Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11
  12#include <linux/module.h>
  13#include <linux/vmalloc.h>
  14#include <linux/blkdev.h>
  15#include <linux/blk-integrity.h>
  16#include <linux/namei.h>
  17#include <linux/ctype.h>
  18#include <linux/string.h>
  19#include <linux/slab.h>
  20#include <linux/interrupt.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/atomic.h>
  24#include <linux/blk-mq.h>
  25#include <linux/mount.h>
  26#include <linux/dax.h>
  27
  28#define DM_MSG_PREFIX "table"
  29
 
  30#define NODE_SIZE L1_CACHE_BYTES
  31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34/*
  35 * Similar to ceiling(log_size(n))
  36 */
  37static unsigned int int_log(unsigned int n, unsigned int base)
  38{
  39	int result = 0;
  40
  41	while (n > 1) {
  42		n = dm_div_up(n, base);
  43		result++;
  44	}
  45
  46	return result;
  47}
  48
  49/*
  50 * Calculate the index of the child node of the n'th node k'th key.
  51 */
  52static inline unsigned int get_child(unsigned int n, unsigned int k)
  53{
  54	return (n * CHILDREN_PER_NODE) + k;
  55}
  56
  57/*
  58 * Return the n'th node of level l from table t.
  59 */
  60static inline sector_t *get_node(struct dm_table *t,
  61				 unsigned int l, unsigned int n)
  62{
  63	return t->index[l] + (n * KEYS_PER_NODE);
  64}
  65
  66/*
  67 * Return the highest key that you could lookup from the n'th
  68 * node on level l of the btree.
  69 */
  70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  71{
  72	for (; l < t->depth - 1; l++)
  73		n = get_child(n, CHILDREN_PER_NODE - 1);
  74
  75	if (n >= t->counts[l])
  76		return (sector_t) -1;
  77
  78	return get_node(t, l, n)[KEYS_PER_NODE - 1];
  79}
  80
  81/*
  82 * Fills in a level of the btree based on the highs of the level
  83 * below it.
  84 */
  85static int setup_btree_index(unsigned int l, struct dm_table *t)
  86{
  87	unsigned int n, k;
  88	sector_t *node;
  89
  90	for (n = 0U; n < t->counts[l]; n++) {
  91		node = get_node(t, l, n);
  92
  93		for (k = 0U; k < KEYS_PER_NODE; k++)
  94			node[k] = high(t, l + 1, get_child(n, k));
  95	}
  96
  97	return 0;
  98}
  99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100/*
 101 * highs, and targets are managed as dynamic arrays during a
 102 * table load.
 103 */
 104static int alloc_targets(struct dm_table *t, unsigned int num)
 105{
 106	sector_t *n_highs;
 107	struct dm_target *n_targets;
 108
 109	/*
 110	 * Allocate both the target array and offset array at once.
 111	 */
 112	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
 113			   GFP_KERNEL);
 114	if (!n_highs)
 115		return -ENOMEM;
 116
 117	n_targets = (struct dm_target *) (n_highs + num);
 118
 119	memset(n_highs, -1, sizeof(*n_highs) * num);
 120	kvfree(t->highs);
 121
 122	t->num_allocated = num;
 123	t->highs = n_highs;
 124	t->targets = n_targets;
 125
 126	return 0;
 127}
 128
 129int dm_table_create(struct dm_table **result, blk_mode_t mode,
 130		    unsigned int num_targets, struct mapped_device *md)
 131{
 132	struct dm_table *t;
 133
 134	if (num_targets > DM_MAX_TARGETS)
 135		return -EOVERFLOW;
 136
 137	t = kzalloc(sizeof(*t), GFP_KERNEL);
 138
 139	if (!t)
 140		return -ENOMEM;
 141
 142	INIT_LIST_HEAD(&t->devices);
 143	init_rwsem(&t->devices_lock);
 144
 145	if (!num_targets)
 146		num_targets = KEYS_PER_NODE;
 147
 148	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 149
 150	if (!num_targets) {
 151		kfree(t);
 152		return -EOVERFLOW;
 153	}
 154
 155	if (alloc_targets(t, num_targets)) {
 156		kfree(t);
 157		return -ENOMEM;
 158	}
 159
 160	t->type = DM_TYPE_NONE;
 161	t->mode = mode;
 162	t->md = md;
 163	*result = t;
 164	return 0;
 165}
 166
 167static void free_devices(struct list_head *devices, struct mapped_device *md)
 168{
 169	struct list_head *tmp, *next;
 170
 171	list_for_each_safe(tmp, next, devices) {
 172		struct dm_dev_internal *dd =
 173		    list_entry(tmp, struct dm_dev_internal, list);
 174		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 175		       dm_device_name(md), dd->dm_dev->name);
 176		dm_put_table_device(md, dd->dm_dev);
 177		kfree(dd);
 178	}
 179}
 180
 181static void dm_table_destroy_crypto_profile(struct dm_table *t);
 182
 183void dm_table_destroy(struct dm_table *t)
 184{
 
 
 185	if (!t)
 186		return;
 187
 188	/* free the indexes */
 189	if (t->depth >= 2)
 190		kvfree(t->index[t->depth - 2]);
 191
 192	/* free the targets */
 193	for (unsigned int i = 0; i < t->num_targets; i++) {
 194		struct dm_target *ti = dm_table_get_target(t, i);
 195
 196		if (ti->type->dtr)
 197			ti->type->dtr(ti);
 198
 199		dm_put_target_type(ti->type);
 200	}
 201
 202	kvfree(t->highs);
 203
 204	/* free the device list */
 205	free_devices(&t->devices, t->md);
 206
 207	dm_free_md_mempools(t->mempools);
 208
 209	dm_table_destroy_crypto_profile(t);
 210
 211	kfree(t);
 212}
 213
 214/*
 215 * See if we've already got a device in the list.
 216 */
 217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 218{
 219	struct dm_dev_internal *dd;
 220
 221	list_for_each_entry(dd, l, list)
 222		if (dd->dm_dev->bdev->bd_dev == dev)
 223			return dd;
 224
 225	return NULL;
 226}
 227
 228/*
 229 * If possible, this checks an area of a destination device is invalid.
 230 */
 231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 232				  sector_t start, sector_t len, void *data)
 233{
 
 234	struct queue_limits *limits = data;
 235	struct block_device *bdev = dev->bdev;
 236	sector_t dev_size = bdev_nr_sectors(bdev);
 
 237	unsigned short logical_block_size_sectors =
 238		limits->logical_block_size >> SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239
 240	if (!dev_size)
 241		return 0;
 242
 243	if ((start >= dev_size) || (start + len > dev_size)) {
 244		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
 245		      dm_device_name(ti->table->md), bdev,
 246		      (unsigned long long)start,
 247		      (unsigned long long)len,
 248		      (unsigned long long)dev_size);
 
 249		return 1;
 250	}
 251
 252	/*
 253	 * If the target is mapped to zoned block device(s), check
 254	 * that the zones are not partially mapped.
 255	 */
 256	if (bdev_is_zoned(bdev)) {
 257		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 258
 259		if (start & (zone_sectors - 1)) {
 260			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
 261			      dm_device_name(ti->table->md),
 262			      (unsigned long long)start,
 263			      zone_sectors, bdev);
 264			return 1;
 265		}
 266
 267		/*
 268		 * Note: The last zone of a zoned block device may be smaller
 269		 * than other zones. So for a target mapping the end of a
 270		 * zoned block device with such a zone, len would not be zone
 271		 * aligned. We do not allow such last smaller zone to be part
 272		 * of the mapping here to ensure that mappings with multiple
 273		 * devices do not end up with a smaller zone in the middle of
 274		 * the sector range.
 275		 */
 276		if (len & (zone_sectors - 1)) {
 277			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
 278			      dm_device_name(ti->table->md),
 279			      (unsigned long long)len,
 280			      zone_sectors, bdev);
 281			return 1;
 282		}
 283	}
 284
 285	if (logical_block_size_sectors <= 1)
 286		return 0;
 287
 288	if (start & (logical_block_size_sectors - 1)) {
 289		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
 290		      dm_device_name(ti->table->md),
 291		      (unsigned long long)start,
 292		      limits->logical_block_size, bdev);
 
 293		return 1;
 294	}
 295
 296	if (len & (logical_block_size_sectors - 1)) {
 297		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
 298		      dm_device_name(ti->table->md),
 299		      (unsigned long long)len,
 300		      limits->logical_block_size, bdev);
 
 301		return 1;
 302	}
 303
 304	return 0;
 305}
 306
 307/*
 308 * This upgrades the mode on an already open dm_dev, being
 309 * careful to leave things as they were if we fail to reopen the
 310 * device and not to touch the existing bdev field in case
 311 * it is accessed concurrently.
 312 */
 313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
 314			struct mapped_device *md)
 315{
 316	int r;
 317	struct dm_dev *old_dev, *new_dev;
 318
 319	old_dev = dd->dm_dev;
 320
 321	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 322				dd->dm_dev->mode | new_mode, &new_dev);
 323	if (r)
 324		return r;
 325
 326	dd->dm_dev = new_dev;
 327	dm_put_table_device(md, old_dev);
 328
 329	return 0;
 330}
 331
 332/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333 * Add a device to the list, or just increment the usage count if
 334 * it's already present.
 335 *
 336 * Note: the __ref annotation is because this function can call the __init
 337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
 338 */
 339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
 340		  struct dm_dev **result)
 341{
 342	int r;
 343	dev_t dev;
 344	unsigned int major, minor;
 345	char dummy;
 346	struct dm_dev_internal *dd;
 347	struct dm_table *t = ti->table;
 348
 349	BUG_ON(!t);
 350
 351	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 352		/* Extract the major/minor numbers */
 353		dev = MKDEV(major, minor);
 354		if (MAJOR(dev) != major || MINOR(dev) != minor)
 355			return -EOVERFLOW;
 356	} else {
 357		r = lookup_bdev(path, &dev);
 358#ifndef MODULE
 359		if (r && system_state < SYSTEM_RUNNING)
 360			r = early_lookup_bdev(path, &dev);
 361#endif
 362		if (r)
 363			return r;
 364	}
 365	if (dev == disk_devt(t->md->disk))
 366		return -EINVAL;
 367
 368	down_write(&t->devices_lock);
 369
 370	dd = find_device(&t->devices, dev);
 371	if (!dd) {
 372		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 373		if (!dd) {
 374			r = -ENOMEM;
 375			goto unlock_ret_r;
 376		}
 377
 378		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
 379		if (r) {
 380			kfree(dd);
 381			goto unlock_ret_r;
 382		}
 383
 384		refcount_set(&dd->count, 1);
 385		list_add(&dd->list, &t->devices);
 386		goto out;
 387
 388	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 389		r = upgrade_mode(dd, mode, t->md);
 390		if (r)
 391			goto unlock_ret_r;
 392	}
 393	refcount_inc(&dd->count);
 394out:
 395	up_write(&t->devices_lock);
 396	*result = dd->dm_dev;
 397	return 0;
 398
 399unlock_ret_r:
 400	up_write(&t->devices_lock);
 401	return r;
 402}
 403EXPORT_SYMBOL(dm_get_device);
 404
 405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 406				sector_t start, sector_t len, void *data)
 407{
 408	struct queue_limits *limits = data;
 409	struct block_device *bdev = dev->bdev;
 410	struct request_queue *q = bdev_get_queue(bdev);
 
 411
 412	if (unlikely(!q)) {
 413		DMWARN("%s: Cannot set limits for nonexistent device %pg",
 414		       dm_device_name(ti->table->md), bdev);
 415		return 0;
 416	}
 417
 418	if (blk_stack_limits(limits, &q->limits,
 419			get_start_sect(bdev) + start) < 0)
 420		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
 421		       "physical_block_size=%u, logical_block_size=%u, "
 422		       "alignment_offset=%u, start=%llu",
 423		       dm_device_name(ti->table->md), bdev,
 424		       q->limits.physical_block_size,
 425		       q->limits.logical_block_size,
 426		       q->limits.alignment_offset,
 427		       (unsigned long long) start << SECTOR_SHIFT);
 
 
 
 428	return 0;
 429}
 430
 431/*
 432 * Decrement a device's use count and remove it if necessary.
 433 */
 434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 435{
 436	int found = 0;
 437	struct dm_table *t = ti->table;
 438	struct list_head *devices = &t->devices;
 439	struct dm_dev_internal *dd;
 440
 441	down_write(&t->devices_lock);
 442
 443	list_for_each_entry(dd, devices, list) {
 444		if (dd->dm_dev == d) {
 445			found = 1;
 446			break;
 447		}
 448	}
 449	if (!found) {
 450		DMERR("%s: device %s not in table devices list",
 451		      dm_device_name(t->md), d->name);
 452		goto unlock_ret;
 453	}
 454	if (refcount_dec_and_test(&dd->count)) {
 455		dm_put_table_device(t->md, d);
 456		list_del(&dd->list);
 457		kfree(dd);
 458	}
 459
 460unlock_ret:
 461	up_write(&t->devices_lock);
 462}
 463EXPORT_SYMBOL(dm_put_device);
 464
 465/*
 466 * Checks to see if the target joins onto the end of the table.
 467 */
 468static int adjoin(struct dm_table *t, struct dm_target *ti)
 469{
 470	struct dm_target *prev;
 471
 472	if (!t->num_targets)
 473		return !ti->begin;
 474
 475	prev = &t->targets[t->num_targets - 1];
 476	return (ti->begin == (prev->begin + prev->len));
 477}
 478
 479/*
 480 * Used to dynamically allocate the arg array.
 481 *
 482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 483 * process messages even if some device is suspended. These messages have a
 484 * small fixed number of arguments.
 485 *
 486 * On the other hand, dm-switch needs to process bulk data using messages and
 487 * excessive use of GFP_NOIO could cause trouble.
 488 */
 489static char **realloc_argv(unsigned int *size, char **old_argv)
 490{
 491	char **argv;
 492	unsigned int new_size;
 493	gfp_t gfp;
 494
 495	if (*size) {
 496		new_size = *size * 2;
 497		gfp = GFP_KERNEL;
 498	} else {
 499		new_size = 8;
 500		gfp = GFP_NOIO;
 501	}
 502	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 503	if (argv && old_argv) {
 504		memcpy(argv, old_argv, *size * sizeof(*argv));
 505		*size = new_size;
 506	}
 507
 508	kfree(old_argv);
 509	return argv;
 510}
 511
 512/*
 513 * Destructively splits up the argument list to pass to ctr.
 514 */
 515int dm_split_args(int *argc, char ***argvp, char *input)
 516{
 517	char *start, *end = input, *out, **argv = NULL;
 518	unsigned int array_size = 0;
 519
 520	*argc = 0;
 521
 522	if (!input) {
 523		*argvp = NULL;
 524		return 0;
 525	}
 526
 527	argv = realloc_argv(&array_size, argv);
 528	if (!argv)
 529		return -ENOMEM;
 530
 531	while (1) {
 532		/* Skip whitespace */
 533		start = skip_spaces(end);
 534
 535		if (!*start)
 536			break;	/* success, we hit the end */
 537
 538		/* 'out' is used to remove any back-quotes */
 539		end = out = start;
 540		while (*end) {
 541			/* Everything apart from '\0' can be quoted */
 542			if (*end == '\\' && *(end + 1)) {
 543				*out++ = *(end + 1);
 544				end += 2;
 545				continue;
 546			}
 547
 548			if (isspace(*end))
 549				break;	/* end of token */
 550
 551			*out++ = *end++;
 552		}
 553
 554		/* have we already filled the array ? */
 555		if ((*argc + 1) > array_size) {
 556			argv = realloc_argv(&array_size, argv);
 557			if (!argv)
 558				return -ENOMEM;
 559		}
 560
 561		/* we know this is whitespace */
 562		if (*end)
 563			end++;
 564
 565		/* terminate the string and put it in the array */
 566		*out = '\0';
 567		argv[*argc] = start;
 568		(*argc)++;
 569	}
 570
 571	*argvp = argv;
 572	return 0;
 573}
 574
 575/*
 576 * Impose necessary and sufficient conditions on a devices's table such
 577 * that any incoming bio which respects its logical_block_size can be
 578 * processed successfully.  If it falls across the boundary between
 579 * two or more targets, the size of each piece it gets split into must
 580 * be compatible with the logical_block_size of the target processing it.
 581 */
 582static int validate_hardware_logical_block_alignment(struct dm_table *t,
 583						     struct queue_limits *limits)
 584{
 585	/*
 586	 * This function uses arithmetic modulo the logical_block_size
 587	 * (in units of 512-byte sectors).
 588	 */
 589	unsigned short device_logical_block_size_sects =
 590		limits->logical_block_size >> SECTOR_SHIFT;
 591
 592	/*
 593	 * Offset of the start of the next table entry, mod logical_block_size.
 594	 */
 595	unsigned short next_target_start = 0;
 596
 597	/*
 598	 * Given an aligned bio that extends beyond the end of a
 599	 * target, how many sectors must the next target handle?
 600	 */
 601	unsigned short remaining = 0;
 602
 603	struct dm_target *ti;
 604	struct queue_limits ti_limits;
 605	unsigned int i;
 606
 607	/*
 608	 * Check each entry in the table in turn.
 609	 */
 610	for (i = 0; i < t->num_targets; i++) {
 611		ti = dm_table_get_target(t, i);
 612
 613		blk_set_stacking_limits(&ti_limits);
 614
 615		/* combine all target devices' limits */
 616		if (ti->type->iterate_devices)
 617			ti->type->iterate_devices(ti, dm_set_device_limits,
 618						  &ti_limits);
 619
 620		/*
 621		 * If the remaining sectors fall entirely within this
 622		 * table entry are they compatible with its logical_block_size?
 623		 */
 624		if (remaining < ti->len &&
 625		    remaining & ((ti_limits.logical_block_size >>
 626				  SECTOR_SHIFT) - 1))
 627			break;	/* Error */
 628
 629		next_target_start =
 630		    (unsigned short) ((next_target_start + ti->len) &
 631				      (device_logical_block_size_sects - 1));
 632		remaining = next_target_start ?
 633		    device_logical_block_size_sects - next_target_start : 0;
 634	}
 635
 636	if (remaining) {
 637		DMERR("%s: table line %u (start sect %llu len %llu) "
 638		      "not aligned to h/w logical block size %u",
 639		      dm_device_name(t->md), i,
 640		      (unsigned long long) ti->begin,
 641		      (unsigned long long) ti->len,
 642		      limits->logical_block_size);
 643		return -EINVAL;
 644	}
 645
 646	return 0;
 647}
 648
 649int dm_table_add_target(struct dm_table *t, const char *type,
 650			sector_t start, sector_t len, char *params)
 651{
 652	int r = -EINVAL, argc;
 653	char **argv;
 654	struct dm_target *ti;
 655
 656	if (t->singleton) {
 657		DMERR("%s: target type %s must appear alone in table",
 658		      dm_device_name(t->md), t->targets->type->name);
 659		return -EINVAL;
 660	}
 661
 662	BUG_ON(t->num_targets >= t->num_allocated);
 663
 664	ti = t->targets + t->num_targets;
 665	memset(ti, 0, sizeof(*ti));
 666
 667	if (!len) {
 668		DMERR("%s: zero-length target", dm_device_name(t->md));
 669		return -EINVAL;
 670	}
 671
 672	ti->type = dm_get_target_type(type);
 673	if (!ti->type) {
 674		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 675		return -EINVAL;
 676	}
 677
 678	if (dm_target_needs_singleton(ti->type)) {
 679		if (t->num_targets) {
 680			ti->error = "singleton target type must appear alone in table";
 681			goto bad;
 682		}
 683		t->singleton = true;
 684	}
 685
 686	if (dm_target_always_writeable(ti->type) &&
 687	    !(t->mode & BLK_OPEN_WRITE)) {
 688		ti->error = "target type may not be included in a read-only table";
 689		goto bad;
 690	}
 691
 692	if (t->immutable_target_type) {
 693		if (t->immutable_target_type != ti->type) {
 694			ti->error = "immutable target type cannot be mixed with other target types";
 695			goto bad;
 696		}
 697	} else if (dm_target_is_immutable(ti->type)) {
 698		if (t->num_targets) {
 699			ti->error = "immutable target type cannot be mixed with other target types";
 700			goto bad;
 701		}
 702		t->immutable_target_type = ti->type;
 703	}
 704
 705	if (dm_target_has_integrity(ti->type))
 706		t->integrity_added = 1;
 707
 708	ti->table = t;
 709	ti->begin = start;
 710	ti->len = len;
 711	ti->error = "Unknown error";
 712
 713	/*
 714	 * Does this target adjoin the previous one ?
 715	 */
 716	if (!adjoin(t, ti)) {
 717		ti->error = "Gap in table";
 718		goto bad;
 719	}
 720
 721	r = dm_split_args(&argc, &argv, params);
 722	if (r) {
 723		ti->error = "couldn't split parameters";
 724		goto bad;
 725	}
 726
 727	r = ti->type->ctr(ti, argc, argv);
 728	kfree(argv);
 729	if (r)
 730		goto bad;
 731
 732	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
 733
 734	if (!ti->num_discard_bios && ti->discards_supported)
 735		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 736		       dm_device_name(t->md), type);
 737
 738	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
 739		static_branch_enable(&swap_bios_enabled);
 740
 741	return 0;
 742
 743 bad:
 744	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
 745	dm_put_target_type(ti->type);
 746	return r;
 747}
 748
 749/*
 750 * Target argument parsing helpers.
 751 */
 752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 753			     unsigned int *value, char **error, unsigned int grouped)
 
 754{
 755	const char *arg_str = dm_shift_arg(arg_set);
 756	char dummy;
 757
 758	if (!arg_str ||
 759	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 760	    (*value < arg->min) ||
 761	    (*value > arg->max) ||
 762	    (grouped && arg_set->argc < *value)) {
 763		*error = arg->error;
 764		return -EINVAL;
 765	}
 766
 767	return 0;
 768}
 769
 770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 771		unsigned int *value, char **error)
 772{
 773	return validate_next_arg(arg, arg_set, value, error, 0);
 774}
 775EXPORT_SYMBOL(dm_read_arg);
 776
 777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 778		      unsigned int *value, char **error)
 779{
 780	return validate_next_arg(arg, arg_set, value, error, 1);
 781}
 782EXPORT_SYMBOL(dm_read_arg_group);
 783
 784const char *dm_shift_arg(struct dm_arg_set *as)
 785{
 786	char *r;
 787
 788	if (as->argc) {
 789		as->argc--;
 790		r = *as->argv;
 791		as->argv++;
 792		return r;
 793	}
 794
 795	return NULL;
 796}
 797EXPORT_SYMBOL(dm_shift_arg);
 798
 799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
 800{
 801	BUG_ON(as->argc < num_args);
 802	as->argc -= num_args;
 803	as->argv += num_args;
 804}
 805EXPORT_SYMBOL(dm_consume_args);
 806
 807static bool __table_type_bio_based(enum dm_queue_mode table_type)
 808{
 809	return (table_type == DM_TYPE_BIO_BASED ||
 810		table_type == DM_TYPE_DAX_BIO_BASED);
 
 811}
 812
 813static bool __table_type_request_based(enum dm_queue_mode table_type)
 814{
 815	return table_type == DM_TYPE_REQUEST_BASED;
 816}
 817
 818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 819{
 820	t->type = type;
 821}
 822EXPORT_SYMBOL_GPL(dm_table_set_type);
 823
 824/* validate the dax capability of the target device span */
 825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
 826			sector_t start, sector_t len, void *data)
 827{
 828	if (dev->dax_dev)
 829		return false;
 830
 831	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
 832	return true;
 833}
 834
 835/* Check devices support synchronous DAX */
 836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
 837					      sector_t start, sector_t len, void *data)
 838{
 839	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
 840}
 841
 842static bool dm_table_supports_dax(struct dm_table *t,
 843				  iterate_devices_callout_fn iterate_fn)
 844{
 
 
 
 845	/* Ensure that all targets support DAX. */
 846	for (unsigned int i = 0; i < t->num_targets; i++) {
 847		struct dm_target *ti = dm_table_get_target(t, i);
 848
 849		if (!ti->type->direct_access)
 850			return false;
 851
 852		if (dm_target_is_wildcard(ti->type) ||
 853		    !ti->type->iterate_devices ||
 854		    ti->type->iterate_devices(ti, iterate_fn, NULL))
 855			return false;
 856	}
 857
 858	return true;
 859}
 860
 861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 862				  sector_t start, sector_t len, void *data)
 
 
 
 
 
 
 
 863{
 864	struct block_device *bdev = dev->bdev;
 865	struct request_queue *q = bdev_get_queue(bdev);
 866
 867	/* request-based cannot stack on partitions! */
 868	if (bdev_is_partition(bdev))
 869		return false;
 
 870
 871	return queue_is_mq(q);
 872}
 873
 874static int dm_table_determine_type(struct dm_table *t)
 875{
 876	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
 877	struct dm_target *ti;
 
 
 878	struct list_head *devices = dm_table_get_devices(t);
 879	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 
 880
 881	if (t->type != DM_TYPE_NONE) {
 882		/* target already set the table's type */
 883		if (t->type == DM_TYPE_BIO_BASED) {
 884			/* possibly upgrade to a variant of bio-based */
 885			goto verify_bio_based;
 886		}
 887		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 
 888		goto verify_rq_based;
 889	}
 890
 891	for (unsigned int i = 0; i < t->num_targets; i++) {
 892		ti = dm_table_get_target(t, i);
 893		if (dm_target_hybrid(ti))
 894			hybrid = 1;
 895		else if (dm_target_request_based(ti))
 896			request_based = 1;
 897		else
 898			bio_based = 1;
 899
 900		if (bio_based && request_based) {
 901			DMERR("Inconsistent table: different target types can't be mixed up");
 
 902			return -EINVAL;
 903		}
 904	}
 905
 906	if (hybrid && !bio_based && !request_based) {
 907		/*
 908		 * The targets can work either way.
 909		 * Determine the type from the live device.
 910		 * Default to bio-based if device is new.
 911		 */
 912		if (__table_type_request_based(live_md_type))
 913			request_based = 1;
 914		else
 915			bio_based = 1;
 916	}
 917
 918	if (bio_based) {
 919verify_bio_based:
 920		/* We must use this table as bio-based */
 921		t->type = DM_TYPE_BIO_BASED;
 922		if (dm_table_supports_dax(t, device_not_dax_capable) ||
 923		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 924			t->type = DM_TYPE_DAX_BIO_BASED;
 
 
 
 
 
 
 
 
 
 925		}
 926		return 0;
 927	}
 928
 929	BUG_ON(!request_based); /* No targets in this table */
 930
 931	t->type = DM_TYPE_REQUEST_BASED;
 932
 933verify_rq_based:
 934	/*
 935	 * Request-based dm supports only tables that have a single target now.
 936	 * To support multiple targets, request splitting support is needed,
 937	 * and that needs lots of changes in the block-layer.
 938	 * (e.g. request completion process for partial completion.)
 939	 */
 940	if (t->num_targets > 1) {
 941		DMERR("request-based DM doesn't support multiple targets");
 
 942		return -EINVAL;
 943	}
 944
 945	if (list_empty(devices)) {
 946		int srcu_idx;
 947		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 948
 949		/* inherit live table's type */
 950		if (live_table)
 951			t->type = live_table->type;
 952		dm_put_live_table(t->md, srcu_idx);
 953		return 0;
 954	}
 955
 956	ti = dm_table_get_immutable_target(t);
 957	if (!ti) {
 958		DMERR("table load rejected: immutable target is required");
 959		return -EINVAL;
 960	} else if (ti->max_io_len) {
 961		DMERR("table load rejected: immutable target that splits IO is not supported");
 962		return -EINVAL;
 963	}
 964
 965	/* Non-request-stackable devices can't be used for request-based dm */
 966	if (!ti->type->iterate_devices ||
 967	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
 968		DMERR("table load rejected: including non-request-stackable devices");
 969		return -EINVAL;
 970	}
 
 
 
 
 971
 972	return 0;
 973}
 974
 975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
 976{
 977	return t->type;
 978}
 979
 980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 981{
 982	return t->immutable_target_type;
 983}
 984
 985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 986{
 987	/* Immutable target is implicitly a singleton */
 988	if (t->num_targets > 1 ||
 989	    !dm_target_is_immutable(t->targets[0].type))
 990		return NULL;
 991
 992	return t->targets;
 993}
 994
 995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 996{
 997	for (unsigned int i = 0; i < t->num_targets; i++) {
 998		struct dm_target *ti = dm_table_get_target(t, i);
 999
 
 
1000		if (dm_target_is_wildcard(ti->type))
1001			return ti;
1002	}
1003
1004	return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009	return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014	return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021	enum dm_queue_mode type = dm_table_get_type(t);
1022	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023	unsigned int min_pool_size = 0, pool_size;
1024	struct dm_md_mempools *pools;
 
1025
1026	if (unlikely(type == DM_TYPE_NONE)) {
1027		DMERR("no table type is set, can't allocate mempools");
1028		return -EINVAL;
1029	}
1030
1031	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032	if (!pools)
1033		return -ENOMEM;
1034
1035	if (type == DM_TYPE_REQUEST_BASED) {
1036		pool_size = dm_get_reserved_rq_based_ios();
1037		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038		goto init_bs;
1039	}
1040
1041	for (unsigned int i = 0; i < t->num_targets; i++) {
1042		struct dm_target *ti = dm_table_get_target(t, i);
1043
1044		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046	}
1047	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048	front_pad = roundup(per_io_data_size,
1049		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051	io_front_pad = roundup(per_io_data_size,
1052		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055		goto out_free_pools;
1056	if (t->integrity_supported &&
1057	    bioset_integrity_create(&pools->io_bs, pool_size))
1058		goto out_free_pools;
1059init_bs:
1060	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061		goto out_free_pools;
1062	if (t->integrity_supported &&
1063	    bioset_integrity_create(&pools->bs, pool_size))
1064		goto out_free_pools;
1065
1066	t->mempools = pools;
1067	return 0;
 
1068
1069out_free_pools:
1070	dm_free_md_mempools(pools);
1071	return -ENOMEM;
 
 
 
 
 
 
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076	int i;
1077	unsigned int total = 0;
1078	sector_t *indexes;
1079
1080	/* allocate the space for *all* the indexes */
1081	for (i = t->depth - 2; i >= 0; i--) {
1082		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083		total += t->counts[i];
1084	}
1085
1086	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087	if (!indexes)
1088		return -ENOMEM;
1089
1090	/* set up internal nodes, bottom-up */
1091	for (i = t->depth - 2; i >= 0; i--) {
1092		t->index[i] = indexes;
1093		indexes += (KEYS_PER_NODE * t->counts[i]);
1094		setup_btree_index(i, t);
1095	}
1096
1097	return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105	int r = 0;
1106	unsigned int leaf_nodes;
1107
1108	/* how many indexes will the btree have ? */
1109	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112	/* leaf layer has already been set up */
1113	t->counts[t->depth - 1] = leaf_nodes;
1114	t->index[t->depth - 1] = t->highs;
1115
1116	if (t->depth >= 2)
1117		r = setup_indexes(t);
1118
1119	return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124	return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133	struct list_head *devices = dm_table_get_devices(t);
1134	struct dm_dev_internal *dd = NULL;
1135	struct gendisk *prev_disk = NULL, *template_disk = NULL;
 
1136
1137	for (unsigned int i = 0; i < t->num_targets; i++) {
1138		struct dm_target *ti = dm_table_get_target(t, i);
1139
1140		if (!dm_target_passes_integrity(ti->type))
1141			goto no_integrity;
1142	}
1143
1144	list_for_each_entry(dd, devices, list) {
1145		template_disk = dd->dm_dev->bdev->bd_disk;
1146		if (!integrity_profile_exists(template_disk))
1147			goto no_integrity;
1148		else if (prev_disk &&
1149			 blk_integrity_compare(prev_disk, template_disk) < 0)
1150			goto no_integrity;
1151		prev_disk = template_disk;
1152	}
1153
1154	return template_disk;
1155
1156no_integrity:
1157	if (prev_disk)
1158		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159		       dm_device_name(t->md),
1160		       prev_disk->disk_name,
1161		       template_disk->disk_name);
1162	return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile.  But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177	struct mapped_device *md = t->md;
1178	struct gendisk *template_disk = NULL;
1179
1180	/* If target handles integrity itself do not register it here. */
1181	if (t->integrity_added)
1182		return 0;
1183
1184	template_disk = dm_table_get_integrity_disk(t);
1185	if (!template_disk)
1186		return 0;
1187
1188	if (!integrity_profile_exists(dm_disk(md))) {
1189		t->integrity_supported = true;
1190		/*
1191		 * Register integrity profile during table load; we can do
1192		 * this because the final profile must match during resume.
1193		 */
1194		blk_integrity_register(dm_disk(md),
1195				       blk_get_integrity(template_disk));
1196		return 0;
1197	}
1198
1199	/*
1200	 * If DM device already has an initialized integrity
1201	 * profile the new profile should not conflict.
1202	 */
1203	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204		DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205		      dm_device_name(t->md),
1206		      template_disk->disk_name);
 
1207		return 1;
1208	}
1209
1210	/* Preserve existing integrity profile */
1211	t->integrity_supported = true;
1212	return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218	struct blk_crypto_profile profile;
1219	struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223				     sector_t start, sector_t len, void *data)
1224{
1225	const struct blk_crypto_key *key = data;
1226
1227	blk_crypto_evict_key(dev->bdev, key);
1228	return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236			    const struct blk_crypto_key *key, unsigned int slot)
1237{
1238	struct mapped_device *md =
1239		container_of(profile, struct dm_crypto_profile, profile)->md;
1240	struct dm_table *t;
1241	int srcu_idx;
1242
1243	t = dm_get_live_table(md, &srcu_idx);
1244	if (!t)
1245		return 0;
1246
1247	for (unsigned int i = 0; i < t->num_targets; i++) {
1248		struct dm_target *ti = dm_table_get_target(t, i);
1249
1250		if (!ti->type->iterate_devices)
1251			continue;
1252		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253					  (void *)key);
1254	}
1255
1256	dm_put_live_table(md, srcu_idx);
1257	return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262				     sector_t start, sector_t len, void *data)
1263{
1264	struct blk_crypto_profile *parent = data;
1265	struct blk_crypto_profile *child =
1266		bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268	blk_crypto_intersect_capabilities(parent, child);
1269	return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274	struct dm_crypto_profile *dmcp = container_of(profile,
1275						      struct dm_crypto_profile,
1276						      profile);
1277
1278	if (!profile)
1279		return;
1280
1281	blk_crypto_profile_destroy(profile);
1282	kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287	dm_destroy_crypto_profile(t->crypto_profile);
1288	t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table.  However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302	struct dm_crypto_profile *dmcp;
1303	struct blk_crypto_profile *profile;
1304	unsigned int i;
1305	bool empty_profile = true;
1306
1307	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308	if (!dmcp)
1309		return -ENOMEM;
1310	dmcp->md = t->md;
1311
1312	profile = &dmcp->profile;
1313	blk_crypto_profile_init(profile, 0);
1314	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315	profile->max_dun_bytes_supported = UINT_MAX;
1316	memset(profile->modes_supported, 0xFF,
1317	       sizeof(profile->modes_supported));
1318
1319	for (i = 0; i < t->num_targets; i++) {
1320		struct dm_target *ti = dm_table_get_target(t, i);
1321
1322		if (!dm_target_passes_crypto(ti->type)) {
1323			blk_crypto_intersect_capabilities(profile, NULL);
1324			break;
1325		}
1326		if (!ti->type->iterate_devices)
1327			continue;
1328		ti->type->iterate_devices(ti,
1329					  device_intersect_crypto_capabilities,
1330					  profile);
1331	}
1332
1333	if (t->md->queue &&
1334	    !blk_crypto_has_capabilities(profile,
1335					 t->md->queue->crypto_profile)) {
1336		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337		dm_destroy_crypto_profile(profile);
1338		return -EINVAL;
1339	}
1340
1341	/*
1342	 * If the new profile doesn't actually support any crypto capabilities,
1343	 * we may as well represent it with a NULL profile.
1344	 */
1345	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346		if (profile->modes_supported[i]) {
1347			empty_profile = false;
1348			break;
1349		}
1350	}
1351
1352	if (empty_profile) {
1353		dm_destroy_crypto_profile(profile);
1354		profile = NULL;
1355	}
1356
1357	/*
1358	 * t->crypto_profile is only set temporarily while the table is being
1359	 * set up, and it gets set to NULL after the profile has been
1360	 * transferred to the request_queue.
1361	 */
1362	t->crypto_profile = profile;
1363
1364	return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368				     struct dm_table *t)
1369{
1370	if (!t->crypto_profile)
1371		return;
1372
1373	/* Make the crypto profile less restrictive. */
1374	if (!q->crypto_profile) {
1375		blk_crypto_register(t->crypto_profile, q);
1376	} else {
1377		blk_crypto_update_capabilities(q->crypto_profile,
1378					       t->crypto_profile);
1379		dm_destroy_crypto_profile(t->crypto_profile);
1380	}
1381	t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388	return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400				     struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412	int r;
1413
1414	r = dm_table_determine_type(t);
1415	if (r) {
1416		DMERR("unable to determine table type");
1417		return r;
1418	}
1419
1420	r = dm_table_build_index(t);
1421	if (r) {
1422		DMERR("unable to build btrees");
1423		return r;
1424	}
1425
1426	r = dm_table_register_integrity(t);
1427	if (r) {
1428		DMERR("could not register integrity profile.");
1429		return r;
1430	}
1431
1432	r = dm_table_construct_crypto_profile(t);
1433	if (r) {
1434		DMERR("could not construct crypto profile.");
1435		return r;
1436	}
1437
1438	r = dm_table_alloc_md_mempools(t, t->md);
1439	if (r)
1440		DMERR("unable to allocate mempools");
1441
1442	return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447			     void (*fn)(void *), void *context)
1448{
1449	mutex_lock(&_event_lock);
1450	t->event_fn = fn;
1451	t->event_context = context;
1452	mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
 
 
 
 
 
 
1457	mutex_lock(&_event_lock);
1458	if (t->event_fn)
1459		t->event_fn(t->event_context);
1460	mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
 
 
 
 
 
 
 
 
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478	unsigned int l, n = 0, k = 0;
1479	sector_t *node;
1480
1481	if (unlikely(sector >= dm_table_get_size(t)))
1482		return NULL;
1483
1484	for (l = 0; l < t->depth; l++) {
1485		n = get_child(n, k);
1486		node = get_node(t, l, n);
1487
1488		for (k = 0; k < KEYS_PER_NODE; k++)
1489			if (node[k] >= sector)
1490				break;
1491	}
1492
1493	return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497				   sector_t start, sector_t len, void *data)
1498{
1499	struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528				  iterate_devices_callout_fn func, void *data)
1529{
1530	for (unsigned int i = 0; i < t->num_targets; i++) {
1531		struct dm_target *ti = dm_table_get_target(t, i);
1532
1533		if (ti->type->iterate_devices &&
1534		    ti->type->iterate_devices(ti, func, data))
1535			return true;
1536	}
1537
1538	return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542			sector_t start, sector_t len, void *data)
1543{
1544	unsigned int *num_devices = data;
1545
1546	(*num_devices)++;
1547
1548	return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553	for (unsigned int i = 0; i < t->num_targets; i++) {
1554		struct dm_target *ti = dm_table_get_target(t, i);
1555
1556		if (!ti->type->iterate_devices ||
1557		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558			return false;
1559	}
1560
1561	return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572	for (unsigned int i = 0; i < t->num_targets; i++) {
1573		struct dm_target *ti = dm_table_get_target(t, i);
1574		unsigned int num_devices = 0;
 
 
1575
1576		if (!ti->type->iterate_devices)
1577			return false;
1578
 
1579		ti->type->iterate_devices(ti, count_device, &num_devices);
1580		if (num_devices)
1581			return false;
1582	}
1583
1584	return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588			    sector_t start, sector_t len, void *data)
1589{
1590	bool *zoned = data;
1591
1592	return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596				 sector_t start, sector_t len, void *data)
1597{
1598	return bdev_is_zoned(dev->bdev);
 
 
 
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610	for (unsigned int i = 0; i < t->num_targets; i++) {
1611		struct dm_target *ti = dm_table_get_target(t, i);
1612
1613		/*
1614		 * For the wildcard target (dm-error), if we do not have a
1615		 * backing device, we must always return false. If we have a
1616		 * backing device, the result must depend on checking zoned
1617		 * model, like for any other target. So for this, check directly
1618		 * if the target backing device is zoned as we get "false" when
1619		 * dm-error was set without a backing device.
1620		 */
1621		if (dm_target_is_wildcard(ti->type) &&
1622		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623			return false;
1624
1625		if (dm_target_supports_zoned_hm(ti->type)) {
1626			if (!ti->type->iterate_devices ||
1627			    ti->type->iterate_devices(ti, device_not_zoned,
1628						      &zoned))
1629				return false;
1630		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631			if (zoned)
1632				return false;
1633		}
1634	}
1635
1636	return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640					   sector_t start, sector_t len, void *data)
1641{
 
1642	unsigned int *zone_sectors = data;
1643
1644	if (!bdev_is_zoned(dev->bdev))
1645		return 0;
1646	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655				   unsigned int zone_sectors)
 
 
 
 
 
 
 
 
 
 
 
 
 
1656{
1657	if (!zoned)
1658		return 0;
1659
1660	if (!dm_table_supports_zoned(t, zoned)) {
1661		DMERR("%s: zoned model is not consistent across all devices",
1662		      dm_device_name(t->md));
1663		return -EINVAL;
1664	}
1665
1666	/* Check zone size validity and compatibility */
1667	if (!zone_sectors || !is_power_of_2(zone_sectors))
1668		return -EINVAL;
1669
1670	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671		DMERR("%s: zone sectors is not consistent across all zoned devices",
1672		      dm_device_name(t->md));
1673		return -EINVAL;
1674	}
1675
1676	return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683			      struct queue_limits *limits)
1684{
 
1685	struct queue_limits ti_limits;
 
 
1686	unsigned int zone_sectors = 0;
1687	bool zoned = false;
1688
1689	blk_set_stacking_limits(limits);
1690
1691	for (unsigned int i = 0; i < t->num_targets; i++) {
1692		struct dm_target *ti = dm_table_get_target(t, i);
1693
1694		blk_set_stacking_limits(&ti_limits);
1695
1696		if (!ti->type->iterate_devices) {
1697			/* Set I/O hints portion of queue limits */
1698			if (ti->type->io_hints)
1699				ti->type->io_hints(ti, &ti_limits);
1700			goto combine_limits;
1701		}
1702
1703		/*
1704		 * Combine queue limits of all the devices this target uses.
1705		 */
1706		ti->type->iterate_devices(ti, dm_set_device_limits,
1707					  &ti_limits);
1708
1709		if (!zoned && ti_limits.zoned) {
1710			/*
1711			 * After stacking all limits, validate all devices
1712			 * in table support this zoned model and zone sectors.
1713			 */
1714			zoned = ti_limits.zoned;
1715			zone_sectors = ti_limits.chunk_sectors;
1716		}
1717
1718		/* Set I/O hints portion of queue limits */
1719		if (ti->type->io_hints)
1720			ti->type->io_hints(ti, &ti_limits);
1721
1722		/*
1723		 * Check each device area is consistent with the target's
1724		 * overall queue limits.
1725		 */
1726		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727					      &ti_limits))
1728			return -EINVAL;
1729
1730combine_limits:
1731		/*
1732		 * Merge this target's queue limits into the overall limits
1733		 * for the table.
1734		 */
1735		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736			DMWARN("%s: adding target device (start sect %llu len %llu) "
 
1737			       "caused an alignment inconsistency",
1738			       dm_device_name(t->md),
1739			       (unsigned long long) ti->begin,
1740			       (unsigned long long) ti->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741	}
1742
1743	/*
1744	 * Verify that the zoned model and zone sectors, as determined before
1745	 * any .io_hints override, are the same across all devices in the table.
1746	 * - this is especially relevant if .io_hints is emulating a disk-managed
1747	 *   zoned model on host-managed zoned block devices.
1748	 * BUT...
1749	 */
1750	if (limits->zoned) {
1751		/*
1752		 * ...IF the above limits stacking determined a zoned model
1753		 * validate that all of the table's devices conform to it.
1754		 */
1755		zoned = limits->zoned;
1756		zone_sectors = limits->chunk_sectors;
1757	}
1758	if (validate_hardware_zoned(t, zoned, zone_sectors))
1759		return -EINVAL;
1760
1761	return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile.  If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771	struct gendisk *template_disk = NULL;
1772
1773	if (t->integrity_added)
1774		return;
1775
1776	if (t->integrity_supported) {
1777		/*
1778		 * Verify that the original integrity profile
1779		 * matches all the devices in this table.
1780		 */
1781		template_disk = dm_table_get_integrity_disk(t);
1782		if (template_disk &&
1783		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784			return;
1785	}
1786
1787	if (integrity_profile_exists(dm_disk(t->md))) {
1788		DMWARN("%s: unable to establish an integrity profile",
1789		       dm_device_name(t->md));
1790		blk_integrity_unregister(dm_disk(t->md));
1791	}
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795				sector_t start, sector_t len, void *data)
1796{
1797	unsigned long flush = (unsigned long) data;
1798	struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800	return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
 
 
 
1805	/*
1806	 * Require at least one underlying device to support flushes.
1807	 * t->devices includes internal dm devices such as mirror logs
1808	 * so we need to use iterate_devices here, which targets
1809	 * supporting flushes must provide.
1810	 */
1811	for (unsigned int i = 0; i < t->num_targets; i++) {
1812		struct dm_target *ti = dm_table_get_target(t, i);
1813
1814		if (!ti->num_flush_bios)
1815			continue;
1816
1817		if (ti->flush_supported)
1818			return true;
1819
1820		if (ti->type->iterate_devices &&
1821		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822			return true;
1823	}
1824
1825	return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829					  struct dm_dev *dev, sector_t start,
1830					  sector_t len, void *data)
1831{
1832	struct dax_device *dax_dev = dev->dax_dev;
1833
1834	if (!dax_dev)
1835		return false;
1836
1837	if (dax_write_cache_enabled(dax_dev))
1838		return true;
1839	return false;
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843				sector_t start, sector_t len, void *data)
1844{
1845	return !bdev_nonrot(dev->bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849			     sector_t start, sector_t len, void *data)
1850{
1851	struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853	return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857					   sector_t start, sector_t len, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858{
1859	struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861	return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865{
1866	for (unsigned int i = 0; i < t->num_targets; i++) {
1867		struct dm_target *ti = dm_table_get_target(t, i);
1868
1869		if (!ti->num_write_zeroes_bios)
 
 
 
1870			return false;
1871
1872		if (!ti->type->iterate_devices ||
1873		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874			return false;
1875	}
1876
1877	return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881				     sector_t start, sector_t len, void *data)
1882{
1883	return !bdev_nowait(dev->bdev);
 
 
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888	for (unsigned int i = 0; i < t->num_targets; i++) {
1889		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1890
1891		if (!dm_target_supports_nowait(ti->type))
1892			return false;
1893
1894		if (!ti->type->iterate_devices ||
1895		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896			return false;
1897	}
1898
1899	return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903				      sector_t start, sector_t len, void *data)
1904{
1905	return !bdev_max_discard_sectors(dev->bdev);
 
 
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910	for (unsigned int i = 0; i < t->num_targets; i++) {
1911		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1912
1913		if (!ti->num_discard_bios)
1914			return false;
1915
1916		/*
1917		 * Either the target provides discard support (as implied by setting
1918		 * 'discards_supported') or it relies on _all_ data devices having
1919		 * discard support.
1920		 */
1921		if (!ti->discards_supported &&
1922		    (!ti->type->iterate_devices ||
1923		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924			return false;
1925	}
1926
1927	return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931					   struct dm_dev *dev, sector_t start,
1932					   sector_t len, void *data)
1933{
1934	return !bdev_max_secure_erase_sectors(dev->bdev);
 
 
1935}
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939	for (unsigned int i = 0; i < t->num_targets; i++) {
1940		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1941
1942		if (!ti->num_secure_erase_bios)
1943			return false;
1944
1945		if (!ti->type->iterate_devices ||
1946		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947			return false;
1948	}
1949
1950	return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954					struct dm_dev *dev, sector_t start,
1955					sector_t len, void *data)
1956{
1957	return bdev_stable_writes(dev->bdev);
 
 
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961			      struct queue_limits *limits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962{
1963	bool wc = false, fua = false;
1964	int r;
1965
1966	/*
1967	 * Copy table's limits to the DM device's request_queue
1968	 */
1969	q->limits = *limits;
1970
1971	if (dm_table_supports_nowait(t))
1972		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973	else
1974		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976	if (!dm_table_supports_discards(t)) {
 
 
1977		q->limits.max_discard_sectors = 0;
1978		q->limits.max_hw_discard_sectors = 0;
1979		q->limits.discard_granularity = 0;
1980		q->limits.discard_alignment = 0;
1981		q->limits.discard_misaligned = 0;
1982	}
 
1983
1984	if (!dm_table_supports_secure_erase(t))
1985		q->limits.max_secure_erase_sectors = 0;
1986
1987	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988		wc = true;
1989		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990			fua = true;
1991	}
1992	blk_queue_write_cache(q, wc, fua);
1993
1994	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997			set_dax_synchronous(t->md->dax_dev);
1998	} else
 
1999		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002		dax_write_cache(t->md->dax_dev, true);
2003
2004	/* Ensure that all underlying devices are non-rotational. */
2005	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007	else
2008		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 
 
2009
 
 
2010	if (!dm_table_supports_write_zeroes(t))
2011		q->limits.max_write_zeroes_sectors = 0;
2012
2013	dm_table_verify_integrity(t);
2014
2015	/*
2016	 * Some devices don't use blk_integrity but still want stable pages
2017	 * because they do their own checksumming.
2018	 * If any underlying device requires stable pages, a table must require
2019	 * them as well.  Only targets that support iterate_devices are considered:
2020	 * don't want error, zero, etc to require stable pages.
2021	 */
2022	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024	else
2025		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027	/*
2028	 * Determine whether or not this queue's I/O timings contribute
2029	 * to the entropy pool, Only request-based targets use this.
2030	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031	 * have it set.
2032	 */
2033	if (blk_queue_add_random(q) &&
2034	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037	/*
2038	 * For a zoned target, setup the zones related queue attributes
2039	 * and resources necessary for zone append emulation if necessary.
 
 
 
2040	 */
2041	if (blk_queue_is_zoned(q)) {
2042		r = dm_set_zones_restrictions(t, q);
2043		if (r)
2044			return r;
2045		if (!static_key_enabled(&zoned_enabled.key))
2046			static_branch_enable(&zoned_enabled);
2047	}
2048
2049	dm_update_crypto_profile(q, t);
2050	disk_update_readahead(t->md->disk);
2051
2052	/*
2053	 * Check for request-based device is left to
2054	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055	 *
2056	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057	 * underlying devices supporting polling.
2058	 */
2059	if (__table_type_bio_based(t->type)) {
2060		if (dm_table_supports_poll(t))
2061			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062		else
2063			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064	}
2065
2066	return 0;
 
 
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071	return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076	return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081	PRESUSPEND,
2082	PRESUSPEND_UNDO,
2083	POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088	lockdep_assert_held(&t->md->suspend_lock);
 
2089
2090	for (unsigned int i = 0; i < t->num_targets; i++) {
2091		struct dm_target *ti = dm_table_get_target(t, i);
2092
 
2093		switch (mode) {
2094		case PRESUSPEND:
2095			if (ti->type->presuspend)
2096				ti->type->presuspend(ti);
2097			break;
2098		case PRESUSPEND_UNDO:
2099			if (ti->type->presuspend_undo)
2100				ti->type->presuspend_undo(ti);
2101			break;
2102		case POSTSUSPEND:
2103			if (ti->type->postsuspend)
2104				ti->type->postsuspend(ti);
2105			break;
2106		}
 
2107	}
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112	if (!t)
2113		return;
2114
2115	suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120	if (!t)
2121		return;
2122
2123	suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128	if (!t)
2129		return;
2130
2131	suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136	unsigned int i;
2137	int r = 0;
2138
2139	lockdep_assert_held(&t->md->suspend_lock);
2140
2141	for (i = 0; i < t->num_targets; i++) {
2142		struct dm_target *ti = dm_table_get_target(t, i);
2143
2144		if (!ti->type->preresume)
2145			continue;
2146
2147		r = ti->type->preresume(ti);
2148		if (r) {
2149			DMERR("%s: %s: preresume failed, error = %d",
2150			      dm_device_name(t->md), ti->type->name, r);
2151			return r;
2152		}
2153	}
2154
2155	for (i = 0; i < t->num_targets; i++) {
2156		struct dm_target *ti = dm_table_get_target(t, i);
2157
2158		if (ti->type->resume)
2159			ti->type->resume(ti);
2160	}
2161
2162	return 0;
2163}
2164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167	return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
2170
2171const char *dm_table_device_name(struct dm_table *t)
2172{
2173	return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
 
 
 
2179	if (!dm_table_request_based(t))
2180		return;
2181
2182	if (t->md->queue)
2183		blk_mq_run_hw_queues(t->md->queue, true);
 
 
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
v5.4
 
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
 
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
 
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define MAX_DEPTH 16
  28#define NODE_SIZE L1_CACHE_BYTES
  29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  31
  32struct dm_table {
  33	struct mapped_device *md;
  34	enum dm_queue_mode type;
  35
  36	/* btree table */
  37	unsigned int depth;
  38	unsigned int counts[MAX_DEPTH];	/* in nodes */
  39	sector_t *index[MAX_DEPTH];
  40
  41	unsigned int num_targets;
  42	unsigned int num_allocated;
  43	sector_t *highs;
  44	struct dm_target *targets;
  45
  46	struct target_type *immutable_target_type;
  47
  48	bool integrity_supported:1;
  49	bool singleton:1;
  50	unsigned integrity_added:1;
  51
  52	/*
  53	 * Indicates the rw permissions for the new logical
  54	 * device.  This should be a combination of FMODE_READ
  55	 * and FMODE_WRITE.
  56	 */
  57	fmode_t mode;
  58
  59	/* a list of devices used by this table */
  60	struct list_head devices;
  61
  62	/* events get handed up using this callback */
  63	void (*event_fn)(void *);
  64	void *event_context;
  65
  66	struct dm_md_mempools *mempools;
  67
  68	struct list_head target_callbacks;
  69};
  70
  71/*
  72 * Similar to ceiling(log_size(n))
  73 */
  74static unsigned int int_log(unsigned int n, unsigned int base)
  75{
  76	int result = 0;
  77
  78	while (n > 1) {
  79		n = dm_div_up(n, base);
  80		result++;
  81	}
  82
  83	return result;
  84}
  85
  86/*
  87 * Calculate the index of the child node of the n'th node k'th key.
  88 */
  89static inline unsigned int get_child(unsigned int n, unsigned int k)
  90{
  91	return (n * CHILDREN_PER_NODE) + k;
  92}
  93
  94/*
  95 * Return the n'th node of level l from table t.
  96 */
  97static inline sector_t *get_node(struct dm_table *t,
  98				 unsigned int l, unsigned int n)
  99{
 100	return t->index[l] + (n * KEYS_PER_NODE);
 101}
 102
 103/*
 104 * Return the highest key that you could lookup from the n'th
 105 * node on level l of the btree.
 106 */
 107static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 108{
 109	for (; l < t->depth - 1; l++)
 110		n = get_child(n, CHILDREN_PER_NODE - 1);
 111
 112	if (n >= t->counts[l])
 113		return (sector_t) - 1;
 114
 115	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 116}
 117
 118/*
 119 * Fills in a level of the btree based on the highs of the level
 120 * below it.
 121 */
 122static int setup_btree_index(unsigned int l, struct dm_table *t)
 123{
 124	unsigned int n, k;
 125	sector_t *node;
 126
 127	for (n = 0U; n < t->counts[l]; n++) {
 128		node = get_node(t, l, n);
 129
 130		for (k = 0U; k < KEYS_PER_NODE; k++)
 131			node[k] = high(t, l + 1, get_child(n, k));
 132	}
 133
 134	return 0;
 135}
 136
 137void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 138{
 139	unsigned long size;
 140	void *addr;
 141
 142	/*
 143	 * Check that we're not going to overflow.
 144	 */
 145	if (nmemb > (ULONG_MAX / elem_size))
 146		return NULL;
 147
 148	size = nmemb * elem_size;
 149	addr = vzalloc(size);
 150
 151	return addr;
 152}
 153EXPORT_SYMBOL(dm_vcalloc);
 154
 155/*
 156 * highs, and targets are managed as dynamic arrays during a
 157 * table load.
 158 */
 159static int alloc_targets(struct dm_table *t, unsigned int num)
 160{
 161	sector_t *n_highs;
 162	struct dm_target *n_targets;
 163
 164	/*
 165	 * Allocate both the target array and offset array at once.
 166	 */
 167	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
 168					  sizeof(sector_t));
 169	if (!n_highs)
 170		return -ENOMEM;
 171
 172	n_targets = (struct dm_target *) (n_highs + num);
 173
 174	memset(n_highs, -1, sizeof(*n_highs) * num);
 175	vfree(t->highs);
 176
 177	t->num_allocated = num;
 178	t->highs = n_highs;
 179	t->targets = n_targets;
 180
 181	return 0;
 182}
 183
 184int dm_table_create(struct dm_table **result, fmode_t mode,
 185		    unsigned num_targets, struct mapped_device *md)
 186{
 187	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 
 
 
 
 
 188
 189	if (!t)
 190		return -ENOMEM;
 191
 192	INIT_LIST_HEAD(&t->devices);
 193	INIT_LIST_HEAD(&t->target_callbacks);
 194
 195	if (!num_targets)
 196		num_targets = KEYS_PER_NODE;
 197
 198	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 199
 200	if (!num_targets) {
 201		kfree(t);
 202		return -ENOMEM;
 203	}
 204
 205	if (alloc_targets(t, num_targets)) {
 206		kfree(t);
 207		return -ENOMEM;
 208	}
 209
 210	t->type = DM_TYPE_NONE;
 211	t->mode = mode;
 212	t->md = md;
 213	*result = t;
 214	return 0;
 215}
 216
 217static void free_devices(struct list_head *devices, struct mapped_device *md)
 218{
 219	struct list_head *tmp, *next;
 220
 221	list_for_each_safe(tmp, next, devices) {
 222		struct dm_dev_internal *dd =
 223		    list_entry(tmp, struct dm_dev_internal, list);
 224		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 225		       dm_device_name(md), dd->dm_dev->name);
 226		dm_put_table_device(md, dd->dm_dev);
 227		kfree(dd);
 228	}
 229}
 230
 
 
 231void dm_table_destroy(struct dm_table *t)
 232{
 233	unsigned int i;
 234
 235	if (!t)
 236		return;
 237
 238	/* free the indexes */
 239	if (t->depth >= 2)
 240		vfree(t->index[t->depth - 2]);
 241
 242	/* free the targets */
 243	for (i = 0; i < t->num_targets; i++) {
 244		struct dm_target *tgt = t->targets + i;
 245
 246		if (tgt->type->dtr)
 247			tgt->type->dtr(tgt);
 248
 249		dm_put_target_type(tgt->type);
 250	}
 251
 252	vfree(t->highs);
 253
 254	/* free the device list */
 255	free_devices(&t->devices, t->md);
 256
 257	dm_free_md_mempools(t->mempools);
 258
 
 
 259	kfree(t);
 260}
 261
 262/*
 263 * See if we've already got a device in the list.
 264 */
 265static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 266{
 267	struct dm_dev_internal *dd;
 268
 269	list_for_each_entry (dd, l, list)
 270		if (dd->dm_dev->bdev->bd_dev == dev)
 271			return dd;
 272
 273	return NULL;
 274}
 275
 276/*
 277 * If possible, this checks an area of a destination device is invalid.
 278 */
 279static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 280				  sector_t start, sector_t len, void *data)
 281{
 282	struct request_queue *q;
 283	struct queue_limits *limits = data;
 284	struct block_device *bdev = dev->bdev;
 285	sector_t dev_size =
 286		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 287	unsigned short logical_block_size_sectors =
 288		limits->logical_block_size >> SECTOR_SHIFT;
 289	char b[BDEVNAME_SIZE];
 290
 291	/*
 292	 * Some devices exist without request functions,
 293	 * such as loop devices not yet bound to backing files.
 294	 * Forbid the use of such devices.
 295	 */
 296	q = bdev_get_queue(bdev);
 297	if (!q || !q->make_request_fn) {
 298		DMWARN("%s: %s is not yet initialised: "
 299		       "start=%llu, len=%llu, dev_size=%llu",
 300		       dm_device_name(ti->table->md), bdevname(bdev, b),
 301		       (unsigned long long)start,
 302		       (unsigned long long)len,
 303		       (unsigned long long)dev_size);
 304		return 1;
 305	}
 306
 307	if (!dev_size)
 308		return 0;
 309
 310	if ((start >= dev_size) || (start + len > dev_size)) {
 311		DMWARN("%s: %s too small for target: "
 312		       "start=%llu, len=%llu, dev_size=%llu",
 313		       dm_device_name(ti->table->md), bdevname(bdev, b),
 314		       (unsigned long long)start,
 315		       (unsigned long long)len,
 316		       (unsigned long long)dev_size);
 317		return 1;
 318	}
 319
 320	/*
 321	 * If the target is mapped to zoned block device(s), check
 322	 * that the zones are not partially mapped.
 323	 */
 324	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 325		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 326
 327		if (start & (zone_sectors - 1)) {
 328			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 329			       dm_device_name(ti->table->md),
 330			       (unsigned long long)start,
 331			       zone_sectors, bdevname(bdev, b));
 332			return 1;
 333		}
 334
 335		/*
 336		 * Note: The last zone of a zoned block device may be smaller
 337		 * than other zones. So for a target mapping the end of a
 338		 * zoned block device with such a zone, len would not be zone
 339		 * aligned. We do not allow such last smaller zone to be part
 340		 * of the mapping here to ensure that mappings with multiple
 341		 * devices do not end up with a smaller zone in the middle of
 342		 * the sector range.
 343		 */
 344		if (len & (zone_sectors - 1)) {
 345			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 346			       dm_device_name(ti->table->md),
 347			       (unsigned long long)len,
 348			       zone_sectors, bdevname(bdev, b));
 349			return 1;
 350		}
 351	}
 352
 353	if (logical_block_size_sectors <= 1)
 354		return 0;
 355
 356	if (start & (logical_block_size_sectors - 1)) {
 357		DMWARN("%s: start=%llu not aligned to h/w "
 358		       "logical block size %u of %s",
 359		       dm_device_name(ti->table->md),
 360		       (unsigned long long)start,
 361		       limits->logical_block_size, bdevname(bdev, b));
 362		return 1;
 363	}
 364
 365	if (len & (logical_block_size_sectors - 1)) {
 366		DMWARN("%s: len=%llu not aligned to h/w "
 367		       "logical block size %u of %s",
 368		       dm_device_name(ti->table->md),
 369		       (unsigned long long)len,
 370		       limits->logical_block_size, bdevname(bdev, b));
 371		return 1;
 372	}
 373
 374	return 0;
 375}
 376
 377/*
 378 * This upgrades the mode on an already open dm_dev, being
 379 * careful to leave things as they were if we fail to reopen the
 380 * device and not to touch the existing bdev field in case
 381 * it is accessed concurrently inside dm_table_any_congested().
 382 */
 383static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 384			struct mapped_device *md)
 385{
 386	int r;
 387	struct dm_dev *old_dev, *new_dev;
 388
 389	old_dev = dd->dm_dev;
 390
 391	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 392				dd->dm_dev->mode | new_mode, &new_dev);
 393	if (r)
 394		return r;
 395
 396	dd->dm_dev = new_dev;
 397	dm_put_table_device(md, old_dev);
 398
 399	return 0;
 400}
 401
 402/*
 403 * Convert the path to a device
 404 */
 405dev_t dm_get_dev_t(const char *path)
 406{
 407	dev_t dev;
 408	struct block_device *bdev;
 409
 410	bdev = lookup_bdev(path);
 411	if (IS_ERR(bdev))
 412		dev = name_to_dev_t(path);
 413	else {
 414		dev = bdev->bd_dev;
 415		bdput(bdev);
 416	}
 417
 418	return dev;
 419}
 420EXPORT_SYMBOL_GPL(dm_get_dev_t);
 421
 422/*
 423 * Add a device to the list, or just increment the usage count if
 424 * it's already present.
 
 
 
 425 */
 426int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 427		  struct dm_dev **result)
 428{
 429	int r;
 430	dev_t dev;
 
 
 431	struct dm_dev_internal *dd;
 432	struct dm_table *t = ti->table;
 433
 434	BUG_ON(!t);
 435
 436	dev = dm_get_dev_t(path);
 437	if (!dev)
 438		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440	dd = find_device(&t->devices, dev);
 441	if (!dd) {
 442		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 443		if (!dd)
 444			return -ENOMEM;
 
 
 445
 446		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 
 447			kfree(dd);
 448			return r;
 449		}
 450
 451		refcount_set(&dd->count, 1);
 452		list_add(&dd->list, &t->devices);
 453		goto out;
 454
 455	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 456		r = upgrade_mode(dd, mode, t->md);
 457		if (r)
 458			return r;
 459	}
 460	refcount_inc(&dd->count);
 461out:
 
 462	*result = dd->dm_dev;
 463	return 0;
 
 
 
 
 464}
 465EXPORT_SYMBOL(dm_get_device);
 466
 467static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 468				sector_t start, sector_t len, void *data)
 469{
 470	struct queue_limits *limits = data;
 471	struct block_device *bdev = dev->bdev;
 472	struct request_queue *q = bdev_get_queue(bdev);
 473	char b[BDEVNAME_SIZE];
 474
 475	if (unlikely(!q)) {
 476		DMWARN("%s: Cannot set limits for nonexistent device %s",
 477		       dm_device_name(ti->table->md), bdevname(bdev, b));
 478		return 0;
 479	}
 480
 481	if (bdev_stack_limits(limits, bdev, start) < 0)
 482		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 
 483		       "physical_block_size=%u, logical_block_size=%u, "
 484		       "alignment_offset=%u, start=%llu",
 485		       dm_device_name(ti->table->md), bdevname(bdev, b),
 486		       q->limits.physical_block_size,
 487		       q->limits.logical_block_size,
 488		       q->limits.alignment_offset,
 489		       (unsigned long long) start << SECTOR_SHIFT);
 490
 491	limits->zoned = blk_queue_zoned_model(q);
 492
 493	return 0;
 494}
 495
 496/*
 497 * Decrement a device's use count and remove it if necessary.
 498 */
 499void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 500{
 501	int found = 0;
 502	struct list_head *devices = &ti->table->devices;
 
 503	struct dm_dev_internal *dd;
 504
 
 
 505	list_for_each_entry(dd, devices, list) {
 506		if (dd->dm_dev == d) {
 507			found = 1;
 508			break;
 509		}
 510	}
 511	if (!found) {
 512		DMWARN("%s: device %s not in table devices list",
 513		       dm_device_name(ti->table->md), d->name);
 514		return;
 515	}
 516	if (refcount_dec_and_test(&dd->count)) {
 517		dm_put_table_device(ti->table->md, d);
 518		list_del(&dd->list);
 519		kfree(dd);
 520	}
 
 
 
 521}
 522EXPORT_SYMBOL(dm_put_device);
 523
 524/*
 525 * Checks to see if the target joins onto the end of the table.
 526 */
 527static int adjoin(struct dm_table *table, struct dm_target *ti)
 528{
 529	struct dm_target *prev;
 530
 531	if (!table->num_targets)
 532		return !ti->begin;
 533
 534	prev = &table->targets[table->num_targets - 1];
 535	return (ti->begin == (prev->begin + prev->len));
 536}
 537
 538/*
 539 * Used to dynamically allocate the arg array.
 540 *
 541 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 542 * process messages even if some device is suspended. These messages have a
 543 * small fixed number of arguments.
 544 *
 545 * On the other hand, dm-switch needs to process bulk data using messages and
 546 * excessive use of GFP_NOIO could cause trouble.
 547 */
 548static char **realloc_argv(unsigned *size, char **old_argv)
 549{
 550	char **argv;
 551	unsigned new_size;
 552	gfp_t gfp;
 553
 554	if (*size) {
 555		new_size = *size * 2;
 556		gfp = GFP_KERNEL;
 557	} else {
 558		new_size = 8;
 559		gfp = GFP_NOIO;
 560	}
 561	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 562	if (argv && old_argv) {
 563		memcpy(argv, old_argv, *size * sizeof(*argv));
 564		*size = new_size;
 565	}
 566
 567	kfree(old_argv);
 568	return argv;
 569}
 570
 571/*
 572 * Destructively splits up the argument list to pass to ctr.
 573 */
 574int dm_split_args(int *argc, char ***argvp, char *input)
 575{
 576	char *start, *end = input, *out, **argv = NULL;
 577	unsigned array_size = 0;
 578
 579	*argc = 0;
 580
 581	if (!input) {
 582		*argvp = NULL;
 583		return 0;
 584	}
 585
 586	argv = realloc_argv(&array_size, argv);
 587	if (!argv)
 588		return -ENOMEM;
 589
 590	while (1) {
 591		/* Skip whitespace */
 592		start = skip_spaces(end);
 593
 594		if (!*start)
 595			break;	/* success, we hit the end */
 596
 597		/* 'out' is used to remove any back-quotes */
 598		end = out = start;
 599		while (*end) {
 600			/* Everything apart from '\0' can be quoted */
 601			if (*end == '\\' && *(end + 1)) {
 602				*out++ = *(end + 1);
 603				end += 2;
 604				continue;
 605			}
 606
 607			if (isspace(*end))
 608				break;	/* end of token */
 609
 610			*out++ = *end++;
 611		}
 612
 613		/* have we already filled the array ? */
 614		if ((*argc + 1) > array_size) {
 615			argv = realloc_argv(&array_size, argv);
 616			if (!argv)
 617				return -ENOMEM;
 618		}
 619
 620		/* we know this is whitespace */
 621		if (*end)
 622			end++;
 623
 624		/* terminate the string and put it in the array */
 625		*out = '\0';
 626		argv[*argc] = start;
 627		(*argc)++;
 628	}
 629
 630	*argvp = argv;
 631	return 0;
 632}
 633
 634/*
 635 * Impose necessary and sufficient conditions on a devices's table such
 636 * that any incoming bio which respects its logical_block_size can be
 637 * processed successfully.  If it falls across the boundary between
 638 * two or more targets, the size of each piece it gets split into must
 639 * be compatible with the logical_block_size of the target processing it.
 640 */
 641static int validate_hardware_logical_block_alignment(struct dm_table *table,
 642						 struct queue_limits *limits)
 643{
 644	/*
 645	 * This function uses arithmetic modulo the logical_block_size
 646	 * (in units of 512-byte sectors).
 647	 */
 648	unsigned short device_logical_block_size_sects =
 649		limits->logical_block_size >> SECTOR_SHIFT;
 650
 651	/*
 652	 * Offset of the start of the next table entry, mod logical_block_size.
 653	 */
 654	unsigned short next_target_start = 0;
 655
 656	/*
 657	 * Given an aligned bio that extends beyond the end of a
 658	 * target, how many sectors must the next target handle?
 659	 */
 660	unsigned short remaining = 0;
 661
 662	struct dm_target *uninitialized_var(ti);
 663	struct queue_limits ti_limits;
 664	unsigned i;
 665
 666	/*
 667	 * Check each entry in the table in turn.
 668	 */
 669	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 670		ti = dm_table_get_target(table, i);
 671
 672		blk_set_stacking_limits(&ti_limits);
 673
 674		/* combine all target devices' limits */
 675		if (ti->type->iterate_devices)
 676			ti->type->iterate_devices(ti, dm_set_device_limits,
 677						  &ti_limits);
 678
 679		/*
 680		 * If the remaining sectors fall entirely within this
 681		 * table entry are they compatible with its logical_block_size?
 682		 */
 683		if (remaining < ti->len &&
 684		    remaining & ((ti_limits.logical_block_size >>
 685				  SECTOR_SHIFT) - 1))
 686			break;	/* Error */
 687
 688		next_target_start =
 689		    (unsigned short) ((next_target_start + ti->len) &
 690				      (device_logical_block_size_sects - 1));
 691		remaining = next_target_start ?
 692		    device_logical_block_size_sects - next_target_start : 0;
 693	}
 694
 695	if (remaining) {
 696		DMWARN("%s: table line %u (start sect %llu len %llu) "
 697		       "not aligned to h/w logical block size %u",
 698		       dm_device_name(table->md), i,
 699		       (unsigned long long) ti->begin,
 700		       (unsigned long long) ti->len,
 701		       limits->logical_block_size);
 702		return -EINVAL;
 703	}
 704
 705	return 0;
 706}
 707
 708int dm_table_add_target(struct dm_table *t, const char *type,
 709			sector_t start, sector_t len, char *params)
 710{
 711	int r = -EINVAL, argc;
 712	char **argv;
 713	struct dm_target *tgt;
 714
 715	if (t->singleton) {
 716		DMERR("%s: target type %s must appear alone in table",
 717		      dm_device_name(t->md), t->targets->type->name);
 718		return -EINVAL;
 719	}
 720
 721	BUG_ON(t->num_targets >= t->num_allocated);
 722
 723	tgt = t->targets + t->num_targets;
 724	memset(tgt, 0, sizeof(*tgt));
 725
 726	if (!len) {
 727		DMERR("%s: zero-length target", dm_device_name(t->md));
 728		return -EINVAL;
 729	}
 730
 731	tgt->type = dm_get_target_type(type);
 732	if (!tgt->type) {
 733		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 734		return -EINVAL;
 735	}
 736
 737	if (dm_target_needs_singleton(tgt->type)) {
 738		if (t->num_targets) {
 739			tgt->error = "singleton target type must appear alone in table";
 740			goto bad;
 741		}
 742		t->singleton = true;
 743	}
 744
 745	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 746		tgt->error = "target type may not be included in a read-only table";
 
 747		goto bad;
 748	}
 749
 750	if (t->immutable_target_type) {
 751		if (t->immutable_target_type != tgt->type) {
 752			tgt->error = "immutable target type cannot be mixed with other target types";
 753			goto bad;
 754		}
 755	} else if (dm_target_is_immutable(tgt->type)) {
 756		if (t->num_targets) {
 757			tgt->error = "immutable target type cannot be mixed with other target types";
 758			goto bad;
 759		}
 760		t->immutable_target_type = tgt->type;
 761	}
 762
 763	if (dm_target_has_integrity(tgt->type))
 764		t->integrity_added = 1;
 765
 766	tgt->table = t;
 767	tgt->begin = start;
 768	tgt->len = len;
 769	tgt->error = "Unknown error";
 770
 771	/*
 772	 * Does this target adjoin the previous one ?
 773	 */
 774	if (!adjoin(t, tgt)) {
 775		tgt->error = "Gap in table";
 776		goto bad;
 777	}
 778
 779	r = dm_split_args(&argc, &argv, params);
 780	if (r) {
 781		tgt->error = "couldn't split parameters (insufficient memory)";
 782		goto bad;
 783	}
 784
 785	r = tgt->type->ctr(tgt, argc, argv);
 786	kfree(argv);
 787	if (r)
 788		goto bad;
 789
 790	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 791
 792	if (!tgt->num_discard_bios && tgt->discards_supported)
 793		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 794		       dm_device_name(t->md), type);
 795
 
 
 
 796	return 0;
 797
 798 bad:
 799	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 800	dm_put_target_type(tgt->type);
 801	return r;
 802}
 803
 804/*
 805 * Target argument parsing helpers.
 806 */
 807static int validate_next_arg(const struct dm_arg *arg,
 808			     struct dm_arg_set *arg_set,
 809			     unsigned *value, char **error, unsigned grouped)
 810{
 811	const char *arg_str = dm_shift_arg(arg_set);
 812	char dummy;
 813
 814	if (!arg_str ||
 815	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 816	    (*value < arg->min) ||
 817	    (*value > arg->max) ||
 818	    (grouped && arg_set->argc < *value)) {
 819		*error = arg->error;
 820		return -EINVAL;
 821	}
 822
 823	return 0;
 824}
 825
 826int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 827		unsigned *value, char **error)
 828{
 829	return validate_next_arg(arg, arg_set, value, error, 0);
 830}
 831EXPORT_SYMBOL(dm_read_arg);
 832
 833int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 834		      unsigned *value, char **error)
 835{
 836	return validate_next_arg(arg, arg_set, value, error, 1);
 837}
 838EXPORT_SYMBOL(dm_read_arg_group);
 839
 840const char *dm_shift_arg(struct dm_arg_set *as)
 841{
 842	char *r;
 843
 844	if (as->argc) {
 845		as->argc--;
 846		r = *as->argv;
 847		as->argv++;
 848		return r;
 849	}
 850
 851	return NULL;
 852}
 853EXPORT_SYMBOL(dm_shift_arg);
 854
 855void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 856{
 857	BUG_ON(as->argc < num_args);
 858	as->argc -= num_args;
 859	as->argv += num_args;
 860}
 861EXPORT_SYMBOL(dm_consume_args);
 862
 863static bool __table_type_bio_based(enum dm_queue_mode table_type)
 864{
 865	return (table_type == DM_TYPE_BIO_BASED ||
 866		table_type == DM_TYPE_DAX_BIO_BASED ||
 867		table_type == DM_TYPE_NVME_BIO_BASED);
 868}
 869
 870static bool __table_type_request_based(enum dm_queue_mode table_type)
 871{
 872	return table_type == DM_TYPE_REQUEST_BASED;
 873}
 874
 875void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 876{
 877	t->type = type;
 878}
 879EXPORT_SYMBOL_GPL(dm_table_set_type);
 880
 881/* validate the dax capability of the target device span */
 882int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 883			sector_t start, sector_t len, void *data)
 884{
 885	int blocksize = *(int *) data;
 
 886
 887	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
 888				       start, len);
 889}
 890
 891/* Check devices support synchronous DAX */
 892static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
 893				  sector_t start, sector_t len, void *data)
 894{
 895	return dev->dax_dev && dax_synchronous(dev->dax_dev);
 896}
 897
 898bool dm_table_supports_dax(struct dm_table *t,
 899			   iterate_devices_callout_fn iterate_fn, int *blocksize)
 900{
 901	struct dm_target *ti;
 902	unsigned i;
 903
 904	/* Ensure that all targets support DAX. */
 905	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 906		ti = dm_table_get_target(t, i);
 907
 908		if (!ti->type->direct_access)
 909			return false;
 910
 911		if (!ti->type->iterate_devices ||
 912		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
 
 913			return false;
 914	}
 915
 916	return true;
 917}
 918
 919static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 920
 921struct verify_rq_based_data {
 922	unsigned sq_count;
 923	unsigned mq_count;
 924};
 925
 926static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
 927			      sector_t start, sector_t len, void *data)
 928{
 929	struct request_queue *q = bdev_get_queue(dev->bdev);
 930	struct verify_rq_based_data *v = data;
 931
 932	if (queue_is_mq(q))
 933		v->mq_count++;
 934	else
 935		v->sq_count++;
 936
 937	return queue_is_mq(q);
 938}
 939
 940static int dm_table_determine_type(struct dm_table *t)
 941{
 942	unsigned i;
 943	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 944	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
 945	struct dm_target *tgt;
 946	struct list_head *devices = dm_table_get_devices(t);
 947	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 948	int page_size = PAGE_SIZE;
 949
 950	if (t->type != DM_TYPE_NONE) {
 951		/* target already set the table's type */
 952		if (t->type == DM_TYPE_BIO_BASED) {
 953			/* possibly upgrade to a variant of bio-based */
 954			goto verify_bio_based;
 955		}
 956		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 957		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 958		goto verify_rq_based;
 959	}
 960
 961	for (i = 0; i < t->num_targets; i++) {
 962		tgt = t->targets + i;
 963		if (dm_target_hybrid(tgt))
 964			hybrid = 1;
 965		else if (dm_target_request_based(tgt))
 966			request_based = 1;
 967		else
 968			bio_based = 1;
 969
 970		if (bio_based && request_based) {
 971			DMERR("Inconsistent table: different target types"
 972			      " can't be mixed up");
 973			return -EINVAL;
 974		}
 975	}
 976
 977	if (hybrid && !bio_based && !request_based) {
 978		/*
 979		 * The targets can work either way.
 980		 * Determine the type from the live device.
 981		 * Default to bio-based if device is new.
 982		 */
 983		if (__table_type_request_based(live_md_type))
 984			request_based = 1;
 985		else
 986			bio_based = 1;
 987	}
 988
 989	if (bio_based) {
 990verify_bio_based:
 991		/* We must use this table as bio-based */
 992		t->type = DM_TYPE_BIO_BASED;
 993		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
 994		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 995			t->type = DM_TYPE_DAX_BIO_BASED;
 996		} else {
 997			/* Check if upgrading to NVMe bio-based is valid or required */
 998			tgt = dm_table_get_immutable_target(t);
 999			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
1000				t->type = DM_TYPE_NVME_BIO_BASED;
1001				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
1002			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
1003				t->type = DM_TYPE_NVME_BIO_BASED;
1004			}
1005		}
1006		return 0;
1007	}
1008
1009	BUG_ON(!request_based); /* No targets in this table */
1010
1011	t->type = DM_TYPE_REQUEST_BASED;
1012
1013verify_rq_based:
1014	/*
1015	 * Request-based dm supports only tables that have a single target now.
1016	 * To support multiple targets, request splitting support is needed,
1017	 * and that needs lots of changes in the block-layer.
1018	 * (e.g. request completion process for partial completion.)
1019	 */
1020	if (t->num_targets > 1) {
1021		DMERR("%s DM doesn't support multiple targets",
1022		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1023		return -EINVAL;
1024	}
1025
1026	if (list_empty(devices)) {
1027		int srcu_idx;
1028		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1029
1030		/* inherit live table's type */
1031		if (live_table)
1032			t->type = live_table->type;
1033		dm_put_live_table(t->md, srcu_idx);
1034		return 0;
1035	}
1036
1037	tgt = dm_table_get_immutable_target(t);
1038	if (!tgt) {
1039		DMERR("table load rejected: immutable target is required");
1040		return -EINVAL;
1041	} else if (tgt->max_io_len) {
1042		DMERR("table load rejected: immutable target that splits IO is not supported");
1043		return -EINVAL;
1044	}
1045
1046	/* Non-request-stackable devices can't be used for request-based dm */
1047	if (!tgt->type->iterate_devices ||
1048	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1049		DMERR("table load rejected: including non-request-stackable devices");
1050		return -EINVAL;
1051	}
1052	if (v.sq_count > 0) {
1053		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1054		return -EINVAL;
1055	}
1056
1057	return 0;
1058}
1059
1060enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1061{
1062	return t->type;
1063}
1064
1065struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1066{
1067	return t->immutable_target_type;
1068}
1069
1070struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1071{
1072	/* Immutable target is implicitly a singleton */
1073	if (t->num_targets > 1 ||
1074	    !dm_target_is_immutable(t->targets[0].type))
1075		return NULL;
1076
1077	return t->targets;
1078}
1079
1080struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1081{
1082	struct dm_target *ti;
1083	unsigned i;
1084
1085	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1086		ti = dm_table_get_target(t, i);
1087		if (dm_target_is_wildcard(ti->type))
1088			return ti;
1089	}
1090
1091	return NULL;
1092}
1093
1094bool dm_table_bio_based(struct dm_table *t)
1095{
1096	return __table_type_bio_based(dm_table_get_type(t));
1097}
1098
1099bool dm_table_request_based(struct dm_table *t)
1100{
1101	return __table_type_request_based(dm_table_get_type(t));
1102}
1103
 
 
1104static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1105{
1106	enum dm_queue_mode type = dm_table_get_type(t);
1107	unsigned per_io_data_size = 0;
1108	unsigned min_pool_size = 0;
1109	struct dm_target *ti;
1110	unsigned i;
1111
1112	if (unlikely(type == DM_TYPE_NONE)) {
1113		DMWARN("no table type is set, can't allocate mempools");
1114		return -EINVAL;
1115	}
1116
1117	if (__table_type_bio_based(type))
1118		for (i = 0; i < t->num_targets; i++) {
1119			ti = t->targets + i;
1120			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1121			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1122		}
 
 
 
 
 
 
1123
1124	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1125					   per_io_data_size, min_pool_size);
1126	if (!t->mempools)
1127		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
 
1129	return 0;
1130}
1131
1132void dm_table_free_md_mempools(struct dm_table *t)
1133{
1134	dm_free_md_mempools(t->mempools);
1135	t->mempools = NULL;
1136}
1137
1138struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1139{
1140	return t->mempools;
1141}
1142
1143static int setup_indexes(struct dm_table *t)
1144{
1145	int i;
1146	unsigned int total = 0;
1147	sector_t *indexes;
1148
1149	/* allocate the space for *all* the indexes */
1150	for (i = t->depth - 2; i >= 0; i--) {
1151		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1152		total += t->counts[i];
1153	}
1154
1155	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1156	if (!indexes)
1157		return -ENOMEM;
1158
1159	/* set up internal nodes, bottom-up */
1160	for (i = t->depth - 2; i >= 0; i--) {
1161		t->index[i] = indexes;
1162		indexes += (KEYS_PER_NODE * t->counts[i]);
1163		setup_btree_index(i, t);
1164	}
1165
1166	return 0;
1167}
1168
1169/*
1170 * Builds the btree to index the map.
1171 */
1172static int dm_table_build_index(struct dm_table *t)
1173{
1174	int r = 0;
1175	unsigned int leaf_nodes;
1176
1177	/* how many indexes will the btree have ? */
1178	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1179	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1180
1181	/* leaf layer has already been set up */
1182	t->counts[t->depth - 1] = leaf_nodes;
1183	t->index[t->depth - 1] = t->highs;
1184
1185	if (t->depth >= 2)
1186		r = setup_indexes(t);
1187
1188	return r;
1189}
1190
1191static bool integrity_profile_exists(struct gendisk *disk)
1192{
1193	return !!blk_get_integrity(disk);
1194}
1195
1196/*
1197 * Get a disk whose integrity profile reflects the table's profile.
1198 * Returns NULL if integrity support was inconsistent or unavailable.
1199 */
1200static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1201{
1202	struct list_head *devices = dm_table_get_devices(t);
1203	struct dm_dev_internal *dd = NULL;
1204	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1205	unsigned i;
1206
1207	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1208		struct dm_target *ti = dm_table_get_target(t, i);
 
1209		if (!dm_target_passes_integrity(ti->type))
1210			goto no_integrity;
1211	}
1212
1213	list_for_each_entry(dd, devices, list) {
1214		template_disk = dd->dm_dev->bdev->bd_disk;
1215		if (!integrity_profile_exists(template_disk))
1216			goto no_integrity;
1217		else if (prev_disk &&
1218			 blk_integrity_compare(prev_disk, template_disk) < 0)
1219			goto no_integrity;
1220		prev_disk = template_disk;
1221	}
1222
1223	return template_disk;
1224
1225no_integrity:
1226	if (prev_disk)
1227		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1228		       dm_device_name(t->md),
1229		       prev_disk->disk_name,
1230		       template_disk->disk_name);
1231	return NULL;
1232}
1233
1234/*
1235 * Register the mapped device for blk_integrity support if the
1236 * underlying devices have an integrity profile.  But all devices may
1237 * not have matching profiles (checking all devices isn't reliable
1238 * during table load because this table may use other DM device(s) which
1239 * must be resumed before they will have an initialized integity
1240 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1241 * profile validation: First pass during table load, final pass during
1242 * resume.
1243 */
1244static int dm_table_register_integrity(struct dm_table *t)
1245{
1246	struct mapped_device *md = t->md;
1247	struct gendisk *template_disk = NULL;
1248
1249	/* If target handles integrity itself do not register it here. */
1250	if (t->integrity_added)
1251		return 0;
1252
1253	template_disk = dm_table_get_integrity_disk(t);
1254	if (!template_disk)
1255		return 0;
1256
1257	if (!integrity_profile_exists(dm_disk(md))) {
1258		t->integrity_supported = true;
1259		/*
1260		 * Register integrity profile during table load; we can do
1261		 * this because the final profile must match during resume.
1262		 */
1263		blk_integrity_register(dm_disk(md),
1264				       blk_get_integrity(template_disk));
1265		return 0;
1266	}
1267
1268	/*
1269	 * If DM device already has an initialized integrity
1270	 * profile the new profile should not conflict.
1271	 */
1272	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1273		DMWARN("%s: conflict with existing integrity profile: "
1274		       "%s profile mismatch",
1275		       dm_device_name(t->md),
1276		       template_disk->disk_name);
1277		return 1;
1278	}
1279
1280	/* Preserve existing integrity profile */
1281	t->integrity_supported = true;
1282	return 0;
1283}
1284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285/*
1286 * Prepares the table for use by building the indices,
1287 * setting the type, and allocating mempools.
1288 */
1289int dm_table_complete(struct dm_table *t)
1290{
1291	int r;
1292
1293	r = dm_table_determine_type(t);
1294	if (r) {
1295		DMERR("unable to determine table type");
1296		return r;
1297	}
1298
1299	r = dm_table_build_index(t);
1300	if (r) {
1301		DMERR("unable to build btrees");
1302		return r;
1303	}
1304
1305	r = dm_table_register_integrity(t);
1306	if (r) {
1307		DMERR("could not register integrity profile.");
1308		return r;
1309	}
1310
 
 
 
 
 
 
1311	r = dm_table_alloc_md_mempools(t, t->md);
1312	if (r)
1313		DMERR("unable to allocate mempools");
1314
1315	return r;
1316}
1317
1318static DEFINE_MUTEX(_event_lock);
1319void dm_table_event_callback(struct dm_table *t,
1320			     void (*fn)(void *), void *context)
1321{
1322	mutex_lock(&_event_lock);
1323	t->event_fn = fn;
1324	t->event_context = context;
1325	mutex_unlock(&_event_lock);
1326}
1327
1328void dm_table_event(struct dm_table *t)
1329{
1330	/*
1331	 * You can no longer call dm_table_event() from interrupt
1332	 * context, use a bottom half instead.
1333	 */
1334	BUG_ON(in_interrupt());
1335
1336	mutex_lock(&_event_lock);
1337	if (t->event_fn)
1338		t->event_fn(t->event_context);
1339	mutex_unlock(&_event_lock);
1340}
1341EXPORT_SYMBOL(dm_table_event);
1342
1343inline sector_t dm_table_get_size(struct dm_table *t)
1344{
1345	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1346}
1347EXPORT_SYMBOL(dm_table_get_size);
1348
1349struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1350{
1351	if (index >= t->num_targets)
1352		return NULL;
1353
1354	return t->targets + index;
1355}
1356
1357/*
1358 * Search the btree for the correct target.
1359 *
1360 * Caller should check returned pointer for NULL
1361 * to trap I/O beyond end of device.
1362 */
1363struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1364{
1365	unsigned int l, n = 0, k = 0;
1366	sector_t *node;
1367
1368	if (unlikely(sector >= dm_table_get_size(t)))
1369		return NULL;
1370
1371	for (l = 0; l < t->depth; l++) {
1372		n = get_child(n, k);
1373		node = get_node(t, l, n);
1374
1375		for (k = 0; k < KEYS_PER_NODE; k++)
1376			if (node[k] >= sector)
1377				break;
1378	}
1379
1380	return &t->targets[(KEYS_PER_NODE * n) + k];
1381}
1382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383static int count_device(struct dm_target *ti, struct dm_dev *dev,
1384			sector_t start, sector_t len, void *data)
1385{
1386	unsigned *num_devices = data;
1387
1388	(*num_devices)++;
1389
1390	return 0;
1391}
1392
 
 
 
 
 
 
 
 
 
 
 
 
 
1393/*
1394 * Check whether a table has no data devices attached using each
1395 * target's iterate_devices method.
1396 * Returns false if the result is unknown because a target doesn't
1397 * support iterate_devices.
1398 */
1399bool dm_table_has_no_data_devices(struct dm_table *table)
1400{
1401	struct dm_target *ti;
1402	unsigned i, num_devices;
1403
1404	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1405		ti = dm_table_get_target(table, i);
1406
1407		if (!ti->type->iterate_devices)
1408			return false;
1409
1410		num_devices = 0;
1411		ti->type->iterate_devices(ti, count_device, &num_devices);
1412		if (num_devices)
1413			return false;
1414	}
1415
1416	return true;
1417}
1418
 
 
 
 
 
 
 
 
1419static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1420				 sector_t start, sector_t len, void *data)
1421{
1422	struct request_queue *q = bdev_get_queue(dev->bdev);
1423	enum blk_zoned_model *zoned_model = data;
1424
1425	return q && blk_queue_zoned_model(q) == *zoned_model;
1426}
1427
1428static bool dm_table_supports_zoned_model(struct dm_table *t,
1429					  enum blk_zoned_model zoned_model)
 
 
 
 
 
 
1430{
1431	struct dm_target *ti;
1432	unsigned i;
1433
1434	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1435		ti = dm_table_get_target(t, i);
1436
1437		if (zoned_model == BLK_ZONED_HM &&
1438		    !dm_target_supports_zoned_hm(ti->type))
 
 
 
 
 
1439			return false;
1440
1441		if (!ti->type->iterate_devices ||
1442		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1443			return false;
 
 
 
 
 
 
1444	}
1445
1446	return true;
1447}
1448
1449static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1450				       sector_t start, sector_t len, void *data)
1451{
1452	struct request_queue *q = bdev_get_queue(dev->bdev);
1453	unsigned int *zone_sectors = data;
1454
1455	return q && blk_queue_zone_sectors(q) == *zone_sectors;
 
 
1456}
1457
1458static bool dm_table_matches_zone_sectors(struct dm_table *t,
1459					  unsigned int zone_sectors)
1460{
1461	struct dm_target *ti;
1462	unsigned i;
1463
1464	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1465		ti = dm_table_get_target(t, i);
1466
1467		if (!ti->type->iterate_devices ||
1468		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1469			return false;
1470	}
1471
1472	return true;
1473}
1474
1475static int validate_hardware_zoned_model(struct dm_table *table,
1476					 enum blk_zoned_model zoned_model,
1477					 unsigned int zone_sectors)
1478{
1479	if (zoned_model == BLK_ZONED_NONE)
1480		return 0;
1481
1482	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1483		DMERR("%s: zoned model is not consistent across all devices",
1484		      dm_device_name(table->md));
1485		return -EINVAL;
1486	}
1487
1488	/* Check zone size validity and compatibility */
1489	if (!zone_sectors || !is_power_of_2(zone_sectors))
1490		return -EINVAL;
1491
1492	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1493		DMERR("%s: zone sectors is not consistent across all devices",
1494		      dm_device_name(table->md));
1495		return -EINVAL;
1496	}
1497
1498	return 0;
1499}
1500
1501/*
1502 * Establish the new table's queue_limits and validate them.
1503 */
1504int dm_calculate_queue_limits(struct dm_table *table,
1505			      struct queue_limits *limits)
1506{
1507	struct dm_target *ti;
1508	struct queue_limits ti_limits;
1509	unsigned i;
1510	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1511	unsigned int zone_sectors = 0;
 
1512
1513	blk_set_stacking_limits(limits);
1514
1515	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 
 
1516		blk_set_stacking_limits(&ti_limits);
1517
1518		ti = dm_table_get_target(table, i);
1519
1520		if (!ti->type->iterate_devices)
 
1521			goto combine_limits;
 
1522
1523		/*
1524		 * Combine queue limits of all the devices this target uses.
1525		 */
1526		ti->type->iterate_devices(ti, dm_set_device_limits,
1527					  &ti_limits);
1528
1529		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1530			/*
1531			 * After stacking all limits, validate all devices
1532			 * in table support this zoned model and zone sectors.
1533			 */
1534			zoned_model = ti_limits.zoned;
1535			zone_sectors = ti_limits.chunk_sectors;
1536		}
1537
1538		/* Set I/O hints portion of queue limits */
1539		if (ti->type->io_hints)
1540			ti->type->io_hints(ti, &ti_limits);
1541
1542		/*
1543		 * Check each device area is consistent with the target's
1544		 * overall queue limits.
1545		 */
1546		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1547					      &ti_limits))
1548			return -EINVAL;
1549
1550combine_limits:
1551		/*
1552		 * Merge this target's queue limits into the overall limits
1553		 * for the table.
1554		 */
1555		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1556			DMWARN("%s: adding target device "
1557			       "(start sect %llu len %llu) "
1558			       "caused an alignment inconsistency",
1559			       dm_device_name(table->md),
1560			       (unsigned long long) ti->begin,
1561			       (unsigned long long) ti->len);
1562
1563		/*
1564		 * FIXME: this should likely be moved to blk_stack_limits(), would
1565		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1566		 */
1567		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1568			/*
1569			 * By default, the stacked limits zoned model is set to
1570			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1571			 * this model using the first target model reported
1572			 * that is not BLK_ZONED_NONE. This will be either the
1573			 * first target device zoned model or the model reported
1574			 * by the target .io_hints.
1575			 */
1576			limits->zoned = ti_limits.zoned;
1577		}
1578	}
1579
1580	/*
1581	 * Verify that the zoned model and zone sectors, as determined before
1582	 * any .io_hints override, are the same across all devices in the table.
1583	 * - this is especially relevant if .io_hints is emulating a disk-managed
1584	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1585	 * BUT...
1586	 */
1587	if (limits->zoned != BLK_ZONED_NONE) {
1588		/*
1589		 * ...IF the above limits stacking determined a zoned model
1590		 * validate that all of the table's devices conform to it.
1591		 */
1592		zoned_model = limits->zoned;
1593		zone_sectors = limits->chunk_sectors;
1594	}
1595	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1596		return -EINVAL;
1597
1598	return validate_hardware_logical_block_alignment(table, limits);
1599}
1600
1601/*
1602 * Verify that all devices have an integrity profile that matches the
1603 * DM device's registered integrity profile.  If the profiles don't
1604 * match then unregister the DM device's integrity profile.
1605 */
1606static void dm_table_verify_integrity(struct dm_table *t)
1607{
1608	struct gendisk *template_disk = NULL;
1609
1610	if (t->integrity_added)
1611		return;
1612
1613	if (t->integrity_supported) {
1614		/*
1615		 * Verify that the original integrity profile
1616		 * matches all the devices in this table.
1617		 */
1618		template_disk = dm_table_get_integrity_disk(t);
1619		if (template_disk &&
1620		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1621			return;
1622	}
1623
1624	if (integrity_profile_exists(dm_disk(t->md))) {
1625		DMWARN("%s: unable to establish an integrity profile",
1626		       dm_device_name(t->md));
1627		blk_integrity_unregister(dm_disk(t->md));
1628	}
1629}
1630
1631static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1632				sector_t start, sector_t len, void *data)
1633{
1634	unsigned long flush = (unsigned long) data;
1635	struct request_queue *q = bdev_get_queue(dev->bdev);
1636
1637	return q && (q->queue_flags & flush);
1638}
1639
1640static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1641{
1642	struct dm_target *ti;
1643	unsigned i;
1644
1645	/*
1646	 * Require at least one underlying device to support flushes.
1647	 * t->devices includes internal dm devices such as mirror logs
1648	 * so we need to use iterate_devices here, which targets
1649	 * supporting flushes must provide.
1650	 */
1651	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1652		ti = dm_table_get_target(t, i);
1653
1654		if (!ti->num_flush_bios)
1655			continue;
1656
1657		if (ti->flush_supported)
1658			return true;
1659
1660		if (ti->type->iterate_devices &&
1661		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1662			return true;
1663	}
1664
1665	return false;
1666}
1667
1668static int device_dax_write_cache_enabled(struct dm_target *ti,
1669					  struct dm_dev *dev, sector_t start,
1670					  sector_t len, void *data)
1671{
1672	struct dax_device *dax_dev = dev->dax_dev;
1673
1674	if (!dax_dev)
1675		return false;
1676
1677	if (dax_write_cache_enabled(dax_dev))
1678		return true;
1679	return false;
1680}
1681
1682static int dm_table_supports_dax_write_cache(struct dm_table *t)
 
1683{
1684	struct dm_target *ti;
1685	unsigned i;
1686
1687	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1688		ti = dm_table_get_target(t, i);
1689
1690		if (ti->type->iterate_devices &&
1691		    ti->type->iterate_devices(ti,
1692				device_dax_write_cache_enabled, NULL))
1693			return true;
1694	}
1695
1696	return false;
1697}
1698
1699static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1700			    sector_t start, sector_t len, void *data)
1701{
1702	struct request_queue *q = bdev_get_queue(dev->bdev);
1703
1704	return q && blk_queue_nonrot(q);
1705}
1706
1707static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1708			     sector_t start, sector_t len, void *data)
1709{
1710	struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712	return q && !blk_queue_add_random(q);
1713}
1714
1715static bool dm_table_all_devices_attribute(struct dm_table *t,
1716					   iterate_devices_callout_fn func)
1717{
1718	struct dm_target *ti;
1719	unsigned i;
1720
1721	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1722		ti = dm_table_get_target(t, i);
1723
1724		if (!ti->type->iterate_devices ||
1725		    !ti->type->iterate_devices(ti, func, NULL))
1726			return false;
1727	}
1728
1729	return true;
1730}
1731
1732static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1733					sector_t start, sector_t len, void *data)
1734{
1735	char b[BDEVNAME_SIZE];
1736
1737	/* For now, NVMe devices are the only devices of this class */
1738	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1739}
1740
1741static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1742{
1743	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1744}
1745
1746static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1747					 sector_t start, sector_t len, void *data)
1748{
1749	struct request_queue *q = bdev_get_queue(dev->bdev);
1750
1751	return q && !q->limits.max_write_same_sectors;
1752}
1753
1754static bool dm_table_supports_write_same(struct dm_table *t)
1755{
1756	struct dm_target *ti;
1757	unsigned i;
1758
1759	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1760		ti = dm_table_get_target(t, i);
1761
1762		if (!ti->num_write_same_bios)
1763			return false;
1764
1765		if (!ti->type->iterate_devices ||
1766		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1767			return false;
1768	}
1769
1770	return true;
1771}
1772
1773static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1774					   sector_t start, sector_t len, void *data)
1775{
1776	struct request_queue *q = bdev_get_queue(dev->bdev);
1777
1778	return q && !q->limits.max_write_zeroes_sectors;
1779}
1780
1781static bool dm_table_supports_write_zeroes(struct dm_table *t)
1782{
1783	struct dm_target *ti;
1784	unsigned i = 0;
1785
1786	while (i < dm_table_get_num_targets(t)) {
1787		ti = dm_table_get_target(t, i++);
1788
1789		if (!ti->num_write_zeroes_bios)
1790			return false;
1791
1792		if (!ti->type->iterate_devices ||
1793		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1794			return false;
1795	}
1796
1797	return true;
1798}
1799
1800static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1801				      sector_t start, sector_t len, void *data)
1802{
1803	struct request_queue *q = bdev_get_queue(dev->bdev);
1804
1805	return q && !blk_queue_discard(q);
1806}
1807
1808static bool dm_table_supports_discards(struct dm_table *t)
1809{
1810	struct dm_target *ti;
1811	unsigned i;
1812
1813	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1814		ti = dm_table_get_target(t, i);
1815
1816		if (!ti->num_discard_bios)
1817			return false;
1818
1819		/*
1820		 * Either the target provides discard support (as implied by setting
1821		 * 'discards_supported') or it relies on _all_ data devices having
1822		 * discard support.
1823		 */
1824		if (!ti->discards_supported &&
1825		    (!ti->type->iterate_devices ||
1826		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1827			return false;
1828	}
1829
1830	return true;
1831}
1832
1833static int device_not_secure_erase_capable(struct dm_target *ti,
1834					   struct dm_dev *dev, sector_t start,
1835					   sector_t len, void *data)
1836{
1837	struct request_queue *q = bdev_get_queue(dev->bdev);
1838
1839	return q && !blk_queue_secure_erase(q);
1840}
1841
1842static bool dm_table_supports_secure_erase(struct dm_table *t)
1843{
1844	struct dm_target *ti;
1845	unsigned int i;
1846
1847	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1848		ti = dm_table_get_target(t, i);
1849
1850		if (!ti->num_secure_erase_bios)
1851			return false;
1852
1853		if (!ti->type->iterate_devices ||
1854		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1855			return false;
1856	}
1857
1858	return true;
1859}
1860
1861static int device_requires_stable_pages(struct dm_target *ti,
1862					struct dm_dev *dev, sector_t start,
1863					sector_t len, void *data)
1864{
1865	struct request_queue *q = bdev_get_queue(dev->bdev);
1866
1867	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1868}
1869
1870/*
1871 * If any underlying device requires stable pages, a table must require
1872 * them as well.  Only targets that support iterate_devices are considered:
1873 * don't want error, zero, etc to require stable pages.
1874 */
1875static bool dm_table_requires_stable_pages(struct dm_table *t)
1876{
1877	struct dm_target *ti;
1878	unsigned i;
1879
1880	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1881		ti = dm_table_get_target(t, i);
1882
1883		if (ti->type->iterate_devices &&
1884		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1885			return true;
1886	}
1887
1888	return false;
1889}
1890
1891void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1892			       struct queue_limits *limits)
1893{
1894	bool wc = false, fua = false;
1895	int page_size = PAGE_SIZE;
1896
1897	/*
1898	 * Copy table's limits to the DM device's request_queue
1899	 */
1900	q->limits = *limits;
1901
 
 
 
 
 
1902	if (!dm_table_supports_discards(t)) {
1903		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1904		/* Must also clear discard limits... */
1905		q->limits.max_discard_sectors = 0;
1906		q->limits.max_hw_discard_sectors = 0;
1907		q->limits.discard_granularity = 0;
1908		q->limits.discard_alignment = 0;
1909		q->limits.discard_misaligned = 0;
1910	} else
1911		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1912
1913	if (dm_table_supports_secure_erase(t))
1914		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1915
1916	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1917		wc = true;
1918		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1919			fua = true;
1920	}
1921	blk_queue_write_cache(q, wc, fua);
1922
1923	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1924		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1925		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1926			set_dax_synchronous(t->md->dax_dev);
1927	}
1928	else
1929		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1930
1931	if (dm_table_supports_dax_write_cache(t))
1932		dax_write_cache(t->md->dax_dev, true);
1933
1934	/* Ensure that all underlying devices are non-rotational. */
1935	if (dm_table_all_devices_attribute(t, device_is_nonrot))
 
 
1936		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1937	else
1938		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1939
1940	if (!dm_table_supports_write_same(t))
1941		q->limits.max_write_same_sectors = 0;
1942	if (!dm_table_supports_write_zeroes(t))
1943		q->limits.max_write_zeroes_sectors = 0;
1944
1945	dm_table_verify_integrity(t);
1946
1947	/*
1948	 * Some devices don't use blk_integrity but still want stable pages
1949	 * because they do their own checksumming.
 
 
 
1950	 */
1951	if (dm_table_requires_stable_pages(t))
1952		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1953	else
1954		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1955
1956	/*
1957	 * Determine whether or not this queue's I/O timings contribute
1958	 * to the entropy pool, Only request-based targets use this.
1959	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1960	 * have it set.
1961	 */
1962	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
 
1963		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1964
1965	/*
1966	 * For a zoned target, the number of zones should be updated for the
1967	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1968	 * target, this is all that is needed. For a request based target, the
1969	 * queue zone bitmaps must also be updated.
1970	 * Use blk_revalidate_disk_zones() to handle this.
1971	 */
1972	if (blk_queue_is_zoned(q))
1973		blk_revalidate_disk_zones(t->md->disk);
 
 
 
 
 
 
 
 
1974
1975	/* Allow reads to exceed readahead limits */
1976	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1977}
 
 
 
 
 
 
 
 
 
 
1978
1979unsigned int dm_table_get_num_targets(struct dm_table *t)
1980{
1981	return t->num_targets;
1982}
1983
1984struct list_head *dm_table_get_devices(struct dm_table *t)
1985{
1986	return &t->devices;
1987}
1988
1989fmode_t dm_table_get_mode(struct dm_table *t)
1990{
1991	return t->mode;
1992}
1993EXPORT_SYMBOL(dm_table_get_mode);
1994
1995enum suspend_mode {
1996	PRESUSPEND,
1997	PRESUSPEND_UNDO,
1998	POSTSUSPEND,
1999};
2000
2001static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2002{
2003	int i = t->num_targets;
2004	struct dm_target *ti = t->targets;
2005
2006	lockdep_assert_held(&t->md->suspend_lock);
 
2007
2008	while (i--) {
2009		switch (mode) {
2010		case PRESUSPEND:
2011			if (ti->type->presuspend)
2012				ti->type->presuspend(ti);
2013			break;
2014		case PRESUSPEND_UNDO:
2015			if (ti->type->presuspend_undo)
2016				ti->type->presuspend_undo(ti);
2017			break;
2018		case POSTSUSPEND:
2019			if (ti->type->postsuspend)
2020				ti->type->postsuspend(ti);
2021			break;
2022		}
2023		ti++;
2024	}
2025}
2026
2027void dm_table_presuspend_targets(struct dm_table *t)
2028{
2029	if (!t)
2030		return;
2031
2032	suspend_targets(t, PRESUSPEND);
2033}
2034
2035void dm_table_presuspend_undo_targets(struct dm_table *t)
2036{
2037	if (!t)
2038		return;
2039
2040	suspend_targets(t, PRESUSPEND_UNDO);
2041}
2042
2043void dm_table_postsuspend_targets(struct dm_table *t)
2044{
2045	if (!t)
2046		return;
2047
2048	suspend_targets(t, POSTSUSPEND);
2049}
2050
2051int dm_table_resume_targets(struct dm_table *t)
2052{
2053	int i, r = 0;
 
2054
2055	lockdep_assert_held(&t->md->suspend_lock);
2056
2057	for (i = 0; i < t->num_targets; i++) {
2058		struct dm_target *ti = t->targets + i;
2059
2060		if (!ti->type->preresume)
2061			continue;
2062
2063		r = ti->type->preresume(ti);
2064		if (r) {
2065			DMERR("%s: %s: preresume failed, error = %d",
2066			      dm_device_name(t->md), ti->type->name, r);
2067			return r;
2068		}
2069	}
2070
2071	for (i = 0; i < t->num_targets; i++) {
2072		struct dm_target *ti = t->targets + i;
2073
2074		if (ti->type->resume)
2075			ti->type->resume(ti);
2076	}
2077
2078	return 0;
2079}
2080
2081void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2082{
2083	list_add(&cb->list, &t->target_callbacks);
2084}
2085EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2086
2087int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2088{
2089	struct dm_dev_internal *dd;
2090	struct list_head *devices = dm_table_get_devices(t);
2091	struct dm_target_callbacks *cb;
2092	int r = 0;
2093
2094	list_for_each_entry(dd, devices, list) {
2095		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2096		char b[BDEVNAME_SIZE];
2097
2098		if (likely(q))
2099			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2100		else
2101			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2102				     dm_device_name(t->md),
2103				     bdevname(dd->dm_dev->bdev, b));
2104	}
2105
2106	list_for_each_entry(cb, &t->target_callbacks, list)
2107		if (cb->congested_fn)
2108			r |= cb->congested_fn(cb, bdi_bits);
2109
2110	return r;
2111}
2112
2113struct mapped_device *dm_table_get_md(struct dm_table *t)
2114{
2115	return t->md;
2116}
2117EXPORT_SYMBOL(dm_table_get_md);
2118
2119const char *dm_table_device_name(struct dm_table *t)
2120{
2121	return dm_device_name(t->md);
2122}
2123EXPORT_SYMBOL_GPL(dm_table_device_name);
2124
2125void dm_table_run_md_queue_async(struct dm_table *t)
2126{
2127	struct mapped_device *md;
2128	struct request_queue *queue;
2129
2130	if (!dm_table_request_based(t))
2131		return;
2132
2133	md = dm_table_get_md(t);
2134	queue = dm_get_md_queue(md);
2135	if (queue)
2136		blk_mq_run_hw_queues(queue, true);
2137}
2138EXPORT_SYMBOL(dm_table_run_md_queue_async);
2139