Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/miscdevice.h>
33#include <linux/wait.h>
34#include <linux/poll.h>
35#include <linux/fs.h>
36#include <linux/slab.h>
37
38#include "rfkill.h"
39
40#define POLL_INTERVAL (5 * HZ)
41
42#define RFKILL_BLOCK_HW BIT(0)
43#define RFKILL_BLOCK_SW BIT(1)
44#define RFKILL_BLOCK_SW_PREV BIT(2)
45#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48#define RFKILL_BLOCK_SW_SETCALL BIT(31)
49
50struct rfkill {
51 spinlock_t lock;
52
53 const char *name;
54 enum rfkill_type type;
55
56 unsigned long state;
57
58 u32 idx;
59
60 bool registered;
61 bool persistent;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77};
78#define to_rfkill(d) container_of(d, struct rfkill, dev)
79
80struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
83};
84
85struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
91};
92
93
94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96MODULE_DESCRIPTION("RF switch support");
97MODULE_LICENSE("GPL");
98
99
100/*
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 *
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
110 */
111static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112static DEFINE_MUTEX(rfkill_global_mutex);
113static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114
115static unsigned int rfkill_default_state = 1;
116module_param_named(default_state, rfkill_default_state, uint, 0444);
117MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
119
120static struct {
121 bool cur, sav;
122} rfkill_global_states[NUM_RFKILL_TYPES];
123
124static bool rfkill_epo_lock_active;
125
126
127#ifdef CONFIG_RFKILL_LEDS
128static void rfkill_led_trigger_event(struct rfkill *rfkill)
129{
130 struct led_trigger *trigger;
131
132 if (!rfkill->registered)
133 return;
134
135 trigger = &rfkill->led_trigger;
136
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
141}
142
143static void rfkill_led_trigger_activate(struct led_classdev *led)
144{
145 struct rfkill *rfkill;
146
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148
149 rfkill_led_trigger_event(rfkill);
150}
151
152static int rfkill_led_trigger_register(struct rfkill *rfkill)
153{
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
158}
159
160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
161{
162 led_trigger_unregister(&rfkill->led_trigger);
163}
164#else
165static void rfkill_led_trigger_event(struct rfkill *rfkill)
166{
167}
168
169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
170{
171 return 0;
172}
173
174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175{
176}
177#endif /* CONFIG_RFKILL_LEDS */
178
179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
181{
182 unsigned long flags;
183
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
187
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
193}
194
195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
196{
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
199
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
209 }
210}
211
212static void rfkill_event(struct rfkill *rfkill)
213{
214 if (!rfkill->registered)
215 return;
216
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
218
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
221}
222
223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
225{
226 unsigned long flags;
227 bool prev, any;
228
229 BUG_ON(!rfkill);
230
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
240
241 rfkill_led_trigger_event(rfkill);
242
243 return any;
244}
245
246/**
247 * rfkill_set_block - wrapper for set_block method
248 *
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
251 *
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
254 */
255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
256{
257 unsigned long flags;
258 int err;
259
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
262
263 /*
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
267 */
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
270
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
276
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
281
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
284
285 err = rfkill->ops->set_block(rfkill->data, blocked);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
289 /*
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
293 */
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
298 }
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
305}
306
307#ifdef CONFIG_RFKILL_INPUT
308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
309
310/**
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
314 *
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
318 *
319 * Caller must have acquired rfkill_global_mutex.
320 */
321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
322{
323 struct rfkill *rfkill;
324
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
329
330 rfkill_set_block(rfkill, blocked);
331 }
332}
333
334/**
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
338 *
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
341 *
342 * Does nothing if the EPO lock is active.
343 */
344void rfkill_switch_all(enum rfkill_type type, bool blocked)
345{
346 if (atomic_read(&rfkill_input_disabled))
347 return;
348
349 mutex_lock(&rfkill_global_mutex);
350
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
353
354 mutex_unlock(&rfkill_global_mutex);
355}
356
357/**
358 * rfkill_epo - emergency power off all transmitters
359 *
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
362 *
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
365 */
366void rfkill_epo(void)
367{
368 struct rfkill *rfkill;
369 int i;
370
371 if (atomic_read(&rfkill_input_disabled))
372 return;
373
374 mutex_lock(&rfkill_global_mutex);
375
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
383 }
384
385 mutex_unlock(&rfkill_global_mutex);
386}
387
388/**
389 * rfkill_restore_states - restore global states
390 *
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
394 */
395void rfkill_restore_states(void)
396{
397 int i;
398
399 if (atomic_read(&rfkill_input_disabled))
400 return;
401
402 mutex_lock(&rfkill_global_mutex);
403
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
408}
409
410/**
411 * rfkill_remove_epo_lock - unlock state changes
412 *
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
415 */
416void rfkill_remove_epo_lock(void)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
424}
425
426/**
427 * rfkill_is_epo_lock_active - returns true EPO is active
428 *
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
432 *
433 * Can be called in atomic context.
434 */
435bool rfkill_is_epo_lock_active(void)
436{
437 return rfkill_epo_lock_active;
438}
439
440/**
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
443 *
444 * Returns the current global state for a given wireless
445 * device type.
446 */
447bool rfkill_get_global_sw_state(const enum rfkill_type type)
448{
449 return rfkill_global_states[type].cur;
450}
451#endif
452
453
454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
455{
456 bool ret, change;
457
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
459
460 if (!rfkill->registered)
461 return ret;
462
463 if (change)
464 schedule_work(&rfkill->uevent_work);
465
466 return ret;
467}
468EXPORT_SYMBOL(rfkill_set_hw_state);
469
470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
471{
472 u32 bit = RFKILL_BLOCK_SW;
473
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
477
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
482}
483
484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
485{
486 unsigned long flags;
487 bool prev, hwblock;
488
489 BUG_ON(!rfkill);
490
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
497
498 if (!rfkill->registered)
499 return blocked;
500
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
503
504 rfkill_led_trigger_event(rfkill);
505
506 return blocked;
507}
508EXPORT_SYMBOL(rfkill_set_sw_state);
509
510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
511{
512 unsigned long flags;
513
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
516
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
521}
522EXPORT_SYMBOL(rfkill_init_sw_state);
523
524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525{
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
544
545 spin_unlock_irqrestore(&rfkill->lock, flags);
546
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
552
553 rfkill_led_trigger_event(rfkill);
554 }
555}
556EXPORT_SYMBOL(rfkill_set_states);
557
558static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
561{
562 struct rfkill *rfkill = to_rfkill(dev);
563
564 return sprintf(buf, "%s\n", rfkill->name);
565}
566
567static const char *rfkill_get_type_str(enum rfkill_type type)
568{
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
570
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
588 }
589}
590
591static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct rfkill *rfkill = to_rfkill(dev);
596
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
598}
599
600static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
603{
604 struct rfkill *rfkill = to_rfkill(dev);
605
606 return sprintf(buf, "%d\n", rfkill->idx);
607}
608
609static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
612{
613 struct rfkill *rfkill = to_rfkill(dev);
614
615 return sprintf(buf, "%d\n", rfkill->persistent);
616}
617
618static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
621{
622 struct rfkill *rfkill = to_rfkill(dev);
623
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
625}
626
627static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
630{
631 struct rfkill *rfkill = to_rfkill(dev);
632
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
634}
635
636static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
639{
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
643
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
646
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
650
651 if (state > 1 )
652 return -EINVAL;
653
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
657
658 return err ?: count;
659}
660
661static u8 user_state_from_blocked(unsigned long state)
662{
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
667
668 return RFKILL_USER_STATE_UNBLOCKED;
669}
670
671static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
674{
675 struct rfkill *rfkill = to_rfkill(dev);
676
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
678}
679
680static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
683{
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
687
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
690
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
694
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
698
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
702
703 return err ?: count;
704}
705
706static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 return sprintf(buf, "%d\n", 0);
711}
712
713static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
716{
717 return -EOPNOTSUPP;
718}
719
720static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
730};
731
732static void rfkill_release(struct device *dev)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 kfree(rfkill);
737}
738
739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
740{
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
745
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
759}
760
761void rfkill_pause_polling(struct rfkill *rfkill)
762{
763 BUG_ON(!rfkill);
764
765 if (!rfkill->ops->poll)
766 return;
767
768 cancel_delayed_work_sync(&rfkill->poll_work);
769}
770EXPORT_SYMBOL(rfkill_pause_polling);
771
772void rfkill_resume_polling(struct rfkill *rfkill)
773{
774 BUG_ON(!rfkill);
775
776 if (!rfkill->ops->poll)
777 return;
778
779 schedule_work(&rfkill->poll_work.work);
780}
781EXPORT_SYMBOL(rfkill_resume_polling);
782
783static int rfkill_suspend(struct device *dev, pm_message_t state)
784{
785 struct rfkill *rfkill = to_rfkill(dev);
786
787 rfkill_pause_polling(rfkill);
788
789 return 0;
790}
791
792static int rfkill_resume(struct device *dev)
793{
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
796
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
800 }
801
802 rfkill_resume_polling(rfkill);
803
804 return 0;
805}
806
807static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
814};
815
816bool rfkill_blocked(struct rfkill *rfkill)
817{
818 unsigned long flags;
819 u32 state;
820
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
824
825 return !!(state & RFKILL_BLOCK_ANY);
826}
827EXPORT_SYMBOL(rfkill_blocked);
828
829
830struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
835{
836 struct rfkill *rfkill;
837 struct device *dev;
838
839 if (WARN_ON(!ops))
840 return NULL;
841
842 if (WARN_ON(!ops->set_block))
843 return NULL;
844
845 if (WARN_ON(!name))
846 return NULL;
847
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
850
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
854
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
861
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
866
867 return rfkill;
868}
869EXPORT_SYMBOL(rfkill_alloc);
870
871static void rfkill_poll(struct work_struct *work)
872{
873 struct rfkill *rfkill;
874
875 rfkill = container_of(work, struct rfkill, poll_work.work);
876
877 /*
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
881 */
882 rfkill->ops->poll(rfkill, rfkill->data);
883
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
886}
887
888static void rfkill_uevent_work(struct work_struct *work)
889{
890 struct rfkill *rfkill;
891
892 rfkill = container_of(work, struct rfkill, uevent_work);
893
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
897}
898
899static void rfkill_sync_work(struct work_struct *work)
900{
901 struct rfkill *rfkill;
902 bool cur;
903
904 rfkill = container_of(work, struct rfkill, sync_work);
905
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
910}
911
912int __must_check rfkill_register(struct rfkill *rfkill)
913{
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
917
918 BUG_ON(!rfkill);
919
920 mutex_lock(&rfkill_global_mutex);
921
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
925 }
926
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
930
931 list_add_tail(&rfkill->node, &rfkill_list);
932
933 error = device_add(dev);
934 if (error)
935 goto remove;
936
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
940
941 rfkill->registered = true;
942
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
946
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
950
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954#ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
956
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959#endif
960 }
961
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
963
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
966
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
974}
975EXPORT_SYMBOL(rfkill_register);
976
977void rfkill_unregister(struct rfkill *rfkill)
978{
979 BUG_ON(!rfkill);
980
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
983
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
986
987 rfkill->registered = false;
988
989 device_del(&rfkill->dev);
990
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
995
996 rfkill_led_trigger_unregister(rfkill);
997}
998EXPORT_SYMBOL(rfkill_unregister);
999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1012
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1016
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1020
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1023 /*
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1026 */
1027
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1034 }
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1038
1039 file->private_data = data;
1040
1041 return nonseekable_open(inode, file);
1042
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1057
1058 poll_wait(file, &data->read_wait, wait);
1059
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1064
1065 return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070 bool r;
1071
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1075
1076 return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1081{
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1086
1087 mutex_lock(&data->mtx);
1088
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1098
1099 if (ret)
1100 goto out;
1101 }
1102
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1105
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1110
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1120{
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1123
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1127
1128 /*
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1132 */
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1136
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1139
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1142
1143 mutex_lock(&rfkill_global_mutex);
1144
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1152 }
1153 }
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1158
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1161
1162 rfkill_set_block(rfkill, ev.soft);
1163 }
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1173
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1177
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188 kfree(data);
1189
1190 return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1196{
1197 struct rfkill_data *data = file->private_data;
1198
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1201
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1204
1205 mutex_lock(&data->mtx);
1206
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1211 }
1212
1213 mutex_unlock(&data->mtx);
1214
1215 return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229#endif
1230 .llseek = no_llseek,
1231};
1232
1233static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241 int error;
1242 int i;
1243
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1250
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1255 }
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1263 }
1264#endif
1265
1266 out:
1267 return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275#endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/device.h>
33#include <linux/miscdevice.h>
34#include <linux/wait.h>
35#include <linux/poll.h>
36#include <linux/fs.h>
37#include <linux/slab.h>
38
39#include "rfkill.h"
40
41#define POLL_INTERVAL (5 * HZ)
42
43#define RFKILL_BLOCK_HW BIT(0)
44#define RFKILL_BLOCK_SW BIT(1)
45#define RFKILL_BLOCK_SW_PREV BIT(2)
46#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
47 RFKILL_BLOCK_SW |\
48 RFKILL_BLOCK_SW_PREV)
49#define RFKILL_BLOCK_SW_SETCALL BIT(31)
50
51struct rfkill {
52 spinlock_t lock;
53
54 const char *name;
55 enum rfkill_type type;
56
57 unsigned long state;
58
59 u32 idx;
60
61 bool registered;
62 bool persistent;
63
64 const struct rfkill_ops *ops;
65 void *data;
66
67#ifdef CONFIG_RFKILL_LEDS
68 struct led_trigger led_trigger;
69 const char *ledtrigname;
70#endif
71
72 struct device dev;
73 struct list_head node;
74
75 struct delayed_work poll_work;
76 struct work_struct uevent_work;
77 struct work_struct sync_work;
78};
79#define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84};
85
86struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92};
93
94
95MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97MODULE_DESCRIPTION("RF switch support");
98MODULE_LICENSE("GPL");
99
100
101/*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113static DEFINE_MUTEX(rfkill_global_mutex);
114static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116static unsigned int rfkill_default_state = 1;
117module_param_named(default_state, rfkill_default_state, uint, 0444);
118MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121static struct {
122 bool cur, sav;
123} rfkill_global_states[NUM_RFKILL_TYPES];
124
125static bool rfkill_epo_lock_active;
126
127
128#ifdef CONFIG_RFKILL_LEDS
129static void rfkill_led_trigger_event(struct rfkill *rfkill)
130{
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142}
143
144static void rfkill_led_trigger_activate(struct led_classdev *led)
145{
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151}
152
153static int rfkill_led_trigger_register(struct rfkill *rfkill)
154{
155 rfkill->led_trigger.name = rfkill->ledtrigname
156 ? : dev_name(&rfkill->dev);
157 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
158 return led_trigger_register(&rfkill->led_trigger);
159}
160
161static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
162{
163 led_trigger_unregister(&rfkill->led_trigger);
164}
165#else
166static void rfkill_led_trigger_event(struct rfkill *rfkill)
167{
168}
169
170static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
171{
172 return 0;
173}
174
175static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176{
177}
178#endif /* CONFIG_RFKILL_LEDS */
179
180static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
181 enum rfkill_operation op)
182{
183 unsigned long flags;
184
185 ev->idx = rfkill->idx;
186 ev->type = rfkill->type;
187 ev->op = op;
188
189 spin_lock_irqsave(&rfkill->lock, flags);
190 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
191 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
192 RFKILL_BLOCK_SW_PREV));
193 spin_unlock_irqrestore(&rfkill->lock, flags);
194}
195
196static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
197{
198 struct rfkill_data *data;
199 struct rfkill_int_event *ev;
200
201 list_for_each_entry(data, &rfkill_fds, list) {
202 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
203 if (!ev)
204 continue;
205 rfkill_fill_event(&ev->ev, rfkill, op);
206 mutex_lock(&data->mtx);
207 list_add_tail(&ev->list, &data->events);
208 mutex_unlock(&data->mtx);
209 wake_up_interruptible(&data->read_wait);
210 }
211}
212
213static void rfkill_event(struct rfkill *rfkill)
214{
215 if (!rfkill->registered)
216 return;
217
218 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
219
220 /* also send event to /dev/rfkill */
221 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
222}
223
224static bool __rfkill_set_hw_state(struct rfkill *rfkill,
225 bool blocked, bool *change)
226{
227 unsigned long flags;
228 bool prev, any;
229
230 BUG_ON(!rfkill);
231
232 spin_lock_irqsave(&rfkill->lock, flags);
233 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
234 if (blocked)
235 rfkill->state |= RFKILL_BLOCK_HW;
236 else
237 rfkill->state &= ~RFKILL_BLOCK_HW;
238 *change = prev != blocked;
239 any = !!(rfkill->state & RFKILL_BLOCK_ANY);
240 spin_unlock_irqrestore(&rfkill->lock, flags);
241
242 rfkill_led_trigger_event(rfkill);
243
244 return any;
245}
246
247/**
248 * rfkill_set_block - wrapper for set_block method
249 *
250 * @rfkill: the rfkill struct to use
251 * @blocked: the new software state
252 *
253 * Calls the set_block method (when applicable) and handles notifications
254 * etc. as well.
255 */
256static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
257{
258 unsigned long flags;
259 int err;
260
261 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
262 return;
263
264 /*
265 * Some platforms (...!) generate input events which affect the
266 * _hard_ kill state -- whenever something tries to change the
267 * current software state query the hardware state too.
268 */
269 if (rfkill->ops->query)
270 rfkill->ops->query(rfkill, rfkill->data);
271
272 spin_lock_irqsave(&rfkill->lock, flags);
273 if (rfkill->state & RFKILL_BLOCK_SW)
274 rfkill->state |= RFKILL_BLOCK_SW_PREV;
275 else
276 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
277
278 if (blocked)
279 rfkill->state |= RFKILL_BLOCK_SW;
280 else
281 rfkill->state &= ~RFKILL_BLOCK_SW;
282
283 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
284 spin_unlock_irqrestore(&rfkill->lock, flags);
285
286 err = rfkill->ops->set_block(rfkill->data, blocked);
287
288 spin_lock_irqsave(&rfkill->lock, flags);
289 if (err) {
290 /*
291 * Failed -- reset status to _prev, this may be different
292 * from what set set _PREV to earlier in this function
293 * if rfkill_set_sw_state was invoked.
294 */
295 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
296 rfkill->state |= RFKILL_BLOCK_SW;
297 else
298 rfkill->state &= ~RFKILL_BLOCK_SW;
299 }
300 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
301 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
302 spin_unlock_irqrestore(&rfkill->lock, flags);
303
304 rfkill_led_trigger_event(rfkill);
305 rfkill_event(rfkill);
306}
307
308#ifdef CONFIG_RFKILL_INPUT
309static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
310
311/**
312 * __rfkill_switch_all - Toggle state of all switches of given type
313 * @type: type of interfaces to be affected
314 * @state: the new state
315 *
316 * This function sets the state of all switches of given type,
317 * unless a specific switch is claimed by userspace (in which case,
318 * that switch is left alone) or suspended.
319 *
320 * Caller must have acquired rfkill_global_mutex.
321 */
322static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
323{
324 struct rfkill *rfkill;
325
326 rfkill_global_states[type].cur = blocked;
327 list_for_each_entry(rfkill, &rfkill_list, node) {
328 if (rfkill->type != type)
329 continue;
330
331 rfkill_set_block(rfkill, blocked);
332 }
333}
334
335/**
336 * rfkill_switch_all - Toggle state of all switches of given type
337 * @type: type of interfaces to be affected
338 * @state: the new state
339 *
340 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
341 * Please refer to __rfkill_switch_all() for details.
342 *
343 * Does nothing if the EPO lock is active.
344 */
345void rfkill_switch_all(enum rfkill_type type, bool blocked)
346{
347 if (atomic_read(&rfkill_input_disabled))
348 return;
349
350 mutex_lock(&rfkill_global_mutex);
351
352 if (!rfkill_epo_lock_active)
353 __rfkill_switch_all(type, blocked);
354
355 mutex_unlock(&rfkill_global_mutex);
356}
357
358/**
359 * rfkill_epo - emergency power off all transmitters
360 *
361 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
362 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
363 *
364 * The global state before the EPO is saved and can be restored later
365 * using rfkill_restore_states().
366 */
367void rfkill_epo(void)
368{
369 struct rfkill *rfkill;
370 int i;
371
372 if (atomic_read(&rfkill_input_disabled))
373 return;
374
375 mutex_lock(&rfkill_global_mutex);
376
377 rfkill_epo_lock_active = true;
378 list_for_each_entry(rfkill, &rfkill_list, node)
379 rfkill_set_block(rfkill, true);
380
381 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
382 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
383 rfkill_global_states[i].cur = true;
384 }
385
386 mutex_unlock(&rfkill_global_mutex);
387}
388
389/**
390 * rfkill_restore_states - restore global states
391 *
392 * Restore (and sync switches to) the global state from the
393 * states in rfkill_default_states. This can undo the effects of
394 * a call to rfkill_epo().
395 */
396void rfkill_restore_states(void)
397{
398 int i;
399
400 if (atomic_read(&rfkill_input_disabled))
401 return;
402
403 mutex_lock(&rfkill_global_mutex);
404
405 rfkill_epo_lock_active = false;
406 for (i = 0; i < NUM_RFKILL_TYPES; i++)
407 __rfkill_switch_all(i, rfkill_global_states[i].sav);
408 mutex_unlock(&rfkill_global_mutex);
409}
410
411/**
412 * rfkill_remove_epo_lock - unlock state changes
413 *
414 * Used by rfkill-input manually unlock state changes, when
415 * the EPO switch is deactivated.
416 */
417void rfkill_remove_epo_lock(void)
418{
419 if (atomic_read(&rfkill_input_disabled))
420 return;
421
422 mutex_lock(&rfkill_global_mutex);
423 rfkill_epo_lock_active = false;
424 mutex_unlock(&rfkill_global_mutex);
425}
426
427/**
428 * rfkill_is_epo_lock_active - returns true EPO is active
429 *
430 * Returns 0 (false) if there is NOT an active EPO contidion,
431 * and 1 (true) if there is an active EPO contition, which
432 * locks all radios in one of the BLOCKED states.
433 *
434 * Can be called in atomic context.
435 */
436bool rfkill_is_epo_lock_active(void)
437{
438 return rfkill_epo_lock_active;
439}
440
441/**
442 * rfkill_get_global_sw_state - returns global state for a type
443 * @type: the type to get the global state of
444 *
445 * Returns the current global state for a given wireless
446 * device type.
447 */
448bool rfkill_get_global_sw_state(const enum rfkill_type type)
449{
450 return rfkill_global_states[type].cur;
451}
452#endif
453
454
455bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
456{
457 bool ret, change;
458
459 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
460
461 if (!rfkill->registered)
462 return ret;
463
464 if (change)
465 schedule_work(&rfkill->uevent_work);
466
467 return ret;
468}
469EXPORT_SYMBOL(rfkill_set_hw_state);
470
471static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
472{
473 u32 bit = RFKILL_BLOCK_SW;
474
475 /* if in a ops->set_block right now, use other bit */
476 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
477 bit = RFKILL_BLOCK_SW_PREV;
478
479 if (blocked)
480 rfkill->state |= bit;
481 else
482 rfkill->state &= ~bit;
483}
484
485bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
486{
487 unsigned long flags;
488 bool prev, hwblock;
489
490 BUG_ON(!rfkill);
491
492 spin_lock_irqsave(&rfkill->lock, flags);
493 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
494 __rfkill_set_sw_state(rfkill, blocked);
495 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
496 blocked = blocked || hwblock;
497 spin_unlock_irqrestore(&rfkill->lock, flags);
498
499 if (!rfkill->registered)
500 return blocked;
501
502 if (prev != blocked && !hwblock)
503 schedule_work(&rfkill->uevent_work);
504
505 rfkill_led_trigger_event(rfkill);
506
507 return blocked;
508}
509EXPORT_SYMBOL(rfkill_set_sw_state);
510
511void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
512{
513 unsigned long flags;
514
515 BUG_ON(!rfkill);
516 BUG_ON(rfkill->registered);
517
518 spin_lock_irqsave(&rfkill->lock, flags);
519 __rfkill_set_sw_state(rfkill, blocked);
520 rfkill->persistent = true;
521 spin_unlock_irqrestore(&rfkill->lock, flags);
522}
523EXPORT_SYMBOL(rfkill_init_sw_state);
524
525void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
526{
527 unsigned long flags;
528 bool swprev, hwprev;
529
530 BUG_ON(!rfkill);
531
532 spin_lock_irqsave(&rfkill->lock, flags);
533
534 /*
535 * No need to care about prev/setblock ... this is for uevent only
536 * and that will get triggered by rfkill_set_block anyway.
537 */
538 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
539 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
540 __rfkill_set_sw_state(rfkill, sw);
541 if (hw)
542 rfkill->state |= RFKILL_BLOCK_HW;
543 else
544 rfkill->state &= ~RFKILL_BLOCK_HW;
545
546 spin_unlock_irqrestore(&rfkill->lock, flags);
547
548 if (!rfkill->registered) {
549 rfkill->persistent = true;
550 } else {
551 if (swprev != sw || hwprev != hw)
552 schedule_work(&rfkill->uevent_work);
553
554 rfkill_led_trigger_event(rfkill);
555 }
556}
557EXPORT_SYMBOL(rfkill_set_states);
558
559static ssize_t rfkill_name_show(struct device *dev,
560 struct device_attribute *attr,
561 char *buf)
562{
563 struct rfkill *rfkill = to_rfkill(dev);
564
565 return sprintf(buf, "%s\n", rfkill->name);
566}
567
568static const char *rfkill_get_type_str(enum rfkill_type type)
569{
570 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
571
572 switch (type) {
573 case RFKILL_TYPE_WLAN:
574 return "wlan";
575 case RFKILL_TYPE_BLUETOOTH:
576 return "bluetooth";
577 case RFKILL_TYPE_UWB:
578 return "ultrawideband";
579 case RFKILL_TYPE_WIMAX:
580 return "wimax";
581 case RFKILL_TYPE_WWAN:
582 return "wwan";
583 case RFKILL_TYPE_GPS:
584 return "gps";
585 case RFKILL_TYPE_FM:
586 return "fm";
587 default:
588 BUG();
589 }
590}
591
592static ssize_t rfkill_type_show(struct device *dev,
593 struct device_attribute *attr,
594 char *buf)
595{
596 struct rfkill *rfkill = to_rfkill(dev);
597
598 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
599}
600
601static ssize_t rfkill_idx_show(struct device *dev,
602 struct device_attribute *attr,
603 char *buf)
604{
605 struct rfkill *rfkill = to_rfkill(dev);
606
607 return sprintf(buf, "%d\n", rfkill->idx);
608}
609
610static ssize_t rfkill_persistent_show(struct device *dev,
611 struct device_attribute *attr,
612 char *buf)
613{
614 struct rfkill *rfkill = to_rfkill(dev);
615
616 return sprintf(buf, "%d\n", rfkill->persistent);
617}
618
619static ssize_t rfkill_hard_show(struct device *dev,
620 struct device_attribute *attr,
621 char *buf)
622{
623 struct rfkill *rfkill = to_rfkill(dev);
624
625 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
626}
627
628static ssize_t rfkill_soft_show(struct device *dev,
629 struct device_attribute *attr,
630 char *buf)
631{
632 struct rfkill *rfkill = to_rfkill(dev);
633
634 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
635}
636
637static ssize_t rfkill_soft_store(struct device *dev,
638 struct device_attribute *attr,
639 const char *buf, size_t count)
640{
641 struct rfkill *rfkill = to_rfkill(dev);
642 unsigned long state;
643 int err;
644
645 if (!capable(CAP_NET_ADMIN))
646 return -EPERM;
647
648 err = kstrtoul(buf, 0, &state);
649 if (err)
650 return err;
651
652 if (state > 1 )
653 return -EINVAL;
654
655 mutex_lock(&rfkill_global_mutex);
656 rfkill_set_block(rfkill, state);
657 mutex_unlock(&rfkill_global_mutex);
658
659 return err ?: count;
660}
661
662static u8 user_state_from_blocked(unsigned long state)
663{
664 if (state & RFKILL_BLOCK_HW)
665 return RFKILL_USER_STATE_HARD_BLOCKED;
666 if (state & RFKILL_BLOCK_SW)
667 return RFKILL_USER_STATE_SOFT_BLOCKED;
668
669 return RFKILL_USER_STATE_UNBLOCKED;
670}
671
672static ssize_t rfkill_state_show(struct device *dev,
673 struct device_attribute *attr,
674 char *buf)
675{
676 struct rfkill *rfkill = to_rfkill(dev);
677
678 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
679}
680
681static ssize_t rfkill_state_store(struct device *dev,
682 struct device_attribute *attr,
683 const char *buf, size_t count)
684{
685 struct rfkill *rfkill = to_rfkill(dev);
686 unsigned long state;
687 int err;
688
689 if (!capable(CAP_NET_ADMIN))
690 return -EPERM;
691
692 err = kstrtoul(buf, 0, &state);
693 if (err)
694 return err;
695
696 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
697 state != RFKILL_USER_STATE_UNBLOCKED)
698 return -EINVAL;
699
700 mutex_lock(&rfkill_global_mutex);
701 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
702 mutex_unlock(&rfkill_global_mutex);
703
704 return err ?: count;
705}
706
707static ssize_t rfkill_claim_show(struct device *dev,
708 struct device_attribute *attr,
709 char *buf)
710{
711 return sprintf(buf, "%d\n", 0);
712}
713
714static ssize_t rfkill_claim_store(struct device *dev,
715 struct device_attribute *attr,
716 const char *buf, size_t count)
717{
718 return -EOPNOTSUPP;
719}
720
721static struct device_attribute rfkill_dev_attrs[] = {
722 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
723 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
724 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
725 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
726 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
727 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
728 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
729 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
730 __ATTR_NULL
731};
732
733static void rfkill_release(struct device *dev)
734{
735 struct rfkill *rfkill = to_rfkill(dev);
736
737 kfree(rfkill);
738}
739
740static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
741{
742 struct rfkill *rfkill = to_rfkill(dev);
743 unsigned long flags;
744 u32 state;
745 int error;
746
747 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
748 if (error)
749 return error;
750 error = add_uevent_var(env, "RFKILL_TYPE=%s",
751 rfkill_get_type_str(rfkill->type));
752 if (error)
753 return error;
754 spin_lock_irqsave(&rfkill->lock, flags);
755 state = rfkill->state;
756 spin_unlock_irqrestore(&rfkill->lock, flags);
757 error = add_uevent_var(env, "RFKILL_STATE=%d",
758 user_state_from_blocked(state));
759 return error;
760}
761
762void rfkill_pause_polling(struct rfkill *rfkill)
763{
764 BUG_ON(!rfkill);
765
766 if (!rfkill->ops->poll)
767 return;
768
769 cancel_delayed_work_sync(&rfkill->poll_work);
770}
771EXPORT_SYMBOL(rfkill_pause_polling);
772
773void rfkill_resume_polling(struct rfkill *rfkill)
774{
775 BUG_ON(!rfkill);
776
777 if (!rfkill->ops->poll)
778 return;
779
780 schedule_work(&rfkill->poll_work.work);
781}
782EXPORT_SYMBOL(rfkill_resume_polling);
783
784static int rfkill_suspend(struct device *dev, pm_message_t state)
785{
786 struct rfkill *rfkill = to_rfkill(dev);
787
788 rfkill_pause_polling(rfkill);
789
790 return 0;
791}
792
793static int rfkill_resume(struct device *dev)
794{
795 struct rfkill *rfkill = to_rfkill(dev);
796 bool cur;
797
798 if (!rfkill->persistent) {
799 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
800 rfkill_set_block(rfkill, cur);
801 }
802
803 rfkill_resume_polling(rfkill);
804
805 return 0;
806}
807
808static struct class rfkill_class = {
809 .name = "rfkill",
810 .dev_release = rfkill_release,
811 .dev_attrs = rfkill_dev_attrs,
812 .dev_uevent = rfkill_dev_uevent,
813 .suspend = rfkill_suspend,
814 .resume = rfkill_resume,
815};
816
817bool rfkill_blocked(struct rfkill *rfkill)
818{
819 unsigned long flags;
820 u32 state;
821
822 spin_lock_irqsave(&rfkill->lock, flags);
823 state = rfkill->state;
824 spin_unlock_irqrestore(&rfkill->lock, flags);
825
826 return !!(state & RFKILL_BLOCK_ANY);
827}
828EXPORT_SYMBOL(rfkill_blocked);
829
830
831struct rfkill * __must_check rfkill_alloc(const char *name,
832 struct device *parent,
833 const enum rfkill_type type,
834 const struct rfkill_ops *ops,
835 void *ops_data)
836{
837 struct rfkill *rfkill;
838 struct device *dev;
839
840 if (WARN_ON(!ops))
841 return NULL;
842
843 if (WARN_ON(!ops->set_block))
844 return NULL;
845
846 if (WARN_ON(!name))
847 return NULL;
848
849 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
850 return NULL;
851
852 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
853 if (!rfkill)
854 return NULL;
855
856 spin_lock_init(&rfkill->lock);
857 INIT_LIST_HEAD(&rfkill->node);
858 rfkill->type = type;
859 rfkill->name = name;
860 rfkill->ops = ops;
861 rfkill->data = ops_data;
862
863 dev = &rfkill->dev;
864 dev->class = &rfkill_class;
865 dev->parent = parent;
866 device_initialize(dev);
867
868 return rfkill;
869}
870EXPORT_SYMBOL(rfkill_alloc);
871
872static void rfkill_poll(struct work_struct *work)
873{
874 struct rfkill *rfkill;
875
876 rfkill = container_of(work, struct rfkill, poll_work.work);
877
878 /*
879 * Poll hardware state -- driver will use one of the
880 * rfkill_set{,_hw,_sw}_state functions and use its
881 * return value to update the current status.
882 */
883 rfkill->ops->poll(rfkill, rfkill->data);
884
885 schedule_delayed_work(&rfkill->poll_work,
886 round_jiffies_relative(POLL_INTERVAL));
887}
888
889static void rfkill_uevent_work(struct work_struct *work)
890{
891 struct rfkill *rfkill;
892
893 rfkill = container_of(work, struct rfkill, uevent_work);
894
895 mutex_lock(&rfkill_global_mutex);
896 rfkill_event(rfkill);
897 mutex_unlock(&rfkill_global_mutex);
898}
899
900static void rfkill_sync_work(struct work_struct *work)
901{
902 struct rfkill *rfkill;
903 bool cur;
904
905 rfkill = container_of(work, struct rfkill, sync_work);
906
907 mutex_lock(&rfkill_global_mutex);
908 cur = rfkill_global_states[rfkill->type].cur;
909 rfkill_set_block(rfkill, cur);
910 mutex_unlock(&rfkill_global_mutex);
911}
912
913int __must_check rfkill_register(struct rfkill *rfkill)
914{
915 static unsigned long rfkill_no;
916 struct device *dev = &rfkill->dev;
917 int error;
918
919 BUG_ON(!rfkill);
920
921 mutex_lock(&rfkill_global_mutex);
922
923 if (rfkill->registered) {
924 error = -EALREADY;
925 goto unlock;
926 }
927
928 rfkill->idx = rfkill_no;
929 dev_set_name(dev, "rfkill%lu", rfkill_no);
930 rfkill_no++;
931
932 list_add_tail(&rfkill->node, &rfkill_list);
933
934 error = device_add(dev);
935 if (error)
936 goto remove;
937
938 error = rfkill_led_trigger_register(rfkill);
939 if (error)
940 goto devdel;
941
942 rfkill->registered = true;
943
944 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
945 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
946 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
947
948 if (rfkill->ops->poll)
949 schedule_delayed_work(&rfkill->poll_work,
950 round_jiffies_relative(POLL_INTERVAL));
951
952 if (!rfkill->persistent || rfkill_epo_lock_active) {
953 schedule_work(&rfkill->sync_work);
954 } else {
955#ifdef CONFIG_RFKILL_INPUT
956 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
957
958 if (!atomic_read(&rfkill_input_disabled))
959 __rfkill_switch_all(rfkill->type, soft_blocked);
960#endif
961 }
962
963 rfkill_send_events(rfkill, RFKILL_OP_ADD);
964
965 mutex_unlock(&rfkill_global_mutex);
966 return 0;
967
968 devdel:
969 device_del(&rfkill->dev);
970 remove:
971 list_del_init(&rfkill->node);
972 unlock:
973 mutex_unlock(&rfkill_global_mutex);
974 return error;
975}
976EXPORT_SYMBOL(rfkill_register);
977
978void rfkill_unregister(struct rfkill *rfkill)
979{
980 BUG_ON(!rfkill);
981
982 if (rfkill->ops->poll)
983 cancel_delayed_work_sync(&rfkill->poll_work);
984
985 cancel_work_sync(&rfkill->uevent_work);
986 cancel_work_sync(&rfkill->sync_work);
987
988 rfkill->registered = false;
989
990 device_del(&rfkill->dev);
991
992 mutex_lock(&rfkill_global_mutex);
993 rfkill_send_events(rfkill, RFKILL_OP_DEL);
994 list_del_init(&rfkill->node);
995 mutex_unlock(&rfkill_global_mutex);
996
997 rfkill_led_trigger_unregister(rfkill);
998}
999EXPORT_SYMBOL(rfkill_unregister);
1000
1001void rfkill_destroy(struct rfkill *rfkill)
1002{
1003 if (rfkill)
1004 put_device(&rfkill->dev);
1005}
1006EXPORT_SYMBOL(rfkill_destroy);
1007
1008static int rfkill_fop_open(struct inode *inode, struct file *file)
1009{
1010 struct rfkill_data *data;
1011 struct rfkill *rfkill;
1012 struct rfkill_int_event *ev, *tmp;
1013
1014 data = kzalloc(sizeof(*data), GFP_KERNEL);
1015 if (!data)
1016 return -ENOMEM;
1017
1018 INIT_LIST_HEAD(&data->events);
1019 mutex_init(&data->mtx);
1020 init_waitqueue_head(&data->read_wait);
1021
1022 mutex_lock(&rfkill_global_mutex);
1023 mutex_lock(&data->mtx);
1024 /*
1025 * start getting events from elsewhere but hold mtx to get
1026 * startup events added first
1027 */
1028
1029 list_for_each_entry(rfkill, &rfkill_list, node) {
1030 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1031 if (!ev)
1032 goto free;
1033 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1034 list_add_tail(&ev->list, &data->events);
1035 }
1036 list_add(&data->list, &rfkill_fds);
1037 mutex_unlock(&data->mtx);
1038 mutex_unlock(&rfkill_global_mutex);
1039
1040 file->private_data = data;
1041
1042 return nonseekable_open(inode, file);
1043
1044 free:
1045 mutex_unlock(&data->mtx);
1046 mutex_unlock(&rfkill_global_mutex);
1047 mutex_destroy(&data->mtx);
1048 list_for_each_entry_safe(ev, tmp, &data->events, list)
1049 kfree(ev);
1050 kfree(data);
1051 return -ENOMEM;
1052}
1053
1054static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1055{
1056 struct rfkill_data *data = file->private_data;
1057 unsigned int res = POLLOUT | POLLWRNORM;
1058
1059 poll_wait(file, &data->read_wait, wait);
1060
1061 mutex_lock(&data->mtx);
1062 if (!list_empty(&data->events))
1063 res = POLLIN | POLLRDNORM;
1064 mutex_unlock(&data->mtx);
1065
1066 return res;
1067}
1068
1069static bool rfkill_readable(struct rfkill_data *data)
1070{
1071 bool r;
1072
1073 mutex_lock(&data->mtx);
1074 r = !list_empty(&data->events);
1075 mutex_unlock(&data->mtx);
1076
1077 return r;
1078}
1079
1080static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1081 size_t count, loff_t *pos)
1082{
1083 struct rfkill_data *data = file->private_data;
1084 struct rfkill_int_event *ev;
1085 unsigned long sz;
1086 int ret;
1087
1088 mutex_lock(&data->mtx);
1089
1090 while (list_empty(&data->events)) {
1091 if (file->f_flags & O_NONBLOCK) {
1092 ret = -EAGAIN;
1093 goto out;
1094 }
1095 mutex_unlock(&data->mtx);
1096 ret = wait_event_interruptible(data->read_wait,
1097 rfkill_readable(data));
1098 mutex_lock(&data->mtx);
1099
1100 if (ret)
1101 goto out;
1102 }
1103
1104 ev = list_first_entry(&data->events, struct rfkill_int_event,
1105 list);
1106
1107 sz = min_t(unsigned long, sizeof(ev->ev), count);
1108 ret = sz;
1109 if (copy_to_user(buf, &ev->ev, sz))
1110 ret = -EFAULT;
1111
1112 list_del(&ev->list);
1113 kfree(ev);
1114 out:
1115 mutex_unlock(&data->mtx);
1116 return ret;
1117}
1118
1119static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1120 size_t count, loff_t *pos)
1121{
1122 struct rfkill *rfkill;
1123 struct rfkill_event ev;
1124
1125 /* we don't need the 'hard' variable but accept it */
1126 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1127 return -EINVAL;
1128
1129 /*
1130 * Copy as much data as we can accept into our 'ev' buffer,
1131 * but tell userspace how much we've copied so it can determine
1132 * our API version even in a write() call, if it cares.
1133 */
1134 count = min(count, sizeof(ev));
1135 if (copy_from_user(&ev, buf, count))
1136 return -EFAULT;
1137
1138 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1139 return -EINVAL;
1140
1141 if (ev.type >= NUM_RFKILL_TYPES)
1142 return -EINVAL;
1143
1144 mutex_lock(&rfkill_global_mutex);
1145
1146 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1147 if (ev.type == RFKILL_TYPE_ALL) {
1148 enum rfkill_type i;
1149 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1150 rfkill_global_states[i].cur = ev.soft;
1151 } else {
1152 rfkill_global_states[ev.type].cur = ev.soft;
1153 }
1154 }
1155
1156 list_for_each_entry(rfkill, &rfkill_list, node) {
1157 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1158 continue;
1159
1160 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1161 continue;
1162
1163 rfkill_set_block(rfkill, ev.soft);
1164 }
1165 mutex_unlock(&rfkill_global_mutex);
1166
1167 return count;
1168}
1169
1170static int rfkill_fop_release(struct inode *inode, struct file *file)
1171{
1172 struct rfkill_data *data = file->private_data;
1173 struct rfkill_int_event *ev, *tmp;
1174
1175 mutex_lock(&rfkill_global_mutex);
1176 list_del(&data->list);
1177 mutex_unlock(&rfkill_global_mutex);
1178
1179 mutex_destroy(&data->mtx);
1180 list_for_each_entry_safe(ev, tmp, &data->events, list)
1181 kfree(ev);
1182
1183#ifdef CONFIG_RFKILL_INPUT
1184 if (data->input_handler)
1185 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1186 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1187#endif
1188
1189 kfree(data);
1190
1191 return 0;
1192}
1193
1194#ifdef CONFIG_RFKILL_INPUT
1195static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1196 unsigned long arg)
1197{
1198 struct rfkill_data *data = file->private_data;
1199
1200 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1201 return -ENOSYS;
1202
1203 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1204 return -ENOSYS;
1205
1206 mutex_lock(&data->mtx);
1207
1208 if (!data->input_handler) {
1209 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1210 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1211 data->input_handler = true;
1212 }
1213
1214 mutex_unlock(&data->mtx);
1215
1216 return 0;
1217}
1218#endif
1219
1220static const struct file_operations rfkill_fops = {
1221 .owner = THIS_MODULE,
1222 .open = rfkill_fop_open,
1223 .read = rfkill_fop_read,
1224 .write = rfkill_fop_write,
1225 .poll = rfkill_fop_poll,
1226 .release = rfkill_fop_release,
1227#ifdef CONFIG_RFKILL_INPUT
1228 .unlocked_ioctl = rfkill_fop_ioctl,
1229 .compat_ioctl = rfkill_fop_ioctl,
1230#endif
1231 .llseek = no_llseek,
1232};
1233
1234static struct miscdevice rfkill_miscdev = {
1235 .name = "rfkill",
1236 .fops = &rfkill_fops,
1237 .minor = MISC_DYNAMIC_MINOR,
1238};
1239
1240static int __init rfkill_init(void)
1241{
1242 int error;
1243 int i;
1244
1245 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1246 rfkill_global_states[i].cur = !rfkill_default_state;
1247
1248 error = class_register(&rfkill_class);
1249 if (error)
1250 goto out;
1251
1252 error = misc_register(&rfkill_miscdev);
1253 if (error) {
1254 class_unregister(&rfkill_class);
1255 goto out;
1256 }
1257
1258#ifdef CONFIG_RFKILL_INPUT
1259 error = rfkill_handler_init();
1260 if (error) {
1261 misc_deregister(&rfkill_miscdev);
1262 class_unregister(&rfkill_class);
1263 goto out;
1264 }
1265#endif
1266
1267 out:
1268 return error;
1269}
1270subsys_initcall(rfkill_init);
1271
1272static void __exit rfkill_exit(void)
1273{
1274#ifdef CONFIG_RFKILL_INPUT
1275 rfkill_handler_exit();
1276#endif
1277 misc_deregister(&rfkill_miscdev);
1278 class_unregister(&rfkill_class);
1279}
1280module_exit(rfkill_exit);