Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/miscdevice.h>
33#include <linux/wait.h>
34#include <linux/poll.h>
35#include <linux/fs.h>
36#include <linux/slab.h>
37
38#include "rfkill.h"
39
40#define POLL_INTERVAL (5 * HZ)
41
42#define RFKILL_BLOCK_HW BIT(0)
43#define RFKILL_BLOCK_SW BIT(1)
44#define RFKILL_BLOCK_SW_PREV BIT(2)
45#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48#define RFKILL_BLOCK_SW_SETCALL BIT(31)
49
50struct rfkill {
51 spinlock_t lock;
52
53 const char *name;
54 enum rfkill_type type;
55
56 unsigned long state;
57
58 u32 idx;
59
60 bool registered;
61 bool persistent;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77};
78#define to_rfkill(d) container_of(d, struct rfkill, dev)
79
80struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
83};
84
85struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
91};
92
93
94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96MODULE_DESCRIPTION("RF switch support");
97MODULE_LICENSE("GPL");
98
99
100/*
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 *
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
110 */
111static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112static DEFINE_MUTEX(rfkill_global_mutex);
113static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114
115static unsigned int rfkill_default_state = 1;
116module_param_named(default_state, rfkill_default_state, uint, 0444);
117MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
119
120static struct {
121 bool cur, sav;
122} rfkill_global_states[NUM_RFKILL_TYPES];
123
124static bool rfkill_epo_lock_active;
125
126
127#ifdef CONFIG_RFKILL_LEDS
128static void rfkill_led_trigger_event(struct rfkill *rfkill)
129{
130 struct led_trigger *trigger;
131
132 if (!rfkill->registered)
133 return;
134
135 trigger = &rfkill->led_trigger;
136
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
141}
142
143static void rfkill_led_trigger_activate(struct led_classdev *led)
144{
145 struct rfkill *rfkill;
146
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148
149 rfkill_led_trigger_event(rfkill);
150}
151
152static int rfkill_led_trigger_register(struct rfkill *rfkill)
153{
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
158}
159
160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
161{
162 led_trigger_unregister(&rfkill->led_trigger);
163}
164#else
165static void rfkill_led_trigger_event(struct rfkill *rfkill)
166{
167}
168
169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
170{
171 return 0;
172}
173
174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175{
176}
177#endif /* CONFIG_RFKILL_LEDS */
178
179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
181{
182 unsigned long flags;
183
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
187
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
193}
194
195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
196{
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
199
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
209 }
210}
211
212static void rfkill_event(struct rfkill *rfkill)
213{
214 if (!rfkill->registered)
215 return;
216
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
218
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
221}
222
223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
225{
226 unsigned long flags;
227 bool prev, any;
228
229 BUG_ON(!rfkill);
230
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
240
241 rfkill_led_trigger_event(rfkill);
242
243 return any;
244}
245
246/**
247 * rfkill_set_block - wrapper for set_block method
248 *
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
251 *
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
254 */
255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
256{
257 unsigned long flags;
258 int err;
259
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
262
263 /*
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
267 */
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
270
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
276
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
281
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
284
285 err = rfkill->ops->set_block(rfkill->data, blocked);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
289 /*
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
293 */
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
298 }
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
305}
306
307#ifdef CONFIG_RFKILL_INPUT
308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
309
310/**
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
314 *
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
318 *
319 * Caller must have acquired rfkill_global_mutex.
320 */
321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
322{
323 struct rfkill *rfkill;
324
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
329
330 rfkill_set_block(rfkill, blocked);
331 }
332}
333
334/**
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
338 *
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
341 *
342 * Does nothing if the EPO lock is active.
343 */
344void rfkill_switch_all(enum rfkill_type type, bool blocked)
345{
346 if (atomic_read(&rfkill_input_disabled))
347 return;
348
349 mutex_lock(&rfkill_global_mutex);
350
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
353
354 mutex_unlock(&rfkill_global_mutex);
355}
356
357/**
358 * rfkill_epo - emergency power off all transmitters
359 *
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
362 *
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
365 */
366void rfkill_epo(void)
367{
368 struct rfkill *rfkill;
369 int i;
370
371 if (atomic_read(&rfkill_input_disabled))
372 return;
373
374 mutex_lock(&rfkill_global_mutex);
375
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
383 }
384
385 mutex_unlock(&rfkill_global_mutex);
386}
387
388/**
389 * rfkill_restore_states - restore global states
390 *
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
394 */
395void rfkill_restore_states(void)
396{
397 int i;
398
399 if (atomic_read(&rfkill_input_disabled))
400 return;
401
402 mutex_lock(&rfkill_global_mutex);
403
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
408}
409
410/**
411 * rfkill_remove_epo_lock - unlock state changes
412 *
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
415 */
416void rfkill_remove_epo_lock(void)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
424}
425
426/**
427 * rfkill_is_epo_lock_active - returns true EPO is active
428 *
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
432 *
433 * Can be called in atomic context.
434 */
435bool rfkill_is_epo_lock_active(void)
436{
437 return rfkill_epo_lock_active;
438}
439
440/**
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
443 *
444 * Returns the current global state for a given wireless
445 * device type.
446 */
447bool rfkill_get_global_sw_state(const enum rfkill_type type)
448{
449 return rfkill_global_states[type].cur;
450}
451#endif
452
453
454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
455{
456 bool ret, change;
457
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
459
460 if (!rfkill->registered)
461 return ret;
462
463 if (change)
464 schedule_work(&rfkill->uevent_work);
465
466 return ret;
467}
468EXPORT_SYMBOL(rfkill_set_hw_state);
469
470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
471{
472 u32 bit = RFKILL_BLOCK_SW;
473
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
477
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
482}
483
484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
485{
486 unsigned long flags;
487 bool prev, hwblock;
488
489 BUG_ON(!rfkill);
490
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
497
498 if (!rfkill->registered)
499 return blocked;
500
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
503
504 rfkill_led_trigger_event(rfkill);
505
506 return blocked;
507}
508EXPORT_SYMBOL(rfkill_set_sw_state);
509
510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
511{
512 unsigned long flags;
513
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
516
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
521}
522EXPORT_SYMBOL(rfkill_init_sw_state);
523
524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525{
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
544
545 spin_unlock_irqrestore(&rfkill->lock, flags);
546
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
552
553 rfkill_led_trigger_event(rfkill);
554 }
555}
556EXPORT_SYMBOL(rfkill_set_states);
557
558static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
561{
562 struct rfkill *rfkill = to_rfkill(dev);
563
564 return sprintf(buf, "%s\n", rfkill->name);
565}
566
567static const char *rfkill_get_type_str(enum rfkill_type type)
568{
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
570
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
588 }
589}
590
591static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct rfkill *rfkill = to_rfkill(dev);
596
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
598}
599
600static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
603{
604 struct rfkill *rfkill = to_rfkill(dev);
605
606 return sprintf(buf, "%d\n", rfkill->idx);
607}
608
609static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
612{
613 struct rfkill *rfkill = to_rfkill(dev);
614
615 return sprintf(buf, "%d\n", rfkill->persistent);
616}
617
618static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
621{
622 struct rfkill *rfkill = to_rfkill(dev);
623
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
625}
626
627static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
630{
631 struct rfkill *rfkill = to_rfkill(dev);
632
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
634}
635
636static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
639{
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
643
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
646
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
650
651 if (state > 1 )
652 return -EINVAL;
653
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
657
658 return err ?: count;
659}
660
661static u8 user_state_from_blocked(unsigned long state)
662{
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
667
668 return RFKILL_USER_STATE_UNBLOCKED;
669}
670
671static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
674{
675 struct rfkill *rfkill = to_rfkill(dev);
676
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
678}
679
680static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
683{
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
687
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
690
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
694
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
698
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
702
703 return err ?: count;
704}
705
706static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 return sprintf(buf, "%d\n", 0);
711}
712
713static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
716{
717 return -EOPNOTSUPP;
718}
719
720static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
730};
731
732static void rfkill_release(struct device *dev)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 kfree(rfkill);
737}
738
739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
740{
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
745
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
759}
760
761void rfkill_pause_polling(struct rfkill *rfkill)
762{
763 BUG_ON(!rfkill);
764
765 if (!rfkill->ops->poll)
766 return;
767
768 cancel_delayed_work_sync(&rfkill->poll_work);
769}
770EXPORT_SYMBOL(rfkill_pause_polling);
771
772void rfkill_resume_polling(struct rfkill *rfkill)
773{
774 BUG_ON(!rfkill);
775
776 if (!rfkill->ops->poll)
777 return;
778
779 schedule_work(&rfkill->poll_work.work);
780}
781EXPORT_SYMBOL(rfkill_resume_polling);
782
783static int rfkill_suspend(struct device *dev, pm_message_t state)
784{
785 struct rfkill *rfkill = to_rfkill(dev);
786
787 rfkill_pause_polling(rfkill);
788
789 return 0;
790}
791
792static int rfkill_resume(struct device *dev)
793{
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
796
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
800 }
801
802 rfkill_resume_polling(rfkill);
803
804 return 0;
805}
806
807static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
814};
815
816bool rfkill_blocked(struct rfkill *rfkill)
817{
818 unsigned long flags;
819 u32 state;
820
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
824
825 return !!(state & RFKILL_BLOCK_ANY);
826}
827EXPORT_SYMBOL(rfkill_blocked);
828
829
830struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
835{
836 struct rfkill *rfkill;
837 struct device *dev;
838
839 if (WARN_ON(!ops))
840 return NULL;
841
842 if (WARN_ON(!ops->set_block))
843 return NULL;
844
845 if (WARN_ON(!name))
846 return NULL;
847
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
850
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
854
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
861
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
866
867 return rfkill;
868}
869EXPORT_SYMBOL(rfkill_alloc);
870
871static void rfkill_poll(struct work_struct *work)
872{
873 struct rfkill *rfkill;
874
875 rfkill = container_of(work, struct rfkill, poll_work.work);
876
877 /*
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
881 */
882 rfkill->ops->poll(rfkill, rfkill->data);
883
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
886}
887
888static void rfkill_uevent_work(struct work_struct *work)
889{
890 struct rfkill *rfkill;
891
892 rfkill = container_of(work, struct rfkill, uevent_work);
893
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
897}
898
899static void rfkill_sync_work(struct work_struct *work)
900{
901 struct rfkill *rfkill;
902 bool cur;
903
904 rfkill = container_of(work, struct rfkill, sync_work);
905
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
910}
911
912int __must_check rfkill_register(struct rfkill *rfkill)
913{
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
917
918 BUG_ON(!rfkill);
919
920 mutex_lock(&rfkill_global_mutex);
921
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
925 }
926
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
930
931 list_add_tail(&rfkill->node, &rfkill_list);
932
933 error = device_add(dev);
934 if (error)
935 goto remove;
936
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
940
941 rfkill->registered = true;
942
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
946
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
950
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954#ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
956
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959#endif
960 }
961
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
963
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
966
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
974}
975EXPORT_SYMBOL(rfkill_register);
976
977void rfkill_unregister(struct rfkill *rfkill)
978{
979 BUG_ON(!rfkill);
980
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
983
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
986
987 rfkill->registered = false;
988
989 device_del(&rfkill->dev);
990
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
995
996 rfkill_led_trigger_unregister(rfkill);
997}
998EXPORT_SYMBOL(rfkill_unregister);
999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1012
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1016
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1020
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1023 /*
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1026 */
1027
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1034 }
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1038
1039 file->private_data = data;
1040
1041 return nonseekable_open(inode, file);
1042
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1057
1058 poll_wait(file, &data->read_wait, wait);
1059
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1064
1065 return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070 bool r;
1071
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1075
1076 return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1081{
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1086
1087 mutex_lock(&data->mtx);
1088
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1098
1099 if (ret)
1100 goto out;
1101 }
1102
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1105
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1110
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1120{
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1123
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1127
1128 /*
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1132 */
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1136
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1139
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1142
1143 mutex_lock(&rfkill_global_mutex);
1144
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1152 }
1153 }
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1158
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1161
1162 rfkill_set_block(rfkill, ev.soft);
1163 }
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1173
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1177
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188 kfree(data);
1189
1190 return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1196{
1197 struct rfkill_data *data = file->private_data;
1198
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1201
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1204
1205 mutex_lock(&data->mtx);
1206
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1211 }
1212
1213 mutex_unlock(&data->mtx);
1214
1215 return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229#endif
1230 .llseek = no_llseek,
1231};
1232
1233static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241 int error;
1242 int i;
1243
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1250
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1255 }
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1263 }
1264#endif
1265
1266 out:
1267 return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275#endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81};
82
83
84MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
85MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
86MODULE_DESCRIPTION("RF switch support");
87MODULE_LICENSE("GPL");
88
89
90/*
91 * The locking here should be made much smarter, we currently have
92 * a bit of a stupid situation because drivers might want to register
93 * the rfkill struct under their own lock, and take this lock during
94 * rfkill method calls -- which will cause an AB-BA deadlock situation.
95 *
96 * To fix that, we need to rework this code here to be mostly lock-free
97 * and only use the mutex for list manipulations, not to protect the
98 * various other global variables. Then we can avoid holding the mutex
99 * around driver operations, and all is happy.
100 */
101static LIST_HEAD(rfkill_list); /* list of registered rf switches */
102static DEFINE_MUTEX(rfkill_global_mutex);
103static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
104
105static unsigned int rfkill_default_state = 1;
106module_param_named(default_state, rfkill_default_state, uint, 0444);
107MODULE_PARM_DESC(default_state,
108 "Default initial state for all radio types, 0 = radio off");
109
110static struct {
111 bool cur, sav;
112} rfkill_global_states[NUM_RFKILL_TYPES];
113
114static bool rfkill_epo_lock_active;
115
116
117#ifdef CONFIG_RFKILL_LEDS
118static void rfkill_led_trigger_event(struct rfkill *rfkill)
119{
120 struct led_trigger *trigger;
121
122 if (!rfkill->registered)
123 return;
124
125 trigger = &rfkill->led_trigger;
126
127 if (rfkill->state & RFKILL_BLOCK_ANY)
128 led_trigger_event(trigger, LED_OFF);
129 else
130 led_trigger_event(trigger, LED_FULL);
131}
132
133static int rfkill_led_trigger_activate(struct led_classdev *led)
134{
135 struct rfkill *rfkill;
136
137 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
138
139 rfkill_led_trigger_event(rfkill);
140
141 return 0;
142}
143
144const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
145{
146 return rfkill->led_trigger.name;
147}
148EXPORT_SYMBOL(rfkill_get_led_trigger_name);
149
150void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
151{
152 BUG_ON(!rfkill);
153
154 rfkill->ledtrigname = name;
155}
156EXPORT_SYMBOL(rfkill_set_led_trigger_name);
157
158static int rfkill_led_trigger_register(struct rfkill *rfkill)
159{
160 rfkill->led_trigger.name = rfkill->ledtrigname
161 ? : dev_name(&rfkill->dev);
162 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
163 return led_trigger_register(&rfkill->led_trigger);
164}
165
166static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
167{
168 led_trigger_unregister(&rfkill->led_trigger);
169}
170
171static struct led_trigger rfkill_any_led_trigger;
172static struct led_trigger rfkill_none_led_trigger;
173static struct work_struct rfkill_global_led_trigger_work;
174
175static void rfkill_global_led_trigger_worker(struct work_struct *work)
176{
177 enum led_brightness brightness = LED_OFF;
178 struct rfkill *rfkill;
179
180 mutex_lock(&rfkill_global_mutex);
181 list_for_each_entry(rfkill, &rfkill_list, node) {
182 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
183 brightness = LED_FULL;
184 break;
185 }
186 }
187 mutex_unlock(&rfkill_global_mutex);
188
189 led_trigger_event(&rfkill_any_led_trigger, brightness);
190 led_trigger_event(&rfkill_none_led_trigger,
191 brightness == LED_OFF ? LED_FULL : LED_OFF);
192}
193
194static void rfkill_global_led_trigger_event(void)
195{
196 schedule_work(&rfkill_global_led_trigger_work);
197}
198
199static int rfkill_global_led_trigger_register(void)
200{
201 int ret;
202
203 INIT_WORK(&rfkill_global_led_trigger_work,
204 rfkill_global_led_trigger_worker);
205
206 rfkill_any_led_trigger.name = "rfkill-any";
207 ret = led_trigger_register(&rfkill_any_led_trigger);
208 if (ret)
209 return ret;
210
211 rfkill_none_led_trigger.name = "rfkill-none";
212 ret = led_trigger_register(&rfkill_none_led_trigger);
213 if (ret)
214 led_trigger_unregister(&rfkill_any_led_trigger);
215 else
216 /* Delay activation until all global triggers are registered */
217 rfkill_global_led_trigger_event();
218
219 return ret;
220}
221
222static void rfkill_global_led_trigger_unregister(void)
223{
224 led_trigger_unregister(&rfkill_none_led_trigger);
225 led_trigger_unregister(&rfkill_any_led_trigger);
226 cancel_work_sync(&rfkill_global_led_trigger_work);
227}
228#else
229static void rfkill_led_trigger_event(struct rfkill *rfkill)
230{
231}
232
233static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
234{
235 return 0;
236}
237
238static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
239{
240}
241
242static void rfkill_global_led_trigger_event(void)
243{
244}
245
246static int rfkill_global_led_trigger_register(void)
247{
248 return 0;
249}
250
251static void rfkill_global_led_trigger_unregister(void)
252{
253}
254#endif /* CONFIG_RFKILL_LEDS */
255
256static void rfkill_fill_event(struct rfkill_event_ext *ev,
257 struct rfkill *rfkill,
258 enum rfkill_operation op)
259{
260 unsigned long flags;
261
262 ev->idx = rfkill->idx;
263 ev->type = rfkill->type;
264 ev->op = op;
265
266 spin_lock_irqsave(&rfkill->lock, flags);
267 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
268 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
269 RFKILL_BLOCK_SW_PREV));
270 ev->hard_block_reasons = rfkill->hard_block_reasons;
271 spin_unlock_irqrestore(&rfkill->lock, flags);
272}
273
274static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
275{
276 struct rfkill_data *data;
277 struct rfkill_int_event *ev;
278
279 list_for_each_entry(data, &rfkill_fds, list) {
280 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
281 if (!ev)
282 continue;
283 rfkill_fill_event(&ev->ev, rfkill, op);
284 mutex_lock(&data->mtx);
285 list_add_tail(&ev->list, &data->events);
286 mutex_unlock(&data->mtx);
287 wake_up_interruptible(&data->read_wait);
288 }
289}
290
291static void rfkill_event(struct rfkill *rfkill)
292{
293 if (!rfkill->registered)
294 return;
295
296 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
297
298 /* also send event to /dev/rfkill */
299 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
300}
301
302/**
303 * rfkill_set_block - wrapper for set_block method
304 *
305 * @rfkill: the rfkill struct to use
306 * @blocked: the new software state
307 *
308 * Calls the set_block method (when applicable) and handles notifications
309 * etc. as well.
310 */
311static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
312{
313 unsigned long flags;
314 bool prev, curr;
315 int err;
316
317 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
318 return;
319
320 /*
321 * Some platforms (...!) generate input events which affect the
322 * _hard_ kill state -- whenever something tries to change the
323 * current software state query the hardware state too.
324 */
325 if (rfkill->ops->query)
326 rfkill->ops->query(rfkill, rfkill->data);
327
328 spin_lock_irqsave(&rfkill->lock, flags);
329 prev = rfkill->state & RFKILL_BLOCK_SW;
330
331 if (prev)
332 rfkill->state |= RFKILL_BLOCK_SW_PREV;
333 else
334 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
335
336 if (blocked)
337 rfkill->state |= RFKILL_BLOCK_SW;
338 else
339 rfkill->state &= ~RFKILL_BLOCK_SW;
340
341 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
342 spin_unlock_irqrestore(&rfkill->lock, flags);
343
344 err = rfkill->ops->set_block(rfkill->data, blocked);
345
346 spin_lock_irqsave(&rfkill->lock, flags);
347 if (err) {
348 /*
349 * Failed -- reset status to _PREV, which may be different
350 * from what we have set _PREV to earlier in this function
351 * if rfkill_set_sw_state was invoked.
352 */
353 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
354 rfkill->state |= RFKILL_BLOCK_SW;
355 else
356 rfkill->state &= ~RFKILL_BLOCK_SW;
357 }
358 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
359 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
360 curr = rfkill->state & RFKILL_BLOCK_SW;
361 spin_unlock_irqrestore(&rfkill->lock, flags);
362
363 rfkill_led_trigger_event(rfkill);
364 rfkill_global_led_trigger_event();
365
366 if (prev != curr)
367 rfkill_event(rfkill);
368}
369
370static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
371{
372 int i;
373
374 if (type != RFKILL_TYPE_ALL) {
375 rfkill_global_states[type].cur = blocked;
376 return;
377 }
378
379 for (i = 0; i < NUM_RFKILL_TYPES; i++)
380 rfkill_global_states[i].cur = blocked;
381}
382
383#ifdef CONFIG_RFKILL_INPUT
384static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
385
386/**
387 * __rfkill_switch_all - Toggle state of all switches of given type
388 * @type: type of interfaces to be affected
389 * @blocked: the new state
390 *
391 * This function sets the state of all switches of given type,
392 * unless a specific switch is suspended.
393 *
394 * Caller must have acquired rfkill_global_mutex.
395 */
396static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
397{
398 struct rfkill *rfkill;
399
400 rfkill_update_global_state(type, blocked);
401 list_for_each_entry(rfkill, &rfkill_list, node) {
402 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
403 continue;
404
405 rfkill_set_block(rfkill, blocked);
406 }
407}
408
409/**
410 * rfkill_switch_all - Toggle state of all switches of given type
411 * @type: type of interfaces to be affected
412 * @blocked: the new state
413 *
414 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
415 * Please refer to __rfkill_switch_all() for details.
416 *
417 * Does nothing if the EPO lock is active.
418 */
419void rfkill_switch_all(enum rfkill_type type, bool blocked)
420{
421 if (atomic_read(&rfkill_input_disabled))
422 return;
423
424 mutex_lock(&rfkill_global_mutex);
425
426 if (!rfkill_epo_lock_active)
427 __rfkill_switch_all(type, blocked);
428
429 mutex_unlock(&rfkill_global_mutex);
430}
431
432/**
433 * rfkill_epo - emergency power off all transmitters
434 *
435 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
436 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
437 *
438 * The global state before the EPO is saved and can be restored later
439 * using rfkill_restore_states().
440 */
441void rfkill_epo(void)
442{
443 struct rfkill *rfkill;
444 int i;
445
446 if (atomic_read(&rfkill_input_disabled))
447 return;
448
449 mutex_lock(&rfkill_global_mutex);
450
451 rfkill_epo_lock_active = true;
452 list_for_each_entry(rfkill, &rfkill_list, node)
453 rfkill_set_block(rfkill, true);
454
455 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
456 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
457 rfkill_global_states[i].cur = true;
458 }
459
460 mutex_unlock(&rfkill_global_mutex);
461}
462
463/**
464 * rfkill_restore_states - restore global states
465 *
466 * Restore (and sync switches to) the global state from the
467 * states in rfkill_default_states. This can undo the effects of
468 * a call to rfkill_epo().
469 */
470void rfkill_restore_states(void)
471{
472 int i;
473
474 if (atomic_read(&rfkill_input_disabled))
475 return;
476
477 mutex_lock(&rfkill_global_mutex);
478
479 rfkill_epo_lock_active = false;
480 for (i = 0; i < NUM_RFKILL_TYPES; i++)
481 __rfkill_switch_all(i, rfkill_global_states[i].sav);
482 mutex_unlock(&rfkill_global_mutex);
483}
484
485/**
486 * rfkill_remove_epo_lock - unlock state changes
487 *
488 * Used by rfkill-input manually unlock state changes, when
489 * the EPO switch is deactivated.
490 */
491void rfkill_remove_epo_lock(void)
492{
493 if (atomic_read(&rfkill_input_disabled))
494 return;
495
496 mutex_lock(&rfkill_global_mutex);
497 rfkill_epo_lock_active = false;
498 mutex_unlock(&rfkill_global_mutex);
499}
500
501/**
502 * rfkill_is_epo_lock_active - returns true EPO is active
503 *
504 * Returns 0 (false) if there is NOT an active EPO condition,
505 * and 1 (true) if there is an active EPO condition, which
506 * locks all radios in one of the BLOCKED states.
507 *
508 * Can be called in atomic context.
509 */
510bool rfkill_is_epo_lock_active(void)
511{
512 return rfkill_epo_lock_active;
513}
514
515/**
516 * rfkill_get_global_sw_state - returns global state for a type
517 * @type: the type to get the global state of
518 *
519 * Returns the current global state for a given wireless
520 * device type.
521 */
522bool rfkill_get_global_sw_state(const enum rfkill_type type)
523{
524 return rfkill_global_states[type].cur;
525}
526#endif
527
528bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
529 bool blocked, unsigned long reason)
530{
531 unsigned long flags;
532 bool ret, prev;
533
534 BUG_ON(!rfkill);
535
536 if (WARN(reason &
537 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
538 "hw_state reason not supported: 0x%lx", reason))
539 return blocked;
540
541 spin_lock_irqsave(&rfkill->lock, flags);
542 prev = !!(rfkill->hard_block_reasons & reason);
543 if (blocked) {
544 rfkill->state |= RFKILL_BLOCK_HW;
545 rfkill->hard_block_reasons |= reason;
546 } else {
547 rfkill->hard_block_reasons &= ~reason;
548 if (!rfkill->hard_block_reasons)
549 rfkill->state &= ~RFKILL_BLOCK_HW;
550 }
551 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
552 spin_unlock_irqrestore(&rfkill->lock, flags);
553
554 rfkill_led_trigger_event(rfkill);
555 rfkill_global_led_trigger_event();
556
557 if (rfkill->registered && prev != blocked)
558 schedule_work(&rfkill->uevent_work);
559
560 return ret;
561}
562EXPORT_SYMBOL(rfkill_set_hw_state_reason);
563
564static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
565{
566 u32 bit = RFKILL_BLOCK_SW;
567
568 /* if in a ops->set_block right now, use other bit */
569 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
570 bit = RFKILL_BLOCK_SW_PREV;
571
572 if (blocked)
573 rfkill->state |= bit;
574 else
575 rfkill->state &= ~bit;
576}
577
578bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
579{
580 unsigned long flags;
581 bool prev, hwblock;
582
583 BUG_ON(!rfkill);
584
585 spin_lock_irqsave(&rfkill->lock, flags);
586 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
587 __rfkill_set_sw_state(rfkill, blocked);
588 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
589 blocked = blocked || hwblock;
590 spin_unlock_irqrestore(&rfkill->lock, flags);
591
592 if (!rfkill->registered)
593 return blocked;
594
595 if (prev != blocked && !hwblock)
596 schedule_work(&rfkill->uevent_work);
597
598 rfkill_led_trigger_event(rfkill);
599 rfkill_global_led_trigger_event();
600
601 return blocked;
602}
603EXPORT_SYMBOL(rfkill_set_sw_state);
604
605void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
606{
607 unsigned long flags;
608
609 BUG_ON(!rfkill);
610 BUG_ON(rfkill->registered);
611
612 spin_lock_irqsave(&rfkill->lock, flags);
613 __rfkill_set_sw_state(rfkill, blocked);
614 rfkill->persistent = true;
615 spin_unlock_irqrestore(&rfkill->lock, flags);
616}
617EXPORT_SYMBOL(rfkill_init_sw_state);
618
619void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
620{
621 unsigned long flags;
622 bool swprev, hwprev;
623
624 BUG_ON(!rfkill);
625
626 spin_lock_irqsave(&rfkill->lock, flags);
627
628 /*
629 * No need to care about prev/setblock ... this is for uevent only
630 * and that will get triggered by rfkill_set_block anyway.
631 */
632 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
633 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
634 __rfkill_set_sw_state(rfkill, sw);
635 if (hw)
636 rfkill->state |= RFKILL_BLOCK_HW;
637 else
638 rfkill->state &= ~RFKILL_BLOCK_HW;
639
640 spin_unlock_irqrestore(&rfkill->lock, flags);
641
642 if (!rfkill->registered) {
643 rfkill->persistent = true;
644 } else {
645 if (swprev != sw || hwprev != hw)
646 schedule_work(&rfkill->uevent_work);
647
648 rfkill_led_trigger_event(rfkill);
649 rfkill_global_led_trigger_event();
650 }
651}
652EXPORT_SYMBOL(rfkill_set_states);
653
654static const char * const rfkill_types[] = {
655 NULL, /* RFKILL_TYPE_ALL */
656 "wlan",
657 "bluetooth",
658 "ultrawideband",
659 "wimax",
660 "wwan",
661 "gps",
662 "fm",
663 "nfc",
664};
665
666enum rfkill_type rfkill_find_type(const char *name)
667{
668 int i;
669
670 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
671
672 if (!name)
673 return RFKILL_TYPE_ALL;
674
675 for (i = 1; i < NUM_RFKILL_TYPES; i++)
676 if (!strcmp(name, rfkill_types[i]))
677 return i;
678 return RFKILL_TYPE_ALL;
679}
680EXPORT_SYMBOL(rfkill_find_type);
681
682static ssize_t name_show(struct device *dev, struct device_attribute *attr,
683 char *buf)
684{
685 struct rfkill *rfkill = to_rfkill(dev);
686
687 return sprintf(buf, "%s\n", rfkill->name);
688}
689static DEVICE_ATTR_RO(name);
690
691static ssize_t type_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
697}
698static DEVICE_ATTR_RO(type);
699
700static ssize_t index_show(struct device *dev, struct device_attribute *attr,
701 char *buf)
702{
703 struct rfkill *rfkill = to_rfkill(dev);
704
705 return sprintf(buf, "%d\n", rfkill->idx);
706}
707static DEVICE_ATTR_RO(index);
708
709static ssize_t persistent_show(struct device *dev,
710 struct device_attribute *attr, char *buf)
711{
712 struct rfkill *rfkill = to_rfkill(dev);
713
714 return sprintf(buf, "%d\n", rfkill->persistent);
715}
716static DEVICE_ATTR_RO(persistent);
717
718static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
719 char *buf)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722
723 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
724}
725static DEVICE_ATTR_RO(hard);
726
727static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct rfkill *rfkill = to_rfkill(dev);
731
732 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
733}
734
735static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
736 const char *buf, size_t count)
737{
738 struct rfkill *rfkill = to_rfkill(dev);
739 unsigned long state;
740 int err;
741
742 if (!capable(CAP_NET_ADMIN))
743 return -EPERM;
744
745 err = kstrtoul(buf, 0, &state);
746 if (err)
747 return err;
748
749 if (state > 1 )
750 return -EINVAL;
751
752 mutex_lock(&rfkill_global_mutex);
753 rfkill_set_block(rfkill, state);
754 mutex_unlock(&rfkill_global_mutex);
755
756 return count;
757}
758static DEVICE_ATTR_RW(soft);
759
760static ssize_t hard_block_reasons_show(struct device *dev,
761 struct device_attribute *attr,
762 char *buf)
763{
764 struct rfkill *rfkill = to_rfkill(dev);
765
766 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
767}
768static DEVICE_ATTR_RO(hard_block_reasons);
769
770static u8 user_state_from_blocked(unsigned long state)
771{
772 if (state & RFKILL_BLOCK_HW)
773 return RFKILL_USER_STATE_HARD_BLOCKED;
774 if (state & RFKILL_BLOCK_SW)
775 return RFKILL_USER_STATE_SOFT_BLOCKED;
776
777 return RFKILL_USER_STATE_UNBLOCKED;
778}
779
780static ssize_t state_show(struct device *dev, struct device_attribute *attr,
781 char *buf)
782{
783 struct rfkill *rfkill = to_rfkill(dev);
784
785 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
786}
787
788static ssize_t state_store(struct device *dev, struct device_attribute *attr,
789 const char *buf, size_t count)
790{
791 struct rfkill *rfkill = to_rfkill(dev);
792 unsigned long state;
793 int err;
794
795 if (!capable(CAP_NET_ADMIN))
796 return -EPERM;
797
798 err = kstrtoul(buf, 0, &state);
799 if (err)
800 return err;
801
802 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
803 state != RFKILL_USER_STATE_UNBLOCKED)
804 return -EINVAL;
805
806 mutex_lock(&rfkill_global_mutex);
807 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
808 mutex_unlock(&rfkill_global_mutex);
809
810 return count;
811}
812static DEVICE_ATTR_RW(state);
813
814static struct attribute *rfkill_dev_attrs[] = {
815 &dev_attr_name.attr,
816 &dev_attr_type.attr,
817 &dev_attr_index.attr,
818 &dev_attr_persistent.attr,
819 &dev_attr_state.attr,
820 &dev_attr_soft.attr,
821 &dev_attr_hard.attr,
822 &dev_attr_hard_block_reasons.attr,
823 NULL,
824};
825ATTRIBUTE_GROUPS(rfkill_dev);
826
827static void rfkill_release(struct device *dev)
828{
829 struct rfkill *rfkill = to_rfkill(dev);
830
831 kfree(rfkill);
832}
833
834static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
835{
836 struct rfkill *rfkill = to_rfkill(dev);
837 unsigned long flags;
838 unsigned long reasons;
839 u32 state;
840 int error;
841
842 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
843 if (error)
844 return error;
845 error = add_uevent_var(env, "RFKILL_TYPE=%s",
846 rfkill_types[rfkill->type]);
847 if (error)
848 return error;
849 spin_lock_irqsave(&rfkill->lock, flags);
850 state = rfkill->state;
851 reasons = rfkill->hard_block_reasons;
852 spin_unlock_irqrestore(&rfkill->lock, flags);
853 error = add_uevent_var(env, "RFKILL_STATE=%d",
854 user_state_from_blocked(state));
855 if (error)
856 return error;
857 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
858}
859
860void rfkill_pause_polling(struct rfkill *rfkill)
861{
862 BUG_ON(!rfkill);
863
864 if (!rfkill->ops->poll)
865 return;
866
867 rfkill->polling_paused = true;
868 cancel_delayed_work_sync(&rfkill->poll_work);
869}
870EXPORT_SYMBOL(rfkill_pause_polling);
871
872void rfkill_resume_polling(struct rfkill *rfkill)
873{
874 BUG_ON(!rfkill);
875
876 if (!rfkill->ops->poll)
877 return;
878
879 rfkill->polling_paused = false;
880
881 if (rfkill->suspended)
882 return;
883
884 queue_delayed_work(system_power_efficient_wq,
885 &rfkill->poll_work, 0);
886}
887EXPORT_SYMBOL(rfkill_resume_polling);
888
889#ifdef CONFIG_PM_SLEEP
890static int rfkill_suspend(struct device *dev)
891{
892 struct rfkill *rfkill = to_rfkill(dev);
893
894 rfkill->suspended = true;
895 cancel_delayed_work_sync(&rfkill->poll_work);
896
897 return 0;
898}
899
900static int rfkill_resume(struct device *dev)
901{
902 struct rfkill *rfkill = to_rfkill(dev);
903 bool cur;
904
905 rfkill->suspended = false;
906
907 if (!rfkill->registered)
908 return 0;
909
910 if (!rfkill->persistent) {
911 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
912 rfkill_set_block(rfkill, cur);
913 }
914
915 if (rfkill->ops->poll && !rfkill->polling_paused)
916 queue_delayed_work(system_power_efficient_wq,
917 &rfkill->poll_work, 0);
918
919 return 0;
920}
921
922static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
923#define RFKILL_PM_OPS (&rfkill_pm_ops)
924#else
925#define RFKILL_PM_OPS NULL
926#endif
927
928static struct class rfkill_class = {
929 .name = "rfkill",
930 .dev_release = rfkill_release,
931 .dev_groups = rfkill_dev_groups,
932 .dev_uevent = rfkill_dev_uevent,
933 .pm = RFKILL_PM_OPS,
934};
935
936bool rfkill_blocked(struct rfkill *rfkill)
937{
938 unsigned long flags;
939 u32 state;
940
941 spin_lock_irqsave(&rfkill->lock, flags);
942 state = rfkill->state;
943 spin_unlock_irqrestore(&rfkill->lock, flags);
944
945 return !!(state & RFKILL_BLOCK_ANY);
946}
947EXPORT_SYMBOL(rfkill_blocked);
948
949
950struct rfkill * __must_check rfkill_alloc(const char *name,
951 struct device *parent,
952 const enum rfkill_type type,
953 const struct rfkill_ops *ops,
954 void *ops_data)
955{
956 struct rfkill *rfkill;
957 struct device *dev;
958
959 if (WARN_ON(!ops))
960 return NULL;
961
962 if (WARN_ON(!ops->set_block))
963 return NULL;
964
965 if (WARN_ON(!name))
966 return NULL;
967
968 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
969 return NULL;
970
971 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
972 if (!rfkill)
973 return NULL;
974
975 spin_lock_init(&rfkill->lock);
976 INIT_LIST_HEAD(&rfkill->node);
977 rfkill->type = type;
978 strcpy(rfkill->name, name);
979 rfkill->ops = ops;
980 rfkill->data = ops_data;
981
982 dev = &rfkill->dev;
983 dev->class = &rfkill_class;
984 dev->parent = parent;
985 device_initialize(dev);
986
987 return rfkill;
988}
989EXPORT_SYMBOL(rfkill_alloc);
990
991static void rfkill_poll(struct work_struct *work)
992{
993 struct rfkill *rfkill;
994
995 rfkill = container_of(work, struct rfkill, poll_work.work);
996
997 /*
998 * Poll hardware state -- driver will use one of the
999 * rfkill_set{,_hw,_sw}_state functions and use its
1000 * return value to update the current status.
1001 */
1002 rfkill->ops->poll(rfkill, rfkill->data);
1003
1004 queue_delayed_work(system_power_efficient_wq,
1005 &rfkill->poll_work,
1006 round_jiffies_relative(POLL_INTERVAL));
1007}
1008
1009static void rfkill_uevent_work(struct work_struct *work)
1010{
1011 struct rfkill *rfkill;
1012
1013 rfkill = container_of(work, struct rfkill, uevent_work);
1014
1015 mutex_lock(&rfkill_global_mutex);
1016 rfkill_event(rfkill);
1017 mutex_unlock(&rfkill_global_mutex);
1018}
1019
1020static void rfkill_sync_work(struct work_struct *work)
1021{
1022 struct rfkill *rfkill;
1023 bool cur;
1024
1025 rfkill = container_of(work, struct rfkill, sync_work);
1026
1027 mutex_lock(&rfkill_global_mutex);
1028 cur = rfkill_global_states[rfkill->type].cur;
1029 rfkill_set_block(rfkill, cur);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033int __must_check rfkill_register(struct rfkill *rfkill)
1034{
1035 static unsigned long rfkill_no;
1036 struct device *dev;
1037 int error;
1038
1039 if (!rfkill)
1040 return -EINVAL;
1041
1042 dev = &rfkill->dev;
1043
1044 mutex_lock(&rfkill_global_mutex);
1045
1046 if (rfkill->registered) {
1047 error = -EALREADY;
1048 goto unlock;
1049 }
1050
1051 rfkill->idx = rfkill_no;
1052 dev_set_name(dev, "rfkill%lu", rfkill_no);
1053 rfkill_no++;
1054
1055 list_add_tail(&rfkill->node, &rfkill_list);
1056
1057 error = device_add(dev);
1058 if (error)
1059 goto remove;
1060
1061 error = rfkill_led_trigger_register(rfkill);
1062 if (error)
1063 goto devdel;
1064
1065 rfkill->registered = true;
1066
1067 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1068 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1069 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1070
1071 if (rfkill->ops->poll)
1072 queue_delayed_work(system_power_efficient_wq,
1073 &rfkill->poll_work,
1074 round_jiffies_relative(POLL_INTERVAL));
1075
1076 if (!rfkill->persistent || rfkill_epo_lock_active) {
1077 schedule_work(&rfkill->sync_work);
1078 } else {
1079#ifdef CONFIG_RFKILL_INPUT
1080 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1081
1082 if (!atomic_read(&rfkill_input_disabled))
1083 __rfkill_switch_all(rfkill->type, soft_blocked);
1084#endif
1085 }
1086
1087 rfkill_global_led_trigger_event();
1088 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1089
1090 mutex_unlock(&rfkill_global_mutex);
1091 return 0;
1092
1093 devdel:
1094 device_del(&rfkill->dev);
1095 remove:
1096 list_del_init(&rfkill->node);
1097 unlock:
1098 mutex_unlock(&rfkill_global_mutex);
1099 return error;
1100}
1101EXPORT_SYMBOL(rfkill_register);
1102
1103void rfkill_unregister(struct rfkill *rfkill)
1104{
1105 BUG_ON(!rfkill);
1106
1107 if (rfkill->ops->poll)
1108 cancel_delayed_work_sync(&rfkill->poll_work);
1109
1110 cancel_work_sync(&rfkill->uevent_work);
1111 cancel_work_sync(&rfkill->sync_work);
1112
1113 rfkill->registered = false;
1114
1115 device_del(&rfkill->dev);
1116
1117 mutex_lock(&rfkill_global_mutex);
1118 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1119 list_del_init(&rfkill->node);
1120 rfkill_global_led_trigger_event();
1121 mutex_unlock(&rfkill_global_mutex);
1122
1123 rfkill_led_trigger_unregister(rfkill);
1124}
1125EXPORT_SYMBOL(rfkill_unregister);
1126
1127void rfkill_destroy(struct rfkill *rfkill)
1128{
1129 if (rfkill)
1130 put_device(&rfkill->dev);
1131}
1132EXPORT_SYMBOL(rfkill_destroy);
1133
1134static int rfkill_fop_open(struct inode *inode, struct file *file)
1135{
1136 struct rfkill_data *data;
1137 struct rfkill *rfkill;
1138 struct rfkill_int_event *ev, *tmp;
1139
1140 data = kzalloc(sizeof(*data), GFP_KERNEL);
1141 if (!data)
1142 return -ENOMEM;
1143
1144 INIT_LIST_HEAD(&data->events);
1145 mutex_init(&data->mtx);
1146 init_waitqueue_head(&data->read_wait);
1147
1148 mutex_lock(&rfkill_global_mutex);
1149 mutex_lock(&data->mtx);
1150 /*
1151 * start getting events from elsewhere but hold mtx to get
1152 * startup events added first
1153 */
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1157 if (!ev)
1158 goto free;
1159 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1160 list_add_tail(&ev->list, &data->events);
1161 }
1162 list_add(&data->list, &rfkill_fds);
1163 mutex_unlock(&data->mtx);
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 file->private_data = data;
1167
1168 return stream_open(inode, file);
1169
1170 free:
1171 mutex_unlock(&data->mtx);
1172 mutex_unlock(&rfkill_global_mutex);
1173 mutex_destroy(&data->mtx);
1174 list_for_each_entry_safe(ev, tmp, &data->events, list)
1175 kfree(ev);
1176 kfree(data);
1177 return -ENOMEM;
1178}
1179
1180static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1181{
1182 struct rfkill_data *data = file->private_data;
1183 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1184
1185 poll_wait(file, &data->read_wait, wait);
1186
1187 mutex_lock(&data->mtx);
1188 if (!list_empty(&data->events))
1189 res = EPOLLIN | EPOLLRDNORM;
1190 mutex_unlock(&data->mtx);
1191
1192 return res;
1193}
1194
1195static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1196 size_t count, loff_t *pos)
1197{
1198 struct rfkill_data *data = file->private_data;
1199 struct rfkill_int_event *ev;
1200 unsigned long sz;
1201 int ret;
1202
1203 mutex_lock(&data->mtx);
1204
1205 while (list_empty(&data->events)) {
1206 if (file->f_flags & O_NONBLOCK) {
1207 ret = -EAGAIN;
1208 goto out;
1209 }
1210 mutex_unlock(&data->mtx);
1211 /* since we re-check and it just compares pointers,
1212 * using !list_empty() without locking isn't a problem
1213 */
1214 ret = wait_event_interruptible(data->read_wait,
1215 !list_empty(&data->events));
1216 mutex_lock(&data->mtx);
1217
1218 if (ret)
1219 goto out;
1220 }
1221
1222 ev = list_first_entry(&data->events, struct rfkill_int_event,
1223 list);
1224
1225 sz = min_t(unsigned long, sizeof(ev->ev), count);
1226 ret = sz;
1227 if (copy_to_user(buf, &ev->ev, sz))
1228 ret = -EFAULT;
1229
1230 list_del(&ev->list);
1231 kfree(ev);
1232 out:
1233 mutex_unlock(&data->mtx);
1234 return ret;
1235}
1236
1237static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1238 size_t count, loff_t *pos)
1239{
1240 struct rfkill *rfkill;
1241 struct rfkill_event_ext ev;
1242 int ret;
1243
1244 /* we don't need the 'hard' variable but accept it */
1245 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1246 return -EINVAL;
1247
1248 /*
1249 * Copy as much data as we can accept into our 'ev' buffer,
1250 * but tell userspace how much we've copied so it can determine
1251 * our API version even in a write() call, if it cares.
1252 */
1253 count = min(count, sizeof(ev));
1254 if (copy_from_user(&ev, buf, count))
1255 return -EFAULT;
1256
1257 if (ev.type >= NUM_RFKILL_TYPES)
1258 return -EINVAL;
1259
1260 mutex_lock(&rfkill_global_mutex);
1261
1262 switch (ev.op) {
1263 case RFKILL_OP_CHANGE_ALL:
1264 rfkill_update_global_state(ev.type, ev.soft);
1265 list_for_each_entry(rfkill, &rfkill_list, node)
1266 if (rfkill->type == ev.type ||
1267 ev.type == RFKILL_TYPE_ALL)
1268 rfkill_set_block(rfkill, ev.soft);
1269 ret = 0;
1270 break;
1271 case RFKILL_OP_CHANGE:
1272 list_for_each_entry(rfkill, &rfkill_list, node)
1273 if (rfkill->idx == ev.idx &&
1274 (rfkill->type == ev.type ||
1275 ev.type == RFKILL_TYPE_ALL))
1276 rfkill_set_block(rfkill, ev.soft);
1277 ret = 0;
1278 break;
1279 default:
1280 ret = -EINVAL;
1281 break;
1282 }
1283
1284 mutex_unlock(&rfkill_global_mutex);
1285
1286 return ret ?: count;
1287}
1288
1289static int rfkill_fop_release(struct inode *inode, struct file *file)
1290{
1291 struct rfkill_data *data = file->private_data;
1292 struct rfkill_int_event *ev, *tmp;
1293
1294 mutex_lock(&rfkill_global_mutex);
1295 list_del(&data->list);
1296 mutex_unlock(&rfkill_global_mutex);
1297
1298 mutex_destroy(&data->mtx);
1299 list_for_each_entry_safe(ev, tmp, &data->events, list)
1300 kfree(ev);
1301
1302#ifdef CONFIG_RFKILL_INPUT
1303 if (data->input_handler)
1304 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1305 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1306#endif
1307
1308 kfree(data);
1309
1310 return 0;
1311}
1312
1313#ifdef CONFIG_RFKILL_INPUT
1314static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1315 unsigned long arg)
1316{
1317 struct rfkill_data *data = file->private_data;
1318
1319 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1320 return -ENOSYS;
1321
1322 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1323 return -ENOSYS;
1324
1325 mutex_lock(&data->mtx);
1326
1327 if (!data->input_handler) {
1328 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1329 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1330 data->input_handler = true;
1331 }
1332
1333 mutex_unlock(&data->mtx);
1334
1335 return 0;
1336}
1337#endif
1338
1339static const struct file_operations rfkill_fops = {
1340 .owner = THIS_MODULE,
1341 .open = rfkill_fop_open,
1342 .read = rfkill_fop_read,
1343 .write = rfkill_fop_write,
1344 .poll = rfkill_fop_poll,
1345 .release = rfkill_fop_release,
1346#ifdef CONFIG_RFKILL_INPUT
1347 .unlocked_ioctl = rfkill_fop_ioctl,
1348 .compat_ioctl = compat_ptr_ioctl,
1349#endif
1350 .llseek = no_llseek,
1351};
1352
1353#define RFKILL_NAME "rfkill"
1354
1355static struct miscdevice rfkill_miscdev = {
1356 .fops = &rfkill_fops,
1357 .name = RFKILL_NAME,
1358 .minor = RFKILL_MINOR,
1359};
1360
1361static int __init rfkill_init(void)
1362{
1363 int error;
1364
1365 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1366
1367 error = class_register(&rfkill_class);
1368 if (error)
1369 goto error_class;
1370
1371 error = misc_register(&rfkill_miscdev);
1372 if (error)
1373 goto error_misc;
1374
1375 error = rfkill_global_led_trigger_register();
1376 if (error)
1377 goto error_led_trigger;
1378
1379#ifdef CONFIG_RFKILL_INPUT
1380 error = rfkill_handler_init();
1381 if (error)
1382 goto error_input;
1383#endif
1384
1385 return 0;
1386
1387#ifdef CONFIG_RFKILL_INPUT
1388error_input:
1389 rfkill_global_led_trigger_unregister();
1390#endif
1391error_led_trigger:
1392 misc_deregister(&rfkill_miscdev);
1393error_misc:
1394 class_unregister(&rfkill_class);
1395error_class:
1396 return error;
1397}
1398subsys_initcall(rfkill_init);
1399
1400static void __exit rfkill_exit(void)
1401{
1402#ifdef CONFIG_RFKILL_INPUT
1403 rfkill_handler_exit();
1404#endif
1405 rfkill_global_led_trigger_unregister();
1406 misc_deregister(&rfkill_miscdev);
1407 class_unregister(&rfkill_class);
1408}
1409module_exit(rfkill_exit);
1410
1411MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1412MODULE_ALIAS("devname:" RFKILL_NAME);