Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11
  12#include <linux/module.h>
  13#include <linux/vmalloc.h>
  14#include <linux/blkdev.h>
  15#include <linux/blk-integrity.h>
  16#include <linux/namei.h>
  17#include <linux/ctype.h>
  18#include <linux/string.h>
  19#include <linux/slab.h>
  20#include <linux/interrupt.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/atomic.h>
  24#include <linux/blk-mq.h>
  25#include <linux/mount.h>
  26#include <linux/dax.h>
  27
  28#define DM_MSG_PREFIX "table"
  29
 
  30#define NODE_SIZE L1_CACHE_BYTES
  31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*
  35 * Similar to ceiling(log_size(n))
  36 */
  37static unsigned int int_log(unsigned int n, unsigned int base)
  38{
  39	int result = 0;
  40
  41	while (n > 1) {
  42		n = dm_div_up(n, base);
  43		result++;
  44	}
  45
  46	return result;
  47}
  48
  49/*
  50 * Calculate the index of the child node of the n'th node k'th key.
  51 */
  52static inline unsigned int get_child(unsigned int n, unsigned int k)
  53{
  54	return (n * CHILDREN_PER_NODE) + k;
  55}
  56
  57/*
  58 * Return the n'th node of level l from table t.
  59 */
  60static inline sector_t *get_node(struct dm_table *t,
  61				 unsigned int l, unsigned int n)
  62{
  63	return t->index[l] + (n * KEYS_PER_NODE);
  64}
  65
  66/*
  67 * Return the highest key that you could lookup from the n'th
  68 * node on level l of the btree.
  69 */
  70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  71{
  72	for (; l < t->depth - 1; l++)
  73		n = get_child(n, CHILDREN_PER_NODE - 1);
  74
  75	if (n >= t->counts[l])
  76		return (sector_t) -1;
  77
  78	return get_node(t, l, n)[KEYS_PER_NODE - 1];
  79}
  80
  81/*
  82 * Fills in a level of the btree based on the highs of the level
  83 * below it.
  84 */
  85static int setup_btree_index(unsigned int l, struct dm_table *t)
  86{
  87	unsigned int n, k;
  88	sector_t *node;
  89
  90	for (n = 0U; n < t->counts[l]; n++) {
  91		node = get_node(t, l, n);
  92
  93		for (k = 0U; k < KEYS_PER_NODE; k++)
  94			node[k] = high(t, l + 1, get_child(n, k));
  95	}
  96
  97	return 0;
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100/*
 101 * highs, and targets are managed as dynamic arrays during a
 102 * table load.
 103 */
 104static int alloc_targets(struct dm_table *t, unsigned int num)
 105{
 106	sector_t *n_highs;
 107	struct dm_target *n_targets;
 108
 109	/*
 110	 * Allocate both the target array and offset array at once.
 
 
 111	 */
 112	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
 113			   GFP_KERNEL);
 114	if (!n_highs)
 115		return -ENOMEM;
 116
 117	n_targets = (struct dm_target *) (n_highs + num);
 118
 119	memset(n_highs, -1, sizeof(*n_highs) * num);
 120	kvfree(t->highs);
 121
 122	t->num_allocated = num;
 123	t->highs = n_highs;
 124	t->targets = n_targets;
 125
 126	return 0;
 127}
 128
 129int dm_table_create(struct dm_table **result, blk_mode_t mode,
 130		    unsigned int num_targets, struct mapped_device *md)
 131{
 132	struct dm_table *t;
 133
 134	if (num_targets > DM_MAX_TARGETS)
 135		return -EOVERFLOW;
 136
 137	t = kzalloc(sizeof(*t), GFP_KERNEL);
 138
 139	if (!t)
 140		return -ENOMEM;
 141
 142	INIT_LIST_HEAD(&t->devices);
 143	init_rwsem(&t->devices_lock);
 144
 145	if (!num_targets)
 146		num_targets = KEYS_PER_NODE;
 147
 148	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 149
 150	if (!num_targets) {
 151		kfree(t);
 152		return -EOVERFLOW;
 153	}
 154
 155	if (alloc_targets(t, num_targets)) {
 156		kfree(t);
 157		return -ENOMEM;
 158	}
 159
 160	t->type = DM_TYPE_NONE;
 161	t->mode = mode;
 162	t->md = md;
 163	*result = t;
 164	return 0;
 165}
 166
 167static void free_devices(struct list_head *devices, struct mapped_device *md)
 168{
 169	struct list_head *tmp, *next;
 170
 171	list_for_each_safe(tmp, next, devices) {
 172		struct dm_dev_internal *dd =
 173		    list_entry(tmp, struct dm_dev_internal, list);
 174		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 175		       dm_device_name(md), dd->dm_dev->name);
 176		dm_put_table_device(md, dd->dm_dev);
 177		kfree(dd);
 178	}
 179}
 180
 181static void dm_table_destroy_crypto_profile(struct dm_table *t);
 182
 183void dm_table_destroy(struct dm_table *t)
 184{
 
 
 185	if (!t)
 186		return;
 187
 188	/* free the indexes */
 189	if (t->depth >= 2)
 190		kvfree(t->index[t->depth - 2]);
 191
 192	/* free the targets */
 193	for (unsigned int i = 0; i < t->num_targets; i++) {
 194		struct dm_target *ti = dm_table_get_target(t, i);
 195
 196		if (ti->type->dtr)
 197			ti->type->dtr(ti);
 198
 199		dm_put_target_type(ti->type);
 200	}
 201
 202	kvfree(t->highs);
 203
 204	/* free the device list */
 205	free_devices(&t->devices, t->md);
 206
 207	dm_free_md_mempools(t->mempools);
 208
 209	dm_table_destroy_crypto_profile(t);
 210
 211	kfree(t);
 212}
 213
 214/*
 215 * See if we've already got a device in the list.
 216 */
 217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 218{
 219	struct dm_dev_internal *dd;
 220
 221	list_for_each_entry(dd, l, list)
 222		if (dd->dm_dev->bdev->bd_dev == dev)
 223			return dd;
 224
 225	return NULL;
 226}
 227
 228/*
 229 * If possible, this checks an area of a destination device is invalid.
 230 */
 231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 232				  sector_t start, sector_t len, void *data)
 233{
 
 234	struct queue_limits *limits = data;
 235	struct block_device *bdev = dev->bdev;
 236	sector_t dev_size = bdev_nr_sectors(bdev);
 
 237	unsigned short logical_block_size_sectors =
 238		limits->logical_block_size >> SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239
 240	if (!dev_size)
 241		return 0;
 242
 243	if ((start >= dev_size) || (start + len > dev_size)) {
 244		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
 245		      dm_device_name(ti->table->md), bdev,
 246		      (unsigned long long)start,
 247		      (unsigned long long)len,
 248		      (unsigned long long)dev_size);
 
 249		return 1;
 250	}
 251
 252	/*
 253	 * If the target is mapped to zoned block device(s), check
 254	 * that the zones are not partially mapped.
 255	 */
 256	if (bdev_is_zoned(bdev)) {
 257		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 258
 259		if (start & (zone_sectors - 1)) {
 260			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
 261			      dm_device_name(ti->table->md),
 262			      (unsigned long long)start,
 263			      zone_sectors, bdev);
 264			return 1;
 265		}
 266
 267		/*
 268		 * Note: The last zone of a zoned block device may be smaller
 269		 * than other zones. So for a target mapping the end of a
 270		 * zoned block device with such a zone, len would not be zone
 271		 * aligned. We do not allow such last smaller zone to be part
 272		 * of the mapping here to ensure that mappings with multiple
 273		 * devices do not end up with a smaller zone in the middle of
 274		 * the sector range.
 275		 */
 276		if (len & (zone_sectors - 1)) {
 277			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
 278			      dm_device_name(ti->table->md),
 279			      (unsigned long long)len,
 280			      zone_sectors, bdev);
 281			return 1;
 282		}
 283	}
 284
 285	if (logical_block_size_sectors <= 1)
 286		return 0;
 287
 288	if (start & (logical_block_size_sectors - 1)) {
 289		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
 290		      dm_device_name(ti->table->md),
 291		      (unsigned long long)start,
 292		      limits->logical_block_size, bdev);
 
 293		return 1;
 294	}
 295
 296	if (len & (logical_block_size_sectors - 1)) {
 297		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
 298		      dm_device_name(ti->table->md),
 299		      (unsigned long long)len,
 300		      limits->logical_block_size, bdev);
 
 301		return 1;
 302	}
 303
 304	return 0;
 305}
 306
 307/*
 308 * This upgrades the mode on an already open dm_dev, being
 309 * careful to leave things as they were if we fail to reopen the
 310 * device and not to touch the existing bdev field in case
 311 * it is accessed concurrently.
 312 */
 313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
 314			struct mapped_device *md)
 315{
 316	int r;
 317	struct dm_dev *old_dev, *new_dev;
 318
 319	old_dev = dd->dm_dev;
 320
 321	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 322				dd->dm_dev->mode | new_mode, &new_dev);
 323	if (r)
 324		return r;
 325
 326	dd->dm_dev = new_dev;
 327	dm_put_table_device(md, old_dev);
 328
 329	return 0;
 330}
 331
 332/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333 * Add a device to the list, or just increment the usage count if
 334 * it's already present.
 335 *
 336 * Note: the __ref annotation is because this function can call the __init
 337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
 338 */
 339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
 340		  struct dm_dev **result)
 341{
 342	int r;
 343	dev_t dev;
 344	unsigned int major, minor;
 345	char dummy;
 346	struct dm_dev_internal *dd;
 347	struct dm_table *t = ti->table;
 348
 349	BUG_ON(!t);
 350
 351	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 352		/* Extract the major/minor numbers */
 353		dev = MKDEV(major, minor);
 354		if (MAJOR(dev) != major || MINOR(dev) != minor)
 355			return -EOVERFLOW;
 356	} else {
 357		r = lookup_bdev(path, &dev);
 358#ifndef MODULE
 359		if (r && system_state < SYSTEM_RUNNING)
 360			r = early_lookup_bdev(path, &dev);
 361#endif
 362		if (r)
 363			return r;
 364	}
 365	if (dev == disk_devt(t->md->disk))
 366		return -EINVAL;
 367
 368	down_write(&t->devices_lock);
 369
 370	dd = find_device(&t->devices, dev);
 371	if (!dd) {
 372		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 373		if (!dd) {
 374			r = -ENOMEM;
 375			goto unlock_ret_r;
 376		}
 377
 378		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
 379		if (r) {
 380			kfree(dd);
 381			goto unlock_ret_r;
 382		}
 383
 384		refcount_set(&dd->count, 1);
 385		list_add(&dd->list, &t->devices);
 386		goto out;
 387
 388	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 389		r = upgrade_mode(dd, mode, t->md);
 390		if (r)
 391			goto unlock_ret_r;
 392	}
 393	refcount_inc(&dd->count);
 394out:
 395	up_write(&t->devices_lock);
 396	*result = dd->dm_dev;
 397	return 0;
 398
 399unlock_ret_r:
 400	up_write(&t->devices_lock);
 401	return r;
 402}
 403EXPORT_SYMBOL(dm_get_device);
 404
 405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 406				sector_t start, sector_t len, void *data)
 407{
 408	struct queue_limits *limits = data;
 409	struct block_device *bdev = dev->bdev;
 410	struct request_queue *q = bdev_get_queue(bdev);
 
 411
 412	if (unlikely(!q)) {
 413		DMWARN("%s: Cannot set limits for nonexistent device %pg",
 414		       dm_device_name(ti->table->md), bdev);
 415		return 0;
 416	}
 417
 418	if (blk_stack_limits(limits, &q->limits,
 419			get_start_sect(bdev) + start) < 0)
 420		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
 421		       "physical_block_size=%u, logical_block_size=%u, "
 422		       "alignment_offset=%u, start=%llu",
 423		       dm_device_name(ti->table->md), bdev,
 424		       q->limits.physical_block_size,
 425		       q->limits.logical_block_size,
 426		       q->limits.alignment_offset,
 427		       (unsigned long long) start << SECTOR_SHIFT);
 
 428	return 0;
 429}
 430
 431/*
 432 * Decrement a device's use count and remove it if necessary.
 433 */
 434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 435{
 436	int found = 0;
 437	struct dm_table *t = ti->table;
 438	struct list_head *devices = &t->devices;
 439	struct dm_dev_internal *dd;
 440
 441	down_write(&t->devices_lock);
 442
 443	list_for_each_entry(dd, devices, list) {
 444		if (dd->dm_dev == d) {
 445			found = 1;
 446			break;
 447		}
 448	}
 449	if (!found) {
 450		DMERR("%s: device %s not in table devices list",
 451		      dm_device_name(t->md), d->name);
 452		goto unlock_ret;
 453	}
 454	if (refcount_dec_and_test(&dd->count)) {
 455		dm_put_table_device(t->md, d);
 456		list_del(&dd->list);
 457		kfree(dd);
 458	}
 459
 460unlock_ret:
 461	up_write(&t->devices_lock);
 462}
 463EXPORT_SYMBOL(dm_put_device);
 464
 465/*
 466 * Checks to see if the target joins onto the end of the table.
 467 */
 468static int adjoin(struct dm_table *t, struct dm_target *ti)
 469{
 470	struct dm_target *prev;
 471
 472	if (!t->num_targets)
 473		return !ti->begin;
 474
 475	prev = &t->targets[t->num_targets - 1];
 476	return (ti->begin == (prev->begin + prev->len));
 477}
 478
 479/*
 480 * Used to dynamically allocate the arg array.
 481 *
 482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 483 * process messages even if some device is suspended. These messages have a
 484 * small fixed number of arguments.
 485 *
 486 * On the other hand, dm-switch needs to process bulk data using messages and
 487 * excessive use of GFP_NOIO could cause trouble.
 488 */
 489static char **realloc_argv(unsigned int *size, char **old_argv)
 490{
 491	char **argv;
 492	unsigned int new_size;
 493	gfp_t gfp;
 494
 495	if (*size) {
 496		new_size = *size * 2;
 497		gfp = GFP_KERNEL;
 498	} else {
 499		new_size = 8;
 500		gfp = GFP_NOIO;
 501	}
 502	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 503	if (argv && old_argv) {
 504		memcpy(argv, old_argv, *size * sizeof(*argv));
 505		*size = new_size;
 506	}
 507
 508	kfree(old_argv);
 509	return argv;
 510}
 511
 512/*
 513 * Destructively splits up the argument list to pass to ctr.
 514 */
 515int dm_split_args(int *argc, char ***argvp, char *input)
 516{
 517	char *start, *end = input, *out, **argv = NULL;
 518	unsigned int array_size = 0;
 519
 520	*argc = 0;
 521
 522	if (!input) {
 523		*argvp = NULL;
 524		return 0;
 525	}
 526
 527	argv = realloc_argv(&array_size, argv);
 528	if (!argv)
 529		return -ENOMEM;
 530
 531	while (1) {
 532		/* Skip whitespace */
 533		start = skip_spaces(end);
 534
 535		if (!*start)
 536			break;	/* success, we hit the end */
 537
 538		/* 'out' is used to remove any back-quotes */
 539		end = out = start;
 540		while (*end) {
 541			/* Everything apart from '\0' can be quoted */
 542			if (*end == '\\' && *(end + 1)) {
 543				*out++ = *(end + 1);
 544				end += 2;
 545				continue;
 546			}
 547
 548			if (isspace(*end))
 549				break;	/* end of token */
 550
 551			*out++ = *end++;
 552		}
 553
 554		/* have we already filled the array ? */
 555		if ((*argc + 1) > array_size) {
 556			argv = realloc_argv(&array_size, argv);
 557			if (!argv)
 558				return -ENOMEM;
 559		}
 560
 561		/* we know this is whitespace */
 562		if (*end)
 563			end++;
 564
 565		/* terminate the string and put it in the array */
 566		*out = '\0';
 567		argv[*argc] = start;
 568		(*argc)++;
 569	}
 570
 571	*argvp = argv;
 572	return 0;
 573}
 574
 575/*
 576 * Impose necessary and sufficient conditions on a devices's table such
 577 * that any incoming bio which respects its logical_block_size can be
 578 * processed successfully.  If it falls across the boundary between
 579 * two or more targets, the size of each piece it gets split into must
 580 * be compatible with the logical_block_size of the target processing it.
 581 */
 582static int validate_hardware_logical_block_alignment(struct dm_table *t,
 583						     struct queue_limits *limits)
 584{
 585	/*
 586	 * This function uses arithmetic modulo the logical_block_size
 587	 * (in units of 512-byte sectors).
 588	 */
 589	unsigned short device_logical_block_size_sects =
 590		limits->logical_block_size >> SECTOR_SHIFT;
 591
 592	/*
 593	 * Offset of the start of the next table entry, mod logical_block_size.
 594	 */
 595	unsigned short next_target_start = 0;
 596
 597	/*
 598	 * Given an aligned bio that extends beyond the end of a
 599	 * target, how many sectors must the next target handle?
 600	 */
 601	unsigned short remaining = 0;
 602
 603	struct dm_target *ti;
 604	struct queue_limits ti_limits;
 605	unsigned int i;
 606
 607	/*
 608	 * Check each entry in the table in turn.
 609	 */
 610	for (i = 0; i < t->num_targets; i++) {
 611		ti = dm_table_get_target(t, i);
 612
 613		blk_set_stacking_limits(&ti_limits);
 614
 615		/* combine all target devices' limits */
 616		if (ti->type->iterate_devices)
 617			ti->type->iterate_devices(ti, dm_set_device_limits,
 618						  &ti_limits);
 619
 620		/*
 621		 * If the remaining sectors fall entirely within this
 622		 * table entry are they compatible with its logical_block_size?
 623		 */
 624		if (remaining < ti->len &&
 625		    remaining & ((ti_limits.logical_block_size >>
 626				  SECTOR_SHIFT) - 1))
 627			break;	/* Error */
 628
 629		next_target_start =
 630		    (unsigned short) ((next_target_start + ti->len) &
 631				      (device_logical_block_size_sects - 1));
 632		remaining = next_target_start ?
 633		    device_logical_block_size_sects - next_target_start : 0;
 634	}
 635
 636	if (remaining) {
 637		DMERR("%s: table line %u (start sect %llu len %llu) "
 638		      "not aligned to h/w logical block size %u",
 639		      dm_device_name(t->md), i,
 640		      (unsigned long long) ti->begin,
 641		      (unsigned long long) ti->len,
 642		      limits->logical_block_size);
 643		return -EINVAL;
 644	}
 645
 646	return 0;
 647}
 648
 649int dm_table_add_target(struct dm_table *t, const char *type,
 650			sector_t start, sector_t len, char *params)
 651{
 652	int r = -EINVAL, argc;
 653	char **argv;
 654	struct dm_target *ti;
 655
 656	if (t->singleton) {
 657		DMERR("%s: target type %s must appear alone in table",
 658		      dm_device_name(t->md), t->targets->type->name);
 659		return -EINVAL;
 660	}
 661
 662	BUG_ON(t->num_targets >= t->num_allocated);
 663
 664	ti = t->targets + t->num_targets;
 665	memset(ti, 0, sizeof(*ti));
 666
 667	if (!len) {
 668		DMERR("%s: zero-length target", dm_device_name(t->md));
 669		return -EINVAL;
 670	}
 671
 672	ti->type = dm_get_target_type(type);
 673	if (!ti->type) {
 674		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 675		return -EINVAL;
 676	}
 677
 678	if (dm_target_needs_singleton(ti->type)) {
 679		if (t->num_targets) {
 680			ti->error = "singleton target type must appear alone in table";
 681			goto bad;
 682		}
 683		t->singleton = true;
 684	}
 685
 686	if (dm_target_always_writeable(ti->type) &&
 687	    !(t->mode & BLK_OPEN_WRITE)) {
 688		ti->error = "target type may not be included in a read-only table";
 689		goto bad;
 690	}
 691
 692	if (t->immutable_target_type) {
 693		if (t->immutable_target_type != ti->type) {
 694			ti->error = "immutable target type cannot be mixed with other target types";
 695			goto bad;
 696		}
 697	} else if (dm_target_is_immutable(ti->type)) {
 698		if (t->num_targets) {
 699			ti->error = "immutable target type cannot be mixed with other target types";
 700			goto bad;
 701		}
 702		t->immutable_target_type = ti->type;
 703	}
 704
 705	if (dm_target_has_integrity(ti->type))
 706		t->integrity_added = 1;
 707
 708	ti->table = t;
 709	ti->begin = start;
 710	ti->len = len;
 711	ti->error = "Unknown error";
 712
 713	/*
 714	 * Does this target adjoin the previous one ?
 715	 */
 716	if (!adjoin(t, ti)) {
 717		ti->error = "Gap in table";
 718		goto bad;
 719	}
 720
 721	r = dm_split_args(&argc, &argv, params);
 722	if (r) {
 723		ti->error = "couldn't split parameters";
 724		goto bad;
 725	}
 726
 727	r = ti->type->ctr(ti, argc, argv);
 728	kfree(argv);
 729	if (r)
 730		goto bad;
 731
 732	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
 733
 734	if (!ti->num_discard_bios && ti->discards_supported)
 735		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 736		       dm_device_name(t->md), type);
 737
 738	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
 739		static_branch_enable(&swap_bios_enabled);
 740
 741	return 0;
 742
 743 bad:
 744	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
 745	dm_put_target_type(ti->type);
 746	return r;
 747}
 748
 749/*
 750 * Target argument parsing helpers.
 751 */
 752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 753			     unsigned int *value, char **error, unsigned int grouped)
 754{
 755	const char *arg_str = dm_shift_arg(arg_set);
 756	char dummy;
 757
 758	if (!arg_str ||
 759	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 760	    (*value < arg->min) ||
 761	    (*value > arg->max) ||
 762	    (grouped && arg_set->argc < *value)) {
 763		*error = arg->error;
 764		return -EINVAL;
 765	}
 766
 767	return 0;
 768}
 769
 770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 771		unsigned int *value, char **error)
 772{
 773	return validate_next_arg(arg, arg_set, value, error, 0);
 774}
 775EXPORT_SYMBOL(dm_read_arg);
 776
 777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 778		      unsigned int *value, char **error)
 779{
 780	return validate_next_arg(arg, arg_set, value, error, 1);
 781}
 782EXPORT_SYMBOL(dm_read_arg_group);
 783
 784const char *dm_shift_arg(struct dm_arg_set *as)
 785{
 786	char *r;
 787
 788	if (as->argc) {
 789		as->argc--;
 790		r = *as->argv;
 791		as->argv++;
 792		return r;
 793	}
 794
 795	return NULL;
 796}
 797EXPORT_SYMBOL(dm_shift_arg);
 798
 799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
 800{
 801	BUG_ON(as->argc < num_args);
 802	as->argc -= num_args;
 803	as->argv += num_args;
 804}
 805EXPORT_SYMBOL(dm_consume_args);
 806
 807static bool __table_type_bio_based(enum dm_queue_mode table_type)
 808{
 809	return (table_type == DM_TYPE_BIO_BASED ||
 810		table_type == DM_TYPE_DAX_BIO_BASED);
 811}
 812
 813static bool __table_type_request_based(enum dm_queue_mode table_type)
 814{
 815	return table_type == DM_TYPE_REQUEST_BASED;
 
 816}
 817
 818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 819{
 820	t->type = type;
 821}
 822EXPORT_SYMBOL_GPL(dm_table_set_type);
 823
 824/* validate the dax capability of the target device span */
 825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
 826			sector_t start, sector_t len, void *data)
 827{
 828	if (dev->dax_dev)
 829		return false;
 830
 831	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
 832	return true;
 833}
 834
 835/* Check devices support synchronous DAX */
 836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
 837					      sector_t start, sector_t len, void *data)
 838{
 839	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
 840}
 841
 842static bool dm_table_supports_dax(struct dm_table *t,
 843				  iterate_devices_callout_fn iterate_fn)
 844{
 845	/* Ensure that all targets support DAX. */
 846	for (unsigned int i = 0; i < t->num_targets; i++) {
 847		struct dm_target *ti = dm_table_get_target(t, i);
 848
 849		if (!ti->type->direct_access)
 850			return false;
 851
 852		if (dm_target_is_wildcard(ti->type) ||
 853		    !ti->type->iterate_devices ||
 854		    ti->type->iterate_devices(ti, iterate_fn, NULL))
 855			return false;
 856	}
 857
 858	return true;
 859}
 860
 861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 862				  sector_t start, sector_t len, void *data)
 863{
 864	struct block_device *bdev = dev->bdev;
 865	struct request_queue *q = bdev_get_queue(bdev);
 866
 867	/* request-based cannot stack on partitions! */
 868	if (bdev_is_partition(bdev))
 869		return false;
 870
 871	return queue_is_mq(q);
 872}
 873
 874static int dm_table_determine_type(struct dm_table *t)
 875{
 876	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
 877	struct dm_target *ti;
 
 
 
 878	struct list_head *devices = dm_table_get_devices(t);
 879	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 880
 881	if (t->type != DM_TYPE_NONE) {
 882		/* target already set the table's type */
 883		if (t->type == DM_TYPE_BIO_BASED) {
 884			/* possibly upgrade to a variant of bio-based */
 885			goto verify_bio_based;
 886		}
 887		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 888		goto verify_rq_based;
 889	}
 890
 891	for (unsigned int i = 0; i < t->num_targets; i++) {
 892		ti = dm_table_get_target(t, i);
 893		if (dm_target_hybrid(ti))
 894			hybrid = 1;
 895		else if (dm_target_request_based(ti))
 896			request_based = 1;
 897		else
 898			bio_based = 1;
 899
 900		if (bio_based && request_based) {
 901			DMERR("Inconsistent table: different target types can't be mixed up");
 
 902			return -EINVAL;
 903		}
 904	}
 905
 906	if (hybrid && !bio_based && !request_based) {
 907		/*
 908		 * The targets can work either way.
 909		 * Determine the type from the live device.
 910		 * Default to bio-based if device is new.
 911		 */
 912		if (__table_type_request_based(live_md_type))
 913			request_based = 1;
 914		else
 915			bio_based = 1;
 916	}
 917
 918	if (bio_based) {
 919verify_bio_based:
 920		/* We must use this table as bio-based */
 921		t->type = DM_TYPE_BIO_BASED;
 922		if (dm_table_supports_dax(t, device_not_dax_capable) ||
 923		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 924			t->type = DM_TYPE_DAX_BIO_BASED;
 925		}
 926		return 0;
 927	}
 928
 929	BUG_ON(!request_based); /* No targets in this table */
 930
 
 
 
 
 931	t->type = DM_TYPE_REQUEST_BASED;
 932
 933verify_rq_based:
 934	/*
 935	 * Request-based dm supports only tables that have a single target now.
 936	 * To support multiple targets, request splitting support is needed,
 937	 * and that needs lots of changes in the block-layer.
 938	 * (e.g. request completion process for partial completion.)
 939	 */
 940	if (t->num_targets > 1) {
 941		DMERR("request-based DM doesn't support multiple targets");
 942		return -EINVAL;
 943	}
 944
 945	if (list_empty(devices)) {
 946		int srcu_idx;
 947		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 948
 949		/* inherit live table's type */
 950		if (live_table)
 951			t->type = live_table->type;
 
 
 952		dm_put_live_table(t->md, srcu_idx);
 953		return 0;
 954	}
 955
 956	ti = dm_table_get_immutable_target(t);
 957	if (!ti) {
 958		DMERR("table load rejected: immutable target is required");
 959		return -EINVAL;
 960	} else if (ti->max_io_len) {
 961		DMERR("table load rejected: immutable target that splits IO is not supported");
 
 
 
 
 
 
 
 
 
 
 
 962		return -EINVAL;
 963	}
 
 964
 965	/* Non-request-stackable devices can't be used for request-based dm */
 966	if (!ti->type->iterate_devices ||
 967	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
 968		DMERR("table load rejected: including non-request-stackable devices");
 969		return -EINVAL;
 970	}
 971
 972	return 0;
 973}
 974
 975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
 976{
 977	return t->type;
 978}
 979
 980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 981{
 982	return t->immutable_target_type;
 983}
 984
 985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 986{
 987	/* Immutable target is implicitly a singleton */
 988	if (t->num_targets > 1 ||
 989	    !dm_target_is_immutable(t->targets[0].type))
 990		return NULL;
 991
 992	return t->targets;
 993}
 994
 995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 996{
 997	for (unsigned int i = 0; i < t->num_targets; i++) {
 998		struct dm_target *ti = dm_table_get_target(t, i);
 999
 
 
1000		if (dm_target_is_wildcard(ti->type))
1001			return ti;
1002	}
1003
1004	return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009	return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014	return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
 
 
 
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021	enum dm_queue_mode type = dm_table_get_type(t);
1022	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023	unsigned int min_pool_size = 0, pool_size;
1024	struct dm_md_mempools *pools;
1025
1026	if (unlikely(type == DM_TYPE_NONE)) {
1027		DMERR("no table type is set, can't allocate mempools");
1028		return -EINVAL;
1029	}
1030
1031	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032	if (!pools)
1033		return -ENOMEM;
 
 
1034
1035	if (type == DM_TYPE_REQUEST_BASED) {
1036		pool_size = dm_get_reserved_rq_based_ios();
1037		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038		goto init_bs;
1039	}
1040
1041	for (unsigned int i = 0; i < t->num_targets; i++) {
1042		struct dm_target *ti = dm_table_get_target(t, i);
1043
1044		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046	}
1047	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048	front_pad = roundup(per_io_data_size,
1049		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051	io_front_pad = roundup(per_io_data_size,
1052		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055		goto out_free_pools;
1056	if (t->integrity_supported &&
1057	    bioset_integrity_create(&pools->io_bs, pool_size))
1058		goto out_free_pools;
1059init_bs:
1060	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061		goto out_free_pools;
1062	if (t->integrity_supported &&
1063	    bioset_integrity_create(&pools->bs, pool_size))
1064		goto out_free_pools;
1065
1066	t->mempools = pools;
1067	return 0;
 
1068
1069out_free_pools:
1070	dm_free_md_mempools(pools);
1071	return -ENOMEM;
 
 
 
 
 
 
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076	int i;
1077	unsigned int total = 0;
1078	sector_t *indexes;
1079
1080	/* allocate the space for *all* the indexes */
1081	for (i = t->depth - 2; i >= 0; i--) {
1082		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083		total += t->counts[i];
1084	}
1085
1086	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087	if (!indexes)
1088		return -ENOMEM;
1089
1090	/* set up internal nodes, bottom-up */
1091	for (i = t->depth - 2; i >= 0; i--) {
1092		t->index[i] = indexes;
1093		indexes += (KEYS_PER_NODE * t->counts[i]);
1094		setup_btree_index(i, t);
1095	}
1096
1097	return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105	int r = 0;
1106	unsigned int leaf_nodes;
1107
1108	/* how many indexes will the btree have ? */
1109	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112	/* leaf layer has already been set up */
1113	t->counts[t->depth - 1] = leaf_nodes;
1114	t->index[t->depth - 1] = t->highs;
1115
1116	if (t->depth >= 2)
1117		r = setup_indexes(t);
1118
1119	return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124	return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133	struct list_head *devices = dm_table_get_devices(t);
1134	struct dm_dev_internal *dd = NULL;
1135	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137	for (unsigned int i = 0; i < t->num_targets; i++) {
1138		struct dm_target *ti = dm_table_get_target(t, i);
1139
1140		if (!dm_target_passes_integrity(ti->type))
1141			goto no_integrity;
1142	}
1143
1144	list_for_each_entry(dd, devices, list) {
1145		template_disk = dd->dm_dev->bdev->bd_disk;
1146		if (!integrity_profile_exists(template_disk))
1147			goto no_integrity;
1148		else if (prev_disk &&
1149			 blk_integrity_compare(prev_disk, template_disk) < 0)
1150			goto no_integrity;
1151		prev_disk = template_disk;
1152	}
1153
1154	return template_disk;
1155
1156no_integrity:
1157	if (prev_disk)
1158		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159		       dm_device_name(t->md),
1160		       prev_disk->disk_name,
1161		       template_disk->disk_name);
1162	return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile.  But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177	struct mapped_device *md = t->md;
1178	struct gendisk *template_disk = NULL;
1179
1180	/* If target handles integrity itself do not register it here. */
1181	if (t->integrity_added)
1182		return 0;
1183
1184	template_disk = dm_table_get_integrity_disk(t);
1185	if (!template_disk)
1186		return 0;
1187
1188	if (!integrity_profile_exists(dm_disk(md))) {
1189		t->integrity_supported = true;
1190		/*
1191		 * Register integrity profile during table load; we can do
1192		 * this because the final profile must match during resume.
1193		 */
1194		blk_integrity_register(dm_disk(md),
1195				       blk_get_integrity(template_disk));
1196		return 0;
1197	}
1198
1199	/*
1200	 * If DM device already has an initialized integrity
1201	 * profile the new profile should not conflict.
1202	 */
1203	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205		      dm_device_name(t->md),
1206		      template_disk->disk_name);
 
1207		return 1;
1208	}
1209
1210	/* Preserve existing integrity profile */
1211	t->integrity_supported = true;
1212	return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218	struct blk_crypto_profile profile;
1219	struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223				     sector_t start, sector_t len, void *data)
1224{
1225	const struct blk_crypto_key *key = data;
1226
1227	blk_crypto_evict_key(dev->bdev, key);
1228	return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236			    const struct blk_crypto_key *key, unsigned int slot)
1237{
1238	struct mapped_device *md =
1239		container_of(profile, struct dm_crypto_profile, profile)->md;
1240	struct dm_table *t;
1241	int srcu_idx;
1242
1243	t = dm_get_live_table(md, &srcu_idx);
1244	if (!t)
1245		return 0;
1246
1247	for (unsigned int i = 0; i < t->num_targets; i++) {
1248		struct dm_target *ti = dm_table_get_target(t, i);
1249
1250		if (!ti->type->iterate_devices)
1251			continue;
1252		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253					  (void *)key);
1254	}
1255
1256	dm_put_live_table(md, srcu_idx);
1257	return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262				     sector_t start, sector_t len, void *data)
1263{
1264	struct blk_crypto_profile *parent = data;
1265	struct blk_crypto_profile *child =
1266		bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268	blk_crypto_intersect_capabilities(parent, child);
1269	return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274	struct dm_crypto_profile *dmcp = container_of(profile,
1275						      struct dm_crypto_profile,
1276						      profile);
1277
1278	if (!profile)
1279		return;
1280
1281	blk_crypto_profile_destroy(profile);
1282	kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287	dm_destroy_crypto_profile(t->crypto_profile);
1288	t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table.  However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302	struct dm_crypto_profile *dmcp;
1303	struct blk_crypto_profile *profile;
1304	unsigned int i;
1305	bool empty_profile = true;
1306
1307	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308	if (!dmcp)
1309		return -ENOMEM;
1310	dmcp->md = t->md;
1311
1312	profile = &dmcp->profile;
1313	blk_crypto_profile_init(profile, 0);
1314	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315	profile->max_dun_bytes_supported = UINT_MAX;
1316	memset(profile->modes_supported, 0xFF,
1317	       sizeof(profile->modes_supported));
1318
1319	for (i = 0; i < t->num_targets; i++) {
1320		struct dm_target *ti = dm_table_get_target(t, i);
1321
1322		if (!dm_target_passes_crypto(ti->type)) {
1323			blk_crypto_intersect_capabilities(profile, NULL);
1324			break;
1325		}
1326		if (!ti->type->iterate_devices)
1327			continue;
1328		ti->type->iterate_devices(ti,
1329					  device_intersect_crypto_capabilities,
1330					  profile);
1331	}
1332
1333	if (t->md->queue &&
1334	    !blk_crypto_has_capabilities(profile,
1335					 t->md->queue->crypto_profile)) {
1336		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337		dm_destroy_crypto_profile(profile);
1338		return -EINVAL;
1339	}
1340
1341	/*
1342	 * If the new profile doesn't actually support any crypto capabilities,
1343	 * we may as well represent it with a NULL profile.
1344	 */
1345	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346		if (profile->modes_supported[i]) {
1347			empty_profile = false;
1348			break;
1349		}
1350	}
1351
1352	if (empty_profile) {
1353		dm_destroy_crypto_profile(profile);
1354		profile = NULL;
1355	}
1356
1357	/*
1358	 * t->crypto_profile is only set temporarily while the table is being
1359	 * set up, and it gets set to NULL after the profile has been
1360	 * transferred to the request_queue.
1361	 */
1362	t->crypto_profile = profile;
1363
1364	return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368				     struct dm_table *t)
1369{
1370	if (!t->crypto_profile)
1371		return;
1372
1373	/* Make the crypto profile less restrictive. */
1374	if (!q->crypto_profile) {
1375		blk_crypto_register(t->crypto_profile, q);
1376	} else {
1377		blk_crypto_update_capabilities(q->crypto_profile,
1378					       t->crypto_profile);
1379		dm_destroy_crypto_profile(t->crypto_profile);
1380	}
1381	t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388	return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400				     struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412	int r;
1413
1414	r = dm_table_determine_type(t);
1415	if (r) {
1416		DMERR("unable to determine table type");
1417		return r;
1418	}
1419
1420	r = dm_table_build_index(t);
1421	if (r) {
1422		DMERR("unable to build btrees");
1423		return r;
1424	}
1425
1426	r = dm_table_register_integrity(t);
1427	if (r) {
1428		DMERR("could not register integrity profile.");
1429		return r;
1430	}
1431
1432	r = dm_table_construct_crypto_profile(t);
1433	if (r) {
1434		DMERR("could not construct crypto profile.");
1435		return r;
1436	}
1437
1438	r = dm_table_alloc_md_mempools(t, t->md);
1439	if (r)
1440		DMERR("unable to allocate mempools");
1441
1442	return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447			     void (*fn)(void *), void *context)
1448{
1449	mutex_lock(&_event_lock);
1450	t->event_fn = fn;
1451	t->event_context = context;
1452	mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
 
 
 
 
 
 
1457	mutex_lock(&_event_lock);
1458	if (t->event_fn)
1459		t->event_fn(t->event_context);
1460	mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
 
 
 
 
 
 
 
 
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478	unsigned int l, n = 0, k = 0;
1479	sector_t *node;
1480
1481	if (unlikely(sector >= dm_table_get_size(t)))
1482		return NULL;
1483
1484	for (l = 0; l < t->depth; l++) {
1485		n = get_child(n, k);
1486		node = get_node(t, l, n);
1487
1488		for (k = 0; k < KEYS_PER_NODE; k++)
1489			if (node[k] >= sector)
1490				break;
1491	}
1492
1493	return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497				   sector_t start, sector_t len, void *data)
1498{
1499	struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528				  iterate_devices_callout_fn func, void *data)
1529{
1530	for (unsigned int i = 0; i < t->num_targets; i++) {
1531		struct dm_target *ti = dm_table_get_target(t, i);
1532
1533		if (ti->type->iterate_devices &&
1534		    ti->type->iterate_devices(ti, func, data))
1535			return true;
1536	}
1537
1538	return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542			sector_t start, sector_t len, void *data)
1543{
1544	unsigned int *num_devices = data;
1545
1546	(*num_devices)++;
1547
1548	return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553	for (unsigned int i = 0; i < t->num_targets; i++) {
1554		struct dm_target *ti = dm_table_get_target(t, i);
1555
1556		if (!ti->type->iterate_devices ||
1557		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558			return false;
1559	}
1560
1561	return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572	for (unsigned int i = 0; i < t->num_targets; i++) {
1573		struct dm_target *ti = dm_table_get_target(t, i);
1574		unsigned int num_devices = 0;
 
 
1575
1576		if (!ti->type->iterate_devices)
1577			return false;
1578
1579		ti->type->iterate_devices(ti, count_device, &num_devices);
1580		if (num_devices)
1581			return false;
1582	}
1583
1584	return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588			    sector_t start, sector_t len, void *data)
1589{
1590	bool *zoned = data;
1591
1592	return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596				 sector_t start, sector_t len, void *data)
1597{
1598	return bdev_is_zoned(dev->bdev);
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610	for (unsigned int i = 0; i < t->num_targets; i++) {
1611		struct dm_target *ti = dm_table_get_target(t, i);
1612
1613		/*
1614		 * For the wildcard target (dm-error), if we do not have a
1615		 * backing device, we must always return false. If we have a
1616		 * backing device, the result must depend on checking zoned
1617		 * model, like for any other target. So for this, check directly
1618		 * if the target backing device is zoned as we get "false" when
1619		 * dm-error was set without a backing device.
1620		 */
1621		if (dm_target_is_wildcard(ti->type) &&
1622		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623			return false;
1624
1625		if (dm_target_supports_zoned_hm(ti->type)) {
1626			if (!ti->type->iterate_devices ||
1627			    ti->type->iterate_devices(ti, device_not_zoned,
1628						      &zoned))
1629				return false;
1630		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631			if (zoned)
1632				return false;
1633		}
1634	}
1635
1636	return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640					   sector_t start, sector_t len, void *data)
1641{
1642	unsigned int *zone_sectors = data;
1643
1644	if (!bdev_is_zoned(dev->bdev))
1645		return 0;
1646	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655				   unsigned int zone_sectors)
1656{
1657	if (!zoned)
1658		return 0;
1659
1660	if (!dm_table_supports_zoned(t, zoned)) {
1661		DMERR("%s: zoned model is not consistent across all devices",
1662		      dm_device_name(t->md));
1663		return -EINVAL;
1664	}
1665
1666	/* Check zone size validity and compatibility */
1667	if (!zone_sectors || !is_power_of_2(zone_sectors))
1668		return -EINVAL;
1669
1670	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671		DMERR("%s: zone sectors is not consistent across all zoned devices",
1672		      dm_device_name(t->md));
1673		return -EINVAL;
1674	}
1675
1676	return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683			      struct queue_limits *limits)
1684{
 
1685	struct queue_limits ti_limits;
1686	unsigned int zone_sectors = 0;
1687	bool zoned = false;
1688
1689	blk_set_stacking_limits(limits);
1690
1691	for (unsigned int i = 0; i < t->num_targets; i++) {
1692		struct dm_target *ti = dm_table_get_target(t, i);
1693
1694		blk_set_stacking_limits(&ti_limits);
1695
1696		if (!ti->type->iterate_devices) {
1697			/* Set I/O hints portion of queue limits */
1698			if (ti->type->io_hints)
1699				ti->type->io_hints(ti, &ti_limits);
1700			goto combine_limits;
1701		}
1702
1703		/*
1704		 * Combine queue limits of all the devices this target uses.
1705		 */
1706		ti->type->iterate_devices(ti, dm_set_device_limits,
1707					  &ti_limits);
1708
1709		if (!zoned && ti_limits.zoned) {
1710			/*
1711			 * After stacking all limits, validate all devices
1712			 * in table support this zoned model and zone sectors.
1713			 */
1714			zoned = ti_limits.zoned;
1715			zone_sectors = ti_limits.chunk_sectors;
1716		}
1717
1718		/* Set I/O hints portion of queue limits */
1719		if (ti->type->io_hints)
1720			ti->type->io_hints(ti, &ti_limits);
1721
1722		/*
1723		 * Check each device area is consistent with the target's
1724		 * overall queue limits.
1725		 */
1726		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727					      &ti_limits))
1728			return -EINVAL;
1729
1730combine_limits:
1731		/*
1732		 * Merge this target's queue limits into the overall limits
1733		 * for the table.
1734		 */
1735		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736			DMWARN("%s: adding target device (start sect %llu len %llu) "
 
1737			       "caused an alignment inconsistency",
1738			       dm_device_name(t->md),
1739			       (unsigned long long) ti->begin,
1740			       (unsigned long long) ti->len);
1741	}
1742
1743	/*
1744	 * Verify that the zoned model and zone sectors, as determined before
1745	 * any .io_hints override, are the same across all devices in the table.
1746	 * - this is especially relevant if .io_hints is emulating a disk-managed
1747	 *   zoned model on host-managed zoned block devices.
1748	 * BUT...
1749	 */
1750	if (limits->zoned) {
1751		/*
1752		 * ...IF the above limits stacking determined a zoned model
1753		 * validate that all of the table's devices conform to it.
1754		 */
1755		zoned = limits->zoned;
1756		zone_sectors = limits->chunk_sectors;
1757	}
1758	if (validate_hardware_zoned(t, zoned, zone_sectors))
1759		return -EINVAL;
1760
1761	return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile.  If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771	struct gendisk *template_disk = NULL;
1772
1773	if (t->integrity_added)
1774		return;
1775
1776	if (t->integrity_supported) {
1777		/*
1778		 * Verify that the original integrity profile
1779		 * matches all the devices in this table.
1780		 */
1781		template_disk = dm_table_get_integrity_disk(t);
1782		if (template_disk &&
1783		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784			return;
1785	}
1786
1787	if (integrity_profile_exists(dm_disk(t->md))) {
1788		DMWARN("%s: unable to establish an integrity profile",
1789		       dm_device_name(t->md));
1790		blk_integrity_unregister(dm_disk(t->md));
1791	}
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795				sector_t start, sector_t len, void *data)
1796{
1797	unsigned long flush = (unsigned long) data;
1798	struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800	return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
 
 
 
1805	/*
1806	 * Require at least one underlying device to support flushes.
1807	 * t->devices includes internal dm devices such as mirror logs
1808	 * so we need to use iterate_devices here, which targets
1809	 * supporting flushes must provide.
1810	 */
1811	for (unsigned int i = 0; i < t->num_targets; i++) {
1812		struct dm_target *ti = dm_table_get_target(t, i);
1813
1814		if (!ti->num_flush_bios)
1815			continue;
1816
1817		if (ti->flush_supported)
1818			return true;
1819
1820		if (ti->type->iterate_devices &&
1821		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822			return true;
1823	}
1824
1825	return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829					  struct dm_dev *dev, sector_t start,
1830					  sector_t len, void *data)
1831{
1832	struct dax_device *dax_dev = dev->dax_dev;
 
1833
1834	if (!dax_dev)
1835		return false;
 
1836
1837	if (dax_write_cache_enabled(dax_dev))
1838		return true;
1839	return false;
 
 
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843				sector_t start, sector_t len, void *data)
1844{
1845	return !bdev_nonrot(dev->bdev);
 
 
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849			     sector_t start, sector_t len, void *data)
1850{
1851	struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853	return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857					   sector_t start, sector_t len, void *data)
1858{
1859	struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861	return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
 
1865{
1866	for (unsigned int i = 0; i < t->num_targets; i++) {
1867		struct dm_target *ti = dm_table_get_target(t, i);
1868
1869		if (!ti->num_write_zeroes_bios)
1870			return false;
1871
1872		if (!ti->type->iterate_devices ||
1873		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874			return false;
1875	}
1876
1877	return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881				     sector_t start, sector_t len, void *data)
1882{
1883	return !bdev_nowait(dev->bdev);
 
 
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888	for (unsigned int i = 0; i < t->num_targets; i++) {
1889		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1890
1891		if (!dm_target_supports_nowait(ti->type))
1892			return false;
1893
1894		if (!ti->type->iterate_devices ||
1895		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896			return false;
1897	}
1898
1899	return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903				      sector_t start, sector_t len, void *data)
1904{
1905	return !bdev_max_discard_sectors(dev->bdev);
 
 
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910	for (unsigned int i = 0; i < t->num_targets; i++) {
1911		struct dm_target *ti = dm_table_get_target(t, i);
1912
1913		if (!ti->num_discard_bios)
1914			return false;
1915
1916		/*
1917		 * Either the target provides discard support (as implied by setting
1918		 * 'discards_supported') or it relies on _all_ data devices having
1919		 * discard support.
1920		 */
1921		if (!ti->discards_supported &&
1922		    (!ti->type->iterate_devices ||
1923		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924			return false;
1925	}
1926
1927	return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931					   struct dm_dev *dev, sector_t start,
1932					   sector_t len, void *data)
1933{
1934	return !bdev_max_secure_erase_sectors(dev->bdev);
1935}
 
 
 
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939	for (unsigned int i = 0; i < t->num_targets; i++) {
1940		struct dm_target *ti = dm_table_get_target(t, i);
1941
1942		if (!ti->num_secure_erase_bios)
1943			return false;
1944
1945		if (!ti->type->iterate_devices ||
1946		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947			return false;
1948	}
1949
1950	return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954					struct dm_dev *dev, sector_t start,
1955					sector_t len, void *data)
1956{
1957	return bdev_stable_writes(dev->bdev);
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961			      struct queue_limits *limits)
1962{
1963	bool wc = false, fua = false;
1964	int r;
1965
1966	/*
1967	 * Copy table's limits to the DM device's request_queue
1968	 */
1969	q->limits = *limits;
1970
1971	if (dm_table_supports_nowait(t))
1972		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973	else
1974		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976	if (!dm_table_supports_discards(t)) {
1977		q->limits.max_discard_sectors = 0;
1978		q->limits.max_hw_discard_sectors = 0;
1979		q->limits.discard_granularity = 0;
1980		q->limits.discard_alignment = 0;
1981		q->limits.discard_misaligned = 0;
1982	}
1983
1984	if (!dm_table_supports_secure_erase(t))
1985		q->limits.max_secure_erase_sectors = 0;
1986
1987	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988		wc = true;
1989		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990			fua = true;
1991	}
1992	blk_queue_write_cache(q, wc, fua);
1993
1994	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997			set_dax_synchronous(t->md->dax_dev);
1998	} else
1999		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002		dax_write_cache(t->md->dax_dev, true);
2003
2004	/* Ensure that all underlying devices are non-rotational. */
2005	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007	else
2008		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010	if (!dm_table_supports_write_zeroes(t))
2011		q->limits.max_write_zeroes_sectors = 0;
2012
2013	dm_table_verify_integrity(t);
2014
2015	/*
2016	 * Some devices don't use blk_integrity but still want stable pages
2017	 * because they do their own checksumming.
2018	 * If any underlying device requires stable pages, a table must require
2019	 * them as well.  Only targets that support iterate_devices are considered:
2020	 * don't want error, zero, etc to require stable pages.
2021	 */
2022	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024	else
2025		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
 
 
2026
2027	/*
2028	 * Determine whether or not this queue's I/O timings contribute
2029	 * to the entropy pool, Only request-based targets use this.
2030	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031	 * have it set.
2032	 */
2033	if (blk_queue_add_random(q) &&
2034	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037	/*
2038	 * For a zoned target, setup the zones related queue attributes
2039	 * and resources necessary for zone append emulation if necessary.
 
 
 
 
 
2040	 */
2041	if (blk_queue_is_zoned(q)) {
2042		r = dm_set_zones_restrictions(t, q);
2043		if (r)
2044			return r;
2045		if (!static_key_enabled(&zoned_enabled.key))
2046			static_branch_enable(&zoned_enabled);
2047	}
2048
2049	dm_update_crypto_profile(q, t);
2050	disk_update_readahead(t->md->disk);
2051
2052	/*
2053	 * Check for request-based device is left to
2054	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055	 *
2056	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057	 * underlying devices supporting polling.
2058	 */
2059	if (__table_type_bio_based(t->type)) {
2060		if (dm_table_supports_poll(t))
2061			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062		else
2063			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064	}
2065
2066	return 0;
 
 
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071	return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076	return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081	PRESUSPEND,
2082	PRESUSPEND_UNDO,
2083	POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088	lockdep_assert_held(&t->md->suspend_lock);
2089
2090	for (unsigned int i = 0; i < t->num_targets; i++) {
2091		struct dm_target *ti = dm_table_get_target(t, i);
2092
 
2093		switch (mode) {
2094		case PRESUSPEND:
2095			if (ti->type->presuspend)
2096				ti->type->presuspend(ti);
2097			break;
2098		case PRESUSPEND_UNDO:
2099			if (ti->type->presuspend_undo)
2100				ti->type->presuspend_undo(ti);
2101			break;
2102		case POSTSUSPEND:
2103			if (ti->type->postsuspend)
2104				ti->type->postsuspend(ti);
2105			break;
2106		}
 
2107	}
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112	if (!t)
2113		return;
2114
2115	suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120	if (!t)
2121		return;
2122
2123	suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128	if (!t)
2129		return;
2130
2131	suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136	unsigned int i;
2137	int r = 0;
2138
2139	lockdep_assert_held(&t->md->suspend_lock);
2140
2141	for (i = 0; i < t->num_targets; i++) {
2142		struct dm_target *ti = dm_table_get_target(t, i);
2143
2144		if (!ti->type->preresume)
2145			continue;
2146
2147		r = ti->type->preresume(ti);
2148		if (r) {
2149			DMERR("%s: %s: preresume failed, error = %d",
2150			      dm_device_name(t->md), ti->type->name, r);
2151			return r;
2152		}
2153	}
2154
2155	for (i = 0; i < t->num_targets; i++) {
2156		struct dm_target *ti = dm_table_get_target(t, i);
2157
2158		if (ti->type->resume)
2159			ti->type->resume(ti);
2160	}
2161
2162	return 0;
2163}
2164
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167	return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170
2171const char *dm_table_device_name(struct dm_table *t)
 
 
 
 
 
 
 
2172{
2173	return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
 
 
 
 
2179	if (!dm_table_request_based(t))
2180		return;
2181
2182	if (t->md->queue)
2183		blk_mq_run_hw_queues(t->md->queue, true);
 
 
 
 
 
 
 
 
 
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
v4.10.11
 
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
 
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
 
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
 
  23
  24#define DM_MSG_PREFIX "table"
  25
  26#define MAX_DEPTH 16
  27#define NODE_SIZE L1_CACHE_BYTES
  28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  30
  31struct dm_table {
  32	struct mapped_device *md;
  33	unsigned type;
  34
  35	/* btree table */
  36	unsigned int depth;
  37	unsigned int counts[MAX_DEPTH];	/* in nodes */
  38	sector_t *index[MAX_DEPTH];
  39
  40	unsigned int num_targets;
  41	unsigned int num_allocated;
  42	sector_t *highs;
  43	struct dm_target *targets;
  44
  45	struct target_type *immutable_target_type;
  46
  47	bool integrity_supported:1;
  48	bool singleton:1;
  49	bool all_blk_mq:1;
  50
  51	/*
  52	 * Indicates the rw permissions for the new logical
  53	 * device.  This should be a combination of FMODE_READ
  54	 * and FMODE_WRITE.
  55	 */
  56	fmode_t mode;
  57
  58	/* a list of devices used by this table */
  59	struct list_head devices;
  60
  61	/* events get handed up using this callback */
  62	void (*event_fn)(void *);
  63	void *event_context;
  64
  65	struct dm_md_mempools *mempools;
  66
  67	struct list_head target_callbacks;
  68};
  69
  70/*
  71 * Similar to ceiling(log_size(n))
  72 */
  73static unsigned int int_log(unsigned int n, unsigned int base)
  74{
  75	int result = 0;
  76
  77	while (n > 1) {
  78		n = dm_div_up(n, base);
  79		result++;
  80	}
  81
  82	return result;
  83}
  84
  85/*
  86 * Calculate the index of the child node of the n'th node k'th key.
  87 */
  88static inline unsigned int get_child(unsigned int n, unsigned int k)
  89{
  90	return (n * CHILDREN_PER_NODE) + k;
  91}
  92
  93/*
  94 * Return the n'th node of level l from table t.
  95 */
  96static inline sector_t *get_node(struct dm_table *t,
  97				 unsigned int l, unsigned int n)
  98{
  99	return t->index[l] + (n * KEYS_PER_NODE);
 100}
 101
 102/*
 103 * Return the highest key that you could lookup from the n'th
 104 * node on level l of the btree.
 105 */
 106static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 107{
 108	for (; l < t->depth - 1; l++)
 109		n = get_child(n, CHILDREN_PER_NODE - 1);
 110
 111	if (n >= t->counts[l])
 112		return (sector_t) - 1;
 113
 114	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 115}
 116
 117/*
 118 * Fills in a level of the btree based on the highs of the level
 119 * below it.
 120 */
 121static int setup_btree_index(unsigned int l, struct dm_table *t)
 122{
 123	unsigned int n, k;
 124	sector_t *node;
 125
 126	for (n = 0U; n < t->counts[l]; n++) {
 127		node = get_node(t, l, n);
 128
 129		for (k = 0U; k < KEYS_PER_NODE; k++)
 130			node[k] = high(t, l + 1, get_child(n, k));
 131	}
 132
 133	return 0;
 134}
 135
 136void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 137{
 138	unsigned long size;
 139	void *addr;
 140
 141	/*
 142	 * Check that we're not going to overflow.
 143	 */
 144	if (nmemb > (ULONG_MAX / elem_size))
 145		return NULL;
 146
 147	size = nmemb * elem_size;
 148	addr = vzalloc(size);
 149
 150	return addr;
 151}
 152EXPORT_SYMBOL(dm_vcalloc);
 153
 154/*
 155 * highs, and targets are managed as dynamic arrays during a
 156 * table load.
 157 */
 158static int alloc_targets(struct dm_table *t, unsigned int num)
 159{
 160	sector_t *n_highs;
 161	struct dm_target *n_targets;
 162
 163	/*
 164	 * Allocate both the target array and offset array at once.
 165	 * Append an empty entry to catch sectors beyond the end of
 166	 * the device.
 167	 */
 168	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 169					  sizeof(sector_t));
 170	if (!n_highs)
 171		return -ENOMEM;
 172
 173	n_targets = (struct dm_target *) (n_highs + num);
 174
 175	memset(n_highs, -1, sizeof(*n_highs) * num);
 176	vfree(t->highs);
 177
 178	t->num_allocated = num;
 179	t->highs = n_highs;
 180	t->targets = n_targets;
 181
 182	return 0;
 183}
 184
 185int dm_table_create(struct dm_table **result, fmode_t mode,
 186		    unsigned num_targets, struct mapped_device *md)
 187{
 188	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 
 
 
 
 
 189
 190	if (!t)
 191		return -ENOMEM;
 192
 193	INIT_LIST_HEAD(&t->devices);
 194	INIT_LIST_HEAD(&t->target_callbacks);
 195
 196	if (!num_targets)
 197		num_targets = KEYS_PER_NODE;
 198
 199	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 200
 201	if (!num_targets) {
 202		kfree(t);
 203		return -ENOMEM;
 204	}
 205
 206	if (alloc_targets(t, num_targets)) {
 207		kfree(t);
 208		return -ENOMEM;
 209	}
 210
 211	t->type = DM_TYPE_NONE;
 212	t->mode = mode;
 213	t->md = md;
 214	*result = t;
 215	return 0;
 216}
 217
 218static void free_devices(struct list_head *devices, struct mapped_device *md)
 219{
 220	struct list_head *tmp, *next;
 221
 222	list_for_each_safe(tmp, next, devices) {
 223		struct dm_dev_internal *dd =
 224		    list_entry(tmp, struct dm_dev_internal, list);
 225		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 226		       dm_device_name(md), dd->dm_dev->name);
 227		dm_put_table_device(md, dd->dm_dev);
 228		kfree(dd);
 229	}
 230}
 231
 
 
 232void dm_table_destroy(struct dm_table *t)
 233{
 234	unsigned int i;
 235
 236	if (!t)
 237		return;
 238
 239	/* free the indexes */
 240	if (t->depth >= 2)
 241		vfree(t->index[t->depth - 2]);
 242
 243	/* free the targets */
 244	for (i = 0; i < t->num_targets; i++) {
 245		struct dm_target *tgt = t->targets + i;
 246
 247		if (tgt->type->dtr)
 248			tgt->type->dtr(tgt);
 249
 250		dm_put_target_type(tgt->type);
 251	}
 252
 253	vfree(t->highs);
 254
 255	/* free the device list */
 256	free_devices(&t->devices, t->md);
 257
 258	dm_free_md_mempools(t->mempools);
 259
 
 
 260	kfree(t);
 261}
 262
 263/*
 264 * See if we've already got a device in the list.
 265 */
 266static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 267{
 268	struct dm_dev_internal *dd;
 269
 270	list_for_each_entry (dd, l, list)
 271		if (dd->dm_dev->bdev->bd_dev == dev)
 272			return dd;
 273
 274	return NULL;
 275}
 276
 277/*
 278 * If possible, this checks an area of a destination device is invalid.
 279 */
 280static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 281				  sector_t start, sector_t len, void *data)
 282{
 283	struct request_queue *q;
 284	struct queue_limits *limits = data;
 285	struct block_device *bdev = dev->bdev;
 286	sector_t dev_size =
 287		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 288	unsigned short logical_block_size_sectors =
 289		limits->logical_block_size >> SECTOR_SHIFT;
 290	char b[BDEVNAME_SIZE];
 291
 292	/*
 293	 * Some devices exist without request functions,
 294	 * such as loop devices not yet bound to backing files.
 295	 * Forbid the use of such devices.
 296	 */
 297	q = bdev_get_queue(bdev);
 298	if (!q || !q->make_request_fn) {
 299		DMWARN("%s: %s is not yet initialised: "
 300		       "start=%llu, len=%llu, dev_size=%llu",
 301		       dm_device_name(ti->table->md), bdevname(bdev, b),
 302		       (unsigned long long)start,
 303		       (unsigned long long)len,
 304		       (unsigned long long)dev_size);
 305		return 1;
 306	}
 307
 308	if (!dev_size)
 309		return 0;
 310
 311	if ((start >= dev_size) || (start + len > dev_size)) {
 312		DMWARN("%s: %s too small for target: "
 313		       "start=%llu, len=%llu, dev_size=%llu",
 314		       dm_device_name(ti->table->md), bdevname(bdev, b),
 315		       (unsigned long long)start,
 316		       (unsigned long long)len,
 317		       (unsigned long long)dev_size);
 318		return 1;
 319	}
 320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321	if (logical_block_size_sectors <= 1)
 322		return 0;
 323
 324	if (start & (logical_block_size_sectors - 1)) {
 325		DMWARN("%s: start=%llu not aligned to h/w "
 326		       "logical block size %u of %s",
 327		       dm_device_name(ti->table->md),
 328		       (unsigned long long)start,
 329		       limits->logical_block_size, bdevname(bdev, b));
 330		return 1;
 331	}
 332
 333	if (len & (logical_block_size_sectors - 1)) {
 334		DMWARN("%s: len=%llu not aligned to h/w "
 335		       "logical block size %u of %s",
 336		       dm_device_name(ti->table->md),
 337		       (unsigned long long)len,
 338		       limits->logical_block_size, bdevname(bdev, b));
 339		return 1;
 340	}
 341
 342	return 0;
 343}
 344
 345/*
 346 * This upgrades the mode on an already open dm_dev, being
 347 * careful to leave things as they were if we fail to reopen the
 348 * device and not to touch the existing bdev field in case
 349 * it is accessed concurrently inside dm_table_any_congested().
 350 */
 351static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 352			struct mapped_device *md)
 353{
 354	int r;
 355	struct dm_dev *old_dev, *new_dev;
 356
 357	old_dev = dd->dm_dev;
 358
 359	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 360				dd->dm_dev->mode | new_mode, &new_dev);
 361	if (r)
 362		return r;
 363
 364	dd->dm_dev = new_dev;
 365	dm_put_table_device(md, old_dev);
 366
 367	return 0;
 368}
 369
 370/*
 371 * Convert the path to a device
 372 */
 373dev_t dm_get_dev_t(const char *path)
 374{
 375	dev_t uninitialized_var(dev);
 376	struct block_device *bdev;
 377
 378	bdev = lookup_bdev(path);
 379	if (IS_ERR(bdev))
 380		dev = name_to_dev_t(path);
 381	else {
 382		dev = bdev->bd_dev;
 383		bdput(bdev);
 384	}
 385
 386	return dev;
 387}
 388EXPORT_SYMBOL_GPL(dm_get_dev_t);
 389
 390/*
 391 * Add a device to the list, or just increment the usage count if
 392 * it's already present.
 
 
 
 393 */
 394int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 395		  struct dm_dev **result)
 396{
 397	int r;
 398	dev_t dev;
 
 
 399	struct dm_dev_internal *dd;
 400	struct dm_table *t = ti->table;
 401
 402	BUG_ON(!t);
 403
 404	dev = dm_get_dev_t(path);
 405	if (!dev)
 406		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407
 408	dd = find_device(&t->devices, dev);
 409	if (!dd) {
 410		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 411		if (!dd)
 412			return -ENOMEM;
 
 
 413
 414		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 
 415			kfree(dd);
 416			return r;
 417		}
 418
 419		atomic_set(&dd->count, 0);
 420		list_add(&dd->list, &t->devices);
 
 421
 422	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 423		r = upgrade_mode(dd, mode, t->md);
 424		if (r)
 425			return r;
 426	}
 427	atomic_inc(&dd->count);
 428
 
 429	*result = dd->dm_dev;
 430	return 0;
 
 
 
 
 431}
 432EXPORT_SYMBOL(dm_get_device);
 433
 434static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 435				sector_t start, sector_t len, void *data)
 436{
 437	struct queue_limits *limits = data;
 438	struct block_device *bdev = dev->bdev;
 439	struct request_queue *q = bdev_get_queue(bdev);
 440	char b[BDEVNAME_SIZE];
 441
 442	if (unlikely(!q)) {
 443		DMWARN("%s: Cannot set limits for nonexistent device %s",
 444		       dm_device_name(ti->table->md), bdevname(bdev, b));
 445		return 0;
 446	}
 447
 448	if (bdev_stack_limits(limits, bdev, start) < 0)
 449		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 
 450		       "physical_block_size=%u, logical_block_size=%u, "
 451		       "alignment_offset=%u, start=%llu",
 452		       dm_device_name(ti->table->md), bdevname(bdev, b),
 453		       q->limits.physical_block_size,
 454		       q->limits.logical_block_size,
 455		       q->limits.alignment_offset,
 456		       (unsigned long long) start << SECTOR_SHIFT);
 457
 458	return 0;
 459}
 460
 461/*
 462 * Decrement a device's use count and remove it if necessary.
 463 */
 464void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 465{
 466	int found = 0;
 467	struct list_head *devices = &ti->table->devices;
 
 468	struct dm_dev_internal *dd;
 469
 
 
 470	list_for_each_entry(dd, devices, list) {
 471		if (dd->dm_dev == d) {
 472			found = 1;
 473			break;
 474		}
 475	}
 476	if (!found) {
 477		DMWARN("%s: device %s not in table devices list",
 478		       dm_device_name(ti->table->md), d->name);
 479		return;
 480	}
 481	if (atomic_dec_and_test(&dd->count)) {
 482		dm_put_table_device(ti->table->md, d);
 483		list_del(&dd->list);
 484		kfree(dd);
 485	}
 
 
 
 486}
 487EXPORT_SYMBOL(dm_put_device);
 488
 489/*
 490 * Checks to see if the target joins onto the end of the table.
 491 */
 492static int adjoin(struct dm_table *table, struct dm_target *ti)
 493{
 494	struct dm_target *prev;
 495
 496	if (!table->num_targets)
 497		return !ti->begin;
 498
 499	prev = &table->targets[table->num_targets - 1];
 500	return (ti->begin == (prev->begin + prev->len));
 501}
 502
 503/*
 504 * Used to dynamically allocate the arg array.
 505 *
 506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 507 * process messages even if some device is suspended. These messages have a
 508 * small fixed number of arguments.
 509 *
 510 * On the other hand, dm-switch needs to process bulk data using messages and
 511 * excessive use of GFP_NOIO could cause trouble.
 512 */
 513static char **realloc_argv(unsigned *array_size, char **old_argv)
 514{
 515	char **argv;
 516	unsigned new_size;
 517	gfp_t gfp;
 518
 519	if (*array_size) {
 520		new_size = *array_size * 2;
 521		gfp = GFP_KERNEL;
 522	} else {
 523		new_size = 8;
 524		gfp = GFP_NOIO;
 525	}
 526	argv = kmalloc(new_size * sizeof(*argv), gfp);
 527	if (argv) {
 528		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 529		*array_size = new_size;
 530	}
 531
 532	kfree(old_argv);
 533	return argv;
 534}
 535
 536/*
 537 * Destructively splits up the argument list to pass to ctr.
 538 */
 539int dm_split_args(int *argc, char ***argvp, char *input)
 540{
 541	char *start, *end = input, *out, **argv = NULL;
 542	unsigned array_size = 0;
 543
 544	*argc = 0;
 545
 546	if (!input) {
 547		*argvp = NULL;
 548		return 0;
 549	}
 550
 551	argv = realloc_argv(&array_size, argv);
 552	if (!argv)
 553		return -ENOMEM;
 554
 555	while (1) {
 556		/* Skip whitespace */
 557		start = skip_spaces(end);
 558
 559		if (!*start)
 560			break;	/* success, we hit the end */
 561
 562		/* 'out' is used to remove any back-quotes */
 563		end = out = start;
 564		while (*end) {
 565			/* Everything apart from '\0' can be quoted */
 566			if (*end == '\\' && *(end + 1)) {
 567				*out++ = *(end + 1);
 568				end += 2;
 569				continue;
 570			}
 571
 572			if (isspace(*end))
 573				break;	/* end of token */
 574
 575			*out++ = *end++;
 576		}
 577
 578		/* have we already filled the array ? */
 579		if ((*argc + 1) > array_size) {
 580			argv = realloc_argv(&array_size, argv);
 581			if (!argv)
 582				return -ENOMEM;
 583		}
 584
 585		/* we know this is whitespace */
 586		if (*end)
 587			end++;
 588
 589		/* terminate the string and put it in the array */
 590		*out = '\0';
 591		argv[*argc] = start;
 592		(*argc)++;
 593	}
 594
 595	*argvp = argv;
 596	return 0;
 597}
 598
 599/*
 600 * Impose necessary and sufficient conditions on a devices's table such
 601 * that any incoming bio which respects its logical_block_size can be
 602 * processed successfully.  If it falls across the boundary between
 603 * two or more targets, the size of each piece it gets split into must
 604 * be compatible with the logical_block_size of the target processing it.
 605 */
 606static int validate_hardware_logical_block_alignment(struct dm_table *table,
 607						 struct queue_limits *limits)
 608{
 609	/*
 610	 * This function uses arithmetic modulo the logical_block_size
 611	 * (in units of 512-byte sectors).
 612	 */
 613	unsigned short device_logical_block_size_sects =
 614		limits->logical_block_size >> SECTOR_SHIFT;
 615
 616	/*
 617	 * Offset of the start of the next table entry, mod logical_block_size.
 618	 */
 619	unsigned short next_target_start = 0;
 620
 621	/*
 622	 * Given an aligned bio that extends beyond the end of a
 623	 * target, how many sectors must the next target handle?
 624	 */
 625	unsigned short remaining = 0;
 626
 627	struct dm_target *uninitialized_var(ti);
 628	struct queue_limits ti_limits;
 629	unsigned i = 0;
 630
 631	/*
 632	 * Check each entry in the table in turn.
 633	 */
 634	while (i < dm_table_get_num_targets(table)) {
 635		ti = dm_table_get_target(table, i++);
 636
 637		blk_set_stacking_limits(&ti_limits);
 638
 639		/* combine all target devices' limits */
 640		if (ti->type->iterate_devices)
 641			ti->type->iterate_devices(ti, dm_set_device_limits,
 642						  &ti_limits);
 643
 644		/*
 645		 * If the remaining sectors fall entirely within this
 646		 * table entry are they compatible with its logical_block_size?
 647		 */
 648		if (remaining < ti->len &&
 649		    remaining & ((ti_limits.logical_block_size >>
 650				  SECTOR_SHIFT) - 1))
 651			break;	/* Error */
 652
 653		next_target_start =
 654		    (unsigned short) ((next_target_start + ti->len) &
 655				      (device_logical_block_size_sects - 1));
 656		remaining = next_target_start ?
 657		    device_logical_block_size_sects - next_target_start : 0;
 658	}
 659
 660	if (remaining) {
 661		DMWARN("%s: table line %u (start sect %llu len %llu) "
 662		       "not aligned to h/w logical block size %u",
 663		       dm_device_name(table->md), i,
 664		       (unsigned long long) ti->begin,
 665		       (unsigned long long) ti->len,
 666		       limits->logical_block_size);
 667		return -EINVAL;
 668	}
 669
 670	return 0;
 671}
 672
 673int dm_table_add_target(struct dm_table *t, const char *type,
 674			sector_t start, sector_t len, char *params)
 675{
 676	int r = -EINVAL, argc;
 677	char **argv;
 678	struct dm_target *tgt;
 679
 680	if (t->singleton) {
 681		DMERR("%s: target type %s must appear alone in table",
 682		      dm_device_name(t->md), t->targets->type->name);
 683		return -EINVAL;
 684	}
 685
 686	BUG_ON(t->num_targets >= t->num_allocated);
 687
 688	tgt = t->targets + t->num_targets;
 689	memset(tgt, 0, sizeof(*tgt));
 690
 691	if (!len) {
 692		DMERR("%s: zero-length target", dm_device_name(t->md));
 693		return -EINVAL;
 694	}
 695
 696	tgt->type = dm_get_target_type(type);
 697	if (!tgt->type) {
 698		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 699		return -EINVAL;
 700	}
 701
 702	if (dm_target_needs_singleton(tgt->type)) {
 703		if (t->num_targets) {
 704			tgt->error = "singleton target type must appear alone in table";
 705			goto bad;
 706		}
 707		t->singleton = true;
 708	}
 709
 710	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 711		tgt->error = "target type may not be included in a read-only table";
 
 712		goto bad;
 713	}
 714
 715	if (t->immutable_target_type) {
 716		if (t->immutable_target_type != tgt->type) {
 717			tgt->error = "immutable target type cannot be mixed with other target types";
 718			goto bad;
 719		}
 720	} else if (dm_target_is_immutable(tgt->type)) {
 721		if (t->num_targets) {
 722			tgt->error = "immutable target type cannot be mixed with other target types";
 723			goto bad;
 724		}
 725		t->immutable_target_type = tgt->type;
 726	}
 727
 728	tgt->table = t;
 729	tgt->begin = start;
 730	tgt->len = len;
 731	tgt->error = "Unknown error";
 
 
 
 732
 733	/*
 734	 * Does this target adjoin the previous one ?
 735	 */
 736	if (!adjoin(t, tgt)) {
 737		tgt->error = "Gap in table";
 738		goto bad;
 739	}
 740
 741	r = dm_split_args(&argc, &argv, params);
 742	if (r) {
 743		tgt->error = "couldn't split parameters (insufficient memory)";
 744		goto bad;
 745	}
 746
 747	r = tgt->type->ctr(tgt, argc, argv);
 748	kfree(argv);
 749	if (r)
 750		goto bad;
 751
 752	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 753
 754	if (!tgt->num_discard_bios && tgt->discards_supported)
 755		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 756		       dm_device_name(t->md), type);
 757
 
 
 
 758	return 0;
 759
 760 bad:
 761	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 762	dm_put_target_type(tgt->type);
 763	return r;
 764}
 765
 766/*
 767 * Target argument parsing helpers.
 768 */
 769static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 770			     unsigned *value, char **error, unsigned grouped)
 771{
 772	const char *arg_str = dm_shift_arg(arg_set);
 773	char dummy;
 774
 775	if (!arg_str ||
 776	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 777	    (*value < arg->min) ||
 778	    (*value > arg->max) ||
 779	    (grouped && arg_set->argc < *value)) {
 780		*error = arg->error;
 781		return -EINVAL;
 782	}
 783
 784	return 0;
 785}
 786
 787int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 788		unsigned *value, char **error)
 789{
 790	return validate_next_arg(arg, arg_set, value, error, 0);
 791}
 792EXPORT_SYMBOL(dm_read_arg);
 793
 794int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 795		      unsigned *value, char **error)
 796{
 797	return validate_next_arg(arg, arg_set, value, error, 1);
 798}
 799EXPORT_SYMBOL(dm_read_arg_group);
 800
 801const char *dm_shift_arg(struct dm_arg_set *as)
 802{
 803	char *r;
 804
 805	if (as->argc) {
 806		as->argc--;
 807		r = *as->argv;
 808		as->argv++;
 809		return r;
 810	}
 811
 812	return NULL;
 813}
 814EXPORT_SYMBOL(dm_shift_arg);
 815
 816void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 817{
 818	BUG_ON(as->argc < num_args);
 819	as->argc -= num_args;
 820	as->argv += num_args;
 821}
 822EXPORT_SYMBOL(dm_consume_args);
 823
 824static bool __table_type_bio_based(unsigned table_type)
 825{
 826	return (table_type == DM_TYPE_BIO_BASED ||
 827		table_type == DM_TYPE_DAX_BIO_BASED);
 828}
 829
 830static bool __table_type_request_based(unsigned table_type)
 831{
 832	return (table_type == DM_TYPE_REQUEST_BASED ||
 833		table_type == DM_TYPE_MQ_REQUEST_BASED);
 834}
 835
 836void dm_table_set_type(struct dm_table *t, unsigned type)
 837{
 838	t->type = type;
 839}
 840EXPORT_SYMBOL_GPL(dm_table_set_type);
 841
 842static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 843			       sector_t start, sector_t len, void *data)
 
 844{
 845	struct request_queue *q = bdev_get_queue(dev->bdev);
 
 846
 847	return q && blk_queue_dax(q);
 
 848}
 849
 850static bool dm_table_supports_dax(struct dm_table *t)
 
 
 851{
 852	struct dm_target *ti;
 853	unsigned i = 0;
 854
 
 
 
 855	/* Ensure that all targets support DAX. */
 856	while (i < dm_table_get_num_targets(t)) {
 857		ti = dm_table_get_target(t, i++);
 858
 859		if (!ti->type->direct_access)
 860			return false;
 861
 862		if (!ti->type->iterate_devices ||
 863		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
 
 864			return false;
 865	}
 866
 867	return true;
 868}
 869
 
 
 
 
 
 
 
 
 
 
 
 
 
 870static int dm_table_determine_type(struct dm_table *t)
 871{
 872	unsigned i;
 873	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 874	unsigned sq_count = 0, mq_count = 0;
 875	struct dm_target *tgt;
 876	struct dm_dev_internal *dd;
 877	struct list_head *devices = dm_table_get_devices(t);
 878	unsigned live_md_type = dm_get_md_type(t->md);
 879
 880	if (t->type != DM_TYPE_NONE) {
 881		/* target already set the table's type */
 882		if (t->type == DM_TYPE_BIO_BASED)
 883			return 0;
 
 
 884		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 885		goto verify_rq_based;
 886	}
 887
 888	for (i = 0; i < t->num_targets; i++) {
 889		tgt = t->targets + i;
 890		if (dm_target_hybrid(tgt))
 891			hybrid = 1;
 892		else if (dm_target_request_based(tgt))
 893			request_based = 1;
 894		else
 895			bio_based = 1;
 896
 897		if (bio_based && request_based) {
 898			DMWARN("Inconsistent table: different target types"
 899			       " can't be mixed up");
 900			return -EINVAL;
 901		}
 902	}
 903
 904	if (hybrid && !bio_based && !request_based) {
 905		/*
 906		 * The targets can work either way.
 907		 * Determine the type from the live device.
 908		 * Default to bio-based if device is new.
 909		 */
 910		if (__table_type_request_based(live_md_type))
 911			request_based = 1;
 912		else
 913			bio_based = 1;
 914	}
 915
 916	if (bio_based) {
 
 917		/* We must use this table as bio-based */
 918		t->type = DM_TYPE_BIO_BASED;
 919		if (dm_table_supports_dax(t) ||
 920		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
 921			t->type = DM_TYPE_DAX_BIO_BASED;
 
 922		return 0;
 923	}
 924
 925	BUG_ON(!request_based); /* No targets in this table */
 926
 927	/*
 928	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
 929	 * having a compatible target use dm_table_set_type.
 930	 */
 931	t->type = DM_TYPE_REQUEST_BASED;
 932
 933verify_rq_based:
 934	/*
 935	 * Request-based dm supports only tables that have a single target now.
 936	 * To support multiple targets, request splitting support is needed,
 937	 * and that needs lots of changes in the block-layer.
 938	 * (e.g. request completion process for partial completion.)
 939	 */
 940	if (t->num_targets > 1) {
 941		DMWARN("Request-based dm doesn't support multiple targets yet");
 942		return -EINVAL;
 943	}
 944
 945	if (list_empty(devices)) {
 946		int srcu_idx;
 947		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 948
 949		/* inherit live table's type and all_blk_mq */
 950		if (live_table) {
 951			t->type = live_table->type;
 952			t->all_blk_mq = live_table->all_blk_mq;
 953		}
 954		dm_put_live_table(t->md, srcu_idx);
 955		return 0;
 956	}
 957
 958	/* Non-request-stackable devices can't be used for request-based dm */
 959	list_for_each_entry(dd, devices, list) {
 960		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
 961
 962		if (!blk_queue_stackable(q)) {
 963			DMERR("table load rejected: including"
 964			      " non-request-stackable devices");
 965			return -EINVAL;
 966		}
 967
 968		if (q->mq_ops)
 969			mq_count++;
 970		else
 971			sq_count++;
 972	}
 973	if (sq_count && mq_count) {
 974		DMERR("table load rejected: not all devices are blk-mq request-stackable");
 975		return -EINVAL;
 976	}
 977	t->all_blk_mq = mq_count > 0;
 978
 979	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
 980		DMERR("table load rejected: all devices are not blk-mq request-stackable");
 
 
 981		return -EINVAL;
 982	}
 983
 984	return 0;
 985}
 986
 987unsigned dm_table_get_type(struct dm_table *t)
 988{
 989	return t->type;
 990}
 991
 992struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 993{
 994	return t->immutable_target_type;
 995}
 996
 997struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 998{
 999	/* Immutable target is implicitly a singleton */
1000	if (t->num_targets > 1 ||
1001	    !dm_target_is_immutable(t->targets[0].type))
1002		return NULL;
1003
1004	return t->targets;
1005}
1006
1007struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1008{
1009	struct dm_target *uninitialized_var(ti);
1010	unsigned i = 0;
1011
1012	while (i < dm_table_get_num_targets(t)) {
1013		ti = dm_table_get_target(t, i++);
1014		if (dm_target_is_wildcard(ti->type))
1015			return ti;
1016	}
1017
1018	return NULL;
1019}
1020
1021bool dm_table_bio_based(struct dm_table *t)
1022{
1023	return __table_type_bio_based(dm_table_get_type(t));
1024}
1025
1026bool dm_table_request_based(struct dm_table *t)
1027{
1028	return __table_type_request_based(dm_table_get_type(t));
1029}
1030
1031bool dm_table_all_blk_mq_devices(struct dm_table *t)
1032{
1033	return t->all_blk_mq;
1034}
1035
1036static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1037{
1038	unsigned type = dm_table_get_type(t);
1039	unsigned per_io_data_size = 0;
1040	struct dm_target *tgt;
1041	unsigned i;
1042
1043	if (unlikely(type == DM_TYPE_NONE)) {
1044		DMWARN("no table type is set, can't allocate mempools");
1045		return -EINVAL;
1046	}
1047
1048	if (__table_type_bio_based(type))
1049		for (i = 0; i < t->num_targets; i++) {
1050			tgt = t->targets + i;
1051			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1052		}
1053
1054	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1055	if (!t->mempools)
1056		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057
 
1058	return 0;
1059}
1060
1061void dm_table_free_md_mempools(struct dm_table *t)
1062{
1063	dm_free_md_mempools(t->mempools);
1064	t->mempools = NULL;
1065}
1066
1067struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1068{
1069	return t->mempools;
1070}
1071
1072static int setup_indexes(struct dm_table *t)
1073{
1074	int i;
1075	unsigned int total = 0;
1076	sector_t *indexes;
1077
1078	/* allocate the space for *all* the indexes */
1079	for (i = t->depth - 2; i >= 0; i--) {
1080		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1081		total += t->counts[i];
1082	}
1083
1084	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1085	if (!indexes)
1086		return -ENOMEM;
1087
1088	/* set up internal nodes, bottom-up */
1089	for (i = t->depth - 2; i >= 0; i--) {
1090		t->index[i] = indexes;
1091		indexes += (KEYS_PER_NODE * t->counts[i]);
1092		setup_btree_index(i, t);
1093	}
1094
1095	return 0;
1096}
1097
1098/*
1099 * Builds the btree to index the map.
1100 */
1101static int dm_table_build_index(struct dm_table *t)
1102{
1103	int r = 0;
1104	unsigned int leaf_nodes;
1105
1106	/* how many indexes will the btree have ? */
1107	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1108	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1109
1110	/* leaf layer has already been set up */
1111	t->counts[t->depth - 1] = leaf_nodes;
1112	t->index[t->depth - 1] = t->highs;
1113
1114	if (t->depth >= 2)
1115		r = setup_indexes(t);
1116
1117	return r;
1118}
1119
1120static bool integrity_profile_exists(struct gendisk *disk)
1121{
1122	return !!blk_get_integrity(disk);
1123}
1124
1125/*
1126 * Get a disk whose integrity profile reflects the table's profile.
1127 * Returns NULL if integrity support was inconsistent or unavailable.
1128 */
1129static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1130{
1131	struct list_head *devices = dm_table_get_devices(t);
1132	struct dm_dev_internal *dd = NULL;
1133	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1134
 
 
 
 
 
 
 
1135	list_for_each_entry(dd, devices, list) {
1136		template_disk = dd->dm_dev->bdev->bd_disk;
1137		if (!integrity_profile_exists(template_disk))
1138			goto no_integrity;
1139		else if (prev_disk &&
1140			 blk_integrity_compare(prev_disk, template_disk) < 0)
1141			goto no_integrity;
1142		prev_disk = template_disk;
1143	}
1144
1145	return template_disk;
1146
1147no_integrity:
1148	if (prev_disk)
1149		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1150		       dm_device_name(t->md),
1151		       prev_disk->disk_name,
1152		       template_disk->disk_name);
1153	return NULL;
1154}
1155
1156/*
1157 * Register the mapped device for blk_integrity support if the
1158 * underlying devices have an integrity profile.  But all devices may
1159 * not have matching profiles (checking all devices isn't reliable
1160 * during table load because this table may use other DM device(s) which
1161 * must be resumed before they will have an initialized integity
1162 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1163 * profile validation: First pass during table load, final pass during
1164 * resume.
1165 */
1166static int dm_table_register_integrity(struct dm_table *t)
1167{
1168	struct mapped_device *md = t->md;
1169	struct gendisk *template_disk = NULL;
1170
 
 
 
 
1171	template_disk = dm_table_get_integrity_disk(t);
1172	if (!template_disk)
1173		return 0;
1174
1175	if (!integrity_profile_exists(dm_disk(md))) {
1176		t->integrity_supported = true;
1177		/*
1178		 * Register integrity profile during table load; we can do
1179		 * this because the final profile must match during resume.
1180		 */
1181		blk_integrity_register(dm_disk(md),
1182				       blk_get_integrity(template_disk));
1183		return 0;
1184	}
1185
1186	/*
1187	 * If DM device already has an initialized integrity
1188	 * profile the new profile should not conflict.
1189	 */
1190	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1191		DMWARN("%s: conflict with existing integrity profile: "
1192		       "%s profile mismatch",
1193		       dm_device_name(t->md),
1194		       template_disk->disk_name);
1195		return 1;
1196	}
1197
1198	/* Preserve existing integrity profile */
1199	t->integrity_supported = true;
1200	return 0;
1201}
1202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203/*
1204 * Prepares the table for use by building the indices,
1205 * setting the type, and allocating mempools.
1206 */
1207int dm_table_complete(struct dm_table *t)
1208{
1209	int r;
1210
1211	r = dm_table_determine_type(t);
1212	if (r) {
1213		DMERR("unable to determine table type");
1214		return r;
1215	}
1216
1217	r = dm_table_build_index(t);
1218	if (r) {
1219		DMERR("unable to build btrees");
1220		return r;
1221	}
1222
1223	r = dm_table_register_integrity(t);
1224	if (r) {
1225		DMERR("could not register integrity profile.");
1226		return r;
1227	}
1228
 
 
 
 
 
 
1229	r = dm_table_alloc_md_mempools(t, t->md);
1230	if (r)
1231		DMERR("unable to allocate mempools");
1232
1233	return r;
1234}
1235
1236static DEFINE_MUTEX(_event_lock);
1237void dm_table_event_callback(struct dm_table *t,
1238			     void (*fn)(void *), void *context)
1239{
1240	mutex_lock(&_event_lock);
1241	t->event_fn = fn;
1242	t->event_context = context;
1243	mutex_unlock(&_event_lock);
1244}
1245
1246void dm_table_event(struct dm_table *t)
1247{
1248	/*
1249	 * You can no longer call dm_table_event() from interrupt
1250	 * context, use a bottom half instead.
1251	 */
1252	BUG_ON(in_interrupt());
1253
1254	mutex_lock(&_event_lock);
1255	if (t->event_fn)
1256		t->event_fn(t->event_context);
1257	mutex_unlock(&_event_lock);
1258}
1259EXPORT_SYMBOL(dm_table_event);
1260
1261sector_t dm_table_get_size(struct dm_table *t)
1262{
1263	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1264}
1265EXPORT_SYMBOL(dm_table_get_size);
1266
1267struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1268{
1269	if (index >= t->num_targets)
1270		return NULL;
1271
1272	return t->targets + index;
1273}
1274
1275/*
1276 * Search the btree for the correct target.
1277 *
1278 * Caller should check returned pointer with dm_target_is_valid()
1279 * to trap I/O beyond end of device.
1280 */
1281struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1282{
1283	unsigned int l, n = 0, k = 0;
1284	sector_t *node;
1285
 
 
 
1286	for (l = 0; l < t->depth; l++) {
1287		n = get_child(n, k);
1288		node = get_node(t, l, n);
1289
1290		for (k = 0; k < KEYS_PER_NODE; k++)
1291			if (node[k] >= sector)
1292				break;
1293	}
1294
1295	return &t->targets[(KEYS_PER_NODE * n) + k];
1296}
1297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298static int count_device(struct dm_target *ti, struct dm_dev *dev,
1299			sector_t start, sector_t len, void *data)
1300{
1301	unsigned *num_devices = data;
1302
1303	(*num_devices)++;
1304
1305	return 0;
1306}
1307
 
 
 
 
 
 
 
 
 
 
 
 
 
1308/*
1309 * Check whether a table has no data devices attached using each
1310 * target's iterate_devices method.
1311 * Returns false if the result is unknown because a target doesn't
1312 * support iterate_devices.
1313 */
1314bool dm_table_has_no_data_devices(struct dm_table *table)
1315{
1316	struct dm_target *uninitialized_var(ti);
1317	unsigned i = 0, num_devices = 0;
1318
1319	while (i < dm_table_get_num_targets(table)) {
1320		ti = dm_table_get_target(table, i++);
1321
1322		if (!ti->type->iterate_devices)
1323			return false;
1324
1325		ti->type->iterate_devices(ti, count_device, &num_devices);
1326		if (num_devices)
1327			return false;
1328	}
1329
1330	return true;
1331}
1332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1333/*
1334 * Establish the new table's queue_limits and validate them.
1335 */
1336int dm_calculate_queue_limits(struct dm_table *table,
1337			      struct queue_limits *limits)
1338{
1339	struct dm_target *uninitialized_var(ti);
1340	struct queue_limits ti_limits;
1341	unsigned i = 0;
 
1342
1343	blk_set_stacking_limits(limits);
1344
1345	while (i < dm_table_get_num_targets(table)) {
 
 
1346		blk_set_stacking_limits(&ti_limits);
1347
1348		ti = dm_table_get_target(table, i++);
1349
1350		if (!ti->type->iterate_devices)
 
1351			goto combine_limits;
 
1352
1353		/*
1354		 * Combine queue limits of all the devices this target uses.
1355		 */
1356		ti->type->iterate_devices(ti, dm_set_device_limits,
1357					  &ti_limits);
1358
 
 
 
 
 
 
 
 
 
1359		/* Set I/O hints portion of queue limits */
1360		if (ti->type->io_hints)
1361			ti->type->io_hints(ti, &ti_limits);
1362
1363		/*
1364		 * Check each device area is consistent with the target's
1365		 * overall queue limits.
1366		 */
1367		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1368					      &ti_limits))
1369			return -EINVAL;
1370
1371combine_limits:
1372		/*
1373		 * Merge this target's queue limits into the overall limits
1374		 * for the table.
1375		 */
1376		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1377			DMWARN("%s: adding target device "
1378			       "(start sect %llu len %llu) "
1379			       "caused an alignment inconsistency",
1380			       dm_device_name(table->md),
1381			       (unsigned long long) ti->begin,
1382			       (unsigned long long) ti->len);
1383	}
1384
1385	return validate_hardware_logical_block_alignment(table, limits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386}
1387
1388/*
1389 * Verify that all devices have an integrity profile that matches the
1390 * DM device's registered integrity profile.  If the profiles don't
1391 * match then unregister the DM device's integrity profile.
1392 */
1393static void dm_table_verify_integrity(struct dm_table *t)
1394{
1395	struct gendisk *template_disk = NULL;
1396
 
 
 
1397	if (t->integrity_supported) {
1398		/*
1399		 * Verify that the original integrity profile
1400		 * matches all the devices in this table.
1401		 */
1402		template_disk = dm_table_get_integrity_disk(t);
1403		if (template_disk &&
1404		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1405			return;
1406	}
1407
1408	if (integrity_profile_exists(dm_disk(t->md))) {
1409		DMWARN("%s: unable to establish an integrity profile",
1410		       dm_device_name(t->md));
1411		blk_integrity_unregister(dm_disk(t->md));
1412	}
1413}
1414
1415static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1416				sector_t start, sector_t len, void *data)
1417{
1418	unsigned long flush = (unsigned long) data;
1419	struct request_queue *q = bdev_get_queue(dev->bdev);
1420
1421	return q && (q->queue_flags & flush);
1422}
1423
1424static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1425{
1426	struct dm_target *ti;
1427	unsigned i = 0;
1428
1429	/*
1430	 * Require at least one underlying device to support flushes.
1431	 * t->devices includes internal dm devices such as mirror logs
1432	 * so we need to use iterate_devices here, which targets
1433	 * supporting flushes must provide.
1434	 */
1435	while (i < dm_table_get_num_targets(t)) {
1436		ti = dm_table_get_target(t, i++);
1437
1438		if (!ti->num_flush_bios)
1439			continue;
1440
1441		if (ti->flush_supported)
1442			return true;
1443
1444		if (ti->type->iterate_devices &&
1445		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1446			return true;
1447	}
1448
1449	return false;
1450}
1451
1452static bool dm_table_discard_zeroes_data(struct dm_table *t)
 
 
1453{
1454	struct dm_target *ti;
1455	unsigned i = 0;
1456
1457	/* Ensure that all targets supports discard_zeroes_data. */
1458	while (i < dm_table_get_num_targets(t)) {
1459		ti = dm_table_get_target(t, i++);
1460
1461		if (ti->discard_zeroes_data_unsupported)
1462			return false;
1463	}
1464
1465	return true;
1466}
1467
1468static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1469			    sector_t start, sector_t len, void *data)
1470{
1471	struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473	return q && blk_queue_nonrot(q);
1474}
1475
1476static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1477			     sector_t start, sector_t len, void *data)
1478{
1479	struct request_queue *q = bdev_get_queue(dev->bdev);
1480
1481	return q && !blk_queue_add_random(q);
1482}
1483
1484static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1485				   sector_t start, sector_t len, void *data)
1486{
1487	struct request_queue *q = bdev_get_queue(dev->bdev);
1488
1489	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1490}
1491
1492static bool dm_table_all_devices_attribute(struct dm_table *t,
1493					   iterate_devices_callout_fn func)
1494{
1495	struct dm_target *ti;
1496	unsigned i = 0;
1497
1498	while (i < dm_table_get_num_targets(t)) {
1499		ti = dm_table_get_target(t, i++);
1500
1501		if (!ti->type->iterate_devices ||
1502		    !ti->type->iterate_devices(ti, func, NULL))
1503			return false;
1504	}
1505
1506	return true;
1507}
1508
1509static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1510					 sector_t start, sector_t len, void *data)
1511{
1512	struct request_queue *q = bdev_get_queue(dev->bdev);
1513
1514	return q && !q->limits.max_write_same_sectors;
1515}
1516
1517static bool dm_table_supports_write_same(struct dm_table *t)
1518{
1519	struct dm_target *ti;
1520	unsigned i = 0;
1521
1522	while (i < dm_table_get_num_targets(t)) {
1523		ti = dm_table_get_target(t, i++);
1524
1525		if (!ti->num_write_same_bios)
1526			return false;
1527
1528		if (!ti->type->iterate_devices ||
1529		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1530			return false;
1531	}
1532
1533	return true;
1534}
1535
1536static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1537				  sector_t start, sector_t len, void *data)
1538{
1539	struct request_queue *q = bdev_get_queue(dev->bdev);
1540
1541	return q && blk_queue_discard(q);
1542}
1543
1544static bool dm_table_supports_discards(struct dm_table *t)
1545{
1546	struct dm_target *ti;
1547	unsigned i = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548
1549	/*
1550	 * Unless any target used by the table set discards_supported,
1551	 * require at least one underlying device to support discards.
1552	 * t->devices includes internal dm devices such as mirror logs
1553	 * so we need to use iterate_devices here, which targets
1554	 * supporting discard selectively must provide.
1555	 */
1556	while (i < dm_table_get_num_targets(t)) {
1557		ti = dm_table_get_target(t, i++);
1558
1559		if (!ti->num_discard_bios)
1560			continue;
 
 
1561
1562		if (ti->discards_supported)
1563			return true;
1564
1565		if (ti->type->iterate_devices &&
1566		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1567			return true;
1568	}
1569
1570	return false;
 
 
 
 
 
 
 
1571}
1572
1573void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1574			       struct queue_limits *limits)
1575{
1576	bool wc = false, fua = false;
 
1577
1578	/*
1579	 * Copy table's limits to the DM device's request_queue
1580	 */
1581	q->limits = *limits;
1582
1583	if (!dm_table_supports_discards(t))
1584		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1585	else
1586		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 
 
 
 
 
 
 
 
 
 
 
1587
1588	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1589		wc = true;
1590		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1591			fua = true;
1592	}
1593	blk_queue_write_cache(q, wc, fua);
1594
1595	if (!dm_table_discard_zeroes_data(t))
1596		q->limits.discard_zeroes_data = 0;
 
 
 
 
 
 
 
1597
1598	/* Ensure that all underlying devices are non-rotational. */
1599	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1600		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1601	else
1602		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1603
1604	if (!dm_table_supports_write_same(t))
1605		q->limits.max_write_same_sectors = 0;
1606
1607	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1608		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
 
 
 
 
 
 
 
 
 
1609	else
1610		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1611
1612	dm_table_verify_integrity(t);
1613
1614	/*
1615	 * Determine whether or not this queue's I/O timings contribute
1616	 * to the entropy pool, Only request-based targets use this.
1617	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1618	 * have it set.
1619	 */
1620	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1621		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
 
1622
1623	/*
1624	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1625	 * visible to other CPUs because, once the flag is set, incoming bios
1626	 * are processed by request-based dm, which refers to the queue
1627	 * settings.
1628	 * Until the flag set, bios are passed to bio-based dm and queued to
1629	 * md->deferred where queue settings are not needed yet.
1630	 * Those bios are passed to request-based dm at the resume time.
1631	 */
1632	smp_mb();
1633	if (dm_table_request_based(t))
1634		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1635}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637unsigned int dm_table_get_num_targets(struct dm_table *t)
1638{
1639	return t->num_targets;
1640}
1641
1642struct list_head *dm_table_get_devices(struct dm_table *t)
1643{
1644	return &t->devices;
1645}
1646
1647fmode_t dm_table_get_mode(struct dm_table *t)
1648{
1649	return t->mode;
1650}
1651EXPORT_SYMBOL(dm_table_get_mode);
1652
1653enum suspend_mode {
1654	PRESUSPEND,
1655	PRESUSPEND_UNDO,
1656	POSTSUSPEND,
1657};
1658
1659static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1660{
1661	int i = t->num_targets;
1662	struct dm_target *ti = t->targets;
 
 
1663
1664	while (i--) {
1665		switch (mode) {
1666		case PRESUSPEND:
1667			if (ti->type->presuspend)
1668				ti->type->presuspend(ti);
1669			break;
1670		case PRESUSPEND_UNDO:
1671			if (ti->type->presuspend_undo)
1672				ti->type->presuspend_undo(ti);
1673			break;
1674		case POSTSUSPEND:
1675			if (ti->type->postsuspend)
1676				ti->type->postsuspend(ti);
1677			break;
1678		}
1679		ti++;
1680	}
1681}
1682
1683void dm_table_presuspend_targets(struct dm_table *t)
1684{
1685	if (!t)
1686		return;
1687
1688	suspend_targets(t, PRESUSPEND);
1689}
1690
1691void dm_table_presuspend_undo_targets(struct dm_table *t)
1692{
1693	if (!t)
1694		return;
1695
1696	suspend_targets(t, PRESUSPEND_UNDO);
1697}
1698
1699void dm_table_postsuspend_targets(struct dm_table *t)
1700{
1701	if (!t)
1702		return;
1703
1704	suspend_targets(t, POSTSUSPEND);
1705}
1706
1707int dm_table_resume_targets(struct dm_table *t)
1708{
1709	int i, r = 0;
 
 
 
1710
1711	for (i = 0; i < t->num_targets; i++) {
1712		struct dm_target *ti = t->targets + i;
1713
1714		if (!ti->type->preresume)
1715			continue;
1716
1717		r = ti->type->preresume(ti);
1718		if (r) {
1719			DMERR("%s: %s: preresume failed, error = %d",
1720			      dm_device_name(t->md), ti->type->name, r);
1721			return r;
1722		}
1723	}
1724
1725	for (i = 0; i < t->num_targets; i++) {
1726		struct dm_target *ti = t->targets + i;
1727
1728		if (ti->type->resume)
1729			ti->type->resume(ti);
1730	}
1731
1732	return 0;
1733}
1734
1735void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1736{
1737	list_add(&cb->list, &t->target_callbacks);
1738}
1739EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1740
1741int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1742{
1743	struct dm_dev_internal *dd;
1744	struct list_head *devices = dm_table_get_devices(t);
1745	struct dm_target_callbacks *cb;
1746	int r = 0;
1747
1748	list_for_each_entry(dd, devices, list) {
1749		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1750		char b[BDEVNAME_SIZE];
1751
1752		if (likely(q))
1753			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1754		else
1755			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1756				     dm_device_name(t->md),
1757				     bdevname(dd->dm_dev->bdev, b));
1758	}
1759
1760	list_for_each_entry(cb, &t->target_callbacks, list)
1761		if (cb->congested_fn)
1762			r |= cb->congested_fn(cb, bdi_bits);
1763
1764	return r;
1765}
1766
1767struct mapped_device *dm_table_get_md(struct dm_table *t)
1768{
1769	return t->md;
1770}
1771EXPORT_SYMBOL(dm_table_get_md);
1772
1773void dm_table_run_md_queue_async(struct dm_table *t)
1774{
1775	struct mapped_device *md;
1776	struct request_queue *queue;
1777	unsigned long flags;
1778
1779	if (!dm_table_request_based(t))
1780		return;
1781
1782	md = dm_table_get_md(t);
1783	queue = dm_get_md_queue(md);
1784	if (queue) {
1785		if (queue->mq_ops)
1786			blk_mq_run_hw_queues(queue, true);
1787		else {
1788			spin_lock_irqsave(queue->queue_lock, flags);
1789			blk_run_queue_async(queue);
1790			spin_unlock_irqrestore(queue->queue_lock, flags);
1791		}
1792	}
1793}
1794EXPORT_SYMBOL(dm_table_run_md_queue_async);
1795