Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 *result = t;
164 return 0;
165}
166
167static void free_devices(struct list_head *devices, struct mapped_device *md)
168{
169 struct list_head *tmp, *next;
170
171 list_for_each_safe(tmp, next, devices) {
172 struct dm_dev_internal *dd =
173 list_entry(tmp, struct dm_dev_internal, list);
174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 dm_device_name(md), dd->dm_dev->name);
176 dm_put_table_device(md, dd->dm_dev);
177 kfree(dd);
178 }
179}
180
181static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
183void dm_table_destroy(struct dm_table *t)
184{
185 if (!t)
186 return;
187
188 /* free the indexes */
189 if (t->depth >= 2)
190 kvfree(t->index[t->depth - 2]);
191
192 /* free the targets */
193 for (unsigned int i = 0; i < t->num_targets; i++) {
194 struct dm_target *ti = dm_table_get_target(t, i);
195
196 if (ti->type->dtr)
197 ti->type->dtr(ti);
198
199 dm_put_target_type(ti->type);
200 }
201
202 kvfree(t->highs);
203
204 /* free the device list */
205 free_devices(&t->devices, t->md);
206
207 dm_free_md_mempools(t->mempools);
208
209 dm_table_destroy_crypto_profile(t);
210
211 kfree(t);
212}
213
214/*
215 * See if we've already got a device in the list.
216 */
217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218{
219 struct dm_dev_internal *dd;
220
221 list_for_each_entry(dd, l, list)
222 if (dd->dm_dev->bdev->bd_dev == dev)
223 return dd;
224
225 return NULL;
226}
227
228/*
229 * If possible, this checks an area of a destination device is invalid.
230 */
231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 sector_t start, sector_t len, void *data)
233{
234 struct queue_limits *limits = data;
235 struct block_device *bdev = dev->bdev;
236 sector_t dev_size = bdev_nr_sectors(bdev);
237 unsigned short logical_block_size_sectors =
238 limits->logical_block_size >> SECTOR_SHIFT;
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 dm_device_name(ti->table->md), bdev,
246 (unsigned long long)start,
247 (unsigned long long)len,
248 (unsigned long long)dev_size);
249 return 1;
250 }
251
252 /*
253 * If the target is mapped to zoned block device(s), check
254 * that the zones are not partially mapped.
255 */
256 if (bdev_is_zoned(bdev)) {
257 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259 if (start & (zone_sectors - 1)) {
260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 dm_device_name(ti->table->md),
262 (unsigned long long)start,
263 zone_sectors, bdev);
264 return 1;
265 }
266
267 /*
268 * Note: The last zone of a zoned block device may be smaller
269 * than other zones. So for a target mapping the end of a
270 * zoned block device with such a zone, len would not be zone
271 * aligned. We do not allow such last smaller zone to be part
272 * of the mapping here to ensure that mappings with multiple
273 * devices do not end up with a smaller zone in the middle of
274 * the sector range.
275 */
276 if (len & (zone_sectors - 1)) {
277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 dm_device_name(ti->table->md),
279 (unsigned long long)len,
280 zone_sectors, bdev);
281 return 1;
282 }
283 }
284
285 if (logical_block_size_sectors <= 1)
286 return 0;
287
288 if (start & (logical_block_size_sectors - 1)) {
289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 dm_device_name(ti->table->md),
291 (unsigned long long)start,
292 limits->logical_block_size, bdev);
293 return 1;
294 }
295
296 if (len & (logical_block_size_sectors - 1)) {
297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 dm_device_name(ti->table->md),
299 (unsigned long long)len,
300 limits->logical_block_size, bdev);
301 return 1;
302 }
303
304 return 0;
305}
306
307/*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 struct mapped_device *md)
315{
316 int r;
317 struct dm_dev *old_dev, *new_dev;
318
319 old_dev = dd->dm_dev;
320
321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 dd->dm_dev->mode | new_mode, &new_dev);
323 if (r)
324 return r;
325
326 dd->dm_dev = new_dev;
327 dm_put_table_device(md, old_dev);
328
329 return 0;
330}
331
332/*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 struct dm_dev **result)
341{
342 int r;
343 dev_t dev;
344 unsigned int major, minor;
345 char dummy;
346 struct dm_dev_internal *dd;
347 struct dm_table *t = ti->table;
348
349 BUG_ON(!t);
350
351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 /* Extract the major/minor numbers */
353 dev = MKDEV(major, minor);
354 if (MAJOR(dev) != major || MINOR(dev) != minor)
355 return -EOVERFLOW;
356 } else {
357 r = lookup_bdev(path, &dev);
358#ifndef MODULE
359 if (r && system_state < SYSTEM_RUNNING)
360 r = early_lookup_bdev(path, &dev);
361#endif
362 if (r)
363 return r;
364 }
365 if (dev == disk_devt(t->md->disk))
366 return -EINVAL;
367
368 down_write(&t->devices_lock);
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd) {
374 r = -ENOMEM;
375 goto unlock_ret_r;
376 }
377
378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 if (r) {
380 kfree(dd);
381 goto unlock_ret_r;
382 }
383
384 refcount_set(&dd->count, 1);
385 list_add(&dd->list, &t->devices);
386 goto out;
387
388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 r = upgrade_mode(dd, mode, t->md);
390 if (r)
391 goto unlock_ret_r;
392 }
393 refcount_inc(&dd->count);
394out:
395 up_write(&t->devices_lock);
396 *result = dd->dm_dev;
397 return 0;
398
399unlock_ret_r:
400 up_write(&t->devices_lock);
401 return r;
402}
403EXPORT_SYMBOL(dm_get_device);
404
405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 sector_t start, sector_t len, void *data)
407{
408 struct queue_limits *limits = data;
409 struct block_device *bdev = dev->bdev;
410 struct request_queue *q = bdev_get_queue(bdev);
411
412 if (unlikely(!q)) {
413 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 dm_device_name(ti->table->md), bdev);
415 return 0;
416 }
417
418 if (blk_stack_limits(limits, &q->limits,
419 get_start_sect(bdev) + start) < 0)
420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 "physical_block_size=%u, logical_block_size=%u, "
422 "alignment_offset=%u, start=%llu",
423 dm_device_name(ti->table->md), bdev,
424 q->limits.physical_block_size,
425 q->limits.logical_block_size,
426 q->limits.alignment_offset,
427 (unsigned long long) start << SECTOR_SHIFT);
428 return 0;
429}
430
431/*
432 * Decrement a device's use count and remove it if necessary.
433 */
434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435{
436 int found = 0;
437 struct dm_table *t = ti->table;
438 struct list_head *devices = &t->devices;
439 struct dm_dev_internal *dd;
440
441 down_write(&t->devices_lock);
442
443 list_for_each_entry(dd, devices, list) {
444 if (dd->dm_dev == d) {
445 found = 1;
446 break;
447 }
448 }
449 if (!found) {
450 DMERR("%s: device %s not in table devices list",
451 dm_device_name(t->md), d->name);
452 goto unlock_ret;
453 }
454 if (refcount_dec_and_test(&dd->count)) {
455 dm_put_table_device(t->md, d);
456 list_del(&dd->list);
457 kfree(dd);
458 }
459
460unlock_ret:
461 up_write(&t->devices_lock);
462}
463EXPORT_SYMBOL(dm_put_device);
464
465/*
466 * Checks to see if the target joins onto the end of the table.
467 */
468static int adjoin(struct dm_table *t, struct dm_target *ti)
469{
470 struct dm_target *prev;
471
472 if (!t->num_targets)
473 return !ti->begin;
474
475 prev = &t->targets[t->num_targets - 1];
476 return (ti->begin == (prev->begin + prev->len));
477}
478
479/*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
489static char **realloc_argv(unsigned int *size, char **old_argv)
490{
491 char **argv;
492 unsigned int new_size;
493 gfp_t gfp;
494
495 if (*size) {
496 new_size = *size * 2;
497 gfp = GFP_KERNEL;
498 } else {
499 new_size = 8;
500 gfp = GFP_NOIO;
501 }
502 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 if (argv && old_argv) {
504 memcpy(argv, old_argv, *size * sizeof(*argv));
505 *size = new_size;
506 }
507
508 kfree(old_argv);
509 return argv;
510}
511
512/*
513 * Destructively splits up the argument list to pass to ctr.
514 */
515int dm_split_args(int *argc, char ***argvp, char *input)
516{
517 char *start, *end = input, *out, **argv = NULL;
518 unsigned int array_size = 0;
519
520 *argc = 0;
521
522 if (!input) {
523 *argvp = NULL;
524 return 0;
525 }
526
527 argv = realloc_argv(&array_size, argv);
528 if (!argv)
529 return -ENOMEM;
530
531 while (1) {
532 /* Skip whitespace */
533 start = skip_spaces(end);
534
535 if (!*start)
536 break; /* success, we hit the end */
537
538 /* 'out' is used to remove any back-quotes */
539 end = out = start;
540 while (*end) {
541 /* Everything apart from '\0' can be quoted */
542 if (*end == '\\' && *(end + 1)) {
543 *out++ = *(end + 1);
544 end += 2;
545 continue;
546 }
547
548 if (isspace(*end))
549 break; /* end of token */
550
551 *out++ = *end++;
552 }
553
554 /* have we already filled the array ? */
555 if ((*argc + 1) > array_size) {
556 argv = realloc_argv(&array_size, argv);
557 if (!argv)
558 return -ENOMEM;
559 }
560
561 /* we know this is whitespace */
562 if (*end)
563 end++;
564
565 /* terminate the string and put it in the array */
566 *out = '\0';
567 argv[*argc] = start;
568 (*argc)++;
569 }
570
571 *argvp = argv;
572 return 0;
573}
574
575/*
576 * Impose necessary and sufficient conditions on a devices's table such
577 * that any incoming bio which respects its logical_block_size can be
578 * processed successfully. If it falls across the boundary between
579 * two or more targets, the size of each piece it gets split into must
580 * be compatible with the logical_block_size of the target processing it.
581 */
582static int validate_hardware_logical_block_alignment(struct dm_table *t,
583 struct queue_limits *limits)
584{
585 /*
586 * This function uses arithmetic modulo the logical_block_size
587 * (in units of 512-byte sectors).
588 */
589 unsigned short device_logical_block_size_sects =
590 limits->logical_block_size >> SECTOR_SHIFT;
591
592 /*
593 * Offset of the start of the next table entry, mod logical_block_size.
594 */
595 unsigned short next_target_start = 0;
596
597 /*
598 * Given an aligned bio that extends beyond the end of a
599 * target, how many sectors must the next target handle?
600 */
601 unsigned short remaining = 0;
602
603 struct dm_target *ti;
604 struct queue_limits ti_limits;
605 unsigned int i;
606
607 /*
608 * Check each entry in the table in turn.
609 */
610 for (i = 0; i < t->num_targets; i++) {
611 ti = dm_table_get_target(t, i);
612
613 blk_set_stacking_limits(&ti_limits);
614
615 /* combine all target devices' limits */
616 if (ti->type->iterate_devices)
617 ti->type->iterate_devices(ti, dm_set_device_limits,
618 &ti_limits);
619
620 /*
621 * If the remaining sectors fall entirely within this
622 * table entry are they compatible with its logical_block_size?
623 */
624 if (remaining < ti->len &&
625 remaining & ((ti_limits.logical_block_size >>
626 SECTOR_SHIFT) - 1))
627 break; /* Error */
628
629 next_target_start =
630 (unsigned short) ((next_target_start + ti->len) &
631 (device_logical_block_size_sects - 1));
632 remaining = next_target_start ?
633 device_logical_block_size_sects - next_target_start : 0;
634 }
635
636 if (remaining) {
637 DMERR("%s: table line %u (start sect %llu len %llu) "
638 "not aligned to h/w logical block size %u",
639 dm_device_name(t->md), i,
640 (unsigned long long) ti->begin,
641 (unsigned long long) ti->len,
642 limits->logical_block_size);
643 return -EINVAL;
644 }
645
646 return 0;
647}
648
649int dm_table_add_target(struct dm_table *t, const char *type,
650 sector_t start, sector_t len, char *params)
651{
652 int r = -EINVAL, argc;
653 char **argv;
654 struct dm_target *ti;
655
656 if (t->singleton) {
657 DMERR("%s: target type %s must appear alone in table",
658 dm_device_name(t->md), t->targets->type->name);
659 return -EINVAL;
660 }
661
662 BUG_ON(t->num_targets >= t->num_allocated);
663
664 ti = t->targets + t->num_targets;
665 memset(ti, 0, sizeof(*ti));
666
667 if (!len) {
668 DMERR("%s: zero-length target", dm_device_name(t->md));
669 return -EINVAL;
670 }
671
672 ti->type = dm_get_target_type(type);
673 if (!ti->type) {
674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 return -EINVAL;
676 }
677
678 if (dm_target_needs_singleton(ti->type)) {
679 if (t->num_targets) {
680 ti->error = "singleton target type must appear alone in table";
681 goto bad;
682 }
683 t->singleton = true;
684 }
685
686 if (dm_target_always_writeable(ti->type) &&
687 !(t->mode & BLK_OPEN_WRITE)) {
688 ti->error = "target type may not be included in a read-only table";
689 goto bad;
690 }
691
692 if (t->immutable_target_type) {
693 if (t->immutable_target_type != ti->type) {
694 ti->error = "immutable target type cannot be mixed with other target types";
695 goto bad;
696 }
697 } else if (dm_target_is_immutable(ti->type)) {
698 if (t->num_targets) {
699 ti->error = "immutable target type cannot be mixed with other target types";
700 goto bad;
701 }
702 t->immutable_target_type = ti->type;
703 }
704
705 if (dm_target_has_integrity(ti->type))
706 t->integrity_added = 1;
707
708 ti->table = t;
709 ti->begin = start;
710 ti->len = len;
711 ti->error = "Unknown error";
712
713 /*
714 * Does this target adjoin the previous one ?
715 */
716 if (!adjoin(t, ti)) {
717 ti->error = "Gap in table";
718 goto bad;
719 }
720
721 r = dm_split_args(&argc, &argv, params);
722 if (r) {
723 ti->error = "couldn't split parameters";
724 goto bad;
725 }
726
727 r = ti->type->ctr(ti, argc, argv);
728 kfree(argv);
729 if (r)
730 goto bad;
731
732 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734 if (!ti->num_discard_bios && ti->discards_supported)
735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 dm_device_name(t->md), type);
737
738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739 static_branch_enable(&swap_bios_enabled);
740
741 return 0;
742
743 bad:
744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745 dm_put_target_type(ti->type);
746 return r;
747}
748
749/*
750 * Target argument parsing helpers.
751 */
752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 unsigned int *value, char **error, unsigned int grouped)
754{
755 const char *arg_str = dm_shift_arg(arg_set);
756 char dummy;
757
758 if (!arg_str ||
759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760 (*value < arg->min) ||
761 (*value > arg->max) ||
762 (grouped && arg_set->argc < *value)) {
763 *error = arg->error;
764 return -EINVAL;
765 }
766
767 return 0;
768}
769
770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771 unsigned int *value, char **error)
772{
773 return validate_next_arg(arg, arg_set, value, error, 0);
774}
775EXPORT_SYMBOL(dm_read_arg);
776
777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778 unsigned int *value, char **error)
779{
780 return validate_next_arg(arg, arg_set, value, error, 1);
781}
782EXPORT_SYMBOL(dm_read_arg_group);
783
784const char *dm_shift_arg(struct dm_arg_set *as)
785{
786 char *r;
787
788 if (as->argc) {
789 as->argc--;
790 r = *as->argv;
791 as->argv++;
792 return r;
793 }
794
795 return NULL;
796}
797EXPORT_SYMBOL(dm_shift_arg);
798
799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800{
801 BUG_ON(as->argc < num_args);
802 as->argc -= num_args;
803 as->argv += num_args;
804}
805EXPORT_SYMBOL(dm_consume_args);
806
807static bool __table_type_bio_based(enum dm_queue_mode table_type)
808{
809 return (table_type == DM_TYPE_BIO_BASED ||
810 table_type == DM_TYPE_DAX_BIO_BASED);
811}
812
813static bool __table_type_request_based(enum dm_queue_mode table_type)
814{
815 return table_type == DM_TYPE_REQUEST_BASED;
816}
817
818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819{
820 t->type = type;
821}
822EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824/* validate the dax capability of the target device span */
825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826 sector_t start, sector_t len, void *data)
827{
828 if (dev->dax_dev)
829 return false;
830
831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832 return true;
833}
834
835/* Check devices support synchronous DAX */
836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837 sector_t start, sector_t len, void *data)
838{
839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840}
841
842static bool dm_table_supports_dax(struct dm_table *t,
843 iterate_devices_callout_fn iterate_fn)
844{
845 /* Ensure that all targets support DAX. */
846 for (unsigned int i = 0; i < t->num_targets; i++) {
847 struct dm_target *ti = dm_table_get_target(t, i);
848
849 if (!ti->type->direct_access)
850 return false;
851
852 if (dm_target_is_wildcard(ti->type) ||
853 !ti->type->iterate_devices ||
854 ti->type->iterate_devices(ti, iterate_fn, NULL))
855 return false;
856 }
857
858 return true;
859}
860
861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862 sector_t start, sector_t len, void *data)
863{
864 struct block_device *bdev = dev->bdev;
865 struct request_queue *q = bdev_get_queue(bdev);
866
867 /* request-based cannot stack on partitions! */
868 if (bdev_is_partition(bdev))
869 return false;
870
871 return queue_is_mq(q);
872}
873
874static int dm_table_determine_type(struct dm_table *t)
875{
876 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877 struct dm_target *ti;
878 struct list_head *devices = dm_table_get_devices(t);
879 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880
881 if (t->type != DM_TYPE_NONE) {
882 /* target already set the table's type */
883 if (t->type == DM_TYPE_BIO_BASED) {
884 /* possibly upgrade to a variant of bio-based */
885 goto verify_bio_based;
886 }
887 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888 goto verify_rq_based;
889 }
890
891 for (unsigned int i = 0; i < t->num_targets; i++) {
892 ti = dm_table_get_target(t, i);
893 if (dm_target_hybrid(ti))
894 hybrid = 1;
895 else if (dm_target_request_based(ti))
896 request_based = 1;
897 else
898 bio_based = 1;
899
900 if (bio_based && request_based) {
901 DMERR("Inconsistent table: different target types can't be mixed up");
902 return -EINVAL;
903 }
904 }
905
906 if (hybrid && !bio_based && !request_based) {
907 /*
908 * The targets can work either way.
909 * Determine the type from the live device.
910 * Default to bio-based if device is new.
911 */
912 if (__table_type_request_based(live_md_type))
913 request_based = 1;
914 else
915 bio_based = 1;
916 }
917
918 if (bio_based) {
919verify_bio_based:
920 /* We must use this table as bio-based */
921 t->type = DM_TYPE_BIO_BASED;
922 if (dm_table_supports_dax(t, device_not_dax_capable) ||
923 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924 t->type = DM_TYPE_DAX_BIO_BASED;
925 }
926 return 0;
927 }
928
929 BUG_ON(!request_based); /* No targets in this table */
930
931 t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934 /*
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
939 */
940 if (t->num_targets > 1) {
941 DMERR("request-based DM doesn't support multiple targets");
942 return -EINVAL;
943 }
944
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949 /* inherit live table's type */
950 if (live_table)
951 t->type = live_table->type;
952 dm_put_live_table(t->md, srcu_idx);
953 return 0;
954 }
955
956 ti = dm_table_get_immutable_target(t);
957 if (!ti) {
958 DMERR("table load rejected: immutable target is required");
959 return -EINVAL;
960 } else if (ti->max_io_len) {
961 DMERR("table load rejected: immutable target that splits IO is not supported");
962 return -EINVAL;
963 }
964
965 /* Non-request-stackable devices can't be used for request-based dm */
966 if (!ti->type->iterate_devices ||
967 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968 DMERR("table load rejected: including non-request-stackable devices");
969 return -EINVAL;
970 }
971
972 return 0;
973}
974
975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976{
977 return t->type;
978}
979
980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981{
982 return t->immutable_target_type;
983}
984
985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986{
987 /* Immutable target is implicitly a singleton */
988 if (t->num_targets > 1 ||
989 !dm_target_is_immutable(t->targets[0].type))
990 return NULL;
991
992 return t->targets;
993}
994
995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996{
997 for (unsigned int i = 0; i < t->num_targets; i++) {
998 struct dm_target *ti = dm_table_get_target(t, i);
999
1000 if (dm_target_is_wildcard(ti->type))
1001 return ti;
1002 }
1003
1004 return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009 return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014 return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021 enum dm_queue_mode type = dm_table_get_type(t);
1022 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023 unsigned int min_pool_size = 0, pool_size;
1024 struct dm_md_mempools *pools;
1025
1026 if (unlikely(type == DM_TYPE_NONE)) {
1027 DMERR("no table type is set, can't allocate mempools");
1028 return -EINVAL;
1029 }
1030
1031 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032 if (!pools)
1033 return -ENOMEM;
1034
1035 if (type == DM_TYPE_REQUEST_BASED) {
1036 pool_size = dm_get_reserved_rq_based_ios();
1037 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038 goto init_bs;
1039 }
1040
1041 for (unsigned int i = 0; i < t->num_targets; i++) {
1042 struct dm_target *ti = dm_table_get_target(t, i);
1043
1044 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046 }
1047 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048 front_pad = roundup(per_io_data_size,
1049 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051 io_front_pad = roundup(per_io_data_size,
1052 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055 goto out_free_pools;
1056 if (t->integrity_supported &&
1057 bioset_integrity_create(&pools->io_bs, pool_size))
1058 goto out_free_pools;
1059init_bs:
1060 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061 goto out_free_pools;
1062 if (t->integrity_supported &&
1063 bioset_integrity_create(&pools->bs, pool_size))
1064 goto out_free_pools;
1065
1066 t->mempools = pools;
1067 return 0;
1068
1069out_free_pools:
1070 dm_free_md_mempools(pools);
1071 return -ENOMEM;
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076 int i;
1077 unsigned int total = 0;
1078 sector_t *indexes;
1079
1080 /* allocate the space for *all* the indexes */
1081 for (i = t->depth - 2; i >= 0; i--) {
1082 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083 total += t->counts[i];
1084 }
1085
1086 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087 if (!indexes)
1088 return -ENOMEM;
1089
1090 /* set up internal nodes, bottom-up */
1091 for (i = t->depth - 2; i >= 0; i--) {
1092 t->index[i] = indexes;
1093 indexes += (KEYS_PER_NODE * t->counts[i]);
1094 setup_btree_index(i, t);
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105 int r = 0;
1106 unsigned int leaf_nodes;
1107
1108 /* how many indexes will the btree have ? */
1109 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112 /* leaf layer has already been set up */
1113 t->counts[t->depth - 1] = leaf_nodes;
1114 t->index[t->depth - 1] = t->highs;
1115
1116 if (t->depth >= 2)
1117 r = setup_indexes(t);
1118
1119 return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124 return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133 struct list_head *devices = dm_table_get_devices(t);
1134 struct dm_dev_internal *dd = NULL;
1135 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137 for (unsigned int i = 0; i < t->num_targets; i++) {
1138 struct dm_target *ti = dm_table_get_target(t, i);
1139
1140 if (!dm_target_passes_integrity(ti->type))
1141 goto no_integrity;
1142 }
1143
1144 list_for_each_entry(dd, devices, list) {
1145 template_disk = dd->dm_dev->bdev->bd_disk;
1146 if (!integrity_profile_exists(template_disk))
1147 goto no_integrity;
1148 else if (prev_disk &&
1149 blk_integrity_compare(prev_disk, template_disk) < 0)
1150 goto no_integrity;
1151 prev_disk = template_disk;
1152 }
1153
1154 return template_disk;
1155
1156no_integrity:
1157 if (prev_disk)
1158 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159 dm_device_name(t->md),
1160 prev_disk->disk_name,
1161 template_disk->disk_name);
1162 return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile. But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile). Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177 struct mapped_device *md = t->md;
1178 struct gendisk *template_disk = NULL;
1179
1180 /* If target handles integrity itself do not register it here. */
1181 if (t->integrity_added)
1182 return 0;
1183
1184 template_disk = dm_table_get_integrity_disk(t);
1185 if (!template_disk)
1186 return 0;
1187
1188 if (!integrity_profile_exists(dm_disk(md))) {
1189 t->integrity_supported = true;
1190 /*
1191 * Register integrity profile during table load; we can do
1192 * this because the final profile must match during resume.
1193 */
1194 blk_integrity_register(dm_disk(md),
1195 blk_get_integrity(template_disk));
1196 return 0;
1197 }
1198
1199 /*
1200 * If DM device already has an initialized integrity
1201 * profile the new profile should not conflict.
1202 */
1203 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205 dm_device_name(t->md),
1206 template_disk->disk_name);
1207 return 1;
1208 }
1209
1210 /* Preserve existing integrity profile */
1211 t->integrity_supported = true;
1212 return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218 struct blk_crypto_profile profile;
1219 struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223 sector_t start, sector_t len, void *data)
1224{
1225 const struct blk_crypto_key *key = data;
1226
1227 blk_crypto_evict_key(dev->bdev, key);
1228 return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236 const struct blk_crypto_key *key, unsigned int slot)
1237{
1238 struct mapped_device *md =
1239 container_of(profile, struct dm_crypto_profile, profile)->md;
1240 struct dm_table *t;
1241 int srcu_idx;
1242
1243 t = dm_get_live_table(md, &srcu_idx);
1244 if (!t)
1245 return 0;
1246
1247 for (unsigned int i = 0; i < t->num_targets; i++) {
1248 struct dm_target *ti = dm_table_get_target(t, i);
1249
1250 if (!ti->type->iterate_devices)
1251 continue;
1252 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253 (void *)key);
1254 }
1255
1256 dm_put_live_table(md, srcu_idx);
1257 return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262 sector_t start, sector_t len, void *data)
1263{
1264 struct blk_crypto_profile *parent = data;
1265 struct blk_crypto_profile *child =
1266 bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268 blk_crypto_intersect_capabilities(parent, child);
1269 return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274 struct dm_crypto_profile *dmcp = container_of(profile,
1275 struct dm_crypto_profile,
1276 profile);
1277
1278 if (!profile)
1279 return;
1280
1281 blk_crypto_profile_destroy(profile);
1282 kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287 dm_destroy_crypto_profile(t->crypto_profile);
1288 t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table. However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302 struct dm_crypto_profile *dmcp;
1303 struct blk_crypto_profile *profile;
1304 unsigned int i;
1305 bool empty_profile = true;
1306
1307 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308 if (!dmcp)
1309 return -ENOMEM;
1310 dmcp->md = t->md;
1311
1312 profile = &dmcp->profile;
1313 blk_crypto_profile_init(profile, 0);
1314 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315 profile->max_dun_bytes_supported = UINT_MAX;
1316 memset(profile->modes_supported, 0xFF,
1317 sizeof(profile->modes_supported));
1318
1319 for (i = 0; i < t->num_targets; i++) {
1320 struct dm_target *ti = dm_table_get_target(t, i);
1321
1322 if (!dm_target_passes_crypto(ti->type)) {
1323 blk_crypto_intersect_capabilities(profile, NULL);
1324 break;
1325 }
1326 if (!ti->type->iterate_devices)
1327 continue;
1328 ti->type->iterate_devices(ti,
1329 device_intersect_crypto_capabilities,
1330 profile);
1331 }
1332
1333 if (t->md->queue &&
1334 !blk_crypto_has_capabilities(profile,
1335 t->md->queue->crypto_profile)) {
1336 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337 dm_destroy_crypto_profile(profile);
1338 return -EINVAL;
1339 }
1340
1341 /*
1342 * If the new profile doesn't actually support any crypto capabilities,
1343 * we may as well represent it with a NULL profile.
1344 */
1345 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346 if (profile->modes_supported[i]) {
1347 empty_profile = false;
1348 break;
1349 }
1350 }
1351
1352 if (empty_profile) {
1353 dm_destroy_crypto_profile(profile);
1354 profile = NULL;
1355 }
1356
1357 /*
1358 * t->crypto_profile is only set temporarily while the table is being
1359 * set up, and it gets set to NULL after the profile has been
1360 * transferred to the request_queue.
1361 */
1362 t->crypto_profile = profile;
1363
1364 return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368 struct dm_table *t)
1369{
1370 if (!t->crypto_profile)
1371 return;
1372
1373 /* Make the crypto profile less restrictive. */
1374 if (!q->crypto_profile) {
1375 blk_crypto_register(t->crypto_profile, q);
1376 } else {
1377 blk_crypto_update_capabilities(q->crypto_profile,
1378 t->crypto_profile);
1379 dm_destroy_crypto_profile(t->crypto_profile);
1380 }
1381 t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388 return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400 struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412 int r;
1413
1414 r = dm_table_determine_type(t);
1415 if (r) {
1416 DMERR("unable to determine table type");
1417 return r;
1418 }
1419
1420 r = dm_table_build_index(t);
1421 if (r) {
1422 DMERR("unable to build btrees");
1423 return r;
1424 }
1425
1426 r = dm_table_register_integrity(t);
1427 if (r) {
1428 DMERR("could not register integrity profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_construct_crypto_profile(t);
1433 if (r) {
1434 DMERR("could not construct crypto profile.");
1435 return r;
1436 }
1437
1438 r = dm_table_alloc_md_mempools(t, t->md);
1439 if (r)
1440 DMERR("unable to allocate mempools");
1441
1442 return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447 void (*fn)(void *), void *context)
1448{
1449 mutex_lock(&_event_lock);
1450 t->event_fn = fn;
1451 t->event_context = context;
1452 mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
1457 mutex_lock(&_event_lock);
1458 if (t->event_fn)
1459 t->event_fn(t->event_context);
1460 mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478 unsigned int l, n = 0, k = 0;
1479 sector_t *node;
1480
1481 if (unlikely(sector >= dm_table_get_size(t)))
1482 return NULL;
1483
1484 for (l = 0; l < t->depth; l++) {
1485 n = get_child(n, k);
1486 node = get_node(t, l, n);
1487
1488 for (k = 0; k < KEYS_PER_NODE; k++)
1489 if (node[k] >= sector)
1490 break;
1491 }
1492
1493 return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497 sector_t start, sector_t len, void *data)
1498{
1499 struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528 iterate_devices_callout_fn func, void *data)
1529{
1530 for (unsigned int i = 0; i < t->num_targets; i++) {
1531 struct dm_target *ti = dm_table_get_target(t, i);
1532
1533 if (ti->type->iterate_devices &&
1534 ti->type->iterate_devices(ti, func, data))
1535 return true;
1536 }
1537
1538 return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542 sector_t start, sector_t len, void *data)
1543{
1544 unsigned int *num_devices = data;
1545
1546 (*num_devices)++;
1547
1548 return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553 for (unsigned int i = 0; i < t->num_targets; i++) {
1554 struct dm_target *ti = dm_table_get_target(t, i);
1555
1556 if (!ti->type->iterate_devices ||
1557 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558 return false;
1559 }
1560
1561 return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572 for (unsigned int i = 0; i < t->num_targets; i++) {
1573 struct dm_target *ti = dm_table_get_target(t, i);
1574 unsigned int num_devices = 0;
1575
1576 if (!ti->type->iterate_devices)
1577 return false;
1578
1579 ti->type->iterate_devices(ti, count_device, &num_devices);
1580 if (num_devices)
1581 return false;
1582 }
1583
1584 return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588 sector_t start, sector_t len, void *data)
1589{
1590 bool *zoned = data;
1591
1592 return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596 sector_t start, sector_t len, void *data)
1597{
1598 return bdev_is_zoned(dev->bdev);
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610 for (unsigned int i = 0; i < t->num_targets; i++) {
1611 struct dm_target *ti = dm_table_get_target(t, i);
1612
1613 /*
1614 * For the wildcard target (dm-error), if we do not have a
1615 * backing device, we must always return false. If we have a
1616 * backing device, the result must depend on checking zoned
1617 * model, like for any other target. So for this, check directly
1618 * if the target backing device is zoned as we get "false" when
1619 * dm-error was set without a backing device.
1620 */
1621 if (dm_target_is_wildcard(ti->type) &&
1622 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623 return false;
1624
1625 if (dm_target_supports_zoned_hm(ti->type)) {
1626 if (!ti->type->iterate_devices ||
1627 ti->type->iterate_devices(ti, device_not_zoned,
1628 &zoned))
1629 return false;
1630 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631 if (zoned)
1632 return false;
1633 }
1634 }
1635
1636 return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned int *zone_sectors = data;
1643
1644 if (!bdev_is_zoned(dev->bdev))
1645 return 0;
1646 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655 unsigned int zone_sectors)
1656{
1657 if (!zoned)
1658 return 0;
1659
1660 if (!dm_table_supports_zoned(t, zoned)) {
1661 DMERR("%s: zoned model is not consistent across all devices",
1662 dm_device_name(t->md));
1663 return -EINVAL;
1664 }
1665
1666 /* Check zone size validity and compatibility */
1667 if (!zone_sectors || !is_power_of_2(zone_sectors))
1668 return -EINVAL;
1669
1670 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671 DMERR("%s: zone sectors is not consistent across all zoned devices",
1672 dm_device_name(t->md));
1673 return -EINVAL;
1674 }
1675
1676 return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683 struct queue_limits *limits)
1684{
1685 struct queue_limits ti_limits;
1686 unsigned int zone_sectors = 0;
1687 bool zoned = false;
1688
1689 blk_set_stacking_limits(limits);
1690
1691 for (unsigned int i = 0; i < t->num_targets; i++) {
1692 struct dm_target *ti = dm_table_get_target(t, i);
1693
1694 blk_set_stacking_limits(&ti_limits);
1695
1696 if (!ti->type->iterate_devices) {
1697 /* Set I/O hints portion of queue limits */
1698 if (ti->type->io_hints)
1699 ti->type->io_hints(ti, &ti_limits);
1700 goto combine_limits;
1701 }
1702
1703 /*
1704 * Combine queue limits of all the devices this target uses.
1705 */
1706 ti->type->iterate_devices(ti, dm_set_device_limits,
1707 &ti_limits);
1708
1709 if (!zoned && ti_limits.zoned) {
1710 /*
1711 * After stacking all limits, validate all devices
1712 * in table support this zoned model and zone sectors.
1713 */
1714 zoned = ti_limits.zoned;
1715 zone_sectors = ti_limits.chunk_sectors;
1716 }
1717
1718 /* Set I/O hints portion of queue limits */
1719 if (ti->type->io_hints)
1720 ti->type->io_hints(ti, &ti_limits);
1721
1722 /*
1723 * Check each device area is consistent with the target's
1724 * overall queue limits.
1725 */
1726 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727 &ti_limits))
1728 return -EINVAL;
1729
1730combine_limits:
1731 /*
1732 * Merge this target's queue limits into the overall limits
1733 * for the table.
1734 */
1735 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736 DMWARN("%s: adding target device (start sect %llu len %llu) "
1737 "caused an alignment inconsistency",
1738 dm_device_name(t->md),
1739 (unsigned long long) ti->begin,
1740 (unsigned long long) ti->len);
1741 }
1742
1743 /*
1744 * Verify that the zoned model and zone sectors, as determined before
1745 * any .io_hints override, are the same across all devices in the table.
1746 * - this is especially relevant if .io_hints is emulating a disk-managed
1747 * zoned model on host-managed zoned block devices.
1748 * BUT...
1749 */
1750 if (limits->zoned) {
1751 /*
1752 * ...IF the above limits stacking determined a zoned model
1753 * validate that all of the table's devices conform to it.
1754 */
1755 zoned = limits->zoned;
1756 zone_sectors = limits->chunk_sectors;
1757 }
1758 if (validate_hardware_zoned(t, zoned, zone_sectors))
1759 return -EINVAL;
1760
1761 return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile. If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771 struct gendisk *template_disk = NULL;
1772
1773 if (t->integrity_added)
1774 return;
1775
1776 if (t->integrity_supported) {
1777 /*
1778 * Verify that the original integrity profile
1779 * matches all the devices in this table.
1780 */
1781 template_disk = dm_table_get_integrity_disk(t);
1782 if (template_disk &&
1783 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784 return;
1785 }
1786
1787 if (integrity_profile_exists(dm_disk(t->md))) {
1788 DMWARN("%s: unable to establish an integrity profile",
1789 dm_device_name(t->md));
1790 blk_integrity_unregister(dm_disk(t->md));
1791 }
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795 sector_t start, sector_t len, void *data)
1796{
1797 unsigned long flush = (unsigned long) data;
1798 struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800 return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
1805 /*
1806 * Require at least one underlying device to support flushes.
1807 * t->devices includes internal dm devices such as mirror logs
1808 * so we need to use iterate_devices here, which targets
1809 * supporting flushes must provide.
1810 */
1811 for (unsigned int i = 0; i < t->num_targets; i++) {
1812 struct dm_target *ti = dm_table_get_target(t, i);
1813
1814 if (!ti->num_flush_bios)
1815 continue;
1816
1817 if (ti->flush_supported)
1818 return true;
1819
1820 if (ti->type->iterate_devices &&
1821 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822 return true;
1823 }
1824
1825 return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829 struct dm_dev *dev, sector_t start,
1830 sector_t len, void *data)
1831{
1832 struct dax_device *dax_dev = dev->dax_dev;
1833
1834 if (!dax_dev)
1835 return false;
1836
1837 if (dax_write_cache_enabled(dax_dev))
1838 return true;
1839 return false;
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843 sector_t start, sector_t len, void *data)
1844{
1845 return !bdev_nonrot(dev->bdev);
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849 sector_t start, sector_t len, void *data)
1850{
1851 struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853 return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1858{
1859 struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861 return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865{
1866 for (unsigned int i = 0; i < t->num_targets; i++) {
1867 struct dm_target *ti = dm_table_get_target(t, i);
1868
1869 if (!ti->num_write_zeroes_bios)
1870 return false;
1871
1872 if (!ti->type->iterate_devices ||
1873 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874 return false;
1875 }
1876
1877 return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881 sector_t start, sector_t len, void *data)
1882{
1883 return !bdev_nowait(dev->bdev);
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888 for (unsigned int i = 0; i < t->num_targets; i++) {
1889 struct dm_target *ti = dm_table_get_target(t, i);
1890
1891 if (!dm_target_supports_nowait(ti->type))
1892 return false;
1893
1894 if (!ti->type->iterate_devices ||
1895 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896 return false;
1897 }
1898
1899 return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903 sector_t start, sector_t len, void *data)
1904{
1905 return !bdev_max_discard_sectors(dev->bdev);
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910 for (unsigned int i = 0; i < t->num_targets; i++) {
1911 struct dm_target *ti = dm_table_get_target(t, i);
1912
1913 if (!ti->num_discard_bios)
1914 return false;
1915
1916 /*
1917 * Either the target provides discard support (as implied by setting
1918 * 'discards_supported') or it relies on _all_ data devices having
1919 * discard support.
1920 */
1921 if (!ti->discards_supported &&
1922 (!ti->type->iterate_devices ||
1923 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924 return false;
1925 }
1926
1927 return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931 struct dm_dev *dev, sector_t start,
1932 sector_t len, void *data)
1933{
1934 return !bdev_max_secure_erase_sectors(dev->bdev);
1935}
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939 for (unsigned int i = 0; i < t->num_targets; i++) {
1940 struct dm_target *ti = dm_table_get_target(t, i);
1941
1942 if (!ti->num_secure_erase_bios)
1943 return false;
1944
1945 if (!ti->type->iterate_devices ||
1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 return false;
1948 }
1949
1950 return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954 struct dm_dev *dev, sector_t start,
1955 sector_t len, void *data)
1956{
1957 return bdev_stable_writes(dev->bdev);
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 struct queue_limits *limits)
1962{
1963 bool wc = false, fua = false;
1964 int r;
1965
1966 /*
1967 * Copy table's limits to the DM device's request_queue
1968 */
1969 q->limits = *limits;
1970
1971 if (dm_table_supports_nowait(t))
1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 else
1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976 if (!dm_table_supports_discards(t)) {
1977 q->limits.max_discard_sectors = 0;
1978 q->limits.max_hw_discard_sectors = 0;
1979 q->limits.discard_granularity = 0;
1980 q->limits.discard_alignment = 0;
1981 q->limits.discard_misaligned = 0;
1982 }
1983
1984 if (!dm_table_supports_secure_erase(t))
1985 q->limits.max_secure_erase_sectors = 0;
1986
1987 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 wc = true;
1989 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 fua = true;
1991 }
1992 blk_queue_write_cache(q, wc, fua);
1993
1994 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 set_dax_synchronous(t->md->dax_dev);
1998 } else
1999 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002 dax_write_cache(t->md->dax_dev, true);
2003
2004 /* Ensure that all underlying devices are non-rotational. */
2005 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007 else
2008 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010 if (!dm_table_supports_write_zeroes(t))
2011 q->limits.max_write_zeroes_sectors = 0;
2012
2013 dm_table_verify_integrity(t);
2014
2015 /*
2016 * Some devices don't use blk_integrity but still want stable pages
2017 * because they do their own checksumming.
2018 * If any underlying device requires stable pages, a table must require
2019 * them as well. Only targets that support iterate_devices are considered:
2020 * don't want error, zero, etc to require stable pages.
2021 */
2022 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024 else
2025 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027 /*
2028 * Determine whether or not this queue's I/O timings contribute
2029 * to the entropy pool, Only request-based targets use this.
2030 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031 * have it set.
2032 */
2033 if (blk_queue_add_random(q) &&
2034 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037 /*
2038 * For a zoned target, setup the zones related queue attributes
2039 * and resources necessary for zone append emulation if necessary.
2040 */
2041 if (blk_queue_is_zoned(q)) {
2042 r = dm_set_zones_restrictions(t, q);
2043 if (r)
2044 return r;
2045 if (!static_key_enabled(&zoned_enabled.key))
2046 static_branch_enable(&zoned_enabled);
2047 }
2048
2049 dm_update_crypto_profile(q, t);
2050 disk_update_readahead(t->md->disk);
2051
2052 /*
2053 * Check for request-based device is left to
2054 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055 *
2056 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057 * underlying devices supporting polling.
2058 */
2059 if (__table_type_bio_based(t->type)) {
2060 if (dm_table_supports_poll(t))
2061 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062 else
2063 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064 }
2065
2066 return 0;
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071 return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076 return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081 PRESUSPEND,
2082 PRESUSPEND_UNDO,
2083 POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088 lockdep_assert_held(&t->md->suspend_lock);
2089
2090 for (unsigned int i = 0; i < t->num_targets; i++) {
2091 struct dm_target *ti = dm_table_get_target(t, i);
2092
2093 switch (mode) {
2094 case PRESUSPEND:
2095 if (ti->type->presuspend)
2096 ti->type->presuspend(ti);
2097 break;
2098 case PRESUSPEND_UNDO:
2099 if (ti->type->presuspend_undo)
2100 ti->type->presuspend_undo(ti);
2101 break;
2102 case POSTSUSPEND:
2103 if (ti->type->postsuspend)
2104 ti->type->postsuspend(ti);
2105 break;
2106 }
2107 }
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112 if (!t)
2113 return;
2114
2115 suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120 if (!t)
2121 return;
2122
2123 suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128 if (!t)
2129 return;
2130
2131 suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136 unsigned int i;
2137 int r = 0;
2138
2139 lockdep_assert_held(&t->md->suspend_lock);
2140
2141 for (i = 0; i < t->num_targets; i++) {
2142 struct dm_target *ti = dm_table_get_target(t, i);
2143
2144 if (!ti->type->preresume)
2145 continue;
2146
2147 r = ti->type->preresume(ti);
2148 if (r) {
2149 DMERR("%s: %s: preresume failed, error = %d",
2150 dm_device_name(t->md), ti->type->name, r);
2151 return r;
2152 }
2153 }
2154
2155 for (i = 0; i < t->num_targets; i++) {
2156 struct dm_target *ti = dm_table_get_target(t, i);
2157
2158 if (ti->type->resume)
2159 ti->type->resume(ti);
2160 }
2161
2162 return 0;
2163}
2164
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167 return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
2170
2171const char *dm_table_device_name(struct dm_table *t)
2172{
2173 return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
2179 if (!dm_table_request_based(t))
2180 return;
2181
2182 if (t->md->queue)
2183 blk_mq_run_hw_queues(t->md->queue, true);
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31/*
32 * Similar to ceiling(log_size(n))
33 */
34static unsigned int int_log(unsigned int n, unsigned int base)
35{
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44}
45
46/*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
49static inline unsigned int get_child(unsigned int n, unsigned int k)
50{
51 return (n * CHILDREN_PER_NODE) + k;
52}
53
54/*
55 * Return the n'th node of level l from table t.
56 */
57static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59{
60 return t->index[l] + (n * KEYS_PER_NODE);
61}
62
63/*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
67static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68{
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76}
77
78/*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
82static int setup_btree_index(unsigned int l, struct dm_table *t)
83{
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95}
96
97/*
98 * highs, and targets are managed as dynamic arrays during a
99 * table load.
100 */
101static int alloc_targets(struct dm_table *t, unsigned int num)
102{
103 sector_t *n_highs;
104 struct dm_target *n_targets;
105
106 /*
107 * Allocate both the target array and offset array at once.
108 */
109 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
110 GFP_KERNEL);
111 if (!n_highs)
112 return -ENOMEM;
113
114 n_targets = (struct dm_target *) (n_highs + num);
115
116 memset(n_highs, -1, sizeof(*n_highs) * num);
117 kvfree(t->highs);
118
119 t->num_allocated = num;
120 t->highs = n_highs;
121 t->targets = n_targets;
122
123 return 0;
124}
125
126int dm_table_create(struct dm_table **result, fmode_t mode,
127 unsigned num_targets, struct mapped_device *md)
128{
129 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
130
131 if (!t)
132 return -ENOMEM;
133
134 INIT_LIST_HEAD(&t->devices);
135
136 if (!num_targets)
137 num_targets = KEYS_PER_NODE;
138
139 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
140
141 if (!num_targets) {
142 kfree(t);
143 return -ENOMEM;
144 }
145
146 if (alloc_targets(t, num_targets)) {
147 kfree(t);
148 return -ENOMEM;
149 }
150
151 t->type = DM_TYPE_NONE;
152 t->mode = mode;
153 t->md = md;
154 *result = t;
155 return 0;
156}
157
158static void free_devices(struct list_head *devices, struct mapped_device *md)
159{
160 struct list_head *tmp, *next;
161
162 list_for_each_safe(tmp, next, devices) {
163 struct dm_dev_internal *dd =
164 list_entry(tmp, struct dm_dev_internal, list);
165 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
166 dm_device_name(md), dd->dm_dev->name);
167 dm_put_table_device(md, dd->dm_dev);
168 kfree(dd);
169 }
170}
171
172static void dm_table_destroy_keyslot_manager(struct dm_table *t);
173
174void dm_table_destroy(struct dm_table *t)
175{
176 unsigned int i;
177
178 if (!t)
179 return;
180
181 /* free the indexes */
182 if (t->depth >= 2)
183 kvfree(t->index[t->depth - 2]);
184
185 /* free the targets */
186 for (i = 0; i < t->num_targets; i++) {
187 struct dm_target *tgt = t->targets + i;
188
189 if (tgt->type->dtr)
190 tgt->type->dtr(tgt);
191
192 dm_put_target_type(tgt->type);
193 }
194
195 kvfree(t->highs);
196
197 /* free the device list */
198 free_devices(&t->devices, t->md);
199
200 dm_free_md_mempools(t->mempools);
201
202 dm_table_destroy_keyslot_manager(t);
203
204 kfree(t);
205}
206
207/*
208 * See if we've already got a device in the list.
209 */
210static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
211{
212 struct dm_dev_internal *dd;
213
214 list_for_each_entry (dd, l, list)
215 if (dd->dm_dev->bdev->bd_dev == dev)
216 return dd;
217
218 return NULL;
219}
220
221/*
222 * If possible, this checks an area of a destination device is invalid.
223 */
224static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 sector_t start, sector_t len, void *data)
226{
227 struct queue_limits *limits = data;
228 struct block_device *bdev = dev->bdev;
229 sector_t dev_size =
230 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
231 unsigned short logical_block_size_sectors =
232 limits->logical_block_size >> SECTOR_SHIFT;
233 char b[BDEVNAME_SIZE];
234
235 if (!dev_size)
236 return 0;
237
238 if ((start >= dev_size) || (start + len > dev_size)) {
239 DMWARN("%s: %s too small for target: "
240 "start=%llu, len=%llu, dev_size=%llu",
241 dm_device_name(ti->table->md), bdevname(bdev, b),
242 (unsigned long long)start,
243 (unsigned long long)len,
244 (unsigned long long)dev_size);
245 return 1;
246 }
247
248 /*
249 * If the target is mapped to zoned block device(s), check
250 * that the zones are not partially mapped.
251 */
252 if (bdev_is_zoned(bdev)) {
253 unsigned int zone_sectors = bdev_zone_sectors(bdev);
254
255 if (start & (zone_sectors - 1)) {
256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 dm_device_name(ti->table->md),
258 (unsigned long long)start,
259 zone_sectors, bdevname(bdev, b));
260 return 1;
261 }
262
263 /*
264 * Note: The last zone of a zoned block device may be smaller
265 * than other zones. So for a target mapping the end of a
266 * zoned block device with such a zone, len would not be zone
267 * aligned. We do not allow such last smaller zone to be part
268 * of the mapping here to ensure that mappings with multiple
269 * devices do not end up with a smaller zone in the middle of
270 * the sector range.
271 */
272 if (len & (zone_sectors - 1)) {
273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 dm_device_name(ti->table->md),
275 (unsigned long long)len,
276 zone_sectors, bdevname(bdev, b));
277 return 1;
278 }
279 }
280
281 if (logical_block_size_sectors <= 1)
282 return 0;
283
284 if (start & (logical_block_size_sectors - 1)) {
285 DMWARN("%s: start=%llu not aligned to h/w "
286 "logical block size %u of %s",
287 dm_device_name(ti->table->md),
288 (unsigned long long)start,
289 limits->logical_block_size, bdevname(bdev, b));
290 return 1;
291 }
292
293 if (len & (logical_block_size_sectors - 1)) {
294 DMWARN("%s: len=%llu not aligned to h/w "
295 "logical block size %u of %s",
296 dm_device_name(ti->table->md),
297 (unsigned long long)len,
298 limits->logical_block_size, bdevname(bdev, b));
299 return 1;
300 }
301
302 return 0;
303}
304
305/*
306 * This upgrades the mode on an already open dm_dev, being
307 * careful to leave things as they were if we fail to reopen the
308 * device and not to touch the existing bdev field in case
309 * it is accessed concurrently.
310 */
311static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 struct mapped_device *md)
313{
314 int r;
315 struct dm_dev *old_dev, *new_dev;
316
317 old_dev = dd->dm_dev;
318
319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 dd->dm_dev->mode | new_mode, &new_dev);
321 if (r)
322 return r;
323
324 dd->dm_dev = new_dev;
325 dm_put_table_device(md, old_dev);
326
327 return 0;
328}
329
330/*
331 * Convert the path to a device
332 */
333dev_t dm_get_dev_t(const char *path)
334{
335 dev_t dev;
336
337 if (lookup_bdev(path, &dev))
338 dev = name_to_dev_t(path);
339 return dev;
340}
341EXPORT_SYMBOL_GPL(dm_get_dev_t);
342
343/*
344 * Add a device to the list, or just increment the usage count if
345 * it's already present.
346 */
347int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 struct dm_dev **result)
349{
350 int r;
351 dev_t dev;
352 unsigned int major, minor;
353 char dummy;
354 struct dm_dev_internal *dd;
355 struct dm_table *t = ti->table;
356
357 BUG_ON(!t);
358
359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 /* Extract the major/minor numbers */
361 dev = MKDEV(major, minor);
362 if (MAJOR(dev) != major || MINOR(dev) != minor)
363 return -EOVERFLOW;
364 } else {
365 dev = dm_get_dev_t(path);
366 if (!dev)
367 return -ENODEV;
368 }
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd)
374 return -ENOMEM;
375
376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 kfree(dd);
378 return r;
379 }
380
381 refcount_set(&dd->count, 1);
382 list_add(&dd->list, &t->devices);
383 goto out;
384
385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 r = upgrade_mode(dd, mode, t->md);
387 if (r)
388 return r;
389 }
390 refcount_inc(&dd->count);
391out:
392 *result = dd->dm_dev;
393 return 0;
394}
395EXPORT_SYMBOL(dm_get_device);
396
397static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 sector_t start, sector_t len, void *data)
399{
400 struct queue_limits *limits = data;
401 struct block_device *bdev = dev->bdev;
402 struct request_queue *q = bdev_get_queue(bdev);
403 char b[BDEVNAME_SIZE];
404
405 if (unlikely(!q)) {
406 DMWARN("%s: Cannot set limits for nonexistent device %s",
407 dm_device_name(ti->table->md), bdevname(bdev, b));
408 return 0;
409 }
410
411 if (blk_stack_limits(limits, &q->limits,
412 get_start_sect(bdev) + start) < 0)
413 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 "physical_block_size=%u, logical_block_size=%u, "
415 "alignment_offset=%u, start=%llu",
416 dm_device_name(ti->table->md), bdevname(bdev, b),
417 q->limits.physical_block_size,
418 q->limits.logical_block_size,
419 q->limits.alignment_offset,
420 (unsigned long long) start << SECTOR_SHIFT);
421 return 0;
422}
423
424/*
425 * Decrement a device's use count and remove it if necessary.
426 */
427void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428{
429 int found = 0;
430 struct list_head *devices = &ti->table->devices;
431 struct dm_dev_internal *dd;
432
433 list_for_each_entry(dd, devices, list) {
434 if (dd->dm_dev == d) {
435 found = 1;
436 break;
437 }
438 }
439 if (!found) {
440 DMWARN("%s: device %s not in table devices list",
441 dm_device_name(ti->table->md), d->name);
442 return;
443 }
444 if (refcount_dec_and_test(&dd->count)) {
445 dm_put_table_device(ti->table->md, d);
446 list_del(&dd->list);
447 kfree(dd);
448 }
449}
450EXPORT_SYMBOL(dm_put_device);
451
452/*
453 * Checks to see if the target joins onto the end of the table.
454 */
455static int adjoin(struct dm_table *table, struct dm_target *ti)
456{
457 struct dm_target *prev;
458
459 if (!table->num_targets)
460 return !ti->begin;
461
462 prev = &table->targets[table->num_targets - 1];
463 return (ti->begin == (prev->begin + prev->len));
464}
465
466/*
467 * Used to dynamically allocate the arg array.
468 *
469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470 * process messages even if some device is suspended. These messages have a
471 * small fixed number of arguments.
472 *
473 * On the other hand, dm-switch needs to process bulk data using messages and
474 * excessive use of GFP_NOIO could cause trouble.
475 */
476static char **realloc_argv(unsigned *size, char **old_argv)
477{
478 char **argv;
479 unsigned new_size;
480 gfp_t gfp;
481
482 if (*size) {
483 new_size = *size * 2;
484 gfp = GFP_KERNEL;
485 } else {
486 new_size = 8;
487 gfp = GFP_NOIO;
488 }
489 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 if (argv && old_argv) {
491 memcpy(argv, old_argv, *size * sizeof(*argv));
492 *size = new_size;
493 }
494
495 kfree(old_argv);
496 return argv;
497}
498
499/*
500 * Destructively splits up the argument list to pass to ctr.
501 */
502int dm_split_args(int *argc, char ***argvp, char *input)
503{
504 char *start, *end = input, *out, **argv = NULL;
505 unsigned array_size = 0;
506
507 *argc = 0;
508
509 if (!input) {
510 *argvp = NULL;
511 return 0;
512 }
513
514 argv = realloc_argv(&array_size, argv);
515 if (!argv)
516 return -ENOMEM;
517
518 while (1) {
519 /* Skip whitespace */
520 start = skip_spaces(end);
521
522 if (!*start)
523 break; /* success, we hit the end */
524
525 /* 'out' is used to remove any back-quotes */
526 end = out = start;
527 while (*end) {
528 /* Everything apart from '\0' can be quoted */
529 if (*end == '\\' && *(end + 1)) {
530 *out++ = *(end + 1);
531 end += 2;
532 continue;
533 }
534
535 if (isspace(*end))
536 break; /* end of token */
537
538 *out++ = *end++;
539 }
540
541 /* have we already filled the array ? */
542 if ((*argc + 1) > array_size) {
543 argv = realloc_argv(&array_size, argv);
544 if (!argv)
545 return -ENOMEM;
546 }
547
548 /* we know this is whitespace */
549 if (*end)
550 end++;
551
552 /* terminate the string and put it in the array */
553 *out = '\0';
554 argv[*argc] = start;
555 (*argc)++;
556 }
557
558 *argvp = argv;
559 return 0;
560}
561
562/*
563 * Impose necessary and sufficient conditions on a devices's table such
564 * that any incoming bio which respects its logical_block_size can be
565 * processed successfully. If it falls across the boundary between
566 * two or more targets, the size of each piece it gets split into must
567 * be compatible with the logical_block_size of the target processing it.
568 */
569static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 struct queue_limits *limits)
571{
572 /*
573 * This function uses arithmetic modulo the logical_block_size
574 * (in units of 512-byte sectors).
575 */
576 unsigned short device_logical_block_size_sects =
577 limits->logical_block_size >> SECTOR_SHIFT;
578
579 /*
580 * Offset of the start of the next table entry, mod logical_block_size.
581 */
582 unsigned short next_target_start = 0;
583
584 /*
585 * Given an aligned bio that extends beyond the end of a
586 * target, how many sectors must the next target handle?
587 */
588 unsigned short remaining = 0;
589
590 struct dm_target *ti;
591 struct queue_limits ti_limits;
592 unsigned i;
593
594 /*
595 * Check each entry in the table in turn.
596 */
597 for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 ti = dm_table_get_target(table, i);
599
600 blk_set_stacking_limits(&ti_limits);
601
602 /* combine all target devices' limits */
603 if (ti->type->iterate_devices)
604 ti->type->iterate_devices(ti, dm_set_device_limits,
605 &ti_limits);
606
607 /*
608 * If the remaining sectors fall entirely within this
609 * table entry are they compatible with its logical_block_size?
610 */
611 if (remaining < ti->len &&
612 remaining & ((ti_limits.logical_block_size >>
613 SECTOR_SHIFT) - 1))
614 break; /* Error */
615
616 next_target_start =
617 (unsigned short) ((next_target_start + ti->len) &
618 (device_logical_block_size_sects - 1));
619 remaining = next_target_start ?
620 device_logical_block_size_sects - next_target_start : 0;
621 }
622
623 if (remaining) {
624 DMWARN("%s: table line %u (start sect %llu len %llu) "
625 "not aligned to h/w logical block size %u",
626 dm_device_name(table->md), i,
627 (unsigned long long) ti->begin,
628 (unsigned long long) ti->len,
629 limits->logical_block_size);
630 return -EINVAL;
631 }
632
633 return 0;
634}
635
636int dm_table_add_target(struct dm_table *t, const char *type,
637 sector_t start, sector_t len, char *params)
638{
639 int r = -EINVAL, argc;
640 char **argv;
641 struct dm_target *tgt;
642
643 if (t->singleton) {
644 DMERR("%s: target type %s must appear alone in table",
645 dm_device_name(t->md), t->targets->type->name);
646 return -EINVAL;
647 }
648
649 BUG_ON(t->num_targets >= t->num_allocated);
650
651 tgt = t->targets + t->num_targets;
652 memset(tgt, 0, sizeof(*tgt));
653
654 if (!len) {
655 DMERR("%s: zero-length target", dm_device_name(t->md));
656 return -EINVAL;
657 }
658
659 tgt->type = dm_get_target_type(type);
660 if (!tgt->type) {
661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 return -EINVAL;
663 }
664
665 if (dm_target_needs_singleton(tgt->type)) {
666 if (t->num_targets) {
667 tgt->error = "singleton target type must appear alone in table";
668 goto bad;
669 }
670 t->singleton = true;
671 }
672
673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 tgt->error = "target type may not be included in a read-only table";
675 goto bad;
676 }
677
678 if (t->immutable_target_type) {
679 if (t->immutable_target_type != tgt->type) {
680 tgt->error = "immutable target type cannot be mixed with other target types";
681 goto bad;
682 }
683 } else if (dm_target_is_immutable(tgt->type)) {
684 if (t->num_targets) {
685 tgt->error = "immutable target type cannot be mixed with other target types";
686 goto bad;
687 }
688 t->immutable_target_type = tgt->type;
689 }
690
691 if (dm_target_has_integrity(tgt->type))
692 t->integrity_added = 1;
693
694 tgt->table = t;
695 tgt->begin = start;
696 tgt->len = len;
697 tgt->error = "Unknown error";
698
699 /*
700 * Does this target adjoin the previous one ?
701 */
702 if (!adjoin(t, tgt)) {
703 tgt->error = "Gap in table";
704 goto bad;
705 }
706
707 r = dm_split_args(&argc, &argv, params);
708 if (r) {
709 tgt->error = "couldn't split parameters (insufficient memory)";
710 goto bad;
711 }
712
713 r = tgt->type->ctr(tgt, argc, argv);
714 kfree(argv);
715 if (r)
716 goto bad;
717
718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719
720 if (!tgt->num_discard_bios && tgt->discards_supported)
721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 dm_device_name(t->md), type);
723
724 return 0;
725
726 bad:
727 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
728 dm_put_target_type(tgt->type);
729 return r;
730}
731
732/*
733 * Target argument parsing helpers.
734 */
735static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
738{
739 const char *arg_str = dm_shift_arg(arg_set);
740 char dummy;
741
742 if (!arg_str ||
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
747 *error = arg->error;
748 return -EINVAL;
749 }
750
751 return 0;
752}
753
754int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
756{
757 return validate_next_arg(arg, arg_set, value, error, 0);
758}
759EXPORT_SYMBOL(dm_read_arg);
760
761int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
763{
764 return validate_next_arg(arg, arg_set, value, error, 1);
765}
766EXPORT_SYMBOL(dm_read_arg_group);
767
768const char *dm_shift_arg(struct dm_arg_set *as)
769{
770 char *r;
771
772 if (as->argc) {
773 as->argc--;
774 r = *as->argv;
775 as->argv++;
776 return r;
777 }
778
779 return NULL;
780}
781EXPORT_SYMBOL(dm_shift_arg);
782
783void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784{
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
788}
789EXPORT_SYMBOL(dm_consume_args);
790
791static bool __table_type_bio_based(enum dm_queue_mode table_type)
792{
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
795}
796
797static bool __table_type_request_based(enum dm_queue_mode table_type)
798{
799 return table_type == DM_TYPE_REQUEST_BASED;
800}
801
802void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803{
804 t->type = type;
805}
806EXPORT_SYMBOL_GPL(dm_table_set_type);
807
808/* validate the dax capability of the target device span */
809int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
811{
812 int blocksize = *(int *) data, id;
813 bool rc;
814
815 id = dax_read_lock();
816 rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
817 dax_read_unlock(id);
818
819 return rc;
820}
821
822/* Check devices support synchronous DAX */
823static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
824 sector_t start, sector_t len, void *data)
825{
826 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
827}
828
829bool dm_table_supports_dax(struct dm_table *t,
830 iterate_devices_callout_fn iterate_fn, int *blocksize)
831{
832 struct dm_target *ti;
833 unsigned i;
834
835 /* Ensure that all targets support DAX. */
836 for (i = 0; i < dm_table_get_num_targets(t); i++) {
837 ti = dm_table_get_target(t, i);
838
839 if (!ti->type->direct_access)
840 return false;
841
842 if (!ti->type->iterate_devices ||
843 ti->type->iterate_devices(ti, iterate_fn, blocksize))
844 return false;
845 }
846
847 return true;
848}
849
850static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
851 sector_t start, sector_t len, void *data)
852{
853 struct block_device *bdev = dev->bdev;
854 struct request_queue *q = bdev_get_queue(bdev);
855
856 /* request-based cannot stack on partitions! */
857 if (bdev_is_partition(bdev))
858 return false;
859
860 return queue_is_mq(q);
861}
862
863static int dm_table_determine_type(struct dm_table *t)
864{
865 unsigned i;
866 unsigned bio_based = 0, request_based = 0, hybrid = 0;
867 struct dm_target *tgt;
868 struct list_head *devices = dm_table_get_devices(t);
869 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
870 int page_size = PAGE_SIZE;
871
872 if (t->type != DM_TYPE_NONE) {
873 /* target already set the table's type */
874 if (t->type == DM_TYPE_BIO_BASED) {
875 /* possibly upgrade to a variant of bio-based */
876 goto verify_bio_based;
877 }
878 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
879 goto verify_rq_based;
880 }
881
882 for (i = 0; i < t->num_targets; i++) {
883 tgt = t->targets + i;
884 if (dm_target_hybrid(tgt))
885 hybrid = 1;
886 else if (dm_target_request_based(tgt))
887 request_based = 1;
888 else
889 bio_based = 1;
890
891 if (bio_based && request_based) {
892 DMERR("Inconsistent table: different target types"
893 " can't be mixed up");
894 return -EINVAL;
895 }
896 }
897
898 if (hybrid && !bio_based && !request_based) {
899 /*
900 * The targets can work either way.
901 * Determine the type from the live device.
902 * Default to bio-based if device is new.
903 */
904 if (__table_type_request_based(live_md_type))
905 request_based = 1;
906 else
907 bio_based = 1;
908 }
909
910 if (bio_based) {
911verify_bio_based:
912 /* We must use this table as bio-based */
913 t->type = DM_TYPE_BIO_BASED;
914 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
915 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
916 t->type = DM_TYPE_DAX_BIO_BASED;
917 }
918 return 0;
919 }
920
921 BUG_ON(!request_based); /* No targets in this table */
922
923 t->type = DM_TYPE_REQUEST_BASED;
924
925verify_rq_based:
926 /*
927 * Request-based dm supports only tables that have a single target now.
928 * To support multiple targets, request splitting support is needed,
929 * and that needs lots of changes in the block-layer.
930 * (e.g. request completion process for partial completion.)
931 */
932 if (t->num_targets > 1) {
933 DMERR("request-based DM doesn't support multiple targets");
934 return -EINVAL;
935 }
936
937 if (list_empty(devices)) {
938 int srcu_idx;
939 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
940
941 /* inherit live table's type */
942 if (live_table)
943 t->type = live_table->type;
944 dm_put_live_table(t->md, srcu_idx);
945 return 0;
946 }
947
948 tgt = dm_table_get_immutable_target(t);
949 if (!tgt) {
950 DMERR("table load rejected: immutable target is required");
951 return -EINVAL;
952 } else if (tgt->max_io_len) {
953 DMERR("table load rejected: immutable target that splits IO is not supported");
954 return -EINVAL;
955 }
956
957 /* Non-request-stackable devices can't be used for request-based dm */
958 if (!tgt->type->iterate_devices ||
959 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
960 DMERR("table load rejected: including non-request-stackable devices");
961 return -EINVAL;
962 }
963
964 return 0;
965}
966
967enum dm_queue_mode dm_table_get_type(struct dm_table *t)
968{
969 return t->type;
970}
971
972struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
973{
974 return t->immutable_target_type;
975}
976
977struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
978{
979 /* Immutable target is implicitly a singleton */
980 if (t->num_targets > 1 ||
981 !dm_target_is_immutable(t->targets[0].type))
982 return NULL;
983
984 return t->targets;
985}
986
987struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
988{
989 struct dm_target *ti;
990 unsigned i;
991
992 for (i = 0; i < dm_table_get_num_targets(t); i++) {
993 ti = dm_table_get_target(t, i);
994 if (dm_target_is_wildcard(ti->type))
995 return ti;
996 }
997
998 return NULL;
999}
1000
1001bool dm_table_bio_based(struct dm_table *t)
1002{
1003 return __table_type_bio_based(dm_table_get_type(t));
1004}
1005
1006bool dm_table_request_based(struct dm_table *t)
1007{
1008 return __table_type_request_based(dm_table_get_type(t));
1009}
1010
1011static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1012{
1013 enum dm_queue_mode type = dm_table_get_type(t);
1014 unsigned per_io_data_size = 0;
1015 unsigned min_pool_size = 0;
1016 struct dm_target *ti;
1017 unsigned i;
1018
1019 if (unlikely(type == DM_TYPE_NONE)) {
1020 DMWARN("no table type is set, can't allocate mempools");
1021 return -EINVAL;
1022 }
1023
1024 if (__table_type_bio_based(type))
1025 for (i = 0; i < t->num_targets; i++) {
1026 ti = t->targets + i;
1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 }
1030
1031 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1032 per_io_data_size, min_pool_size);
1033 if (!t->mempools)
1034 return -ENOMEM;
1035
1036 return 0;
1037}
1038
1039void dm_table_free_md_mempools(struct dm_table *t)
1040{
1041 dm_free_md_mempools(t->mempools);
1042 t->mempools = NULL;
1043}
1044
1045struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1046{
1047 return t->mempools;
1048}
1049
1050static int setup_indexes(struct dm_table *t)
1051{
1052 int i;
1053 unsigned int total = 0;
1054 sector_t *indexes;
1055
1056 /* allocate the space for *all* the indexes */
1057 for (i = t->depth - 2; i >= 0; i--) {
1058 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1059 total += t->counts[i];
1060 }
1061
1062 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1063 if (!indexes)
1064 return -ENOMEM;
1065
1066 /* set up internal nodes, bottom-up */
1067 for (i = t->depth - 2; i >= 0; i--) {
1068 t->index[i] = indexes;
1069 indexes += (KEYS_PER_NODE * t->counts[i]);
1070 setup_btree_index(i, t);
1071 }
1072
1073 return 0;
1074}
1075
1076/*
1077 * Builds the btree to index the map.
1078 */
1079static int dm_table_build_index(struct dm_table *t)
1080{
1081 int r = 0;
1082 unsigned int leaf_nodes;
1083
1084 /* how many indexes will the btree have ? */
1085 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1086 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1087
1088 /* leaf layer has already been set up */
1089 t->counts[t->depth - 1] = leaf_nodes;
1090 t->index[t->depth - 1] = t->highs;
1091
1092 if (t->depth >= 2)
1093 r = setup_indexes(t);
1094
1095 return r;
1096}
1097
1098static bool integrity_profile_exists(struct gendisk *disk)
1099{
1100 return !!blk_get_integrity(disk);
1101}
1102
1103/*
1104 * Get a disk whose integrity profile reflects the table's profile.
1105 * Returns NULL if integrity support was inconsistent or unavailable.
1106 */
1107static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1108{
1109 struct list_head *devices = dm_table_get_devices(t);
1110 struct dm_dev_internal *dd = NULL;
1111 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1112 unsigned i;
1113
1114 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1115 struct dm_target *ti = dm_table_get_target(t, i);
1116 if (!dm_target_passes_integrity(ti->type))
1117 goto no_integrity;
1118 }
1119
1120 list_for_each_entry(dd, devices, list) {
1121 template_disk = dd->dm_dev->bdev->bd_disk;
1122 if (!integrity_profile_exists(template_disk))
1123 goto no_integrity;
1124 else if (prev_disk &&
1125 blk_integrity_compare(prev_disk, template_disk) < 0)
1126 goto no_integrity;
1127 prev_disk = template_disk;
1128 }
1129
1130 return template_disk;
1131
1132no_integrity:
1133 if (prev_disk)
1134 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1135 dm_device_name(t->md),
1136 prev_disk->disk_name,
1137 template_disk->disk_name);
1138 return NULL;
1139}
1140
1141/*
1142 * Register the mapped device for blk_integrity support if the
1143 * underlying devices have an integrity profile. But all devices may
1144 * not have matching profiles (checking all devices isn't reliable
1145 * during table load because this table may use other DM device(s) which
1146 * must be resumed before they will have an initialized integity
1147 * profile). Consequently, stacked DM devices force a 2 stage integrity
1148 * profile validation: First pass during table load, final pass during
1149 * resume.
1150 */
1151static int dm_table_register_integrity(struct dm_table *t)
1152{
1153 struct mapped_device *md = t->md;
1154 struct gendisk *template_disk = NULL;
1155
1156 /* If target handles integrity itself do not register it here. */
1157 if (t->integrity_added)
1158 return 0;
1159
1160 template_disk = dm_table_get_integrity_disk(t);
1161 if (!template_disk)
1162 return 0;
1163
1164 if (!integrity_profile_exists(dm_disk(md))) {
1165 t->integrity_supported = true;
1166 /*
1167 * Register integrity profile during table load; we can do
1168 * this because the final profile must match during resume.
1169 */
1170 blk_integrity_register(dm_disk(md),
1171 blk_get_integrity(template_disk));
1172 return 0;
1173 }
1174
1175 /*
1176 * If DM device already has an initialized integrity
1177 * profile the new profile should not conflict.
1178 */
1179 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1180 DMWARN("%s: conflict with existing integrity profile: "
1181 "%s profile mismatch",
1182 dm_device_name(t->md),
1183 template_disk->disk_name);
1184 return 1;
1185 }
1186
1187 /* Preserve existing integrity profile */
1188 t->integrity_supported = true;
1189 return 0;
1190}
1191
1192#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1193
1194struct dm_keyslot_manager {
1195 struct blk_keyslot_manager ksm;
1196 struct mapped_device *md;
1197};
1198
1199struct dm_keyslot_evict_args {
1200 const struct blk_crypto_key *key;
1201 int err;
1202};
1203
1204static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1205 sector_t start, sector_t len, void *data)
1206{
1207 struct dm_keyslot_evict_args *args = data;
1208 int err;
1209
1210 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1211 if (!args->err)
1212 args->err = err;
1213 /* Always try to evict the key from all devices. */
1214 return 0;
1215}
1216
1217/*
1218 * When an inline encryption key is evicted from a device-mapper device, evict
1219 * it from all the underlying devices.
1220 */
1221static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1222 const struct blk_crypto_key *key, unsigned int slot)
1223{
1224 struct dm_keyslot_manager *dksm = container_of(ksm,
1225 struct dm_keyslot_manager,
1226 ksm);
1227 struct mapped_device *md = dksm->md;
1228 struct dm_keyslot_evict_args args = { key };
1229 struct dm_table *t;
1230 int srcu_idx;
1231 int i;
1232 struct dm_target *ti;
1233
1234 t = dm_get_live_table(md, &srcu_idx);
1235 if (!t)
1236 return 0;
1237 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1238 ti = dm_table_get_target(t, i);
1239 if (!ti->type->iterate_devices)
1240 continue;
1241 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1242 }
1243 dm_put_live_table(md, srcu_idx);
1244 return args.err;
1245}
1246
1247static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1248 .keyslot_evict = dm_keyslot_evict,
1249};
1250
1251static int device_intersect_crypto_modes(struct dm_target *ti,
1252 struct dm_dev *dev, sector_t start,
1253 sector_t len, void *data)
1254{
1255 struct blk_keyslot_manager *parent = data;
1256 struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1257
1258 blk_ksm_intersect_modes(parent, child);
1259 return 0;
1260}
1261
1262void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1263{
1264 struct dm_keyslot_manager *dksm = container_of(ksm,
1265 struct dm_keyslot_manager,
1266 ksm);
1267
1268 if (!ksm)
1269 return;
1270
1271 blk_ksm_destroy(ksm);
1272 kfree(dksm);
1273}
1274
1275static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1276{
1277 dm_destroy_keyslot_manager(t->ksm);
1278 t->ksm = NULL;
1279}
1280
1281/*
1282 * Constructs and initializes t->ksm with a keyslot manager that
1283 * represents the common set of crypto capabilities of the devices
1284 * described by the dm_table. However, if the constructed keyslot
1285 * manager does not support a superset of the crypto capabilities
1286 * supported by the current keyslot manager of the mapped_device,
1287 * it returns an error instead, since we don't support restricting
1288 * crypto capabilities on table changes. Finally, if the constructed
1289 * keyslot manager doesn't actually support any crypto modes at all,
1290 * it just returns NULL.
1291 */
1292static int dm_table_construct_keyslot_manager(struct dm_table *t)
1293{
1294 struct dm_keyslot_manager *dksm;
1295 struct blk_keyslot_manager *ksm;
1296 struct dm_target *ti;
1297 unsigned int i;
1298 bool ksm_is_empty = true;
1299
1300 dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1301 if (!dksm)
1302 return -ENOMEM;
1303 dksm->md = t->md;
1304
1305 ksm = &dksm->ksm;
1306 blk_ksm_init_passthrough(ksm);
1307 ksm->ksm_ll_ops = dm_ksm_ll_ops;
1308 ksm->max_dun_bytes_supported = UINT_MAX;
1309 memset(ksm->crypto_modes_supported, 0xFF,
1310 sizeof(ksm->crypto_modes_supported));
1311
1312 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1313 ti = dm_table_get_target(t, i);
1314
1315 if (!dm_target_passes_crypto(ti->type)) {
1316 blk_ksm_intersect_modes(ksm, NULL);
1317 break;
1318 }
1319 if (!ti->type->iterate_devices)
1320 continue;
1321 ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1322 ksm);
1323 }
1324
1325 if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1326 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1327 dm_destroy_keyslot_manager(ksm);
1328 return -EINVAL;
1329 }
1330
1331 /*
1332 * If the new KSM doesn't actually support any crypto modes, we may as
1333 * well represent it with a NULL ksm.
1334 */
1335 ksm_is_empty = true;
1336 for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1337 if (ksm->crypto_modes_supported[i]) {
1338 ksm_is_empty = false;
1339 break;
1340 }
1341 }
1342
1343 if (ksm_is_empty) {
1344 dm_destroy_keyslot_manager(ksm);
1345 ksm = NULL;
1346 }
1347
1348 /*
1349 * t->ksm is only set temporarily while the table is being set
1350 * up, and it gets set to NULL after the capabilities have
1351 * been transferred to the request_queue.
1352 */
1353 t->ksm = ksm;
1354
1355 return 0;
1356}
1357
1358static void dm_update_keyslot_manager(struct request_queue *q,
1359 struct dm_table *t)
1360{
1361 if (!t->ksm)
1362 return;
1363
1364 /* Make the ksm less restrictive */
1365 if (!q->ksm) {
1366 blk_ksm_register(t->ksm, q);
1367 } else {
1368 blk_ksm_update_capabilities(q->ksm, t->ksm);
1369 dm_destroy_keyslot_manager(t->ksm);
1370 }
1371 t->ksm = NULL;
1372}
1373
1374#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1375
1376static int dm_table_construct_keyslot_manager(struct dm_table *t)
1377{
1378 return 0;
1379}
1380
1381void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1382{
1383}
1384
1385static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1386{
1387}
1388
1389static void dm_update_keyslot_manager(struct request_queue *q,
1390 struct dm_table *t)
1391{
1392}
1393
1394#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1395
1396/*
1397 * Prepares the table for use by building the indices,
1398 * setting the type, and allocating mempools.
1399 */
1400int dm_table_complete(struct dm_table *t)
1401{
1402 int r;
1403
1404 r = dm_table_determine_type(t);
1405 if (r) {
1406 DMERR("unable to determine table type");
1407 return r;
1408 }
1409
1410 r = dm_table_build_index(t);
1411 if (r) {
1412 DMERR("unable to build btrees");
1413 return r;
1414 }
1415
1416 r = dm_table_register_integrity(t);
1417 if (r) {
1418 DMERR("could not register integrity profile.");
1419 return r;
1420 }
1421
1422 r = dm_table_construct_keyslot_manager(t);
1423 if (r) {
1424 DMERR("could not construct keyslot manager.");
1425 return r;
1426 }
1427
1428 r = dm_table_alloc_md_mempools(t, t->md);
1429 if (r)
1430 DMERR("unable to allocate mempools");
1431
1432 return r;
1433}
1434
1435static DEFINE_MUTEX(_event_lock);
1436void dm_table_event_callback(struct dm_table *t,
1437 void (*fn)(void *), void *context)
1438{
1439 mutex_lock(&_event_lock);
1440 t->event_fn = fn;
1441 t->event_context = context;
1442 mutex_unlock(&_event_lock);
1443}
1444
1445void dm_table_event(struct dm_table *t)
1446{
1447 mutex_lock(&_event_lock);
1448 if (t->event_fn)
1449 t->event_fn(t->event_context);
1450 mutex_unlock(&_event_lock);
1451}
1452EXPORT_SYMBOL(dm_table_event);
1453
1454inline sector_t dm_table_get_size(struct dm_table *t)
1455{
1456 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1457}
1458EXPORT_SYMBOL(dm_table_get_size);
1459
1460struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1461{
1462 if (index >= t->num_targets)
1463 return NULL;
1464
1465 return t->targets + index;
1466}
1467
1468/*
1469 * Search the btree for the correct target.
1470 *
1471 * Caller should check returned pointer for NULL
1472 * to trap I/O beyond end of device.
1473 */
1474struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1475{
1476 unsigned int l, n = 0, k = 0;
1477 sector_t *node;
1478
1479 if (unlikely(sector >= dm_table_get_size(t)))
1480 return NULL;
1481
1482 for (l = 0; l < t->depth; l++) {
1483 n = get_child(n, k);
1484 node = get_node(t, l, n);
1485
1486 for (k = 0; k < KEYS_PER_NODE; k++)
1487 if (node[k] >= sector)
1488 break;
1489 }
1490
1491 return &t->targets[(KEYS_PER_NODE * n) + k];
1492}
1493
1494/*
1495 * type->iterate_devices() should be called when the sanity check needs to
1496 * iterate and check all underlying data devices. iterate_devices() will
1497 * iterate all underlying data devices until it encounters a non-zero return
1498 * code, returned by whether the input iterate_devices_callout_fn, or
1499 * iterate_devices() itself internally.
1500 *
1501 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1502 * iterate multiple underlying devices internally, in which case a non-zero
1503 * return code returned by iterate_devices_callout_fn will stop the iteration
1504 * in advance.
1505 *
1506 * Cases requiring _any_ underlying device supporting some kind of attribute,
1507 * should use the iteration structure like dm_table_any_dev_attr(), or call
1508 * it directly. @func should handle semantics of positive examples, e.g.
1509 * capable of something.
1510 *
1511 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1512 * should use the iteration structure like dm_table_supports_nowait() or
1513 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1514 * uses an @anti_func that handle semantics of counter examples, e.g. not
1515 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1516 */
1517static bool dm_table_any_dev_attr(struct dm_table *t,
1518 iterate_devices_callout_fn func, void *data)
1519{
1520 struct dm_target *ti;
1521 unsigned int i;
1522
1523 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1524 ti = dm_table_get_target(t, i);
1525
1526 if (ti->type->iterate_devices &&
1527 ti->type->iterate_devices(ti, func, data))
1528 return true;
1529 }
1530
1531 return false;
1532}
1533
1534static int count_device(struct dm_target *ti, struct dm_dev *dev,
1535 sector_t start, sector_t len, void *data)
1536{
1537 unsigned *num_devices = data;
1538
1539 (*num_devices)++;
1540
1541 return 0;
1542}
1543
1544/*
1545 * Check whether a table has no data devices attached using each
1546 * target's iterate_devices method.
1547 * Returns false if the result is unknown because a target doesn't
1548 * support iterate_devices.
1549 */
1550bool dm_table_has_no_data_devices(struct dm_table *table)
1551{
1552 struct dm_target *ti;
1553 unsigned i, num_devices;
1554
1555 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1556 ti = dm_table_get_target(table, i);
1557
1558 if (!ti->type->iterate_devices)
1559 return false;
1560
1561 num_devices = 0;
1562 ti->type->iterate_devices(ti, count_device, &num_devices);
1563 if (num_devices)
1564 return false;
1565 }
1566
1567 return true;
1568}
1569
1570static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1571 sector_t start, sector_t len, void *data)
1572{
1573 struct request_queue *q = bdev_get_queue(dev->bdev);
1574 enum blk_zoned_model *zoned_model = data;
1575
1576 return blk_queue_zoned_model(q) != *zoned_model;
1577}
1578
1579/*
1580 * Check the device zoned model based on the target feature flag. If the target
1581 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1582 * also accepted but all devices must have the same zoned model. If the target
1583 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1584 * zoned model with all zoned devices having the same zone size.
1585 */
1586static bool dm_table_supports_zoned_model(struct dm_table *t,
1587 enum blk_zoned_model zoned_model)
1588{
1589 struct dm_target *ti;
1590 unsigned i;
1591
1592 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1593 ti = dm_table_get_target(t, i);
1594
1595 if (dm_target_supports_zoned_hm(ti->type)) {
1596 if (!ti->type->iterate_devices ||
1597 ti->type->iterate_devices(ti, device_not_zoned_model,
1598 &zoned_model))
1599 return false;
1600 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1601 if (zoned_model == BLK_ZONED_HM)
1602 return false;
1603 }
1604 }
1605
1606 return true;
1607}
1608
1609static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1610 sector_t start, sector_t len, void *data)
1611{
1612 struct request_queue *q = bdev_get_queue(dev->bdev);
1613 unsigned int *zone_sectors = data;
1614
1615 if (!blk_queue_is_zoned(q))
1616 return 0;
1617
1618 return blk_queue_zone_sectors(q) != *zone_sectors;
1619}
1620
1621/*
1622 * Check consistency of zoned model and zone sectors across all targets. For
1623 * zone sectors, if the destination device is a zoned block device, it shall
1624 * have the specified zone_sectors.
1625 */
1626static int validate_hardware_zoned_model(struct dm_table *table,
1627 enum blk_zoned_model zoned_model,
1628 unsigned int zone_sectors)
1629{
1630 if (zoned_model == BLK_ZONED_NONE)
1631 return 0;
1632
1633 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1634 DMERR("%s: zoned model is not consistent across all devices",
1635 dm_device_name(table->md));
1636 return -EINVAL;
1637 }
1638
1639 /* Check zone size validity and compatibility */
1640 if (!zone_sectors || !is_power_of_2(zone_sectors))
1641 return -EINVAL;
1642
1643 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1644 DMERR("%s: zone sectors is not consistent across all zoned devices",
1645 dm_device_name(table->md));
1646 return -EINVAL;
1647 }
1648
1649 return 0;
1650}
1651
1652/*
1653 * Establish the new table's queue_limits and validate them.
1654 */
1655int dm_calculate_queue_limits(struct dm_table *table,
1656 struct queue_limits *limits)
1657{
1658 struct dm_target *ti;
1659 struct queue_limits ti_limits;
1660 unsigned i;
1661 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1662 unsigned int zone_sectors = 0;
1663
1664 blk_set_stacking_limits(limits);
1665
1666 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1667 blk_set_stacking_limits(&ti_limits);
1668
1669 ti = dm_table_get_target(table, i);
1670
1671 if (!ti->type->iterate_devices)
1672 goto combine_limits;
1673
1674 /*
1675 * Combine queue limits of all the devices this target uses.
1676 */
1677 ti->type->iterate_devices(ti, dm_set_device_limits,
1678 &ti_limits);
1679
1680 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1681 /*
1682 * After stacking all limits, validate all devices
1683 * in table support this zoned model and zone sectors.
1684 */
1685 zoned_model = ti_limits.zoned;
1686 zone_sectors = ti_limits.chunk_sectors;
1687 }
1688
1689 /* Set I/O hints portion of queue limits */
1690 if (ti->type->io_hints)
1691 ti->type->io_hints(ti, &ti_limits);
1692
1693 /*
1694 * Check each device area is consistent with the target's
1695 * overall queue limits.
1696 */
1697 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1698 &ti_limits))
1699 return -EINVAL;
1700
1701combine_limits:
1702 /*
1703 * Merge this target's queue limits into the overall limits
1704 * for the table.
1705 */
1706 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1707 DMWARN("%s: adding target device "
1708 "(start sect %llu len %llu) "
1709 "caused an alignment inconsistency",
1710 dm_device_name(table->md),
1711 (unsigned long long) ti->begin,
1712 (unsigned long long) ti->len);
1713 }
1714
1715 /*
1716 * Verify that the zoned model and zone sectors, as determined before
1717 * any .io_hints override, are the same across all devices in the table.
1718 * - this is especially relevant if .io_hints is emulating a disk-managed
1719 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1720 * BUT...
1721 */
1722 if (limits->zoned != BLK_ZONED_NONE) {
1723 /*
1724 * ...IF the above limits stacking determined a zoned model
1725 * validate that all of the table's devices conform to it.
1726 */
1727 zoned_model = limits->zoned;
1728 zone_sectors = limits->chunk_sectors;
1729 }
1730 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1731 return -EINVAL;
1732
1733 return validate_hardware_logical_block_alignment(table, limits);
1734}
1735
1736/*
1737 * Verify that all devices have an integrity profile that matches the
1738 * DM device's registered integrity profile. If the profiles don't
1739 * match then unregister the DM device's integrity profile.
1740 */
1741static void dm_table_verify_integrity(struct dm_table *t)
1742{
1743 struct gendisk *template_disk = NULL;
1744
1745 if (t->integrity_added)
1746 return;
1747
1748 if (t->integrity_supported) {
1749 /*
1750 * Verify that the original integrity profile
1751 * matches all the devices in this table.
1752 */
1753 template_disk = dm_table_get_integrity_disk(t);
1754 if (template_disk &&
1755 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1756 return;
1757 }
1758
1759 if (integrity_profile_exists(dm_disk(t->md))) {
1760 DMWARN("%s: unable to establish an integrity profile",
1761 dm_device_name(t->md));
1762 blk_integrity_unregister(dm_disk(t->md));
1763 }
1764}
1765
1766static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1767 sector_t start, sector_t len, void *data)
1768{
1769 unsigned long flush = (unsigned long) data;
1770 struct request_queue *q = bdev_get_queue(dev->bdev);
1771
1772 return (q->queue_flags & flush);
1773}
1774
1775static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1776{
1777 struct dm_target *ti;
1778 unsigned i;
1779
1780 /*
1781 * Require at least one underlying device to support flushes.
1782 * t->devices includes internal dm devices such as mirror logs
1783 * so we need to use iterate_devices here, which targets
1784 * supporting flushes must provide.
1785 */
1786 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1787 ti = dm_table_get_target(t, i);
1788
1789 if (!ti->num_flush_bios)
1790 continue;
1791
1792 if (ti->flush_supported)
1793 return true;
1794
1795 if (ti->type->iterate_devices &&
1796 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1797 return true;
1798 }
1799
1800 return false;
1801}
1802
1803static int device_dax_write_cache_enabled(struct dm_target *ti,
1804 struct dm_dev *dev, sector_t start,
1805 sector_t len, void *data)
1806{
1807 struct dax_device *dax_dev = dev->dax_dev;
1808
1809 if (!dax_dev)
1810 return false;
1811
1812 if (dax_write_cache_enabled(dax_dev))
1813 return true;
1814 return false;
1815}
1816
1817static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1818 sector_t start, sector_t len, void *data)
1819{
1820 struct request_queue *q = bdev_get_queue(dev->bdev);
1821
1822 return !blk_queue_nonrot(q);
1823}
1824
1825static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1826 sector_t start, sector_t len, void *data)
1827{
1828 struct request_queue *q = bdev_get_queue(dev->bdev);
1829
1830 return !blk_queue_add_random(q);
1831}
1832
1833static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1834 sector_t start, sector_t len, void *data)
1835{
1836 struct request_queue *q = bdev_get_queue(dev->bdev);
1837
1838 return !q->limits.max_write_same_sectors;
1839}
1840
1841static bool dm_table_supports_write_same(struct dm_table *t)
1842{
1843 struct dm_target *ti;
1844 unsigned i;
1845
1846 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1847 ti = dm_table_get_target(t, i);
1848
1849 if (!ti->num_write_same_bios)
1850 return false;
1851
1852 if (!ti->type->iterate_devices ||
1853 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1854 return false;
1855 }
1856
1857 return true;
1858}
1859
1860static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1861 sector_t start, sector_t len, void *data)
1862{
1863 struct request_queue *q = bdev_get_queue(dev->bdev);
1864
1865 return !q->limits.max_write_zeroes_sectors;
1866}
1867
1868static bool dm_table_supports_write_zeroes(struct dm_table *t)
1869{
1870 struct dm_target *ti;
1871 unsigned i = 0;
1872
1873 while (i < dm_table_get_num_targets(t)) {
1874 ti = dm_table_get_target(t, i++);
1875
1876 if (!ti->num_write_zeroes_bios)
1877 return false;
1878
1879 if (!ti->type->iterate_devices ||
1880 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1881 return false;
1882 }
1883
1884 return true;
1885}
1886
1887static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1888 sector_t start, sector_t len, void *data)
1889{
1890 struct request_queue *q = bdev_get_queue(dev->bdev);
1891
1892 return !blk_queue_nowait(q);
1893}
1894
1895static bool dm_table_supports_nowait(struct dm_table *t)
1896{
1897 struct dm_target *ti;
1898 unsigned i = 0;
1899
1900 while (i < dm_table_get_num_targets(t)) {
1901 ti = dm_table_get_target(t, i++);
1902
1903 if (!dm_target_supports_nowait(ti->type))
1904 return false;
1905
1906 if (!ti->type->iterate_devices ||
1907 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1908 return false;
1909 }
1910
1911 return true;
1912}
1913
1914static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1915 sector_t start, sector_t len, void *data)
1916{
1917 struct request_queue *q = bdev_get_queue(dev->bdev);
1918
1919 return !blk_queue_discard(q);
1920}
1921
1922static bool dm_table_supports_discards(struct dm_table *t)
1923{
1924 struct dm_target *ti;
1925 unsigned i;
1926
1927 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1928 ti = dm_table_get_target(t, i);
1929
1930 if (!ti->num_discard_bios)
1931 return false;
1932
1933 /*
1934 * Either the target provides discard support (as implied by setting
1935 * 'discards_supported') or it relies on _all_ data devices having
1936 * discard support.
1937 */
1938 if (!ti->discards_supported &&
1939 (!ti->type->iterate_devices ||
1940 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1941 return false;
1942 }
1943
1944 return true;
1945}
1946
1947static int device_not_secure_erase_capable(struct dm_target *ti,
1948 struct dm_dev *dev, sector_t start,
1949 sector_t len, void *data)
1950{
1951 struct request_queue *q = bdev_get_queue(dev->bdev);
1952
1953 return !blk_queue_secure_erase(q);
1954}
1955
1956static bool dm_table_supports_secure_erase(struct dm_table *t)
1957{
1958 struct dm_target *ti;
1959 unsigned int i;
1960
1961 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1962 ti = dm_table_get_target(t, i);
1963
1964 if (!ti->num_secure_erase_bios)
1965 return false;
1966
1967 if (!ti->type->iterate_devices ||
1968 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1969 return false;
1970 }
1971
1972 return true;
1973}
1974
1975static int device_requires_stable_pages(struct dm_target *ti,
1976 struct dm_dev *dev, sector_t start,
1977 sector_t len, void *data)
1978{
1979 struct request_queue *q = bdev_get_queue(dev->bdev);
1980
1981 return blk_queue_stable_writes(q);
1982}
1983
1984int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1985 struct queue_limits *limits)
1986{
1987 bool wc = false, fua = false;
1988 int page_size = PAGE_SIZE;
1989 int r;
1990
1991 /*
1992 * Copy table's limits to the DM device's request_queue
1993 */
1994 q->limits = *limits;
1995
1996 if (dm_table_supports_nowait(t))
1997 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1998 else
1999 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2000
2001 if (!dm_table_supports_discards(t)) {
2002 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2003 /* Must also clear discard limits... */
2004 q->limits.max_discard_sectors = 0;
2005 q->limits.max_hw_discard_sectors = 0;
2006 q->limits.discard_granularity = 0;
2007 q->limits.discard_alignment = 0;
2008 q->limits.discard_misaligned = 0;
2009 } else
2010 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2011
2012 if (dm_table_supports_secure_erase(t))
2013 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2014
2015 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2016 wc = true;
2017 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2018 fua = true;
2019 }
2020 blk_queue_write_cache(q, wc, fua);
2021
2022 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2023 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2024 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2025 set_dax_synchronous(t->md->dax_dev);
2026 }
2027 else
2028 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2029
2030 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2031 dax_write_cache(t->md->dax_dev, true);
2032
2033 /* Ensure that all underlying devices are non-rotational. */
2034 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2035 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2036 else
2037 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2038
2039 if (!dm_table_supports_write_same(t))
2040 q->limits.max_write_same_sectors = 0;
2041 if (!dm_table_supports_write_zeroes(t))
2042 q->limits.max_write_zeroes_sectors = 0;
2043
2044 dm_table_verify_integrity(t);
2045
2046 /*
2047 * Some devices don't use blk_integrity but still want stable pages
2048 * because they do their own checksumming.
2049 * If any underlying device requires stable pages, a table must require
2050 * them as well. Only targets that support iterate_devices are considered:
2051 * don't want error, zero, etc to require stable pages.
2052 */
2053 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2054 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2055 else
2056 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2057
2058 /*
2059 * Determine whether or not this queue's I/O timings contribute
2060 * to the entropy pool, Only request-based targets use this.
2061 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2062 * have it set.
2063 */
2064 if (blk_queue_add_random(q) &&
2065 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2066 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2067
2068 /*
2069 * For a zoned target, setup the zones related queue attributes
2070 * and resources necessary for zone append emulation if necessary.
2071 */
2072 if (blk_queue_is_zoned(q)) {
2073 r = dm_set_zones_restrictions(t, q);
2074 if (r)
2075 return r;
2076 }
2077
2078 dm_update_keyslot_manager(q, t);
2079 blk_queue_update_readahead(q);
2080
2081 return 0;
2082}
2083
2084unsigned int dm_table_get_num_targets(struct dm_table *t)
2085{
2086 return t->num_targets;
2087}
2088
2089struct list_head *dm_table_get_devices(struct dm_table *t)
2090{
2091 return &t->devices;
2092}
2093
2094fmode_t dm_table_get_mode(struct dm_table *t)
2095{
2096 return t->mode;
2097}
2098EXPORT_SYMBOL(dm_table_get_mode);
2099
2100enum suspend_mode {
2101 PRESUSPEND,
2102 PRESUSPEND_UNDO,
2103 POSTSUSPEND,
2104};
2105
2106static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2107{
2108 int i = t->num_targets;
2109 struct dm_target *ti = t->targets;
2110
2111 lockdep_assert_held(&t->md->suspend_lock);
2112
2113 while (i--) {
2114 switch (mode) {
2115 case PRESUSPEND:
2116 if (ti->type->presuspend)
2117 ti->type->presuspend(ti);
2118 break;
2119 case PRESUSPEND_UNDO:
2120 if (ti->type->presuspend_undo)
2121 ti->type->presuspend_undo(ti);
2122 break;
2123 case POSTSUSPEND:
2124 if (ti->type->postsuspend)
2125 ti->type->postsuspend(ti);
2126 break;
2127 }
2128 ti++;
2129 }
2130}
2131
2132void dm_table_presuspend_targets(struct dm_table *t)
2133{
2134 if (!t)
2135 return;
2136
2137 suspend_targets(t, PRESUSPEND);
2138}
2139
2140void dm_table_presuspend_undo_targets(struct dm_table *t)
2141{
2142 if (!t)
2143 return;
2144
2145 suspend_targets(t, PRESUSPEND_UNDO);
2146}
2147
2148void dm_table_postsuspend_targets(struct dm_table *t)
2149{
2150 if (!t)
2151 return;
2152
2153 suspend_targets(t, POSTSUSPEND);
2154}
2155
2156int dm_table_resume_targets(struct dm_table *t)
2157{
2158 int i, r = 0;
2159
2160 lockdep_assert_held(&t->md->suspend_lock);
2161
2162 for (i = 0; i < t->num_targets; i++) {
2163 struct dm_target *ti = t->targets + i;
2164
2165 if (!ti->type->preresume)
2166 continue;
2167
2168 r = ti->type->preresume(ti);
2169 if (r) {
2170 DMERR("%s: %s: preresume failed, error = %d",
2171 dm_device_name(t->md), ti->type->name, r);
2172 return r;
2173 }
2174 }
2175
2176 for (i = 0; i < t->num_targets; i++) {
2177 struct dm_target *ti = t->targets + i;
2178
2179 if (ti->type->resume)
2180 ti->type->resume(ti);
2181 }
2182
2183 return 0;
2184}
2185
2186struct mapped_device *dm_table_get_md(struct dm_table *t)
2187{
2188 return t->md;
2189}
2190EXPORT_SYMBOL(dm_table_get_md);
2191
2192const char *dm_table_device_name(struct dm_table *t)
2193{
2194 return dm_device_name(t->md);
2195}
2196EXPORT_SYMBOL_GPL(dm_table_device_name);
2197
2198void dm_table_run_md_queue_async(struct dm_table *t)
2199{
2200 if (!dm_table_request_based(t))
2201 return;
2202
2203 if (t->md->queue)
2204 blk_mq_run_hw_queues(t->md->queue, true);
2205}
2206EXPORT_SYMBOL(dm_table_run_md_queue_async);
2207