Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/miscdevice.h>
33#include <linux/wait.h>
34#include <linux/poll.h>
35#include <linux/fs.h>
36#include <linux/slab.h>
37
38#include "rfkill.h"
39
40#define POLL_INTERVAL (5 * HZ)
41
42#define RFKILL_BLOCK_HW BIT(0)
43#define RFKILL_BLOCK_SW BIT(1)
44#define RFKILL_BLOCK_SW_PREV BIT(2)
45#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48#define RFKILL_BLOCK_SW_SETCALL BIT(31)
49
50struct rfkill {
51 spinlock_t lock;
52
53 const char *name;
54 enum rfkill_type type;
55
56 unsigned long state;
57
58 u32 idx;
59
60 bool registered;
61 bool persistent;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77};
78#define to_rfkill(d) container_of(d, struct rfkill, dev)
79
80struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
83};
84
85struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
91};
92
93
94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96MODULE_DESCRIPTION("RF switch support");
97MODULE_LICENSE("GPL");
98
99
100/*
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 *
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
110 */
111static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112static DEFINE_MUTEX(rfkill_global_mutex);
113static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114
115static unsigned int rfkill_default_state = 1;
116module_param_named(default_state, rfkill_default_state, uint, 0444);
117MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
119
120static struct {
121 bool cur, sav;
122} rfkill_global_states[NUM_RFKILL_TYPES];
123
124static bool rfkill_epo_lock_active;
125
126
127#ifdef CONFIG_RFKILL_LEDS
128static void rfkill_led_trigger_event(struct rfkill *rfkill)
129{
130 struct led_trigger *trigger;
131
132 if (!rfkill->registered)
133 return;
134
135 trigger = &rfkill->led_trigger;
136
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
141}
142
143static void rfkill_led_trigger_activate(struct led_classdev *led)
144{
145 struct rfkill *rfkill;
146
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148
149 rfkill_led_trigger_event(rfkill);
150}
151
152static int rfkill_led_trigger_register(struct rfkill *rfkill)
153{
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
158}
159
160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
161{
162 led_trigger_unregister(&rfkill->led_trigger);
163}
164#else
165static void rfkill_led_trigger_event(struct rfkill *rfkill)
166{
167}
168
169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
170{
171 return 0;
172}
173
174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175{
176}
177#endif /* CONFIG_RFKILL_LEDS */
178
179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
181{
182 unsigned long flags;
183
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
187
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
193}
194
195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
196{
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
199
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
209 }
210}
211
212static void rfkill_event(struct rfkill *rfkill)
213{
214 if (!rfkill->registered)
215 return;
216
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
218
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
221}
222
223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
225{
226 unsigned long flags;
227 bool prev, any;
228
229 BUG_ON(!rfkill);
230
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
240
241 rfkill_led_trigger_event(rfkill);
242
243 return any;
244}
245
246/**
247 * rfkill_set_block - wrapper for set_block method
248 *
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
251 *
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
254 */
255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
256{
257 unsigned long flags;
258 int err;
259
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
262
263 /*
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
267 */
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
270
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
276
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
281
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
284
285 err = rfkill->ops->set_block(rfkill->data, blocked);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
289 /*
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
293 */
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
298 }
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
305}
306
307#ifdef CONFIG_RFKILL_INPUT
308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
309
310/**
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
314 *
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
318 *
319 * Caller must have acquired rfkill_global_mutex.
320 */
321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
322{
323 struct rfkill *rfkill;
324
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
329
330 rfkill_set_block(rfkill, blocked);
331 }
332}
333
334/**
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
338 *
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
341 *
342 * Does nothing if the EPO lock is active.
343 */
344void rfkill_switch_all(enum rfkill_type type, bool blocked)
345{
346 if (atomic_read(&rfkill_input_disabled))
347 return;
348
349 mutex_lock(&rfkill_global_mutex);
350
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
353
354 mutex_unlock(&rfkill_global_mutex);
355}
356
357/**
358 * rfkill_epo - emergency power off all transmitters
359 *
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
362 *
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
365 */
366void rfkill_epo(void)
367{
368 struct rfkill *rfkill;
369 int i;
370
371 if (atomic_read(&rfkill_input_disabled))
372 return;
373
374 mutex_lock(&rfkill_global_mutex);
375
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
383 }
384
385 mutex_unlock(&rfkill_global_mutex);
386}
387
388/**
389 * rfkill_restore_states - restore global states
390 *
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
394 */
395void rfkill_restore_states(void)
396{
397 int i;
398
399 if (atomic_read(&rfkill_input_disabled))
400 return;
401
402 mutex_lock(&rfkill_global_mutex);
403
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
408}
409
410/**
411 * rfkill_remove_epo_lock - unlock state changes
412 *
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
415 */
416void rfkill_remove_epo_lock(void)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
424}
425
426/**
427 * rfkill_is_epo_lock_active - returns true EPO is active
428 *
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
432 *
433 * Can be called in atomic context.
434 */
435bool rfkill_is_epo_lock_active(void)
436{
437 return rfkill_epo_lock_active;
438}
439
440/**
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
443 *
444 * Returns the current global state for a given wireless
445 * device type.
446 */
447bool rfkill_get_global_sw_state(const enum rfkill_type type)
448{
449 return rfkill_global_states[type].cur;
450}
451#endif
452
453
454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
455{
456 bool ret, change;
457
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
459
460 if (!rfkill->registered)
461 return ret;
462
463 if (change)
464 schedule_work(&rfkill->uevent_work);
465
466 return ret;
467}
468EXPORT_SYMBOL(rfkill_set_hw_state);
469
470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
471{
472 u32 bit = RFKILL_BLOCK_SW;
473
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
477
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
482}
483
484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
485{
486 unsigned long flags;
487 bool prev, hwblock;
488
489 BUG_ON(!rfkill);
490
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
497
498 if (!rfkill->registered)
499 return blocked;
500
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
503
504 rfkill_led_trigger_event(rfkill);
505
506 return blocked;
507}
508EXPORT_SYMBOL(rfkill_set_sw_state);
509
510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
511{
512 unsigned long flags;
513
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
516
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
521}
522EXPORT_SYMBOL(rfkill_init_sw_state);
523
524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525{
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
544
545 spin_unlock_irqrestore(&rfkill->lock, flags);
546
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
552
553 rfkill_led_trigger_event(rfkill);
554 }
555}
556EXPORT_SYMBOL(rfkill_set_states);
557
558static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
561{
562 struct rfkill *rfkill = to_rfkill(dev);
563
564 return sprintf(buf, "%s\n", rfkill->name);
565}
566
567static const char *rfkill_get_type_str(enum rfkill_type type)
568{
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
570
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
588 }
589}
590
591static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct rfkill *rfkill = to_rfkill(dev);
596
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
598}
599
600static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
603{
604 struct rfkill *rfkill = to_rfkill(dev);
605
606 return sprintf(buf, "%d\n", rfkill->idx);
607}
608
609static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
612{
613 struct rfkill *rfkill = to_rfkill(dev);
614
615 return sprintf(buf, "%d\n", rfkill->persistent);
616}
617
618static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
621{
622 struct rfkill *rfkill = to_rfkill(dev);
623
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
625}
626
627static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
630{
631 struct rfkill *rfkill = to_rfkill(dev);
632
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
634}
635
636static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
639{
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
643
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
646
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
650
651 if (state > 1 )
652 return -EINVAL;
653
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
657
658 return err ?: count;
659}
660
661static u8 user_state_from_blocked(unsigned long state)
662{
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
667
668 return RFKILL_USER_STATE_UNBLOCKED;
669}
670
671static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
674{
675 struct rfkill *rfkill = to_rfkill(dev);
676
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
678}
679
680static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
683{
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
687
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
690
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
694
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
698
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
702
703 return err ?: count;
704}
705
706static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 return sprintf(buf, "%d\n", 0);
711}
712
713static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
716{
717 return -EOPNOTSUPP;
718}
719
720static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
730};
731
732static void rfkill_release(struct device *dev)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 kfree(rfkill);
737}
738
739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
740{
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
745
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
759}
760
761void rfkill_pause_polling(struct rfkill *rfkill)
762{
763 BUG_ON(!rfkill);
764
765 if (!rfkill->ops->poll)
766 return;
767
768 cancel_delayed_work_sync(&rfkill->poll_work);
769}
770EXPORT_SYMBOL(rfkill_pause_polling);
771
772void rfkill_resume_polling(struct rfkill *rfkill)
773{
774 BUG_ON(!rfkill);
775
776 if (!rfkill->ops->poll)
777 return;
778
779 schedule_work(&rfkill->poll_work.work);
780}
781EXPORT_SYMBOL(rfkill_resume_polling);
782
783static int rfkill_suspend(struct device *dev, pm_message_t state)
784{
785 struct rfkill *rfkill = to_rfkill(dev);
786
787 rfkill_pause_polling(rfkill);
788
789 return 0;
790}
791
792static int rfkill_resume(struct device *dev)
793{
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
796
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
800 }
801
802 rfkill_resume_polling(rfkill);
803
804 return 0;
805}
806
807static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
814};
815
816bool rfkill_blocked(struct rfkill *rfkill)
817{
818 unsigned long flags;
819 u32 state;
820
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
824
825 return !!(state & RFKILL_BLOCK_ANY);
826}
827EXPORT_SYMBOL(rfkill_blocked);
828
829
830struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
835{
836 struct rfkill *rfkill;
837 struct device *dev;
838
839 if (WARN_ON(!ops))
840 return NULL;
841
842 if (WARN_ON(!ops->set_block))
843 return NULL;
844
845 if (WARN_ON(!name))
846 return NULL;
847
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
850
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
854
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
861
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
866
867 return rfkill;
868}
869EXPORT_SYMBOL(rfkill_alloc);
870
871static void rfkill_poll(struct work_struct *work)
872{
873 struct rfkill *rfkill;
874
875 rfkill = container_of(work, struct rfkill, poll_work.work);
876
877 /*
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
881 */
882 rfkill->ops->poll(rfkill, rfkill->data);
883
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
886}
887
888static void rfkill_uevent_work(struct work_struct *work)
889{
890 struct rfkill *rfkill;
891
892 rfkill = container_of(work, struct rfkill, uevent_work);
893
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
897}
898
899static void rfkill_sync_work(struct work_struct *work)
900{
901 struct rfkill *rfkill;
902 bool cur;
903
904 rfkill = container_of(work, struct rfkill, sync_work);
905
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
910}
911
912int __must_check rfkill_register(struct rfkill *rfkill)
913{
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
917
918 BUG_ON(!rfkill);
919
920 mutex_lock(&rfkill_global_mutex);
921
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
925 }
926
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
930
931 list_add_tail(&rfkill->node, &rfkill_list);
932
933 error = device_add(dev);
934 if (error)
935 goto remove;
936
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
940
941 rfkill->registered = true;
942
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
946
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
950
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954#ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
956
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959#endif
960 }
961
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
963
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
966
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
974}
975EXPORT_SYMBOL(rfkill_register);
976
977void rfkill_unregister(struct rfkill *rfkill)
978{
979 BUG_ON(!rfkill);
980
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
983
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
986
987 rfkill->registered = false;
988
989 device_del(&rfkill->dev);
990
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
995
996 rfkill_led_trigger_unregister(rfkill);
997}
998EXPORT_SYMBOL(rfkill_unregister);
999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1012
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1016
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1020
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1023 /*
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1026 */
1027
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1034 }
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1038
1039 file->private_data = data;
1040
1041 return nonseekable_open(inode, file);
1042
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1057
1058 poll_wait(file, &data->read_wait, wait);
1059
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1064
1065 return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070 bool r;
1071
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1075
1076 return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1081{
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1086
1087 mutex_lock(&data->mtx);
1088
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1098
1099 if (ret)
1100 goto out;
1101 }
1102
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1105
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1110
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1120{
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1123
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1127
1128 /*
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1132 */
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1136
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1139
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1142
1143 mutex_lock(&rfkill_global_mutex);
1144
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1152 }
1153 }
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1158
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1161
1162 rfkill_set_block(rfkill, ev.soft);
1163 }
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1173
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1177
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188 kfree(data);
1189
1190 return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1196{
1197 struct rfkill_data *data = file->private_data;
1198
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1201
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1204
1205 mutex_lock(&data->mtx);
1206
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1211 }
1212
1213 mutex_unlock(&data->mtx);
1214
1215 return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229#endif
1230 .llseek = no_llseek,
1231};
1232
1233static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241 int error;
1242 int i;
1243
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1250
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1255 }
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1263 }
1264#endif
1265
1266 out:
1267 return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275#endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/workqueue.h>
24#include <linux/capability.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/rfkill.h>
28#include <linux/sched.h>
29#include <linux/spinlock.h>
30#include <linux/device.h>
31#include <linux/miscdevice.h>
32#include <linux/wait.h>
33#include <linux/poll.h>
34#include <linux/fs.h>
35#include <linux/slab.h>
36
37#include "rfkill.h"
38
39#define POLL_INTERVAL (5 * HZ)
40
41#define RFKILL_BLOCK_HW BIT(0)
42#define RFKILL_BLOCK_SW BIT(1)
43#define RFKILL_BLOCK_SW_PREV BIT(2)
44#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47#define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49struct rfkill {
50 spinlock_t lock;
51
52 const char *name;
53 enum rfkill_type type;
54
55 unsigned long state;
56
57 u32 idx;
58
59 bool registered;
60 bool persistent;
61
62 const struct rfkill_ops *ops;
63 void *data;
64
65#ifdef CONFIG_RFKILL_LEDS
66 struct led_trigger led_trigger;
67 const char *ledtrigname;
68#endif
69
70 struct device dev;
71 struct list_head node;
72
73 struct delayed_work poll_work;
74 struct work_struct uevent_work;
75 struct work_struct sync_work;
76};
77#define to_rfkill(d) container_of(d, struct rfkill, dev)
78
79struct rfkill_int_event {
80 struct list_head list;
81 struct rfkill_event ev;
82};
83
84struct rfkill_data {
85 struct list_head list;
86 struct list_head events;
87 struct mutex mtx;
88 wait_queue_head_t read_wait;
89 bool input_handler;
90};
91
92
93MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95MODULE_DESCRIPTION("RF switch support");
96MODULE_LICENSE("GPL");
97
98
99/*
100 * The locking here should be made much smarter, we currently have
101 * a bit of a stupid situation because drivers might want to register
102 * the rfkill struct under their own lock, and take this lock during
103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
104 *
105 * To fix that, we need to rework this code here to be mostly lock-free
106 * and only use the mutex for list manipulations, not to protect the
107 * various other global variables. Then we can avoid holding the mutex
108 * around driver operations, and all is happy.
109 */
110static LIST_HEAD(rfkill_list); /* list of registered rf switches */
111static DEFINE_MUTEX(rfkill_global_mutex);
112static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
113
114static unsigned int rfkill_default_state = 1;
115module_param_named(default_state, rfkill_default_state, uint, 0444);
116MODULE_PARM_DESC(default_state,
117 "Default initial state for all radio types, 0 = radio off");
118
119static struct {
120 bool cur, sav;
121} rfkill_global_states[NUM_RFKILL_TYPES];
122
123static bool rfkill_epo_lock_active;
124
125
126#ifdef CONFIG_RFKILL_LEDS
127static void rfkill_led_trigger_event(struct rfkill *rfkill)
128{
129 struct led_trigger *trigger;
130
131 if (!rfkill->registered)
132 return;
133
134 trigger = &rfkill->led_trigger;
135
136 if (rfkill->state & RFKILL_BLOCK_ANY)
137 led_trigger_event(trigger, LED_OFF);
138 else
139 led_trigger_event(trigger, LED_FULL);
140}
141
142static void rfkill_led_trigger_activate(struct led_classdev *led)
143{
144 struct rfkill *rfkill;
145
146 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147
148 rfkill_led_trigger_event(rfkill);
149}
150
151const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152{
153 return rfkill->led_trigger.name;
154}
155EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156
157void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158{
159 BUG_ON(!rfkill);
160
161 rfkill->ledtrigname = name;
162}
163EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164
165static int rfkill_led_trigger_register(struct rfkill *rfkill)
166{
167 rfkill->led_trigger.name = rfkill->ledtrigname
168 ? : dev_name(&rfkill->dev);
169 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170 return led_trigger_register(&rfkill->led_trigger);
171}
172
173static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174{
175 led_trigger_unregister(&rfkill->led_trigger);
176}
177#else
178static void rfkill_led_trigger_event(struct rfkill *rfkill)
179{
180}
181
182static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183{
184 return 0;
185}
186
187static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188{
189}
190#endif /* CONFIG_RFKILL_LEDS */
191
192static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193 enum rfkill_operation op)
194{
195 unsigned long flags;
196
197 ev->idx = rfkill->idx;
198 ev->type = rfkill->type;
199 ev->op = op;
200
201 spin_lock_irqsave(&rfkill->lock, flags);
202 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204 RFKILL_BLOCK_SW_PREV));
205 spin_unlock_irqrestore(&rfkill->lock, flags);
206}
207
208static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209{
210 struct rfkill_data *data;
211 struct rfkill_int_event *ev;
212
213 list_for_each_entry(data, &rfkill_fds, list) {
214 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215 if (!ev)
216 continue;
217 rfkill_fill_event(&ev->ev, rfkill, op);
218 mutex_lock(&data->mtx);
219 list_add_tail(&ev->list, &data->events);
220 mutex_unlock(&data->mtx);
221 wake_up_interruptible(&data->read_wait);
222 }
223}
224
225static void rfkill_event(struct rfkill *rfkill)
226{
227 if (!rfkill->registered)
228 return;
229
230 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231
232 /* also send event to /dev/rfkill */
233 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234}
235
236static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237 bool blocked, bool *change)
238{
239 unsigned long flags;
240 bool prev, any;
241
242 BUG_ON(!rfkill);
243
244 spin_lock_irqsave(&rfkill->lock, flags);
245 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246 if (blocked)
247 rfkill->state |= RFKILL_BLOCK_HW;
248 else
249 rfkill->state &= ~RFKILL_BLOCK_HW;
250 *change = prev != blocked;
251 any = !!(rfkill->state & RFKILL_BLOCK_ANY);
252 spin_unlock_irqrestore(&rfkill->lock, flags);
253
254 rfkill_led_trigger_event(rfkill);
255
256 return any;
257}
258
259/**
260 * rfkill_set_block - wrapper for set_block method
261 *
262 * @rfkill: the rfkill struct to use
263 * @blocked: the new software state
264 *
265 * Calls the set_block method (when applicable) and handles notifications
266 * etc. as well.
267 */
268static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269{
270 unsigned long flags;
271 bool prev, curr;
272 int err;
273
274 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
275 return;
276
277 /*
278 * Some platforms (...!) generate input events which affect the
279 * _hard_ kill state -- whenever something tries to change the
280 * current software state query the hardware state too.
281 */
282 if (rfkill->ops->query)
283 rfkill->ops->query(rfkill, rfkill->data);
284
285 spin_lock_irqsave(&rfkill->lock, flags);
286 prev = rfkill->state & RFKILL_BLOCK_SW;
287
288 if (rfkill->state & RFKILL_BLOCK_SW)
289 rfkill->state |= RFKILL_BLOCK_SW_PREV;
290 else
291 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
292
293 if (blocked)
294 rfkill->state |= RFKILL_BLOCK_SW;
295 else
296 rfkill->state &= ~RFKILL_BLOCK_SW;
297
298 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
299 spin_unlock_irqrestore(&rfkill->lock, flags);
300
301 err = rfkill->ops->set_block(rfkill->data, blocked);
302
303 spin_lock_irqsave(&rfkill->lock, flags);
304 if (err) {
305 /*
306 * Failed -- reset status to _prev, this may be different
307 * from what set set _PREV to earlier in this function
308 * if rfkill_set_sw_state was invoked.
309 */
310 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
311 rfkill->state |= RFKILL_BLOCK_SW;
312 else
313 rfkill->state &= ~RFKILL_BLOCK_SW;
314 }
315 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
316 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
317 curr = rfkill->state & RFKILL_BLOCK_SW;
318 spin_unlock_irqrestore(&rfkill->lock, flags);
319
320 rfkill_led_trigger_event(rfkill);
321
322 if (prev != curr)
323 rfkill_event(rfkill);
324}
325
326#ifdef CONFIG_RFKILL_INPUT
327static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
328
329/**
330 * __rfkill_switch_all - Toggle state of all switches of given type
331 * @type: type of interfaces to be affected
332 * @state: the new state
333 *
334 * This function sets the state of all switches of given type,
335 * unless a specific switch is claimed by userspace (in which case,
336 * that switch is left alone) or suspended.
337 *
338 * Caller must have acquired rfkill_global_mutex.
339 */
340static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
341{
342 struct rfkill *rfkill;
343
344 rfkill_global_states[type].cur = blocked;
345 list_for_each_entry(rfkill, &rfkill_list, node) {
346 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
347 continue;
348
349 rfkill_set_block(rfkill, blocked);
350 }
351}
352
353/**
354 * rfkill_switch_all - Toggle state of all switches of given type
355 * @type: type of interfaces to be affected
356 * @state: the new state
357 *
358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
359 * Please refer to __rfkill_switch_all() for details.
360 *
361 * Does nothing if the EPO lock is active.
362 */
363void rfkill_switch_all(enum rfkill_type type, bool blocked)
364{
365 if (atomic_read(&rfkill_input_disabled))
366 return;
367
368 mutex_lock(&rfkill_global_mutex);
369
370 if (!rfkill_epo_lock_active)
371 __rfkill_switch_all(type, blocked);
372
373 mutex_unlock(&rfkill_global_mutex);
374}
375
376/**
377 * rfkill_epo - emergency power off all transmitters
378 *
379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
381 *
382 * The global state before the EPO is saved and can be restored later
383 * using rfkill_restore_states().
384 */
385void rfkill_epo(void)
386{
387 struct rfkill *rfkill;
388 int i;
389
390 if (atomic_read(&rfkill_input_disabled))
391 return;
392
393 mutex_lock(&rfkill_global_mutex);
394
395 rfkill_epo_lock_active = true;
396 list_for_each_entry(rfkill, &rfkill_list, node)
397 rfkill_set_block(rfkill, true);
398
399 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
400 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
401 rfkill_global_states[i].cur = true;
402 }
403
404 mutex_unlock(&rfkill_global_mutex);
405}
406
407/**
408 * rfkill_restore_states - restore global states
409 *
410 * Restore (and sync switches to) the global state from the
411 * states in rfkill_default_states. This can undo the effects of
412 * a call to rfkill_epo().
413 */
414void rfkill_restore_states(void)
415{
416 int i;
417
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422
423 rfkill_epo_lock_active = false;
424 for (i = 0; i < NUM_RFKILL_TYPES; i++)
425 __rfkill_switch_all(i, rfkill_global_states[i].sav);
426 mutex_unlock(&rfkill_global_mutex);
427}
428
429/**
430 * rfkill_remove_epo_lock - unlock state changes
431 *
432 * Used by rfkill-input manually unlock state changes, when
433 * the EPO switch is deactivated.
434 */
435void rfkill_remove_epo_lock(void)
436{
437 if (atomic_read(&rfkill_input_disabled))
438 return;
439
440 mutex_lock(&rfkill_global_mutex);
441 rfkill_epo_lock_active = false;
442 mutex_unlock(&rfkill_global_mutex);
443}
444
445/**
446 * rfkill_is_epo_lock_active - returns true EPO is active
447 *
448 * Returns 0 (false) if there is NOT an active EPO contidion,
449 * and 1 (true) if there is an active EPO contition, which
450 * locks all radios in one of the BLOCKED states.
451 *
452 * Can be called in atomic context.
453 */
454bool rfkill_is_epo_lock_active(void)
455{
456 return rfkill_epo_lock_active;
457}
458
459/**
460 * rfkill_get_global_sw_state - returns global state for a type
461 * @type: the type to get the global state of
462 *
463 * Returns the current global state for a given wireless
464 * device type.
465 */
466bool rfkill_get_global_sw_state(const enum rfkill_type type)
467{
468 return rfkill_global_states[type].cur;
469}
470#endif
471
472
473bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
474{
475 bool ret, change;
476
477 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
478
479 if (!rfkill->registered)
480 return ret;
481
482 if (change)
483 schedule_work(&rfkill->uevent_work);
484
485 return ret;
486}
487EXPORT_SYMBOL(rfkill_set_hw_state);
488
489static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
490{
491 u32 bit = RFKILL_BLOCK_SW;
492
493 /* if in a ops->set_block right now, use other bit */
494 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
495 bit = RFKILL_BLOCK_SW_PREV;
496
497 if (blocked)
498 rfkill->state |= bit;
499 else
500 rfkill->state &= ~bit;
501}
502
503bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
504{
505 unsigned long flags;
506 bool prev, hwblock;
507
508 BUG_ON(!rfkill);
509
510 spin_lock_irqsave(&rfkill->lock, flags);
511 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
512 __rfkill_set_sw_state(rfkill, blocked);
513 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
514 blocked = blocked || hwblock;
515 spin_unlock_irqrestore(&rfkill->lock, flags);
516
517 if (!rfkill->registered)
518 return blocked;
519
520 if (prev != blocked && !hwblock)
521 schedule_work(&rfkill->uevent_work);
522
523 rfkill_led_trigger_event(rfkill);
524
525 return blocked;
526}
527EXPORT_SYMBOL(rfkill_set_sw_state);
528
529void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
530{
531 unsigned long flags;
532
533 BUG_ON(!rfkill);
534 BUG_ON(rfkill->registered);
535
536 spin_lock_irqsave(&rfkill->lock, flags);
537 __rfkill_set_sw_state(rfkill, blocked);
538 rfkill->persistent = true;
539 spin_unlock_irqrestore(&rfkill->lock, flags);
540}
541EXPORT_SYMBOL(rfkill_init_sw_state);
542
543void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
544{
545 unsigned long flags;
546 bool swprev, hwprev;
547
548 BUG_ON(!rfkill);
549
550 spin_lock_irqsave(&rfkill->lock, flags);
551
552 /*
553 * No need to care about prev/setblock ... this is for uevent only
554 * and that will get triggered by rfkill_set_block anyway.
555 */
556 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
557 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
558 __rfkill_set_sw_state(rfkill, sw);
559 if (hw)
560 rfkill->state |= RFKILL_BLOCK_HW;
561 else
562 rfkill->state &= ~RFKILL_BLOCK_HW;
563
564 spin_unlock_irqrestore(&rfkill->lock, flags);
565
566 if (!rfkill->registered) {
567 rfkill->persistent = true;
568 } else {
569 if (swprev != sw || hwprev != hw)
570 schedule_work(&rfkill->uevent_work);
571
572 rfkill_led_trigger_event(rfkill);
573 }
574}
575EXPORT_SYMBOL(rfkill_set_states);
576
577static ssize_t name_show(struct device *dev, struct device_attribute *attr,
578 char *buf)
579{
580 struct rfkill *rfkill = to_rfkill(dev);
581
582 return sprintf(buf, "%s\n", rfkill->name);
583}
584static DEVICE_ATTR_RO(name);
585
586static const char *rfkill_get_type_str(enum rfkill_type type)
587{
588 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
589
590 switch (type) {
591 case RFKILL_TYPE_WLAN:
592 return "wlan";
593 case RFKILL_TYPE_BLUETOOTH:
594 return "bluetooth";
595 case RFKILL_TYPE_UWB:
596 return "ultrawideband";
597 case RFKILL_TYPE_WIMAX:
598 return "wimax";
599 case RFKILL_TYPE_WWAN:
600 return "wwan";
601 case RFKILL_TYPE_GPS:
602 return "gps";
603 case RFKILL_TYPE_FM:
604 return "fm";
605 case RFKILL_TYPE_NFC:
606 return "nfc";
607 default:
608 BUG();
609 }
610}
611
612static ssize_t type_show(struct device *dev, struct device_attribute *attr,
613 char *buf)
614{
615 struct rfkill *rfkill = to_rfkill(dev);
616
617 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
618}
619static DEVICE_ATTR_RO(type);
620
621static ssize_t index_show(struct device *dev, struct device_attribute *attr,
622 char *buf)
623{
624 struct rfkill *rfkill = to_rfkill(dev);
625
626 return sprintf(buf, "%d\n", rfkill->idx);
627}
628static DEVICE_ATTR_RO(index);
629
630static ssize_t persistent_show(struct device *dev,
631 struct device_attribute *attr, char *buf)
632{
633 struct rfkill *rfkill = to_rfkill(dev);
634
635 return sprintf(buf, "%d\n", rfkill->persistent);
636}
637static DEVICE_ATTR_RO(persistent);
638
639static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
640 char *buf)
641{
642 struct rfkill *rfkill = to_rfkill(dev);
643
644 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
645}
646static DEVICE_ATTR_RO(hard);
647
648static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
649 char *buf)
650{
651 struct rfkill *rfkill = to_rfkill(dev);
652
653 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
654}
655
656static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
657 const char *buf, size_t count)
658{
659 struct rfkill *rfkill = to_rfkill(dev);
660 unsigned long state;
661 int err;
662
663 if (!capable(CAP_NET_ADMIN))
664 return -EPERM;
665
666 err = kstrtoul(buf, 0, &state);
667 if (err)
668 return err;
669
670 if (state > 1 )
671 return -EINVAL;
672
673 mutex_lock(&rfkill_global_mutex);
674 rfkill_set_block(rfkill, state);
675 mutex_unlock(&rfkill_global_mutex);
676
677 return count;
678}
679static DEVICE_ATTR_RW(soft);
680
681static u8 user_state_from_blocked(unsigned long state)
682{
683 if (state & RFKILL_BLOCK_HW)
684 return RFKILL_USER_STATE_HARD_BLOCKED;
685 if (state & RFKILL_BLOCK_SW)
686 return RFKILL_USER_STATE_SOFT_BLOCKED;
687
688 return RFKILL_USER_STATE_UNBLOCKED;
689}
690
691static ssize_t state_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
697}
698
699static ssize_t state_store(struct device *dev, struct device_attribute *attr,
700 const char *buf, size_t count)
701{
702 struct rfkill *rfkill = to_rfkill(dev);
703 unsigned long state;
704 int err;
705
706 if (!capable(CAP_NET_ADMIN))
707 return -EPERM;
708
709 err = kstrtoul(buf, 0, &state);
710 if (err)
711 return err;
712
713 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
714 state != RFKILL_USER_STATE_UNBLOCKED)
715 return -EINVAL;
716
717 mutex_lock(&rfkill_global_mutex);
718 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
719 mutex_unlock(&rfkill_global_mutex);
720
721 return count;
722}
723static DEVICE_ATTR_RW(state);
724
725static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
726 char *buf)
727{
728 return sprintf(buf, "%d\n", 0);
729}
730static DEVICE_ATTR_RO(claim);
731
732static struct attribute *rfkill_dev_attrs[] = {
733 &dev_attr_name.attr,
734 &dev_attr_type.attr,
735 &dev_attr_index.attr,
736 &dev_attr_persistent.attr,
737 &dev_attr_state.attr,
738 &dev_attr_claim.attr,
739 &dev_attr_soft.attr,
740 &dev_attr_hard.attr,
741 NULL,
742};
743ATTRIBUTE_GROUPS(rfkill_dev);
744
745static void rfkill_release(struct device *dev)
746{
747 struct rfkill *rfkill = to_rfkill(dev);
748
749 kfree(rfkill);
750}
751
752static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
753{
754 struct rfkill *rfkill = to_rfkill(dev);
755 unsigned long flags;
756 u32 state;
757 int error;
758
759 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
760 if (error)
761 return error;
762 error = add_uevent_var(env, "RFKILL_TYPE=%s",
763 rfkill_get_type_str(rfkill->type));
764 if (error)
765 return error;
766 spin_lock_irqsave(&rfkill->lock, flags);
767 state = rfkill->state;
768 spin_unlock_irqrestore(&rfkill->lock, flags);
769 error = add_uevent_var(env, "RFKILL_STATE=%d",
770 user_state_from_blocked(state));
771 return error;
772}
773
774void rfkill_pause_polling(struct rfkill *rfkill)
775{
776 BUG_ON(!rfkill);
777
778 if (!rfkill->ops->poll)
779 return;
780
781 cancel_delayed_work_sync(&rfkill->poll_work);
782}
783EXPORT_SYMBOL(rfkill_pause_polling);
784
785void rfkill_resume_polling(struct rfkill *rfkill)
786{
787 BUG_ON(!rfkill);
788
789 if (!rfkill->ops->poll)
790 return;
791
792 queue_delayed_work(system_power_efficient_wq,
793 &rfkill->poll_work, 0);
794}
795EXPORT_SYMBOL(rfkill_resume_polling);
796
797static int rfkill_suspend(struct device *dev, pm_message_t state)
798{
799 struct rfkill *rfkill = to_rfkill(dev);
800
801 rfkill_pause_polling(rfkill);
802
803 return 0;
804}
805
806static int rfkill_resume(struct device *dev)
807{
808 struct rfkill *rfkill = to_rfkill(dev);
809 bool cur;
810
811 if (!rfkill->persistent) {
812 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
813 rfkill_set_block(rfkill, cur);
814 }
815
816 rfkill_resume_polling(rfkill);
817
818 return 0;
819}
820
821static struct class rfkill_class = {
822 .name = "rfkill",
823 .dev_release = rfkill_release,
824 .dev_groups = rfkill_dev_groups,
825 .dev_uevent = rfkill_dev_uevent,
826 .suspend = rfkill_suspend,
827 .resume = rfkill_resume,
828};
829
830bool rfkill_blocked(struct rfkill *rfkill)
831{
832 unsigned long flags;
833 u32 state;
834
835 spin_lock_irqsave(&rfkill->lock, flags);
836 state = rfkill->state;
837 spin_unlock_irqrestore(&rfkill->lock, flags);
838
839 return !!(state & RFKILL_BLOCK_ANY);
840}
841EXPORT_SYMBOL(rfkill_blocked);
842
843
844struct rfkill * __must_check rfkill_alloc(const char *name,
845 struct device *parent,
846 const enum rfkill_type type,
847 const struct rfkill_ops *ops,
848 void *ops_data)
849{
850 struct rfkill *rfkill;
851 struct device *dev;
852
853 if (WARN_ON(!ops))
854 return NULL;
855
856 if (WARN_ON(!ops->set_block))
857 return NULL;
858
859 if (WARN_ON(!name))
860 return NULL;
861
862 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
863 return NULL;
864
865 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
866 if (!rfkill)
867 return NULL;
868
869 spin_lock_init(&rfkill->lock);
870 INIT_LIST_HEAD(&rfkill->node);
871 rfkill->type = type;
872 rfkill->name = name;
873 rfkill->ops = ops;
874 rfkill->data = ops_data;
875
876 dev = &rfkill->dev;
877 dev->class = &rfkill_class;
878 dev->parent = parent;
879 device_initialize(dev);
880
881 return rfkill;
882}
883EXPORT_SYMBOL(rfkill_alloc);
884
885static void rfkill_poll(struct work_struct *work)
886{
887 struct rfkill *rfkill;
888
889 rfkill = container_of(work, struct rfkill, poll_work.work);
890
891 /*
892 * Poll hardware state -- driver will use one of the
893 * rfkill_set{,_hw,_sw}_state functions and use its
894 * return value to update the current status.
895 */
896 rfkill->ops->poll(rfkill, rfkill->data);
897
898 queue_delayed_work(system_power_efficient_wq,
899 &rfkill->poll_work,
900 round_jiffies_relative(POLL_INTERVAL));
901}
902
903static void rfkill_uevent_work(struct work_struct *work)
904{
905 struct rfkill *rfkill;
906
907 rfkill = container_of(work, struct rfkill, uevent_work);
908
909 mutex_lock(&rfkill_global_mutex);
910 rfkill_event(rfkill);
911 mutex_unlock(&rfkill_global_mutex);
912}
913
914static void rfkill_sync_work(struct work_struct *work)
915{
916 struct rfkill *rfkill;
917 bool cur;
918
919 rfkill = container_of(work, struct rfkill, sync_work);
920
921 mutex_lock(&rfkill_global_mutex);
922 cur = rfkill_global_states[rfkill->type].cur;
923 rfkill_set_block(rfkill, cur);
924 mutex_unlock(&rfkill_global_mutex);
925}
926
927int __must_check rfkill_register(struct rfkill *rfkill)
928{
929 static unsigned long rfkill_no;
930 struct device *dev = &rfkill->dev;
931 int error;
932
933 BUG_ON(!rfkill);
934
935 mutex_lock(&rfkill_global_mutex);
936
937 if (rfkill->registered) {
938 error = -EALREADY;
939 goto unlock;
940 }
941
942 rfkill->idx = rfkill_no;
943 dev_set_name(dev, "rfkill%lu", rfkill_no);
944 rfkill_no++;
945
946 list_add_tail(&rfkill->node, &rfkill_list);
947
948 error = device_add(dev);
949 if (error)
950 goto remove;
951
952 error = rfkill_led_trigger_register(rfkill);
953 if (error)
954 goto devdel;
955
956 rfkill->registered = true;
957
958 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
959 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
960 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
961
962 if (rfkill->ops->poll)
963 queue_delayed_work(system_power_efficient_wq,
964 &rfkill->poll_work,
965 round_jiffies_relative(POLL_INTERVAL));
966
967 if (!rfkill->persistent || rfkill_epo_lock_active) {
968 schedule_work(&rfkill->sync_work);
969 } else {
970#ifdef CONFIG_RFKILL_INPUT
971 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
972
973 if (!atomic_read(&rfkill_input_disabled))
974 __rfkill_switch_all(rfkill->type, soft_blocked);
975#endif
976 }
977
978 rfkill_send_events(rfkill, RFKILL_OP_ADD);
979
980 mutex_unlock(&rfkill_global_mutex);
981 return 0;
982
983 devdel:
984 device_del(&rfkill->dev);
985 remove:
986 list_del_init(&rfkill->node);
987 unlock:
988 mutex_unlock(&rfkill_global_mutex);
989 return error;
990}
991EXPORT_SYMBOL(rfkill_register);
992
993void rfkill_unregister(struct rfkill *rfkill)
994{
995 BUG_ON(!rfkill);
996
997 if (rfkill->ops->poll)
998 cancel_delayed_work_sync(&rfkill->poll_work);
999
1000 cancel_work_sync(&rfkill->uevent_work);
1001 cancel_work_sync(&rfkill->sync_work);
1002
1003 rfkill->registered = false;
1004
1005 device_del(&rfkill->dev);
1006
1007 mutex_lock(&rfkill_global_mutex);
1008 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1009 list_del_init(&rfkill->node);
1010 mutex_unlock(&rfkill_global_mutex);
1011
1012 rfkill_led_trigger_unregister(rfkill);
1013}
1014EXPORT_SYMBOL(rfkill_unregister);
1015
1016void rfkill_destroy(struct rfkill *rfkill)
1017{
1018 if (rfkill)
1019 put_device(&rfkill->dev);
1020}
1021EXPORT_SYMBOL(rfkill_destroy);
1022
1023static int rfkill_fop_open(struct inode *inode, struct file *file)
1024{
1025 struct rfkill_data *data;
1026 struct rfkill *rfkill;
1027 struct rfkill_int_event *ev, *tmp;
1028
1029 data = kzalloc(sizeof(*data), GFP_KERNEL);
1030 if (!data)
1031 return -ENOMEM;
1032
1033 INIT_LIST_HEAD(&data->events);
1034 mutex_init(&data->mtx);
1035 init_waitqueue_head(&data->read_wait);
1036
1037 mutex_lock(&rfkill_global_mutex);
1038 mutex_lock(&data->mtx);
1039 /*
1040 * start getting events from elsewhere but hold mtx to get
1041 * startup events added first
1042 */
1043
1044 list_for_each_entry(rfkill, &rfkill_list, node) {
1045 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1046 if (!ev)
1047 goto free;
1048 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1049 list_add_tail(&ev->list, &data->events);
1050 }
1051 list_add(&data->list, &rfkill_fds);
1052 mutex_unlock(&data->mtx);
1053 mutex_unlock(&rfkill_global_mutex);
1054
1055 file->private_data = data;
1056
1057 return nonseekable_open(inode, file);
1058
1059 free:
1060 mutex_unlock(&data->mtx);
1061 mutex_unlock(&rfkill_global_mutex);
1062 mutex_destroy(&data->mtx);
1063 list_for_each_entry_safe(ev, tmp, &data->events, list)
1064 kfree(ev);
1065 kfree(data);
1066 return -ENOMEM;
1067}
1068
1069static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1070{
1071 struct rfkill_data *data = file->private_data;
1072 unsigned int res = POLLOUT | POLLWRNORM;
1073
1074 poll_wait(file, &data->read_wait, wait);
1075
1076 mutex_lock(&data->mtx);
1077 if (!list_empty(&data->events))
1078 res = POLLIN | POLLRDNORM;
1079 mutex_unlock(&data->mtx);
1080
1081 return res;
1082}
1083
1084static bool rfkill_readable(struct rfkill_data *data)
1085{
1086 bool r;
1087
1088 mutex_lock(&data->mtx);
1089 r = !list_empty(&data->events);
1090 mutex_unlock(&data->mtx);
1091
1092 return r;
1093}
1094
1095static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1096 size_t count, loff_t *pos)
1097{
1098 struct rfkill_data *data = file->private_data;
1099 struct rfkill_int_event *ev;
1100 unsigned long sz;
1101 int ret;
1102
1103 mutex_lock(&data->mtx);
1104
1105 while (list_empty(&data->events)) {
1106 if (file->f_flags & O_NONBLOCK) {
1107 ret = -EAGAIN;
1108 goto out;
1109 }
1110 mutex_unlock(&data->mtx);
1111 ret = wait_event_interruptible(data->read_wait,
1112 rfkill_readable(data));
1113 mutex_lock(&data->mtx);
1114
1115 if (ret)
1116 goto out;
1117 }
1118
1119 ev = list_first_entry(&data->events, struct rfkill_int_event,
1120 list);
1121
1122 sz = min_t(unsigned long, sizeof(ev->ev), count);
1123 ret = sz;
1124 if (copy_to_user(buf, &ev->ev, sz))
1125 ret = -EFAULT;
1126
1127 list_del(&ev->list);
1128 kfree(ev);
1129 out:
1130 mutex_unlock(&data->mtx);
1131 return ret;
1132}
1133
1134static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1135 size_t count, loff_t *pos)
1136{
1137 struct rfkill *rfkill;
1138 struct rfkill_event ev;
1139
1140 /* we don't need the 'hard' variable but accept it */
1141 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1142 return -EINVAL;
1143
1144 /*
1145 * Copy as much data as we can accept into our 'ev' buffer,
1146 * but tell userspace how much we've copied so it can determine
1147 * our API version even in a write() call, if it cares.
1148 */
1149 count = min(count, sizeof(ev));
1150 if (copy_from_user(&ev, buf, count))
1151 return -EFAULT;
1152
1153 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1154 return -EINVAL;
1155
1156 if (ev.type >= NUM_RFKILL_TYPES)
1157 return -EINVAL;
1158
1159 mutex_lock(&rfkill_global_mutex);
1160
1161 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1162 if (ev.type == RFKILL_TYPE_ALL) {
1163 enum rfkill_type i;
1164 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1165 rfkill_global_states[i].cur = ev.soft;
1166 } else {
1167 rfkill_global_states[ev.type].cur = ev.soft;
1168 }
1169 }
1170
1171 list_for_each_entry(rfkill, &rfkill_list, node) {
1172 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1173 continue;
1174
1175 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1176 continue;
1177
1178 rfkill_set_block(rfkill, ev.soft);
1179 }
1180 mutex_unlock(&rfkill_global_mutex);
1181
1182 return count;
1183}
1184
1185static int rfkill_fop_release(struct inode *inode, struct file *file)
1186{
1187 struct rfkill_data *data = file->private_data;
1188 struct rfkill_int_event *ev, *tmp;
1189
1190 mutex_lock(&rfkill_global_mutex);
1191 list_del(&data->list);
1192 mutex_unlock(&rfkill_global_mutex);
1193
1194 mutex_destroy(&data->mtx);
1195 list_for_each_entry_safe(ev, tmp, &data->events, list)
1196 kfree(ev);
1197
1198#ifdef CONFIG_RFKILL_INPUT
1199 if (data->input_handler)
1200 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1201 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1202#endif
1203
1204 kfree(data);
1205
1206 return 0;
1207}
1208
1209#ifdef CONFIG_RFKILL_INPUT
1210static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1211 unsigned long arg)
1212{
1213 struct rfkill_data *data = file->private_data;
1214
1215 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1216 return -ENOSYS;
1217
1218 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1219 return -ENOSYS;
1220
1221 mutex_lock(&data->mtx);
1222
1223 if (!data->input_handler) {
1224 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1225 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1226 data->input_handler = true;
1227 }
1228
1229 mutex_unlock(&data->mtx);
1230
1231 return 0;
1232}
1233#endif
1234
1235static const struct file_operations rfkill_fops = {
1236 .owner = THIS_MODULE,
1237 .open = rfkill_fop_open,
1238 .read = rfkill_fop_read,
1239 .write = rfkill_fop_write,
1240 .poll = rfkill_fop_poll,
1241 .release = rfkill_fop_release,
1242#ifdef CONFIG_RFKILL_INPUT
1243 .unlocked_ioctl = rfkill_fop_ioctl,
1244 .compat_ioctl = rfkill_fop_ioctl,
1245#endif
1246 .llseek = no_llseek,
1247};
1248
1249static struct miscdevice rfkill_miscdev = {
1250 .name = "rfkill",
1251 .fops = &rfkill_fops,
1252 .minor = MISC_DYNAMIC_MINOR,
1253};
1254
1255static int __init rfkill_init(void)
1256{
1257 int error;
1258 int i;
1259
1260 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1261 rfkill_global_states[i].cur = !rfkill_default_state;
1262
1263 error = class_register(&rfkill_class);
1264 if (error)
1265 goto out;
1266
1267 error = misc_register(&rfkill_miscdev);
1268 if (error) {
1269 class_unregister(&rfkill_class);
1270 goto out;
1271 }
1272
1273#ifdef CONFIG_RFKILL_INPUT
1274 error = rfkill_handler_init();
1275 if (error) {
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278 goto out;
1279 }
1280#endif
1281
1282 out:
1283 return error;
1284}
1285subsys_initcall(rfkill_init);
1286
1287static void __exit rfkill_exit(void)
1288{
1289#ifdef CONFIG_RFKILL_INPUT
1290 rfkill_handler_exit();
1291#endif
1292 misc_deregister(&rfkill_miscdev);
1293 class_unregister(&rfkill_class);
1294}
1295module_exit(rfkill_exit);