_for_each_entry(rfkill, &rfkill_list, node) {
 327		if (rfkill->type != type)
 328			continue;
 329
 330		rfkill_set_block(rfkill, blocked);
 331	}
 332}
 333
 334/**
 335 * rfkill_switch_all - Toggle state of all switches of given type
 336 * @type: type of interfaces to be affected
 337 * @state: the new state
 338 *
 339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 340 * Please refer to __rfkill_switch_all() for details.
 341 *
 342 * Does nothing if the EPO lock is active.
 343 */
 344void rfkill_switch_all(enum rfkill_type type, bool blocked)
 345{
 346	if (atomic_read(&rfkill_input_disabled))
 347		return;
 348
 349	mutex_lock(&rfkill_global_mutex);
 350
 351	if (!rfkill_epo_lock_active)
 352		__rfkill_switch_all(type, blocked);
 353
 354	mutex_unlock(&rfkill_global_mutex);
 355}
 356
 357/**
 358 * rfkill_epo - emergency power off all transmitters
 359 *
 360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 362 *
 363 * The global state before the EPO is saved and can be restored later
 364 * using rfkill_restore_states().
 365 */
 366void rfkill_epo(void)
 367{
 368	struct rfkill *rfkill;
 369	int i;
 370
 371	if (atomic_read(&rfkill_input_disabled))
 372		return;
 373
 374	mutex_lock(&rfkill_global_mutex);
 375
 376	rfkill_epo_lock_active = true;
 377	list_for_each_entry(rfkill, &rfkill_list, node)
 378		rfkill_set_block(rfkill, true);
 379
 380	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 381		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 382		rfkill_global_states[i].cur = true;
 383	}
 384
 385	mutex_unlock(&rfkill_global_mutex);
 386}
 387
 388/**
 389 * rfkill_restore_states - restore global states
 390 *
 391 * Restore (and sync switches to) the global state from the
 392 * states in rfkill_default_states.  This can undo the effects of
 393 * a call to rfkill_epo().
 394 */
 395void rfkill_restore_states(void)
 396{
 397	int i;
 398
 399	if (atomic_read(&rfkill_input_disabled))
 400		return;
 401
 402	mutex_lock(&rfkill_global_mutex);
 403
 404	rfkill_epo_lock_active = false;
 405	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 406		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 407	mutex_unlock(&rfkill_global_mutex);
 408}
 409
 410/**
 411 * rfkill_remove_epo_lock - unlock state changes
 412 *
 413 * Used by rfkill-input manually unlock state changes, when
 414 * the EPO switch is deactivated.
 415 */
 416void rfkill_remove_epo_lock(void)
 417{
 418	if (atomic_read(&rfkill_input_disabled))
 419		return;
 420
 421	mutex_lock(&rfkill_global_mutex);
 422	rfkill_epo_lock_active = false;
 423	mutex_unlock(&rfkill_global_mutex);
 424}
 425
 426/**
 427 * rfkill_is_epo_lock_active - returns true EPO is active
 428 *
 429 * Returns 0 (false) if there is NOT an active EPO contidion,
 430 * and 1 (true) if there is an active EPO contition, which
 431 * locks all radios in one of the BLOCKED states.
 432 *
 433 * Can be called in atomic context.
 434 */
 435bool rfkill_is_epo_lock_active(void)
 436{
 437	return rfkill_epo_lock_active;
 438}
 439
 440/**
 441 * rfkill_get_global_sw_state - returns global state for a type
 442 * @type: the type to get the global state of
 443 *
 444 * Returns the current global state for a given wireless
 445 * device type.
 446 */
 447bool rfkill_get_global_sw_state(const enum rfkill_type type)
 448{
 449	return rfkill_global_states[type].cur;
 450}
 451#endif
 452
 453
 454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
 
 455{
 456	bool ret, change;
 
 457
 458	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
 459
 460	if (!rfkill->registered)
 461		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463	if (change)
 464		schedule_work(&rfkill->uevent_work);
 465
 466	return ret;
 467}
 468EXPORT_SYMBOL(rfkill_set_hw_state);
 469
 470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 471{
 472	u32 bit = RFKILL_BLOCK_SW;
 473
 474	/* if in a ops->set_block right now, use other bit */
 475	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 476		bit = RFKILL_BLOCK_SW_PREV;
 477
 478	if (blocked)
 479		rfkill->state |= bit;
 480	else
 481		rfkill->state &= ~bit;
 482}
 483
 484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 485{
 486	unsigned long flags;
 487	bool prev, hwblock;
 488
 489	BUG_ON(!rfkill);
 490
 491	spin_lock_irqsave(&rfkill->lock, flags);
 492	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 493	__rfkill_set_sw_state(rfkill, blocked);
 494	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 495	blocked = blocked || hwblock;
 496	spin_unlock_irqrestore(&rfkill->lock, flags);
 497
 498	if (!rfkill->registered)
 499		return blocked;
 500
 501	if (prev != blocked && !hwblock)
 502		schedule_work(&rfkill->uevent_work);
 503
 504	rfkill_led_trigger_event(rfkill);
 
 505
 506	return blocked;
 507}
 508EXPORT_SYMBOL(rfkill_set_sw_state);
 509
 510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 511{
 512	unsigned long flags;
 513
 514	BUG_ON(!rfkill);
 515	BUG_ON(rfkill->registered);
 516
 517	spin_lock_irqsave(&rfkill->lock, flags);
 518	__rfkill_set_sw_state(rfkill, blocked);
 519	rfkill->persistent = true;
 520	spin_unlock_irqrestore(&rfkill->lock, flags);
 521}
 522EXPORT_SYMBOL(rfkill_init_sw_state);
 523
 524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 525{
 526	unsigned long flags;
 527	bool swprev, hwprev;
 528
 529	BUG_ON(!rfkill);
 530
 531	spin_lock_irqsave(&rfkill->lock, flags);
 532
 533	/*
 534	 * No need to care about prev/setblock ... this is for uevent only
 535	 * and that will get triggered by rfkill_set_block anyway.
 536	 */
 537	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 538	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 539	__rfkill_set_sw_state(rfkill, sw);
 540	if (hw)
 541		rfkill->state |= RFKILL_BLOCK_HW;
 542	else
 543		rfkill->state &= ~RFKILL_BLOCK_HW;
 544
 545	spin_unlock_irqrestore(&rfkill->lock, flags);
 546
 547	if (!rfkill->registered) {
 548		rfkill->persistent = true;
 549	} else {
 550		if (swprev != sw || hwprev != hw)
 551			schedule_work(&rfkill->uevent_work);
 552
 553		rfkill_led_trigger_event(rfkill);
 
 554	}
 555}
 556EXPORT_SYMBOL(rfkill_set_states);
 557
 558static ssize_t rfkill_name_show(struct device *dev,
 559				struct device_attribute *attr,
 560				char *buf)
 
 
 
 
 
 
 
 
 
 
 561{
 562	struct rfkill *rfkill = to_rfkill(dev);
 563
 564	return sprintf(buf, "%s\n", rfkill->name);
 
 
 
 
 
 
 
 
 565}
 
 566
 567static const char *rfkill_get_type_str(enum rfkill_type type)
 
 568{
 569	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
 570
 571	switch (type) {
 572	case RFKILL_TYPE_WLAN:
 573		return "wlan";
 574	case RFKILL_TYPE_BLUETOOTH:
 575		return "bluetooth";
 576	case RFKILL_TYPE_UWB:
 577		return "ultrawideband";
 578	case RFKILL_TYPE_WIMAX:
 579		return "wimax";
 580	case RFKILL_TYPE_WWAN:
 581		return "wwan";
 582	case RFKILL_TYPE_GPS:
 583		return "gps";
 584	case RFKILL_TYPE_FM:
 585		return "fm";
 586	default:
 587		BUG();
 588	}
 589}
 
 590
 591static ssize_t rfkill_type_show(struct device *dev,
 592				struct device_attribute *attr,
 593				char *buf)
 594{
 595	struct rfkill *rfkill = to_rfkill(dev);
 596
 597	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
 598}
 
 599
 600static ssize_t rfkill_idx_show(struct device *dev,
 601			       struct device_attribute *attr,
 602			       char *buf)
 603{
 604	struct rfkill *rfkill = to_rfkill(dev);
 605
 606	return sprintf(buf, "%d\n", rfkill->idx);
 607}
 
 608
 609static ssize_t rfkill_persistent_show(struct device *dev,
 610			       struct device_attribute *attr,
 611			       char *buf)
 612{
 613	struct rfkill *rfkill = to_rfkill(dev);
 614
 615	return sprintf(buf, "%d\n", rfkill->persistent);
 616}
 
 617
 618static ssize_t rfkill_hard_show(struct device *dev,
 619				 struct device_attribute *attr,
 620				 char *buf)
 621{
 622	struct rfkill *rfkill = to_rfkill(dev);
 623
 624	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
 625}
 
 626
 627static ssize_t rfkill_soft_show(struct device *dev,
 628				 struct device_attribute *attr,
 629				 char *buf)
 630{
 631	struct rfkill *rfkill = to_rfkill(dev);
 632
 633	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
 
 
 
 
 634}
 635
 636static ssize_t rfkill_soft_store(struct device *dev,
 637				  struct device_attribute *attr,
 638				  const char *buf, size_t count)
 639{
 640	struct rfkill *rfkill = to_rfkill(dev);
 641	unsigned long state;
 642	int err;
 643
 644	if (!capable(CAP_NET_ADMIN))
 645		return -EPERM;
 646
 647	err = strict_strtoul(buf, 0, &state);
 648	if (err)
 649		return err;
 650
 651	if (state > 1 )
 652		return -EINVAL;
 653
 654	mutex_lock(&rfkill_global_mutex);
 
 655	rfkill_set_block(rfkill, state);
 656	mutex_unlock(&rfkill_global_mutex);
 657
 658	return err ?: count;
 
 
 
 
 
 
 
 
 
 
 659}
 
 660
 661static u8 user_state_from_blocked(unsigned long state)
 662{
 663	if (state & RFKILL_BLOCK_HW)
 664		return RFKILL_USER_STATE_HARD_BLOCKED;
 665	if (state & RFKILL_BLOCK_SW)
 666		return RFKILL_USER_STATE_SOFT_BLOCKED;
 667
 668	return RFKILL_USER_STATE_UNBLOCKED;
 669}
 670
 671static ssize_t rfkill_state_show(struct device *dev,
 672				 struct device_attribute *attr,
 673				 char *buf)
 674{
 675	struct rfkill *rfkill = to_rfkill(dev);
 676
 677	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
 
 
 
 
 678}
 679
 680static ssize_t rfkill_state_store(struct device *dev,
 681				  struct device_attribute *attr,
 682				  const char *buf, size_t count)
 683{
 684	struct rfkill *rfkill = to_rfkill(dev);
 685	unsigned long state;
 686	int err;
 687
 688	if (!capable(CAP_NET_ADMIN))
 689		return -EPERM;
 690
 691	err = strict_strtoul(buf, 0, &state);
 692	if (err)
 693		return err;
 694
 695	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 696	    state != RFKILL_USER_STATE_UNBLOCKED)
 697		return -EINVAL;
 698
 699	mutex_lock(&rfkill_global_mutex);
 
 700	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 701	mutex_unlock(&rfkill_global_mutex);
 702
 703	return err ?: count;
 704}
 705
 706static ssize_t rfkill_claim_show(struct device *dev,
 707				 struct device_attribute *attr,
 708				 char *buf)
 709{
 710	return sprintf(buf, "%d\n", 0);
 711}
 712
 713static ssize_t rfkill_claim_store(struct device *dev,
 714				  struct device_attribute *attr,
 715				  const char *buf, size_t count)
 716{
 717	return -EOPNOTSUPP;
 718}
 
 719
 720static struct device_attribute rfkill_dev_attrs[] = {
 721	__ATTR(name, S_IRUGO, rfkill_name_show, NULL),
 722	__ATTR(type, S_IRUGO, rfkill_type_show, NULL),
 723	__ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
 724	__ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
 725	__ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
 726	__ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
 727	__ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
 728	__ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
 729	__ATTR_NULL
 730};
 
 731
 732static void rfkill_release(struct device *dev)
 733{
 734	struct rfkill *rfkill = to_rfkill(dev);
 735
 736	kfree(rfkill);
 737}
 738
 739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 740{
 741	struct rfkill *rfkill = to_rfkill(dev);
 742	unsigned long flags;
 
 743	u32 state;
 744	int error;
 745
 746	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 747	if (error)
 748		return error;
 749	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 750			       rfkill_get_type_str(rfkill->type));
 751	if (error)
 752		return error;
 753	spin_lock_irqsave(&rfkill->lock, flags);
 754	state = rfkill->state;
 
 755	spin_unlock_irqrestore(&rfkill->lock, flags);
 756	error = add_uevent_var(env, "RFKILL_STATE=%d",
 757			       user_state_from_blocked(state));
 758	return error;
 
 
 759}
 760
 761void rfkill_pause_polling(struct rfkill *rfkill)
 762{
 763	BUG_ON(!rfkill);
 764
 765	if (!rfkill->ops->poll)
 766		return;
 767
 
 768	cancel_delayed_work_sync(&rfkill->poll_work);
 769}
 770EXPORT_SYMBOL(rfkill_pause_polling);
 771
 772void rfkill_resume_polling(struct rfkill *rfkill)
 773{
 774	BUG_ON(!rfkill);
 775
 776	if (!rfkill->ops->poll)
 777		return;
 778
 779	schedule_work(&rfkill->poll_work.work);
 
 
 
 
 
 
 780}
 781EXPORT_SYMBOL(rfkill_resume_polling);
 782
 783static int rfkill_suspend(struct device *dev, pm_message_t state)
 
 784{
 785	struct rfkill *rfkill = to_rfkill(dev);
 786
 787	rfkill_pause_polling(rfkill);
 
 788
 789	return 0;
 790}
 791
 792static int rfkill_resume(struct device *dev)
 793{
 794	struct rfkill *rfkill = to_rfkill(dev);
 795	bool cur;
 796
 
 
 
 
 
 797	if (!rfkill->persistent) {
 798		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 799		rfkill_set_block(rfkill, cur);
 800	}
 801
 802	rfkill_resume_polling(rfkill);
 
 
 803
 804	return 0;
 805}
 806
 
 
 
 
 
 
 807static struct class rfkill_class = {
 808	.name		= "rfkill",
 809	.dev_release	= rfkill_release,
 810	.dev_attrs	= rfkill_dev_attrs,
 811	.dev_uevent	= rfkill_dev_uevent,
 812	.suspend	= rfkill_suspend,
 813	.resume		= rfkill_resume,
 814};
 815
 816bool rfkill_blocked(struct rfkill *rfkill)
 817{
 818	unsigned long flags;
 819	u32 state;
 820
 821	spin_lock_irqsave(&rfkill->lock, flags);
 822	state = rfkill->state;
 823	spin_unlock_irqrestore(&rfkill->lock, flags);
 824
 825	return !!(state & RFKILL_BLOCK_ANY);
 826}
 827EXPORT_SYMBOL(rfkill_blocked);
 828
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830struct rfkill * __must_check rfkill_alloc(const char *name,
 831					  struct device *parent,
 832					  const enum rfkill_type type,
 833					  const struct rfkill_ops *ops,
 834					  void *ops_data)
 835{
 836	struct rfkill *rfkill;
 837	struct device *dev;
 838
 839	if (WARN_ON(!ops))
 840		return NULL;
 841
 842	if (WARN_ON(!ops->set_block))
 843		return NULL;
 844
 845	if (WARN_ON(!name))
 846		return NULL;
 847
 848	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
 849		return NULL;
 850
 851	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
 852	if (!rfkill)
 853		return NULL;
 854
 855	spin_lock_init(&rfkill->lock);
 856	INIT_LIST_HEAD(&rfkill->node);
 857	rfkill->type = type;
 858	rfkill->name = name;
 859	rfkill->ops = ops;
 860	rfkill->data = ops_data;
 861
 862	dev = &rfkill->dev;
 863	dev->class = &rfkill_class;
 864	dev->parent = parent;
 865	device_initialize(dev);
 866
 867	return rfkill;
 868}
 869EXPORT_SYMBOL(rfkill_alloc);
 870
 871static void rfkill_poll(struct work_struct *work)
 872{
 873	struct rfkill *rfkill;
 874
 875	rfkill = container_of(work, struct rfkill, poll_work.work);
 876
 877	/*
 878	 * Poll hardware state -- driver will use one of the
 879	 * rfkill_set{,_hw,_sw}_state functions and use its
 880	 * return value to update the current status.
 881	 */
 882	rfkill->ops->poll(rfkill, rfkill->data);
 883
 884	schedule_delayed_work(&rfkill->poll_work,
 
 885		round_jiffies_relative(POLL_INTERVAL));
 886}
 887
 888static void rfkill_uevent_work(struct work_struct *work)
 889{
 890	struct rfkill *rfkill;
 891
 892	rfkill = container_of(work, struct rfkill, uevent_work);
 893
 894	mutex_lock(&rfkill_global_mutex);
 895	rfkill_event(rfkill);
 896	mutex_unlock(&rfkill_global_mutex);
 897}
 898
 899static void rfkill_sync_work(struct work_struct *work)
 900{
 901	struct rfkill *rfkill;
 902	bool cur;
 903
 904	rfkill = container_of(work, struct rfkill, sync_work);
 905
 906	mutex_lock(&rfkill_global_mutex);
 907	cur = rfkill_global_states[rfkill->type].cur;
 908	rfkill_set_block(rfkill, cur);
 909	mutex_unlock(&rfkill_global_mutex);
 910}
 911
 912int __must_check rfkill_register(struct rfkill *rfkill)
 913{
 914	static unsigned long rfkill_no;
 915	struct device *dev = &rfkill->dev;
 916	int error;
 917
 918	BUG_ON(!rfkill);
 
 
 
 919
 920	mutex_lock(&rfkill_global_mutex);
 921
 922	if (rfkill->registered) {
 923		error = -EALREADY;
 924		goto unlock;
 925	}
 926
 927	rfkill->idx = rfkill_no;
 928	dev_set_name(dev, "rfkill%lu", rfkill_no);
 929	rfkill_no++;
 930
 931	list_add_tail(&rfkill->node, &rfkill_list);
 932
 933	error = device_add(dev);
 934	if (error)
 935		goto remove;
 936
 937	error = rfkill_led_trigger_register(rfkill);
 938	if (error)
 939		goto devdel;
 940
 941	rfkill->registered = true;
 942
 943	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
 944	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
 945	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
 946
 947	if (rfkill->ops->poll)
 948		schedule_delayed_work(&rfkill->poll_work,
 
 949			round_jiffies_relative(POLL_INTERVAL));
 950
 951	if (!rfkill->persistent || rfkill_epo_lock_active) {
 
 952		schedule_work(&rfkill->sync_work);
 953	} else {
 954#ifdef CONFIG_RFKILL_INPUT
 955		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
 956
 957		if (!atomic_read(&rfkill_input_disabled))
 958			__rfkill_switch_all(rfkill->type, soft_blocked);
 959#endif
 960	}
 961
 
 962	rfkill_send_events(rfkill, RFKILL_OP_ADD);
 963
 964	mutex_unlock(&rfkill_global_mutex);
 965	return 0;
 966
 967 devdel:
 968	device_del(&rfkill->dev);
 969 remove:
 970	list_del_init(&rfkill->node);
 971 unlock:
 972	mutex_unlock(&rfkill_global_mutex);
 973	return error;
 974}
 975EXPORT_SYMBOL(rfkill_register);
 976
 977void rfkill_unregister(struct rfkill *rfkill)
 978{
 979	BUG_ON(!rfkill);
 980
 981	if (rfkill->ops->poll)
 982		cancel_delayed_work_sync(&rfkill->poll_work);
 983
 984	cancel_work_sync(&rfkill->uevent_work);
 985	cancel_work_sync(&rfkill->sync_work);
 986
 987	rfkill->registered = false;
 988
 989	device_del(&rfkill->dev);
 990
 991	mutex_lock(&rfkill_global_mutex);
 992	rfkill_send_events(rfkill, RFKILL_OP_DEL);
 993	list_del_init(&rfkill->node);
 
 994	mutex_unlock(&rfkill_global_mutex);
 995
 996	rfkill_led_trigger_unregister(rfkill);
 997}
 998EXPORT_SYMBOL(rfkill_unregister);
 999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002	if (rfkill)
1003		put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009	struct rfkill_data *data;
1010	struct rfkill *rfkill;
1011	struct rfkill_int_event *ev, *tmp;
1012
1013	data = kzalloc(sizeof(*data), GFP_KERNEL);
1014	if (!data)
1015		return -ENOMEM;
1016
 
 
1017	INIT_LIST_HEAD(&data->events);
1018	mutex_init(&data->mtx);
1019	init_waitqueue_head(&data->read_wait);
1020
1021	mutex_lock(&rfkill_global_mutex);
1022	mutex_lock(&data->mtx);
1023	/*
1024	 * start getting events from elsewhere but hold mtx to get
1025	 * startup events added first
1026	 */
1027
1028	list_for_each_entry(rfkill, &rfkill_list, node) {
1029		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030		if (!ev)
1031			goto free;
 
1032		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
 
1033		list_add_tail(&ev->list, &data->events);
 
1034	}
1035	list_add(&data->list, &rfkill_fds);
1036	mutex_unlock(&data->mtx);
1037	mutex_unlock(&rfkill_global_mutex);
1038
1039	file->private_data = data;
1040
1041	return nonseekable_open(inode, file);
1042
1043 free:
1044	mutex_unlock(&data->mtx);
1045	mutex_unlock(&rfkill_global_mutex);
1046	mutex_destroy(&data->mtx);
1047	list_for_each_entry_safe(ev, tmp, &data->events, list)
1048		kfree(ev);
1049	kfree(data);
1050	return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055	struct rfkill_data *data = file->private_data;
1056	unsigned int res = POLLOUT | POLLWRNORM;
1057
1058	poll_wait(file, &data->read_wait, wait);
1059
1060	mutex_lock(&data->mtx);
1061	if (!list_empty(&data->events))
1062		res = POLLIN | POLLRDNORM;
1063	mutex_unlock(&data->mtx);
1064
1065	return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070	bool r;
1071
1072	mutex_lock(&data->mtx);
1073	r = !list_empty(&data->events);
1074	mutex_unlock(&data->mtx);
1075
1076	return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080			       size_t count, loff_t *pos)
1081{
1082	struct rfkill_data *data = file->private_data;
1083	struct rfkill_int_event *ev;
1084	unsigned long sz;
1085	int ret;
1086
1087	mutex_lock(&data->mtx);
1088
1089	while (list_empty(&data->events)) {
1090		if (file->f_flags & O_NONBLOCK) {
1091			ret = -EAGAIN;
1092			goto out;
1093		}
1094		mutex_unlock(&data->mtx);
 
 
 
1095		ret = wait_event_interruptible(data->read_wait,
1096					       rfkill_readable(data));
1097		mutex_lock(&data->mtx);
1098
1099		if (ret)
1100			goto out;
1101	}
1102
1103	ev = list_first_entry(&data->events, struct rfkill_int_event,
1104				list);
1105
1106	sz = min_t(unsigned long, sizeof(ev->ev), count);
 
1107	ret = sz;
1108	if (copy_to_user(buf, &ev->ev, sz))
1109		ret = -EFAULT;
1110
1111	list_del(&ev->list);
1112	kfree(ev);
1113 out:
1114	mutex_unlock(&data->mtx);
1115	return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119				size_t count, loff_t *pos)
1120{
 
1121	struct rfkill *rfkill;
1122	struct rfkill_event ev;
 
1123
1124	/* we don't need the 'hard' variable but accept it */
1125	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126		return -EINVAL;
1127
1128	/*
1129	 * Copy as much data as we can accept into our 'ev' buffer,
1130	 * but tell userspace how much we've copied so it can determine
1131	 * our API version even in a write() call, if it cares.
1132	 */
1133	count = min(count, sizeof(ev));
 
1134	if (copy_from_user(&ev, buf, count))
1135		return -EFAULT;
1136
1137	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138		return -EINVAL;
1139
1140	if (ev.type >= NUM_RFKILL_TYPES)
1141		return -EINVAL;
1142
1143	mutex_lock(&rfkill_global_mutex);
1144
1145	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146		if (ev.type == RFKILL_TYPE_ALL) {
1147			enum rfkill_type i;
1148			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149				rfkill_global_states[i].cur = ev.soft;
1150		} else {
1151			rfkill_global_states[ev.type].cur = ev.soft;
1152		}
 
 
 
 
 
 
 
 
 
 
 
 
1153	}
1154
1155	list_for_each_entry(rfkill, &rfkill_list, node) {
1156		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157			continue;
1158
1159		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160			continue;
1161
1162		rfkill_set_block(rfkill, ev.soft);
1163	}
1164	mutex_unlock(&rfkill_global_mutex);
1165
1166	return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171	struct rfkill_data *data = file->private_data;
1172	struct rfkill_int_event *ev, *tmp;
1173
1174	mutex_lock(&rfkill_global_mutex);
1175	list_del(&data->list);
1176	mutex_unlock(&rfkill_global_mutex);
1177
1178	mutex_destroy(&data->mtx);
1179	list_for_each_entry_safe(ev, tmp, &data->events, list)
1180		kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183	if (data->input_handler)
1184		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188	kfree(data);
1189
1190	return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195			     unsigned long arg)
1196{
1197	struct rfkill_data *data = file->private_data;
 
 
1198
1199	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200		return -ENOSYS;
1201
1202	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203		return -ENOSYS;
1204
1205	mutex_lock(&data->mtx);
1206
1207	if (!data->input_handler) {
1208		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210		data->input_handler = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211	}
1212
1213	mutex_unlock(&data->mtx);
1214
1215	return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220	.owner		= THIS_MODULE,
1221	.open		= rfkill_fop_open,
1222	.read		= rfkill_fop_read,
1223	.write		= rfkill_fop_write,
1224	.poll		= rfkill_fop_poll,
1225	.release	= rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227	.unlocked_ioctl	= rfkill_fop_ioctl,
1228	.compat_ioctl	= rfkill_fop_ioctl,
1229#endif
1230	.llseek		= no_llseek,
1231};
1232
 
 
1233static struct miscdevice rfkill_miscdev = {
1234	.name	= "rfkill",
1235	.fops	= &rfkill_fops,
1236	.minor	= MISC_DYNAMIC_MINOR,
 
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241	int error;
1242	int i;
1243
1244	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245		rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247	error = class_register(&rfkill_class);
1248	if (error)
1249		goto out;
1250
1251	error = misc_register(&rfkill_miscdev);
1252	if (error) {
1253		class_unregister(&rfkill_class);
1254		goto out;
1255	}
 
 
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258	error = rfkill_handler_init();
1259	if (error) {
1260		misc_deregister(&rfkill_miscdev);
1261		class_unregister(&rfkill_class);
1262		goto out;
1263	}
1264#endif
1265
1266 out:
 
 
 
 
 
 
 
 
 
 
1267	return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274	rfkill_handler_exit();
1275#endif
 
1276	misc_deregister(&rfkill_miscdev);
1277	class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2006 - 2007 Ivo van Doorn
   4 * Copyright (C) 2007 Dmitry Torokhov
   5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/workqueue.h>
  12#include <linux/capability.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/rfkill.h>
  16#include <linux/sched.h>
  17#include <linux/spinlock.h>
  18#include <linux/device.h>
  19#include <linux/miscdevice.h>
  20#include <linux/wait.h>
  21#include <linux/poll.h>
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24
  25#include "rfkill.h"
  26
  27#define POLL_INTERVAL		(5 * HZ)
  28
  29#define RFKILL_BLOCK_HW		BIT(0)
  30#define RFKILL_BLOCK_SW		BIT(1)
  31#define RFKILL_BLOCK_SW_PREV	BIT(2)
  32#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
  33				 RFKILL_BLOCK_SW |\
  34				 RFKILL_BLOCK_SW_PREV)
  35#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
  36
  37struct rfkill {
  38	spinlock_t		lock;
  39
 
  40	enum rfkill_type	type;
  41
  42	unsigned long		state;
  43	unsigned long		hard_block_reasons;
  44
  45	u32			idx;
  46
  47	bool			registered;
  48	bool			persistent;
  49	bool			polling_paused;
  50	bool			suspended;
  51	bool			need_sync;
  52
  53	const struct rfkill_ops	*ops;
  54	void			*data;
  55
  56#ifdef CONFIG_RFKILL_LEDS
  57	struct led_trigger	led_trigger;
  58	const char		*ledtrigname;
  59#endif
  60
  61	struct device		dev;
  62	struct list_head	node;
  63
  64	struct delayed_work	poll_work;
  65	struct work_struct	uevent_work;
  66	struct work_struct	sync_work;
  67	char			name[];
  68};
  69#define to_rfkill(d)	container_of(d, struct rfkill, dev)
  70
  71struct rfkill_int_event {
  72	struct list_head	list;
  73	struct rfkill_event_ext	ev;
  74};
  75
  76struct rfkill_data {
  77	struct list_head	list;
  78	struct list_head	events;
  79	struct mutex		mtx;
  80	wait_queue_head_t	read_wait;
  81	bool			input_handler;
  82	u8			max_size;
  83};
  84
  85
  86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
  87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  88MODULE_DESCRIPTION("RF switch support");
  89MODULE_LICENSE("GPL");
  90
  91
  92/*
  93 * The locking here should be made much smarter, we currently have
  94 * a bit of a stupid situation because drivers might want to register
  95 * the rfkill struct under their own lock, and take this lock during
  96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
  97 *
  98 * To fix that, we need to rework this code here to be mostly lock-free
  99 * and only use the mutex for list manipulations, not to protect the
 100 * various other global variables. Then we can avoid holding the mutex
 101 * around driver operations, and all is happy.
 102 */
 103static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
 104static DEFINE_MUTEX(rfkill_global_mutex);
 105static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
 106
 107static unsigned int rfkill_default_state = 1;
 108module_param_named(default_state, rfkill_default_state, uint, 0444);
 109MODULE_PARM_DESC(default_state,
 110		 "Default initial state for all radio types, 0 = radio off");
 111
 112static struct {
 113	bool cur, sav;
 114} rfkill_global_states[NUM_RFKILL_TYPES];
 115
 116static bool rfkill_epo_lock_active;
 117
 118
 119#ifdef CONFIG_RFKILL_LEDS
 120static void rfkill_led_trigger_event(struct rfkill *rfkill)
 121{
 122	struct led_trigger *trigger;
 123
 124	if (!rfkill->registered)
 125		return;
 126
 127	trigger = &rfkill->led_trigger;
 128
 129	if (rfkill->state & RFKILL_BLOCK_ANY)
 130		led_trigger_event(trigger, LED_OFF);
 131	else
 132		led_trigger_event(trigger, LED_FULL);
 133}
 134
 135static int rfkill_led_trigger_activate(struct led_classdev *led)
 136{
 137	struct rfkill *rfkill;
 138
 139	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
 140
 141	rfkill_led_trigger_event(rfkill);
 142
 143	return 0;
 144}
 145
 146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
 147{
 148	return rfkill->led_trigger.name;
 149}
 150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
 151
 152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
 153{
 154	BUG_ON(!rfkill);
 155
 156	rfkill->ledtrigname = name;
 157}
 158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
 159
 160static int rfkill_led_trigger_register(struct rfkill *rfkill)
 161{
 162	rfkill->led_trigger.name = rfkill->ledtrigname
 163					? : dev_name(&rfkill->dev);
 164	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
 165	return led_trigger_register(&rfkill->led_trigger);
 166}
 167
 168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 169{
 170	led_trigger_unregister(&rfkill->led_trigger);
 171}
 172
 173static struct led_trigger rfkill_any_led_trigger;
 174static struct led_trigger rfkill_none_led_trigger;
 175static struct work_struct rfkill_global_led_trigger_work;
 176
 177static void rfkill_global_led_trigger_worker(struct work_struct *work)
 178{
 179	enum led_brightness brightness = LED_OFF;
 180	struct rfkill *rfkill;
 181
 182	mutex_lock(&rfkill_global_mutex);
 183	list_for_each_entry(rfkill, &rfkill_list, node) {
 184		if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
 185			brightness = LED_FULL;
 186			break;
 187		}
 188	}
 189	mutex_unlock(&rfkill_global_mutex);
 190
 191	led_trigger_event(&rfkill_any_led_trigger, brightness);
 192	led_trigger_event(&rfkill_none_led_trigger,
 193			  brightness == LED_OFF ? LED_FULL : LED_OFF);
 194}
 195
 196static void rfkill_global_led_trigger_event(void)
 197{
 198	schedule_work(&rfkill_global_led_trigger_work);
 199}
 200
 201static int rfkill_global_led_trigger_register(void)
 202{
 203	int ret;
 204
 205	INIT_WORK(&rfkill_global_led_trigger_work,
 206			rfkill_global_led_trigger_worker);
 207
 208	rfkill_any_led_trigger.name = "rfkill-any";
 209	ret = led_trigger_register(&rfkill_any_led_trigger);
 210	if (ret)
 211		return ret;
 212
 213	rfkill_none_led_trigger.name = "rfkill-none";
 214	ret = led_trigger_register(&rfkill_none_led_trigger);
 215	if (ret)
 216		led_trigger_unregister(&rfkill_any_led_trigger);
 217	else
 218		/* Delay activation until all global triggers are registered */
 219		rfkill_global_led_trigger_event();
 220
 221	return ret;
 222}
 223
 224static void rfkill_global_led_trigger_unregister(void)
 225{
 226	led_trigger_unregister(&rfkill_none_led_trigger);
 227	led_trigger_unregister(&rfkill_any_led_trigger);
 228	cancel_work_sync(&rfkill_global_led_trigger_work);
 229}
 230#else
 231static void rfkill_led_trigger_event(struct rfkill *rfkill)
 232{
 233}
 234
 235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
 236{
 237	return 0;
 238}
 239
 240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
 241{
 242}
 243
 244static void rfkill_global_led_trigger_event(void)
 245{
 246}
 247
 248static int rfkill_global_led_trigger_register(void)
 249{
 250	return 0;
 251}
 252
 253static void rfkill_global_led_trigger_unregister(void)
 254{
 255}
 256#endif /* CONFIG_RFKILL_LEDS */
 257
 258static void rfkill_fill_event(struct rfkill_event_ext *ev,
 259			      struct rfkill *rfkill,
 260			      enum rfkill_operation op)
 261{
 262	unsigned long flags;
 263
 264	ev->idx = rfkill->idx;
 265	ev->type = rfkill->type;
 266	ev->op = op;
 267
 268	spin_lock_irqsave(&rfkill->lock, flags);
 269	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
 270	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
 271					RFKILL_BLOCK_SW_PREV));
 272	ev->hard_block_reasons = rfkill->hard_block_reasons;
 273	spin_unlock_irqrestore(&rfkill->lock, flags);
 274}
 275
 276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
 277{
 278	struct rfkill_data *data;
 279	struct rfkill_int_event *ev;
 280
 281	list_for_each_entry(data, &rfkill_fds, list) {
 282		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 283		if (!ev)
 284			continue;
 285		rfkill_fill_event(&ev->ev, rfkill, op);
 286		mutex_lock(&data->mtx);
 287		list_add_tail(&ev->list, &data->events);
 288		mutex_unlock(&data->mtx);
 289		wake_up_interruptible(&data->read_wait);
 290	}
 291}
 292
 293static void rfkill_event(struct rfkill *rfkill)
 294{
 295	if (!rfkill->registered)
 296		return;
 297
 298	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
 299
 300	/* also send event to /dev/rfkill */
 301	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
 302}
 303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304/**
 305 * rfkill_set_block - wrapper for set_block method
 306 *
 307 * @rfkill: the rfkill struct to use
 308 * @blocked: the new software state
 309 *
 310 * Calls the set_block method (when applicable) and handles notifications
 311 * etc. as well.
 312 */
 313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
 314{
 315	unsigned long flags;
 316	bool prev, curr;
 317	int err;
 318
 319	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
 320		return;
 321
 322	/*
 323	 * Some platforms (...!) generate input events which affect the
 324	 * _hard_ kill state -- whenever something tries to change the
 325	 * current software state query the hardware state too.
 326	 */
 327	if (rfkill->ops->query)
 328		rfkill->ops->query(rfkill, rfkill->data);
 329
 330	spin_lock_irqsave(&rfkill->lock, flags);
 331	prev = rfkill->state & RFKILL_BLOCK_SW;
 332
 333	if (prev)
 334		rfkill->state |= RFKILL_BLOCK_SW_PREV;
 335	else
 336		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 337
 338	if (blocked)
 339		rfkill->state |= RFKILL_BLOCK_SW;
 340	else
 341		rfkill->state &= ~RFKILL_BLOCK_SW;
 342
 343	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
 344	spin_unlock_irqrestore(&rfkill->lock, flags);
 345
 346	err = rfkill->ops->set_block(rfkill->data, blocked);
 347
 348	spin_lock_irqsave(&rfkill->lock, flags);
 349	if (err) {
 350		/*
 351		 * Failed -- reset status to _PREV, which may be different
 352		 * from what we have set _PREV to earlier in this function
 353		 * if rfkill_set_sw_state was invoked.
 354		 */
 355		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
 356			rfkill->state |= RFKILL_BLOCK_SW;
 357		else
 358			rfkill->state &= ~RFKILL_BLOCK_SW;
 359	}
 360	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
 361	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
 362	curr = rfkill->state & RFKILL_BLOCK_SW;
 363	spin_unlock_irqrestore(&rfkill->lock, flags);
 364
 365	rfkill_led_trigger_event(rfkill);
 366	rfkill_global_led_trigger_event();
 367
 368	if (prev != curr)
 369		rfkill_event(rfkill);
 370}
 371
 372static void rfkill_sync(struct rfkill *rfkill)
 373{
 374	lockdep_assert_held(&rfkill_global_mutex);
 375
 376	if (!rfkill->need_sync)
 377		return;
 378
 379	rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
 380	rfkill->need_sync = false;
 381}
 382
 383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
 384{
 385	int i;
 386
 387	if (type != RFKILL_TYPE_ALL) {
 388		rfkill_global_states[type].cur = blocked;
 389		return;
 390	}
 391
 392	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 393		rfkill_global_states[i].cur = blocked;
 394}
 395
 396#ifdef CONFIG_RFKILL_INPUT
 397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
 398
 399/**
 400 * __rfkill_switch_all - Toggle state of all switches of given type
 401 * @type: type of interfaces to be affected
 402 * @blocked: the new state
 403 *
 404 * This function sets the state of all switches of given type,
 405 * unless a specific switch is suspended.
 
 406 *
 407 * Caller must have acquired rfkill_global_mutex.
 408 */
 409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
 410{
 411	struct rfkill *rfkill;
 412
 413	rfkill_update_global_state(type, blocked);
 414	list_for_each_entry(rfkill, &rfkill_list, node) {
 415		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
 416			continue;
 417
 418		rfkill_set_block(rfkill, blocked);
 419	}
 420}
 421
 422/**
 423 * rfkill_switch_all - Toggle state of all switches of given type
 424 * @type: type of interfaces to be affected
 425 * @blocked: the new state
 426 *
 427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
 428 * Please refer to __rfkill_switch_all() for details.
 429 *
 430 * Does nothing if the EPO lock is active.
 431 */
 432void rfkill_switch_all(enum rfkill_type type, bool blocked)
 433{
 434	if (atomic_read(&rfkill_input_disabled))
 435		return;
 436
 437	mutex_lock(&rfkill_global_mutex);
 438
 439	if (!rfkill_epo_lock_active)
 440		__rfkill_switch_all(type, blocked);
 441
 442	mutex_unlock(&rfkill_global_mutex);
 443}
 444
 445/**
 446 * rfkill_epo - emergency power off all transmitters
 447 *
 448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
 449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
 450 *
 451 * The global state before the EPO is saved and can be restored later
 452 * using rfkill_restore_states().
 453 */
 454void rfkill_epo(void)
 455{
 456	struct rfkill *rfkill;
 457	int i;
 458
 459	if (atomic_read(&rfkill_input_disabled))
 460		return;
 461
 462	mutex_lock(&rfkill_global_mutex);
 463
 464	rfkill_epo_lock_active = true;
 465	list_for_each_entry(rfkill, &rfkill_list, node)
 466		rfkill_set_block(rfkill, true);
 467
 468	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
 469		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
 470		rfkill_global_states[i].cur = true;
 471	}
 472
 473	mutex_unlock(&rfkill_global_mutex);
 474}
 475
 476/**
 477 * rfkill_restore_states - restore global states
 478 *
 479 * Restore (and sync switches to) the global state from the
 480 * states in rfkill_default_states.  This can undo the effects of
 481 * a call to rfkill_epo().
 482 */
 483void rfkill_restore_states(void)
 484{
 485	int i;
 486
 487	if (atomic_read(&rfkill_input_disabled))
 488		return;
 489
 490	mutex_lock(&rfkill_global_mutex);
 491
 492	rfkill_epo_lock_active = false;
 493	for (i = 0; i < NUM_RFKILL_TYPES; i++)
 494		__rfkill_switch_all(i, rfkill_global_states[i].sav);
 495	mutex_unlock(&rfkill_global_mutex);
 496}
 497
 498/**
 499 * rfkill_remove_epo_lock - unlock state changes
 500 *
 501 * Used by rfkill-input manually unlock state changes, when
 502 * the EPO switch is deactivated.
 503 */
 504void rfkill_remove_epo_lock(void)
 505{
 506	if (atomic_read(&rfkill_input_disabled))
 507		return;
 508
 509	mutex_lock(&rfkill_global_mutex);
 510	rfkill_epo_lock_active = false;
 511	mutex_unlock(&rfkill_global_mutex);
 512}
 513
 514/**
 515 * rfkill_is_epo_lock_active - returns true EPO is active
 516 *
 517 * Returns 0 (false) if there is NOT an active EPO condition,
 518 * and 1 (true) if there is an active EPO condition, which
 519 * locks all radios in one of the BLOCKED states.
 520 *
 521 * Can be called in atomic context.
 522 */
 523bool rfkill_is_epo_lock_active(void)
 524{
 525	return rfkill_epo_lock_active;
 526}
 527
 528/**
 529 * rfkill_get_global_sw_state - returns global state for a type
 530 * @type: the type to get the global state of
 531 *
 532 * Returns the current global state for a given wireless
 533 * device type.
 534 */
 535bool rfkill_get_global_sw_state(const enum rfkill_type type)
 536{
 537	return rfkill_global_states[type].cur;
 538}
 539#endif
 540
 541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
 542				bool blocked,
 543				enum rfkill_hard_block_reasons reason)
 544{
 545	unsigned long flags;
 546	bool ret, prev;
 547
 548	BUG_ON(!rfkill);
 549
 550	spin_lock_irqsave(&rfkill->lock, flags);
 551	prev = !!(rfkill->hard_block_reasons & reason);
 552	if (blocked) {
 553		rfkill->state |= RFKILL_BLOCK_HW;
 554		rfkill->hard_block_reasons |= reason;
 555	} else {
 556		rfkill->hard_block_reasons &= ~reason;
 557		if (!rfkill->hard_block_reasons)
 558			rfkill->state &= ~RFKILL_BLOCK_HW;
 559	}
 560	ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
 561	spin_unlock_irqrestore(&rfkill->lock, flags);
 562
 563	rfkill_led_trigger_event(rfkill);
 564	rfkill_global_led_trigger_event();
 565
 566	if (rfkill->registered && prev != blocked)
 567		schedule_work(&rfkill->uevent_work);
 568
 569	return ret;
 570}
 571EXPORT_SYMBOL(rfkill_set_hw_state_reason);
 572
 573static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 574{
 575	u32 bit = RFKILL_BLOCK_SW;
 576
 577	/* if in a ops->set_block right now, use other bit */
 578	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
 579		bit = RFKILL_BLOCK_SW_PREV;
 580
 581	if (blocked)
 582		rfkill->state |= bit;
 583	else
 584		rfkill->state &= ~bit;
 585}
 586
 587bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
 588{
 589	unsigned long flags;
 590	bool prev, hwblock;
 591
 592	BUG_ON(!rfkill);
 593
 594	spin_lock_irqsave(&rfkill->lock, flags);
 595	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
 596	__rfkill_set_sw_state(rfkill, blocked);
 597	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
 598	blocked = blocked || hwblock;
 599	spin_unlock_irqrestore(&rfkill->lock, flags);
 600
 601	if (!rfkill->registered)
 602		return blocked;
 603
 604	if (prev != blocked && !hwblock)
 605		schedule_work(&rfkill->uevent_work);
 606
 607	rfkill_led_trigger_event(rfkill);
 608	rfkill_global_led_trigger_event();
 609
 610	return blocked;
 611}
 612EXPORT_SYMBOL(rfkill_set_sw_state);
 613
 614void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
 615{
 616	unsigned long flags;
 617
 618	BUG_ON(!rfkill);
 619	BUG_ON(rfkill->registered);
 620
 621	spin_lock_irqsave(&rfkill->lock, flags);
 622	__rfkill_set_sw_state(rfkill, blocked);
 623	rfkill->persistent = true;
 624	spin_unlock_irqrestore(&rfkill->lock, flags);
 625}
 626EXPORT_SYMBOL(rfkill_init_sw_state);
 627
 628void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
 629{
 630	unsigned long flags;
 631	bool swprev, hwprev;
 632
 633	BUG_ON(!rfkill);
 634
 635	spin_lock_irqsave(&rfkill->lock, flags);
 636
 637	/*
 638	 * No need to care about prev/setblock ... this is for uevent only
 639	 * and that will get triggered by rfkill_set_block anyway.
 640	 */
 641	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
 642	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
 643	__rfkill_set_sw_state(rfkill, sw);
 644	if (hw)
 645		rfkill->state |= RFKILL_BLOCK_HW;
 646	else
 647		rfkill->state &= ~RFKILL_BLOCK_HW;
 648
 649	spin_unlock_irqrestore(&rfkill->lock, flags);
 650
 651	if (!rfkill->registered) {
 652		rfkill->persistent = true;
 653	} else {
 654		if (swprev != sw || hwprev != hw)
 655			schedule_work(&rfkill->uevent_work);
 656
 657		rfkill_led_trigger_event(rfkill);
 658		rfkill_global_led_trigger_event();
 659	}
 660}
 661EXPORT_SYMBOL(rfkill_set_states);
 662
 663static const char * const rfkill_types[] = {
 664	NULL, /* RFKILL_TYPE_ALL */
 665	"wlan",
 666	"bluetooth",
 667	"ultrawideband",
 668	"wimax",
 669	"wwan",
 670	"gps",
 671	"fm",
 672	"nfc",
 673};
 674
 675enum rfkill_type rfkill_find_type(const char *name)
 676{
 677	int i;
 678
 679	BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
 680
 681	if (!name)
 682		return RFKILL_TYPE_ALL;
 683
 684	for (i = 1; i < NUM_RFKILL_TYPES; i++)
 685		if (!strcmp(name, rfkill_types[i]))
 686			return i;
 687	return RFKILL_TYPE_ALL;
 688}
 689EXPORT_SYMBOL(rfkill_find_type);
 690
 691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 692			 char *buf)
 693{
 694	struct rfkill *rfkill = to_rfkill(dev);
 695
 696	return sysfs_emit(buf, "%s\n", rfkill->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697}
 698static DEVICE_ATTR_RO(name);
 699
 700static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 701			 char *buf)
 
 702{
 703	struct rfkill *rfkill = to_rfkill(dev);
 704
 705	return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
 706}
 707static DEVICE_ATTR_RO(type);
 708
 709static ssize_t index_show(struct device *dev, struct device_attribute *attr,
 710			  char *buf)
 
 711{
 712	struct rfkill *rfkill = to_rfkill(dev);
 713
 714	return sysfs_emit(buf, "%d\n", rfkill->idx);
 715}
 716static DEVICE_ATTR_RO(index);
 717
 718static ssize_t persistent_show(struct device *dev,
 719			       struct device_attribute *attr, char *buf)
 
 720{
 721	struct rfkill *rfkill = to_rfkill(dev);
 722
 723	return sysfs_emit(buf, "%d\n", rfkill->persistent);
 724}
 725static DEVICE_ATTR_RO(persistent);
 726
 727static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
 728			 char *buf)
 
 729{
 730	struct rfkill *rfkill = to_rfkill(dev);
 731
 732	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
 733}
 734static DEVICE_ATTR_RO(hard);
 735
 736static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
 737			 char *buf)
 
 738{
 739	struct rfkill *rfkill = to_rfkill(dev);
 740
 741	mutex_lock(&rfkill_global_mutex);
 742	rfkill_sync(rfkill);
 743	mutex_unlock(&rfkill_global_mutex);
 744
 745	return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
 746}
 747
 748static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
 749			  const char *buf, size_t count)
 
 750{
 751	struct rfkill *rfkill = to_rfkill(dev);
 752	unsigned long state;
 753	int err;
 754
 755	if (!capable(CAP_NET_ADMIN))
 756		return -EPERM;
 757
 758	err = kstrtoul(buf, 0, &state);
 759	if (err)
 760		return err;
 761
 762	if (state > 1 )
 763		return -EINVAL;
 764
 765	mutex_lock(&rfkill_global_mutex);
 766	rfkill_sync(rfkill);
 767	rfkill_set_block(rfkill, state);
 768	mutex_unlock(&rfkill_global_mutex);
 769
 770	return count;
 771}
 772static DEVICE_ATTR_RW(soft);
 773
 774static ssize_t hard_block_reasons_show(struct device *dev,
 775				       struct device_attribute *attr,
 776				       char *buf)
 777{
 778	struct rfkill *rfkill = to_rfkill(dev);
 779
 780	return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
 781}
 782static DEVICE_ATTR_RO(hard_block_reasons);
 783
 784static u8 user_state_from_blocked(unsigned long state)
 785{
 786	if (state & RFKILL_BLOCK_HW)
 787		return RFKILL_USER_STATE_HARD_BLOCKED;
 788	if (state & RFKILL_BLOCK_SW)
 789		return RFKILL_USER_STATE_SOFT_BLOCKED;
 790
 791	return RFKILL_USER_STATE_UNBLOCKED;
 792}
 793
 794static ssize_t state_show(struct device *dev, struct device_attribute *attr,
 795			  char *buf)
 
 796{
 797	struct rfkill *rfkill = to_rfkill(dev);
 798
 799	mutex_lock(&rfkill_global_mutex);
 800	rfkill_sync(rfkill);
 801	mutex_unlock(&rfkill_global_mutex);
 802
 803	return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
 804}
 805
 806static ssize_t state_store(struct device *dev, struct device_attribute *attr,
 807			   const char *buf, size_t count)
 
 808{
 809	struct rfkill *rfkill = to_rfkill(dev);
 810	unsigned long state;
 811	int err;
 812
 813	if (!capable(CAP_NET_ADMIN))
 814		return -EPERM;
 815
 816	err = kstrtoul(buf, 0, &state);
 817	if (err)
 818		return err;
 819
 820	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
 821	    state != RFKILL_USER_STATE_UNBLOCKED)
 822		return -EINVAL;
 823
 824	mutex_lock(&rfkill_global_mutex);
 825	rfkill_sync(rfkill);
 826	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
 827	mutex_unlock(&rfkill_global_mutex);
 828
 829	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830}
 831static DEVICE_ATTR_RW(state);
 832
 833static struct attribute *rfkill_dev_attrs[] = {
 834	&dev_attr_name.attr,
 835	&dev_attr_type.attr,
 836	&dev_attr_index.attr,
 837	&dev_attr_persistent.attr,
 838	&dev_attr_state.attr,
 839	&dev_attr_soft.attr,
 840	&dev_attr_hard.attr,
 841	&dev_attr_hard_block_reasons.attr,
 842	NULL,
 843};
 844ATTRIBUTE_GROUPS(rfkill_dev);
 845
 846static void rfkill_release(struct device *dev)
 847{
 848	struct rfkill *rfkill = to_rfkill(dev);
 849
 850	kfree(rfkill);
 851}
 852
 853static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
 854{
 855	struct rfkill *rfkill = to_rfkill(dev);
 856	unsigned long flags;
 857	unsigned long reasons;
 858	u32 state;
 859	int error;
 860
 861	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
 862	if (error)
 863		return error;
 864	error = add_uevent_var(env, "RFKILL_TYPE=%s",
 865			       rfkill_types[rfkill->type]);
 866	if (error)
 867		return error;
 868	spin_lock_irqsave(&rfkill->lock, flags);
 869	state = rfkill->state;
 870	reasons = rfkill->hard_block_reasons;
 871	spin_unlock_irqrestore(&rfkill->lock, flags);
 872	error = add_uevent_var(env, "RFKILL_STATE=%d",
 873			       user_state_from_blocked(state));
 874	if (error)
 875		return error;
 876	return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
 877}
 878
 879void rfkill_pause_polling(struct rfkill *rfkill)
 880{
 881	BUG_ON(!rfkill);
 882
 883	if (!rfkill->ops->poll)
 884		return;
 885
 886	rfkill->polling_paused = true;
 887	cancel_delayed_work_sync(&rfkill->poll_work);
 888}
 889EXPORT_SYMBOL(rfkill_pause_polling);
 890
 891void rfkill_resume_polling(struct rfkill *rfkill)
 892{
 893	BUG_ON(!rfkill);
 894
 895	if (!rfkill->ops->poll)
 896		return;
 897
 898	rfkill->polling_paused = false;
 899
 900	if (rfkill->suspended)
 901		return;
 902
 903	queue_delayed_work(system_power_efficient_wq,
 904			   &rfkill->poll_work, 0);
 905}
 906EXPORT_SYMBOL(rfkill_resume_polling);
 907
 908#ifdef CONFIG_PM_SLEEP
 909static int rfkill_suspend(struct device *dev)
 910{
 911	struct rfkill *rfkill = to_rfkill(dev);
 912
 913	rfkill->suspended = true;
 914	cancel_delayed_work_sync(&rfkill->poll_work);
 915
 916	return 0;
 917}
 918
 919static int rfkill_resume(struct device *dev)
 920{
 921	struct rfkill *rfkill = to_rfkill(dev);
 922	bool cur;
 923
 924	rfkill->suspended = false;
 925
 926	if (!rfkill->registered)
 927		return 0;
 928
 929	if (!rfkill->persistent) {
 930		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
 931		rfkill_set_block(rfkill, cur);
 932	}
 933
 934	if (rfkill->ops->poll && !rfkill->polling_paused)
 935		queue_delayed_work(system_power_efficient_wq,
 936				   &rfkill->poll_work, 0);
 937
 938	return 0;
 939}
 940
 941static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
 942#define RFKILL_PM_OPS (&rfkill_pm_ops)
 943#else
 944#define RFKILL_PM_OPS NULL
 945#endif
 946
 947static struct class rfkill_class = {
 948	.name		= "rfkill",
 949	.dev_release	= rfkill_release,
 950	.dev_groups	= rfkill_dev_groups,
 951	.dev_uevent	= rfkill_dev_uevent,
 952	.pm		= RFKILL_PM_OPS,
 
 953};
 954
 955bool rfkill_blocked(struct rfkill *rfkill)
 956{
 957	unsigned long flags;
 958	u32 state;
 959
 960	spin_lock_irqsave(&rfkill->lock, flags);
 961	state = rfkill->state;
 962	spin_unlock_irqrestore(&rfkill->lock, flags);
 963
 964	return !!(state & RFKILL_BLOCK_ANY);
 965}
 966EXPORT_SYMBOL(rfkill_blocked);
 967
 968bool rfkill_soft_blocked(struct rfkill *rfkill)
 969{
 970	unsigned long flags;
 971	u32 state;
 972
 973	spin_lock_irqsave(&rfkill->lock, flags);
 974	state = rfkill->state;
 975	spin_unlock_irqrestore(&rfkill->lock, flags);
 976
 977	return !!(state & RFKILL_BLOCK_SW);
 978}
 979EXPORT_SYMBOL(rfkill_soft_blocked);
 980
 981struct rfkill * __must_check rfkill_alloc(const char *name,
 982					  struct device *parent,
 983					  const enum rfkill_type type,
 984					  const struct rfkill_ops *ops,
 985					  void *ops_data)
 986{
 987	struct rfkill *rfkill;
 988	struct device *dev;
 989
 990	if (WARN_ON(!ops))
 991		return NULL;
 992
 993	if (WARN_ON(!ops->set_block))
 994		return NULL;
 995
 996	if (WARN_ON(!name))
 997		return NULL;
 998
 999	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1000		return NULL;
1001
1002	rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1003	if (!rfkill)
1004		return NULL;
1005
1006	spin_lock_init(&rfkill->lock);
1007	INIT_LIST_HEAD(&rfkill->node);
1008	rfkill->type = type;
1009	strcpy(rfkill->name, name);
1010	rfkill->ops = ops;
1011	rfkill->data = ops_data;
1012
1013	dev = &rfkill->dev;
1014	dev->class = &rfkill_class;
1015	dev->parent = parent;
1016	device_initialize(dev);
1017
1018	return rfkill;
1019}
1020EXPORT_SYMBOL(rfkill_alloc);
1021
1022static void rfkill_poll(struct work_struct *work)
1023{
1024	struct rfkill *rfkill;
1025
1026	rfkill = container_of(work, struct rfkill, poll_work.work);
1027
1028	/*
1029	 * Poll hardware state -- driver will use one of the
1030	 * rfkill_set{,_hw,_sw}_state functions and use its
1031	 * return value to update the current status.
1032	 */
1033	rfkill->ops->poll(rfkill, rfkill->data);
1034
1035	queue_delayed_work(system_power_efficient_wq,
1036		&rfkill->poll_work,
1037		round_jiffies_relative(POLL_INTERVAL));
1038}
1039
1040static void rfkill_uevent_work(struct work_struct *work)
1041{
1042	struct rfkill *rfkill;
1043
1044	rfkill = container_of(work, struct rfkill, uevent_work);
1045
1046	mutex_lock(&rfkill_global_mutex);
1047	rfkill_event(rfkill);
1048	mutex_unlock(&rfkill_global_mutex);
1049}
1050
1051static void rfkill_sync_work(struct work_struct *work)
1052{
1053	struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
 
 
 
1054
1055	mutex_lock(&rfkill_global_mutex);
1056	rfkill_sync(rfkill);
 
1057	mutex_unlock(&rfkill_global_mutex);
1058}
1059
1060int __must_check rfkill_register(struct rfkill *rfkill)
1061{
1062	static unsigned long rfkill_no;
1063	struct device *dev;
1064	int error;
1065
1066	if (!rfkill)
1067		return -EINVAL;
1068
1069	dev = &rfkill->dev;
1070
1071	mutex_lock(&rfkill_global_mutex);
1072
1073	if (rfkill->registered) {
1074		error = -EALREADY;
1075		goto unlock;
1076	}
1077
1078	rfkill->idx = rfkill_no;
1079	dev_set_name(dev, "rfkill%lu", rfkill_no);
1080	rfkill_no++;
1081
1082	list_add_tail(&rfkill->node, &rfkill_list);
1083
1084	error = device_add(dev);
1085	if (error)
1086		goto remove;
1087
1088	error = rfkill_led_trigger_register(rfkill);
1089	if (error)
1090		goto devdel;
1091
1092	rfkill->registered = true;
1093
1094	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1095	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1096	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1097
1098	if (rfkill->ops->poll)
1099		queue_delayed_work(system_power_efficient_wq,
1100			&rfkill->poll_work,
1101			round_jiffies_relative(POLL_INTERVAL));
1102
1103	if (!rfkill->persistent || rfkill_epo_lock_active) {
1104		rfkill->need_sync = true;
1105		schedule_work(&rfkill->sync_work);
1106	} else {
1107#ifdef CONFIG_RFKILL_INPUT
1108		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1109
1110		if (!atomic_read(&rfkill_input_disabled))
1111			__rfkill_switch_all(rfkill->type, soft_blocked);
1112#endif
1113	}
1114
1115	rfkill_global_led_trigger_event();
1116	rfkill_send_events(rfkill, RFKILL_OP_ADD);
1117
1118	mutex_unlock(&rfkill_global_mutex);
1119	return 0;
1120
1121 devdel:
1122	device_del(&rfkill->dev);
1123 remove:
1124	list_del_init(&rfkill->node);
1125 unlock:
1126	mutex_unlock(&rfkill_global_mutex);
1127	return error;
1128}
1129EXPORT_SYMBOL(rfkill_register);
1130
1131void rfkill_unregister(struct rfkill *rfkill)
1132{
1133	BUG_ON(!rfkill);
1134
1135	if (rfkill->ops->poll)
1136		cancel_delayed_work_sync(&rfkill->poll_work);
1137
1138	cancel_work_sync(&rfkill->uevent_work);
1139	cancel_work_sync(&rfkill->sync_work);
1140
1141	rfkill->registered = false;
1142
1143	device_del(&rfkill->dev);
1144
1145	mutex_lock(&rfkill_global_mutex);
1146	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1147	list_del_init(&rfkill->node);
1148	rfkill_global_led_trigger_event();
1149	mutex_unlock(&rfkill_global_mutex);
1150
1151	rfkill_led_trigger_unregister(rfkill);
1152}
1153EXPORT_SYMBOL(rfkill_unregister);
1154
1155void rfkill_destroy(struct rfkill *rfkill)
1156{
1157	if (rfkill)
1158		put_device(&rfkill->dev);
1159}
1160EXPORT_SYMBOL(rfkill_destroy);
1161
1162static int rfkill_fop_open(struct inode *inode, struct file *file)
1163{
1164	struct rfkill_data *data;
1165	struct rfkill *rfkill;
1166	struct rfkill_int_event *ev, *tmp;
1167
1168	data = kzalloc(sizeof(*data), GFP_KERNEL);
1169	if (!data)
1170		return -ENOMEM;
1171
1172	data->max_size = RFKILL_EVENT_SIZE_V1;
1173
1174	INIT_LIST_HEAD(&data->events);
1175	mutex_init(&data->mtx);
1176	init_waitqueue_head(&data->read_wait);
1177
1178	mutex_lock(&rfkill_global_mutex);
 
1179	/*
1180	 * start getting events from elsewhere but hold mtx to get
1181	 * startup events added first
1182	 */
1183
1184	list_for_each_entry(rfkill, &rfkill_list, node) {
1185		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1186		if (!ev)
1187			goto free;
1188		rfkill_sync(rfkill);
1189		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1190		mutex_lock(&data->mtx);
1191		list_add_tail(&ev->list, &data->events);
1192		mutex_unlock(&data->mtx);
1193	}
1194	list_add(&data->list, &rfkill_fds);
 
1195	mutex_unlock(&rfkill_global_mutex);
1196
1197	file->private_data = data;
1198
1199	return stream_open(inode, file);
1200
1201 free:
 
1202	mutex_unlock(&rfkill_global_mutex);
1203	mutex_destroy(&data->mtx);
1204	list_for_each_entry_safe(ev, tmp, &data->events, list)
1205		kfree(ev);
1206	kfree(data);
1207	return -ENOMEM;
1208}
1209
1210static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1211{
1212	struct rfkill_data *data = file->private_data;
1213	__poll_t res = EPOLLOUT | EPOLLWRNORM;
1214
1215	poll_wait(file, &data->read_wait, wait);
1216
1217	mutex_lock(&data->mtx);
1218	if (!list_empty(&data->events))
1219		res = EPOLLIN | EPOLLRDNORM;
1220	mutex_unlock(&data->mtx);
1221
1222	return res;
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
1225static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1226			       size_t count, loff_t *pos)
1227{
1228	struct rfkill_data *data = file->private_data;
1229	struct rfkill_int_event *ev;
1230	unsigned long sz;
1231	int ret;
1232
1233	mutex_lock(&data->mtx);
1234
1235	while (list_empty(&data->events)) {
1236		if (file->f_flags & O_NONBLOCK) {
1237			ret = -EAGAIN;
1238			goto out;
1239		}
1240		mutex_unlock(&data->mtx);
1241		/* since we re-check and it just compares pointers,
1242		 * using !list_empty() without locking isn't a problem
1243		 */
1244		ret = wait_event_interruptible(data->read_wait,
1245					       !list_empty(&data->events));
1246		mutex_lock(&data->mtx);
1247
1248		if (ret)
1249			goto out;
1250	}
1251
1252	ev = list_first_entry(&data->events, struct rfkill_int_event,
1253				list);
1254
1255	sz = min_t(unsigned long, sizeof(ev->ev), count);
1256	sz = min_t(unsigned long, sz, data->max_size);
1257	ret = sz;
1258	if (copy_to_user(buf, &ev->ev, sz))
1259		ret = -EFAULT;
1260
1261	list_del(&ev->list);
1262	kfree(ev);
1263 out:
1264	mutex_unlock(&data->mtx);
1265	return ret;
1266}
1267
1268static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1269				size_t count, loff_t *pos)
1270{
1271	struct rfkill_data *data = file->private_data;
1272	struct rfkill *rfkill;
1273	struct rfkill_event_ext ev;
1274	int ret;
1275
1276	/* we don't need the 'hard' variable but accept it */
1277	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1278		return -EINVAL;
1279
1280	/*
1281	 * Copy as much data as we can accept into our 'ev' buffer,
1282	 * but tell userspace how much we've copied so it can determine
1283	 * our API version even in a write() call, if it cares.
1284	 */
1285	count = min(count, sizeof(ev));
1286	count = min_t(size_t, count, data->max_size);
1287	if (copy_from_user(&ev, buf, count))
1288		return -EFAULT;
1289
 
 
 
1290	if (ev.type >= NUM_RFKILL_TYPES)
1291		return -EINVAL;
1292
1293	mutex_lock(&rfkill_global_mutex);
1294
1295	switch (ev.op) {
1296	case RFKILL_OP_CHANGE_ALL:
1297		rfkill_update_global_state(ev.type, ev.soft);
1298		list_for_each_entry(rfkill, &rfkill_list, node)
1299			if (rfkill->type == ev.type ||
1300			    ev.type == RFKILL_TYPE_ALL)
1301				rfkill_set_block(rfkill, ev.soft);
1302		ret = 0;
1303		break;
1304	case RFKILL_OP_CHANGE:
1305		list_for_each_entry(rfkill, &rfkill_list, node)
1306			if (rfkill->idx == ev.idx &&
1307			    (rfkill->type == ev.type ||
1308			     ev.type == RFKILL_TYPE_ALL))
1309				rfkill_set_block(rfkill, ev.soft);
1310		ret = 0;
1311		break;
1312	default:
1313		ret = -EINVAL;
1314		break;
1315	}
1316
 
 
 
 
 
 
 
 
 
1317	mutex_unlock(&rfkill_global_mutex);
1318
1319	return ret ?: count;
1320}
1321
1322static int rfkill_fop_release(struct inode *inode, struct file *file)
1323{
1324	struct rfkill_data *data = file->private_data;
1325	struct rfkill_int_event *ev, *tmp;
1326
1327	mutex_lock(&rfkill_global_mutex);
1328	list_del(&data->list);
1329	mutex_unlock(&rfkill_global_mutex);
1330
1331	mutex_destroy(&data->mtx);
1332	list_for_each_entry_safe(ev, tmp, &data->events, list)
1333		kfree(ev);
1334
1335#ifdef CONFIG_RFKILL_INPUT
1336	if (data->input_handler)
1337		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1338			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1339#endif
1340
1341	kfree(data);
1342
1343	return 0;
1344}
1345
 
1346static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1347			     unsigned long arg)
1348{
1349	struct rfkill_data *data = file->private_data;
1350	int ret = -ENOTTY;
1351	u32 size;
1352
1353	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1354		return -ENOTTY;
 
 
 
1355
1356	mutex_lock(&data->mtx);
1357	switch (_IOC_NR(cmd)) {
1358#ifdef CONFIG_RFKILL_INPUT
1359	case RFKILL_IOC_NOINPUT:
1360		if (!data->input_handler) {
1361			if (atomic_inc_return(&rfkill_input_disabled) == 1)
1362				printk(KERN_DEBUG "rfkill: input handler disabled\n");
1363			data->input_handler = true;
1364		}
1365		ret = 0;
1366		break;
1367#endif
1368	case RFKILL_IOC_MAX_SIZE:
1369		if (get_user(size, (__u32 __user *)arg)) {
1370			ret = -EFAULT;
1371			break;
1372		}
1373		if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1374			ret = -EINVAL;
1375			break;
1376		}
1377		data->max_size = size;
1378		ret = 0;
1379		break;
1380	default:
1381		break;
1382	}
 
1383	mutex_unlock(&data->mtx);
1384
1385	return ret;
1386}
 
1387
1388static const struct file_operations rfkill_fops = {
1389	.owner		= THIS_MODULE,
1390	.open		= rfkill_fop_open,
1391	.read		= rfkill_fop_read,
1392	.write		= rfkill_fop_write,
1393	.poll		= rfkill_fop_poll,
1394	.release	= rfkill_fop_release,
 
1395	.unlocked_ioctl	= rfkill_fop_ioctl,
1396	.compat_ioctl	= compat_ptr_ioctl,
 
 
1397};
1398
1399#define RFKILL_NAME "rfkill"
1400
1401static struct miscdevice rfkill_miscdev = {
 
1402	.fops	= &rfkill_fops,
1403	.name	= RFKILL_NAME,
1404	.minor	= RFKILL_MINOR,
1405};
1406
1407static int __init rfkill_init(void)
1408{
1409	int error;
 
1410
1411	rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
 
1412
1413	error = class_register(&rfkill_class);
1414	if (error)
1415		goto error_class;
1416
1417	error = misc_register(&rfkill_miscdev);
1418	if (error)
1419		goto error_misc;
1420
1421	error = rfkill_global_led_trigger_register();
1422	if (error)
1423		goto error_led_trigger;
1424
1425#ifdef CONFIG_RFKILL_INPUT
1426	error = rfkill_handler_init();
1427	if (error)
1428		goto error_input;
 
 
 
1429#endif
1430
1431	return 0;
1432
1433#ifdef CONFIG_RFKILL_INPUT
1434error_input:
1435	rfkill_global_led_trigger_unregister();
1436#endif
1437error_led_trigger:
1438	misc_deregister(&rfkill_miscdev);
1439error_misc:
1440	class_unregister(&rfkill_class);
1441error_class:
1442	return error;
1443}
1444subsys_initcall(rfkill_init);
1445
1446static void __exit rfkill_exit(void)
1447{
1448#ifdef CONFIG_RFKILL_INPUT
1449	rfkill_handler_exit();
1450#endif
1451	rfkill_global_led_trigger_unregister();
1452	misc_deregister(&rfkill_miscdev);
1453	class_unregister(&rfkill_class);
1454}
1455module_exit(rfkill_exit);
1456
1457MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1458MODULE_ALIAS("devname:" RFKILL_NAME);