Loading...
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/workqueue.h>
26#include <linux/capability.h>
27#include <linux/list.h>
28#include <linux/mutex.h>
29#include <linux/rfkill.h>
30#include <linux/sched.h>
31#include <linux/spinlock.h>
32#include <linux/miscdevice.h>
33#include <linux/wait.h>
34#include <linux/poll.h>
35#include <linux/fs.h>
36#include <linux/slab.h>
37
38#include "rfkill.h"
39
40#define POLL_INTERVAL (5 * HZ)
41
42#define RFKILL_BLOCK_HW BIT(0)
43#define RFKILL_BLOCK_SW BIT(1)
44#define RFKILL_BLOCK_SW_PREV BIT(2)
45#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
46 RFKILL_BLOCK_SW |\
47 RFKILL_BLOCK_SW_PREV)
48#define RFKILL_BLOCK_SW_SETCALL BIT(31)
49
50struct rfkill {
51 spinlock_t lock;
52
53 const char *name;
54 enum rfkill_type type;
55
56 unsigned long state;
57
58 u32 idx;
59
60 bool registered;
61 bool persistent;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77};
78#define to_rfkill(d) container_of(d, struct rfkill, dev)
79
80struct rfkill_int_event {
81 struct list_head list;
82 struct rfkill_event ev;
83};
84
85struct rfkill_data {
86 struct list_head list;
87 struct list_head events;
88 struct mutex mtx;
89 wait_queue_head_t read_wait;
90 bool input_handler;
91};
92
93
94MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
95MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
96MODULE_DESCRIPTION("RF switch support");
97MODULE_LICENSE("GPL");
98
99
100/*
101 * The locking here should be made much smarter, we currently have
102 * a bit of a stupid situation because drivers might want to register
103 * the rfkill struct under their own lock, and take this lock during
104 * rfkill method calls -- which will cause an AB-BA deadlock situation.
105 *
106 * To fix that, we need to rework this code here to be mostly lock-free
107 * and only use the mutex for list manipulations, not to protect the
108 * various other global variables. Then we can avoid holding the mutex
109 * around driver operations, and all is happy.
110 */
111static LIST_HEAD(rfkill_list); /* list of registered rf switches */
112static DEFINE_MUTEX(rfkill_global_mutex);
113static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
114
115static unsigned int rfkill_default_state = 1;
116module_param_named(default_state, rfkill_default_state, uint, 0444);
117MODULE_PARM_DESC(default_state,
118 "Default initial state for all radio types, 0 = radio off");
119
120static struct {
121 bool cur, sav;
122} rfkill_global_states[NUM_RFKILL_TYPES];
123
124static bool rfkill_epo_lock_active;
125
126
127#ifdef CONFIG_RFKILL_LEDS
128static void rfkill_led_trigger_event(struct rfkill *rfkill)
129{
130 struct led_trigger *trigger;
131
132 if (!rfkill->registered)
133 return;
134
135 trigger = &rfkill->led_trigger;
136
137 if (rfkill->state & RFKILL_BLOCK_ANY)
138 led_trigger_event(trigger, LED_OFF);
139 else
140 led_trigger_event(trigger, LED_FULL);
141}
142
143static void rfkill_led_trigger_activate(struct led_classdev *led)
144{
145 struct rfkill *rfkill;
146
147 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
148
149 rfkill_led_trigger_event(rfkill);
150}
151
152static int rfkill_led_trigger_register(struct rfkill *rfkill)
153{
154 rfkill->led_trigger.name = rfkill->ledtrigname
155 ? : dev_name(&rfkill->dev);
156 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
157 return led_trigger_register(&rfkill->led_trigger);
158}
159
160static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
161{
162 led_trigger_unregister(&rfkill->led_trigger);
163}
164#else
165static void rfkill_led_trigger_event(struct rfkill *rfkill)
166{
167}
168
169static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
170{
171 return 0;
172}
173
174static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
175{
176}
177#endif /* CONFIG_RFKILL_LEDS */
178
179static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
180 enum rfkill_operation op)
181{
182 unsigned long flags;
183
184 ev->idx = rfkill->idx;
185 ev->type = rfkill->type;
186 ev->op = op;
187
188 spin_lock_irqsave(&rfkill->lock, flags);
189 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
190 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
191 RFKILL_BLOCK_SW_PREV));
192 spin_unlock_irqrestore(&rfkill->lock, flags);
193}
194
195static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
196{
197 struct rfkill_data *data;
198 struct rfkill_int_event *ev;
199
200 list_for_each_entry(data, &rfkill_fds, list) {
201 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
202 if (!ev)
203 continue;
204 rfkill_fill_event(&ev->ev, rfkill, op);
205 mutex_lock(&data->mtx);
206 list_add_tail(&ev->list, &data->events);
207 mutex_unlock(&data->mtx);
208 wake_up_interruptible(&data->read_wait);
209 }
210}
211
212static void rfkill_event(struct rfkill *rfkill)
213{
214 if (!rfkill->registered)
215 return;
216
217 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
218
219 /* also send event to /dev/rfkill */
220 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
221}
222
223static bool __rfkill_set_hw_state(struct rfkill *rfkill,
224 bool blocked, bool *change)
225{
226 unsigned long flags;
227 bool prev, any;
228
229 BUG_ON(!rfkill);
230
231 spin_lock_irqsave(&rfkill->lock, flags);
232 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
233 if (blocked)
234 rfkill->state |= RFKILL_BLOCK_HW;
235 else
236 rfkill->state &= ~RFKILL_BLOCK_HW;
237 *change = prev != blocked;
238 any = rfkill->state & RFKILL_BLOCK_ANY;
239 spin_unlock_irqrestore(&rfkill->lock, flags);
240
241 rfkill_led_trigger_event(rfkill);
242
243 return any;
244}
245
246/**
247 * rfkill_set_block - wrapper for set_block method
248 *
249 * @rfkill: the rfkill struct to use
250 * @blocked: the new software state
251 *
252 * Calls the set_block method (when applicable) and handles notifications
253 * etc. as well.
254 */
255static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
256{
257 unsigned long flags;
258 int err;
259
260 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
261 return;
262
263 /*
264 * Some platforms (...!) generate input events which affect the
265 * _hard_ kill state -- whenever something tries to change the
266 * current software state query the hardware state too.
267 */
268 if (rfkill->ops->query)
269 rfkill->ops->query(rfkill, rfkill->data);
270
271 spin_lock_irqsave(&rfkill->lock, flags);
272 if (rfkill->state & RFKILL_BLOCK_SW)
273 rfkill->state |= RFKILL_BLOCK_SW_PREV;
274 else
275 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
276
277 if (blocked)
278 rfkill->state |= RFKILL_BLOCK_SW;
279 else
280 rfkill->state &= ~RFKILL_BLOCK_SW;
281
282 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
283 spin_unlock_irqrestore(&rfkill->lock, flags);
284
285 err = rfkill->ops->set_block(rfkill->data, blocked);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 if (err) {
289 /*
290 * Failed -- reset status to _prev, this may be different
291 * from what set set _PREV to earlier in this function
292 * if rfkill_set_sw_state was invoked.
293 */
294 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
295 rfkill->state |= RFKILL_BLOCK_SW;
296 else
297 rfkill->state &= ~RFKILL_BLOCK_SW;
298 }
299 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
300 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 rfkill_led_trigger_event(rfkill);
304 rfkill_event(rfkill);
305}
306
307#ifdef CONFIG_RFKILL_INPUT
308static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
309
310/**
311 * __rfkill_switch_all - Toggle state of all switches of given type
312 * @type: type of interfaces to be affected
313 * @state: the new state
314 *
315 * This function sets the state of all switches of given type,
316 * unless a specific switch is claimed by userspace (in which case,
317 * that switch is left alone) or suspended.
318 *
319 * Caller must have acquired rfkill_global_mutex.
320 */
321static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
322{
323 struct rfkill *rfkill;
324
325 rfkill_global_states[type].cur = blocked;
326 list_for_each_entry(rfkill, &rfkill_list, node) {
327 if (rfkill->type != type)
328 continue;
329
330 rfkill_set_block(rfkill, blocked);
331 }
332}
333
334/**
335 * rfkill_switch_all - Toggle state of all switches of given type
336 * @type: type of interfaces to be affected
337 * @state: the new state
338 *
339 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
340 * Please refer to __rfkill_switch_all() for details.
341 *
342 * Does nothing if the EPO lock is active.
343 */
344void rfkill_switch_all(enum rfkill_type type, bool blocked)
345{
346 if (atomic_read(&rfkill_input_disabled))
347 return;
348
349 mutex_lock(&rfkill_global_mutex);
350
351 if (!rfkill_epo_lock_active)
352 __rfkill_switch_all(type, blocked);
353
354 mutex_unlock(&rfkill_global_mutex);
355}
356
357/**
358 * rfkill_epo - emergency power off all transmitters
359 *
360 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
361 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
362 *
363 * The global state before the EPO is saved and can be restored later
364 * using rfkill_restore_states().
365 */
366void rfkill_epo(void)
367{
368 struct rfkill *rfkill;
369 int i;
370
371 if (atomic_read(&rfkill_input_disabled))
372 return;
373
374 mutex_lock(&rfkill_global_mutex);
375
376 rfkill_epo_lock_active = true;
377 list_for_each_entry(rfkill, &rfkill_list, node)
378 rfkill_set_block(rfkill, true);
379
380 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
381 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
382 rfkill_global_states[i].cur = true;
383 }
384
385 mutex_unlock(&rfkill_global_mutex);
386}
387
388/**
389 * rfkill_restore_states - restore global states
390 *
391 * Restore (and sync switches to) the global state from the
392 * states in rfkill_default_states. This can undo the effects of
393 * a call to rfkill_epo().
394 */
395void rfkill_restore_states(void)
396{
397 int i;
398
399 if (atomic_read(&rfkill_input_disabled))
400 return;
401
402 mutex_lock(&rfkill_global_mutex);
403
404 rfkill_epo_lock_active = false;
405 for (i = 0; i < NUM_RFKILL_TYPES; i++)
406 __rfkill_switch_all(i, rfkill_global_states[i].sav);
407 mutex_unlock(&rfkill_global_mutex);
408}
409
410/**
411 * rfkill_remove_epo_lock - unlock state changes
412 *
413 * Used by rfkill-input manually unlock state changes, when
414 * the EPO switch is deactivated.
415 */
416void rfkill_remove_epo_lock(void)
417{
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422 rfkill_epo_lock_active = false;
423 mutex_unlock(&rfkill_global_mutex);
424}
425
426/**
427 * rfkill_is_epo_lock_active - returns true EPO is active
428 *
429 * Returns 0 (false) if there is NOT an active EPO contidion,
430 * and 1 (true) if there is an active EPO contition, which
431 * locks all radios in one of the BLOCKED states.
432 *
433 * Can be called in atomic context.
434 */
435bool rfkill_is_epo_lock_active(void)
436{
437 return rfkill_epo_lock_active;
438}
439
440/**
441 * rfkill_get_global_sw_state - returns global state for a type
442 * @type: the type to get the global state of
443 *
444 * Returns the current global state for a given wireless
445 * device type.
446 */
447bool rfkill_get_global_sw_state(const enum rfkill_type type)
448{
449 return rfkill_global_states[type].cur;
450}
451#endif
452
453
454bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
455{
456 bool ret, change;
457
458 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
459
460 if (!rfkill->registered)
461 return ret;
462
463 if (change)
464 schedule_work(&rfkill->uevent_work);
465
466 return ret;
467}
468EXPORT_SYMBOL(rfkill_set_hw_state);
469
470static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
471{
472 u32 bit = RFKILL_BLOCK_SW;
473
474 /* if in a ops->set_block right now, use other bit */
475 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
476 bit = RFKILL_BLOCK_SW_PREV;
477
478 if (blocked)
479 rfkill->state |= bit;
480 else
481 rfkill->state &= ~bit;
482}
483
484bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
485{
486 unsigned long flags;
487 bool prev, hwblock;
488
489 BUG_ON(!rfkill);
490
491 spin_lock_irqsave(&rfkill->lock, flags);
492 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
493 __rfkill_set_sw_state(rfkill, blocked);
494 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
495 blocked = blocked || hwblock;
496 spin_unlock_irqrestore(&rfkill->lock, flags);
497
498 if (!rfkill->registered)
499 return blocked;
500
501 if (prev != blocked && !hwblock)
502 schedule_work(&rfkill->uevent_work);
503
504 rfkill_led_trigger_event(rfkill);
505
506 return blocked;
507}
508EXPORT_SYMBOL(rfkill_set_sw_state);
509
510void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
511{
512 unsigned long flags;
513
514 BUG_ON(!rfkill);
515 BUG_ON(rfkill->registered);
516
517 spin_lock_irqsave(&rfkill->lock, flags);
518 __rfkill_set_sw_state(rfkill, blocked);
519 rfkill->persistent = true;
520 spin_unlock_irqrestore(&rfkill->lock, flags);
521}
522EXPORT_SYMBOL(rfkill_init_sw_state);
523
524void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525{
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540 if (hw)
541 rfkill->state |= RFKILL_BLOCK_HW;
542 else
543 rfkill->state &= ~RFKILL_BLOCK_HW;
544
545 spin_unlock_irqrestore(&rfkill->lock, flags);
546
547 if (!rfkill->registered) {
548 rfkill->persistent = true;
549 } else {
550 if (swprev != sw || hwprev != hw)
551 schedule_work(&rfkill->uevent_work);
552
553 rfkill_led_trigger_event(rfkill);
554 }
555}
556EXPORT_SYMBOL(rfkill_set_states);
557
558static ssize_t rfkill_name_show(struct device *dev,
559 struct device_attribute *attr,
560 char *buf)
561{
562 struct rfkill *rfkill = to_rfkill(dev);
563
564 return sprintf(buf, "%s\n", rfkill->name);
565}
566
567static const char *rfkill_get_type_str(enum rfkill_type type)
568{
569 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1);
570
571 switch (type) {
572 case RFKILL_TYPE_WLAN:
573 return "wlan";
574 case RFKILL_TYPE_BLUETOOTH:
575 return "bluetooth";
576 case RFKILL_TYPE_UWB:
577 return "ultrawideband";
578 case RFKILL_TYPE_WIMAX:
579 return "wimax";
580 case RFKILL_TYPE_WWAN:
581 return "wwan";
582 case RFKILL_TYPE_GPS:
583 return "gps";
584 case RFKILL_TYPE_FM:
585 return "fm";
586 default:
587 BUG();
588 }
589}
590
591static ssize_t rfkill_type_show(struct device *dev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct rfkill *rfkill = to_rfkill(dev);
596
597 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
598}
599
600static ssize_t rfkill_idx_show(struct device *dev,
601 struct device_attribute *attr,
602 char *buf)
603{
604 struct rfkill *rfkill = to_rfkill(dev);
605
606 return sprintf(buf, "%d\n", rfkill->idx);
607}
608
609static ssize_t rfkill_persistent_show(struct device *dev,
610 struct device_attribute *attr,
611 char *buf)
612{
613 struct rfkill *rfkill = to_rfkill(dev);
614
615 return sprintf(buf, "%d\n", rfkill->persistent);
616}
617
618static ssize_t rfkill_hard_show(struct device *dev,
619 struct device_attribute *attr,
620 char *buf)
621{
622 struct rfkill *rfkill = to_rfkill(dev);
623
624 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
625}
626
627static ssize_t rfkill_soft_show(struct device *dev,
628 struct device_attribute *attr,
629 char *buf)
630{
631 struct rfkill *rfkill = to_rfkill(dev);
632
633 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
634}
635
636static ssize_t rfkill_soft_store(struct device *dev,
637 struct device_attribute *attr,
638 const char *buf, size_t count)
639{
640 struct rfkill *rfkill = to_rfkill(dev);
641 unsigned long state;
642 int err;
643
644 if (!capable(CAP_NET_ADMIN))
645 return -EPERM;
646
647 err = strict_strtoul(buf, 0, &state);
648 if (err)
649 return err;
650
651 if (state > 1 )
652 return -EINVAL;
653
654 mutex_lock(&rfkill_global_mutex);
655 rfkill_set_block(rfkill, state);
656 mutex_unlock(&rfkill_global_mutex);
657
658 return err ?: count;
659}
660
661static u8 user_state_from_blocked(unsigned long state)
662{
663 if (state & RFKILL_BLOCK_HW)
664 return RFKILL_USER_STATE_HARD_BLOCKED;
665 if (state & RFKILL_BLOCK_SW)
666 return RFKILL_USER_STATE_SOFT_BLOCKED;
667
668 return RFKILL_USER_STATE_UNBLOCKED;
669}
670
671static ssize_t rfkill_state_show(struct device *dev,
672 struct device_attribute *attr,
673 char *buf)
674{
675 struct rfkill *rfkill = to_rfkill(dev);
676
677 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
678}
679
680static ssize_t rfkill_state_store(struct device *dev,
681 struct device_attribute *attr,
682 const char *buf, size_t count)
683{
684 struct rfkill *rfkill = to_rfkill(dev);
685 unsigned long state;
686 int err;
687
688 if (!capable(CAP_NET_ADMIN))
689 return -EPERM;
690
691 err = strict_strtoul(buf, 0, &state);
692 if (err)
693 return err;
694
695 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
696 state != RFKILL_USER_STATE_UNBLOCKED)
697 return -EINVAL;
698
699 mutex_lock(&rfkill_global_mutex);
700 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
701 mutex_unlock(&rfkill_global_mutex);
702
703 return err ?: count;
704}
705
706static ssize_t rfkill_claim_show(struct device *dev,
707 struct device_attribute *attr,
708 char *buf)
709{
710 return sprintf(buf, "%d\n", 0);
711}
712
713static ssize_t rfkill_claim_store(struct device *dev,
714 struct device_attribute *attr,
715 const char *buf, size_t count)
716{
717 return -EOPNOTSUPP;
718}
719
720static struct device_attribute rfkill_dev_attrs[] = {
721 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
722 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
723 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
724 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
725 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
726 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
727 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
728 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
729 __ATTR_NULL
730};
731
732static void rfkill_release(struct device *dev)
733{
734 struct rfkill *rfkill = to_rfkill(dev);
735
736 kfree(rfkill);
737}
738
739static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
740{
741 struct rfkill *rfkill = to_rfkill(dev);
742 unsigned long flags;
743 u32 state;
744 int error;
745
746 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
747 if (error)
748 return error;
749 error = add_uevent_var(env, "RFKILL_TYPE=%s",
750 rfkill_get_type_str(rfkill->type));
751 if (error)
752 return error;
753 spin_lock_irqsave(&rfkill->lock, flags);
754 state = rfkill->state;
755 spin_unlock_irqrestore(&rfkill->lock, flags);
756 error = add_uevent_var(env, "RFKILL_STATE=%d",
757 user_state_from_blocked(state));
758 return error;
759}
760
761void rfkill_pause_polling(struct rfkill *rfkill)
762{
763 BUG_ON(!rfkill);
764
765 if (!rfkill->ops->poll)
766 return;
767
768 cancel_delayed_work_sync(&rfkill->poll_work);
769}
770EXPORT_SYMBOL(rfkill_pause_polling);
771
772void rfkill_resume_polling(struct rfkill *rfkill)
773{
774 BUG_ON(!rfkill);
775
776 if (!rfkill->ops->poll)
777 return;
778
779 schedule_work(&rfkill->poll_work.work);
780}
781EXPORT_SYMBOL(rfkill_resume_polling);
782
783static int rfkill_suspend(struct device *dev, pm_message_t state)
784{
785 struct rfkill *rfkill = to_rfkill(dev);
786
787 rfkill_pause_polling(rfkill);
788
789 return 0;
790}
791
792static int rfkill_resume(struct device *dev)
793{
794 struct rfkill *rfkill = to_rfkill(dev);
795 bool cur;
796
797 if (!rfkill->persistent) {
798 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
799 rfkill_set_block(rfkill, cur);
800 }
801
802 rfkill_resume_polling(rfkill);
803
804 return 0;
805}
806
807static struct class rfkill_class = {
808 .name = "rfkill",
809 .dev_release = rfkill_release,
810 .dev_attrs = rfkill_dev_attrs,
811 .dev_uevent = rfkill_dev_uevent,
812 .suspend = rfkill_suspend,
813 .resume = rfkill_resume,
814};
815
816bool rfkill_blocked(struct rfkill *rfkill)
817{
818 unsigned long flags;
819 u32 state;
820
821 spin_lock_irqsave(&rfkill->lock, flags);
822 state = rfkill->state;
823 spin_unlock_irqrestore(&rfkill->lock, flags);
824
825 return !!(state & RFKILL_BLOCK_ANY);
826}
827EXPORT_SYMBOL(rfkill_blocked);
828
829
830struct rfkill * __must_check rfkill_alloc(const char *name,
831 struct device *parent,
832 const enum rfkill_type type,
833 const struct rfkill_ops *ops,
834 void *ops_data)
835{
836 struct rfkill *rfkill;
837 struct device *dev;
838
839 if (WARN_ON(!ops))
840 return NULL;
841
842 if (WARN_ON(!ops->set_block))
843 return NULL;
844
845 if (WARN_ON(!name))
846 return NULL;
847
848 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
849 return NULL;
850
851 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
852 if (!rfkill)
853 return NULL;
854
855 spin_lock_init(&rfkill->lock);
856 INIT_LIST_HEAD(&rfkill->node);
857 rfkill->type = type;
858 rfkill->name = name;
859 rfkill->ops = ops;
860 rfkill->data = ops_data;
861
862 dev = &rfkill->dev;
863 dev->class = &rfkill_class;
864 dev->parent = parent;
865 device_initialize(dev);
866
867 return rfkill;
868}
869EXPORT_SYMBOL(rfkill_alloc);
870
871static void rfkill_poll(struct work_struct *work)
872{
873 struct rfkill *rfkill;
874
875 rfkill = container_of(work, struct rfkill, poll_work.work);
876
877 /*
878 * Poll hardware state -- driver will use one of the
879 * rfkill_set{,_hw,_sw}_state functions and use its
880 * return value to update the current status.
881 */
882 rfkill->ops->poll(rfkill, rfkill->data);
883
884 schedule_delayed_work(&rfkill->poll_work,
885 round_jiffies_relative(POLL_INTERVAL));
886}
887
888static void rfkill_uevent_work(struct work_struct *work)
889{
890 struct rfkill *rfkill;
891
892 rfkill = container_of(work, struct rfkill, uevent_work);
893
894 mutex_lock(&rfkill_global_mutex);
895 rfkill_event(rfkill);
896 mutex_unlock(&rfkill_global_mutex);
897}
898
899static void rfkill_sync_work(struct work_struct *work)
900{
901 struct rfkill *rfkill;
902 bool cur;
903
904 rfkill = container_of(work, struct rfkill, sync_work);
905
906 mutex_lock(&rfkill_global_mutex);
907 cur = rfkill_global_states[rfkill->type].cur;
908 rfkill_set_block(rfkill, cur);
909 mutex_unlock(&rfkill_global_mutex);
910}
911
912int __must_check rfkill_register(struct rfkill *rfkill)
913{
914 static unsigned long rfkill_no;
915 struct device *dev = &rfkill->dev;
916 int error;
917
918 BUG_ON(!rfkill);
919
920 mutex_lock(&rfkill_global_mutex);
921
922 if (rfkill->registered) {
923 error = -EALREADY;
924 goto unlock;
925 }
926
927 rfkill->idx = rfkill_no;
928 dev_set_name(dev, "rfkill%lu", rfkill_no);
929 rfkill_no++;
930
931 list_add_tail(&rfkill->node, &rfkill_list);
932
933 error = device_add(dev);
934 if (error)
935 goto remove;
936
937 error = rfkill_led_trigger_register(rfkill);
938 if (error)
939 goto devdel;
940
941 rfkill->registered = true;
942
943 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
944 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
945 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
946
947 if (rfkill->ops->poll)
948 schedule_delayed_work(&rfkill->poll_work,
949 round_jiffies_relative(POLL_INTERVAL));
950
951 if (!rfkill->persistent || rfkill_epo_lock_active) {
952 schedule_work(&rfkill->sync_work);
953 } else {
954#ifdef CONFIG_RFKILL_INPUT
955 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
956
957 if (!atomic_read(&rfkill_input_disabled))
958 __rfkill_switch_all(rfkill->type, soft_blocked);
959#endif
960 }
961
962 rfkill_send_events(rfkill, RFKILL_OP_ADD);
963
964 mutex_unlock(&rfkill_global_mutex);
965 return 0;
966
967 devdel:
968 device_del(&rfkill->dev);
969 remove:
970 list_del_init(&rfkill->node);
971 unlock:
972 mutex_unlock(&rfkill_global_mutex);
973 return error;
974}
975EXPORT_SYMBOL(rfkill_register);
976
977void rfkill_unregister(struct rfkill *rfkill)
978{
979 BUG_ON(!rfkill);
980
981 if (rfkill->ops->poll)
982 cancel_delayed_work_sync(&rfkill->poll_work);
983
984 cancel_work_sync(&rfkill->uevent_work);
985 cancel_work_sync(&rfkill->sync_work);
986
987 rfkill->registered = false;
988
989 device_del(&rfkill->dev);
990
991 mutex_lock(&rfkill_global_mutex);
992 rfkill_send_events(rfkill, RFKILL_OP_DEL);
993 list_del_init(&rfkill->node);
994 mutex_unlock(&rfkill_global_mutex);
995
996 rfkill_led_trigger_unregister(rfkill);
997}
998EXPORT_SYMBOL(rfkill_unregister);
999
1000void rfkill_destroy(struct rfkill *rfkill)
1001{
1002 if (rfkill)
1003 put_device(&rfkill->dev);
1004}
1005EXPORT_SYMBOL(rfkill_destroy);
1006
1007static int rfkill_fop_open(struct inode *inode, struct file *file)
1008{
1009 struct rfkill_data *data;
1010 struct rfkill *rfkill;
1011 struct rfkill_int_event *ev, *tmp;
1012
1013 data = kzalloc(sizeof(*data), GFP_KERNEL);
1014 if (!data)
1015 return -ENOMEM;
1016
1017 INIT_LIST_HEAD(&data->events);
1018 mutex_init(&data->mtx);
1019 init_waitqueue_head(&data->read_wait);
1020
1021 mutex_lock(&rfkill_global_mutex);
1022 mutex_lock(&data->mtx);
1023 /*
1024 * start getting events from elsewhere but hold mtx to get
1025 * startup events added first
1026 */
1027
1028 list_for_each_entry(rfkill, &rfkill_list, node) {
1029 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1030 if (!ev)
1031 goto free;
1032 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1033 list_add_tail(&ev->list, &data->events);
1034 }
1035 list_add(&data->list, &rfkill_fds);
1036 mutex_unlock(&data->mtx);
1037 mutex_unlock(&rfkill_global_mutex);
1038
1039 file->private_data = data;
1040
1041 return nonseekable_open(inode, file);
1042
1043 free:
1044 mutex_unlock(&data->mtx);
1045 mutex_unlock(&rfkill_global_mutex);
1046 mutex_destroy(&data->mtx);
1047 list_for_each_entry_safe(ev, tmp, &data->events, list)
1048 kfree(ev);
1049 kfree(data);
1050 return -ENOMEM;
1051}
1052
1053static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1054{
1055 struct rfkill_data *data = file->private_data;
1056 unsigned int res = POLLOUT | POLLWRNORM;
1057
1058 poll_wait(file, &data->read_wait, wait);
1059
1060 mutex_lock(&data->mtx);
1061 if (!list_empty(&data->events))
1062 res = POLLIN | POLLRDNORM;
1063 mutex_unlock(&data->mtx);
1064
1065 return res;
1066}
1067
1068static bool rfkill_readable(struct rfkill_data *data)
1069{
1070 bool r;
1071
1072 mutex_lock(&data->mtx);
1073 r = !list_empty(&data->events);
1074 mutex_unlock(&data->mtx);
1075
1076 return r;
1077}
1078
1079static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1080 size_t count, loff_t *pos)
1081{
1082 struct rfkill_data *data = file->private_data;
1083 struct rfkill_int_event *ev;
1084 unsigned long sz;
1085 int ret;
1086
1087 mutex_lock(&data->mtx);
1088
1089 while (list_empty(&data->events)) {
1090 if (file->f_flags & O_NONBLOCK) {
1091 ret = -EAGAIN;
1092 goto out;
1093 }
1094 mutex_unlock(&data->mtx);
1095 ret = wait_event_interruptible(data->read_wait,
1096 rfkill_readable(data));
1097 mutex_lock(&data->mtx);
1098
1099 if (ret)
1100 goto out;
1101 }
1102
1103 ev = list_first_entry(&data->events, struct rfkill_int_event,
1104 list);
1105
1106 sz = min_t(unsigned long, sizeof(ev->ev), count);
1107 ret = sz;
1108 if (copy_to_user(buf, &ev->ev, sz))
1109 ret = -EFAULT;
1110
1111 list_del(&ev->list);
1112 kfree(ev);
1113 out:
1114 mutex_unlock(&data->mtx);
1115 return ret;
1116}
1117
1118static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1119 size_t count, loff_t *pos)
1120{
1121 struct rfkill *rfkill;
1122 struct rfkill_event ev;
1123
1124 /* we don't need the 'hard' variable but accept it */
1125 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1126 return -EINVAL;
1127
1128 /*
1129 * Copy as much data as we can accept into our 'ev' buffer,
1130 * but tell userspace how much we've copied so it can determine
1131 * our API version even in a write() call, if it cares.
1132 */
1133 count = min(count, sizeof(ev));
1134 if (copy_from_user(&ev, buf, count))
1135 return -EFAULT;
1136
1137 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1138 return -EINVAL;
1139
1140 if (ev.type >= NUM_RFKILL_TYPES)
1141 return -EINVAL;
1142
1143 mutex_lock(&rfkill_global_mutex);
1144
1145 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1146 if (ev.type == RFKILL_TYPE_ALL) {
1147 enum rfkill_type i;
1148 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1149 rfkill_global_states[i].cur = ev.soft;
1150 } else {
1151 rfkill_global_states[ev.type].cur = ev.soft;
1152 }
1153 }
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1157 continue;
1158
1159 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1160 continue;
1161
1162 rfkill_set_block(rfkill, ev.soft);
1163 }
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 return count;
1167}
1168
1169static int rfkill_fop_release(struct inode *inode, struct file *file)
1170{
1171 struct rfkill_data *data = file->private_data;
1172 struct rfkill_int_event *ev, *tmp;
1173
1174 mutex_lock(&rfkill_global_mutex);
1175 list_del(&data->list);
1176 mutex_unlock(&rfkill_global_mutex);
1177
1178 mutex_destroy(&data->mtx);
1179 list_for_each_entry_safe(ev, tmp, &data->events, list)
1180 kfree(ev);
1181
1182#ifdef CONFIG_RFKILL_INPUT
1183 if (data->input_handler)
1184 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1185 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1186#endif
1187
1188 kfree(data);
1189
1190 return 0;
1191}
1192
1193#ifdef CONFIG_RFKILL_INPUT
1194static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1195 unsigned long arg)
1196{
1197 struct rfkill_data *data = file->private_data;
1198
1199 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1200 return -ENOSYS;
1201
1202 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1203 return -ENOSYS;
1204
1205 mutex_lock(&data->mtx);
1206
1207 if (!data->input_handler) {
1208 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1209 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1210 data->input_handler = true;
1211 }
1212
1213 mutex_unlock(&data->mtx);
1214
1215 return 0;
1216}
1217#endif
1218
1219static const struct file_operations rfkill_fops = {
1220 .owner = THIS_MODULE,
1221 .open = rfkill_fop_open,
1222 .read = rfkill_fop_read,
1223 .write = rfkill_fop_write,
1224 .poll = rfkill_fop_poll,
1225 .release = rfkill_fop_release,
1226#ifdef CONFIG_RFKILL_INPUT
1227 .unlocked_ioctl = rfkill_fop_ioctl,
1228 .compat_ioctl = rfkill_fop_ioctl,
1229#endif
1230 .llseek = no_llseek,
1231};
1232
1233static struct miscdevice rfkill_miscdev = {
1234 .name = "rfkill",
1235 .fops = &rfkill_fops,
1236 .minor = MISC_DYNAMIC_MINOR,
1237};
1238
1239static int __init rfkill_init(void)
1240{
1241 int error;
1242 int i;
1243
1244 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1245 rfkill_global_states[i].cur = !rfkill_default_state;
1246
1247 error = class_register(&rfkill_class);
1248 if (error)
1249 goto out;
1250
1251 error = misc_register(&rfkill_miscdev);
1252 if (error) {
1253 class_unregister(&rfkill_class);
1254 goto out;
1255 }
1256
1257#ifdef CONFIG_RFKILL_INPUT
1258 error = rfkill_handler_init();
1259 if (error) {
1260 misc_deregister(&rfkill_miscdev);
1261 class_unregister(&rfkill_class);
1262 goto out;
1263 }
1264#endif
1265
1266 out:
1267 return error;
1268}
1269subsys_initcall(rfkill_init);
1270
1271static void __exit rfkill_exit(void)
1272{
1273#ifdef CONFIG_RFKILL_INPUT
1274 rfkill_handler_exit();
1275#endif
1276 misc_deregister(&rfkill_miscdev);
1277 class_unregister(&rfkill_class);
1278}
1279module_exit(rfkill_exit);
1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/workqueue.h>
24#include <linux/capability.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/rfkill.h>
28#include <linux/sched.h>
29#include <linux/spinlock.h>
30#include <linux/device.h>
31#include <linux/miscdevice.h>
32#include <linux/wait.h>
33#include <linux/poll.h>
34#include <linux/fs.h>
35#include <linux/slab.h>
36
37#include "rfkill.h"
38
39#define POLL_INTERVAL (5 * HZ)
40
41#define RFKILL_BLOCK_HW BIT(0)
42#define RFKILL_BLOCK_SW BIT(1)
43#define RFKILL_BLOCK_SW_PREV BIT(2)
44#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47#define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49struct rfkill {
50 spinlock_t lock;
51
52 enum rfkill_type type;
53
54 unsigned long state;
55
56 u32 idx;
57
58 bool registered;
59 bool persistent;
60 bool polling_paused;
61 bool suspended;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66#ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69#endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77 char name[];
78};
79#define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84};
85
86struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92};
93
94
95MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97MODULE_DESCRIPTION("RF switch support");
98MODULE_LICENSE("GPL");
99
100
101/*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113static DEFINE_MUTEX(rfkill_global_mutex);
114static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116static unsigned int rfkill_default_state = 1;
117module_param_named(default_state, rfkill_default_state, uint, 0444);
118MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121static struct {
122 bool cur, sav;
123} rfkill_global_states[NUM_RFKILL_TYPES];
124
125static bool rfkill_epo_lock_active;
126
127
128#ifdef CONFIG_RFKILL_LEDS
129static void rfkill_led_trigger_event(struct rfkill *rfkill)
130{
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142}
143
144static void rfkill_led_trigger_activate(struct led_classdev *led)
145{
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151}
152
153const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154{
155 return rfkill->led_trigger.name;
156}
157EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160{
161 BUG_ON(!rfkill);
162
163 rfkill->ledtrigname = name;
164}
165EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167static int rfkill_led_trigger_register(struct rfkill *rfkill)
168{
169 rfkill->led_trigger.name = rfkill->ledtrigname
170 ? : dev_name(&rfkill->dev);
171 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172 return led_trigger_register(&rfkill->led_trigger);
173}
174
175static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176{
177 led_trigger_unregister(&rfkill->led_trigger);
178}
179
180static struct led_trigger rfkill_any_led_trigger;
181static struct work_struct rfkill_any_work;
182
183static void rfkill_any_led_trigger_worker(struct work_struct *work)
184{
185 enum led_brightness brightness = LED_OFF;
186 struct rfkill *rfkill;
187
188 mutex_lock(&rfkill_global_mutex);
189 list_for_each_entry(rfkill, &rfkill_list, node) {
190 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
191 brightness = LED_FULL;
192 break;
193 }
194 }
195 mutex_unlock(&rfkill_global_mutex);
196
197 led_trigger_event(&rfkill_any_led_trigger, brightness);
198}
199
200static void rfkill_any_led_trigger_event(void)
201{
202 schedule_work(&rfkill_any_work);
203}
204
205static void rfkill_any_led_trigger_activate(struct led_classdev *led_cdev)
206{
207 rfkill_any_led_trigger_event();
208}
209
210static int rfkill_any_led_trigger_register(void)
211{
212 INIT_WORK(&rfkill_any_work, rfkill_any_led_trigger_worker);
213 rfkill_any_led_trigger.name = "rfkill-any";
214 rfkill_any_led_trigger.activate = rfkill_any_led_trigger_activate;
215 return led_trigger_register(&rfkill_any_led_trigger);
216}
217
218static void rfkill_any_led_trigger_unregister(void)
219{
220 led_trigger_unregister(&rfkill_any_led_trigger);
221 cancel_work_sync(&rfkill_any_work);
222}
223#else
224static void rfkill_led_trigger_event(struct rfkill *rfkill)
225{
226}
227
228static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
229{
230 return 0;
231}
232
233static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
234{
235}
236
237static void rfkill_any_led_trigger_event(void)
238{
239}
240
241static int rfkill_any_led_trigger_register(void)
242{
243 return 0;
244}
245
246static void rfkill_any_led_trigger_unregister(void)
247{
248}
249#endif /* CONFIG_RFKILL_LEDS */
250
251static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
252 enum rfkill_operation op)
253{
254 unsigned long flags;
255
256 ev->idx = rfkill->idx;
257 ev->type = rfkill->type;
258 ev->op = op;
259
260 spin_lock_irqsave(&rfkill->lock, flags);
261 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
262 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
263 RFKILL_BLOCK_SW_PREV));
264 spin_unlock_irqrestore(&rfkill->lock, flags);
265}
266
267static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
268{
269 struct rfkill_data *data;
270 struct rfkill_int_event *ev;
271
272 list_for_each_entry(data, &rfkill_fds, list) {
273 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
274 if (!ev)
275 continue;
276 rfkill_fill_event(&ev->ev, rfkill, op);
277 mutex_lock(&data->mtx);
278 list_add_tail(&ev->list, &data->events);
279 mutex_unlock(&data->mtx);
280 wake_up_interruptible(&data->read_wait);
281 }
282}
283
284static void rfkill_event(struct rfkill *rfkill)
285{
286 if (!rfkill->registered)
287 return;
288
289 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
290
291 /* also send event to /dev/rfkill */
292 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
293}
294
295/**
296 * rfkill_set_block - wrapper for set_block method
297 *
298 * @rfkill: the rfkill struct to use
299 * @blocked: the new software state
300 *
301 * Calls the set_block method (when applicable) and handles notifications
302 * etc. as well.
303 */
304static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
305{
306 unsigned long flags;
307 bool prev, curr;
308 int err;
309
310 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
311 return;
312
313 /*
314 * Some platforms (...!) generate input events which affect the
315 * _hard_ kill state -- whenever something tries to change the
316 * current software state query the hardware state too.
317 */
318 if (rfkill->ops->query)
319 rfkill->ops->query(rfkill, rfkill->data);
320
321 spin_lock_irqsave(&rfkill->lock, flags);
322 prev = rfkill->state & RFKILL_BLOCK_SW;
323
324 if (prev)
325 rfkill->state |= RFKILL_BLOCK_SW_PREV;
326 else
327 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
328
329 if (blocked)
330 rfkill->state |= RFKILL_BLOCK_SW;
331 else
332 rfkill->state &= ~RFKILL_BLOCK_SW;
333
334 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
335 spin_unlock_irqrestore(&rfkill->lock, flags);
336
337 err = rfkill->ops->set_block(rfkill->data, blocked);
338
339 spin_lock_irqsave(&rfkill->lock, flags);
340 if (err) {
341 /*
342 * Failed -- reset status to _PREV, which may be different
343 * from what we have set _PREV to earlier in this function
344 * if rfkill_set_sw_state was invoked.
345 */
346 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
347 rfkill->state |= RFKILL_BLOCK_SW;
348 else
349 rfkill->state &= ~RFKILL_BLOCK_SW;
350 }
351 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
352 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
353 curr = rfkill->state & RFKILL_BLOCK_SW;
354 spin_unlock_irqrestore(&rfkill->lock, flags);
355
356 rfkill_led_trigger_event(rfkill);
357 rfkill_any_led_trigger_event();
358
359 if (prev != curr)
360 rfkill_event(rfkill);
361}
362
363static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
364{
365 int i;
366
367 if (type != RFKILL_TYPE_ALL) {
368 rfkill_global_states[type].cur = blocked;
369 return;
370 }
371
372 for (i = 0; i < NUM_RFKILL_TYPES; i++)
373 rfkill_global_states[i].cur = blocked;
374}
375
376#ifdef CONFIG_RFKILL_INPUT
377static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
378
379/**
380 * __rfkill_switch_all - Toggle state of all switches of given type
381 * @type: type of interfaces to be affected
382 * @blocked: the new state
383 *
384 * This function sets the state of all switches of given type,
385 * unless a specific switch is suspended.
386 *
387 * Caller must have acquired rfkill_global_mutex.
388 */
389static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
390{
391 struct rfkill *rfkill;
392
393 rfkill_update_global_state(type, blocked);
394 list_for_each_entry(rfkill, &rfkill_list, node) {
395 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
396 continue;
397
398 rfkill_set_block(rfkill, blocked);
399 }
400}
401
402/**
403 * rfkill_switch_all - Toggle state of all switches of given type
404 * @type: type of interfaces to be affected
405 * @blocked: the new state
406 *
407 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
408 * Please refer to __rfkill_switch_all() for details.
409 *
410 * Does nothing if the EPO lock is active.
411 */
412void rfkill_switch_all(enum rfkill_type type, bool blocked)
413{
414 if (atomic_read(&rfkill_input_disabled))
415 return;
416
417 mutex_lock(&rfkill_global_mutex);
418
419 if (!rfkill_epo_lock_active)
420 __rfkill_switch_all(type, blocked);
421
422 mutex_unlock(&rfkill_global_mutex);
423}
424
425/**
426 * rfkill_epo - emergency power off all transmitters
427 *
428 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
429 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
430 *
431 * The global state before the EPO is saved and can be restored later
432 * using rfkill_restore_states().
433 */
434void rfkill_epo(void)
435{
436 struct rfkill *rfkill;
437 int i;
438
439 if (atomic_read(&rfkill_input_disabled))
440 return;
441
442 mutex_lock(&rfkill_global_mutex);
443
444 rfkill_epo_lock_active = true;
445 list_for_each_entry(rfkill, &rfkill_list, node)
446 rfkill_set_block(rfkill, true);
447
448 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
449 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
450 rfkill_global_states[i].cur = true;
451 }
452
453 mutex_unlock(&rfkill_global_mutex);
454}
455
456/**
457 * rfkill_restore_states - restore global states
458 *
459 * Restore (and sync switches to) the global state from the
460 * states in rfkill_default_states. This can undo the effects of
461 * a call to rfkill_epo().
462 */
463void rfkill_restore_states(void)
464{
465 int i;
466
467 if (atomic_read(&rfkill_input_disabled))
468 return;
469
470 mutex_lock(&rfkill_global_mutex);
471
472 rfkill_epo_lock_active = false;
473 for (i = 0; i < NUM_RFKILL_TYPES; i++)
474 __rfkill_switch_all(i, rfkill_global_states[i].sav);
475 mutex_unlock(&rfkill_global_mutex);
476}
477
478/**
479 * rfkill_remove_epo_lock - unlock state changes
480 *
481 * Used by rfkill-input manually unlock state changes, when
482 * the EPO switch is deactivated.
483 */
484void rfkill_remove_epo_lock(void)
485{
486 if (atomic_read(&rfkill_input_disabled))
487 return;
488
489 mutex_lock(&rfkill_global_mutex);
490 rfkill_epo_lock_active = false;
491 mutex_unlock(&rfkill_global_mutex);
492}
493
494/**
495 * rfkill_is_epo_lock_active - returns true EPO is active
496 *
497 * Returns 0 (false) if there is NOT an active EPO contidion,
498 * and 1 (true) if there is an active EPO contition, which
499 * locks all radios in one of the BLOCKED states.
500 *
501 * Can be called in atomic context.
502 */
503bool rfkill_is_epo_lock_active(void)
504{
505 return rfkill_epo_lock_active;
506}
507
508/**
509 * rfkill_get_global_sw_state - returns global state for a type
510 * @type: the type to get the global state of
511 *
512 * Returns the current global state for a given wireless
513 * device type.
514 */
515bool rfkill_get_global_sw_state(const enum rfkill_type type)
516{
517 return rfkill_global_states[type].cur;
518}
519#endif
520
521bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
522{
523 unsigned long flags;
524 bool ret, prev;
525
526 BUG_ON(!rfkill);
527
528 spin_lock_irqsave(&rfkill->lock, flags);
529 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
530 if (blocked)
531 rfkill->state |= RFKILL_BLOCK_HW;
532 else
533 rfkill->state &= ~RFKILL_BLOCK_HW;
534 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
535 spin_unlock_irqrestore(&rfkill->lock, flags);
536
537 rfkill_led_trigger_event(rfkill);
538 rfkill_any_led_trigger_event();
539
540 if (rfkill->registered && prev != blocked)
541 schedule_work(&rfkill->uevent_work);
542
543 return ret;
544}
545EXPORT_SYMBOL(rfkill_set_hw_state);
546
547static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
548{
549 u32 bit = RFKILL_BLOCK_SW;
550
551 /* if in a ops->set_block right now, use other bit */
552 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
553 bit = RFKILL_BLOCK_SW_PREV;
554
555 if (blocked)
556 rfkill->state |= bit;
557 else
558 rfkill->state &= ~bit;
559}
560
561bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
562{
563 unsigned long flags;
564 bool prev, hwblock;
565
566 BUG_ON(!rfkill);
567
568 spin_lock_irqsave(&rfkill->lock, flags);
569 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
570 __rfkill_set_sw_state(rfkill, blocked);
571 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
572 blocked = blocked || hwblock;
573 spin_unlock_irqrestore(&rfkill->lock, flags);
574
575 if (!rfkill->registered)
576 return blocked;
577
578 if (prev != blocked && !hwblock)
579 schedule_work(&rfkill->uevent_work);
580
581 rfkill_led_trigger_event(rfkill);
582 rfkill_any_led_trigger_event();
583
584 return blocked;
585}
586EXPORT_SYMBOL(rfkill_set_sw_state);
587
588void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
589{
590 unsigned long flags;
591
592 BUG_ON(!rfkill);
593 BUG_ON(rfkill->registered);
594
595 spin_lock_irqsave(&rfkill->lock, flags);
596 __rfkill_set_sw_state(rfkill, blocked);
597 rfkill->persistent = true;
598 spin_unlock_irqrestore(&rfkill->lock, flags);
599}
600EXPORT_SYMBOL(rfkill_init_sw_state);
601
602void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
603{
604 unsigned long flags;
605 bool swprev, hwprev;
606
607 BUG_ON(!rfkill);
608
609 spin_lock_irqsave(&rfkill->lock, flags);
610
611 /*
612 * No need to care about prev/setblock ... this is for uevent only
613 * and that will get triggered by rfkill_set_block anyway.
614 */
615 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
616 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
617 __rfkill_set_sw_state(rfkill, sw);
618 if (hw)
619 rfkill->state |= RFKILL_BLOCK_HW;
620 else
621 rfkill->state &= ~RFKILL_BLOCK_HW;
622
623 spin_unlock_irqrestore(&rfkill->lock, flags);
624
625 if (!rfkill->registered) {
626 rfkill->persistent = true;
627 } else {
628 if (swprev != sw || hwprev != hw)
629 schedule_work(&rfkill->uevent_work);
630
631 rfkill_led_trigger_event(rfkill);
632 rfkill_any_led_trigger_event();
633 }
634}
635EXPORT_SYMBOL(rfkill_set_states);
636
637static const char * const rfkill_types[] = {
638 NULL, /* RFKILL_TYPE_ALL */
639 "wlan",
640 "bluetooth",
641 "ultrawideband",
642 "wimax",
643 "wwan",
644 "gps",
645 "fm",
646 "nfc",
647};
648
649enum rfkill_type rfkill_find_type(const char *name)
650{
651 int i;
652
653 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
654
655 if (!name)
656 return RFKILL_TYPE_ALL;
657
658 for (i = 1; i < NUM_RFKILL_TYPES; i++)
659 if (!strcmp(name, rfkill_types[i]))
660 return i;
661 return RFKILL_TYPE_ALL;
662}
663EXPORT_SYMBOL(rfkill_find_type);
664
665static ssize_t name_show(struct device *dev, struct device_attribute *attr,
666 char *buf)
667{
668 struct rfkill *rfkill = to_rfkill(dev);
669
670 return sprintf(buf, "%s\n", rfkill->name);
671}
672static DEVICE_ATTR_RO(name);
673
674static ssize_t type_show(struct device *dev, struct device_attribute *attr,
675 char *buf)
676{
677 struct rfkill *rfkill = to_rfkill(dev);
678
679 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
680}
681static DEVICE_ATTR_RO(type);
682
683static ssize_t index_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%d\n", rfkill->idx);
689}
690static DEVICE_ATTR_RO(index);
691
692static ssize_t persistent_show(struct device *dev,
693 struct device_attribute *attr, char *buf)
694{
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%d\n", rfkill->persistent);
698}
699static DEVICE_ATTR_RO(persistent);
700
701static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703{
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
707}
708static DEVICE_ATTR_RO(hard);
709
710static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
711 char *buf)
712{
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
716}
717
718static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
719 const char *buf, size_t count)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722 unsigned long state;
723 int err;
724
725 if (!capable(CAP_NET_ADMIN))
726 return -EPERM;
727
728 err = kstrtoul(buf, 0, &state);
729 if (err)
730 return err;
731
732 if (state > 1 )
733 return -EINVAL;
734
735 mutex_lock(&rfkill_global_mutex);
736 rfkill_set_block(rfkill, state);
737 mutex_unlock(&rfkill_global_mutex);
738
739 return count;
740}
741static DEVICE_ATTR_RW(soft);
742
743static u8 user_state_from_blocked(unsigned long state)
744{
745 if (state & RFKILL_BLOCK_HW)
746 return RFKILL_USER_STATE_HARD_BLOCKED;
747 if (state & RFKILL_BLOCK_SW)
748 return RFKILL_USER_STATE_SOFT_BLOCKED;
749
750 return RFKILL_USER_STATE_UNBLOCKED;
751}
752
753static ssize_t state_show(struct device *dev, struct device_attribute *attr,
754 char *buf)
755{
756 struct rfkill *rfkill = to_rfkill(dev);
757
758 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
759}
760
761static ssize_t state_store(struct device *dev, struct device_attribute *attr,
762 const char *buf, size_t count)
763{
764 struct rfkill *rfkill = to_rfkill(dev);
765 unsigned long state;
766 int err;
767
768 if (!capable(CAP_NET_ADMIN))
769 return -EPERM;
770
771 err = kstrtoul(buf, 0, &state);
772 if (err)
773 return err;
774
775 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
776 state != RFKILL_USER_STATE_UNBLOCKED)
777 return -EINVAL;
778
779 mutex_lock(&rfkill_global_mutex);
780 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
781 mutex_unlock(&rfkill_global_mutex);
782
783 return count;
784}
785static DEVICE_ATTR_RW(state);
786
787static struct attribute *rfkill_dev_attrs[] = {
788 &dev_attr_name.attr,
789 &dev_attr_type.attr,
790 &dev_attr_index.attr,
791 &dev_attr_persistent.attr,
792 &dev_attr_state.attr,
793 &dev_attr_soft.attr,
794 &dev_attr_hard.attr,
795 NULL,
796};
797ATTRIBUTE_GROUPS(rfkill_dev);
798
799static void rfkill_release(struct device *dev)
800{
801 struct rfkill *rfkill = to_rfkill(dev);
802
803 kfree(rfkill);
804}
805
806static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
807{
808 struct rfkill *rfkill = to_rfkill(dev);
809 unsigned long flags;
810 u32 state;
811 int error;
812
813 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
814 if (error)
815 return error;
816 error = add_uevent_var(env, "RFKILL_TYPE=%s",
817 rfkill_types[rfkill->type]);
818 if (error)
819 return error;
820 spin_lock_irqsave(&rfkill->lock, flags);
821 state = rfkill->state;
822 spin_unlock_irqrestore(&rfkill->lock, flags);
823 error = add_uevent_var(env, "RFKILL_STATE=%d",
824 user_state_from_blocked(state));
825 return error;
826}
827
828void rfkill_pause_polling(struct rfkill *rfkill)
829{
830 BUG_ON(!rfkill);
831
832 if (!rfkill->ops->poll)
833 return;
834
835 rfkill->polling_paused = true;
836 cancel_delayed_work_sync(&rfkill->poll_work);
837}
838EXPORT_SYMBOL(rfkill_pause_polling);
839
840void rfkill_resume_polling(struct rfkill *rfkill)
841{
842 BUG_ON(!rfkill);
843
844 if (!rfkill->ops->poll)
845 return;
846
847 rfkill->polling_paused = false;
848
849 if (rfkill->suspended)
850 return;
851
852 queue_delayed_work(system_power_efficient_wq,
853 &rfkill->poll_work, 0);
854}
855EXPORT_SYMBOL(rfkill_resume_polling);
856
857#ifdef CONFIG_PM_SLEEP
858static int rfkill_suspend(struct device *dev)
859{
860 struct rfkill *rfkill = to_rfkill(dev);
861
862 rfkill->suspended = true;
863 cancel_delayed_work_sync(&rfkill->poll_work);
864
865 return 0;
866}
867
868static int rfkill_resume(struct device *dev)
869{
870 struct rfkill *rfkill = to_rfkill(dev);
871 bool cur;
872
873 rfkill->suspended = false;
874
875 if (!rfkill->persistent) {
876 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
877 rfkill_set_block(rfkill, cur);
878 }
879
880 if (rfkill->ops->poll && !rfkill->polling_paused)
881 queue_delayed_work(system_power_efficient_wq,
882 &rfkill->poll_work, 0);
883
884 return 0;
885}
886
887static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
888#define RFKILL_PM_OPS (&rfkill_pm_ops)
889#else
890#define RFKILL_PM_OPS NULL
891#endif
892
893static struct class rfkill_class = {
894 .name = "rfkill",
895 .dev_release = rfkill_release,
896 .dev_groups = rfkill_dev_groups,
897 .dev_uevent = rfkill_dev_uevent,
898 .pm = RFKILL_PM_OPS,
899};
900
901bool rfkill_blocked(struct rfkill *rfkill)
902{
903 unsigned long flags;
904 u32 state;
905
906 spin_lock_irqsave(&rfkill->lock, flags);
907 state = rfkill->state;
908 spin_unlock_irqrestore(&rfkill->lock, flags);
909
910 return !!(state & RFKILL_BLOCK_ANY);
911}
912EXPORT_SYMBOL(rfkill_blocked);
913
914
915struct rfkill * __must_check rfkill_alloc(const char *name,
916 struct device *parent,
917 const enum rfkill_type type,
918 const struct rfkill_ops *ops,
919 void *ops_data)
920{
921 struct rfkill *rfkill;
922 struct device *dev;
923
924 if (WARN_ON(!ops))
925 return NULL;
926
927 if (WARN_ON(!ops->set_block))
928 return NULL;
929
930 if (WARN_ON(!name))
931 return NULL;
932
933 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
934 return NULL;
935
936 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
937 if (!rfkill)
938 return NULL;
939
940 spin_lock_init(&rfkill->lock);
941 INIT_LIST_HEAD(&rfkill->node);
942 rfkill->type = type;
943 strcpy(rfkill->name, name);
944 rfkill->ops = ops;
945 rfkill->data = ops_data;
946
947 dev = &rfkill->dev;
948 dev->class = &rfkill_class;
949 dev->parent = parent;
950 device_initialize(dev);
951
952 return rfkill;
953}
954EXPORT_SYMBOL(rfkill_alloc);
955
956static void rfkill_poll(struct work_struct *work)
957{
958 struct rfkill *rfkill;
959
960 rfkill = container_of(work, struct rfkill, poll_work.work);
961
962 /*
963 * Poll hardware state -- driver will use one of the
964 * rfkill_set{,_hw,_sw}_state functions and use its
965 * return value to update the current status.
966 */
967 rfkill->ops->poll(rfkill, rfkill->data);
968
969 queue_delayed_work(system_power_efficient_wq,
970 &rfkill->poll_work,
971 round_jiffies_relative(POLL_INTERVAL));
972}
973
974static void rfkill_uevent_work(struct work_struct *work)
975{
976 struct rfkill *rfkill;
977
978 rfkill = container_of(work, struct rfkill, uevent_work);
979
980 mutex_lock(&rfkill_global_mutex);
981 rfkill_event(rfkill);
982 mutex_unlock(&rfkill_global_mutex);
983}
984
985static void rfkill_sync_work(struct work_struct *work)
986{
987 struct rfkill *rfkill;
988 bool cur;
989
990 rfkill = container_of(work, struct rfkill, sync_work);
991
992 mutex_lock(&rfkill_global_mutex);
993 cur = rfkill_global_states[rfkill->type].cur;
994 rfkill_set_block(rfkill, cur);
995 mutex_unlock(&rfkill_global_mutex);
996}
997
998int __must_check rfkill_register(struct rfkill *rfkill)
999{
1000 static unsigned long rfkill_no;
1001 struct device *dev = &rfkill->dev;
1002 int error;
1003
1004 BUG_ON(!rfkill);
1005
1006 mutex_lock(&rfkill_global_mutex);
1007
1008 if (rfkill->registered) {
1009 error = -EALREADY;
1010 goto unlock;
1011 }
1012
1013 rfkill->idx = rfkill_no;
1014 dev_set_name(dev, "rfkill%lu", rfkill_no);
1015 rfkill_no++;
1016
1017 list_add_tail(&rfkill->node, &rfkill_list);
1018
1019 error = device_add(dev);
1020 if (error)
1021 goto remove;
1022
1023 error = rfkill_led_trigger_register(rfkill);
1024 if (error)
1025 goto devdel;
1026
1027 rfkill->registered = true;
1028
1029 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1030 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1031 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1032
1033 if (rfkill->ops->poll)
1034 queue_delayed_work(system_power_efficient_wq,
1035 &rfkill->poll_work,
1036 round_jiffies_relative(POLL_INTERVAL));
1037
1038 if (!rfkill->persistent || rfkill_epo_lock_active) {
1039 schedule_work(&rfkill->sync_work);
1040 } else {
1041#ifdef CONFIG_RFKILL_INPUT
1042 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1043
1044 if (!atomic_read(&rfkill_input_disabled))
1045 __rfkill_switch_all(rfkill->type, soft_blocked);
1046#endif
1047 }
1048
1049 rfkill_any_led_trigger_event();
1050 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1051
1052 mutex_unlock(&rfkill_global_mutex);
1053 return 0;
1054
1055 devdel:
1056 device_del(&rfkill->dev);
1057 remove:
1058 list_del_init(&rfkill->node);
1059 unlock:
1060 mutex_unlock(&rfkill_global_mutex);
1061 return error;
1062}
1063EXPORT_SYMBOL(rfkill_register);
1064
1065void rfkill_unregister(struct rfkill *rfkill)
1066{
1067 BUG_ON(!rfkill);
1068
1069 if (rfkill->ops->poll)
1070 cancel_delayed_work_sync(&rfkill->poll_work);
1071
1072 cancel_work_sync(&rfkill->uevent_work);
1073 cancel_work_sync(&rfkill->sync_work);
1074
1075 rfkill->registered = false;
1076
1077 device_del(&rfkill->dev);
1078
1079 mutex_lock(&rfkill_global_mutex);
1080 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1081 list_del_init(&rfkill->node);
1082 rfkill_any_led_trigger_event();
1083 mutex_unlock(&rfkill_global_mutex);
1084
1085 rfkill_led_trigger_unregister(rfkill);
1086}
1087EXPORT_SYMBOL(rfkill_unregister);
1088
1089void rfkill_destroy(struct rfkill *rfkill)
1090{
1091 if (rfkill)
1092 put_device(&rfkill->dev);
1093}
1094EXPORT_SYMBOL(rfkill_destroy);
1095
1096static int rfkill_fop_open(struct inode *inode, struct file *file)
1097{
1098 struct rfkill_data *data;
1099 struct rfkill *rfkill;
1100 struct rfkill_int_event *ev, *tmp;
1101
1102 data = kzalloc(sizeof(*data), GFP_KERNEL);
1103 if (!data)
1104 return -ENOMEM;
1105
1106 INIT_LIST_HEAD(&data->events);
1107 mutex_init(&data->mtx);
1108 init_waitqueue_head(&data->read_wait);
1109
1110 mutex_lock(&rfkill_global_mutex);
1111 mutex_lock(&data->mtx);
1112 /*
1113 * start getting events from elsewhere but hold mtx to get
1114 * startup events added first
1115 */
1116
1117 list_for_each_entry(rfkill, &rfkill_list, node) {
1118 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1119 if (!ev)
1120 goto free;
1121 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1122 list_add_tail(&ev->list, &data->events);
1123 }
1124 list_add(&data->list, &rfkill_fds);
1125 mutex_unlock(&data->mtx);
1126 mutex_unlock(&rfkill_global_mutex);
1127
1128 file->private_data = data;
1129
1130 return nonseekable_open(inode, file);
1131
1132 free:
1133 mutex_unlock(&data->mtx);
1134 mutex_unlock(&rfkill_global_mutex);
1135 mutex_destroy(&data->mtx);
1136 list_for_each_entry_safe(ev, tmp, &data->events, list)
1137 kfree(ev);
1138 kfree(data);
1139 return -ENOMEM;
1140}
1141
1142static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1143{
1144 struct rfkill_data *data = file->private_data;
1145 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1146
1147 poll_wait(file, &data->read_wait, wait);
1148
1149 mutex_lock(&data->mtx);
1150 if (!list_empty(&data->events))
1151 res = EPOLLIN | EPOLLRDNORM;
1152 mutex_unlock(&data->mtx);
1153
1154 return res;
1155}
1156
1157static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1158 size_t count, loff_t *pos)
1159{
1160 struct rfkill_data *data = file->private_data;
1161 struct rfkill_int_event *ev;
1162 unsigned long sz;
1163 int ret;
1164
1165 mutex_lock(&data->mtx);
1166
1167 while (list_empty(&data->events)) {
1168 if (file->f_flags & O_NONBLOCK) {
1169 ret = -EAGAIN;
1170 goto out;
1171 }
1172 mutex_unlock(&data->mtx);
1173 /* since we re-check and it just compares pointers,
1174 * using !list_empty() without locking isn't a problem
1175 */
1176 ret = wait_event_interruptible(data->read_wait,
1177 !list_empty(&data->events));
1178 mutex_lock(&data->mtx);
1179
1180 if (ret)
1181 goto out;
1182 }
1183
1184 ev = list_first_entry(&data->events, struct rfkill_int_event,
1185 list);
1186
1187 sz = min_t(unsigned long, sizeof(ev->ev), count);
1188 ret = sz;
1189 if (copy_to_user(buf, &ev->ev, sz))
1190 ret = -EFAULT;
1191
1192 list_del(&ev->list);
1193 kfree(ev);
1194 out:
1195 mutex_unlock(&data->mtx);
1196 return ret;
1197}
1198
1199static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1200 size_t count, loff_t *pos)
1201{
1202 struct rfkill *rfkill;
1203 struct rfkill_event ev;
1204 int ret;
1205
1206 /* we don't need the 'hard' variable but accept it */
1207 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1208 return -EINVAL;
1209
1210 /*
1211 * Copy as much data as we can accept into our 'ev' buffer,
1212 * but tell userspace how much we've copied so it can determine
1213 * our API version even in a write() call, if it cares.
1214 */
1215 count = min(count, sizeof(ev));
1216 if (copy_from_user(&ev, buf, count))
1217 return -EFAULT;
1218
1219 if (ev.type >= NUM_RFKILL_TYPES)
1220 return -EINVAL;
1221
1222 mutex_lock(&rfkill_global_mutex);
1223
1224 switch (ev.op) {
1225 case RFKILL_OP_CHANGE_ALL:
1226 rfkill_update_global_state(ev.type, ev.soft);
1227 list_for_each_entry(rfkill, &rfkill_list, node)
1228 if (rfkill->type == ev.type ||
1229 ev.type == RFKILL_TYPE_ALL)
1230 rfkill_set_block(rfkill, ev.soft);
1231 ret = 0;
1232 break;
1233 case RFKILL_OP_CHANGE:
1234 list_for_each_entry(rfkill, &rfkill_list, node)
1235 if (rfkill->idx == ev.idx &&
1236 (rfkill->type == ev.type ||
1237 ev.type == RFKILL_TYPE_ALL))
1238 rfkill_set_block(rfkill, ev.soft);
1239 ret = 0;
1240 break;
1241 default:
1242 ret = -EINVAL;
1243 break;
1244 }
1245
1246 mutex_unlock(&rfkill_global_mutex);
1247
1248 return ret ?: count;
1249}
1250
1251static int rfkill_fop_release(struct inode *inode, struct file *file)
1252{
1253 struct rfkill_data *data = file->private_data;
1254 struct rfkill_int_event *ev, *tmp;
1255
1256 mutex_lock(&rfkill_global_mutex);
1257 list_del(&data->list);
1258 mutex_unlock(&rfkill_global_mutex);
1259
1260 mutex_destroy(&data->mtx);
1261 list_for_each_entry_safe(ev, tmp, &data->events, list)
1262 kfree(ev);
1263
1264#ifdef CONFIG_RFKILL_INPUT
1265 if (data->input_handler)
1266 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1267 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1268#endif
1269
1270 kfree(data);
1271
1272 return 0;
1273}
1274
1275#ifdef CONFIG_RFKILL_INPUT
1276static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1277 unsigned long arg)
1278{
1279 struct rfkill_data *data = file->private_data;
1280
1281 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1282 return -ENOSYS;
1283
1284 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1285 return -ENOSYS;
1286
1287 mutex_lock(&data->mtx);
1288
1289 if (!data->input_handler) {
1290 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1291 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1292 data->input_handler = true;
1293 }
1294
1295 mutex_unlock(&data->mtx);
1296
1297 return 0;
1298}
1299#endif
1300
1301static const struct file_operations rfkill_fops = {
1302 .owner = THIS_MODULE,
1303 .open = rfkill_fop_open,
1304 .read = rfkill_fop_read,
1305 .write = rfkill_fop_write,
1306 .poll = rfkill_fop_poll,
1307 .release = rfkill_fop_release,
1308#ifdef CONFIG_RFKILL_INPUT
1309 .unlocked_ioctl = rfkill_fop_ioctl,
1310 .compat_ioctl = rfkill_fop_ioctl,
1311#endif
1312 .llseek = no_llseek,
1313};
1314
1315static struct miscdevice rfkill_miscdev = {
1316 .name = "rfkill",
1317 .fops = &rfkill_fops,
1318 .minor = MISC_DYNAMIC_MINOR,
1319};
1320
1321static int __init rfkill_init(void)
1322{
1323 int error;
1324
1325 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1326
1327 error = class_register(&rfkill_class);
1328 if (error)
1329 goto error_class;
1330
1331 error = misc_register(&rfkill_miscdev);
1332 if (error)
1333 goto error_misc;
1334
1335 error = rfkill_any_led_trigger_register();
1336 if (error)
1337 goto error_led_trigger;
1338
1339#ifdef CONFIG_RFKILL_INPUT
1340 error = rfkill_handler_init();
1341 if (error)
1342 goto error_input;
1343#endif
1344
1345 return 0;
1346
1347#ifdef CONFIG_RFKILL_INPUT
1348error_input:
1349 rfkill_any_led_trigger_unregister();
1350#endif
1351error_led_trigger:
1352 misc_deregister(&rfkill_miscdev);
1353error_misc:
1354 class_unregister(&rfkill_class);
1355error_class:
1356 return error;
1357}
1358subsys_initcall(rfkill_init);
1359
1360static void __exit rfkill_exit(void)
1361{
1362#ifdef CONFIG_RFKILL_INPUT
1363 rfkill_handler_exit();
1364#endif
1365 rfkill_any_led_trigger_unregister();
1366 misc_deregister(&rfkill_miscdev);
1367 class_unregister(&rfkill_class);
1368}
1369module_exit(rfkill_exit);