Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 *result = t;
164 return 0;
165}
166
167static void free_devices(struct list_head *devices, struct mapped_device *md)
168{
169 struct list_head *tmp, *next;
170
171 list_for_each_safe(tmp, next, devices) {
172 struct dm_dev_internal *dd =
173 list_entry(tmp, struct dm_dev_internal, list);
174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 dm_device_name(md), dd->dm_dev->name);
176 dm_put_table_device(md, dd->dm_dev);
177 kfree(dd);
178 }
179}
180
181static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
183void dm_table_destroy(struct dm_table *t)
184{
185 if (!t)
186 return;
187
188 /* free the indexes */
189 if (t->depth >= 2)
190 kvfree(t->index[t->depth - 2]);
191
192 /* free the targets */
193 for (unsigned int i = 0; i < t->num_targets; i++) {
194 struct dm_target *ti = dm_table_get_target(t, i);
195
196 if (ti->type->dtr)
197 ti->type->dtr(ti);
198
199 dm_put_target_type(ti->type);
200 }
201
202 kvfree(t->highs);
203
204 /* free the device list */
205 free_devices(&t->devices, t->md);
206
207 dm_free_md_mempools(t->mempools);
208
209 dm_table_destroy_crypto_profile(t);
210
211 kfree(t);
212}
213
214/*
215 * See if we've already got a device in the list.
216 */
217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218{
219 struct dm_dev_internal *dd;
220
221 list_for_each_entry(dd, l, list)
222 if (dd->dm_dev->bdev->bd_dev == dev)
223 return dd;
224
225 return NULL;
226}
227
228/*
229 * If possible, this checks an area of a destination device is invalid.
230 */
231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 sector_t start, sector_t len, void *data)
233{
234 struct queue_limits *limits = data;
235 struct block_device *bdev = dev->bdev;
236 sector_t dev_size = bdev_nr_sectors(bdev);
237 unsigned short logical_block_size_sectors =
238 limits->logical_block_size >> SECTOR_SHIFT;
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 dm_device_name(ti->table->md), bdev,
246 (unsigned long long)start,
247 (unsigned long long)len,
248 (unsigned long long)dev_size);
249 return 1;
250 }
251
252 /*
253 * If the target is mapped to zoned block device(s), check
254 * that the zones are not partially mapped.
255 */
256 if (bdev_is_zoned(bdev)) {
257 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259 if (start & (zone_sectors - 1)) {
260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 dm_device_name(ti->table->md),
262 (unsigned long long)start,
263 zone_sectors, bdev);
264 return 1;
265 }
266
267 /*
268 * Note: The last zone of a zoned block device may be smaller
269 * than other zones. So for a target mapping the end of a
270 * zoned block device with such a zone, len would not be zone
271 * aligned. We do not allow such last smaller zone to be part
272 * of the mapping here to ensure that mappings with multiple
273 * devices do not end up with a smaller zone in the middle of
274 * the sector range.
275 */
276 if (len & (zone_sectors - 1)) {
277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 dm_device_name(ti->table->md),
279 (unsigned long long)len,
280 zone_sectors, bdev);
281 return 1;
282 }
283 }
284
285 if (logical_block_size_sectors <= 1)
286 return 0;
287
288 if (start & (logical_block_size_sectors - 1)) {
289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 dm_device_name(ti->table->md),
291 (unsigned long long)start,
292 limits->logical_block_size, bdev);
293 return 1;
294 }
295
296 if (len & (logical_block_size_sectors - 1)) {
297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 dm_device_name(ti->table->md),
299 (unsigned long long)len,
300 limits->logical_block_size, bdev);
301 return 1;
302 }
303
304 return 0;
305}
306
307/*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 struct mapped_device *md)
315{
316 int r;
317 struct dm_dev *old_dev, *new_dev;
318
319 old_dev = dd->dm_dev;
320
321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 dd->dm_dev->mode | new_mode, &new_dev);
323 if (r)
324 return r;
325
326 dd->dm_dev = new_dev;
327 dm_put_table_device(md, old_dev);
328
329 return 0;
330}
331
332/*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 struct dm_dev **result)
341{
342 int r;
343 dev_t dev;
344 unsigned int major, minor;
345 char dummy;
346 struct dm_dev_internal *dd;
347 struct dm_table *t = ti->table;
348
349 BUG_ON(!t);
350
351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 /* Extract the major/minor numbers */
353 dev = MKDEV(major, minor);
354 if (MAJOR(dev) != major || MINOR(dev) != minor)
355 return -EOVERFLOW;
356 } else {
357 r = lookup_bdev(path, &dev);
358#ifndef MODULE
359 if (r && system_state < SYSTEM_RUNNING)
360 r = early_lookup_bdev(path, &dev);
361#endif
362 if (r)
363 return r;
364 }
365 if (dev == disk_devt(t->md->disk))
366 return -EINVAL;
367
368 down_write(&t->devices_lock);
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd) {
374 r = -ENOMEM;
375 goto unlock_ret_r;
376 }
377
378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 if (r) {
380 kfree(dd);
381 goto unlock_ret_r;
382 }
383
384 refcount_set(&dd->count, 1);
385 list_add(&dd->list, &t->devices);
386 goto out;
387
388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 r = upgrade_mode(dd, mode, t->md);
390 if (r)
391 goto unlock_ret_r;
392 }
393 refcount_inc(&dd->count);
394out:
395 up_write(&t->devices_lock);
396 *result = dd->dm_dev;
397 return 0;
398
399unlock_ret_r:
400 up_write(&t->devices_lock);
401 return r;
402}
403EXPORT_SYMBOL(dm_get_device);
404
405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 sector_t start, sector_t len, void *data)
407{
408 struct queue_limits *limits = data;
409 struct block_device *bdev = dev->bdev;
410 struct request_queue *q = bdev_get_queue(bdev);
411
412 if (unlikely(!q)) {
413 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 dm_device_name(ti->table->md), bdev);
415 return 0;
416 }
417
418 if (blk_stack_limits(limits, &q->limits,
419 get_start_sect(bdev) + start) < 0)
420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 "physical_block_size=%u, logical_block_size=%u, "
422 "alignment_offset=%u, start=%llu",
423 dm_device_name(ti->table->md), bdev,
424 q->limits.physical_block_size,
425 q->limits.logical_block_size,
426 q->limits.alignment_offset,
427 (unsigned long long) start << SECTOR_SHIFT);
428 return 0;
429}
430
431/*
432 * Decrement a device's use count and remove it if necessary.
433 */
434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435{
436 int found = 0;
437 struct dm_table *t = ti->table;
438 struct list_head *devices = &t->devices;
439 struct dm_dev_internal *dd;
440
441 down_write(&t->devices_lock);
442
443 list_for_each_entry(dd, devices, list) {
444 if (dd->dm_dev == d) {
445 found = 1;
446 break;
447 }
448 }
449 if (!found) {
450 DMERR("%s: device %s not in table devices list",
451 dm_device_name(t->md), d->name);
452 goto unlock_ret;
453 }
454 if (refcount_dec_and_test(&dd->count)) {
455 dm_put_table_device(t->md, d);
456 list_del(&dd->list);
457 kfree(dd);
458 }
459
460unlock_ret:
461 up_write(&t->devices_lock);
462}
463EXPORT_SYMBOL(dm_put_device);
464
465/*
466 * Checks to see if the target joins onto the end of the table.
467 */
468static int adjoin(struct dm_table *t, struct dm_target *ti)
469{
470 struct dm_target *prev;
471
472 if (!t->num_targets)
473 return !ti->begin;
474
475 prev = &t->targets[t->num_targets - 1];
476 return (ti->begin == (prev->begin + prev->len));
477}
478
479/*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
489static char **realloc_argv(unsigned int *size, char **old_argv)
490{
491 char **argv;
492 unsigned int new_size;
493 gfp_t gfp;
494
495 if (*size) {
496 new_size = *size * 2;
497 gfp = GFP_KERNEL;
498 } else {
499 new_size = 8;
500 gfp = GFP_NOIO;
501 }
502 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 if (argv && old_argv) {
504 memcpy(argv, old_argv, *size * sizeof(*argv));
505 *size = new_size;
506 }
507
508 kfree(old_argv);
509 return argv;
510}
511
512/*
513 * Destructively splits up the argument list to pass to ctr.
514 */
515int dm_split_args(int *argc, char ***argvp, char *input)
516{
517 char *start, *end = input, *out, **argv = NULL;
518 unsigned int array_size = 0;
519
520 *argc = 0;
521
522 if (!input) {
523 *argvp = NULL;
524 return 0;
525 }
526
527 argv = realloc_argv(&array_size, argv);
528 if (!argv)
529 return -ENOMEM;
530
531 while (1) {
532 /* Skip whitespace */
533 start = skip_spaces(end);
534
535 if (!*start)
536 break; /* success, we hit the end */
537
538 /* 'out' is used to remove any back-quotes */
539 end = out = start;
540 while (*end) {
541 /* Everything apart from '\0' can be quoted */
542 if (*end == '\\' && *(end + 1)) {
543 *out++ = *(end + 1);
544 end += 2;
545 continue;
546 }
547
548 if (isspace(*end))
549 break; /* end of token */
550
551 *out++ = *end++;
552 }
553
554 /* have we already filled the array ? */
555 if ((*argc + 1) > array_size) {
556 argv = realloc_argv(&array_size, argv);
557 if (!argv)
558 return -ENOMEM;
559 }
560
561 /* we know this is whitespace */
562 if (*end)
563 end++;
564
565 /* terminate the string and put it in the array */
566 *out = '\0';
567 argv[*argc] = start;
568 (*argc)++;
569 }
570
571 *argvp = argv;
572 return 0;
573}
574
575/*
576 * Impose necessary and sufficient conditions on a devices's table such
577 * that any incoming bio which respects its logical_block_size can be
578 * processed successfully. If it falls across the boundary between
579 * two or more targets, the size of each piece it gets split into must
580 * be compatible with the logical_block_size of the target processing it.
581 */
582static int validate_hardware_logical_block_alignment(struct dm_table *t,
583 struct queue_limits *limits)
584{
585 /*
586 * This function uses arithmetic modulo the logical_block_size
587 * (in units of 512-byte sectors).
588 */
589 unsigned short device_logical_block_size_sects =
590 limits->logical_block_size >> SECTOR_SHIFT;
591
592 /*
593 * Offset of the start of the next table entry, mod logical_block_size.
594 */
595 unsigned short next_target_start = 0;
596
597 /*
598 * Given an aligned bio that extends beyond the end of a
599 * target, how many sectors must the next target handle?
600 */
601 unsigned short remaining = 0;
602
603 struct dm_target *ti;
604 struct queue_limits ti_limits;
605 unsigned int i;
606
607 /*
608 * Check each entry in the table in turn.
609 */
610 for (i = 0; i < t->num_targets; i++) {
611 ti = dm_table_get_target(t, i);
612
613 blk_set_stacking_limits(&ti_limits);
614
615 /* combine all target devices' limits */
616 if (ti->type->iterate_devices)
617 ti->type->iterate_devices(ti, dm_set_device_limits,
618 &ti_limits);
619
620 /*
621 * If the remaining sectors fall entirely within this
622 * table entry are they compatible with its logical_block_size?
623 */
624 if (remaining < ti->len &&
625 remaining & ((ti_limits.logical_block_size >>
626 SECTOR_SHIFT) - 1))
627 break; /* Error */
628
629 next_target_start =
630 (unsigned short) ((next_target_start + ti->len) &
631 (device_logical_block_size_sects - 1));
632 remaining = next_target_start ?
633 device_logical_block_size_sects - next_target_start : 0;
634 }
635
636 if (remaining) {
637 DMERR("%s: table line %u (start sect %llu len %llu) "
638 "not aligned to h/w logical block size %u",
639 dm_device_name(t->md), i,
640 (unsigned long long) ti->begin,
641 (unsigned long long) ti->len,
642 limits->logical_block_size);
643 return -EINVAL;
644 }
645
646 return 0;
647}
648
649int dm_table_add_target(struct dm_table *t, const char *type,
650 sector_t start, sector_t len, char *params)
651{
652 int r = -EINVAL, argc;
653 char **argv;
654 struct dm_target *ti;
655
656 if (t->singleton) {
657 DMERR("%s: target type %s must appear alone in table",
658 dm_device_name(t->md), t->targets->type->name);
659 return -EINVAL;
660 }
661
662 BUG_ON(t->num_targets >= t->num_allocated);
663
664 ti = t->targets + t->num_targets;
665 memset(ti, 0, sizeof(*ti));
666
667 if (!len) {
668 DMERR("%s: zero-length target", dm_device_name(t->md));
669 return -EINVAL;
670 }
671
672 ti->type = dm_get_target_type(type);
673 if (!ti->type) {
674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 return -EINVAL;
676 }
677
678 if (dm_target_needs_singleton(ti->type)) {
679 if (t->num_targets) {
680 ti->error = "singleton target type must appear alone in table";
681 goto bad;
682 }
683 t->singleton = true;
684 }
685
686 if (dm_target_always_writeable(ti->type) &&
687 !(t->mode & BLK_OPEN_WRITE)) {
688 ti->error = "target type may not be included in a read-only table";
689 goto bad;
690 }
691
692 if (t->immutable_target_type) {
693 if (t->immutable_target_type != ti->type) {
694 ti->error = "immutable target type cannot be mixed with other target types";
695 goto bad;
696 }
697 } else if (dm_target_is_immutable(ti->type)) {
698 if (t->num_targets) {
699 ti->error = "immutable target type cannot be mixed with other target types";
700 goto bad;
701 }
702 t->immutable_target_type = ti->type;
703 }
704
705 if (dm_target_has_integrity(ti->type))
706 t->integrity_added = 1;
707
708 ti->table = t;
709 ti->begin = start;
710 ti->len = len;
711 ti->error = "Unknown error";
712
713 /*
714 * Does this target adjoin the previous one ?
715 */
716 if (!adjoin(t, ti)) {
717 ti->error = "Gap in table";
718 goto bad;
719 }
720
721 r = dm_split_args(&argc, &argv, params);
722 if (r) {
723 ti->error = "couldn't split parameters";
724 goto bad;
725 }
726
727 r = ti->type->ctr(ti, argc, argv);
728 kfree(argv);
729 if (r)
730 goto bad;
731
732 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734 if (!ti->num_discard_bios && ti->discards_supported)
735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 dm_device_name(t->md), type);
737
738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739 static_branch_enable(&swap_bios_enabled);
740
741 return 0;
742
743 bad:
744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745 dm_put_target_type(ti->type);
746 return r;
747}
748
749/*
750 * Target argument parsing helpers.
751 */
752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 unsigned int *value, char **error, unsigned int grouped)
754{
755 const char *arg_str = dm_shift_arg(arg_set);
756 char dummy;
757
758 if (!arg_str ||
759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760 (*value < arg->min) ||
761 (*value > arg->max) ||
762 (grouped && arg_set->argc < *value)) {
763 *error = arg->error;
764 return -EINVAL;
765 }
766
767 return 0;
768}
769
770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771 unsigned int *value, char **error)
772{
773 return validate_next_arg(arg, arg_set, value, error, 0);
774}
775EXPORT_SYMBOL(dm_read_arg);
776
777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778 unsigned int *value, char **error)
779{
780 return validate_next_arg(arg, arg_set, value, error, 1);
781}
782EXPORT_SYMBOL(dm_read_arg_group);
783
784const char *dm_shift_arg(struct dm_arg_set *as)
785{
786 char *r;
787
788 if (as->argc) {
789 as->argc--;
790 r = *as->argv;
791 as->argv++;
792 return r;
793 }
794
795 return NULL;
796}
797EXPORT_SYMBOL(dm_shift_arg);
798
799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800{
801 BUG_ON(as->argc < num_args);
802 as->argc -= num_args;
803 as->argv += num_args;
804}
805EXPORT_SYMBOL(dm_consume_args);
806
807static bool __table_type_bio_based(enum dm_queue_mode table_type)
808{
809 return (table_type == DM_TYPE_BIO_BASED ||
810 table_type == DM_TYPE_DAX_BIO_BASED);
811}
812
813static bool __table_type_request_based(enum dm_queue_mode table_type)
814{
815 return table_type == DM_TYPE_REQUEST_BASED;
816}
817
818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819{
820 t->type = type;
821}
822EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824/* validate the dax capability of the target device span */
825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826 sector_t start, sector_t len, void *data)
827{
828 if (dev->dax_dev)
829 return false;
830
831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832 return true;
833}
834
835/* Check devices support synchronous DAX */
836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837 sector_t start, sector_t len, void *data)
838{
839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840}
841
842static bool dm_table_supports_dax(struct dm_table *t,
843 iterate_devices_callout_fn iterate_fn)
844{
845 /* Ensure that all targets support DAX. */
846 for (unsigned int i = 0; i < t->num_targets; i++) {
847 struct dm_target *ti = dm_table_get_target(t, i);
848
849 if (!ti->type->direct_access)
850 return false;
851
852 if (dm_target_is_wildcard(ti->type) ||
853 !ti->type->iterate_devices ||
854 ti->type->iterate_devices(ti, iterate_fn, NULL))
855 return false;
856 }
857
858 return true;
859}
860
861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862 sector_t start, sector_t len, void *data)
863{
864 struct block_device *bdev = dev->bdev;
865 struct request_queue *q = bdev_get_queue(bdev);
866
867 /* request-based cannot stack on partitions! */
868 if (bdev_is_partition(bdev))
869 return false;
870
871 return queue_is_mq(q);
872}
873
874static int dm_table_determine_type(struct dm_table *t)
875{
876 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877 struct dm_target *ti;
878 struct list_head *devices = dm_table_get_devices(t);
879 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880
881 if (t->type != DM_TYPE_NONE) {
882 /* target already set the table's type */
883 if (t->type == DM_TYPE_BIO_BASED) {
884 /* possibly upgrade to a variant of bio-based */
885 goto verify_bio_based;
886 }
887 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888 goto verify_rq_based;
889 }
890
891 for (unsigned int i = 0; i < t->num_targets; i++) {
892 ti = dm_table_get_target(t, i);
893 if (dm_target_hybrid(ti))
894 hybrid = 1;
895 else if (dm_target_request_based(ti))
896 request_based = 1;
897 else
898 bio_based = 1;
899
900 if (bio_based && request_based) {
901 DMERR("Inconsistent table: different target types can't be mixed up");
902 return -EINVAL;
903 }
904 }
905
906 if (hybrid && !bio_based && !request_based) {
907 /*
908 * The targets can work either way.
909 * Determine the type from the live device.
910 * Default to bio-based if device is new.
911 */
912 if (__table_type_request_based(live_md_type))
913 request_based = 1;
914 else
915 bio_based = 1;
916 }
917
918 if (bio_based) {
919verify_bio_based:
920 /* We must use this table as bio-based */
921 t->type = DM_TYPE_BIO_BASED;
922 if (dm_table_supports_dax(t, device_not_dax_capable) ||
923 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924 t->type = DM_TYPE_DAX_BIO_BASED;
925 }
926 return 0;
927 }
928
929 BUG_ON(!request_based); /* No targets in this table */
930
931 t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934 /*
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
939 */
940 if (t->num_targets > 1) {
941 DMERR("request-based DM doesn't support multiple targets");
942 return -EINVAL;
943 }
944
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949 /* inherit live table's type */
950 if (live_table)
951 t->type = live_table->type;
952 dm_put_live_table(t->md, srcu_idx);
953 return 0;
954 }
955
956 ti = dm_table_get_immutable_target(t);
957 if (!ti) {
958 DMERR("table load rejected: immutable target is required");
959 return -EINVAL;
960 } else if (ti->max_io_len) {
961 DMERR("table load rejected: immutable target that splits IO is not supported");
962 return -EINVAL;
963 }
964
965 /* Non-request-stackable devices can't be used for request-based dm */
966 if (!ti->type->iterate_devices ||
967 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968 DMERR("table load rejected: including non-request-stackable devices");
969 return -EINVAL;
970 }
971
972 return 0;
973}
974
975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976{
977 return t->type;
978}
979
980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981{
982 return t->immutable_target_type;
983}
984
985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986{
987 /* Immutable target is implicitly a singleton */
988 if (t->num_targets > 1 ||
989 !dm_target_is_immutable(t->targets[0].type))
990 return NULL;
991
992 return t->targets;
993}
994
995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996{
997 for (unsigned int i = 0; i < t->num_targets; i++) {
998 struct dm_target *ti = dm_table_get_target(t, i);
999
1000 if (dm_target_is_wildcard(ti->type))
1001 return ti;
1002 }
1003
1004 return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009 return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014 return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021 enum dm_queue_mode type = dm_table_get_type(t);
1022 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023 unsigned int min_pool_size = 0, pool_size;
1024 struct dm_md_mempools *pools;
1025
1026 if (unlikely(type == DM_TYPE_NONE)) {
1027 DMERR("no table type is set, can't allocate mempools");
1028 return -EINVAL;
1029 }
1030
1031 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032 if (!pools)
1033 return -ENOMEM;
1034
1035 if (type == DM_TYPE_REQUEST_BASED) {
1036 pool_size = dm_get_reserved_rq_based_ios();
1037 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038 goto init_bs;
1039 }
1040
1041 for (unsigned int i = 0; i < t->num_targets; i++) {
1042 struct dm_target *ti = dm_table_get_target(t, i);
1043
1044 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046 }
1047 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048 front_pad = roundup(per_io_data_size,
1049 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051 io_front_pad = roundup(per_io_data_size,
1052 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055 goto out_free_pools;
1056 if (t->integrity_supported &&
1057 bioset_integrity_create(&pools->io_bs, pool_size))
1058 goto out_free_pools;
1059init_bs:
1060 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061 goto out_free_pools;
1062 if (t->integrity_supported &&
1063 bioset_integrity_create(&pools->bs, pool_size))
1064 goto out_free_pools;
1065
1066 t->mempools = pools;
1067 return 0;
1068
1069out_free_pools:
1070 dm_free_md_mempools(pools);
1071 return -ENOMEM;
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076 int i;
1077 unsigned int total = 0;
1078 sector_t *indexes;
1079
1080 /* allocate the space for *all* the indexes */
1081 for (i = t->depth - 2; i >= 0; i--) {
1082 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083 total += t->counts[i];
1084 }
1085
1086 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087 if (!indexes)
1088 return -ENOMEM;
1089
1090 /* set up internal nodes, bottom-up */
1091 for (i = t->depth - 2; i >= 0; i--) {
1092 t->index[i] = indexes;
1093 indexes += (KEYS_PER_NODE * t->counts[i]);
1094 setup_btree_index(i, t);
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105 int r = 0;
1106 unsigned int leaf_nodes;
1107
1108 /* how many indexes will the btree have ? */
1109 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112 /* leaf layer has already been set up */
1113 t->counts[t->depth - 1] = leaf_nodes;
1114 t->index[t->depth - 1] = t->highs;
1115
1116 if (t->depth >= 2)
1117 r = setup_indexes(t);
1118
1119 return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124 return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133 struct list_head *devices = dm_table_get_devices(t);
1134 struct dm_dev_internal *dd = NULL;
1135 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137 for (unsigned int i = 0; i < t->num_targets; i++) {
1138 struct dm_target *ti = dm_table_get_target(t, i);
1139
1140 if (!dm_target_passes_integrity(ti->type))
1141 goto no_integrity;
1142 }
1143
1144 list_for_each_entry(dd, devices, list) {
1145 template_disk = dd->dm_dev->bdev->bd_disk;
1146 if (!integrity_profile_exists(template_disk))
1147 goto no_integrity;
1148 else if (prev_disk &&
1149 blk_integrity_compare(prev_disk, template_disk) < 0)
1150 goto no_integrity;
1151 prev_disk = template_disk;
1152 }
1153
1154 return template_disk;
1155
1156no_integrity:
1157 if (prev_disk)
1158 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159 dm_device_name(t->md),
1160 prev_disk->disk_name,
1161 template_disk->disk_name);
1162 return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile. But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile). Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177 struct mapped_device *md = t->md;
1178 struct gendisk *template_disk = NULL;
1179
1180 /* If target handles integrity itself do not register it here. */
1181 if (t->integrity_added)
1182 return 0;
1183
1184 template_disk = dm_table_get_integrity_disk(t);
1185 if (!template_disk)
1186 return 0;
1187
1188 if (!integrity_profile_exists(dm_disk(md))) {
1189 t->integrity_supported = true;
1190 /*
1191 * Register integrity profile during table load; we can do
1192 * this because the final profile must match during resume.
1193 */
1194 blk_integrity_register(dm_disk(md),
1195 blk_get_integrity(template_disk));
1196 return 0;
1197 }
1198
1199 /*
1200 * If DM device already has an initialized integrity
1201 * profile the new profile should not conflict.
1202 */
1203 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205 dm_device_name(t->md),
1206 template_disk->disk_name);
1207 return 1;
1208 }
1209
1210 /* Preserve existing integrity profile */
1211 t->integrity_supported = true;
1212 return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218 struct blk_crypto_profile profile;
1219 struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223 sector_t start, sector_t len, void *data)
1224{
1225 const struct blk_crypto_key *key = data;
1226
1227 blk_crypto_evict_key(dev->bdev, key);
1228 return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236 const struct blk_crypto_key *key, unsigned int slot)
1237{
1238 struct mapped_device *md =
1239 container_of(profile, struct dm_crypto_profile, profile)->md;
1240 struct dm_table *t;
1241 int srcu_idx;
1242
1243 t = dm_get_live_table(md, &srcu_idx);
1244 if (!t)
1245 return 0;
1246
1247 for (unsigned int i = 0; i < t->num_targets; i++) {
1248 struct dm_target *ti = dm_table_get_target(t, i);
1249
1250 if (!ti->type->iterate_devices)
1251 continue;
1252 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253 (void *)key);
1254 }
1255
1256 dm_put_live_table(md, srcu_idx);
1257 return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262 sector_t start, sector_t len, void *data)
1263{
1264 struct blk_crypto_profile *parent = data;
1265 struct blk_crypto_profile *child =
1266 bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268 blk_crypto_intersect_capabilities(parent, child);
1269 return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274 struct dm_crypto_profile *dmcp = container_of(profile,
1275 struct dm_crypto_profile,
1276 profile);
1277
1278 if (!profile)
1279 return;
1280
1281 blk_crypto_profile_destroy(profile);
1282 kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287 dm_destroy_crypto_profile(t->crypto_profile);
1288 t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table. However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302 struct dm_crypto_profile *dmcp;
1303 struct blk_crypto_profile *profile;
1304 unsigned int i;
1305 bool empty_profile = true;
1306
1307 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308 if (!dmcp)
1309 return -ENOMEM;
1310 dmcp->md = t->md;
1311
1312 profile = &dmcp->profile;
1313 blk_crypto_profile_init(profile, 0);
1314 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315 profile->max_dun_bytes_supported = UINT_MAX;
1316 memset(profile->modes_supported, 0xFF,
1317 sizeof(profile->modes_supported));
1318
1319 for (i = 0; i < t->num_targets; i++) {
1320 struct dm_target *ti = dm_table_get_target(t, i);
1321
1322 if (!dm_target_passes_crypto(ti->type)) {
1323 blk_crypto_intersect_capabilities(profile, NULL);
1324 break;
1325 }
1326 if (!ti->type->iterate_devices)
1327 continue;
1328 ti->type->iterate_devices(ti,
1329 device_intersect_crypto_capabilities,
1330 profile);
1331 }
1332
1333 if (t->md->queue &&
1334 !blk_crypto_has_capabilities(profile,
1335 t->md->queue->crypto_profile)) {
1336 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337 dm_destroy_crypto_profile(profile);
1338 return -EINVAL;
1339 }
1340
1341 /*
1342 * If the new profile doesn't actually support any crypto capabilities,
1343 * we may as well represent it with a NULL profile.
1344 */
1345 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346 if (profile->modes_supported[i]) {
1347 empty_profile = false;
1348 break;
1349 }
1350 }
1351
1352 if (empty_profile) {
1353 dm_destroy_crypto_profile(profile);
1354 profile = NULL;
1355 }
1356
1357 /*
1358 * t->crypto_profile is only set temporarily while the table is being
1359 * set up, and it gets set to NULL after the profile has been
1360 * transferred to the request_queue.
1361 */
1362 t->crypto_profile = profile;
1363
1364 return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368 struct dm_table *t)
1369{
1370 if (!t->crypto_profile)
1371 return;
1372
1373 /* Make the crypto profile less restrictive. */
1374 if (!q->crypto_profile) {
1375 blk_crypto_register(t->crypto_profile, q);
1376 } else {
1377 blk_crypto_update_capabilities(q->crypto_profile,
1378 t->crypto_profile);
1379 dm_destroy_crypto_profile(t->crypto_profile);
1380 }
1381 t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388 return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400 struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412 int r;
1413
1414 r = dm_table_determine_type(t);
1415 if (r) {
1416 DMERR("unable to determine table type");
1417 return r;
1418 }
1419
1420 r = dm_table_build_index(t);
1421 if (r) {
1422 DMERR("unable to build btrees");
1423 return r;
1424 }
1425
1426 r = dm_table_register_integrity(t);
1427 if (r) {
1428 DMERR("could not register integrity profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_construct_crypto_profile(t);
1433 if (r) {
1434 DMERR("could not construct crypto profile.");
1435 return r;
1436 }
1437
1438 r = dm_table_alloc_md_mempools(t, t->md);
1439 if (r)
1440 DMERR("unable to allocate mempools");
1441
1442 return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447 void (*fn)(void *), void *context)
1448{
1449 mutex_lock(&_event_lock);
1450 t->event_fn = fn;
1451 t->event_context = context;
1452 mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
1457 mutex_lock(&_event_lock);
1458 if (t->event_fn)
1459 t->event_fn(t->event_context);
1460 mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478 unsigned int l, n = 0, k = 0;
1479 sector_t *node;
1480
1481 if (unlikely(sector >= dm_table_get_size(t)))
1482 return NULL;
1483
1484 for (l = 0; l < t->depth; l++) {
1485 n = get_child(n, k);
1486 node = get_node(t, l, n);
1487
1488 for (k = 0; k < KEYS_PER_NODE; k++)
1489 if (node[k] >= sector)
1490 break;
1491 }
1492
1493 return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497 sector_t start, sector_t len, void *data)
1498{
1499 struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528 iterate_devices_callout_fn func, void *data)
1529{
1530 for (unsigned int i = 0; i < t->num_targets; i++) {
1531 struct dm_target *ti = dm_table_get_target(t, i);
1532
1533 if (ti->type->iterate_devices &&
1534 ti->type->iterate_devices(ti, func, data))
1535 return true;
1536 }
1537
1538 return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542 sector_t start, sector_t len, void *data)
1543{
1544 unsigned int *num_devices = data;
1545
1546 (*num_devices)++;
1547
1548 return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553 for (unsigned int i = 0; i < t->num_targets; i++) {
1554 struct dm_target *ti = dm_table_get_target(t, i);
1555
1556 if (!ti->type->iterate_devices ||
1557 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558 return false;
1559 }
1560
1561 return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572 for (unsigned int i = 0; i < t->num_targets; i++) {
1573 struct dm_target *ti = dm_table_get_target(t, i);
1574 unsigned int num_devices = 0;
1575
1576 if (!ti->type->iterate_devices)
1577 return false;
1578
1579 ti->type->iterate_devices(ti, count_device, &num_devices);
1580 if (num_devices)
1581 return false;
1582 }
1583
1584 return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588 sector_t start, sector_t len, void *data)
1589{
1590 bool *zoned = data;
1591
1592 return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596 sector_t start, sector_t len, void *data)
1597{
1598 return bdev_is_zoned(dev->bdev);
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610 for (unsigned int i = 0; i < t->num_targets; i++) {
1611 struct dm_target *ti = dm_table_get_target(t, i);
1612
1613 /*
1614 * For the wildcard target (dm-error), if we do not have a
1615 * backing device, we must always return false. If we have a
1616 * backing device, the result must depend on checking zoned
1617 * model, like for any other target. So for this, check directly
1618 * if the target backing device is zoned as we get "false" when
1619 * dm-error was set without a backing device.
1620 */
1621 if (dm_target_is_wildcard(ti->type) &&
1622 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623 return false;
1624
1625 if (dm_target_supports_zoned_hm(ti->type)) {
1626 if (!ti->type->iterate_devices ||
1627 ti->type->iterate_devices(ti, device_not_zoned,
1628 &zoned))
1629 return false;
1630 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631 if (zoned)
1632 return false;
1633 }
1634 }
1635
1636 return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned int *zone_sectors = data;
1643
1644 if (!bdev_is_zoned(dev->bdev))
1645 return 0;
1646 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655 unsigned int zone_sectors)
1656{
1657 if (!zoned)
1658 return 0;
1659
1660 if (!dm_table_supports_zoned(t, zoned)) {
1661 DMERR("%s: zoned model is not consistent across all devices",
1662 dm_device_name(t->md));
1663 return -EINVAL;
1664 }
1665
1666 /* Check zone size validity and compatibility */
1667 if (!zone_sectors || !is_power_of_2(zone_sectors))
1668 return -EINVAL;
1669
1670 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671 DMERR("%s: zone sectors is not consistent across all zoned devices",
1672 dm_device_name(t->md));
1673 return -EINVAL;
1674 }
1675
1676 return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683 struct queue_limits *limits)
1684{
1685 struct queue_limits ti_limits;
1686 unsigned int zone_sectors = 0;
1687 bool zoned = false;
1688
1689 blk_set_stacking_limits(limits);
1690
1691 for (unsigned int i = 0; i < t->num_targets; i++) {
1692 struct dm_target *ti = dm_table_get_target(t, i);
1693
1694 blk_set_stacking_limits(&ti_limits);
1695
1696 if (!ti->type->iterate_devices) {
1697 /* Set I/O hints portion of queue limits */
1698 if (ti->type->io_hints)
1699 ti->type->io_hints(ti, &ti_limits);
1700 goto combine_limits;
1701 }
1702
1703 /*
1704 * Combine queue limits of all the devices this target uses.
1705 */
1706 ti->type->iterate_devices(ti, dm_set_device_limits,
1707 &ti_limits);
1708
1709 if (!zoned && ti_limits.zoned) {
1710 /*
1711 * After stacking all limits, validate all devices
1712 * in table support this zoned model and zone sectors.
1713 */
1714 zoned = ti_limits.zoned;
1715 zone_sectors = ti_limits.chunk_sectors;
1716 }
1717
1718 /* Set I/O hints portion of queue limits */
1719 if (ti->type->io_hints)
1720 ti->type->io_hints(ti, &ti_limits);
1721
1722 /*
1723 * Check each device area is consistent with the target's
1724 * overall queue limits.
1725 */
1726 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727 &ti_limits))
1728 return -EINVAL;
1729
1730combine_limits:
1731 /*
1732 * Merge this target's queue limits into the overall limits
1733 * for the table.
1734 */
1735 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736 DMWARN("%s: adding target device (start sect %llu len %llu) "
1737 "caused an alignment inconsistency",
1738 dm_device_name(t->md),
1739 (unsigned long long) ti->begin,
1740 (unsigned long long) ti->len);
1741 }
1742
1743 /*
1744 * Verify that the zoned model and zone sectors, as determined before
1745 * any .io_hints override, are the same across all devices in the table.
1746 * - this is especially relevant if .io_hints is emulating a disk-managed
1747 * zoned model on host-managed zoned block devices.
1748 * BUT...
1749 */
1750 if (limits->zoned) {
1751 /*
1752 * ...IF the above limits stacking determined a zoned model
1753 * validate that all of the table's devices conform to it.
1754 */
1755 zoned = limits->zoned;
1756 zone_sectors = limits->chunk_sectors;
1757 }
1758 if (validate_hardware_zoned(t, zoned, zone_sectors))
1759 return -EINVAL;
1760
1761 return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile. If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771 struct gendisk *template_disk = NULL;
1772
1773 if (t->integrity_added)
1774 return;
1775
1776 if (t->integrity_supported) {
1777 /*
1778 * Verify that the original integrity profile
1779 * matches all the devices in this table.
1780 */
1781 template_disk = dm_table_get_integrity_disk(t);
1782 if (template_disk &&
1783 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784 return;
1785 }
1786
1787 if (integrity_profile_exists(dm_disk(t->md))) {
1788 DMWARN("%s: unable to establish an integrity profile",
1789 dm_device_name(t->md));
1790 blk_integrity_unregister(dm_disk(t->md));
1791 }
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795 sector_t start, sector_t len, void *data)
1796{
1797 unsigned long flush = (unsigned long) data;
1798 struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800 return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
1805 /*
1806 * Require at least one underlying device to support flushes.
1807 * t->devices includes internal dm devices such as mirror logs
1808 * so we need to use iterate_devices here, which targets
1809 * supporting flushes must provide.
1810 */
1811 for (unsigned int i = 0; i < t->num_targets; i++) {
1812 struct dm_target *ti = dm_table_get_target(t, i);
1813
1814 if (!ti->num_flush_bios)
1815 continue;
1816
1817 if (ti->flush_supported)
1818 return true;
1819
1820 if (ti->type->iterate_devices &&
1821 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822 return true;
1823 }
1824
1825 return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829 struct dm_dev *dev, sector_t start,
1830 sector_t len, void *data)
1831{
1832 struct dax_device *dax_dev = dev->dax_dev;
1833
1834 if (!dax_dev)
1835 return false;
1836
1837 if (dax_write_cache_enabled(dax_dev))
1838 return true;
1839 return false;
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843 sector_t start, sector_t len, void *data)
1844{
1845 return !bdev_nonrot(dev->bdev);
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849 sector_t start, sector_t len, void *data)
1850{
1851 struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853 return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1858{
1859 struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861 return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865{
1866 for (unsigned int i = 0; i < t->num_targets; i++) {
1867 struct dm_target *ti = dm_table_get_target(t, i);
1868
1869 if (!ti->num_write_zeroes_bios)
1870 return false;
1871
1872 if (!ti->type->iterate_devices ||
1873 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874 return false;
1875 }
1876
1877 return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881 sector_t start, sector_t len, void *data)
1882{
1883 return !bdev_nowait(dev->bdev);
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888 for (unsigned int i = 0; i < t->num_targets; i++) {
1889 struct dm_target *ti = dm_table_get_target(t, i);
1890
1891 if (!dm_target_supports_nowait(ti->type))
1892 return false;
1893
1894 if (!ti->type->iterate_devices ||
1895 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896 return false;
1897 }
1898
1899 return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903 sector_t start, sector_t len, void *data)
1904{
1905 return !bdev_max_discard_sectors(dev->bdev);
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910 for (unsigned int i = 0; i < t->num_targets; i++) {
1911 struct dm_target *ti = dm_table_get_target(t, i);
1912
1913 if (!ti->num_discard_bios)
1914 return false;
1915
1916 /*
1917 * Either the target provides discard support (as implied by setting
1918 * 'discards_supported') or it relies on _all_ data devices having
1919 * discard support.
1920 */
1921 if (!ti->discards_supported &&
1922 (!ti->type->iterate_devices ||
1923 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924 return false;
1925 }
1926
1927 return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931 struct dm_dev *dev, sector_t start,
1932 sector_t len, void *data)
1933{
1934 return !bdev_max_secure_erase_sectors(dev->bdev);
1935}
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939 for (unsigned int i = 0; i < t->num_targets; i++) {
1940 struct dm_target *ti = dm_table_get_target(t, i);
1941
1942 if (!ti->num_secure_erase_bios)
1943 return false;
1944
1945 if (!ti->type->iterate_devices ||
1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 return false;
1948 }
1949
1950 return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954 struct dm_dev *dev, sector_t start,
1955 sector_t len, void *data)
1956{
1957 return bdev_stable_writes(dev->bdev);
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 struct queue_limits *limits)
1962{
1963 bool wc = false, fua = false;
1964 int r;
1965
1966 /*
1967 * Copy table's limits to the DM device's request_queue
1968 */
1969 q->limits = *limits;
1970
1971 if (dm_table_supports_nowait(t))
1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 else
1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976 if (!dm_table_supports_discards(t)) {
1977 q->limits.max_discard_sectors = 0;
1978 q->limits.max_hw_discard_sectors = 0;
1979 q->limits.discard_granularity = 0;
1980 q->limits.discard_alignment = 0;
1981 q->limits.discard_misaligned = 0;
1982 }
1983
1984 if (!dm_table_supports_secure_erase(t))
1985 q->limits.max_secure_erase_sectors = 0;
1986
1987 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 wc = true;
1989 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 fua = true;
1991 }
1992 blk_queue_write_cache(q, wc, fua);
1993
1994 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 set_dax_synchronous(t->md->dax_dev);
1998 } else
1999 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002 dax_write_cache(t->md->dax_dev, true);
2003
2004 /* Ensure that all underlying devices are non-rotational. */
2005 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007 else
2008 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010 if (!dm_table_supports_write_zeroes(t))
2011 q->limits.max_write_zeroes_sectors = 0;
2012
2013 dm_table_verify_integrity(t);
2014
2015 /*
2016 * Some devices don't use blk_integrity but still want stable pages
2017 * because they do their own checksumming.
2018 * If any underlying device requires stable pages, a table must require
2019 * them as well. Only targets that support iterate_devices are considered:
2020 * don't want error, zero, etc to require stable pages.
2021 */
2022 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024 else
2025 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027 /*
2028 * Determine whether or not this queue's I/O timings contribute
2029 * to the entropy pool, Only request-based targets use this.
2030 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031 * have it set.
2032 */
2033 if (blk_queue_add_random(q) &&
2034 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037 /*
2038 * For a zoned target, setup the zones related queue attributes
2039 * and resources necessary for zone append emulation if necessary.
2040 */
2041 if (blk_queue_is_zoned(q)) {
2042 r = dm_set_zones_restrictions(t, q);
2043 if (r)
2044 return r;
2045 if (!static_key_enabled(&zoned_enabled.key))
2046 static_branch_enable(&zoned_enabled);
2047 }
2048
2049 dm_update_crypto_profile(q, t);
2050 disk_update_readahead(t->md->disk);
2051
2052 /*
2053 * Check for request-based device is left to
2054 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055 *
2056 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057 * underlying devices supporting polling.
2058 */
2059 if (__table_type_bio_based(t->type)) {
2060 if (dm_table_supports_poll(t))
2061 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062 else
2063 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064 }
2065
2066 return 0;
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071 return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076 return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081 PRESUSPEND,
2082 PRESUSPEND_UNDO,
2083 POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088 lockdep_assert_held(&t->md->suspend_lock);
2089
2090 for (unsigned int i = 0; i < t->num_targets; i++) {
2091 struct dm_target *ti = dm_table_get_target(t, i);
2092
2093 switch (mode) {
2094 case PRESUSPEND:
2095 if (ti->type->presuspend)
2096 ti->type->presuspend(ti);
2097 break;
2098 case PRESUSPEND_UNDO:
2099 if (ti->type->presuspend_undo)
2100 ti->type->presuspend_undo(ti);
2101 break;
2102 case POSTSUSPEND:
2103 if (ti->type->postsuspend)
2104 ti->type->postsuspend(ti);
2105 break;
2106 }
2107 }
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112 if (!t)
2113 return;
2114
2115 suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120 if (!t)
2121 return;
2122
2123 suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128 if (!t)
2129 return;
2130
2131 suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136 unsigned int i;
2137 int r = 0;
2138
2139 lockdep_assert_held(&t->md->suspend_lock);
2140
2141 for (i = 0; i < t->num_targets; i++) {
2142 struct dm_target *ti = dm_table_get_target(t, i);
2143
2144 if (!ti->type->preresume)
2145 continue;
2146
2147 r = ti->type->preresume(ti);
2148 if (r) {
2149 DMERR("%s: %s: preresume failed, error = %d",
2150 dm_device_name(t->md), ti->type->name, r);
2151 return r;
2152 }
2153 }
2154
2155 for (i = 0; i < t->num_targets; i++) {
2156 struct dm_target *ti = dm_table_get_target(t, i);
2157
2158 if (ti->type->resume)
2159 ti->type->resume(ti);
2160 }
2161
2162 return 0;
2163}
2164
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167 return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
2170
2171const char *dm_table_device_name(struct dm_table *t)
2172{
2173 return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
2179 if (!dm_table_request_based(t))
2180 return;
2181
2182 if (t->md->queue)
2183 blk_mq_run_hw_queues(t->md->queue, true);
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 unsigned integrity_added:1;
51
52 /*
53 * Indicates the rw permissions for the new logical
54 * device. This should be a combination of FMODE_READ
55 * and FMODE_WRITE.
56 */
57 fmode_t mode;
58
59 /* a list of devices used by this table */
60 struct list_head devices;
61
62 /* events get handed up using this callback */
63 void (*event_fn)(void *);
64 void *event_context;
65
66 struct dm_md_mempools *mempools;
67};
68
69/*
70 * Similar to ceiling(log_size(n))
71 */
72static unsigned int int_log(unsigned int n, unsigned int base)
73{
74 int result = 0;
75
76 while (n > 1) {
77 n = dm_div_up(n, base);
78 result++;
79 }
80
81 return result;
82}
83
84/*
85 * Calculate the index of the child node of the n'th node k'th key.
86 */
87static inline unsigned int get_child(unsigned int n, unsigned int k)
88{
89 return (n * CHILDREN_PER_NODE) + k;
90}
91
92/*
93 * Return the n'th node of level l from table t.
94 */
95static inline sector_t *get_node(struct dm_table *t,
96 unsigned int l, unsigned int n)
97{
98 return t->index[l] + (n * KEYS_PER_NODE);
99}
100
101/*
102 * Return the highest key that you could lookup from the n'th
103 * node on level l of the btree.
104 */
105static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106{
107 for (; l < t->depth - 1; l++)
108 n = get_child(n, CHILDREN_PER_NODE - 1);
109
110 if (n >= t->counts[l])
111 return (sector_t) - 1;
112
113 return get_node(t, l, n)[KEYS_PER_NODE - 1];
114}
115
116/*
117 * Fills in a level of the btree based on the highs of the level
118 * below it.
119 */
120static int setup_btree_index(unsigned int l, struct dm_table *t)
121{
122 unsigned int n, k;
123 sector_t *node;
124
125 for (n = 0U; n < t->counts[l]; n++) {
126 node = get_node(t, l, n);
127
128 for (k = 0U; k < KEYS_PER_NODE; k++)
129 node[k] = high(t, l + 1, get_child(n, k));
130 }
131
132 return 0;
133}
134
135void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
136{
137 unsigned long size;
138 void *addr;
139
140 /*
141 * Check that we're not going to overflow.
142 */
143 if (nmemb > (ULONG_MAX / elem_size))
144 return NULL;
145
146 size = nmemb * elem_size;
147 addr = vzalloc(size);
148
149 return addr;
150}
151EXPORT_SYMBOL(dm_vcalloc);
152
153/*
154 * highs, and targets are managed as dynamic arrays during a
155 * table load.
156 */
157static int alloc_targets(struct dm_table *t, unsigned int num)
158{
159 sector_t *n_highs;
160 struct dm_target *n_targets;
161
162 /*
163 * Allocate both the target array and offset array at once.
164 */
165 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
166 sizeof(sector_t));
167 if (!n_highs)
168 return -ENOMEM;
169
170 n_targets = (struct dm_target *) (n_highs + num);
171
172 memset(n_highs, -1, sizeof(*n_highs) * num);
173 vfree(t->highs);
174
175 t->num_allocated = num;
176 t->highs = n_highs;
177 t->targets = n_targets;
178
179 return 0;
180}
181
182int dm_table_create(struct dm_table **result, fmode_t mode,
183 unsigned num_targets, struct mapped_device *md)
184{
185 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
186
187 if (!t)
188 return -ENOMEM;
189
190 INIT_LIST_HEAD(&t->devices);
191
192 if (!num_targets)
193 num_targets = KEYS_PER_NODE;
194
195 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
196
197 if (!num_targets) {
198 kfree(t);
199 return -ENOMEM;
200 }
201
202 if (alloc_targets(t, num_targets)) {
203 kfree(t);
204 return -ENOMEM;
205 }
206
207 t->type = DM_TYPE_NONE;
208 t->mode = mode;
209 t->md = md;
210 *result = t;
211 return 0;
212}
213
214static void free_devices(struct list_head *devices, struct mapped_device *md)
215{
216 struct list_head *tmp, *next;
217
218 list_for_each_safe(tmp, next, devices) {
219 struct dm_dev_internal *dd =
220 list_entry(tmp, struct dm_dev_internal, list);
221 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
222 dm_device_name(md), dd->dm_dev->name);
223 dm_put_table_device(md, dd->dm_dev);
224 kfree(dd);
225 }
226}
227
228void dm_table_destroy(struct dm_table *t)
229{
230 unsigned int i;
231
232 if (!t)
233 return;
234
235 /* free the indexes */
236 if (t->depth >= 2)
237 vfree(t->index[t->depth - 2]);
238
239 /* free the targets */
240 for (i = 0; i < t->num_targets; i++) {
241 struct dm_target *tgt = t->targets + i;
242
243 if (tgt->type->dtr)
244 tgt->type->dtr(tgt);
245
246 dm_put_target_type(tgt->type);
247 }
248
249 vfree(t->highs);
250
251 /* free the device list */
252 free_devices(&t->devices, t->md);
253
254 dm_free_md_mempools(t->mempools);
255
256 kfree(t);
257}
258
259/*
260 * See if we've already got a device in the list.
261 */
262static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
263{
264 struct dm_dev_internal *dd;
265
266 list_for_each_entry (dd, l, list)
267 if (dd->dm_dev->bdev->bd_dev == dev)
268 return dd;
269
270 return NULL;
271}
272
273/*
274 * If possible, this checks an area of a destination device is invalid.
275 */
276static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
277 sector_t start, sector_t len, void *data)
278{
279 struct queue_limits *limits = data;
280 struct block_device *bdev = dev->bdev;
281 sector_t dev_size =
282 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
283 unsigned short logical_block_size_sectors =
284 limits->logical_block_size >> SECTOR_SHIFT;
285 char b[BDEVNAME_SIZE];
286
287 if (!dev_size)
288 return 0;
289
290 if ((start >= dev_size) || (start + len > dev_size)) {
291 DMWARN("%s: %s too small for target: "
292 "start=%llu, len=%llu, dev_size=%llu",
293 dm_device_name(ti->table->md), bdevname(bdev, b),
294 (unsigned long long)start,
295 (unsigned long long)len,
296 (unsigned long long)dev_size);
297 return 1;
298 }
299
300 /*
301 * If the target is mapped to zoned block device(s), check
302 * that the zones are not partially mapped.
303 */
304 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
305 unsigned int zone_sectors = bdev_zone_sectors(bdev);
306
307 if (start & (zone_sectors - 1)) {
308 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
309 dm_device_name(ti->table->md),
310 (unsigned long long)start,
311 zone_sectors, bdevname(bdev, b));
312 return 1;
313 }
314
315 /*
316 * Note: The last zone of a zoned block device may be smaller
317 * than other zones. So for a target mapping the end of a
318 * zoned block device with such a zone, len would not be zone
319 * aligned. We do not allow such last smaller zone to be part
320 * of the mapping here to ensure that mappings with multiple
321 * devices do not end up with a smaller zone in the middle of
322 * the sector range.
323 */
324 if (len & (zone_sectors - 1)) {
325 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
326 dm_device_name(ti->table->md),
327 (unsigned long long)len,
328 zone_sectors, bdevname(bdev, b));
329 return 1;
330 }
331 }
332
333 if (logical_block_size_sectors <= 1)
334 return 0;
335
336 if (start & (logical_block_size_sectors - 1)) {
337 DMWARN("%s: start=%llu not aligned to h/w "
338 "logical block size %u of %s",
339 dm_device_name(ti->table->md),
340 (unsigned long long)start,
341 limits->logical_block_size, bdevname(bdev, b));
342 return 1;
343 }
344
345 if (len & (logical_block_size_sectors - 1)) {
346 DMWARN("%s: len=%llu not aligned to h/w "
347 "logical block size %u of %s",
348 dm_device_name(ti->table->md),
349 (unsigned long long)len,
350 limits->logical_block_size, bdevname(bdev, b));
351 return 1;
352 }
353
354 return 0;
355}
356
357/*
358 * This upgrades the mode on an already open dm_dev, being
359 * careful to leave things as they were if we fail to reopen the
360 * device and not to touch the existing bdev field in case
361 * it is accessed concurrently.
362 */
363static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
364 struct mapped_device *md)
365{
366 int r;
367 struct dm_dev *old_dev, *new_dev;
368
369 old_dev = dd->dm_dev;
370
371 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
372 dd->dm_dev->mode | new_mode, &new_dev);
373 if (r)
374 return r;
375
376 dd->dm_dev = new_dev;
377 dm_put_table_device(md, old_dev);
378
379 return 0;
380}
381
382/*
383 * Convert the path to a device
384 */
385dev_t dm_get_dev_t(const char *path)
386{
387 dev_t dev;
388 struct block_device *bdev;
389
390 bdev = lookup_bdev(path);
391 if (IS_ERR(bdev))
392 dev = name_to_dev_t(path);
393 else {
394 dev = bdev->bd_dev;
395 bdput(bdev);
396 }
397
398 return dev;
399}
400EXPORT_SYMBOL_GPL(dm_get_dev_t);
401
402/*
403 * Add a device to the list, or just increment the usage count if
404 * it's already present.
405 */
406int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
407 struct dm_dev **result)
408{
409 int r;
410 dev_t dev;
411 struct dm_dev_internal *dd;
412 struct dm_table *t = ti->table;
413
414 BUG_ON(!t);
415
416 dev = dm_get_dev_t(path);
417 if (!dev)
418 return -ENODEV;
419
420 dd = find_device(&t->devices, dev);
421 if (!dd) {
422 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
423 if (!dd)
424 return -ENOMEM;
425
426 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
427 kfree(dd);
428 return r;
429 }
430
431 refcount_set(&dd->count, 1);
432 list_add(&dd->list, &t->devices);
433 goto out;
434
435 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
436 r = upgrade_mode(dd, mode, t->md);
437 if (r)
438 return r;
439 }
440 refcount_inc(&dd->count);
441out:
442 *result = dd->dm_dev;
443 return 0;
444}
445EXPORT_SYMBOL(dm_get_device);
446
447static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
448 sector_t start, sector_t len, void *data)
449{
450 struct queue_limits *limits = data;
451 struct block_device *bdev = dev->bdev;
452 struct request_queue *q = bdev_get_queue(bdev);
453 char b[BDEVNAME_SIZE];
454
455 if (unlikely(!q)) {
456 DMWARN("%s: Cannot set limits for nonexistent device %s",
457 dm_device_name(ti->table->md), bdevname(bdev, b));
458 return 0;
459 }
460
461 if (blk_stack_limits(limits, &q->limits,
462 get_start_sect(bdev) + start) < 0)
463 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
464 "physical_block_size=%u, logical_block_size=%u, "
465 "alignment_offset=%u, start=%llu",
466 dm_device_name(ti->table->md), bdevname(bdev, b),
467 q->limits.physical_block_size,
468 q->limits.logical_block_size,
469 q->limits.alignment_offset,
470 (unsigned long long) start << SECTOR_SHIFT);
471 return 0;
472}
473
474/*
475 * Decrement a device's use count and remove it if necessary.
476 */
477void dm_put_device(struct dm_target *ti, struct dm_dev *d)
478{
479 int found = 0;
480 struct list_head *devices = &ti->table->devices;
481 struct dm_dev_internal *dd;
482
483 list_for_each_entry(dd, devices, list) {
484 if (dd->dm_dev == d) {
485 found = 1;
486 break;
487 }
488 }
489 if (!found) {
490 DMWARN("%s: device %s not in table devices list",
491 dm_device_name(ti->table->md), d->name);
492 return;
493 }
494 if (refcount_dec_and_test(&dd->count)) {
495 dm_put_table_device(ti->table->md, d);
496 list_del(&dd->list);
497 kfree(dd);
498 }
499}
500EXPORT_SYMBOL(dm_put_device);
501
502/*
503 * Checks to see if the target joins onto the end of the table.
504 */
505static int adjoin(struct dm_table *table, struct dm_target *ti)
506{
507 struct dm_target *prev;
508
509 if (!table->num_targets)
510 return !ti->begin;
511
512 prev = &table->targets[table->num_targets - 1];
513 return (ti->begin == (prev->begin + prev->len));
514}
515
516/*
517 * Used to dynamically allocate the arg array.
518 *
519 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
520 * process messages even if some device is suspended. These messages have a
521 * small fixed number of arguments.
522 *
523 * On the other hand, dm-switch needs to process bulk data using messages and
524 * excessive use of GFP_NOIO could cause trouble.
525 */
526static char **realloc_argv(unsigned *size, char **old_argv)
527{
528 char **argv;
529 unsigned new_size;
530 gfp_t gfp;
531
532 if (*size) {
533 new_size = *size * 2;
534 gfp = GFP_KERNEL;
535 } else {
536 new_size = 8;
537 gfp = GFP_NOIO;
538 }
539 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
540 if (argv && old_argv) {
541 memcpy(argv, old_argv, *size * sizeof(*argv));
542 *size = new_size;
543 }
544
545 kfree(old_argv);
546 return argv;
547}
548
549/*
550 * Destructively splits up the argument list to pass to ctr.
551 */
552int dm_split_args(int *argc, char ***argvp, char *input)
553{
554 char *start, *end = input, *out, **argv = NULL;
555 unsigned array_size = 0;
556
557 *argc = 0;
558
559 if (!input) {
560 *argvp = NULL;
561 return 0;
562 }
563
564 argv = realloc_argv(&array_size, argv);
565 if (!argv)
566 return -ENOMEM;
567
568 while (1) {
569 /* Skip whitespace */
570 start = skip_spaces(end);
571
572 if (!*start)
573 break; /* success, we hit the end */
574
575 /* 'out' is used to remove any back-quotes */
576 end = out = start;
577 while (*end) {
578 /* Everything apart from '\0' can be quoted */
579 if (*end == '\\' && *(end + 1)) {
580 *out++ = *(end + 1);
581 end += 2;
582 continue;
583 }
584
585 if (isspace(*end))
586 break; /* end of token */
587
588 *out++ = *end++;
589 }
590
591 /* have we already filled the array ? */
592 if ((*argc + 1) > array_size) {
593 argv = realloc_argv(&array_size, argv);
594 if (!argv)
595 return -ENOMEM;
596 }
597
598 /* we know this is whitespace */
599 if (*end)
600 end++;
601
602 /* terminate the string and put it in the array */
603 *out = '\0';
604 argv[*argc] = start;
605 (*argc)++;
606 }
607
608 *argvp = argv;
609 return 0;
610}
611
612/*
613 * Impose necessary and sufficient conditions on a devices's table such
614 * that any incoming bio which respects its logical_block_size can be
615 * processed successfully. If it falls across the boundary between
616 * two or more targets, the size of each piece it gets split into must
617 * be compatible with the logical_block_size of the target processing it.
618 */
619static int validate_hardware_logical_block_alignment(struct dm_table *table,
620 struct queue_limits *limits)
621{
622 /*
623 * This function uses arithmetic modulo the logical_block_size
624 * (in units of 512-byte sectors).
625 */
626 unsigned short device_logical_block_size_sects =
627 limits->logical_block_size >> SECTOR_SHIFT;
628
629 /*
630 * Offset of the start of the next table entry, mod logical_block_size.
631 */
632 unsigned short next_target_start = 0;
633
634 /*
635 * Given an aligned bio that extends beyond the end of a
636 * target, how many sectors must the next target handle?
637 */
638 unsigned short remaining = 0;
639
640 struct dm_target *ti;
641 struct queue_limits ti_limits;
642 unsigned i;
643
644 /*
645 * Check each entry in the table in turn.
646 */
647 for (i = 0; i < dm_table_get_num_targets(table); i++) {
648 ti = dm_table_get_target(table, i);
649
650 blk_set_stacking_limits(&ti_limits);
651
652 /* combine all target devices' limits */
653 if (ti->type->iterate_devices)
654 ti->type->iterate_devices(ti, dm_set_device_limits,
655 &ti_limits);
656
657 /*
658 * If the remaining sectors fall entirely within this
659 * table entry are they compatible with its logical_block_size?
660 */
661 if (remaining < ti->len &&
662 remaining & ((ti_limits.logical_block_size >>
663 SECTOR_SHIFT) - 1))
664 break; /* Error */
665
666 next_target_start =
667 (unsigned short) ((next_target_start + ti->len) &
668 (device_logical_block_size_sects - 1));
669 remaining = next_target_start ?
670 device_logical_block_size_sects - next_target_start : 0;
671 }
672
673 if (remaining) {
674 DMWARN("%s: table line %u (start sect %llu len %llu) "
675 "not aligned to h/w logical block size %u",
676 dm_device_name(table->md), i,
677 (unsigned long long) ti->begin,
678 (unsigned long long) ti->len,
679 limits->logical_block_size);
680 return -EINVAL;
681 }
682
683 return 0;
684}
685
686int dm_table_add_target(struct dm_table *t, const char *type,
687 sector_t start, sector_t len, char *params)
688{
689 int r = -EINVAL, argc;
690 char **argv;
691 struct dm_target *tgt;
692
693 if (t->singleton) {
694 DMERR("%s: target type %s must appear alone in table",
695 dm_device_name(t->md), t->targets->type->name);
696 return -EINVAL;
697 }
698
699 BUG_ON(t->num_targets >= t->num_allocated);
700
701 tgt = t->targets + t->num_targets;
702 memset(tgt, 0, sizeof(*tgt));
703
704 if (!len) {
705 DMERR("%s: zero-length target", dm_device_name(t->md));
706 return -EINVAL;
707 }
708
709 tgt->type = dm_get_target_type(type);
710 if (!tgt->type) {
711 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
712 return -EINVAL;
713 }
714
715 if (dm_target_needs_singleton(tgt->type)) {
716 if (t->num_targets) {
717 tgt->error = "singleton target type must appear alone in table";
718 goto bad;
719 }
720 t->singleton = true;
721 }
722
723 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
724 tgt->error = "target type may not be included in a read-only table";
725 goto bad;
726 }
727
728 if (t->immutable_target_type) {
729 if (t->immutable_target_type != tgt->type) {
730 tgt->error = "immutable target type cannot be mixed with other target types";
731 goto bad;
732 }
733 } else if (dm_target_is_immutable(tgt->type)) {
734 if (t->num_targets) {
735 tgt->error = "immutable target type cannot be mixed with other target types";
736 goto bad;
737 }
738 t->immutable_target_type = tgt->type;
739 }
740
741 if (dm_target_has_integrity(tgt->type))
742 t->integrity_added = 1;
743
744 tgt->table = t;
745 tgt->begin = start;
746 tgt->len = len;
747 tgt->error = "Unknown error";
748
749 /*
750 * Does this target adjoin the previous one ?
751 */
752 if (!adjoin(t, tgt)) {
753 tgt->error = "Gap in table";
754 goto bad;
755 }
756
757 r = dm_split_args(&argc, &argv, params);
758 if (r) {
759 tgt->error = "couldn't split parameters (insufficient memory)";
760 goto bad;
761 }
762
763 r = tgt->type->ctr(tgt, argc, argv);
764 kfree(argv);
765 if (r)
766 goto bad;
767
768 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
769
770 if (!tgt->num_discard_bios && tgt->discards_supported)
771 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
772 dm_device_name(t->md), type);
773
774 return 0;
775
776 bad:
777 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
778 dm_put_target_type(tgt->type);
779 return r;
780}
781
782/*
783 * Target argument parsing helpers.
784 */
785static int validate_next_arg(const struct dm_arg *arg,
786 struct dm_arg_set *arg_set,
787 unsigned *value, char **error, unsigned grouped)
788{
789 const char *arg_str = dm_shift_arg(arg_set);
790 char dummy;
791
792 if (!arg_str ||
793 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
794 (*value < arg->min) ||
795 (*value > arg->max) ||
796 (grouped && arg_set->argc < *value)) {
797 *error = arg->error;
798 return -EINVAL;
799 }
800
801 return 0;
802}
803
804int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
805 unsigned *value, char **error)
806{
807 return validate_next_arg(arg, arg_set, value, error, 0);
808}
809EXPORT_SYMBOL(dm_read_arg);
810
811int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
812 unsigned *value, char **error)
813{
814 return validate_next_arg(arg, arg_set, value, error, 1);
815}
816EXPORT_SYMBOL(dm_read_arg_group);
817
818const char *dm_shift_arg(struct dm_arg_set *as)
819{
820 char *r;
821
822 if (as->argc) {
823 as->argc--;
824 r = *as->argv;
825 as->argv++;
826 return r;
827 }
828
829 return NULL;
830}
831EXPORT_SYMBOL(dm_shift_arg);
832
833void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
834{
835 BUG_ON(as->argc < num_args);
836 as->argc -= num_args;
837 as->argv += num_args;
838}
839EXPORT_SYMBOL(dm_consume_args);
840
841static bool __table_type_bio_based(enum dm_queue_mode table_type)
842{
843 return (table_type == DM_TYPE_BIO_BASED ||
844 table_type == DM_TYPE_DAX_BIO_BASED ||
845 table_type == DM_TYPE_NVME_BIO_BASED);
846}
847
848static bool __table_type_request_based(enum dm_queue_mode table_type)
849{
850 return table_type == DM_TYPE_REQUEST_BASED;
851}
852
853void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
854{
855 t->type = type;
856}
857EXPORT_SYMBOL_GPL(dm_table_set_type);
858
859/* validate the dax capability of the target device span */
860int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
861 sector_t start, sector_t len, void *data)
862{
863 int blocksize = *(int *) data, id;
864 bool rc;
865
866 id = dax_read_lock();
867 rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
868 dax_read_unlock(id);
869
870 return rc;
871}
872
873/* Check devices support synchronous DAX */
874static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
875 sector_t start, sector_t len, void *data)
876{
877 return dev->dax_dev && dax_synchronous(dev->dax_dev);
878}
879
880bool dm_table_supports_dax(struct dm_table *t,
881 iterate_devices_callout_fn iterate_fn, int *blocksize)
882{
883 struct dm_target *ti;
884 unsigned i;
885
886 /* Ensure that all targets support DAX. */
887 for (i = 0; i < dm_table_get_num_targets(t); i++) {
888 ti = dm_table_get_target(t, i);
889
890 if (!ti->type->direct_access)
891 return false;
892
893 if (!ti->type->iterate_devices ||
894 !ti->type->iterate_devices(ti, iterate_fn, blocksize))
895 return false;
896 }
897
898 return true;
899}
900
901static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
902
903static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
904 sector_t start, sector_t len, void *data)
905{
906 struct block_device *bdev = dev->bdev;
907 struct request_queue *q = bdev_get_queue(bdev);
908
909 /* request-based cannot stack on partitions! */
910 if (bdev != bdev->bd_contains)
911 return false;
912
913 return queue_is_mq(q);
914}
915
916static int dm_table_determine_type(struct dm_table *t)
917{
918 unsigned i;
919 unsigned bio_based = 0, request_based = 0, hybrid = 0;
920 struct dm_target *tgt;
921 struct list_head *devices = dm_table_get_devices(t);
922 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
923 int page_size = PAGE_SIZE;
924
925 if (t->type != DM_TYPE_NONE) {
926 /* target already set the table's type */
927 if (t->type == DM_TYPE_BIO_BASED) {
928 /* possibly upgrade to a variant of bio-based */
929 goto verify_bio_based;
930 }
931 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
932 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
933 goto verify_rq_based;
934 }
935
936 for (i = 0; i < t->num_targets; i++) {
937 tgt = t->targets + i;
938 if (dm_target_hybrid(tgt))
939 hybrid = 1;
940 else if (dm_target_request_based(tgt))
941 request_based = 1;
942 else
943 bio_based = 1;
944
945 if (bio_based && request_based) {
946 DMERR("Inconsistent table: different target types"
947 " can't be mixed up");
948 return -EINVAL;
949 }
950 }
951
952 if (hybrid && !bio_based && !request_based) {
953 /*
954 * The targets can work either way.
955 * Determine the type from the live device.
956 * Default to bio-based if device is new.
957 */
958 if (__table_type_request_based(live_md_type))
959 request_based = 1;
960 else
961 bio_based = 1;
962 }
963
964 if (bio_based) {
965verify_bio_based:
966 /* We must use this table as bio-based */
967 t->type = DM_TYPE_BIO_BASED;
968 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
969 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
970 t->type = DM_TYPE_DAX_BIO_BASED;
971 } else {
972 /* Check if upgrading to NVMe bio-based is valid or required */
973 tgt = dm_table_get_immutable_target(t);
974 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
975 t->type = DM_TYPE_NVME_BIO_BASED;
976 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
977 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
978 t->type = DM_TYPE_NVME_BIO_BASED;
979 }
980 }
981 return 0;
982 }
983
984 BUG_ON(!request_based); /* No targets in this table */
985
986 t->type = DM_TYPE_REQUEST_BASED;
987
988verify_rq_based:
989 /*
990 * Request-based dm supports only tables that have a single target now.
991 * To support multiple targets, request splitting support is needed,
992 * and that needs lots of changes in the block-layer.
993 * (e.g. request completion process for partial completion.)
994 */
995 if (t->num_targets > 1) {
996 DMERR("%s DM doesn't support multiple targets",
997 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
998 return -EINVAL;
999 }
1000
1001 if (list_empty(devices)) {
1002 int srcu_idx;
1003 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1004
1005 /* inherit live table's type */
1006 if (live_table)
1007 t->type = live_table->type;
1008 dm_put_live_table(t->md, srcu_idx);
1009 return 0;
1010 }
1011
1012 tgt = dm_table_get_immutable_target(t);
1013 if (!tgt) {
1014 DMERR("table load rejected: immutable target is required");
1015 return -EINVAL;
1016 } else if (tgt->max_io_len) {
1017 DMERR("table load rejected: immutable target that splits IO is not supported");
1018 return -EINVAL;
1019 }
1020
1021 /* Non-request-stackable devices can't be used for request-based dm */
1022 if (!tgt->type->iterate_devices ||
1023 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
1024 DMERR("table load rejected: including non-request-stackable devices");
1025 return -EINVAL;
1026 }
1027
1028 return 0;
1029}
1030
1031enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1032{
1033 return t->type;
1034}
1035
1036struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1037{
1038 return t->immutable_target_type;
1039}
1040
1041struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1042{
1043 /* Immutable target is implicitly a singleton */
1044 if (t->num_targets > 1 ||
1045 !dm_target_is_immutable(t->targets[0].type))
1046 return NULL;
1047
1048 return t->targets;
1049}
1050
1051struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1052{
1053 struct dm_target *ti;
1054 unsigned i;
1055
1056 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1057 ti = dm_table_get_target(t, i);
1058 if (dm_target_is_wildcard(ti->type))
1059 return ti;
1060 }
1061
1062 return NULL;
1063}
1064
1065bool dm_table_bio_based(struct dm_table *t)
1066{
1067 return __table_type_bio_based(dm_table_get_type(t));
1068}
1069
1070bool dm_table_request_based(struct dm_table *t)
1071{
1072 return __table_type_request_based(dm_table_get_type(t));
1073}
1074
1075static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1076{
1077 enum dm_queue_mode type = dm_table_get_type(t);
1078 unsigned per_io_data_size = 0;
1079 unsigned min_pool_size = 0;
1080 struct dm_target *ti;
1081 unsigned i;
1082
1083 if (unlikely(type == DM_TYPE_NONE)) {
1084 DMWARN("no table type is set, can't allocate mempools");
1085 return -EINVAL;
1086 }
1087
1088 if (__table_type_bio_based(type))
1089 for (i = 0; i < t->num_targets; i++) {
1090 ti = t->targets + i;
1091 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1092 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1093 }
1094
1095 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1096 per_io_data_size, min_pool_size);
1097 if (!t->mempools)
1098 return -ENOMEM;
1099
1100 return 0;
1101}
1102
1103void dm_table_free_md_mempools(struct dm_table *t)
1104{
1105 dm_free_md_mempools(t->mempools);
1106 t->mempools = NULL;
1107}
1108
1109struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1110{
1111 return t->mempools;
1112}
1113
1114static int setup_indexes(struct dm_table *t)
1115{
1116 int i;
1117 unsigned int total = 0;
1118 sector_t *indexes;
1119
1120 /* allocate the space for *all* the indexes */
1121 for (i = t->depth - 2; i >= 0; i--) {
1122 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1123 total += t->counts[i];
1124 }
1125
1126 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1127 if (!indexes)
1128 return -ENOMEM;
1129
1130 /* set up internal nodes, bottom-up */
1131 for (i = t->depth - 2; i >= 0; i--) {
1132 t->index[i] = indexes;
1133 indexes += (KEYS_PER_NODE * t->counts[i]);
1134 setup_btree_index(i, t);
1135 }
1136
1137 return 0;
1138}
1139
1140/*
1141 * Builds the btree to index the map.
1142 */
1143static int dm_table_build_index(struct dm_table *t)
1144{
1145 int r = 0;
1146 unsigned int leaf_nodes;
1147
1148 /* how many indexes will the btree have ? */
1149 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1150 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1151
1152 /* leaf layer has already been set up */
1153 t->counts[t->depth - 1] = leaf_nodes;
1154 t->index[t->depth - 1] = t->highs;
1155
1156 if (t->depth >= 2)
1157 r = setup_indexes(t);
1158
1159 return r;
1160}
1161
1162static bool integrity_profile_exists(struct gendisk *disk)
1163{
1164 return !!blk_get_integrity(disk);
1165}
1166
1167/*
1168 * Get a disk whose integrity profile reflects the table's profile.
1169 * Returns NULL if integrity support was inconsistent or unavailable.
1170 */
1171static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1172{
1173 struct list_head *devices = dm_table_get_devices(t);
1174 struct dm_dev_internal *dd = NULL;
1175 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1176 unsigned i;
1177
1178 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1179 struct dm_target *ti = dm_table_get_target(t, i);
1180 if (!dm_target_passes_integrity(ti->type))
1181 goto no_integrity;
1182 }
1183
1184 list_for_each_entry(dd, devices, list) {
1185 template_disk = dd->dm_dev->bdev->bd_disk;
1186 if (!integrity_profile_exists(template_disk))
1187 goto no_integrity;
1188 else if (prev_disk &&
1189 blk_integrity_compare(prev_disk, template_disk) < 0)
1190 goto no_integrity;
1191 prev_disk = template_disk;
1192 }
1193
1194 return template_disk;
1195
1196no_integrity:
1197 if (prev_disk)
1198 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1199 dm_device_name(t->md),
1200 prev_disk->disk_name,
1201 template_disk->disk_name);
1202 return NULL;
1203}
1204
1205/*
1206 * Register the mapped device for blk_integrity support if the
1207 * underlying devices have an integrity profile. But all devices may
1208 * not have matching profiles (checking all devices isn't reliable
1209 * during table load because this table may use other DM device(s) which
1210 * must be resumed before they will have an initialized integity
1211 * profile). Consequently, stacked DM devices force a 2 stage integrity
1212 * profile validation: First pass during table load, final pass during
1213 * resume.
1214 */
1215static int dm_table_register_integrity(struct dm_table *t)
1216{
1217 struct mapped_device *md = t->md;
1218 struct gendisk *template_disk = NULL;
1219
1220 /* If target handles integrity itself do not register it here. */
1221 if (t->integrity_added)
1222 return 0;
1223
1224 template_disk = dm_table_get_integrity_disk(t);
1225 if (!template_disk)
1226 return 0;
1227
1228 if (!integrity_profile_exists(dm_disk(md))) {
1229 t->integrity_supported = true;
1230 /*
1231 * Register integrity profile during table load; we can do
1232 * this because the final profile must match during resume.
1233 */
1234 blk_integrity_register(dm_disk(md),
1235 blk_get_integrity(template_disk));
1236 return 0;
1237 }
1238
1239 /*
1240 * If DM device already has an initialized integrity
1241 * profile the new profile should not conflict.
1242 */
1243 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1244 DMWARN("%s: conflict with existing integrity profile: "
1245 "%s profile mismatch",
1246 dm_device_name(t->md),
1247 template_disk->disk_name);
1248 return 1;
1249 }
1250
1251 /* Preserve existing integrity profile */
1252 t->integrity_supported = true;
1253 return 0;
1254}
1255
1256/*
1257 * Prepares the table for use by building the indices,
1258 * setting the type, and allocating mempools.
1259 */
1260int dm_table_complete(struct dm_table *t)
1261{
1262 int r;
1263
1264 r = dm_table_determine_type(t);
1265 if (r) {
1266 DMERR("unable to determine table type");
1267 return r;
1268 }
1269
1270 r = dm_table_build_index(t);
1271 if (r) {
1272 DMERR("unable to build btrees");
1273 return r;
1274 }
1275
1276 r = dm_table_register_integrity(t);
1277 if (r) {
1278 DMERR("could not register integrity profile.");
1279 return r;
1280 }
1281
1282 r = dm_table_alloc_md_mempools(t, t->md);
1283 if (r)
1284 DMERR("unable to allocate mempools");
1285
1286 return r;
1287}
1288
1289static DEFINE_MUTEX(_event_lock);
1290void dm_table_event_callback(struct dm_table *t,
1291 void (*fn)(void *), void *context)
1292{
1293 mutex_lock(&_event_lock);
1294 t->event_fn = fn;
1295 t->event_context = context;
1296 mutex_unlock(&_event_lock);
1297}
1298
1299void dm_table_event(struct dm_table *t)
1300{
1301 /*
1302 * You can no longer call dm_table_event() from interrupt
1303 * context, use a bottom half instead.
1304 */
1305 BUG_ON(in_interrupt());
1306
1307 mutex_lock(&_event_lock);
1308 if (t->event_fn)
1309 t->event_fn(t->event_context);
1310 mutex_unlock(&_event_lock);
1311}
1312EXPORT_SYMBOL(dm_table_event);
1313
1314inline sector_t dm_table_get_size(struct dm_table *t)
1315{
1316 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1317}
1318EXPORT_SYMBOL(dm_table_get_size);
1319
1320struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1321{
1322 if (index >= t->num_targets)
1323 return NULL;
1324
1325 return t->targets + index;
1326}
1327
1328/*
1329 * Search the btree for the correct target.
1330 *
1331 * Caller should check returned pointer for NULL
1332 * to trap I/O beyond end of device.
1333 */
1334struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1335{
1336 unsigned int l, n = 0, k = 0;
1337 sector_t *node;
1338
1339 if (unlikely(sector >= dm_table_get_size(t)))
1340 return NULL;
1341
1342 for (l = 0; l < t->depth; l++) {
1343 n = get_child(n, k);
1344 node = get_node(t, l, n);
1345
1346 for (k = 0; k < KEYS_PER_NODE; k++)
1347 if (node[k] >= sector)
1348 break;
1349 }
1350
1351 return &t->targets[(KEYS_PER_NODE * n) + k];
1352}
1353
1354static int count_device(struct dm_target *ti, struct dm_dev *dev,
1355 sector_t start, sector_t len, void *data)
1356{
1357 unsigned *num_devices = data;
1358
1359 (*num_devices)++;
1360
1361 return 0;
1362}
1363
1364/*
1365 * Check whether a table has no data devices attached using each
1366 * target's iterate_devices method.
1367 * Returns false if the result is unknown because a target doesn't
1368 * support iterate_devices.
1369 */
1370bool dm_table_has_no_data_devices(struct dm_table *table)
1371{
1372 struct dm_target *ti;
1373 unsigned i, num_devices;
1374
1375 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1376 ti = dm_table_get_target(table, i);
1377
1378 if (!ti->type->iterate_devices)
1379 return false;
1380
1381 num_devices = 0;
1382 ti->type->iterate_devices(ti, count_device, &num_devices);
1383 if (num_devices)
1384 return false;
1385 }
1386
1387 return true;
1388}
1389
1390static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1391 sector_t start, sector_t len, void *data)
1392{
1393 struct request_queue *q = bdev_get_queue(dev->bdev);
1394 enum blk_zoned_model *zoned_model = data;
1395
1396 return q && blk_queue_zoned_model(q) == *zoned_model;
1397}
1398
1399static bool dm_table_supports_zoned_model(struct dm_table *t,
1400 enum blk_zoned_model zoned_model)
1401{
1402 struct dm_target *ti;
1403 unsigned i;
1404
1405 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1406 ti = dm_table_get_target(t, i);
1407
1408 if (zoned_model == BLK_ZONED_HM &&
1409 !dm_target_supports_zoned_hm(ti->type))
1410 return false;
1411
1412 if (!ti->type->iterate_devices ||
1413 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1414 return false;
1415 }
1416
1417 return true;
1418}
1419
1420static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1421 sector_t start, sector_t len, void *data)
1422{
1423 struct request_queue *q = bdev_get_queue(dev->bdev);
1424 unsigned int *zone_sectors = data;
1425
1426 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1427}
1428
1429static bool dm_table_matches_zone_sectors(struct dm_table *t,
1430 unsigned int zone_sectors)
1431{
1432 struct dm_target *ti;
1433 unsigned i;
1434
1435 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1436 ti = dm_table_get_target(t, i);
1437
1438 if (!ti->type->iterate_devices ||
1439 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1440 return false;
1441 }
1442
1443 return true;
1444}
1445
1446static int validate_hardware_zoned_model(struct dm_table *table,
1447 enum blk_zoned_model zoned_model,
1448 unsigned int zone_sectors)
1449{
1450 if (zoned_model == BLK_ZONED_NONE)
1451 return 0;
1452
1453 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1454 DMERR("%s: zoned model is not consistent across all devices",
1455 dm_device_name(table->md));
1456 return -EINVAL;
1457 }
1458
1459 /* Check zone size validity and compatibility */
1460 if (!zone_sectors || !is_power_of_2(zone_sectors))
1461 return -EINVAL;
1462
1463 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1464 DMERR("%s: zone sectors is not consistent across all devices",
1465 dm_device_name(table->md));
1466 return -EINVAL;
1467 }
1468
1469 return 0;
1470}
1471
1472/*
1473 * Establish the new table's queue_limits and validate them.
1474 */
1475int dm_calculate_queue_limits(struct dm_table *table,
1476 struct queue_limits *limits)
1477{
1478 struct dm_target *ti;
1479 struct queue_limits ti_limits;
1480 unsigned i;
1481 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1482 unsigned int zone_sectors = 0;
1483
1484 blk_set_stacking_limits(limits);
1485
1486 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1487 blk_set_stacking_limits(&ti_limits);
1488
1489 ti = dm_table_get_target(table, i);
1490
1491 if (!ti->type->iterate_devices)
1492 goto combine_limits;
1493
1494 /*
1495 * Combine queue limits of all the devices this target uses.
1496 */
1497 ti->type->iterate_devices(ti, dm_set_device_limits,
1498 &ti_limits);
1499
1500 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1501 /*
1502 * After stacking all limits, validate all devices
1503 * in table support this zoned model and zone sectors.
1504 */
1505 zoned_model = ti_limits.zoned;
1506 zone_sectors = ti_limits.chunk_sectors;
1507 }
1508
1509 /* Set I/O hints portion of queue limits */
1510 if (ti->type->io_hints)
1511 ti->type->io_hints(ti, &ti_limits);
1512
1513 /*
1514 * Check each device area is consistent with the target's
1515 * overall queue limits.
1516 */
1517 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1518 &ti_limits))
1519 return -EINVAL;
1520
1521combine_limits:
1522 /*
1523 * Merge this target's queue limits into the overall limits
1524 * for the table.
1525 */
1526 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1527 DMWARN("%s: adding target device "
1528 "(start sect %llu len %llu) "
1529 "caused an alignment inconsistency",
1530 dm_device_name(table->md),
1531 (unsigned long long) ti->begin,
1532 (unsigned long long) ti->len);
1533 }
1534
1535 /*
1536 * Verify that the zoned model and zone sectors, as determined before
1537 * any .io_hints override, are the same across all devices in the table.
1538 * - this is especially relevant if .io_hints is emulating a disk-managed
1539 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1540 * BUT...
1541 */
1542 if (limits->zoned != BLK_ZONED_NONE) {
1543 /*
1544 * ...IF the above limits stacking determined a zoned model
1545 * validate that all of the table's devices conform to it.
1546 */
1547 zoned_model = limits->zoned;
1548 zone_sectors = limits->chunk_sectors;
1549 }
1550 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1551 return -EINVAL;
1552
1553 return validate_hardware_logical_block_alignment(table, limits);
1554}
1555
1556/*
1557 * Verify that all devices have an integrity profile that matches the
1558 * DM device's registered integrity profile. If the profiles don't
1559 * match then unregister the DM device's integrity profile.
1560 */
1561static void dm_table_verify_integrity(struct dm_table *t)
1562{
1563 struct gendisk *template_disk = NULL;
1564
1565 if (t->integrity_added)
1566 return;
1567
1568 if (t->integrity_supported) {
1569 /*
1570 * Verify that the original integrity profile
1571 * matches all the devices in this table.
1572 */
1573 template_disk = dm_table_get_integrity_disk(t);
1574 if (template_disk &&
1575 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1576 return;
1577 }
1578
1579 if (integrity_profile_exists(dm_disk(t->md))) {
1580 DMWARN("%s: unable to establish an integrity profile",
1581 dm_device_name(t->md));
1582 blk_integrity_unregister(dm_disk(t->md));
1583 }
1584}
1585
1586static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1587 sector_t start, sector_t len, void *data)
1588{
1589 unsigned long flush = (unsigned long) data;
1590 struct request_queue *q = bdev_get_queue(dev->bdev);
1591
1592 return q && (q->queue_flags & flush);
1593}
1594
1595static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1596{
1597 struct dm_target *ti;
1598 unsigned i;
1599
1600 /*
1601 * Require at least one underlying device to support flushes.
1602 * t->devices includes internal dm devices such as mirror logs
1603 * so we need to use iterate_devices here, which targets
1604 * supporting flushes must provide.
1605 */
1606 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1607 ti = dm_table_get_target(t, i);
1608
1609 if (!ti->num_flush_bios)
1610 continue;
1611
1612 if (ti->flush_supported)
1613 return true;
1614
1615 if (ti->type->iterate_devices &&
1616 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1617 return true;
1618 }
1619
1620 return false;
1621}
1622
1623static int device_dax_write_cache_enabled(struct dm_target *ti,
1624 struct dm_dev *dev, sector_t start,
1625 sector_t len, void *data)
1626{
1627 struct dax_device *dax_dev = dev->dax_dev;
1628
1629 if (!dax_dev)
1630 return false;
1631
1632 if (dax_write_cache_enabled(dax_dev))
1633 return true;
1634 return false;
1635}
1636
1637static int dm_table_supports_dax_write_cache(struct dm_table *t)
1638{
1639 struct dm_target *ti;
1640 unsigned i;
1641
1642 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1643 ti = dm_table_get_target(t, i);
1644
1645 if (ti->type->iterate_devices &&
1646 ti->type->iterate_devices(ti,
1647 device_dax_write_cache_enabled, NULL))
1648 return true;
1649 }
1650
1651 return false;
1652}
1653
1654static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1655 sector_t start, sector_t len, void *data)
1656{
1657 struct request_queue *q = bdev_get_queue(dev->bdev);
1658
1659 return q && blk_queue_nonrot(q);
1660}
1661
1662static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1663 sector_t start, sector_t len, void *data)
1664{
1665 struct request_queue *q = bdev_get_queue(dev->bdev);
1666
1667 return q && !blk_queue_add_random(q);
1668}
1669
1670static bool dm_table_all_devices_attribute(struct dm_table *t,
1671 iterate_devices_callout_fn func)
1672{
1673 struct dm_target *ti;
1674 unsigned i;
1675
1676 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1677 ti = dm_table_get_target(t, i);
1678
1679 if (!ti->type->iterate_devices ||
1680 !ti->type->iterate_devices(ti, func, NULL))
1681 return false;
1682 }
1683
1684 return true;
1685}
1686
1687static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1688 sector_t start, sector_t len, void *data)
1689{
1690 char b[BDEVNAME_SIZE];
1691
1692 /* For now, NVMe devices are the only devices of this class */
1693 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1694}
1695
1696static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1697{
1698 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1699}
1700
1701static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1702 sector_t start, sector_t len, void *data)
1703{
1704 struct request_queue *q = bdev_get_queue(dev->bdev);
1705
1706 return q && !q->limits.max_write_same_sectors;
1707}
1708
1709static bool dm_table_supports_write_same(struct dm_table *t)
1710{
1711 struct dm_target *ti;
1712 unsigned i;
1713
1714 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1715 ti = dm_table_get_target(t, i);
1716
1717 if (!ti->num_write_same_bios)
1718 return false;
1719
1720 if (!ti->type->iterate_devices ||
1721 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1722 return false;
1723 }
1724
1725 return true;
1726}
1727
1728static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1729 sector_t start, sector_t len, void *data)
1730{
1731 struct request_queue *q = bdev_get_queue(dev->bdev);
1732
1733 return q && !q->limits.max_write_zeroes_sectors;
1734}
1735
1736static bool dm_table_supports_write_zeroes(struct dm_table *t)
1737{
1738 struct dm_target *ti;
1739 unsigned i = 0;
1740
1741 while (i < dm_table_get_num_targets(t)) {
1742 ti = dm_table_get_target(t, i++);
1743
1744 if (!ti->num_write_zeroes_bios)
1745 return false;
1746
1747 if (!ti->type->iterate_devices ||
1748 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1749 return false;
1750 }
1751
1752 return true;
1753}
1754
1755static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1756 sector_t start, sector_t len, void *data)
1757{
1758 struct request_queue *q = bdev_get_queue(dev->bdev);
1759
1760 return q && !blk_queue_discard(q);
1761}
1762
1763static bool dm_table_supports_discards(struct dm_table *t)
1764{
1765 struct dm_target *ti;
1766 unsigned i;
1767
1768 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1769 ti = dm_table_get_target(t, i);
1770
1771 if (!ti->num_discard_bios)
1772 return false;
1773
1774 /*
1775 * Either the target provides discard support (as implied by setting
1776 * 'discards_supported') or it relies on _all_ data devices having
1777 * discard support.
1778 */
1779 if (!ti->discards_supported &&
1780 (!ti->type->iterate_devices ||
1781 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1782 return false;
1783 }
1784
1785 return true;
1786}
1787
1788static int device_not_secure_erase_capable(struct dm_target *ti,
1789 struct dm_dev *dev, sector_t start,
1790 sector_t len, void *data)
1791{
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794 return q && !blk_queue_secure_erase(q);
1795}
1796
1797static bool dm_table_supports_secure_erase(struct dm_table *t)
1798{
1799 struct dm_target *ti;
1800 unsigned int i;
1801
1802 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1803 ti = dm_table_get_target(t, i);
1804
1805 if (!ti->num_secure_erase_bios)
1806 return false;
1807
1808 if (!ti->type->iterate_devices ||
1809 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1810 return false;
1811 }
1812
1813 return true;
1814}
1815
1816static int device_requires_stable_pages(struct dm_target *ti,
1817 struct dm_dev *dev, sector_t start,
1818 sector_t len, void *data)
1819{
1820 struct request_queue *q = bdev_get_queue(dev->bdev);
1821
1822 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1823}
1824
1825/*
1826 * If any underlying device requires stable pages, a table must require
1827 * them as well. Only targets that support iterate_devices are considered:
1828 * don't want error, zero, etc to require stable pages.
1829 */
1830static bool dm_table_requires_stable_pages(struct dm_table *t)
1831{
1832 struct dm_target *ti;
1833 unsigned i;
1834
1835 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1836 ti = dm_table_get_target(t, i);
1837
1838 if (ti->type->iterate_devices &&
1839 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1840 return true;
1841 }
1842
1843 return false;
1844}
1845
1846void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1847 struct queue_limits *limits)
1848{
1849 bool wc = false, fua = false;
1850 int page_size = PAGE_SIZE;
1851
1852 /*
1853 * Copy table's limits to the DM device's request_queue
1854 */
1855 q->limits = *limits;
1856
1857 if (!dm_table_supports_discards(t)) {
1858 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1859 /* Must also clear discard limits... */
1860 q->limits.max_discard_sectors = 0;
1861 q->limits.max_hw_discard_sectors = 0;
1862 q->limits.discard_granularity = 0;
1863 q->limits.discard_alignment = 0;
1864 q->limits.discard_misaligned = 0;
1865 } else
1866 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1867
1868 if (dm_table_supports_secure_erase(t))
1869 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1870
1871 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1872 wc = true;
1873 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1874 fua = true;
1875 }
1876 blk_queue_write_cache(q, wc, fua);
1877
1878 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1879 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1880 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1881 set_dax_synchronous(t->md->dax_dev);
1882 }
1883 else
1884 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1885
1886 if (dm_table_supports_dax_write_cache(t))
1887 dax_write_cache(t->md->dax_dev, true);
1888
1889 /* Ensure that all underlying devices are non-rotational. */
1890 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1891 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1892 else
1893 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1894
1895 if (!dm_table_supports_write_same(t))
1896 q->limits.max_write_same_sectors = 0;
1897 if (!dm_table_supports_write_zeroes(t))
1898 q->limits.max_write_zeroes_sectors = 0;
1899
1900 dm_table_verify_integrity(t);
1901
1902 /*
1903 * Some devices don't use blk_integrity but still want stable pages
1904 * because they do their own checksumming.
1905 */
1906 if (dm_table_requires_stable_pages(t))
1907 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1908 else
1909 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1910
1911 /*
1912 * Determine whether or not this queue's I/O timings contribute
1913 * to the entropy pool, Only request-based targets use this.
1914 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1915 * have it set.
1916 */
1917 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1918 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1919
1920 /*
1921 * For a zoned target, the number of zones should be updated for the
1922 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1923 * target, this is all that is needed.
1924 */
1925#ifdef CONFIG_BLK_DEV_ZONED
1926 if (blk_queue_is_zoned(q)) {
1927 WARN_ON_ONCE(queue_is_mq(q));
1928 q->nr_zones = blkdev_nr_zones(t->md->disk);
1929 }
1930#endif
1931
1932 /* Allow reads to exceed readahead limits */
1933 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1934}
1935
1936unsigned int dm_table_get_num_targets(struct dm_table *t)
1937{
1938 return t->num_targets;
1939}
1940
1941struct list_head *dm_table_get_devices(struct dm_table *t)
1942{
1943 return &t->devices;
1944}
1945
1946fmode_t dm_table_get_mode(struct dm_table *t)
1947{
1948 return t->mode;
1949}
1950EXPORT_SYMBOL(dm_table_get_mode);
1951
1952enum suspend_mode {
1953 PRESUSPEND,
1954 PRESUSPEND_UNDO,
1955 POSTSUSPEND,
1956};
1957
1958static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1959{
1960 int i = t->num_targets;
1961 struct dm_target *ti = t->targets;
1962
1963 lockdep_assert_held(&t->md->suspend_lock);
1964
1965 while (i--) {
1966 switch (mode) {
1967 case PRESUSPEND:
1968 if (ti->type->presuspend)
1969 ti->type->presuspend(ti);
1970 break;
1971 case PRESUSPEND_UNDO:
1972 if (ti->type->presuspend_undo)
1973 ti->type->presuspend_undo(ti);
1974 break;
1975 case POSTSUSPEND:
1976 if (ti->type->postsuspend)
1977 ti->type->postsuspend(ti);
1978 break;
1979 }
1980 ti++;
1981 }
1982}
1983
1984void dm_table_presuspend_targets(struct dm_table *t)
1985{
1986 if (!t)
1987 return;
1988
1989 suspend_targets(t, PRESUSPEND);
1990}
1991
1992void dm_table_presuspend_undo_targets(struct dm_table *t)
1993{
1994 if (!t)
1995 return;
1996
1997 suspend_targets(t, PRESUSPEND_UNDO);
1998}
1999
2000void dm_table_postsuspend_targets(struct dm_table *t)
2001{
2002 if (!t)
2003 return;
2004
2005 suspend_targets(t, POSTSUSPEND);
2006}
2007
2008int dm_table_resume_targets(struct dm_table *t)
2009{
2010 int i, r = 0;
2011
2012 lockdep_assert_held(&t->md->suspend_lock);
2013
2014 for (i = 0; i < t->num_targets; i++) {
2015 struct dm_target *ti = t->targets + i;
2016
2017 if (!ti->type->preresume)
2018 continue;
2019
2020 r = ti->type->preresume(ti);
2021 if (r) {
2022 DMERR("%s: %s: preresume failed, error = %d",
2023 dm_device_name(t->md), ti->type->name, r);
2024 return r;
2025 }
2026 }
2027
2028 for (i = 0; i < t->num_targets; i++) {
2029 struct dm_target *ti = t->targets + i;
2030
2031 if (ti->type->resume)
2032 ti->type->resume(ti);
2033 }
2034
2035 return 0;
2036}
2037
2038struct mapped_device *dm_table_get_md(struct dm_table *t)
2039{
2040 return t->md;
2041}
2042EXPORT_SYMBOL(dm_table_get_md);
2043
2044const char *dm_table_device_name(struct dm_table *t)
2045{
2046 return dm_device_name(t->md);
2047}
2048EXPORT_SYMBOL_GPL(dm_table_device_name);
2049
2050void dm_table_run_md_queue_async(struct dm_table *t)
2051{
2052 struct mapped_device *md;
2053 struct request_queue *queue;
2054
2055 if (!dm_table_request_based(t))
2056 return;
2057
2058 md = dm_table_get_md(t);
2059 queue = dm_get_md_queue(md);
2060 if (queue)
2061 blk_mq_run_hw_queues(queue, true);
2062}
2063EXPORT_SYMBOL(dm_table_run_md_queue_async);
2064