Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 *result = t;
164 return 0;
165}
166
167static void free_devices(struct list_head *devices, struct mapped_device *md)
168{
169 struct list_head *tmp, *next;
170
171 list_for_each_safe(tmp, next, devices) {
172 struct dm_dev_internal *dd =
173 list_entry(tmp, struct dm_dev_internal, list);
174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 dm_device_name(md), dd->dm_dev->name);
176 dm_put_table_device(md, dd->dm_dev);
177 kfree(dd);
178 }
179}
180
181static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
183void dm_table_destroy(struct dm_table *t)
184{
185 if (!t)
186 return;
187
188 /* free the indexes */
189 if (t->depth >= 2)
190 kvfree(t->index[t->depth - 2]);
191
192 /* free the targets */
193 for (unsigned int i = 0; i < t->num_targets; i++) {
194 struct dm_target *ti = dm_table_get_target(t, i);
195
196 if (ti->type->dtr)
197 ti->type->dtr(ti);
198
199 dm_put_target_type(ti->type);
200 }
201
202 kvfree(t->highs);
203
204 /* free the device list */
205 free_devices(&t->devices, t->md);
206
207 dm_free_md_mempools(t->mempools);
208
209 dm_table_destroy_crypto_profile(t);
210
211 kfree(t);
212}
213
214/*
215 * See if we've already got a device in the list.
216 */
217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218{
219 struct dm_dev_internal *dd;
220
221 list_for_each_entry(dd, l, list)
222 if (dd->dm_dev->bdev->bd_dev == dev)
223 return dd;
224
225 return NULL;
226}
227
228/*
229 * If possible, this checks an area of a destination device is invalid.
230 */
231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 sector_t start, sector_t len, void *data)
233{
234 struct queue_limits *limits = data;
235 struct block_device *bdev = dev->bdev;
236 sector_t dev_size = bdev_nr_sectors(bdev);
237 unsigned short logical_block_size_sectors =
238 limits->logical_block_size >> SECTOR_SHIFT;
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 dm_device_name(ti->table->md), bdev,
246 (unsigned long long)start,
247 (unsigned long long)len,
248 (unsigned long long)dev_size);
249 return 1;
250 }
251
252 /*
253 * If the target is mapped to zoned block device(s), check
254 * that the zones are not partially mapped.
255 */
256 if (bdev_is_zoned(bdev)) {
257 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259 if (start & (zone_sectors - 1)) {
260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 dm_device_name(ti->table->md),
262 (unsigned long long)start,
263 zone_sectors, bdev);
264 return 1;
265 }
266
267 /*
268 * Note: The last zone of a zoned block device may be smaller
269 * than other zones. So for a target mapping the end of a
270 * zoned block device with such a zone, len would not be zone
271 * aligned. We do not allow such last smaller zone to be part
272 * of the mapping here to ensure that mappings with multiple
273 * devices do not end up with a smaller zone in the middle of
274 * the sector range.
275 */
276 if (len & (zone_sectors - 1)) {
277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 dm_device_name(ti->table->md),
279 (unsigned long long)len,
280 zone_sectors, bdev);
281 return 1;
282 }
283 }
284
285 if (logical_block_size_sectors <= 1)
286 return 0;
287
288 if (start & (logical_block_size_sectors - 1)) {
289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 dm_device_name(ti->table->md),
291 (unsigned long long)start,
292 limits->logical_block_size, bdev);
293 return 1;
294 }
295
296 if (len & (logical_block_size_sectors - 1)) {
297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 dm_device_name(ti->table->md),
299 (unsigned long long)len,
300 limits->logical_block_size, bdev);
301 return 1;
302 }
303
304 return 0;
305}
306
307/*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 struct mapped_device *md)
315{
316 int r;
317 struct dm_dev *old_dev, *new_dev;
318
319 old_dev = dd->dm_dev;
320
321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 dd->dm_dev->mode | new_mode, &new_dev);
323 if (r)
324 return r;
325
326 dd->dm_dev = new_dev;
327 dm_put_table_device(md, old_dev);
328
329 return 0;
330}
331
332/*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 struct dm_dev **result)
341{
342 int r;
343 dev_t dev;
344 unsigned int major, minor;
345 char dummy;
346 struct dm_dev_internal *dd;
347 struct dm_table *t = ti->table;
348
349 BUG_ON(!t);
350
351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 /* Extract the major/minor numbers */
353 dev = MKDEV(major, minor);
354 if (MAJOR(dev) != major || MINOR(dev) != minor)
355 return -EOVERFLOW;
356 } else {
357 r = lookup_bdev(path, &dev);
358#ifndef MODULE
359 if (r && system_state < SYSTEM_RUNNING)
360 r = early_lookup_bdev(path, &dev);
361#endif
362 if (r)
363 return r;
364 }
365 if (dev == disk_devt(t->md->disk))
366 return -EINVAL;
367
368 down_write(&t->devices_lock);
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd) {
374 r = -ENOMEM;
375 goto unlock_ret_r;
376 }
377
378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 if (r) {
380 kfree(dd);
381 goto unlock_ret_r;
382 }
383
384 refcount_set(&dd->count, 1);
385 list_add(&dd->list, &t->devices);
386 goto out;
387
388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 r = upgrade_mode(dd, mode, t->md);
390 if (r)
391 goto unlock_ret_r;
392 }
393 refcount_inc(&dd->count);
394out:
395 up_write(&t->devices_lock);
396 *result = dd->dm_dev;
397 return 0;
398
399unlock_ret_r:
400 up_write(&t->devices_lock);
401 return r;
402}
403EXPORT_SYMBOL(dm_get_device);
404
405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 sector_t start, sector_t len, void *data)
407{
408 struct queue_limits *limits = data;
409 struct block_device *bdev = dev->bdev;
410 struct request_queue *q = bdev_get_queue(bdev);
411
412 if (unlikely(!q)) {
413 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 dm_device_name(ti->table->md), bdev);
415 return 0;
416 }
417
418 if (blk_stack_limits(limits, &q->limits,
419 get_start_sect(bdev) + start) < 0)
420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 "physical_block_size=%u, logical_block_size=%u, "
422 "alignment_offset=%u, start=%llu",
423 dm_device_name(ti->table->md), bdev,
424 q->limits.physical_block_size,
425 q->limits.logical_block_size,
426 q->limits.alignment_offset,
427 (unsigned long long) start << SECTOR_SHIFT);
428 return 0;
429}
430
431/*
432 * Decrement a device's use count and remove it if necessary.
433 */
434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435{
436 int found = 0;
437 struct dm_table *t = ti->table;
438 struct list_head *devices = &t->devices;
439 struct dm_dev_internal *dd;
440
441 down_write(&t->devices_lock);
442
443 list_for_each_entry(dd, devices, list) {
444 if (dd->dm_dev == d) {
445 found = 1;
446 break;
447 }
448 }
449 if (!found) {
450 DMERR("%s: device %s not in table devices list",
451 dm_device_name(t->md), d->name);
452 goto unlock_ret;
453 }
454 if (refcount_dec_and_test(&dd->count)) {
455 dm_put_table_device(t->md, d);
456 list_del(&dd->list);
457 kfree(dd);
458 }
459
460unlock_ret:
461 up_write(&t->devices_lock);
462}
463EXPORT_SYMBOL(dm_put_device);
464
465/*
466 * Checks to see if the target joins onto the end of the table.
467 */
468static int adjoin(struct dm_table *t, struct dm_target *ti)
469{
470 struct dm_target *prev;
471
472 if (!t->num_targets)
473 return !ti->begin;
474
475 prev = &t->targets[t->num_targets - 1];
476 return (ti->begin == (prev->begin + prev->len));
477}
478
479/*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
489static char **realloc_argv(unsigned int *size, char **old_argv)
490{
491 char **argv;
492 unsigned int new_size;
493 gfp_t gfp;
494
495 if (*size) {
496 new_size = *size * 2;
497 gfp = GFP_KERNEL;
498 } else {
499 new_size = 8;
500 gfp = GFP_NOIO;
501 }
502 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 if (argv && old_argv) {
504 memcpy(argv, old_argv, *size * sizeof(*argv));
505 *size = new_size;
506 }
507
508 kfree(old_argv);
509 return argv;
510}
511
512/*
513 * Destructively splits up the argument list to pass to ctr.
514 */
515int dm_split_args(int *argc, char ***argvp, char *input)
516{
517 char *start, *end = input, *out, **argv = NULL;
518 unsigned int array_size = 0;
519
520 *argc = 0;
521
522 if (!input) {
523 *argvp = NULL;
524 return 0;
525 }
526
527 argv = realloc_argv(&array_size, argv);
528 if (!argv)
529 return -ENOMEM;
530
531 while (1) {
532 /* Skip whitespace */
533 start = skip_spaces(end);
534
535 if (!*start)
536 break; /* success, we hit the end */
537
538 /* 'out' is used to remove any back-quotes */
539 end = out = start;
540 while (*end) {
541 /* Everything apart from '\0' can be quoted */
542 if (*end == '\\' && *(end + 1)) {
543 *out++ = *(end + 1);
544 end += 2;
545 continue;
546 }
547
548 if (isspace(*end))
549 break; /* end of token */
550
551 *out++ = *end++;
552 }
553
554 /* have we already filled the array ? */
555 if ((*argc + 1) > array_size) {
556 argv = realloc_argv(&array_size, argv);
557 if (!argv)
558 return -ENOMEM;
559 }
560
561 /* we know this is whitespace */
562 if (*end)
563 end++;
564
565 /* terminate the string and put it in the array */
566 *out = '\0';
567 argv[*argc] = start;
568 (*argc)++;
569 }
570
571 *argvp = argv;
572 return 0;
573}
574
575/*
576 * Impose necessary and sufficient conditions on a devices's table such
577 * that any incoming bio which respects its logical_block_size can be
578 * processed successfully. If it falls across the boundary between
579 * two or more targets, the size of each piece it gets split into must
580 * be compatible with the logical_block_size of the target processing it.
581 */
582static int validate_hardware_logical_block_alignment(struct dm_table *t,
583 struct queue_limits *limits)
584{
585 /*
586 * This function uses arithmetic modulo the logical_block_size
587 * (in units of 512-byte sectors).
588 */
589 unsigned short device_logical_block_size_sects =
590 limits->logical_block_size >> SECTOR_SHIFT;
591
592 /*
593 * Offset of the start of the next table entry, mod logical_block_size.
594 */
595 unsigned short next_target_start = 0;
596
597 /*
598 * Given an aligned bio that extends beyond the end of a
599 * target, how many sectors must the next target handle?
600 */
601 unsigned short remaining = 0;
602
603 struct dm_target *ti;
604 struct queue_limits ti_limits;
605 unsigned int i;
606
607 /*
608 * Check each entry in the table in turn.
609 */
610 for (i = 0; i < t->num_targets; i++) {
611 ti = dm_table_get_target(t, i);
612
613 blk_set_stacking_limits(&ti_limits);
614
615 /* combine all target devices' limits */
616 if (ti->type->iterate_devices)
617 ti->type->iterate_devices(ti, dm_set_device_limits,
618 &ti_limits);
619
620 /*
621 * If the remaining sectors fall entirely within this
622 * table entry are they compatible with its logical_block_size?
623 */
624 if (remaining < ti->len &&
625 remaining & ((ti_limits.logical_block_size >>
626 SECTOR_SHIFT) - 1))
627 break; /* Error */
628
629 next_target_start =
630 (unsigned short) ((next_target_start + ti->len) &
631 (device_logical_block_size_sects - 1));
632 remaining = next_target_start ?
633 device_logical_block_size_sects - next_target_start : 0;
634 }
635
636 if (remaining) {
637 DMERR("%s: table line %u (start sect %llu len %llu) "
638 "not aligned to h/w logical block size %u",
639 dm_device_name(t->md), i,
640 (unsigned long long) ti->begin,
641 (unsigned long long) ti->len,
642 limits->logical_block_size);
643 return -EINVAL;
644 }
645
646 return 0;
647}
648
649int dm_table_add_target(struct dm_table *t, const char *type,
650 sector_t start, sector_t len, char *params)
651{
652 int r = -EINVAL, argc;
653 char **argv;
654 struct dm_target *ti;
655
656 if (t->singleton) {
657 DMERR("%s: target type %s must appear alone in table",
658 dm_device_name(t->md), t->targets->type->name);
659 return -EINVAL;
660 }
661
662 BUG_ON(t->num_targets >= t->num_allocated);
663
664 ti = t->targets + t->num_targets;
665 memset(ti, 0, sizeof(*ti));
666
667 if (!len) {
668 DMERR("%s: zero-length target", dm_device_name(t->md));
669 return -EINVAL;
670 }
671
672 ti->type = dm_get_target_type(type);
673 if (!ti->type) {
674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 return -EINVAL;
676 }
677
678 if (dm_target_needs_singleton(ti->type)) {
679 if (t->num_targets) {
680 ti->error = "singleton target type must appear alone in table";
681 goto bad;
682 }
683 t->singleton = true;
684 }
685
686 if (dm_target_always_writeable(ti->type) &&
687 !(t->mode & BLK_OPEN_WRITE)) {
688 ti->error = "target type may not be included in a read-only table";
689 goto bad;
690 }
691
692 if (t->immutable_target_type) {
693 if (t->immutable_target_type != ti->type) {
694 ti->error = "immutable target type cannot be mixed with other target types";
695 goto bad;
696 }
697 } else if (dm_target_is_immutable(ti->type)) {
698 if (t->num_targets) {
699 ti->error = "immutable target type cannot be mixed with other target types";
700 goto bad;
701 }
702 t->immutable_target_type = ti->type;
703 }
704
705 if (dm_target_has_integrity(ti->type))
706 t->integrity_added = 1;
707
708 ti->table = t;
709 ti->begin = start;
710 ti->len = len;
711 ti->error = "Unknown error";
712
713 /*
714 * Does this target adjoin the previous one ?
715 */
716 if (!adjoin(t, ti)) {
717 ti->error = "Gap in table";
718 goto bad;
719 }
720
721 r = dm_split_args(&argc, &argv, params);
722 if (r) {
723 ti->error = "couldn't split parameters";
724 goto bad;
725 }
726
727 r = ti->type->ctr(ti, argc, argv);
728 kfree(argv);
729 if (r)
730 goto bad;
731
732 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734 if (!ti->num_discard_bios && ti->discards_supported)
735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 dm_device_name(t->md), type);
737
738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739 static_branch_enable(&swap_bios_enabled);
740
741 return 0;
742
743 bad:
744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745 dm_put_target_type(ti->type);
746 return r;
747}
748
749/*
750 * Target argument parsing helpers.
751 */
752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 unsigned int *value, char **error, unsigned int grouped)
754{
755 const char *arg_str = dm_shift_arg(arg_set);
756 char dummy;
757
758 if (!arg_str ||
759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760 (*value < arg->min) ||
761 (*value > arg->max) ||
762 (grouped && arg_set->argc < *value)) {
763 *error = arg->error;
764 return -EINVAL;
765 }
766
767 return 0;
768}
769
770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771 unsigned int *value, char **error)
772{
773 return validate_next_arg(arg, arg_set, value, error, 0);
774}
775EXPORT_SYMBOL(dm_read_arg);
776
777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778 unsigned int *value, char **error)
779{
780 return validate_next_arg(arg, arg_set, value, error, 1);
781}
782EXPORT_SYMBOL(dm_read_arg_group);
783
784const char *dm_shift_arg(struct dm_arg_set *as)
785{
786 char *r;
787
788 if (as->argc) {
789 as->argc--;
790 r = *as->argv;
791 as->argv++;
792 return r;
793 }
794
795 return NULL;
796}
797EXPORT_SYMBOL(dm_shift_arg);
798
799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800{
801 BUG_ON(as->argc < num_args);
802 as->argc -= num_args;
803 as->argv += num_args;
804}
805EXPORT_SYMBOL(dm_consume_args);
806
807static bool __table_type_bio_based(enum dm_queue_mode table_type)
808{
809 return (table_type == DM_TYPE_BIO_BASED ||
810 table_type == DM_TYPE_DAX_BIO_BASED);
811}
812
813static bool __table_type_request_based(enum dm_queue_mode table_type)
814{
815 return table_type == DM_TYPE_REQUEST_BASED;
816}
817
818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819{
820 t->type = type;
821}
822EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824/* validate the dax capability of the target device span */
825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826 sector_t start, sector_t len, void *data)
827{
828 if (dev->dax_dev)
829 return false;
830
831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832 return true;
833}
834
835/* Check devices support synchronous DAX */
836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837 sector_t start, sector_t len, void *data)
838{
839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840}
841
842static bool dm_table_supports_dax(struct dm_table *t,
843 iterate_devices_callout_fn iterate_fn)
844{
845 /* Ensure that all targets support DAX. */
846 for (unsigned int i = 0; i < t->num_targets; i++) {
847 struct dm_target *ti = dm_table_get_target(t, i);
848
849 if (!ti->type->direct_access)
850 return false;
851
852 if (dm_target_is_wildcard(ti->type) ||
853 !ti->type->iterate_devices ||
854 ti->type->iterate_devices(ti, iterate_fn, NULL))
855 return false;
856 }
857
858 return true;
859}
860
861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862 sector_t start, sector_t len, void *data)
863{
864 struct block_device *bdev = dev->bdev;
865 struct request_queue *q = bdev_get_queue(bdev);
866
867 /* request-based cannot stack on partitions! */
868 if (bdev_is_partition(bdev))
869 return false;
870
871 return queue_is_mq(q);
872}
873
874static int dm_table_determine_type(struct dm_table *t)
875{
876 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877 struct dm_target *ti;
878 struct list_head *devices = dm_table_get_devices(t);
879 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880
881 if (t->type != DM_TYPE_NONE) {
882 /* target already set the table's type */
883 if (t->type == DM_TYPE_BIO_BASED) {
884 /* possibly upgrade to a variant of bio-based */
885 goto verify_bio_based;
886 }
887 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888 goto verify_rq_based;
889 }
890
891 for (unsigned int i = 0; i < t->num_targets; i++) {
892 ti = dm_table_get_target(t, i);
893 if (dm_target_hybrid(ti))
894 hybrid = 1;
895 else if (dm_target_request_based(ti))
896 request_based = 1;
897 else
898 bio_based = 1;
899
900 if (bio_based && request_based) {
901 DMERR("Inconsistent table: different target types can't be mixed up");
902 return -EINVAL;
903 }
904 }
905
906 if (hybrid && !bio_based && !request_based) {
907 /*
908 * The targets can work either way.
909 * Determine the type from the live device.
910 * Default to bio-based if device is new.
911 */
912 if (__table_type_request_based(live_md_type))
913 request_based = 1;
914 else
915 bio_based = 1;
916 }
917
918 if (bio_based) {
919verify_bio_based:
920 /* We must use this table as bio-based */
921 t->type = DM_TYPE_BIO_BASED;
922 if (dm_table_supports_dax(t, device_not_dax_capable) ||
923 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924 t->type = DM_TYPE_DAX_BIO_BASED;
925 }
926 return 0;
927 }
928
929 BUG_ON(!request_based); /* No targets in this table */
930
931 t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934 /*
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
939 */
940 if (t->num_targets > 1) {
941 DMERR("request-based DM doesn't support multiple targets");
942 return -EINVAL;
943 }
944
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949 /* inherit live table's type */
950 if (live_table)
951 t->type = live_table->type;
952 dm_put_live_table(t->md, srcu_idx);
953 return 0;
954 }
955
956 ti = dm_table_get_immutable_target(t);
957 if (!ti) {
958 DMERR("table load rejected: immutable target is required");
959 return -EINVAL;
960 } else if (ti->max_io_len) {
961 DMERR("table load rejected: immutable target that splits IO is not supported");
962 return -EINVAL;
963 }
964
965 /* Non-request-stackable devices can't be used for request-based dm */
966 if (!ti->type->iterate_devices ||
967 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968 DMERR("table load rejected: including non-request-stackable devices");
969 return -EINVAL;
970 }
971
972 return 0;
973}
974
975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976{
977 return t->type;
978}
979
980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981{
982 return t->immutable_target_type;
983}
984
985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986{
987 /* Immutable target is implicitly a singleton */
988 if (t->num_targets > 1 ||
989 !dm_target_is_immutable(t->targets[0].type))
990 return NULL;
991
992 return t->targets;
993}
994
995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996{
997 for (unsigned int i = 0; i < t->num_targets; i++) {
998 struct dm_target *ti = dm_table_get_target(t, i);
999
1000 if (dm_target_is_wildcard(ti->type))
1001 return ti;
1002 }
1003
1004 return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009 return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014 return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021 enum dm_queue_mode type = dm_table_get_type(t);
1022 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023 unsigned int min_pool_size = 0, pool_size;
1024 struct dm_md_mempools *pools;
1025
1026 if (unlikely(type == DM_TYPE_NONE)) {
1027 DMERR("no table type is set, can't allocate mempools");
1028 return -EINVAL;
1029 }
1030
1031 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032 if (!pools)
1033 return -ENOMEM;
1034
1035 if (type == DM_TYPE_REQUEST_BASED) {
1036 pool_size = dm_get_reserved_rq_based_ios();
1037 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038 goto init_bs;
1039 }
1040
1041 for (unsigned int i = 0; i < t->num_targets; i++) {
1042 struct dm_target *ti = dm_table_get_target(t, i);
1043
1044 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046 }
1047 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048 front_pad = roundup(per_io_data_size,
1049 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051 io_front_pad = roundup(per_io_data_size,
1052 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055 goto out_free_pools;
1056 if (t->integrity_supported &&
1057 bioset_integrity_create(&pools->io_bs, pool_size))
1058 goto out_free_pools;
1059init_bs:
1060 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061 goto out_free_pools;
1062 if (t->integrity_supported &&
1063 bioset_integrity_create(&pools->bs, pool_size))
1064 goto out_free_pools;
1065
1066 t->mempools = pools;
1067 return 0;
1068
1069out_free_pools:
1070 dm_free_md_mempools(pools);
1071 return -ENOMEM;
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076 int i;
1077 unsigned int total = 0;
1078 sector_t *indexes;
1079
1080 /* allocate the space for *all* the indexes */
1081 for (i = t->depth - 2; i >= 0; i--) {
1082 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083 total += t->counts[i];
1084 }
1085
1086 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087 if (!indexes)
1088 return -ENOMEM;
1089
1090 /* set up internal nodes, bottom-up */
1091 for (i = t->depth - 2; i >= 0; i--) {
1092 t->index[i] = indexes;
1093 indexes += (KEYS_PER_NODE * t->counts[i]);
1094 setup_btree_index(i, t);
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105 int r = 0;
1106 unsigned int leaf_nodes;
1107
1108 /* how many indexes will the btree have ? */
1109 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112 /* leaf layer has already been set up */
1113 t->counts[t->depth - 1] = leaf_nodes;
1114 t->index[t->depth - 1] = t->highs;
1115
1116 if (t->depth >= 2)
1117 r = setup_indexes(t);
1118
1119 return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124 return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133 struct list_head *devices = dm_table_get_devices(t);
1134 struct dm_dev_internal *dd = NULL;
1135 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137 for (unsigned int i = 0; i < t->num_targets; i++) {
1138 struct dm_target *ti = dm_table_get_target(t, i);
1139
1140 if (!dm_target_passes_integrity(ti->type))
1141 goto no_integrity;
1142 }
1143
1144 list_for_each_entry(dd, devices, list) {
1145 template_disk = dd->dm_dev->bdev->bd_disk;
1146 if (!integrity_profile_exists(template_disk))
1147 goto no_integrity;
1148 else if (prev_disk &&
1149 blk_integrity_compare(prev_disk, template_disk) < 0)
1150 goto no_integrity;
1151 prev_disk = template_disk;
1152 }
1153
1154 return template_disk;
1155
1156no_integrity:
1157 if (prev_disk)
1158 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159 dm_device_name(t->md),
1160 prev_disk->disk_name,
1161 template_disk->disk_name);
1162 return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile. But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile). Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177 struct mapped_device *md = t->md;
1178 struct gendisk *template_disk = NULL;
1179
1180 /* If target handles integrity itself do not register it here. */
1181 if (t->integrity_added)
1182 return 0;
1183
1184 template_disk = dm_table_get_integrity_disk(t);
1185 if (!template_disk)
1186 return 0;
1187
1188 if (!integrity_profile_exists(dm_disk(md))) {
1189 t->integrity_supported = true;
1190 /*
1191 * Register integrity profile during table load; we can do
1192 * this because the final profile must match during resume.
1193 */
1194 blk_integrity_register(dm_disk(md),
1195 blk_get_integrity(template_disk));
1196 return 0;
1197 }
1198
1199 /*
1200 * If DM device already has an initialized integrity
1201 * profile the new profile should not conflict.
1202 */
1203 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205 dm_device_name(t->md),
1206 template_disk->disk_name);
1207 return 1;
1208 }
1209
1210 /* Preserve existing integrity profile */
1211 t->integrity_supported = true;
1212 return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218 struct blk_crypto_profile profile;
1219 struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223 sector_t start, sector_t len, void *data)
1224{
1225 const struct blk_crypto_key *key = data;
1226
1227 blk_crypto_evict_key(dev->bdev, key);
1228 return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236 const struct blk_crypto_key *key, unsigned int slot)
1237{
1238 struct mapped_device *md =
1239 container_of(profile, struct dm_crypto_profile, profile)->md;
1240 struct dm_table *t;
1241 int srcu_idx;
1242
1243 t = dm_get_live_table(md, &srcu_idx);
1244 if (!t)
1245 return 0;
1246
1247 for (unsigned int i = 0; i < t->num_targets; i++) {
1248 struct dm_target *ti = dm_table_get_target(t, i);
1249
1250 if (!ti->type->iterate_devices)
1251 continue;
1252 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253 (void *)key);
1254 }
1255
1256 dm_put_live_table(md, srcu_idx);
1257 return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262 sector_t start, sector_t len, void *data)
1263{
1264 struct blk_crypto_profile *parent = data;
1265 struct blk_crypto_profile *child =
1266 bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268 blk_crypto_intersect_capabilities(parent, child);
1269 return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274 struct dm_crypto_profile *dmcp = container_of(profile,
1275 struct dm_crypto_profile,
1276 profile);
1277
1278 if (!profile)
1279 return;
1280
1281 blk_crypto_profile_destroy(profile);
1282 kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287 dm_destroy_crypto_profile(t->crypto_profile);
1288 t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table. However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302 struct dm_crypto_profile *dmcp;
1303 struct blk_crypto_profile *profile;
1304 unsigned int i;
1305 bool empty_profile = true;
1306
1307 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308 if (!dmcp)
1309 return -ENOMEM;
1310 dmcp->md = t->md;
1311
1312 profile = &dmcp->profile;
1313 blk_crypto_profile_init(profile, 0);
1314 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315 profile->max_dun_bytes_supported = UINT_MAX;
1316 memset(profile->modes_supported, 0xFF,
1317 sizeof(profile->modes_supported));
1318
1319 for (i = 0; i < t->num_targets; i++) {
1320 struct dm_target *ti = dm_table_get_target(t, i);
1321
1322 if (!dm_target_passes_crypto(ti->type)) {
1323 blk_crypto_intersect_capabilities(profile, NULL);
1324 break;
1325 }
1326 if (!ti->type->iterate_devices)
1327 continue;
1328 ti->type->iterate_devices(ti,
1329 device_intersect_crypto_capabilities,
1330 profile);
1331 }
1332
1333 if (t->md->queue &&
1334 !blk_crypto_has_capabilities(profile,
1335 t->md->queue->crypto_profile)) {
1336 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337 dm_destroy_crypto_profile(profile);
1338 return -EINVAL;
1339 }
1340
1341 /*
1342 * If the new profile doesn't actually support any crypto capabilities,
1343 * we may as well represent it with a NULL profile.
1344 */
1345 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346 if (profile->modes_supported[i]) {
1347 empty_profile = false;
1348 break;
1349 }
1350 }
1351
1352 if (empty_profile) {
1353 dm_destroy_crypto_profile(profile);
1354 profile = NULL;
1355 }
1356
1357 /*
1358 * t->crypto_profile is only set temporarily while the table is being
1359 * set up, and it gets set to NULL after the profile has been
1360 * transferred to the request_queue.
1361 */
1362 t->crypto_profile = profile;
1363
1364 return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368 struct dm_table *t)
1369{
1370 if (!t->crypto_profile)
1371 return;
1372
1373 /* Make the crypto profile less restrictive. */
1374 if (!q->crypto_profile) {
1375 blk_crypto_register(t->crypto_profile, q);
1376 } else {
1377 blk_crypto_update_capabilities(q->crypto_profile,
1378 t->crypto_profile);
1379 dm_destroy_crypto_profile(t->crypto_profile);
1380 }
1381 t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388 return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400 struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412 int r;
1413
1414 r = dm_table_determine_type(t);
1415 if (r) {
1416 DMERR("unable to determine table type");
1417 return r;
1418 }
1419
1420 r = dm_table_build_index(t);
1421 if (r) {
1422 DMERR("unable to build btrees");
1423 return r;
1424 }
1425
1426 r = dm_table_register_integrity(t);
1427 if (r) {
1428 DMERR("could not register integrity profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_construct_crypto_profile(t);
1433 if (r) {
1434 DMERR("could not construct crypto profile.");
1435 return r;
1436 }
1437
1438 r = dm_table_alloc_md_mempools(t, t->md);
1439 if (r)
1440 DMERR("unable to allocate mempools");
1441
1442 return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447 void (*fn)(void *), void *context)
1448{
1449 mutex_lock(&_event_lock);
1450 t->event_fn = fn;
1451 t->event_context = context;
1452 mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
1457 mutex_lock(&_event_lock);
1458 if (t->event_fn)
1459 t->event_fn(t->event_context);
1460 mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478 unsigned int l, n = 0, k = 0;
1479 sector_t *node;
1480
1481 if (unlikely(sector >= dm_table_get_size(t)))
1482 return NULL;
1483
1484 for (l = 0; l < t->depth; l++) {
1485 n = get_child(n, k);
1486 node = get_node(t, l, n);
1487
1488 for (k = 0; k < KEYS_PER_NODE; k++)
1489 if (node[k] >= sector)
1490 break;
1491 }
1492
1493 return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497 sector_t start, sector_t len, void *data)
1498{
1499 struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528 iterate_devices_callout_fn func, void *data)
1529{
1530 for (unsigned int i = 0; i < t->num_targets; i++) {
1531 struct dm_target *ti = dm_table_get_target(t, i);
1532
1533 if (ti->type->iterate_devices &&
1534 ti->type->iterate_devices(ti, func, data))
1535 return true;
1536 }
1537
1538 return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542 sector_t start, sector_t len, void *data)
1543{
1544 unsigned int *num_devices = data;
1545
1546 (*num_devices)++;
1547
1548 return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553 for (unsigned int i = 0; i < t->num_targets; i++) {
1554 struct dm_target *ti = dm_table_get_target(t, i);
1555
1556 if (!ti->type->iterate_devices ||
1557 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558 return false;
1559 }
1560
1561 return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572 for (unsigned int i = 0; i < t->num_targets; i++) {
1573 struct dm_target *ti = dm_table_get_target(t, i);
1574 unsigned int num_devices = 0;
1575
1576 if (!ti->type->iterate_devices)
1577 return false;
1578
1579 ti->type->iterate_devices(ti, count_device, &num_devices);
1580 if (num_devices)
1581 return false;
1582 }
1583
1584 return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588 sector_t start, sector_t len, void *data)
1589{
1590 bool *zoned = data;
1591
1592 return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596 sector_t start, sector_t len, void *data)
1597{
1598 return bdev_is_zoned(dev->bdev);
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610 for (unsigned int i = 0; i < t->num_targets; i++) {
1611 struct dm_target *ti = dm_table_get_target(t, i);
1612
1613 /*
1614 * For the wildcard target (dm-error), if we do not have a
1615 * backing device, we must always return false. If we have a
1616 * backing device, the result must depend on checking zoned
1617 * model, like for any other target. So for this, check directly
1618 * if the target backing device is zoned as we get "false" when
1619 * dm-error was set without a backing device.
1620 */
1621 if (dm_target_is_wildcard(ti->type) &&
1622 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623 return false;
1624
1625 if (dm_target_supports_zoned_hm(ti->type)) {
1626 if (!ti->type->iterate_devices ||
1627 ti->type->iterate_devices(ti, device_not_zoned,
1628 &zoned))
1629 return false;
1630 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631 if (zoned)
1632 return false;
1633 }
1634 }
1635
1636 return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned int *zone_sectors = data;
1643
1644 if (!bdev_is_zoned(dev->bdev))
1645 return 0;
1646 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655 unsigned int zone_sectors)
1656{
1657 if (!zoned)
1658 return 0;
1659
1660 if (!dm_table_supports_zoned(t, zoned)) {
1661 DMERR("%s: zoned model is not consistent across all devices",
1662 dm_device_name(t->md));
1663 return -EINVAL;
1664 }
1665
1666 /* Check zone size validity and compatibility */
1667 if (!zone_sectors || !is_power_of_2(zone_sectors))
1668 return -EINVAL;
1669
1670 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671 DMERR("%s: zone sectors is not consistent across all zoned devices",
1672 dm_device_name(t->md));
1673 return -EINVAL;
1674 }
1675
1676 return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683 struct queue_limits *limits)
1684{
1685 struct queue_limits ti_limits;
1686 unsigned int zone_sectors = 0;
1687 bool zoned = false;
1688
1689 blk_set_stacking_limits(limits);
1690
1691 for (unsigned int i = 0; i < t->num_targets; i++) {
1692 struct dm_target *ti = dm_table_get_target(t, i);
1693
1694 blk_set_stacking_limits(&ti_limits);
1695
1696 if (!ti->type->iterate_devices) {
1697 /* Set I/O hints portion of queue limits */
1698 if (ti->type->io_hints)
1699 ti->type->io_hints(ti, &ti_limits);
1700 goto combine_limits;
1701 }
1702
1703 /*
1704 * Combine queue limits of all the devices this target uses.
1705 */
1706 ti->type->iterate_devices(ti, dm_set_device_limits,
1707 &ti_limits);
1708
1709 if (!zoned && ti_limits.zoned) {
1710 /*
1711 * After stacking all limits, validate all devices
1712 * in table support this zoned model and zone sectors.
1713 */
1714 zoned = ti_limits.zoned;
1715 zone_sectors = ti_limits.chunk_sectors;
1716 }
1717
1718 /* Set I/O hints portion of queue limits */
1719 if (ti->type->io_hints)
1720 ti->type->io_hints(ti, &ti_limits);
1721
1722 /*
1723 * Check each device area is consistent with the target's
1724 * overall queue limits.
1725 */
1726 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727 &ti_limits))
1728 return -EINVAL;
1729
1730combine_limits:
1731 /*
1732 * Merge this target's queue limits into the overall limits
1733 * for the table.
1734 */
1735 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736 DMWARN("%s: adding target device (start sect %llu len %llu) "
1737 "caused an alignment inconsistency",
1738 dm_device_name(t->md),
1739 (unsigned long long) ti->begin,
1740 (unsigned long long) ti->len);
1741 }
1742
1743 /*
1744 * Verify that the zoned model and zone sectors, as determined before
1745 * any .io_hints override, are the same across all devices in the table.
1746 * - this is especially relevant if .io_hints is emulating a disk-managed
1747 * zoned model on host-managed zoned block devices.
1748 * BUT...
1749 */
1750 if (limits->zoned) {
1751 /*
1752 * ...IF the above limits stacking determined a zoned model
1753 * validate that all of the table's devices conform to it.
1754 */
1755 zoned = limits->zoned;
1756 zone_sectors = limits->chunk_sectors;
1757 }
1758 if (validate_hardware_zoned(t, zoned, zone_sectors))
1759 return -EINVAL;
1760
1761 return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile. If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771 struct gendisk *template_disk = NULL;
1772
1773 if (t->integrity_added)
1774 return;
1775
1776 if (t->integrity_supported) {
1777 /*
1778 * Verify that the original integrity profile
1779 * matches all the devices in this table.
1780 */
1781 template_disk = dm_table_get_integrity_disk(t);
1782 if (template_disk &&
1783 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784 return;
1785 }
1786
1787 if (integrity_profile_exists(dm_disk(t->md))) {
1788 DMWARN("%s: unable to establish an integrity profile",
1789 dm_device_name(t->md));
1790 blk_integrity_unregister(dm_disk(t->md));
1791 }
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795 sector_t start, sector_t len, void *data)
1796{
1797 unsigned long flush = (unsigned long) data;
1798 struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800 return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
1805 /*
1806 * Require at least one underlying device to support flushes.
1807 * t->devices includes internal dm devices such as mirror logs
1808 * so we need to use iterate_devices here, which targets
1809 * supporting flushes must provide.
1810 */
1811 for (unsigned int i = 0; i < t->num_targets; i++) {
1812 struct dm_target *ti = dm_table_get_target(t, i);
1813
1814 if (!ti->num_flush_bios)
1815 continue;
1816
1817 if (ti->flush_supported)
1818 return true;
1819
1820 if (ti->type->iterate_devices &&
1821 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822 return true;
1823 }
1824
1825 return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829 struct dm_dev *dev, sector_t start,
1830 sector_t len, void *data)
1831{
1832 struct dax_device *dax_dev = dev->dax_dev;
1833
1834 if (!dax_dev)
1835 return false;
1836
1837 if (dax_write_cache_enabled(dax_dev))
1838 return true;
1839 return false;
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843 sector_t start, sector_t len, void *data)
1844{
1845 return !bdev_nonrot(dev->bdev);
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849 sector_t start, sector_t len, void *data)
1850{
1851 struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853 return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1858{
1859 struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861 return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865{
1866 for (unsigned int i = 0; i < t->num_targets; i++) {
1867 struct dm_target *ti = dm_table_get_target(t, i);
1868
1869 if (!ti->num_write_zeroes_bios)
1870 return false;
1871
1872 if (!ti->type->iterate_devices ||
1873 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874 return false;
1875 }
1876
1877 return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881 sector_t start, sector_t len, void *data)
1882{
1883 return !bdev_nowait(dev->bdev);
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888 for (unsigned int i = 0; i < t->num_targets; i++) {
1889 struct dm_target *ti = dm_table_get_target(t, i);
1890
1891 if (!dm_target_supports_nowait(ti->type))
1892 return false;
1893
1894 if (!ti->type->iterate_devices ||
1895 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896 return false;
1897 }
1898
1899 return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903 sector_t start, sector_t len, void *data)
1904{
1905 return !bdev_max_discard_sectors(dev->bdev);
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910 for (unsigned int i = 0; i < t->num_targets; i++) {
1911 struct dm_target *ti = dm_table_get_target(t, i);
1912
1913 if (!ti->num_discard_bios)
1914 return false;
1915
1916 /*
1917 * Either the target provides discard support (as implied by setting
1918 * 'discards_supported') or it relies on _all_ data devices having
1919 * discard support.
1920 */
1921 if (!ti->discards_supported &&
1922 (!ti->type->iterate_devices ||
1923 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924 return false;
1925 }
1926
1927 return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931 struct dm_dev *dev, sector_t start,
1932 sector_t len, void *data)
1933{
1934 return !bdev_max_secure_erase_sectors(dev->bdev);
1935}
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939 for (unsigned int i = 0; i < t->num_targets; i++) {
1940 struct dm_target *ti = dm_table_get_target(t, i);
1941
1942 if (!ti->num_secure_erase_bios)
1943 return false;
1944
1945 if (!ti->type->iterate_devices ||
1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 return false;
1948 }
1949
1950 return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954 struct dm_dev *dev, sector_t start,
1955 sector_t len, void *data)
1956{
1957 return bdev_stable_writes(dev->bdev);
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 struct queue_limits *limits)
1962{
1963 bool wc = false, fua = false;
1964 int r;
1965
1966 /*
1967 * Copy table's limits to the DM device's request_queue
1968 */
1969 q->limits = *limits;
1970
1971 if (dm_table_supports_nowait(t))
1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 else
1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976 if (!dm_table_supports_discards(t)) {
1977 q->limits.max_discard_sectors = 0;
1978 q->limits.max_hw_discard_sectors = 0;
1979 q->limits.discard_granularity = 0;
1980 q->limits.discard_alignment = 0;
1981 q->limits.discard_misaligned = 0;
1982 }
1983
1984 if (!dm_table_supports_secure_erase(t))
1985 q->limits.max_secure_erase_sectors = 0;
1986
1987 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 wc = true;
1989 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 fua = true;
1991 }
1992 blk_queue_write_cache(q, wc, fua);
1993
1994 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 set_dax_synchronous(t->md->dax_dev);
1998 } else
1999 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002 dax_write_cache(t->md->dax_dev, true);
2003
2004 /* Ensure that all underlying devices are non-rotational. */
2005 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007 else
2008 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010 if (!dm_table_supports_write_zeroes(t))
2011 q->limits.max_write_zeroes_sectors = 0;
2012
2013 dm_table_verify_integrity(t);
2014
2015 /*
2016 * Some devices don't use blk_integrity but still want stable pages
2017 * because they do their own checksumming.
2018 * If any underlying device requires stable pages, a table must require
2019 * them as well. Only targets that support iterate_devices are considered:
2020 * don't want error, zero, etc to require stable pages.
2021 */
2022 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024 else
2025 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027 /*
2028 * Determine whether or not this queue's I/O timings contribute
2029 * to the entropy pool, Only request-based targets use this.
2030 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031 * have it set.
2032 */
2033 if (blk_queue_add_random(q) &&
2034 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037 /*
2038 * For a zoned target, setup the zones related queue attributes
2039 * and resources necessary for zone append emulation if necessary.
2040 */
2041 if (blk_queue_is_zoned(q)) {
2042 r = dm_set_zones_restrictions(t, q);
2043 if (r)
2044 return r;
2045 if (!static_key_enabled(&zoned_enabled.key))
2046 static_branch_enable(&zoned_enabled);
2047 }
2048
2049 dm_update_crypto_profile(q, t);
2050 disk_update_readahead(t->md->disk);
2051
2052 /*
2053 * Check for request-based device is left to
2054 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055 *
2056 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057 * underlying devices supporting polling.
2058 */
2059 if (__table_type_bio_based(t->type)) {
2060 if (dm_table_supports_poll(t))
2061 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062 else
2063 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064 }
2065
2066 return 0;
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071 return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076 return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081 PRESUSPEND,
2082 PRESUSPEND_UNDO,
2083 POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088 lockdep_assert_held(&t->md->suspend_lock);
2089
2090 for (unsigned int i = 0; i < t->num_targets; i++) {
2091 struct dm_target *ti = dm_table_get_target(t, i);
2092
2093 switch (mode) {
2094 case PRESUSPEND:
2095 if (ti->type->presuspend)
2096 ti->type->presuspend(ti);
2097 break;
2098 case PRESUSPEND_UNDO:
2099 if (ti->type->presuspend_undo)
2100 ti->type->presuspend_undo(ti);
2101 break;
2102 case POSTSUSPEND:
2103 if (ti->type->postsuspend)
2104 ti->type->postsuspend(ti);
2105 break;
2106 }
2107 }
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112 if (!t)
2113 return;
2114
2115 suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120 if (!t)
2121 return;
2122
2123 suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128 if (!t)
2129 return;
2130
2131 suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136 unsigned int i;
2137 int r = 0;
2138
2139 lockdep_assert_held(&t->md->suspend_lock);
2140
2141 for (i = 0; i < t->num_targets; i++) {
2142 struct dm_target *ti = dm_table_get_target(t, i);
2143
2144 if (!ti->type->preresume)
2145 continue;
2146
2147 r = ti->type->preresume(ti);
2148 if (r) {
2149 DMERR("%s: %s: preresume failed, error = %d",
2150 dm_device_name(t->md), ti->type->name, r);
2151 return r;
2152 }
2153 }
2154
2155 for (i = 0; i < t->num_targets; i++) {
2156 struct dm_target *ti = dm_table_get_target(t, i);
2157
2158 if (ti->type->resume)
2159 ti->type->resume(ti);
2160 }
2161
2162 return 0;
2163}
2164
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167 return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
2170
2171const char *dm_table_device_name(struct dm_table *t)
2172{
2173 return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
2179 if (!dm_table_request_based(t))
2180 return;
2181
2182 if (t->md->queue)
2183 blk_mq_run_hw_queues(t->md->queue, true);
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166}
167
168static void free_devices(struct list_head *devices, struct mapped_device *md)
169{
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180}
181
182static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
184void dm_table_destroy(struct dm_table *t)
185{
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213}
214
215/*
216 * See if we've already got a device in the list.
217 */
218static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219{
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227}
228
229/*
230 * If possible, this checks an area of a destination device is invalid.
231 */
232static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234{
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (start & (zone_sectors - 1)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (len & (zone_sectors - 1)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306}
307
308/*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
314static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316{
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331}
332
333/*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
337int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338{
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351#ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354#endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360}
361EXPORT_SYMBOL(dm_devt_from_path);
362
363/*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
367int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369{
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418}
419EXPORT_SYMBOL(dm_get_device);
420
421static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423{
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 if (blk_stack_limits(limits, &q->limits,
435 get_start_sect(bdev) + start) < 0)
436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 "physical_block_size=%u, logical_block_size=%u, "
438 "alignment_offset=%u, start=%llu",
439 dm_device_name(ti->table->md), bdev,
440 q->limits.physical_block_size,
441 q->limits.logical_block_size,
442 q->limits.alignment_offset,
443 (unsigned long long) start << SECTOR_SHIFT);
444
445 /*
446 * Only stack the integrity profile if the target doesn't have native
447 * integrity support.
448 */
449 if (!dm_target_has_integrity(ti->type))
450 queue_limits_stack_integrity_bdev(limits, bdev);
451 return 0;
452}
453
454/*
455 * Decrement a device's use count and remove it if necessary.
456 */
457void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458{
459 int found = 0;
460 struct dm_table *t = ti->table;
461 struct list_head *devices = &t->devices;
462 struct dm_dev_internal *dd;
463
464 down_write(&t->devices_lock);
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMERR("%s: device %s not in table devices list",
474 dm_device_name(t->md), d->name);
475 goto unlock_ret;
476 }
477 if (refcount_dec_and_test(&dd->count)) {
478 dm_put_table_device(t->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482
483unlock_ret:
484 up_write(&t->devices_lock);
485}
486EXPORT_SYMBOL(dm_put_device);
487
488/*
489 * Checks to see if the target joins onto the end of the table.
490 */
491static int adjoin(struct dm_table *t, struct dm_target *ti)
492{
493 struct dm_target *prev;
494
495 if (!t->num_targets)
496 return !ti->begin;
497
498 prev = &t->targets[t->num_targets - 1];
499 return (ti->begin == (prev->begin + prev->len));
500}
501
502/*
503 * Used to dynamically allocate the arg array.
504 *
505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506 * process messages even if some device is suspended. These messages have a
507 * small fixed number of arguments.
508 *
509 * On the other hand, dm-switch needs to process bulk data using messages and
510 * excessive use of GFP_NOIO could cause trouble.
511 */
512static char **realloc_argv(unsigned int *size, char **old_argv)
513{
514 char **argv;
515 unsigned int new_size;
516 gfp_t gfp;
517
518 if (*size) {
519 new_size = *size * 2;
520 gfp = GFP_KERNEL;
521 } else {
522 new_size = 8;
523 gfp = GFP_NOIO;
524 }
525 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 if (argv && old_argv) {
527 memcpy(argv, old_argv, *size * sizeof(*argv));
528 *size = new_size;
529 }
530
531 kfree(old_argv);
532 return argv;
533}
534
535/*
536 * Destructively splits up the argument list to pass to ctr.
537 */
538int dm_split_args(int *argc, char ***argvp, char *input)
539{
540 char *start, *end = input, *out, **argv = NULL;
541 unsigned int array_size = 0;
542
543 *argc = 0;
544
545 if (!input) {
546 *argvp = NULL;
547 return 0;
548 }
549
550 argv = realloc_argv(&array_size, argv);
551 if (!argv)
552 return -ENOMEM;
553
554 while (1) {
555 /* Skip whitespace */
556 start = skip_spaces(end);
557
558 if (!*start)
559 break; /* success, we hit the end */
560
561 /* 'out' is used to remove any back-quotes */
562 end = out = start;
563 while (*end) {
564 /* Everything apart from '\0' can be quoted */
565 if (*end == '\\' && *(end + 1)) {
566 *out++ = *(end + 1);
567 end += 2;
568 continue;
569 }
570
571 if (isspace(*end))
572 break; /* end of token */
573
574 *out++ = *end++;
575 }
576
577 /* have we already filled the array ? */
578 if ((*argc + 1) > array_size) {
579 argv = realloc_argv(&array_size, argv);
580 if (!argv)
581 return -ENOMEM;
582 }
583
584 /* we know this is whitespace */
585 if (*end)
586 end++;
587
588 /* terminate the string and put it in the array */
589 *out = '\0';
590 argv[*argc] = start;
591 (*argc)++;
592 }
593
594 *argvp = argv;
595 return 0;
596}
597
598static void dm_set_stacking_limits(struct queue_limits *limits)
599{
600 blk_set_stacking_limits(limits);
601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602}
603
604/*
605 * Impose necessary and sufficient conditions on a devices's table such
606 * that any incoming bio which respects its logical_block_size can be
607 * processed successfully. If it falls across the boundary between
608 * two or more targets, the size of each piece it gets split into must
609 * be compatible with the logical_block_size of the target processing it.
610 */
611static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 struct queue_limits *limits)
613{
614 /*
615 * This function uses arithmetic modulo the logical_block_size
616 * (in units of 512-byte sectors).
617 */
618 unsigned short device_logical_block_size_sects =
619 limits->logical_block_size >> SECTOR_SHIFT;
620
621 /*
622 * Offset of the start of the next table entry, mod logical_block_size.
623 */
624 unsigned short next_target_start = 0;
625
626 /*
627 * Given an aligned bio that extends beyond the end of a
628 * target, how many sectors must the next target handle?
629 */
630 unsigned short remaining = 0;
631
632 struct dm_target *ti;
633 struct queue_limits ti_limits;
634 unsigned int i;
635
636 /*
637 * Check each entry in the table in turn.
638 */
639 for (i = 0; i < t->num_targets; i++) {
640 ti = dm_table_get_target(t, i);
641
642 dm_set_stacking_limits(&ti_limits);
643
644 /* combine all target devices' limits */
645 if (ti->type->iterate_devices)
646 ti->type->iterate_devices(ti, dm_set_device_limits,
647 &ti_limits);
648
649 /*
650 * If the remaining sectors fall entirely within this
651 * table entry are they compatible with its logical_block_size?
652 */
653 if (remaining < ti->len &&
654 remaining & ((ti_limits.logical_block_size >>
655 SECTOR_SHIFT) - 1))
656 break; /* Error */
657
658 next_target_start =
659 (unsigned short) ((next_target_start + ti->len) &
660 (device_logical_block_size_sects - 1));
661 remaining = next_target_start ?
662 device_logical_block_size_sects - next_target_start : 0;
663 }
664
665 if (remaining) {
666 DMERR("%s: table line %u (start sect %llu len %llu) "
667 "not aligned to h/w logical block size %u",
668 dm_device_name(t->md), i,
669 (unsigned long long) ti->begin,
670 (unsigned long long) ti->len,
671 limits->logical_block_size);
672 return -EINVAL;
673 }
674
675 return 0;
676}
677
678int dm_table_add_target(struct dm_table *t, const char *type,
679 sector_t start, sector_t len, char *params)
680{
681 int r = -EINVAL, argc;
682 char **argv;
683 struct dm_target *ti;
684
685 if (t->singleton) {
686 DMERR("%s: target type %s must appear alone in table",
687 dm_device_name(t->md), t->targets->type->name);
688 return -EINVAL;
689 }
690
691 BUG_ON(t->num_targets >= t->num_allocated);
692
693 ti = t->targets + t->num_targets;
694 memset(ti, 0, sizeof(*ti));
695
696 if (!len) {
697 DMERR("%s: zero-length target", dm_device_name(t->md));
698 return -EINVAL;
699 }
700
701 ti->type = dm_get_target_type(type);
702 if (!ti->type) {
703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
704 return -EINVAL;
705 }
706
707 if (dm_target_needs_singleton(ti->type)) {
708 if (t->num_targets) {
709 ti->error = "singleton target type must appear alone in table";
710 goto bad;
711 }
712 t->singleton = true;
713 }
714
715 if (dm_target_always_writeable(ti->type) &&
716 !(t->mode & BLK_OPEN_WRITE)) {
717 ti->error = "target type may not be included in a read-only table";
718 goto bad;
719 }
720
721 if (t->immutable_target_type) {
722 if (t->immutable_target_type != ti->type) {
723 ti->error = "immutable target type cannot be mixed with other target types";
724 goto bad;
725 }
726 } else if (dm_target_is_immutable(ti->type)) {
727 if (t->num_targets) {
728 ti->error = "immutable target type cannot be mixed with other target types";
729 goto bad;
730 }
731 t->immutable_target_type = ti->type;
732 }
733
734 ti->table = t;
735 ti->begin = start;
736 ti->len = len;
737 ti->error = "Unknown error";
738
739 /*
740 * Does this target adjoin the previous one ?
741 */
742 if (!adjoin(t, ti)) {
743 ti->error = "Gap in table";
744 goto bad;
745 }
746
747 r = dm_split_args(&argc, &argv, params);
748 if (r) {
749 ti->error = "couldn't split parameters";
750 goto bad;
751 }
752
753 r = ti->type->ctr(ti, argc, argv);
754 kfree(argv);
755 if (r)
756 goto bad;
757
758 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
759
760 if (!ti->num_discard_bios && ti->discards_supported)
761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 dm_device_name(t->md), type);
763
764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
765 static_branch_enable(&swap_bios_enabled);
766
767 if (!ti->flush_bypasses_map)
768 t->flush_bypasses_map = false;
769
770 return 0;
771
772 bad:
773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
774 dm_put_target_type(ti->type);
775 return r;
776}
777
778/*
779 * Target argument parsing helpers.
780 */
781static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
782 unsigned int *value, char **error, unsigned int grouped)
783{
784 const char *arg_str = dm_shift_arg(arg_set);
785 char dummy;
786
787 if (!arg_str ||
788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789 (*value < arg->min) ||
790 (*value > arg->max) ||
791 (grouped && arg_set->argc < *value)) {
792 *error = arg->error;
793 return -EINVAL;
794 }
795
796 return 0;
797}
798
799int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
800 unsigned int *value, char **error)
801{
802 return validate_next_arg(arg, arg_set, value, error, 0);
803}
804EXPORT_SYMBOL(dm_read_arg);
805
806int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned int *value, char **error)
808{
809 return validate_next_arg(arg, arg_set, value, error, 1);
810}
811EXPORT_SYMBOL(dm_read_arg_group);
812
813const char *dm_shift_arg(struct dm_arg_set *as)
814{
815 char *r;
816
817 if (as->argc) {
818 as->argc--;
819 r = *as->argv;
820 as->argv++;
821 return r;
822 }
823
824 return NULL;
825}
826EXPORT_SYMBOL(dm_shift_arg);
827
828void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
829{
830 BUG_ON(as->argc < num_args);
831 as->argc -= num_args;
832 as->argv += num_args;
833}
834EXPORT_SYMBOL(dm_consume_args);
835
836static bool __table_type_bio_based(enum dm_queue_mode table_type)
837{
838 return (table_type == DM_TYPE_BIO_BASED ||
839 table_type == DM_TYPE_DAX_BIO_BASED);
840}
841
842static bool __table_type_request_based(enum dm_queue_mode table_type)
843{
844 return table_type == DM_TYPE_REQUEST_BASED;
845}
846
847void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
848{
849 t->type = type;
850}
851EXPORT_SYMBOL_GPL(dm_table_set_type);
852
853/* validate the dax capability of the target device span */
854static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
855 sector_t start, sector_t len, void *data)
856{
857 if (dev->dax_dev)
858 return false;
859
860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
861 return true;
862}
863
864/* Check devices support synchronous DAX */
865static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
866 sector_t start, sector_t len, void *data)
867{
868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
869}
870
871static bool dm_table_supports_dax(struct dm_table *t,
872 iterate_devices_callout_fn iterate_fn)
873{
874 /* Ensure that all targets support DAX. */
875 for (unsigned int i = 0; i < t->num_targets; i++) {
876 struct dm_target *ti = dm_table_get_target(t, i);
877
878 if (!ti->type->direct_access)
879 return false;
880
881 if (dm_target_is_wildcard(ti->type) ||
882 !ti->type->iterate_devices ||
883 ti->type->iterate_devices(ti, iterate_fn, NULL))
884 return false;
885 }
886
887 return true;
888}
889
890static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
891 sector_t start, sector_t len, void *data)
892{
893 struct block_device *bdev = dev->bdev;
894 struct request_queue *q = bdev_get_queue(bdev);
895
896 /* request-based cannot stack on partitions! */
897 if (bdev_is_partition(bdev))
898 return false;
899
900 return queue_is_mq(q);
901}
902
903static int dm_table_determine_type(struct dm_table *t)
904{
905 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
906 struct dm_target *ti;
907 struct list_head *devices = dm_table_get_devices(t);
908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
909
910 if (t->type != DM_TYPE_NONE) {
911 /* target already set the table's type */
912 if (t->type == DM_TYPE_BIO_BASED) {
913 /* possibly upgrade to a variant of bio-based */
914 goto verify_bio_based;
915 }
916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
917 goto verify_rq_based;
918 }
919
920 for (unsigned int i = 0; i < t->num_targets; i++) {
921 ti = dm_table_get_target(t, i);
922 if (dm_target_hybrid(ti))
923 hybrid = 1;
924 else if (dm_target_request_based(ti))
925 request_based = 1;
926 else
927 bio_based = 1;
928
929 if (bio_based && request_based) {
930 DMERR("Inconsistent table: different target types can't be mixed up");
931 return -EINVAL;
932 }
933 }
934
935 if (hybrid && !bio_based && !request_based) {
936 /*
937 * The targets can work either way.
938 * Determine the type from the live device.
939 * Default to bio-based if device is new.
940 */
941 if (__table_type_request_based(live_md_type))
942 request_based = 1;
943 else
944 bio_based = 1;
945 }
946
947 if (bio_based) {
948verify_bio_based:
949 /* We must use this table as bio-based */
950 t->type = DM_TYPE_BIO_BASED;
951 if (dm_table_supports_dax(t, device_not_dax_capable) ||
952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
953 t->type = DM_TYPE_DAX_BIO_BASED;
954 }
955 return 0;
956 }
957
958 BUG_ON(!request_based); /* No targets in this table */
959
960 t->type = DM_TYPE_REQUEST_BASED;
961
962verify_rq_based:
963 /*
964 * Request-based dm supports only tables that have a single target now.
965 * To support multiple targets, request splitting support is needed,
966 * and that needs lots of changes in the block-layer.
967 * (e.g. request completion process for partial completion.)
968 */
969 if (t->num_targets > 1) {
970 DMERR("request-based DM doesn't support multiple targets");
971 return -EINVAL;
972 }
973
974 if (list_empty(devices)) {
975 int srcu_idx;
976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
977
978 /* inherit live table's type */
979 if (live_table)
980 t->type = live_table->type;
981 dm_put_live_table(t->md, srcu_idx);
982 return 0;
983 }
984
985 ti = dm_table_get_immutable_target(t);
986 if (!ti) {
987 DMERR("table load rejected: immutable target is required");
988 return -EINVAL;
989 } else if (ti->max_io_len) {
990 DMERR("table load rejected: immutable target that splits IO is not supported");
991 return -EINVAL;
992 }
993
994 /* Non-request-stackable devices can't be used for request-based dm */
995 if (!ti->type->iterate_devices ||
996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
997 DMERR("table load rejected: including non-request-stackable devices");
998 return -EINVAL;
999 }
1000
1001 return 0;
1002}
1003
1004enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005{
1006 return t->type;
1007}
1008
1009struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010{
1011 return t->immutable_target_type;
1012}
1013
1014struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015{
1016 /* Immutable target is implicitly a singleton */
1017 if (t->num_targets > 1 ||
1018 !dm_target_is_immutable(t->targets[0].type))
1019 return NULL;
1020
1021 return t->targets;
1022}
1023
1024struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025{
1026 for (unsigned int i = 0; i < t->num_targets; i++) {
1027 struct dm_target *ti = dm_table_get_target(t, i);
1028
1029 if (dm_target_is_wildcard(ti->type))
1030 return ti;
1031 }
1032
1033 return NULL;
1034}
1035
1036bool dm_table_request_based(struct dm_table *t)
1037{
1038 return __table_type_request_based(dm_table_get_type(t));
1039}
1040
1041static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1042{
1043 enum dm_queue_mode type = dm_table_get_type(t);
1044 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1045 unsigned int min_pool_size = 0, pool_size;
1046 struct dm_md_mempools *pools;
1047 unsigned int bioset_flags = 0;
1048 bool mempool_needs_integrity = t->integrity_supported;
1049
1050 if (unlikely(type == DM_TYPE_NONE)) {
1051 DMERR("no table type is set, can't allocate mempools");
1052 return -EINVAL;
1053 }
1054
1055 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1056 if (!pools)
1057 return -ENOMEM;
1058
1059 if (type == DM_TYPE_REQUEST_BASED) {
1060 pool_size = dm_get_reserved_rq_based_ios();
1061 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1062 goto init_bs;
1063 }
1064
1065 if (md->queue->limits.features & BLK_FEAT_POLL)
1066 bioset_flags |= BIOSET_PERCPU_CACHE;
1067
1068 for (unsigned int i = 0; i < t->num_targets; i++) {
1069 struct dm_target *ti = dm_table_get_target(t, i);
1070
1071 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1072 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1073
1074 mempool_needs_integrity |= ti->mempool_needs_integrity;
1075 }
1076 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1077 front_pad = roundup(per_io_data_size,
1078 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1079
1080 io_front_pad = roundup(per_io_data_size,
1081 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1082 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1083 goto out_free_pools;
1084 if (mempool_needs_integrity &&
1085 bioset_integrity_create(&pools->io_bs, pool_size))
1086 goto out_free_pools;
1087init_bs:
1088 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1089 goto out_free_pools;
1090 if (mempool_needs_integrity &&
1091 bioset_integrity_create(&pools->bs, pool_size))
1092 goto out_free_pools;
1093
1094 t->mempools = pools;
1095 return 0;
1096
1097out_free_pools:
1098 dm_free_md_mempools(pools);
1099 return -ENOMEM;
1100}
1101
1102static int setup_indexes(struct dm_table *t)
1103{
1104 int i;
1105 unsigned int total = 0;
1106 sector_t *indexes;
1107
1108 /* allocate the space for *all* the indexes */
1109 for (i = t->depth - 2; i >= 0; i--) {
1110 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1111 total += t->counts[i];
1112 }
1113
1114 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1115 if (!indexes)
1116 return -ENOMEM;
1117
1118 /* set up internal nodes, bottom-up */
1119 for (i = t->depth - 2; i >= 0; i--) {
1120 t->index[i] = indexes;
1121 indexes += (KEYS_PER_NODE * t->counts[i]);
1122 setup_btree_index(i, t);
1123 }
1124
1125 return 0;
1126}
1127
1128/*
1129 * Builds the btree to index the map.
1130 */
1131static int dm_table_build_index(struct dm_table *t)
1132{
1133 int r = 0;
1134 unsigned int leaf_nodes;
1135
1136 /* how many indexes will the btree have ? */
1137 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1138 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1139
1140 /* leaf layer has already been set up */
1141 t->counts[t->depth - 1] = leaf_nodes;
1142 t->index[t->depth - 1] = t->highs;
1143
1144 if (t->depth >= 2)
1145 r = setup_indexes(t);
1146
1147 return r;
1148}
1149
1150#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1151
1152struct dm_crypto_profile {
1153 struct blk_crypto_profile profile;
1154 struct mapped_device *md;
1155};
1156
1157static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1158 sector_t start, sector_t len, void *data)
1159{
1160 const struct blk_crypto_key *key = data;
1161
1162 blk_crypto_evict_key(dev->bdev, key);
1163 return 0;
1164}
1165
1166/*
1167 * When an inline encryption key is evicted from a device-mapper device, evict
1168 * it from all the underlying devices.
1169 */
1170static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1171 const struct blk_crypto_key *key, unsigned int slot)
1172{
1173 struct mapped_device *md =
1174 container_of(profile, struct dm_crypto_profile, profile)->md;
1175 struct dm_table *t;
1176 int srcu_idx;
1177
1178 t = dm_get_live_table(md, &srcu_idx);
1179 if (!t)
1180 return 0;
1181
1182 for (unsigned int i = 0; i < t->num_targets; i++) {
1183 struct dm_target *ti = dm_table_get_target(t, i);
1184
1185 if (!ti->type->iterate_devices)
1186 continue;
1187 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1188 (void *)key);
1189 }
1190
1191 dm_put_live_table(md, srcu_idx);
1192 return 0;
1193}
1194
1195static int
1196device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1197 sector_t start, sector_t len, void *data)
1198{
1199 struct blk_crypto_profile *parent = data;
1200 struct blk_crypto_profile *child =
1201 bdev_get_queue(dev->bdev)->crypto_profile;
1202
1203 blk_crypto_intersect_capabilities(parent, child);
1204 return 0;
1205}
1206
1207void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1208{
1209 struct dm_crypto_profile *dmcp = container_of(profile,
1210 struct dm_crypto_profile,
1211 profile);
1212
1213 if (!profile)
1214 return;
1215
1216 blk_crypto_profile_destroy(profile);
1217 kfree(dmcp);
1218}
1219
1220static void dm_table_destroy_crypto_profile(struct dm_table *t)
1221{
1222 dm_destroy_crypto_profile(t->crypto_profile);
1223 t->crypto_profile = NULL;
1224}
1225
1226/*
1227 * Constructs and initializes t->crypto_profile with a crypto profile that
1228 * represents the common set of crypto capabilities of the devices described by
1229 * the dm_table. However, if the constructed crypto profile doesn't support all
1230 * crypto capabilities that are supported by the current mapped_device, it
1231 * returns an error instead, since we don't support removing crypto capabilities
1232 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1233 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1234 */
1235static int dm_table_construct_crypto_profile(struct dm_table *t)
1236{
1237 struct dm_crypto_profile *dmcp;
1238 struct blk_crypto_profile *profile;
1239 unsigned int i;
1240 bool empty_profile = true;
1241
1242 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1243 if (!dmcp)
1244 return -ENOMEM;
1245 dmcp->md = t->md;
1246
1247 profile = &dmcp->profile;
1248 blk_crypto_profile_init(profile, 0);
1249 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1250 profile->max_dun_bytes_supported = UINT_MAX;
1251 memset(profile->modes_supported, 0xFF,
1252 sizeof(profile->modes_supported));
1253
1254 for (i = 0; i < t->num_targets; i++) {
1255 struct dm_target *ti = dm_table_get_target(t, i);
1256
1257 if (!dm_target_passes_crypto(ti->type)) {
1258 blk_crypto_intersect_capabilities(profile, NULL);
1259 break;
1260 }
1261 if (!ti->type->iterate_devices)
1262 continue;
1263 ti->type->iterate_devices(ti,
1264 device_intersect_crypto_capabilities,
1265 profile);
1266 }
1267
1268 if (t->md->queue &&
1269 !blk_crypto_has_capabilities(profile,
1270 t->md->queue->crypto_profile)) {
1271 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1272 dm_destroy_crypto_profile(profile);
1273 return -EINVAL;
1274 }
1275
1276 /*
1277 * If the new profile doesn't actually support any crypto capabilities,
1278 * we may as well represent it with a NULL profile.
1279 */
1280 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1281 if (profile->modes_supported[i]) {
1282 empty_profile = false;
1283 break;
1284 }
1285 }
1286
1287 if (empty_profile) {
1288 dm_destroy_crypto_profile(profile);
1289 profile = NULL;
1290 }
1291
1292 /*
1293 * t->crypto_profile is only set temporarily while the table is being
1294 * set up, and it gets set to NULL after the profile has been
1295 * transferred to the request_queue.
1296 */
1297 t->crypto_profile = profile;
1298
1299 return 0;
1300}
1301
1302static void dm_update_crypto_profile(struct request_queue *q,
1303 struct dm_table *t)
1304{
1305 if (!t->crypto_profile)
1306 return;
1307
1308 /* Make the crypto profile less restrictive. */
1309 if (!q->crypto_profile) {
1310 blk_crypto_register(t->crypto_profile, q);
1311 } else {
1312 blk_crypto_update_capabilities(q->crypto_profile,
1313 t->crypto_profile);
1314 dm_destroy_crypto_profile(t->crypto_profile);
1315 }
1316 t->crypto_profile = NULL;
1317}
1318
1319#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1320
1321static int dm_table_construct_crypto_profile(struct dm_table *t)
1322{
1323 return 0;
1324}
1325
1326void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1327{
1328}
1329
1330static void dm_table_destroy_crypto_profile(struct dm_table *t)
1331{
1332}
1333
1334static void dm_update_crypto_profile(struct request_queue *q,
1335 struct dm_table *t)
1336{
1337}
1338
1339#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1340
1341/*
1342 * Prepares the table for use by building the indices,
1343 * setting the type, and allocating mempools.
1344 */
1345int dm_table_complete(struct dm_table *t)
1346{
1347 int r;
1348
1349 r = dm_table_determine_type(t);
1350 if (r) {
1351 DMERR("unable to determine table type");
1352 return r;
1353 }
1354
1355 r = dm_table_build_index(t);
1356 if (r) {
1357 DMERR("unable to build btrees");
1358 return r;
1359 }
1360
1361 r = dm_table_construct_crypto_profile(t);
1362 if (r) {
1363 DMERR("could not construct crypto profile.");
1364 return r;
1365 }
1366
1367 r = dm_table_alloc_md_mempools(t, t->md);
1368 if (r)
1369 DMERR("unable to allocate mempools");
1370
1371 return r;
1372}
1373
1374static DEFINE_MUTEX(_event_lock);
1375void dm_table_event_callback(struct dm_table *t,
1376 void (*fn)(void *), void *context)
1377{
1378 mutex_lock(&_event_lock);
1379 t->event_fn = fn;
1380 t->event_context = context;
1381 mutex_unlock(&_event_lock);
1382}
1383
1384void dm_table_event(struct dm_table *t)
1385{
1386 mutex_lock(&_event_lock);
1387 if (t->event_fn)
1388 t->event_fn(t->event_context);
1389 mutex_unlock(&_event_lock);
1390}
1391EXPORT_SYMBOL(dm_table_event);
1392
1393inline sector_t dm_table_get_size(struct dm_table *t)
1394{
1395 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1396}
1397EXPORT_SYMBOL(dm_table_get_size);
1398
1399/*
1400 * Search the btree for the correct target.
1401 *
1402 * Caller should check returned pointer for NULL
1403 * to trap I/O beyond end of device.
1404 */
1405struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1406{
1407 unsigned int l, n = 0, k = 0;
1408 sector_t *node;
1409
1410 if (unlikely(sector >= dm_table_get_size(t)))
1411 return NULL;
1412
1413 for (l = 0; l < t->depth; l++) {
1414 n = get_child(n, k);
1415 node = get_node(t, l, n);
1416
1417 for (k = 0; k < KEYS_PER_NODE; k++)
1418 if (node[k] >= sector)
1419 break;
1420 }
1421
1422 return &t->targets[(KEYS_PER_NODE * n) + k];
1423}
1424
1425/*
1426 * type->iterate_devices() should be called when the sanity check needs to
1427 * iterate and check all underlying data devices. iterate_devices() will
1428 * iterate all underlying data devices until it encounters a non-zero return
1429 * code, returned by whether the input iterate_devices_callout_fn, or
1430 * iterate_devices() itself internally.
1431 *
1432 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1433 * iterate multiple underlying devices internally, in which case a non-zero
1434 * return code returned by iterate_devices_callout_fn will stop the iteration
1435 * in advance.
1436 *
1437 * Cases requiring _any_ underlying device supporting some kind of attribute,
1438 * should use the iteration structure like dm_table_any_dev_attr(), or call
1439 * it directly. @func should handle semantics of positive examples, e.g.
1440 * capable of something.
1441 *
1442 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1443 * should use the iteration structure like dm_table_supports_nowait() or
1444 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1445 * uses an @anti_func that handle semantics of counter examples, e.g. not
1446 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1447 */
1448static bool dm_table_any_dev_attr(struct dm_table *t,
1449 iterate_devices_callout_fn func, void *data)
1450{
1451 for (unsigned int i = 0; i < t->num_targets; i++) {
1452 struct dm_target *ti = dm_table_get_target(t, i);
1453
1454 if (ti->type->iterate_devices &&
1455 ti->type->iterate_devices(ti, func, data))
1456 return true;
1457 }
1458
1459 return false;
1460}
1461
1462static int count_device(struct dm_target *ti, struct dm_dev *dev,
1463 sector_t start, sector_t len, void *data)
1464{
1465 unsigned int *num_devices = data;
1466
1467 (*num_devices)++;
1468
1469 return 0;
1470}
1471
1472/*
1473 * Check whether a table has no data devices attached using each
1474 * target's iterate_devices method.
1475 * Returns false if the result is unknown because a target doesn't
1476 * support iterate_devices.
1477 */
1478bool dm_table_has_no_data_devices(struct dm_table *t)
1479{
1480 for (unsigned int i = 0; i < t->num_targets; i++) {
1481 struct dm_target *ti = dm_table_get_target(t, i);
1482 unsigned int num_devices = 0;
1483
1484 if (!ti->type->iterate_devices)
1485 return false;
1486
1487 ti->type->iterate_devices(ti, count_device, &num_devices);
1488 if (num_devices)
1489 return false;
1490 }
1491
1492 return true;
1493}
1494
1495static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1496 sector_t start, sector_t len, void *data)
1497{
1498 bool *zoned = data;
1499
1500 return bdev_is_zoned(dev->bdev) != *zoned;
1501}
1502
1503static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1504 sector_t start, sector_t len, void *data)
1505{
1506 return bdev_is_zoned(dev->bdev);
1507}
1508
1509/*
1510 * Check the device zoned model based on the target feature flag. If the target
1511 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1512 * also accepted but all devices must have the same zoned model. If the target
1513 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1514 * zoned model with all zoned devices having the same zone size.
1515 */
1516static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1517{
1518 for (unsigned int i = 0; i < t->num_targets; i++) {
1519 struct dm_target *ti = dm_table_get_target(t, i);
1520
1521 /*
1522 * For the wildcard target (dm-error), if we do not have a
1523 * backing device, we must always return false. If we have a
1524 * backing device, the result must depend on checking zoned
1525 * model, like for any other target. So for this, check directly
1526 * if the target backing device is zoned as we get "false" when
1527 * dm-error was set without a backing device.
1528 */
1529 if (dm_target_is_wildcard(ti->type) &&
1530 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1531 return false;
1532
1533 if (dm_target_supports_zoned_hm(ti->type)) {
1534 if (!ti->type->iterate_devices ||
1535 ti->type->iterate_devices(ti, device_not_zoned,
1536 &zoned))
1537 return false;
1538 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1539 if (zoned)
1540 return false;
1541 }
1542 }
1543
1544 return true;
1545}
1546
1547static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1548 sector_t start, sector_t len, void *data)
1549{
1550 unsigned int *zone_sectors = data;
1551
1552 if (!bdev_is_zoned(dev->bdev))
1553 return 0;
1554 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1555}
1556
1557/*
1558 * Check consistency of zoned model and zone sectors across all targets. For
1559 * zone sectors, if the destination device is a zoned block device, it shall
1560 * have the specified zone_sectors.
1561 */
1562static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1563 unsigned int zone_sectors)
1564{
1565 if (!zoned)
1566 return 0;
1567
1568 if (!dm_table_supports_zoned(t, zoned)) {
1569 DMERR("%s: zoned model is not consistent across all devices",
1570 dm_device_name(t->md));
1571 return -EINVAL;
1572 }
1573
1574 /* Check zone size validity and compatibility */
1575 if (!zone_sectors || !is_power_of_2(zone_sectors))
1576 return -EINVAL;
1577
1578 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1579 DMERR("%s: zone sectors is not consistent across all zoned devices",
1580 dm_device_name(t->md));
1581 return -EINVAL;
1582 }
1583
1584 return 0;
1585}
1586
1587/*
1588 * Establish the new table's queue_limits and validate them.
1589 */
1590int dm_calculate_queue_limits(struct dm_table *t,
1591 struct queue_limits *limits)
1592{
1593 struct queue_limits ti_limits;
1594 unsigned int zone_sectors = 0;
1595 bool zoned = false;
1596
1597 dm_set_stacking_limits(limits);
1598
1599 t->integrity_supported = true;
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (!dm_target_passes_integrity(ti->type))
1604 t->integrity_supported = false;
1605 }
1606
1607 for (unsigned int i = 0; i < t->num_targets; i++) {
1608 struct dm_target *ti = dm_table_get_target(t, i);
1609
1610 dm_set_stacking_limits(&ti_limits);
1611
1612 if (!ti->type->iterate_devices) {
1613 /* Set I/O hints portion of queue limits */
1614 if (ti->type->io_hints)
1615 ti->type->io_hints(ti, &ti_limits);
1616 goto combine_limits;
1617 }
1618
1619 /*
1620 * Combine queue limits of all the devices this target uses.
1621 */
1622 ti->type->iterate_devices(ti, dm_set_device_limits,
1623 &ti_limits);
1624
1625 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1626 /*
1627 * After stacking all limits, validate all devices
1628 * in table support this zoned model and zone sectors.
1629 */
1630 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1631 zone_sectors = ti_limits.chunk_sectors;
1632 }
1633
1634 /* Set I/O hints portion of queue limits */
1635 if (ti->type->io_hints)
1636 ti->type->io_hints(ti, &ti_limits);
1637
1638 /*
1639 * Check each device area is consistent with the target's
1640 * overall queue limits.
1641 */
1642 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1643 &ti_limits))
1644 return -EINVAL;
1645
1646combine_limits:
1647 /*
1648 * Merge this target's queue limits into the overall limits
1649 * for the table.
1650 */
1651 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1652 DMWARN("%s: adding target device (start sect %llu len %llu) "
1653 "caused an alignment inconsistency",
1654 dm_device_name(t->md),
1655 (unsigned long long) ti->begin,
1656 (unsigned long long) ti->len);
1657
1658 if (t->integrity_supported ||
1659 dm_target_has_integrity(ti->type)) {
1660 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1661 DMWARN("%s: adding target device (start sect %llu len %llu) "
1662 "disabled integrity support due to incompatibility",
1663 dm_device_name(t->md),
1664 (unsigned long long) ti->begin,
1665 (unsigned long long) ti->len);
1666 t->integrity_supported = false;
1667 }
1668 }
1669 }
1670
1671 /*
1672 * Verify that the zoned model and zone sectors, as determined before
1673 * any .io_hints override, are the same across all devices in the table.
1674 * - this is especially relevant if .io_hints is emulating a disk-managed
1675 * zoned model on host-managed zoned block devices.
1676 * BUT...
1677 */
1678 if (limits->features & BLK_FEAT_ZONED) {
1679 /*
1680 * ...IF the above limits stacking determined a zoned model
1681 * validate that all of the table's devices conform to it.
1682 */
1683 zoned = limits->features & BLK_FEAT_ZONED;
1684 zone_sectors = limits->chunk_sectors;
1685 }
1686 if (validate_hardware_zoned(t, zoned, zone_sectors))
1687 return -EINVAL;
1688
1689 return validate_hardware_logical_block_alignment(t, limits);
1690}
1691
1692/*
1693 * Check if a target requires flush support even if none of the underlying
1694 * devices need it (e.g. to persist target-specific metadata).
1695 */
1696static bool dm_table_supports_flush(struct dm_table *t)
1697{
1698 for (unsigned int i = 0; i < t->num_targets; i++) {
1699 struct dm_target *ti = dm_table_get_target(t, i);
1700
1701 if (ti->num_flush_bios && ti->flush_supported)
1702 return true;
1703 }
1704
1705 return false;
1706}
1707
1708static int device_dax_write_cache_enabled(struct dm_target *ti,
1709 struct dm_dev *dev, sector_t start,
1710 sector_t len, void *data)
1711{
1712 struct dax_device *dax_dev = dev->dax_dev;
1713
1714 if (!dax_dev)
1715 return false;
1716
1717 if (dax_write_cache_enabled(dax_dev))
1718 return true;
1719 return false;
1720}
1721
1722static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1723 sector_t start, sector_t len, void *data)
1724{
1725 struct request_queue *q = bdev_get_queue(dev->bdev);
1726
1727 return !q->limits.max_write_zeroes_sectors;
1728}
1729
1730static bool dm_table_supports_write_zeroes(struct dm_table *t)
1731{
1732 for (unsigned int i = 0; i < t->num_targets; i++) {
1733 struct dm_target *ti = dm_table_get_target(t, i);
1734
1735 if (!ti->num_write_zeroes_bios)
1736 return false;
1737
1738 if (!ti->type->iterate_devices ||
1739 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1740 return false;
1741 }
1742
1743 return true;
1744}
1745
1746static bool dm_table_supports_nowait(struct dm_table *t)
1747{
1748 for (unsigned int i = 0; i < t->num_targets; i++) {
1749 struct dm_target *ti = dm_table_get_target(t, i);
1750
1751 if (!dm_target_supports_nowait(ti->type))
1752 return false;
1753 }
1754
1755 return true;
1756}
1757
1758static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1759 sector_t start, sector_t len, void *data)
1760{
1761 return !bdev_max_discard_sectors(dev->bdev);
1762}
1763
1764static bool dm_table_supports_discards(struct dm_table *t)
1765{
1766 for (unsigned int i = 0; i < t->num_targets; i++) {
1767 struct dm_target *ti = dm_table_get_target(t, i);
1768
1769 if (!ti->num_discard_bios)
1770 return false;
1771
1772 /*
1773 * Either the target provides discard support (as implied by setting
1774 * 'discards_supported') or it relies on _all_ data devices having
1775 * discard support.
1776 */
1777 if (!ti->discards_supported &&
1778 (!ti->type->iterate_devices ||
1779 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1780 return false;
1781 }
1782
1783 return true;
1784}
1785
1786static int device_not_secure_erase_capable(struct dm_target *ti,
1787 struct dm_dev *dev, sector_t start,
1788 sector_t len, void *data)
1789{
1790 return !bdev_max_secure_erase_sectors(dev->bdev);
1791}
1792
1793static bool dm_table_supports_secure_erase(struct dm_table *t)
1794{
1795 for (unsigned int i = 0; i < t->num_targets; i++) {
1796 struct dm_target *ti = dm_table_get_target(t, i);
1797
1798 if (!ti->num_secure_erase_bios)
1799 return false;
1800
1801 if (!ti->type->iterate_devices ||
1802 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1803 return false;
1804 }
1805
1806 return true;
1807}
1808
1809int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1810 struct queue_limits *limits)
1811{
1812 int r;
1813
1814 if (!dm_table_supports_nowait(t))
1815 limits->features &= ~BLK_FEAT_NOWAIT;
1816
1817 /*
1818 * The current polling impementation does not support request based
1819 * stacking.
1820 */
1821 if (!__table_type_bio_based(t->type))
1822 limits->features &= ~BLK_FEAT_POLL;
1823
1824 if (!dm_table_supports_discards(t)) {
1825 limits->max_hw_discard_sectors = 0;
1826 limits->discard_granularity = 0;
1827 limits->discard_alignment = 0;
1828 }
1829
1830 if (!dm_table_supports_write_zeroes(t))
1831 limits->max_write_zeroes_sectors = 0;
1832
1833 if (!dm_table_supports_secure_erase(t))
1834 limits->max_secure_erase_sectors = 0;
1835
1836 if (dm_table_supports_flush(t))
1837 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1838
1839 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1840 limits->features |= BLK_FEAT_DAX;
1841 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1842 set_dax_synchronous(t->md->dax_dev);
1843 } else
1844 limits->features &= ~BLK_FEAT_DAX;
1845
1846 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1847 dax_write_cache(t->md->dax_dev, true);
1848
1849 /* For a zoned table, setup the zone related queue attributes. */
1850 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1851 (limits->features & BLK_FEAT_ZONED)) {
1852 r = dm_set_zones_restrictions(t, q, limits);
1853 if (r)
1854 return r;
1855 }
1856
1857 r = queue_limits_set(q, limits);
1858 if (r)
1859 return r;
1860
1861 /*
1862 * Now that the limits are set, check the zones mapped by the table
1863 * and setup the resources for zone append emulation if necessary.
1864 */
1865 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1866 (limits->features & BLK_FEAT_ZONED)) {
1867 r = dm_revalidate_zones(t, q);
1868 if (r)
1869 return r;
1870 }
1871
1872 dm_update_crypto_profile(q, t);
1873 return 0;
1874}
1875
1876struct list_head *dm_table_get_devices(struct dm_table *t)
1877{
1878 return &t->devices;
1879}
1880
1881blk_mode_t dm_table_get_mode(struct dm_table *t)
1882{
1883 return t->mode;
1884}
1885EXPORT_SYMBOL(dm_table_get_mode);
1886
1887enum suspend_mode {
1888 PRESUSPEND,
1889 PRESUSPEND_UNDO,
1890 POSTSUSPEND,
1891};
1892
1893static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1894{
1895 lockdep_assert_held(&t->md->suspend_lock);
1896
1897 for (unsigned int i = 0; i < t->num_targets; i++) {
1898 struct dm_target *ti = dm_table_get_target(t, i);
1899
1900 switch (mode) {
1901 case PRESUSPEND:
1902 if (ti->type->presuspend)
1903 ti->type->presuspend(ti);
1904 break;
1905 case PRESUSPEND_UNDO:
1906 if (ti->type->presuspend_undo)
1907 ti->type->presuspend_undo(ti);
1908 break;
1909 case POSTSUSPEND:
1910 if (ti->type->postsuspend)
1911 ti->type->postsuspend(ti);
1912 break;
1913 }
1914 }
1915}
1916
1917void dm_table_presuspend_targets(struct dm_table *t)
1918{
1919 if (!t)
1920 return;
1921
1922 suspend_targets(t, PRESUSPEND);
1923}
1924
1925void dm_table_presuspend_undo_targets(struct dm_table *t)
1926{
1927 if (!t)
1928 return;
1929
1930 suspend_targets(t, PRESUSPEND_UNDO);
1931}
1932
1933void dm_table_postsuspend_targets(struct dm_table *t)
1934{
1935 if (!t)
1936 return;
1937
1938 suspend_targets(t, POSTSUSPEND);
1939}
1940
1941int dm_table_resume_targets(struct dm_table *t)
1942{
1943 unsigned int i;
1944 int r = 0;
1945
1946 lockdep_assert_held(&t->md->suspend_lock);
1947
1948 for (i = 0; i < t->num_targets; i++) {
1949 struct dm_target *ti = dm_table_get_target(t, i);
1950
1951 if (!ti->type->preresume)
1952 continue;
1953
1954 r = ti->type->preresume(ti);
1955 if (r) {
1956 DMERR("%s: %s: preresume failed, error = %d",
1957 dm_device_name(t->md), ti->type->name, r);
1958 return r;
1959 }
1960 }
1961
1962 for (i = 0; i < t->num_targets; i++) {
1963 struct dm_target *ti = dm_table_get_target(t, i);
1964
1965 if (ti->type->resume)
1966 ti->type->resume(ti);
1967 }
1968
1969 return 0;
1970}
1971
1972struct mapped_device *dm_table_get_md(struct dm_table *t)
1973{
1974 return t->md;
1975}
1976EXPORT_SYMBOL(dm_table_get_md);
1977
1978const char *dm_table_device_name(struct dm_table *t)
1979{
1980 return dm_device_name(t->md);
1981}
1982EXPORT_SYMBOL_GPL(dm_table_device_name);
1983
1984void dm_table_run_md_queue_async(struct dm_table *t)
1985{
1986 if (!dm_table_request_based(t))
1987 return;
1988
1989 if (t->md->queue)
1990 blk_mq_run_hw_queues(t->md->queue, true);
1991}
1992EXPORT_SYMBOL(dm_table_run_md_queue_async);
1993