Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/miscdevice.h>
33#include <linux/wait.h>
34#include <linux/poll.h>
35#include <linux/fs.h>
36#include <linux/slab.h>
37
38#include "rfkill.h"
39
40#define POLL_INTERVAL (5 * HZ)
41
42#define RFKILL_BLOCK_HW BIT(0)
43#define RFKILL_BLOCK_SW BIT(1)
44#define RFKILL_BLOCK_SW_PREV BIT(2)
45#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48#define RFKILL_BLOCK_SW_SETCALL BIT(31)
49
50struct rfkill {
51 spinlock_t lock;
52
53 const char *name;
54 enum rfkill_type type;
55
56 unsigned long state;
57
58 u32 idx;
59
60 bool registered;
61 bool persistent;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77};
78#define to_rfkill(d) container_of(d, struct rfkill, dev)
79
80struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
83};
84
85struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
91};
92
93
94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96MODULE_DESCRIPTION("RF switch support");
97MODULE_LICENSE("GPL");
98
99
100/*
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 *
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
110 */
111static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112static DEFINE_MUTEX(rfkill_global_mutex);
113static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114
115static unsigned int rfkill_default_state = 1;
116module_param_named(default_state, rfkill_default_state, uint, 0444);
117MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
119
120static struct {
121 bool cur, sav;
122} rfkill_global_states[NUM_RFKILL_TYPES];
123
124static bool rfkill_epo_lock_active;
125
126
127#ifdef CONFIG_RFKILL_LEDS
128static void rfkill_led_trigger_event(struct rfkill *rfkill)
129{
130 struct led_trigger *trigger;
131
132 if (!rfkill->registered)
133 return;
134
135 trigger = &rfkill->led_trigger;
136
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
141}
142
143static void rfkill_led_trigger_activate(struct led_classdev *led)
144{
145 struct rfkill *rfkill;
146
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148
149 rfkill_led_trigger_event(rfkill);
150}
151
152static int rfkill_led_trigger_register(struct rfkill *rfkill)
153{
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
158}
159
160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
161{
162 led_trigger_unregister(&rfkill->led_trigger);
163}
164#else
165static void rfkill_led_trigger_event(struct rfkill *rfkill)
166{
167}
168
169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
170{
171 return 0;
172}
173
174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175{
176}
177#endif /* CONFIG_RFKILL_LEDS */
178
179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
181{
182 unsigned long flags;
183
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
187
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
193}
194
195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
196{
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
199
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
209 }
210}
211
212static void rfkill_event(struct rfkill *rfkill)
213{
214 if (!rfkill->registered)
215 return;
216
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
218
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
221}
222
223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
225{
226 unsigned long flags;
227 bool prev, any;
228
229 BUG_ON(!rfkill);
230
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
240
241 rfkill_led_trigger_event(rfkill);
242
243 return any;
244}
245
246/**
247 * rfkill_set_block - wrapper for set_block method
248 *
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
251 *
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
254 */
255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
256{
257 unsigned long flags;
258 int err;
259
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
262
263 /*
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
267 */
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
270
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
276
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
281
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
284
285 err = rfkill->ops->set_block(rfkill->data, blocked);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
289 /*
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
293 */
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
298 }
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
305}
306
307#ifdef CONFIG_RFKILL_INPUT
308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
309
310/**
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
314 *
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
318 *
319 * Caller must have acquired rfkill_global_mutex.
320 */
321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
322{
323 struct rfkill *rfkill;
324
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
329
330 rfkill_set_block(rfkill, blocked);
331 }
332}
333
334/**
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
338 *
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
341 *
342 * Does nothing if the EPO lock is active.
343 */
344void rfkill_switch_all(enum rfkill_type type, bool blocked)
345{
346 if (atomic_read(&rfkill_input_disabled))
347 return;
348
349 mutex_lock(&rfkill_global_mutex);
350
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
353
354 mutex_unlock(&rfkill_global_mutex);
355}
356
357/**
358 * rfkill_epo - emergency power off all transmitters
359 *
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
362 *
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
365 */
366void rfkill_epo(void)
367{
368 struct rfkill *rfkill;
369 int i;
370
371 if (atomic_read(&rfkill_input_disabled))
372 return;
373
374 mutex_lock(&rfkill_global_mutex);
375
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
383 }
384
385 mutex_unlock(&rfkill_global_mutex);
386}
387
388/**
389 * rfkill_restore_states - restore global states
390 *
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
394 */
395void rfkill_restore_states(void)
396{
397 int i;
398
399 if (atomic_read(&rfkill_input_disabled))
400 return;
401
402 mutex_lock(&rfkill_global_mutex);
403
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
408}
409
410/**
411 * rfkill_remove_epo_lock - unlock state changes
412 *
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
415 */
416void rfkill_remove_epo_lock(void)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
424}
425
426/**
427 * rfkill_is_epo_lock_active - returns true EPO is active
428 *
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
432 *
433 * Can be called in atomic context.
434 */
435bool rfkill_is_epo_lock_active(void)
436{
437 return rfkill_epo_lock_active;
438}
439
440/**
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
443 *
444 * Returns the current global state for a given wireless
445 * device type.
446 */
447bool rfkill_get_global_sw_state(const enum rfkill_type type)
448{
449 return rfkill_global_states[type].cur;
450}
451#endif
452
453
454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
455{
456 bool ret, change;
457
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
459
460 if (!rfkill->registered)
461 return ret;
462
463 if (change)
464 schedule_work(&rfkill->uevent_work);
465
466 return ret;
467}
468EXPORT_SYMBOL(rfkill_set_hw_state);
469
470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
471{
472 u32 bit = RFKILL_BLOCK_SW;
473
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
477
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
482}
483
484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
485{
486 unsigned long flags;
487 bool prev, hwblock;
488
489 BUG_ON(!rfkill);
490
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
497
498 if (!rfkill->registered)
499 return blocked;
500
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
503
504 rfkill_led_trigger_event(rfkill);
505
506 return blocked;
507}
508EXPORT_SYMBOL(rfkill_set_sw_state);
509
510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
511{
512 unsigned long flags;
513
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
516
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
521}
522EXPORT_SYMBOL(rfkill_init_sw_state);
523
524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525{
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
544
545 spin_unlock_irqrestore(&rfkill->lock, flags);
546
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
552
553 rfkill_led_trigger_event(rfkill);
554 }
555}
556EXPORT_SYMBOL(rfkill_set_states);
557
558static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
561{
562 struct rfkill *rfkill = to_rfkill(dev);
563
564 return sprintf(buf, "%s\n", rfkill->name);
565}
566
567static const char *rfkill_get_type_str(enum rfkill_type type)
568{
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
570
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
588 }
589}
590
591static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct rfkill *rfkill = to_rfkill(dev);
596
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
598}
599
600static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
603{
604 struct rfkill *rfkill = to_rfkill(dev);
605
606 return sprintf(buf, "%d\n", rfkill->idx);
607}
608
609static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
612{
613 struct rfkill *rfkill = to_rfkill(dev);
614
615 return sprintf(buf, "%d\n", rfkill->persistent);
616}
617
618static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
621{
622 struct rfkill *rfkill = to_rfkill(dev);
623
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
625}
626
627static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
630{
631 struct rfkill *rfkill = to_rfkill(dev);
632
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
634}
635
636static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
639{
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
643
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
646
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
650
651 if (state > 1 )
652 return -EINVAL;
653
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
657
658 return err ?: count;
659}
660
661static u8 user_state_from_blocked(unsigned long state)
662{
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
667
668 return RFKILL_USER_STATE_UNBLOCKED;
669}
670
671static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
674{
675 struct rfkill *rfkill = to_rfkill(dev);
676
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
678}
679
680static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
683{
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
687
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
690
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
694
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
698
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
702
703 return err ?: count;
704}
705
706static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 return sprintf(buf, "%d\n", 0);
711}
712
713static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
716{
717 return -EOPNOTSUPP;
718}
719
720static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
730};
731
732static void rfkill_release(struct device *dev)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 kfree(rfkill);
737}
738
739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
740{
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
745
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
759}
760
761void rfkill_pause_polling(struct rfkill *rfkill)
762{
763 BUG_ON(!rfkill);
764
765 if (!rfkill->ops->poll)
766 return;
767
768 cancel_delayed_work_sync(&rfkill->poll_work);
769}
770EXPORT_SYMBOL(rfkill_pause_polling);
771
772void rfkill_resume_polling(struct rfkill *rfkill)
773{
774 BUG_ON(!rfkill);
775
776 if (!rfkill->ops->poll)
777 return;
778
779 schedule_work(&rfkill->poll_work.work);
780}
781EXPORT_SYMBOL(rfkill_resume_polling);
782
783static int rfkill_suspend(struct device *dev, pm_message_t state)
784{
785 struct rfkill *rfkill = to_rfkill(dev);
786
787 rfkill_pause_polling(rfkill);
788
789 return 0;
790}
791
792static int rfkill_resume(struct device *dev)
793{
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
796
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
800 }
801
802 rfkill_resume_polling(rfkill);
803
804 return 0;
805}
806
807static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
814};
815
816bool rfkill_blocked(struct rfkill *rfkill)
817{
818 unsigned long flags;
819 u32 state;
820
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
824
825 return !!(state & RFKILL_BLOCK_ANY);
826}
827EXPORT_SYMBOL(rfkill_blocked);
828
829
830struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
835{
836 struct rfkill *rfkill;
837 struct device *dev;
838
839 if (WARN_ON(!ops))
840 return NULL;
841
842 if (WARN_ON(!ops->set_block))
843 return NULL;
844
845 if (WARN_ON(!name))
846 return NULL;
847
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
850
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
854
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
861
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
866
867 return rfkill;
868}
869EXPORT_SYMBOL(rfkill_alloc);
870
871static void rfkill_poll(struct work_struct *work)
872{
873 struct rfkill *rfkill;
874
875 rfkill = container_of(work, struct rfkill, poll_work.work);
876
877 /*
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
881 */
882 rfkill->ops->poll(rfkill, rfkill->data);
883
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
886}
887
888static void rfkill_uevent_work(struct work_struct *work)
889{
890 struct rfkill *rfkill;
891
892 rfkill = container_of(work, struct rfkill, uevent_work);
893
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
897}
898
899static void rfkill_sync_work(struct work_struct *work)
900{
901 struct rfkill *rfkill;
902 bool cur;
903
904 rfkill = container_of(work, struct rfkill, sync_work);
905
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
910}
911
912int __must_check rfkill_register(struct rfkill *rfkill)
913{
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
917
918 BUG_ON(!rfkill);
919
920 mutex_lock(&rfkill_global_mutex);
921
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
925 }
926
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
930
931 list_add_tail(&rfkill->node, &rfkill_list);
932
933 error = device_add(dev);
934 if (error)
935 goto remove;
936
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
940
941 rfkill->registered = true;
942
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
946
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
950
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954#ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
956
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959#endif
960 }
961
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
963
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
966
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
974}
975EXPORT_SYMBOL(rfkill_register);
976
977void rfkill_unregister(struct rfkill *rfkill)
978{
979 BUG_ON(!rfkill);
980
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
983
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
986
987 rfkill->registered = false;
988
989 device_del(&rfkill->dev);
990
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
995
996 rfkill_led_trigger_unregister(rfkill);
997}
998EXPORT_SYMBOL(rfkill_unregister);
999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1012
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1016
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1020
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1023 /*
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1026 */
1027
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1034 }
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1038
1039 file->private_data = data;
1040
1041 return nonseekable_open(inode, file);
1042
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1057
1058 poll_wait(file, &data->read_wait, wait);
1059
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1064
1065 return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070 bool r;
1071
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1075
1076 return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1081{
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1086
1087 mutex_lock(&data->mtx);
1088
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1098
1099 if (ret)
1100 goto out;
1101 }
1102
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1105
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1110
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1120{
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1123
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1127
1128 /*
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1132 */
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1136
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1139
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1142
1143 mutex_lock(&rfkill_global_mutex);
1144
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1152 }
1153 }
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1158
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1161
1162 rfkill_set_block(rfkill, ev.soft);
1163 }
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1173
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1177
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188 kfree(data);
1189
1190 return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1196{
1197 struct rfkill_data *data = file->private_data;
1198
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1201
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1204
1205 mutex_lock(&data->mtx);
1206
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1211 }
1212
1213 mutex_unlock(&data->mtx);
1214
1215 return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229#endif
1230 .llseek = no_llseek,
1231};
1232
1233static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241 int error;
1242 int i;
1243
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1250
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1255 }
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1263 }
1264#endif
1265
1266 out:
1267 return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275#endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/workqueue.h>
24#include <linux/capability.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/rfkill.h>
28#include <linux/sched.h>
29#include <linux/spinlock.h>
30#include <linux/device.h>
31#include <linux/miscdevice.h>
32#include <linux/wait.h>
33#include <linux/poll.h>
34#include <linux/fs.h>
35#include <linux/slab.h>
36
37#include "rfkill.h"
38
39#define POLL_INTERVAL (5 * HZ)
40
41#define RFKILL_BLOCK_HW BIT(0)
42#define RFKILL_BLOCK_SW BIT(1)
43#define RFKILL_BLOCK_SW_PREV BIT(2)
44#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47#define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49struct rfkill {
50 spinlock_t lock;
51
52 enum rfkill_type type;
53
54 unsigned long state;
55
56 u32 idx;
57
58 bool registered;
59 bool persistent;
60 bool polling_paused;
61 bool suspended;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77 char name[];
78};
79#define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84};
85
86struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92};
93
94
95MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97MODULE_DESCRIPTION("RF switch support");
98MODULE_LICENSE("GPL");
99
100
101/*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113static DEFINE_MUTEX(rfkill_global_mutex);
114static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116static unsigned int rfkill_default_state = 1;
117module_param_named(default_state, rfkill_default_state, uint, 0444);
118MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121static struct {
122 bool cur, sav;
123} rfkill_global_states[NUM_RFKILL_TYPES];
124
125static bool rfkill_epo_lock_active;
126
127
128#ifdef CONFIG_RFKILL_LEDS
129static void rfkill_led_trigger_event(struct rfkill *rfkill)
130{
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142}
143
144static void rfkill_led_trigger_activate(struct led_classdev *led)
145{
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151}
152
153const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154{
155 return rfkill->led_trigger.name;
156}
157EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160{
161 BUG_ON(!rfkill);
162
163 rfkill->ledtrigname = name;
164}
165EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167static int rfkill_led_trigger_register(struct rfkill *rfkill)
168{
169 rfkill->led_trigger.name = rfkill->ledtrigname
170 ? : dev_name(&rfkill->dev);
171 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172 return led_trigger_register(&rfkill->led_trigger);
173}
174
175static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176{
177 led_trigger_unregister(&rfkill->led_trigger);
178}
179#else
180static void rfkill_led_trigger_event(struct rfkill *rfkill)
181{
182}
183
184static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
185{
186 return 0;
187}
188
189static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
190{
191}
192#endif /* CONFIG_RFKILL_LEDS */
193
194static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
195 enum rfkill_operation op)
196{
197 unsigned long flags;
198
199 ev->idx = rfkill->idx;
200 ev->type = rfkill->type;
201 ev->op = op;
202
203 spin_lock_irqsave(&rfkill->lock, flags);
204 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
205 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
206 RFKILL_BLOCK_SW_PREV));
207 spin_unlock_irqrestore(&rfkill->lock, flags);
208}
209
210static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
211{
212 struct rfkill_data *data;
213 struct rfkill_int_event *ev;
214
215 list_for_each_entry(data, &rfkill_fds, list) {
216 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
217 if (!ev)
218 continue;
219 rfkill_fill_event(&ev->ev, rfkill, op);
220 mutex_lock(&data->mtx);
221 list_add_tail(&ev->list, &data->events);
222 mutex_unlock(&data->mtx);
223 wake_up_interruptible(&data->read_wait);
224 }
225}
226
227static void rfkill_event(struct rfkill *rfkill)
228{
229 if (!rfkill->registered)
230 return;
231
232 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
233
234 /* also send event to /dev/rfkill */
235 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
236}
237
238/**
239 * rfkill_set_block - wrapper for set_block method
240 *
241 * @rfkill: the rfkill struct to use
242 * @blocked: the new software state
243 *
244 * Calls the set_block method (when applicable) and handles notifications
245 * etc. as well.
246 */
247static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
248{
249 unsigned long flags;
250 bool prev, curr;
251 int err;
252
253 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
254 return;
255
256 /*
257 * Some platforms (...!) generate input events which affect the
258 * _hard_ kill state -- whenever something tries to change the
259 * current software state query the hardware state too.
260 */
261 if (rfkill->ops->query)
262 rfkill->ops->query(rfkill, rfkill->data);
263
264 spin_lock_irqsave(&rfkill->lock, flags);
265 prev = rfkill->state & RFKILL_BLOCK_SW;
266
267 if (prev)
268 rfkill->state |= RFKILL_BLOCK_SW_PREV;
269 else
270 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
271
272 if (blocked)
273 rfkill->state |= RFKILL_BLOCK_SW;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW;
276
277 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
278 spin_unlock_irqrestore(&rfkill->lock, flags);
279
280 err = rfkill->ops->set_block(rfkill->data, blocked);
281
282 spin_lock_irqsave(&rfkill->lock, flags);
283 if (err) {
284 /*
285 * Failed -- reset status to _PREV, which may be different
286 * from what we have set _PREV to earlier in this function
287 * if rfkill_set_sw_state was invoked.
288 */
289 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
290 rfkill->state |= RFKILL_BLOCK_SW;
291 else
292 rfkill->state &= ~RFKILL_BLOCK_SW;
293 }
294 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
295 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
296 curr = rfkill->state & RFKILL_BLOCK_SW;
297 spin_unlock_irqrestore(&rfkill->lock, flags);
298
299 rfkill_led_trigger_event(rfkill);
300
301 if (prev != curr)
302 rfkill_event(rfkill);
303}
304
305static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
306{
307 int i;
308
309 if (type != RFKILL_TYPE_ALL) {
310 rfkill_global_states[type].cur = blocked;
311 return;
312 }
313
314 for (i = 0; i < NUM_RFKILL_TYPES; i++)
315 rfkill_global_states[i].cur = blocked;
316}
317
318#ifdef CONFIG_RFKILL_INPUT
319static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
320
321/**
322 * __rfkill_switch_all - Toggle state of all switches of given type
323 * @type: type of interfaces to be affected
324 * @blocked: the new state
325 *
326 * This function sets the state of all switches of given type,
327 * unless a specific switch is suspended.
328 *
329 * Caller must have acquired rfkill_global_mutex.
330 */
331static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
332{
333 struct rfkill *rfkill;
334
335 rfkill_update_global_state(type, blocked);
336 list_for_each_entry(rfkill, &rfkill_list, node) {
337 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
338 continue;
339
340 rfkill_set_block(rfkill, blocked);
341 }
342}
343
344/**
345 * rfkill_switch_all - Toggle state of all switches of given type
346 * @type: type of interfaces to be affected
347 * @blocked: the new state
348 *
349 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
350 * Please refer to __rfkill_switch_all() for details.
351 *
352 * Does nothing if the EPO lock is active.
353 */
354void rfkill_switch_all(enum rfkill_type type, bool blocked)
355{
356 if (atomic_read(&rfkill_input_disabled))
357 return;
358
359 mutex_lock(&rfkill_global_mutex);
360
361 if (!rfkill_epo_lock_active)
362 __rfkill_switch_all(type, blocked);
363
364 mutex_unlock(&rfkill_global_mutex);
365}
366
367/**
368 * rfkill_epo - emergency power off all transmitters
369 *
370 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
371 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
372 *
373 * The global state before the EPO is saved and can be restored later
374 * using rfkill_restore_states().
375 */
376void rfkill_epo(void)
377{
378 struct rfkill *rfkill;
379 int i;
380
381 if (atomic_read(&rfkill_input_disabled))
382 return;
383
384 mutex_lock(&rfkill_global_mutex);
385
386 rfkill_epo_lock_active = true;
387 list_for_each_entry(rfkill, &rfkill_list, node)
388 rfkill_set_block(rfkill, true);
389
390 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
391 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
392 rfkill_global_states[i].cur = true;
393 }
394
395 mutex_unlock(&rfkill_global_mutex);
396}
397
398/**
399 * rfkill_restore_states - restore global states
400 *
401 * Restore (and sync switches to) the global state from the
402 * states in rfkill_default_states. This can undo the effects of
403 * a call to rfkill_epo().
404 */
405void rfkill_restore_states(void)
406{
407 int i;
408
409 if (atomic_read(&rfkill_input_disabled))
410 return;
411
412 mutex_lock(&rfkill_global_mutex);
413
414 rfkill_epo_lock_active = false;
415 for (i = 0; i < NUM_RFKILL_TYPES; i++)
416 __rfkill_switch_all(i, rfkill_global_states[i].sav);
417 mutex_unlock(&rfkill_global_mutex);
418}
419
420/**
421 * rfkill_remove_epo_lock - unlock state changes
422 *
423 * Used by rfkill-input manually unlock state changes, when
424 * the EPO switch is deactivated.
425 */
426void rfkill_remove_epo_lock(void)
427{
428 if (atomic_read(&rfkill_input_disabled))
429 return;
430
431 mutex_lock(&rfkill_global_mutex);
432 rfkill_epo_lock_active = false;
433 mutex_unlock(&rfkill_global_mutex);
434}
435
436/**
437 * rfkill_is_epo_lock_active - returns true EPO is active
438 *
439 * Returns 0 (false) if there is NOT an active EPO contidion,
440 * and 1 (true) if there is an active EPO contition, which
441 * locks all radios in one of the BLOCKED states.
442 *
443 * Can be called in atomic context.
444 */
445bool rfkill_is_epo_lock_active(void)
446{
447 return rfkill_epo_lock_active;
448}
449
450/**
451 * rfkill_get_global_sw_state - returns global state for a type
452 * @type: the type to get the global state of
453 *
454 * Returns the current global state for a given wireless
455 * device type.
456 */
457bool rfkill_get_global_sw_state(const enum rfkill_type type)
458{
459 return rfkill_global_states[type].cur;
460}
461#endif
462
463bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
464{
465 unsigned long flags;
466 bool ret, prev;
467
468 BUG_ON(!rfkill);
469
470 spin_lock_irqsave(&rfkill->lock, flags);
471 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
472 if (blocked)
473 rfkill->state |= RFKILL_BLOCK_HW;
474 else
475 rfkill->state &= ~RFKILL_BLOCK_HW;
476 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
477 spin_unlock_irqrestore(&rfkill->lock, flags);
478
479 rfkill_led_trigger_event(rfkill);
480
481 if (!rfkill->registered)
482 return ret;
483
484 if (prev != blocked)
485 schedule_work(&rfkill->uevent_work);
486
487 return ret;
488}
489EXPORT_SYMBOL(rfkill_set_hw_state);
490
491static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
492{
493 u32 bit = RFKILL_BLOCK_SW;
494
495 /* if in a ops->set_block right now, use other bit */
496 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
497 bit = RFKILL_BLOCK_SW_PREV;
498
499 if (blocked)
500 rfkill->state |= bit;
501 else
502 rfkill->state &= ~bit;
503}
504
505bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
506{
507 unsigned long flags;
508 bool prev, hwblock;
509
510 BUG_ON(!rfkill);
511
512 spin_lock_irqsave(&rfkill->lock, flags);
513 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
514 __rfkill_set_sw_state(rfkill, blocked);
515 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
516 blocked = blocked || hwblock;
517 spin_unlock_irqrestore(&rfkill->lock, flags);
518
519 if (!rfkill->registered)
520 return blocked;
521
522 if (prev != blocked && !hwblock)
523 schedule_work(&rfkill->uevent_work);
524
525 rfkill_led_trigger_event(rfkill);
526
527 return blocked;
528}
529EXPORT_SYMBOL(rfkill_set_sw_state);
530
531void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
532{
533 unsigned long flags;
534
535 BUG_ON(!rfkill);
536 BUG_ON(rfkill->registered);
537
538 spin_lock_irqsave(&rfkill->lock, flags);
539 __rfkill_set_sw_state(rfkill, blocked);
540 rfkill->persistent = true;
541 spin_unlock_irqrestore(&rfkill->lock, flags);
542}
543EXPORT_SYMBOL(rfkill_init_sw_state);
544
545void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
546{
547 unsigned long flags;
548 bool swprev, hwprev;
549
550 BUG_ON(!rfkill);
551
552 spin_lock_irqsave(&rfkill->lock, flags);
553
554 /*
555 * No need to care about prev/setblock ... this is for uevent only
556 * and that will get triggered by rfkill_set_block anyway.
557 */
558 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
559 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
560 __rfkill_set_sw_state(rfkill, sw);
561 if (hw)
562 rfkill->state |= RFKILL_BLOCK_HW;
563 else
564 rfkill->state &= ~RFKILL_BLOCK_HW;
565
566 spin_unlock_irqrestore(&rfkill->lock, flags);
567
568 if (!rfkill->registered) {
569 rfkill->persistent = true;
570 } else {
571 if (swprev != sw || hwprev != hw)
572 schedule_work(&rfkill->uevent_work);
573
574 rfkill_led_trigger_event(rfkill);
575 }
576}
577EXPORT_SYMBOL(rfkill_set_states);
578
579static const char * const rfkill_types[] = {
580 NULL, /* RFKILL_TYPE_ALL */
581 "wlan",
582 "bluetooth",
583 "ultrawideband",
584 "wimax",
585 "wwan",
586 "gps",
587 "fm",
588 "nfc",
589};
590
591enum rfkill_type rfkill_find_type(const char *name)
592{
593 int i;
594
595 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
596
597 if (!name)
598 return RFKILL_TYPE_ALL;
599
600 for (i = 1; i < NUM_RFKILL_TYPES; i++)
601 if (!strcmp(name, rfkill_types[i]))
602 return i;
603 return RFKILL_TYPE_ALL;
604}
605EXPORT_SYMBOL(rfkill_find_type);
606
607static ssize_t name_show(struct device *dev, struct device_attribute *attr,
608 char *buf)
609{
610 struct rfkill *rfkill = to_rfkill(dev);
611
612 return sprintf(buf, "%s\n", rfkill->name);
613}
614static DEVICE_ATTR_RO(name);
615
616static ssize_t type_show(struct device *dev, struct device_attribute *attr,
617 char *buf)
618{
619 struct rfkill *rfkill = to_rfkill(dev);
620
621 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
622}
623static DEVICE_ATTR_RO(type);
624
625static ssize_t index_show(struct device *dev, struct device_attribute *attr,
626 char *buf)
627{
628 struct rfkill *rfkill = to_rfkill(dev);
629
630 return sprintf(buf, "%d\n", rfkill->idx);
631}
632static DEVICE_ATTR_RO(index);
633
634static ssize_t persistent_show(struct device *dev,
635 struct device_attribute *attr, char *buf)
636{
637 struct rfkill *rfkill = to_rfkill(dev);
638
639 return sprintf(buf, "%d\n", rfkill->persistent);
640}
641static DEVICE_ATTR_RO(persistent);
642
643static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
644 char *buf)
645{
646 struct rfkill *rfkill = to_rfkill(dev);
647
648 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
649}
650static DEVICE_ATTR_RO(hard);
651
652static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
653 char *buf)
654{
655 struct rfkill *rfkill = to_rfkill(dev);
656
657 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
658}
659
660static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
661 const char *buf, size_t count)
662{
663 struct rfkill *rfkill = to_rfkill(dev);
664 unsigned long state;
665 int err;
666
667 if (!capable(CAP_NET_ADMIN))
668 return -EPERM;
669
670 err = kstrtoul(buf, 0, &state);
671 if (err)
672 return err;
673
674 if (state > 1 )
675 return -EINVAL;
676
677 mutex_lock(&rfkill_global_mutex);
678 rfkill_set_block(rfkill, state);
679 mutex_unlock(&rfkill_global_mutex);
680
681 return count;
682}
683static DEVICE_ATTR_RW(soft);
684
685static u8 user_state_from_blocked(unsigned long state)
686{
687 if (state & RFKILL_BLOCK_HW)
688 return RFKILL_USER_STATE_HARD_BLOCKED;
689 if (state & RFKILL_BLOCK_SW)
690 return RFKILL_USER_STATE_SOFT_BLOCKED;
691
692 return RFKILL_USER_STATE_UNBLOCKED;
693}
694
695static ssize_t state_show(struct device *dev, struct device_attribute *attr,
696 char *buf)
697{
698 struct rfkill *rfkill = to_rfkill(dev);
699
700 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
701}
702
703static ssize_t state_store(struct device *dev, struct device_attribute *attr,
704 const char *buf, size_t count)
705{
706 struct rfkill *rfkill = to_rfkill(dev);
707 unsigned long state;
708 int err;
709
710 if (!capable(CAP_NET_ADMIN))
711 return -EPERM;
712
713 err = kstrtoul(buf, 0, &state);
714 if (err)
715 return err;
716
717 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
718 state != RFKILL_USER_STATE_UNBLOCKED)
719 return -EINVAL;
720
721 mutex_lock(&rfkill_global_mutex);
722 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
723 mutex_unlock(&rfkill_global_mutex);
724
725 return count;
726}
727static DEVICE_ATTR_RW(state);
728
729static struct attribute *rfkill_dev_attrs[] = {
730 &dev_attr_name.attr,
731 &dev_attr_type.attr,
732 &dev_attr_index.attr,
733 &dev_attr_persistent.attr,
734 &dev_attr_state.attr,
735 &dev_attr_soft.attr,
736 &dev_attr_hard.attr,
737 NULL,
738};
739ATTRIBUTE_GROUPS(rfkill_dev);
740
741static void rfkill_release(struct device *dev)
742{
743 struct rfkill *rfkill = to_rfkill(dev);
744
745 kfree(rfkill);
746}
747
748static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
749{
750 struct rfkill *rfkill = to_rfkill(dev);
751 unsigned long flags;
752 u32 state;
753 int error;
754
755 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
756 if (error)
757 return error;
758 error = add_uevent_var(env, "RFKILL_TYPE=%s",
759 rfkill_types[rfkill->type]);
760 if (error)
761 return error;
762 spin_lock_irqsave(&rfkill->lock, flags);
763 state = rfkill->state;
764 spin_unlock_irqrestore(&rfkill->lock, flags);
765 error = add_uevent_var(env, "RFKILL_STATE=%d",
766 user_state_from_blocked(state));
767 return error;
768}
769
770void rfkill_pause_polling(struct rfkill *rfkill)
771{
772 BUG_ON(!rfkill);
773
774 if (!rfkill->ops->poll)
775 return;
776
777 rfkill->polling_paused = true;
778 cancel_delayed_work_sync(&rfkill->poll_work);
779}
780EXPORT_SYMBOL(rfkill_pause_polling);
781
782void rfkill_resume_polling(struct rfkill *rfkill)
783{
784 BUG_ON(!rfkill);
785
786 if (!rfkill->ops->poll)
787 return;
788
789 rfkill->polling_paused = false;
790
791 if (rfkill->suspended)
792 return;
793
794 queue_delayed_work(system_power_efficient_wq,
795 &rfkill->poll_work, 0);
796}
797EXPORT_SYMBOL(rfkill_resume_polling);
798
799#ifdef CONFIG_PM_SLEEP
800static int rfkill_suspend(struct device *dev)
801{
802 struct rfkill *rfkill = to_rfkill(dev);
803
804 rfkill->suspended = true;
805 cancel_delayed_work_sync(&rfkill->poll_work);
806
807 return 0;
808}
809
810static int rfkill_resume(struct device *dev)
811{
812 struct rfkill *rfkill = to_rfkill(dev);
813 bool cur;
814
815 rfkill->suspended = false;
816
817 if (!rfkill->persistent) {
818 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
819 rfkill_set_block(rfkill, cur);
820 }
821
822 if (rfkill->ops->poll && !rfkill->polling_paused)
823 queue_delayed_work(system_power_efficient_wq,
824 &rfkill->poll_work, 0);
825
826 return 0;
827}
828
829static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
830#define RFKILL_PM_OPS (&rfkill_pm_ops)
831#else
832#define RFKILL_PM_OPS NULL
833#endif
834
835static struct class rfkill_class = {
836 .name = "rfkill",
837 .dev_release = rfkill_release,
838 .dev_groups = rfkill_dev_groups,
839 .dev_uevent = rfkill_dev_uevent,
840 .pm = RFKILL_PM_OPS,
841};
842
843bool rfkill_blocked(struct rfkill *rfkill)
844{
845 unsigned long flags;
846 u32 state;
847
848 spin_lock_irqsave(&rfkill->lock, flags);
849 state = rfkill->state;
850 spin_unlock_irqrestore(&rfkill->lock, flags);
851
852 return !!(state & RFKILL_BLOCK_ANY);
853}
854EXPORT_SYMBOL(rfkill_blocked);
855
856
857struct rfkill * __must_check rfkill_alloc(const char *name,
858 struct device *parent,
859 const enum rfkill_type type,
860 const struct rfkill_ops *ops,
861 void *ops_data)
862{
863 struct rfkill *rfkill;
864 struct device *dev;
865
866 if (WARN_ON(!ops))
867 return NULL;
868
869 if (WARN_ON(!ops->set_block))
870 return NULL;
871
872 if (WARN_ON(!name))
873 return NULL;
874
875 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
876 return NULL;
877
878 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
879 if (!rfkill)
880 return NULL;
881
882 spin_lock_init(&rfkill->lock);
883 INIT_LIST_HEAD(&rfkill->node);
884 rfkill->type = type;
885 strcpy(rfkill->name, name);
886 rfkill->ops = ops;
887 rfkill->data = ops_data;
888
889 dev = &rfkill->dev;
890 dev->class = &rfkill_class;
891 dev->parent = parent;
892 device_initialize(dev);
893
894 return rfkill;
895}
896EXPORT_SYMBOL(rfkill_alloc);
897
898static void rfkill_poll(struct work_struct *work)
899{
900 struct rfkill *rfkill;
901
902 rfkill = container_of(work, struct rfkill, poll_work.work);
903
904 /*
905 * Poll hardware state -- driver will use one of the
906 * rfkill_set{,_hw,_sw}_state functions and use its
907 * return value to update the current status.
908 */
909 rfkill->ops->poll(rfkill, rfkill->data);
910
911 queue_delayed_work(system_power_efficient_wq,
912 &rfkill->poll_work,
913 round_jiffies_relative(POLL_INTERVAL));
914}
915
916static void rfkill_uevent_work(struct work_struct *work)
917{
918 struct rfkill *rfkill;
919
920 rfkill = container_of(work, struct rfkill, uevent_work);
921
922 mutex_lock(&rfkill_global_mutex);
923 rfkill_event(rfkill);
924 mutex_unlock(&rfkill_global_mutex);
925}
926
927static void rfkill_sync_work(struct work_struct *work)
928{
929 struct rfkill *rfkill;
930 bool cur;
931
932 rfkill = container_of(work, struct rfkill, sync_work);
933
934 mutex_lock(&rfkill_global_mutex);
935 cur = rfkill_global_states[rfkill->type].cur;
936 rfkill_set_block(rfkill, cur);
937 mutex_unlock(&rfkill_global_mutex);
938}
939
940int __must_check rfkill_register(struct rfkill *rfkill)
941{
942 static unsigned long rfkill_no;
943 struct device *dev = &rfkill->dev;
944 int error;
945
946 BUG_ON(!rfkill);
947
948 mutex_lock(&rfkill_global_mutex);
949
950 if (rfkill->registered) {
951 error = -EALREADY;
952 goto unlock;
953 }
954
955 rfkill->idx = rfkill_no;
956 dev_set_name(dev, "rfkill%lu", rfkill_no);
957 rfkill_no++;
958
959 list_add_tail(&rfkill->node, &rfkill_list);
960
961 error = device_add(dev);
962 if (error)
963 goto remove;
964
965 error = rfkill_led_trigger_register(rfkill);
966 if (error)
967 goto devdel;
968
969 rfkill->registered = true;
970
971 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
972 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
973 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
974
975 if (rfkill->ops->poll)
976 queue_delayed_work(system_power_efficient_wq,
977 &rfkill->poll_work,
978 round_jiffies_relative(POLL_INTERVAL));
979
980 if (!rfkill->persistent || rfkill_epo_lock_active) {
981 schedule_work(&rfkill->sync_work);
982 } else {
983#ifdef CONFIG_RFKILL_INPUT
984 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
985
986 if (!atomic_read(&rfkill_input_disabled))
987 __rfkill_switch_all(rfkill->type, soft_blocked);
988#endif
989 }
990
991 rfkill_send_events(rfkill, RFKILL_OP_ADD);
992
993 mutex_unlock(&rfkill_global_mutex);
994 return 0;
995
996 devdel:
997 device_del(&rfkill->dev);
998 remove:
999 list_del_init(&rfkill->node);
1000 unlock:
1001 mutex_unlock(&rfkill_global_mutex);
1002 return error;
1003}
1004EXPORT_SYMBOL(rfkill_register);
1005
1006void rfkill_unregister(struct rfkill *rfkill)
1007{
1008 BUG_ON(!rfkill);
1009
1010 if (rfkill->ops->poll)
1011 cancel_delayed_work_sync(&rfkill->poll_work);
1012
1013 cancel_work_sync(&rfkill->uevent_work);
1014 cancel_work_sync(&rfkill->sync_work);
1015
1016 rfkill->registered = false;
1017
1018 device_del(&rfkill->dev);
1019
1020 mutex_lock(&rfkill_global_mutex);
1021 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1022 list_del_init(&rfkill->node);
1023 mutex_unlock(&rfkill_global_mutex);
1024
1025 rfkill_led_trigger_unregister(rfkill);
1026}
1027EXPORT_SYMBOL(rfkill_unregister);
1028
1029void rfkill_destroy(struct rfkill *rfkill)
1030{
1031 if (rfkill)
1032 put_device(&rfkill->dev);
1033}
1034EXPORT_SYMBOL(rfkill_destroy);
1035
1036static int rfkill_fop_open(struct inode *inode, struct file *file)
1037{
1038 struct rfkill_data *data;
1039 struct rfkill *rfkill;
1040 struct rfkill_int_event *ev, *tmp;
1041
1042 data = kzalloc(sizeof(*data), GFP_KERNEL);
1043 if (!data)
1044 return -ENOMEM;
1045
1046 INIT_LIST_HEAD(&data->events);
1047 mutex_init(&data->mtx);
1048 init_waitqueue_head(&data->read_wait);
1049
1050 mutex_lock(&rfkill_global_mutex);
1051 mutex_lock(&data->mtx);
1052 /*
1053 * start getting events from elsewhere but hold mtx to get
1054 * startup events added first
1055 */
1056
1057 list_for_each_entry(rfkill, &rfkill_list, node) {
1058 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1059 if (!ev)
1060 goto free;
1061 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1062 list_add_tail(&ev->list, &data->events);
1063 }
1064 list_add(&data->list, &rfkill_fds);
1065 mutex_unlock(&data->mtx);
1066 mutex_unlock(&rfkill_global_mutex);
1067
1068 file->private_data = data;
1069
1070 return nonseekable_open(inode, file);
1071
1072 free:
1073 mutex_unlock(&data->mtx);
1074 mutex_unlock(&rfkill_global_mutex);
1075 mutex_destroy(&data->mtx);
1076 list_for_each_entry_safe(ev, tmp, &data->events, list)
1077 kfree(ev);
1078 kfree(data);
1079 return -ENOMEM;
1080}
1081
1082static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1083{
1084 struct rfkill_data *data = file->private_data;
1085 unsigned int res = POLLOUT | POLLWRNORM;
1086
1087 poll_wait(file, &data->read_wait, wait);
1088
1089 mutex_lock(&data->mtx);
1090 if (!list_empty(&data->events))
1091 res = POLLIN | POLLRDNORM;
1092 mutex_unlock(&data->mtx);
1093
1094 return res;
1095}
1096
1097static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1098 size_t count, loff_t *pos)
1099{
1100 struct rfkill_data *data = file->private_data;
1101 struct rfkill_int_event *ev;
1102 unsigned long sz;
1103 int ret;
1104
1105 mutex_lock(&data->mtx);
1106
1107 while (list_empty(&data->events)) {
1108 if (file->f_flags & O_NONBLOCK) {
1109 ret = -EAGAIN;
1110 goto out;
1111 }
1112 mutex_unlock(&data->mtx);
1113 /* since we re-check and it just compares pointers,
1114 * using !list_empty() without locking isn't a problem
1115 */
1116 ret = wait_event_interruptible(data->read_wait,
1117 !list_empty(&data->events));
1118 mutex_lock(&data->mtx);
1119
1120 if (ret)
1121 goto out;
1122 }
1123
1124 ev = list_first_entry(&data->events, struct rfkill_int_event,
1125 list);
1126
1127 sz = min_t(unsigned long, sizeof(ev->ev), count);
1128 ret = sz;
1129 if (copy_to_user(buf, &ev->ev, sz))
1130 ret = -EFAULT;
1131
1132 list_del(&ev->list);
1133 kfree(ev);
1134 out:
1135 mutex_unlock(&data->mtx);
1136 return ret;
1137}
1138
1139static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1140 size_t count, loff_t *pos)
1141{
1142 struct rfkill *rfkill;
1143 struct rfkill_event ev;
1144
1145 /* we don't need the 'hard' variable but accept it */
1146 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1147 return -EINVAL;
1148
1149 /*
1150 * Copy as much data as we can accept into our 'ev' buffer,
1151 * but tell userspace how much we've copied so it can determine
1152 * our API version even in a write() call, if it cares.
1153 */
1154 count = min(count, sizeof(ev));
1155 if (copy_from_user(&ev, buf, count))
1156 return -EFAULT;
1157
1158 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1159 return -EINVAL;
1160
1161 if (ev.type >= NUM_RFKILL_TYPES)
1162 return -EINVAL;
1163
1164 mutex_lock(&rfkill_global_mutex);
1165
1166 if (ev.op == RFKILL_OP_CHANGE_ALL)
1167 rfkill_update_global_state(ev.type, ev.soft);
1168
1169 list_for_each_entry(rfkill, &rfkill_list, node) {
1170 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1171 continue;
1172
1173 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1174 continue;
1175
1176 rfkill_set_block(rfkill, ev.soft);
1177 }
1178 mutex_unlock(&rfkill_global_mutex);
1179
1180 return count;
1181}
1182
1183static int rfkill_fop_release(struct inode *inode, struct file *file)
1184{
1185 struct rfkill_data *data = file->private_data;
1186 struct rfkill_int_event *ev, *tmp;
1187
1188 mutex_lock(&rfkill_global_mutex);
1189 list_del(&data->list);
1190 mutex_unlock(&rfkill_global_mutex);
1191
1192 mutex_destroy(&data->mtx);
1193 list_for_each_entry_safe(ev, tmp, &data->events, list)
1194 kfree(ev);
1195
1196#ifdef CONFIG_RFKILL_INPUT
1197 if (data->input_handler)
1198 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1199 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1200#endif
1201
1202 kfree(data);
1203
1204 return 0;
1205}
1206
1207#ifdef CONFIG_RFKILL_INPUT
1208static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1209 unsigned long arg)
1210{
1211 struct rfkill_data *data = file->private_data;
1212
1213 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1214 return -ENOSYS;
1215
1216 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1217 return -ENOSYS;
1218
1219 mutex_lock(&data->mtx);
1220
1221 if (!data->input_handler) {
1222 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1223 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1224 data->input_handler = true;
1225 }
1226
1227 mutex_unlock(&data->mtx);
1228
1229 return 0;
1230}
1231#endif
1232
1233static const struct file_operations rfkill_fops = {
1234 .owner = THIS_MODULE,
1235 .open = rfkill_fop_open,
1236 .read = rfkill_fop_read,
1237 .write = rfkill_fop_write,
1238 .poll = rfkill_fop_poll,
1239 .release = rfkill_fop_release,
1240#ifdef CONFIG_RFKILL_INPUT
1241 .unlocked_ioctl = rfkill_fop_ioctl,
1242 .compat_ioctl = rfkill_fop_ioctl,
1243#endif
1244 .llseek = no_llseek,
1245};
1246
1247static struct miscdevice rfkill_miscdev = {
1248 .name = "rfkill",
1249 .fops = &rfkill_fops,
1250 .minor = MISC_DYNAMIC_MINOR,
1251};
1252
1253static int __init rfkill_init(void)
1254{
1255 int error;
1256
1257 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1258
1259 error = class_register(&rfkill_class);
1260 if (error)
1261 goto out;
1262
1263 error = misc_register(&rfkill_miscdev);
1264 if (error) {
1265 class_unregister(&rfkill_class);
1266 goto out;
1267 }
1268
1269#ifdef CONFIG_RFKILL_INPUT
1270 error = rfkill_handler_init();
1271 if (error) {
1272 misc_deregister(&rfkill_miscdev);
1273 class_unregister(&rfkill_class);
1274 goto out;
1275 }
1276#endif
1277
1278 out:
1279 return error;
1280}
1281subsys_initcall(rfkill_init);
1282
1283static void __exit rfkill_exit(void)
1284{
1285#ifdef CONFIG_RFKILL_INPUT
1286 rfkill_handler_exit();
1287#endif
1288 misc_deregister(&rfkill_miscdev);
1289 class_unregister(&rfkill_class);
1290}
1291module_exit(rfkill_exit);