Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11
12#include <linux/module.h>
13#include <linux/vmalloc.h>
14#include <linux/blkdev.h>
15#include <linux/blk-integrity.h>
16#include <linux/namei.h>
17#include <linux/ctype.h>
18#include <linux/string.h>
19#include <linux/slab.h>
20#include <linux/interrupt.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/atomic.h>
24#include <linux/blk-mq.h>
25#include <linux/mount.h>
26#include <linux/dax.h>
27
28#define DM_MSG_PREFIX "table"
29
30#define NODE_SIZE L1_CACHE_BYTES
31#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34/*
35 * Similar to ceiling(log_size(n))
36 */
37static unsigned int int_log(unsigned int n, unsigned int base)
38{
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47}
48
49/*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
52static inline unsigned int get_child(unsigned int n, unsigned int k)
53{
54 return (n * CHILDREN_PER_NODE) + k;
55}
56
57/*
58 * Return the n'th node of level l from table t.
59 */
60static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62{
63 return t->index[l] + (n * KEYS_PER_NODE);
64}
65
66/*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
70static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71{
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79}
80
81/*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
85static int setup_btree_index(unsigned int l, struct dm_table *t)
86{
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98}
99
100/*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
104static int alloc_targets(struct dm_table *t, unsigned int num)
105{
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127}
128
129int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131{
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 *result = t;
164 return 0;
165}
166
167static void free_devices(struct list_head *devices, struct mapped_device *md)
168{
169 struct list_head *tmp, *next;
170
171 list_for_each_safe(tmp, next, devices) {
172 struct dm_dev_internal *dd =
173 list_entry(tmp, struct dm_dev_internal, list);
174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175 dm_device_name(md), dd->dm_dev->name);
176 dm_put_table_device(md, dd->dm_dev);
177 kfree(dd);
178 }
179}
180
181static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
183void dm_table_destroy(struct dm_table *t)
184{
185 if (!t)
186 return;
187
188 /* free the indexes */
189 if (t->depth >= 2)
190 kvfree(t->index[t->depth - 2]);
191
192 /* free the targets */
193 for (unsigned int i = 0; i < t->num_targets; i++) {
194 struct dm_target *ti = dm_table_get_target(t, i);
195
196 if (ti->type->dtr)
197 ti->type->dtr(ti);
198
199 dm_put_target_type(ti->type);
200 }
201
202 kvfree(t->highs);
203
204 /* free the device list */
205 free_devices(&t->devices, t->md);
206
207 dm_free_md_mempools(t->mempools);
208
209 dm_table_destroy_crypto_profile(t);
210
211 kfree(t);
212}
213
214/*
215 * See if we've already got a device in the list.
216 */
217static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218{
219 struct dm_dev_internal *dd;
220
221 list_for_each_entry(dd, l, list)
222 if (dd->dm_dev->bdev->bd_dev == dev)
223 return dd;
224
225 return NULL;
226}
227
228/*
229 * If possible, this checks an area of a destination device is invalid.
230 */
231static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232 sector_t start, sector_t len, void *data)
233{
234 struct queue_limits *limits = data;
235 struct block_device *bdev = dev->bdev;
236 sector_t dev_size = bdev_nr_sectors(bdev);
237 unsigned short logical_block_size_sectors =
238 limits->logical_block_size >> SECTOR_SHIFT;
239
240 if (!dev_size)
241 return 0;
242
243 if ((start >= dev_size) || (start + len > dev_size)) {
244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245 dm_device_name(ti->table->md), bdev,
246 (unsigned long long)start,
247 (unsigned long long)len,
248 (unsigned long long)dev_size);
249 return 1;
250 }
251
252 /*
253 * If the target is mapped to zoned block device(s), check
254 * that the zones are not partially mapped.
255 */
256 if (bdev_is_zoned(bdev)) {
257 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259 if (start & (zone_sectors - 1)) {
260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261 dm_device_name(ti->table->md),
262 (unsigned long long)start,
263 zone_sectors, bdev);
264 return 1;
265 }
266
267 /*
268 * Note: The last zone of a zoned block device may be smaller
269 * than other zones. So for a target mapping the end of a
270 * zoned block device with such a zone, len would not be zone
271 * aligned. We do not allow such last smaller zone to be part
272 * of the mapping here to ensure that mappings with multiple
273 * devices do not end up with a smaller zone in the middle of
274 * the sector range.
275 */
276 if (len & (zone_sectors - 1)) {
277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278 dm_device_name(ti->table->md),
279 (unsigned long long)len,
280 zone_sectors, bdev);
281 return 1;
282 }
283 }
284
285 if (logical_block_size_sectors <= 1)
286 return 0;
287
288 if (start & (logical_block_size_sectors - 1)) {
289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290 dm_device_name(ti->table->md),
291 (unsigned long long)start,
292 limits->logical_block_size, bdev);
293 return 1;
294 }
295
296 if (len & (logical_block_size_sectors - 1)) {
297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298 dm_device_name(ti->table->md),
299 (unsigned long long)len,
300 limits->logical_block_size, bdev);
301 return 1;
302 }
303
304 return 0;
305}
306
307/*
308 * This upgrades the mode on an already open dm_dev, being
309 * careful to leave things as they were if we fail to reopen the
310 * device and not to touch the existing bdev field in case
311 * it is accessed concurrently.
312 */
313static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314 struct mapped_device *md)
315{
316 int r;
317 struct dm_dev *old_dev, *new_dev;
318
319 old_dev = dd->dm_dev;
320
321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322 dd->dm_dev->mode | new_mode, &new_dev);
323 if (r)
324 return r;
325
326 dd->dm_dev = new_dev;
327 dm_put_table_device(md, old_dev);
328
329 return 0;
330}
331
332/*
333 * Add a device to the list, or just increment the usage count if
334 * it's already present.
335 *
336 * Note: the __ref annotation is because this function can call the __init
337 * marked early_lookup_bdev when called during early boot code from dm-init.c.
338 */
339int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340 struct dm_dev **result)
341{
342 int r;
343 dev_t dev;
344 unsigned int major, minor;
345 char dummy;
346 struct dm_dev_internal *dd;
347 struct dm_table *t = ti->table;
348
349 BUG_ON(!t);
350
351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352 /* Extract the major/minor numbers */
353 dev = MKDEV(major, minor);
354 if (MAJOR(dev) != major || MINOR(dev) != minor)
355 return -EOVERFLOW;
356 } else {
357 r = lookup_bdev(path, &dev);
358#ifndef MODULE
359 if (r && system_state < SYSTEM_RUNNING)
360 r = early_lookup_bdev(path, &dev);
361#endif
362 if (r)
363 return r;
364 }
365 if (dev == disk_devt(t->md->disk))
366 return -EINVAL;
367
368 down_write(&t->devices_lock);
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd) {
374 r = -ENOMEM;
375 goto unlock_ret_r;
376 }
377
378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379 if (r) {
380 kfree(dd);
381 goto unlock_ret_r;
382 }
383
384 refcount_set(&dd->count, 1);
385 list_add(&dd->list, &t->devices);
386 goto out;
387
388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389 r = upgrade_mode(dd, mode, t->md);
390 if (r)
391 goto unlock_ret_r;
392 }
393 refcount_inc(&dd->count);
394out:
395 up_write(&t->devices_lock);
396 *result = dd->dm_dev;
397 return 0;
398
399unlock_ret_r:
400 up_write(&t->devices_lock);
401 return r;
402}
403EXPORT_SYMBOL(dm_get_device);
404
405static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406 sector_t start, sector_t len, void *data)
407{
408 struct queue_limits *limits = data;
409 struct block_device *bdev = dev->bdev;
410 struct request_queue *q = bdev_get_queue(bdev);
411
412 if (unlikely(!q)) {
413 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414 dm_device_name(ti->table->md), bdev);
415 return 0;
416 }
417
418 if (blk_stack_limits(limits, &q->limits,
419 get_start_sect(bdev) + start) < 0)
420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421 "physical_block_size=%u, logical_block_size=%u, "
422 "alignment_offset=%u, start=%llu",
423 dm_device_name(ti->table->md), bdev,
424 q->limits.physical_block_size,
425 q->limits.logical_block_size,
426 q->limits.alignment_offset,
427 (unsigned long long) start << SECTOR_SHIFT);
428 return 0;
429}
430
431/*
432 * Decrement a device's use count and remove it if necessary.
433 */
434void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435{
436 int found = 0;
437 struct dm_table *t = ti->table;
438 struct list_head *devices = &t->devices;
439 struct dm_dev_internal *dd;
440
441 down_write(&t->devices_lock);
442
443 list_for_each_entry(dd, devices, list) {
444 if (dd->dm_dev == d) {
445 found = 1;
446 break;
447 }
448 }
449 if (!found) {
450 DMERR("%s: device %s not in table devices list",
451 dm_device_name(t->md), d->name);
452 goto unlock_ret;
453 }
454 if (refcount_dec_and_test(&dd->count)) {
455 dm_put_table_device(t->md, d);
456 list_del(&dd->list);
457 kfree(dd);
458 }
459
460unlock_ret:
461 up_write(&t->devices_lock);
462}
463EXPORT_SYMBOL(dm_put_device);
464
465/*
466 * Checks to see if the target joins onto the end of the table.
467 */
468static int adjoin(struct dm_table *t, struct dm_target *ti)
469{
470 struct dm_target *prev;
471
472 if (!t->num_targets)
473 return !ti->begin;
474
475 prev = &t->targets[t->num_targets - 1];
476 return (ti->begin == (prev->begin + prev->len));
477}
478
479/*
480 * Used to dynamically allocate the arg array.
481 *
482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483 * process messages even if some device is suspended. These messages have a
484 * small fixed number of arguments.
485 *
486 * On the other hand, dm-switch needs to process bulk data using messages and
487 * excessive use of GFP_NOIO could cause trouble.
488 */
489static char **realloc_argv(unsigned int *size, char **old_argv)
490{
491 char **argv;
492 unsigned int new_size;
493 gfp_t gfp;
494
495 if (*size) {
496 new_size = *size * 2;
497 gfp = GFP_KERNEL;
498 } else {
499 new_size = 8;
500 gfp = GFP_NOIO;
501 }
502 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503 if (argv && old_argv) {
504 memcpy(argv, old_argv, *size * sizeof(*argv));
505 *size = new_size;
506 }
507
508 kfree(old_argv);
509 return argv;
510}
511
512/*
513 * Destructively splits up the argument list to pass to ctr.
514 */
515int dm_split_args(int *argc, char ***argvp, char *input)
516{
517 char *start, *end = input, *out, **argv = NULL;
518 unsigned int array_size = 0;
519
520 *argc = 0;
521
522 if (!input) {
523 *argvp = NULL;
524 return 0;
525 }
526
527 argv = realloc_argv(&array_size, argv);
528 if (!argv)
529 return -ENOMEM;
530
531 while (1) {
532 /* Skip whitespace */
533 start = skip_spaces(end);
534
535 if (!*start)
536 break; /* success, we hit the end */
537
538 /* 'out' is used to remove any back-quotes */
539 end = out = start;
540 while (*end) {
541 /* Everything apart from '\0' can be quoted */
542 if (*end == '\\' && *(end + 1)) {
543 *out++ = *(end + 1);
544 end += 2;
545 continue;
546 }
547
548 if (isspace(*end))
549 break; /* end of token */
550
551 *out++ = *end++;
552 }
553
554 /* have we already filled the array ? */
555 if ((*argc + 1) > array_size) {
556 argv = realloc_argv(&array_size, argv);
557 if (!argv)
558 return -ENOMEM;
559 }
560
561 /* we know this is whitespace */
562 if (*end)
563 end++;
564
565 /* terminate the string and put it in the array */
566 *out = '\0';
567 argv[*argc] = start;
568 (*argc)++;
569 }
570
571 *argvp = argv;
572 return 0;
573}
574
575/*
576 * Impose necessary and sufficient conditions on a devices's table such
577 * that any incoming bio which respects its logical_block_size can be
578 * processed successfully. If it falls across the boundary between
579 * two or more targets, the size of each piece it gets split into must
580 * be compatible with the logical_block_size of the target processing it.
581 */
582static int validate_hardware_logical_block_alignment(struct dm_table *t,
583 struct queue_limits *limits)
584{
585 /*
586 * This function uses arithmetic modulo the logical_block_size
587 * (in units of 512-byte sectors).
588 */
589 unsigned short device_logical_block_size_sects =
590 limits->logical_block_size >> SECTOR_SHIFT;
591
592 /*
593 * Offset of the start of the next table entry, mod logical_block_size.
594 */
595 unsigned short next_target_start = 0;
596
597 /*
598 * Given an aligned bio that extends beyond the end of a
599 * target, how many sectors must the next target handle?
600 */
601 unsigned short remaining = 0;
602
603 struct dm_target *ti;
604 struct queue_limits ti_limits;
605 unsigned int i;
606
607 /*
608 * Check each entry in the table in turn.
609 */
610 for (i = 0; i < t->num_targets; i++) {
611 ti = dm_table_get_target(t, i);
612
613 blk_set_stacking_limits(&ti_limits);
614
615 /* combine all target devices' limits */
616 if (ti->type->iterate_devices)
617 ti->type->iterate_devices(ti, dm_set_device_limits,
618 &ti_limits);
619
620 /*
621 * If the remaining sectors fall entirely within this
622 * table entry are they compatible with its logical_block_size?
623 */
624 if (remaining < ti->len &&
625 remaining & ((ti_limits.logical_block_size >>
626 SECTOR_SHIFT) - 1))
627 break; /* Error */
628
629 next_target_start =
630 (unsigned short) ((next_target_start + ti->len) &
631 (device_logical_block_size_sects - 1));
632 remaining = next_target_start ?
633 device_logical_block_size_sects - next_target_start : 0;
634 }
635
636 if (remaining) {
637 DMERR("%s: table line %u (start sect %llu len %llu) "
638 "not aligned to h/w logical block size %u",
639 dm_device_name(t->md), i,
640 (unsigned long long) ti->begin,
641 (unsigned long long) ti->len,
642 limits->logical_block_size);
643 return -EINVAL;
644 }
645
646 return 0;
647}
648
649int dm_table_add_target(struct dm_table *t, const char *type,
650 sector_t start, sector_t len, char *params)
651{
652 int r = -EINVAL, argc;
653 char **argv;
654 struct dm_target *ti;
655
656 if (t->singleton) {
657 DMERR("%s: target type %s must appear alone in table",
658 dm_device_name(t->md), t->targets->type->name);
659 return -EINVAL;
660 }
661
662 BUG_ON(t->num_targets >= t->num_allocated);
663
664 ti = t->targets + t->num_targets;
665 memset(ti, 0, sizeof(*ti));
666
667 if (!len) {
668 DMERR("%s: zero-length target", dm_device_name(t->md));
669 return -EINVAL;
670 }
671
672 ti->type = dm_get_target_type(type);
673 if (!ti->type) {
674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675 return -EINVAL;
676 }
677
678 if (dm_target_needs_singleton(ti->type)) {
679 if (t->num_targets) {
680 ti->error = "singleton target type must appear alone in table";
681 goto bad;
682 }
683 t->singleton = true;
684 }
685
686 if (dm_target_always_writeable(ti->type) &&
687 !(t->mode & BLK_OPEN_WRITE)) {
688 ti->error = "target type may not be included in a read-only table";
689 goto bad;
690 }
691
692 if (t->immutable_target_type) {
693 if (t->immutable_target_type != ti->type) {
694 ti->error = "immutable target type cannot be mixed with other target types";
695 goto bad;
696 }
697 } else if (dm_target_is_immutable(ti->type)) {
698 if (t->num_targets) {
699 ti->error = "immutable target type cannot be mixed with other target types";
700 goto bad;
701 }
702 t->immutable_target_type = ti->type;
703 }
704
705 if (dm_target_has_integrity(ti->type))
706 t->integrity_added = 1;
707
708 ti->table = t;
709 ti->begin = start;
710 ti->len = len;
711 ti->error = "Unknown error";
712
713 /*
714 * Does this target adjoin the previous one ?
715 */
716 if (!adjoin(t, ti)) {
717 ti->error = "Gap in table";
718 goto bad;
719 }
720
721 r = dm_split_args(&argc, &argv, params);
722 if (r) {
723 ti->error = "couldn't split parameters";
724 goto bad;
725 }
726
727 r = ti->type->ctr(ti, argc, argv);
728 kfree(argv);
729 if (r)
730 goto bad;
731
732 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734 if (!ti->num_discard_bios && ti->discards_supported)
735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736 dm_device_name(t->md), type);
737
738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739 static_branch_enable(&swap_bios_enabled);
740
741 return 0;
742
743 bad:
744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745 dm_put_target_type(ti->type);
746 return r;
747}
748
749/*
750 * Target argument parsing helpers.
751 */
752static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753 unsigned int *value, char **error, unsigned int grouped)
754{
755 const char *arg_str = dm_shift_arg(arg_set);
756 char dummy;
757
758 if (!arg_str ||
759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760 (*value < arg->min) ||
761 (*value > arg->max) ||
762 (grouped && arg_set->argc < *value)) {
763 *error = arg->error;
764 return -EINVAL;
765 }
766
767 return 0;
768}
769
770int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771 unsigned int *value, char **error)
772{
773 return validate_next_arg(arg, arg_set, value, error, 0);
774}
775EXPORT_SYMBOL(dm_read_arg);
776
777int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778 unsigned int *value, char **error)
779{
780 return validate_next_arg(arg, arg_set, value, error, 1);
781}
782EXPORT_SYMBOL(dm_read_arg_group);
783
784const char *dm_shift_arg(struct dm_arg_set *as)
785{
786 char *r;
787
788 if (as->argc) {
789 as->argc--;
790 r = *as->argv;
791 as->argv++;
792 return r;
793 }
794
795 return NULL;
796}
797EXPORT_SYMBOL(dm_shift_arg);
798
799void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800{
801 BUG_ON(as->argc < num_args);
802 as->argc -= num_args;
803 as->argv += num_args;
804}
805EXPORT_SYMBOL(dm_consume_args);
806
807static bool __table_type_bio_based(enum dm_queue_mode table_type)
808{
809 return (table_type == DM_TYPE_BIO_BASED ||
810 table_type == DM_TYPE_DAX_BIO_BASED);
811}
812
813static bool __table_type_request_based(enum dm_queue_mode table_type)
814{
815 return table_type == DM_TYPE_REQUEST_BASED;
816}
817
818void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819{
820 t->type = type;
821}
822EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824/* validate the dax capability of the target device span */
825static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826 sector_t start, sector_t len, void *data)
827{
828 if (dev->dax_dev)
829 return false;
830
831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832 return true;
833}
834
835/* Check devices support synchronous DAX */
836static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837 sector_t start, sector_t len, void *data)
838{
839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840}
841
842static bool dm_table_supports_dax(struct dm_table *t,
843 iterate_devices_callout_fn iterate_fn)
844{
845 /* Ensure that all targets support DAX. */
846 for (unsigned int i = 0; i < t->num_targets; i++) {
847 struct dm_target *ti = dm_table_get_target(t, i);
848
849 if (!ti->type->direct_access)
850 return false;
851
852 if (dm_target_is_wildcard(ti->type) ||
853 !ti->type->iterate_devices ||
854 ti->type->iterate_devices(ti, iterate_fn, NULL))
855 return false;
856 }
857
858 return true;
859}
860
861static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862 sector_t start, sector_t len, void *data)
863{
864 struct block_device *bdev = dev->bdev;
865 struct request_queue *q = bdev_get_queue(bdev);
866
867 /* request-based cannot stack on partitions! */
868 if (bdev_is_partition(bdev))
869 return false;
870
871 return queue_is_mq(q);
872}
873
874static int dm_table_determine_type(struct dm_table *t)
875{
876 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877 struct dm_target *ti;
878 struct list_head *devices = dm_table_get_devices(t);
879 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880
881 if (t->type != DM_TYPE_NONE) {
882 /* target already set the table's type */
883 if (t->type == DM_TYPE_BIO_BASED) {
884 /* possibly upgrade to a variant of bio-based */
885 goto verify_bio_based;
886 }
887 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888 goto verify_rq_based;
889 }
890
891 for (unsigned int i = 0; i < t->num_targets; i++) {
892 ti = dm_table_get_target(t, i);
893 if (dm_target_hybrid(ti))
894 hybrid = 1;
895 else if (dm_target_request_based(ti))
896 request_based = 1;
897 else
898 bio_based = 1;
899
900 if (bio_based && request_based) {
901 DMERR("Inconsistent table: different target types can't be mixed up");
902 return -EINVAL;
903 }
904 }
905
906 if (hybrid && !bio_based && !request_based) {
907 /*
908 * The targets can work either way.
909 * Determine the type from the live device.
910 * Default to bio-based if device is new.
911 */
912 if (__table_type_request_based(live_md_type))
913 request_based = 1;
914 else
915 bio_based = 1;
916 }
917
918 if (bio_based) {
919verify_bio_based:
920 /* We must use this table as bio-based */
921 t->type = DM_TYPE_BIO_BASED;
922 if (dm_table_supports_dax(t, device_not_dax_capable) ||
923 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924 t->type = DM_TYPE_DAX_BIO_BASED;
925 }
926 return 0;
927 }
928
929 BUG_ON(!request_based); /* No targets in this table */
930
931 t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934 /*
935 * Request-based dm supports only tables that have a single target now.
936 * To support multiple targets, request splitting support is needed,
937 * and that needs lots of changes in the block-layer.
938 * (e.g. request completion process for partial completion.)
939 */
940 if (t->num_targets > 1) {
941 DMERR("request-based DM doesn't support multiple targets");
942 return -EINVAL;
943 }
944
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949 /* inherit live table's type */
950 if (live_table)
951 t->type = live_table->type;
952 dm_put_live_table(t->md, srcu_idx);
953 return 0;
954 }
955
956 ti = dm_table_get_immutable_target(t);
957 if (!ti) {
958 DMERR("table load rejected: immutable target is required");
959 return -EINVAL;
960 } else if (ti->max_io_len) {
961 DMERR("table load rejected: immutable target that splits IO is not supported");
962 return -EINVAL;
963 }
964
965 /* Non-request-stackable devices can't be used for request-based dm */
966 if (!ti->type->iterate_devices ||
967 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968 DMERR("table load rejected: including non-request-stackable devices");
969 return -EINVAL;
970 }
971
972 return 0;
973}
974
975enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976{
977 return t->type;
978}
979
980struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981{
982 return t->immutable_target_type;
983}
984
985struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986{
987 /* Immutable target is implicitly a singleton */
988 if (t->num_targets > 1 ||
989 !dm_target_is_immutable(t->targets[0].type))
990 return NULL;
991
992 return t->targets;
993}
994
995struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996{
997 for (unsigned int i = 0; i < t->num_targets; i++) {
998 struct dm_target *ti = dm_table_get_target(t, i);
999
1000 if (dm_target_is_wildcard(ti->type))
1001 return ti;
1002 }
1003
1004 return NULL;
1005}
1006
1007bool dm_table_bio_based(struct dm_table *t)
1008{
1009 return __table_type_bio_based(dm_table_get_type(t));
1010}
1011
1012bool dm_table_request_based(struct dm_table *t)
1013{
1014 return __table_type_request_based(dm_table_get_type(t));
1015}
1016
1017static bool dm_table_supports_poll(struct dm_table *t);
1018
1019static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020{
1021 enum dm_queue_mode type = dm_table_get_type(t);
1022 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023 unsigned int min_pool_size = 0, pool_size;
1024 struct dm_md_mempools *pools;
1025
1026 if (unlikely(type == DM_TYPE_NONE)) {
1027 DMERR("no table type is set, can't allocate mempools");
1028 return -EINVAL;
1029 }
1030
1031 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032 if (!pools)
1033 return -ENOMEM;
1034
1035 if (type == DM_TYPE_REQUEST_BASED) {
1036 pool_size = dm_get_reserved_rq_based_ios();
1037 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038 goto init_bs;
1039 }
1040
1041 for (unsigned int i = 0; i < t->num_targets; i++) {
1042 struct dm_target *ti = dm_table_get_target(t, i);
1043
1044 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046 }
1047 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048 front_pad = roundup(per_io_data_size,
1049 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051 io_front_pad = roundup(per_io_data_size,
1052 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055 goto out_free_pools;
1056 if (t->integrity_supported &&
1057 bioset_integrity_create(&pools->io_bs, pool_size))
1058 goto out_free_pools;
1059init_bs:
1060 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061 goto out_free_pools;
1062 if (t->integrity_supported &&
1063 bioset_integrity_create(&pools->bs, pool_size))
1064 goto out_free_pools;
1065
1066 t->mempools = pools;
1067 return 0;
1068
1069out_free_pools:
1070 dm_free_md_mempools(pools);
1071 return -ENOMEM;
1072}
1073
1074static int setup_indexes(struct dm_table *t)
1075{
1076 int i;
1077 unsigned int total = 0;
1078 sector_t *indexes;
1079
1080 /* allocate the space for *all* the indexes */
1081 for (i = t->depth - 2; i >= 0; i--) {
1082 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083 total += t->counts[i];
1084 }
1085
1086 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087 if (!indexes)
1088 return -ENOMEM;
1089
1090 /* set up internal nodes, bottom-up */
1091 for (i = t->depth - 2; i >= 0; i--) {
1092 t->index[i] = indexes;
1093 indexes += (KEYS_PER_NODE * t->counts[i]);
1094 setup_btree_index(i, t);
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Builds the btree to index the map.
1102 */
1103static int dm_table_build_index(struct dm_table *t)
1104{
1105 int r = 0;
1106 unsigned int leaf_nodes;
1107
1108 /* how many indexes will the btree have ? */
1109 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112 /* leaf layer has already been set up */
1113 t->counts[t->depth - 1] = leaf_nodes;
1114 t->index[t->depth - 1] = t->highs;
1115
1116 if (t->depth >= 2)
1117 r = setup_indexes(t);
1118
1119 return r;
1120}
1121
1122static bool integrity_profile_exists(struct gendisk *disk)
1123{
1124 return !!blk_get_integrity(disk);
1125}
1126
1127/*
1128 * Get a disk whose integrity profile reflects the table's profile.
1129 * Returns NULL if integrity support was inconsistent or unavailable.
1130 */
1131static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132{
1133 struct list_head *devices = dm_table_get_devices(t);
1134 struct dm_dev_internal *dd = NULL;
1135 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137 for (unsigned int i = 0; i < t->num_targets; i++) {
1138 struct dm_target *ti = dm_table_get_target(t, i);
1139
1140 if (!dm_target_passes_integrity(ti->type))
1141 goto no_integrity;
1142 }
1143
1144 list_for_each_entry(dd, devices, list) {
1145 template_disk = dd->dm_dev->bdev->bd_disk;
1146 if (!integrity_profile_exists(template_disk))
1147 goto no_integrity;
1148 else if (prev_disk &&
1149 blk_integrity_compare(prev_disk, template_disk) < 0)
1150 goto no_integrity;
1151 prev_disk = template_disk;
1152 }
1153
1154 return template_disk;
1155
1156no_integrity:
1157 if (prev_disk)
1158 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159 dm_device_name(t->md),
1160 prev_disk->disk_name,
1161 template_disk->disk_name);
1162 return NULL;
1163}
1164
1165/*
1166 * Register the mapped device for blk_integrity support if the
1167 * underlying devices have an integrity profile. But all devices may
1168 * not have matching profiles (checking all devices isn't reliable
1169 * during table load because this table may use other DM device(s) which
1170 * must be resumed before they will have an initialized integity
1171 * profile). Consequently, stacked DM devices force a 2 stage integrity
1172 * profile validation: First pass during table load, final pass during
1173 * resume.
1174 */
1175static int dm_table_register_integrity(struct dm_table *t)
1176{
1177 struct mapped_device *md = t->md;
1178 struct gendisk *template_disk = NULL;
1179
1180 /* If target handles integrity itself do not register it here. */
1181 if (t->integrity_added)
1182 return 0;
1183
1184 template_disk = dm_table_get_integrity_disk(t);
1185 if (!template_disk)
1186 return 0;
1187
1188 if (!integrity_profile_exists(dm_disk(md))) {
1189 t->integrity_supported = true;
1190 /*
1191 * Register integrity profile during table load; we can do
1192 * this because the final profile must match during resume.
1193 */
1194 blk_integrity_register(dm_disk(md),
1195 blk_get_integrity(template_disk));
1196 return 0;
1197 }
1198
1199 /*
1200 * If DM device already has an initialized integrity
1201 * profile the new profile should not conflict.
1202 */
1203 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205 dm_device_name(t->md),
1206 template_disk->disk_name);
1207 return 1;
1208 }
1209
1210 /* Preserve existing integrity profile */
1211 t->integrity_supported = true;
1212 return 0;
1213}
1214
1215#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217struct dm_crypto_profile {
1218 struct blk_crypto_profile profile;
1219 struct mapped_device *md;
1220};
1221
1222static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223 sector_t start, sector_t len, void *data)
1224{
1225 const struct blk_crypto_key *key = data;
1226
1227 blk_crypto_evict_key(dev->bdev, key);
1228 return 0;
1229}
1230
1231/*
1232 * When an inline encryption key is evicted from a device-mapper device, evict
1233 * it from all the underlying devices.
1234 */
1235static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236 const struct blk_crypto_key *key, unsigned int slot)
1237{
1238 struct mapped_device *md =
1239 container_of(profile, struct dm_crypto_profile, profile)->md;
1240 struct dm_table *t;
1241 int srcu_idx;
1242
1243 t = dm_get_live_table(md, &srcu_idx);
1244 if (!t)
1245 return 0;
1246
1247 for (unsigned int i = 0; i < t->num_targets; i++) {
1248 struct dm_target *ti = dm_table_get_target(t, i);
1249
1250 if (!ti->type->iterate_devices)
1251 continue;
1252 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253 (void *)key);
1254 }
1255
1256 dm_put_live_table(md, srcu_idx);
1257 return 0;
1258}
1259
1260static int
1261device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262 sector_t start, sector_t len, void *data)
1263{
1264 struct blk_crypto_profile *parent = data;
1265 struct blk_crypto_profile *child =
1266 bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268 blk_crypto_intersect_capabilities(parent, child);
1269 return 0;
1270}
1271
1272void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273{
1274 struct dm_crypto_profile *dmcp = container_of(profile,
1275 struct dm_crypto_profile,
1276 profile);
1277
1278 if (!profile)
1279 return;
1280
1281 blk_crypto_profile_destroy(profile);
1282 kfree(dmcp);
1283}
1284
1285static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286{
1287 dm_destroy_crypto_profile(t->crypto_profile);
1288 t->crypto_profile = NULL;
1289}
1290
1291/*
1292 * Constructs and initializes t->crypto_profile with a crypto profile that
1293 * represents the common set of crypto capabilities of the devices described by
1294 * the dm_table. However, if the constructed crypto profile doesn't support all
1295 * crypto capabilities that are supported by the current mapped_device, it
1296 * returns an error instead, since we don't support removing crypto capabilities
1297 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1298 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299 */
1300static int dm_table_construct_crypto_profile(struct dm_table *t)
1301{
1302 struct dm_crypto_profile *dmcp;
1303 struct blk_crypto_profile *profile;
1304 unsigned int i;
1305 bool empty_profile = true;
1306
1307 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308 if (!dmcp)
1309 return -ENOMEM;
1310 dmcp->md = t->md;
1311
1312 profile = &dmcp->profile;
1313 blk_crypto_profile_init(profile, 0);
1314 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315 profile->max_dun_bytes_supported = UINT_MAX;
1316 memset(profile->modes_supported, 0xFF,
1317 sizeof(profile->modes_supported));
1318
1319 for (i = 0; i < t->num_targets; i++) {
1320 struct dm_target *ti = dm_table_get_target(t, i);
1321
1322 if (!dm_target_passes_crypto(ti->type)) {
1323 blk_crypto_intersect_capabilities(profile, NULL);
1324 break;
1325 }
1326 if (!ti->type->iterate_devices)
1327 continue;
1328 ti->type->iterate_devices(ti,
1329 device_intersect_crypto_capabilities,
1330 profile);
1331 }
1332
1333 if (t->md->queue &&
1334 !blk_crypto_has_capabilities(profile,
1335 t->md->queue->crypto_profile)) {
1336 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337 dm_destroy_crypto_profile(profile);
1338 return -EINVAL;
1339 }
1340
1341 /*
1342 * If the new profile doesn't actually support any crypto capabilities,
1343 * we may as well represent it with a NULL profile.
1344 */
1345 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346 if (profile->modes_supported[i]) {
1347 empty_profile = false;
1348 break;
1349 }
1350 }
1351
1352 if (empty_profile) {
1353 dm_destroy_crypto_profile(profile);
1354 profile = NULL;
1355 }
1356
1357 /*
1358 * t->crypto_profile is only set temporarily while the table is being
1359 * set up, and it gets set to NULL after the profile has been
1360 * transferred to the request_queue.
1361 */
1362 t->crypto_profile = profile;
1363
1364 return 0;
1365}
1366
1367static void dm_update_crypto_profile(struct request_queue *q,
1368 struct dm_table *t)
1369{
1370 if (!t->crypto_profile)
1371 return;
1372
1373 /* Make the crypto profile less restrictive. */
1374 if (!q->crypto_profile) {
1375 blk_crypto_register(t->crypto_profile, q);
1376 } else {
1377 blk_crypto_update_capabilities(q->crypto_profile,
1378 t->crypto_profile);
1379 dm_destroy_crypto_profile(t->crypto_profile);
1380 }
1381 t->crypto_profile = NULL;
1382}
1383
1384#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386static int dm_table_construct_crypto_profile(struct dm_table *t)
1387{
1388 return 0;
1389}
1390
1391void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392{
1393}
1394
1395static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396{
1397}
1398
1399static void dm_update_crypto_profile(struct request_queue *q,
1400 struct dm_table *t)
1401{
1402}
1403
1404#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406/*
1407 * Prepares the table for use by building the indices,
1408 * setting the type, and allocating mempools.
1409 */
1410int dm_table_complete(struct dm_table *t)
1411{
1412 int r;
1413
1414 r = dm_table_determine_type(t);
1415 if (r) {
1416 DMERR("unable to determine table type");
1417 return r;
1418 }
1419
1420 r = dm_table_build_index(t);
1421 if (r) {
1422 DMERR("unable to build btrees");
1423 return r;
1424 }
1425
1426 r = dm_table_register_integrity(t);
1427 if (r) {
1428 DMERR("could not register integrity profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_construct_crypto_profile(t);
1433 if (r) {
1434 DMERR("could not construct crypto profile.");
1435 return r;
1436 }
1437
1438 r = dm_table_alloc_md_mempools(t, t->md);
1439 if (r)
1440 DMERR("unable to allocate mempools");
1441
1442 return r;
1443}
1444
1445static DEFINE_MUTEX(_event_lock);
1446void dm_table_event_callback(struct dm_table *t,
1447 void (*fn)(void *), void *context)
1448{
1449 mutex_lock(&_event_lock);
1450 t->event_fn = fn;
1451 t->event_context = context;
1452 mutex_unlock(&_event_lock);
1453}
1454
1455void dm_table_event(struct dm_table *t)
1456{
1457 mutex_lock(&_event_lock);
1458 if (t->event_fn)
1459 t->event_fn(t->event_context);
1460 mutex_unlock(&_event_lock);
1461}
1462EXPORT_SYMBOL(dm_table_event);
1463
1464inline sector_t dm_table_get_size(struct dm_table *t)
1465{
1466 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467}
1468EXPORT_SYMBOL(dm_table_get_size);
1469
1470/*
1471 * Search the btree for the correct target.
1472 *
1473 * Caller should check returned pointer for NULL
1474 * to trap I/O beyond end of device.
1475 */
1476struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477{
1478 unsigned int l, n = 0, k = 0;
1479 sector_t *node;
1480
1481 if (unlikely(sector >= dm_table_get_size(t)))
1482 return NULL;
1483
1484 for (l = 0; l < t->depth; l++) {
1485 n = get_child(n, k);
1486 node = get_node(t, l, n);
1487
1488 for (k = 0; k < KEYS_PER_NODE; k++)
1489 if (node[k] >= sector)
1490 break;
1491 }
1492
1493 return &t->targets[(KEYS_PER_NODE * n) + k];
1494}
1495
1496static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497 sector_t start, sector_t len, void *data)
1498{
1499 struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502}
1503
1504/*
1505 * type->iterate_devices() should be called when the sanity check needs to
1506 * iterate and check all underlying data devices. iterate_devices() will
1507 * iterate all underlying data devices until it encounters a non-zero return
1508 * code, returned by whether the input iterate_devices_callout_fn, or
1509 * iterate_devices() itself internally.
1510 *
1511 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512 * iterate multiple underlying devices internally, in which case a non-zero
1513 * return code returned by iterate_devices_callout_fn will stop the iteration
1514 * in advance.
1515 *
1516 * Cases requiring _any_ underlying device supporting some kind of attribute,
1517 * should use the iteration structure like dm_table_any_dev_attr(), or call
1518 * it directly. @func should handle semantics of positive examples, e.g.
1519 * capable of something.
1520 *
1521 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522 * should use the iteration structure like dm_table_supports_nowait() or
1523 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524 * uses an @anti_func that handle semantics of counter examples, e.g. not
1525 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526 */
1527static bool dm_table_any_dev_attr(struct dm_table *t,
1528 iterate_devices_callout_fn func, void *data)
1529{
1530 for (unsigned int i = 0; i < t->num_targets; i++) {
1531 struct dm_target *ti = dm_table_get_target(t, i);
1532
1533 if (ti->type->iterate_devices &&
1534 ti->type->iterate_devices(ti, func, data))
1535 return true;
1536 }
1537
1538 return false;
1539}
1540
1541static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542 sector_t start, sector_t len, void *data)
1543{
1544 unsigned int *num_devices = data;
1545
1546 (*num_devices)++;
1547
1548 return 0;
1549}
1550
1551static bool dm_table_supports_poll(struct dm_table *t)
1552{
1553 for (unsigned int i = 0; i < t->num_targets; i++) {
1554 struct dm_target *ti = dm_table_get_target(t, i);
1555
1556 if (!ti->type->iterate_devices ||
1557 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558 return false;
1559 }
1560
1561 return true;
1562}
1563
1564/*
1565 * Check whether a table has no data devices attached using each
1566 * target's iterate_devices method.
1567 * Returns false if the result is unknown because a target doesn't
1568 * support iterate_devices.
1569 */
1570bool dm_table_has_no_data_devices(struct dm_table *t)
1571{
1572 for (unsigned int i = 0; i < t->num_targets; i++) {
1573 struct dm_target *ti = dm_table_get_target(t, i);
1574 unsigned int num_devices = 0;
1575
1576 if (!ti->type->iterate_devices)
1577 return false;
1578
1579 ti->type->iterate_devices(ti, count_device, &num_devices);
1580 if (num_devices)
1581 return false;
1582 }
1583
1584 return true;
1585}
1586
1587static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588 sector_t start, sector_t len, void *data)
1589{
1590 bool *zoned = data;
1591
1592 return bdev_is_zoned(dev->bdev) != *zoned;
1593}
1594
1595static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596 sector_t start, sector_t len, void *data)
1597{
1598 return bdev_is_zoned(dev->bdev);
1599}
1600
1601/*
1602 * Check the device zoned model based on the target feature flag. If the target
1603 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604 * also accepted but all devices must have the same zoned model. If the target
1605 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606 * zoned model with all zoned devices having the same zone size.
1607 */
1608static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609{
1610 for (unsigned int i = 0; i < t->num_targets; i++) {
1611 struct dm_target *ti = dm_table_get_target(t, i);
1612
1613 /*
1614 * For the wildcard target (dm-error), if we do not have a
1615 * backing device, we must always return false. If we have a
1616 * backing device, the result must depend on checking zoned
1617 * model, like for any other target. So for this, check directly
1618 * if the target backing device is zoned as we get "false" when
1619 * dm-error was set without a backing device.
1620 */
1621 if (dm_target_is_wildcard(ti->type) &&
1622 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623 return false;
1624
1625 if (dm_target_supports_zoned_hm(ti->type)) {
1626 if (!ti->type->iterate_devices ||
1627 ti->type->iterate_devices(ti, device_not_zoned,
1628 &zoned))
1629 return false;
1630 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631 if (zoned)
1632 return false;
1633 }
1634 }
1635
1636 return true;
1637}
1638
1639static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned int *zone_sectors = data;
1643
1644 if (!bdev_is_zoned(dev->bdev))
1645 return 0;
1646 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647}
1648
1649/*
1650 * Check consistency of zoned model and zone sectors across all targets. For
1651 * zone sectors, if the destination device is a zoned block device, it shall
1652 * have the specified zone_sectors.
1653 */
1654static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655 unsigned int zone_sectors)
1656{
1657 if (!zoned)
1658 return 0;
1659
1660 if (!dm_table_supports_zoned(t, zoned)) {
1661 DMERR("%s: zoned model is not consistent across all devices",
1662 dm_device_name(t->md));
1663 return -EINVAL;
1664 }
1665
1666 /* Check zone size validity and compatibility */
1667 if (!zone_sectors || !is_power_of_2(zone_sectors))
1668 return -EINVAL;
1669
1670 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671 DMERR("%s: zone sectors is not consistent across all zoned devices",
1672 dm_device_name(t->md));
1673 return -EINVAL;
1674 }
1675
1676 return 0;
1677}
1678
1679/*
1680 * Establish the new table's queue_limits and validate them.
1681 */
1682int dm_calculate_queue_limits(struct dm_table *t,
1683 struct queue_limits *limits)
1684{
1685 struct queue_limits ti_limits;
1686 unsigned int zone_sectors = 0;
1687 bool zoned = false;
1688
1689 blk_set_stacking_limits(limits);
1690
1691 for (unsigned int i = 0; i < t->num_targets; i++) {
1692 struct dm_target *ti = dm_table_get_target(t, i);
1693
1694 blk_set_stacking_limits(&ti_limits);
1695
1696 if (!ti->type->iterate_devices) {
1697 /* Set I/O hints portion of queue limits */
1698 if (ti->type->io_hints)
1699 ti->type->io_hints(ti, &ti_limits);
1700 goto combine_limits;
1701 }
1702
1703 /*
1704 * Combine queue limits of all the devices this target uses.
1705 */
1706 ti->type->iterate_devices(ti, dm_set_device_limits,
1707 &ti_limits);
1708
1709 if (!zoned && ti_limits.zoned) {
1710 /*
1711 * After stacking all limits, validate all devices
1712 * in table support this zoned model and zone sectors.
1713 */
1714 zoned = ti_limits.zoned;
1715 zone_sectors = ti_limits.chunk_sectors;
1716 }
1717
1718 /* Set I/O hints portion of queue limits */
1719 if (ti->type->io_hints)
1720 ti->type->io_hints(ti, &ti_limits);
1721
1722 /*
1723 * Check each device area is consistent with the target's
1724 * overall queue limits.
1725 */
1726 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727 &ti_limits))
1728 return -EINVAL;
1729
1730combine_limits:
1731 /*
1732 * Merge this target's queue limits into the overall limits
1733 * for the table.
1734 */
1735 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736 DMWARN("%s: adding target device (start sect %llu len %llu) "
1737 "caused an alignment inconsistency",
1738 dm_device_name(t->md),
1739 (unsigned long long) ti->begin,
1740 (unsigned long long) ti->len);
1741 }
1742
1743 /*
1744 * Verify that the zoned model and zone sectors, as determined before
1745 * any .io_hints override, are the same across all devices in the table.
1746 * - this is especially relevant if .io_hints is emulating a disk-managed
1747 * zoned model on host-managed zoned block devices.
1748 * BUT...
1749 */
1750 if (limits->zoned) {
1751 /*
1752 * ...IF the above limits stacking determined a zoned model
1753 * validate that all of the table's devices conform to it.
1754 */
1755 zoned = limits->zoned;
1756 zone_sectors = limits->chunk_sectors;
1757 }
1758 if (validate_hardware_zoned(t, zoned, zone_sectors))
1759 return -EINVAL;
1760
1761 return validate_hardware_logical_block_alignment(t, limits);
1762}
1763
1764/*
1765 * Verify that all devices have an integrity profile that matches the
1766 * DM device's registered integrity profile. If the profiles don't
1767 * match then unregister the DM device's integrity profile.
1768 */
1769static void dm_table_verify_integrity(struct dm_table *t)
1770{
1771 struct gendisk *template_disk = NULL;
1772
1773 if (t->integrity_added)
1774 return;
1775
1776 if (t->integrity_supported) {
1777 /*
1778 * Verify that the original integrity profile
1779 * matches all the devices in this table.
1780 */
1781 template_disk = dm_table_get_integrity_disk(t);
1782 if (template_disk &&
1783 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784 return;
1785 }
1786
1787 if (integrity_profile_exists(dm_disk(t->md))) {
1788 DMWARN("%s: unable to establish an integrity profile",
1789 dm_device_name(t->md));
1790 blk_integrity_unregister(dm_disk(t->md));
1791 }
1792}
1793
1794static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795 sector_t start, sector_t len, void *data)
1796{
1797 unsigned long flush = (unsigned long) data;
1798 struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800 return (q->queue_flags & flush);
1801}
1802
1803static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804{
1805 /*
1806 * Require at least one underlying device to support flushes.
1807 * t->devices includes internal dm devices such as mirror logs
1808 * so we need to use iterate_devices here, which targets
1809 * supporting flushes must provide.
1810 */
1811 for (unsigned int i = 0; i < t->num_targets; i++) {
1812 struct dm_target *ti = dm_table_get_target(t, i);
1813
1814 if (!ti->num_flush_bios)
1815 continue;
1816
1817 if (ti->flush_supported)
1818 return true;
1819
1820 if (ti->type->iterate_devices &&
1821 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822 return true;
1823 }
1824
1825 return false;
1826}
1827
1828static int device_dax_write_cache_enabled(struct dm_target *ti,
1829 struct dm_dev *dev, sector_t start,
1830 sector_t len, void *data)
1831{
1832 struct dax_device *dax_dev = dev->dax_dev;
1833
1834 if (!dax_dev)
1835 return false;
1836
1837 if (dax_write_cache_enabled(dax_dev))
1838 return true;
1839 return false;
1840}
1841
1842static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843 sector_t start, sector_t len, void *data)
1844{
1845 return !bdev_nonrot(dev->bdev);
1846}
1847
1848static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849 sector_t start, sector_t len, void *data)
1850{
1851 struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853 return !blk_queue_add_random(q);
1854}
1855
1856static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1858{
1859 struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861 return !q->limits.max_write_zeroes_sectors;
1862}
1863
1864static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865{
1866 for (unsigned int i = 0; i < t->num_targets; i++) {
1867 struct dm_target *ti = dm_table_get_target(t, i);
1868
1869 if (!ti->num_write_zeroes_bios)
1870 return false;
1871
1872 if (!ti->type->iterate_devices ||
1873 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874 return false;
1875 }
1876
1877 return true;
1878}
1879
1880static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881 sector_t start, sector_t len, void *data)
1882{
1883 return !bdev_nowait(dev->bdev);
1884}
1885
1886static bool dm_table_supports_nowait(struct dm_table *t)
1887{
1888 for (unsigned int i = 0; i < t->num_targets; i++) {
1889 struct dm_target *ti = dm_table_get_target(t, i);
1890
1891 if (!dm_target_supports_nowait(ti->type))
1892 return false;
1893
1894 if (!ti->type->iterate_devices ||
1895 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896 return false;
1897 }
1898
1899 return true;
1900}
1901
1902static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903 sector_t start, sector_t len, void *data)
1904{
1905 return !bdev_max_discard_sectors(dev->bdev);
1906}
1907
1908static bool dm_table_supports_discards(struct dm_table *t)
1909{
1910 for (unsigned int i = 0; i < t->num_targets; i++) {
1911 struct dm_target *ti = dm_table_get_target(t, i);
1912
1913 if (!ti->num_discard_bios)
1914 return false;
1915
1916 /*
1917 * Either the target provides discard support (as implied by setting
1918 * 'discards_supported') or it relies on _all_ data devices having
1919 * discard support.
1920 */
1921 if (!ti->discards_supported &&
1922 (!ti->type->iterate_devices ||
1923 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924 return false;
1925 }
1926
1927 return true;
1928}
1929
1930static int device_not_secure_erase_capable(struct dm_target *ti,
1931 struct dm_dev *dev, sector_t start,
1932 sector_t len, void *data)
1933{
1934 return !bdev_max_secure_erase_sectors(dev->bdev);
1935}
1936
1937static bool dm_table_supports_secure_erase(struct dm_table *t)
1938{
1939 for (unsigned int i = 0; i < t->num_targets; i++) {
1940 struct dm_target *ti = dm_table_get_target(t, i);
1941
1942 if (!ti->num_secure_erase_bios)
1943 return false;
1944
1945 if (!ti->type->iterate_devices ||
1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 return false;
1948 }
1949
1950 return true;
1951}
1952
1953static int device_requires_stable_pages(struct dm_target *ti,
1954 struct dm_dev *dev, sector_t start,
1955 sector_t len, void *data)
1956{
1957 return bdev_stable_writes(dev->bdev);
1958}
1959
1960int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 struct queue_limits *limits)
1962{
1963 bool wc = false, fua = false;
1964 int r;
1965
1966 /*
1967 * Copy table's limits to the DM device's request_queue
1968 */
1969 q->limits = *limits;
1970
1971 if (dm_table_supports_nowait(t))
1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 else
1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976 if (!dm_table_supports_discards(t)) {
1977 q->limits.max_discard_sectors = 0;
1978 q->limits.max_hw_discard_sectors = 0;
1979 q->limits.discard_granularity = 0;
1980 q->limits.discard_alignment = 0;
1981 q->limits.discard_misaligned = 0;
1982 }
1983
1984 if (!dm_table_supports_secure_erase(t))
1985 q->limits.max_secure_erase_sectors = 0;
1986
1987 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 wc = true;
1989 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 fua = true;
1991 }
1992 blk_queue_write_cache(q, wc, fua);
1993
1994 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 set_dax_synchronous(t->md->dax_dev);
1998 } else
1999 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002 dax_write_cache(t->md->dax_dev, true);
2003
2004 /* Ensure that all underlying devices are non-rotational. */
2005 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007 else
2008 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010 if (!dm_table_supports_write_zeroes(t))
2011 q->limits.max_write_zeroes_sectors = 0;
2012
2013 dm_table_verify_integrity(t);
2014
2015 /*
2016 * Some devices don't use blk_integrity but still want stable pages
2017 * because they do their own checksumming.
2018 * If any underlying device requires stable pages, a table must require
2019 * them as well. Only targets that support iterate_devices are considered:
2020 * don't want error, zero, etc to require stable pages.
2021 */
2022 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024 else
2025 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027 /*
2028 * Determine whether or not this queue's I/O timings contribute
2029 * to the entropy pool, Only request-based targets use this.
2030 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031 * have it set.
2032 */
2033 if (blk_queue_add_random(q) &&
2034 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037 /*
2038 * For a zoned target, setup the zones related queue attributes
2039 * and resources necessary for zone append emulation if necessary.
2040 */
2041 if (blk_queue_is_zoned(q)) {
2042 r = dm_set_zones_restrictions(t, q);
2043 if (r)
2044 return r;
2045 if (!static_key_enabled(&zoned_enabled.key))
2046 static_branch_enable(&zoned_enabled);
2047 }
2048
2049 dm_update_crypto_profile(q, t);
2050 disk_update_readahead(t->md->disk);
2051
2052 /*
2053 * Check for request-based device is left to
2054 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055 *
2056 * For bio-based device, only set QUEUE_FLAG_POLL when all
2057 * underlying devices supporting polling.
2058 */
2059 if (__table_type_bio_based(t->type)) {
2060 if (dm_table_supports_poll(t))
2061 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062 else
2063 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064 }
2065
2066 return 0;
2067}
2068
2069struct list_head *dm_table_get_devices(struct dm_table *t)
2070{
2071 return &t->devices;
2072}
2073
2074blk_mode_t dm_table_get_mode(struct dm_table *t)
2075{
2076 return t->mode;
2077}
2078EXPORT_SYMBOL(dm_table_get_mode);
2079
2080enum suspend_mode {
2081 PRESUSPEND,
2082 PRESUSPEND_UNDO,
2083 POSTSUSPEND,
2084};
2085
2086static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087{
2088 lockdep_assert_held(&t->md->suspend_lock);
2089
2090 for (unsigned int i = 0; i < t->num_targets; i++) {
2091 struct dm_target *ti = dm_table_get_target(t, i);
2092
2093 switch (mode) {
2094 case PRESUSPEND:
2095 if (ti->type->presuspend)
2096 ti->type->presuspend(ti);
2097 break;
2098 case PRESUSPEND_UNDO:
2099 if (ti->type->presuspend_undo)
2100 ti->type->presuspend_undo(ti);
2101 break;
2102 case POSTSUSPEND:
2103 if (ti->type->postsuspend)
2104 ti->type->postsuspend(ti);
2105 break;
2106 }
2107 }
2108}
2109
2110void dm_table_presuspend_targets(struct dm_table *t)
2111{
2112 if (!t)
2113 return;
2114
2115 suspend_targets(t, PRESUSPEND);
2116}
2117
2118void dm_table_presuspend_undo_targets(struct dm_table *t)
2119{
2120 if (!t)
2121 return;
2122
2123 suspend_targets(t, PRESUSPEND_UNDO);
2124}
2125
2126void dm_table_postsuspend_targets(struct dm_table *t)
2127{
2128 if (!t)
2129 return;
2130
2131 suspend_targets(t, POSTSUSPEND);
2132}
2133
2134int dm_table_resume_targets(struct dm_table *t)
2135{
2136 unsigned int i;
2137 int r = 0;
2138
2139 lockdep_assert_held(&t->md->suspend_lock);
2140
2141 for (i = 0; i < t->num_targets; i++) {
2142 struct dm_target *ti = dm_table_get_target(t, i);
2143
2144 if (!ti->type->preresume)
2145 continue;
2146
2147 r = ti->type->preresume(ti);
2148 if (r) {
2149 DMERR("%s: %s: preresume failed, error = %d",
2150 dm_device_name(t->md), ti->type->name, r);
2151 return r;
2152 }
2153 }
2154
2155 for (i = 0; i < t->num_targets; i++) {
2156 struct dm_target *ti = dm_table_get_target(t, i);
2157
2158 if (ti->type->resume)
2159 ti->type->resume(ti);
2160 }
2161
2162 return 0;
2163}
2164
2165struct mapped_device *dm_table_get_md(struct dm_table *t)
2166{
2167 return t->md;
2168}
2169EXPORT_SYMBOL(dm_table_get_md);
2170
2171const char *dm_table_device_name(struct dm_table *t)
2172{
2173 return dm_device_name(t->md);
2174}
2175EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177void dm_table_run_md_queue_async(struct dm_table *t)
2178{
2179 if (!dm_table_request_based(t))
2180 return;
2181
2182 if (t->md->queue)
2183 blk_mq_run_hw_queues(t->md->queue, true);
2184}
2185EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70};
71
72/*
73 * Similar to ceiling(log_size(n))
74 */
75static unsigned int int_log(unsigned int n, unsigned int base)
76{
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85}
86
87/*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
90static inline unsigned int get_child(unsigned int n, unsigned int k)
91{
92 return (n * CHILDREN_PER_NODE) + k;
93}
94
95/*
96 * Return the n'th node of level l from table t.
97 */
98static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100{
101 return t->index[l] + (n * KEYS_PER_NODE);
102}
103
104/*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
108static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109{
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117}
118
119/*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
123static int setup_btree_index(unsigned int l, struct dm_table *t)
124{
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136}
137
138void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139{
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153}
154EXPORT_SYMBOL(dm_vcalloc);
155
156/*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
160static int alloc_targets(struct dm_table *t, unsigned int num)
161{
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185}
186
187int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189{
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218}
219
220static void free_devices(struct list_head *devices, struct mapped_device *md)
221{
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232}
233
234void dm_table_destroy(struct dm_table *t)
235{
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263}
264
265/*
266 * See if we've already got a device in the list.
267 */
268static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269{
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277}
278
279/*
280 * If possible, this checks an area of a destination device is invalid.
281 */
282static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284{
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378}
379
380/*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
386static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388{
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403}
404
405/*
406 * Convert the path to a device
407 */
408dev_t dm_get_dev_t(const char *path)
409{
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422}
423EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425/*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
429int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431{
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 refcount_inc(&dd->count);
464out:
465 *result = dd->dm_dev;
466 return 0;
467}
468EXPORT_SYMBOL(dm_get_device);
469
470static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472{
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497}
498
499/*
500 * Decrement a device's use count and remove it if necessary.
501 */
502void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503{
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524}
525EXPORT_SYMBOL(dm_put_device);
526
527/*
528 * Checks to see if the target joins onto the end of the table.
529 */
530static int adjoin(struct dm_table *table, struct dm_target *ti)
531{
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539}
540
541/*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
551static char **realloc_argv(unsigned *array_size, char **old_argv)
552{
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*array_size) {
558 new_size = *array_size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 *array_size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572}
573
574/*
575 * Destructively splits up the argument list to pass to ctr.
576 */
577int dm_split_args(int *argc, char ***argvp, char *input)
578{
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635}
636
637/*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
644static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646{
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709}
710
711int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713{
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805}
806
807/*
808 * Target argument parsing helpers.
809 */
810static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813{
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827}
828
829int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831{
832 return validate_next_arg(arg, arg_set, value, error, 0);
833}
834EXPORT_SYMBOL(dm_read_arg);
835
836int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838{
839 return validate_next_arg(arg, arg_set, value, error, 1);
840}
841EXPORT_SYMBOL(dm_read_arg_group);
842
843const char *dm_shift_arg(struct dm_arg_set *as)
844{
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855}
856EXPORT_SYMBOL(dm_shift_arg);
857
858void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859{
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863}
864EXPORT_SYMBOL(dm_consume_args);
865
866static bool __table_type_bio_based(enum dm_queue_mode table_type)
867{
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED ||
870 table_type == DM_TYPE_NVME_BIO_BASED);
871}
872
873static bool __table_type_request_based(enum dm_queue_mode table_type)
874{
875 return (table_type == DM_TYPE_REQUEST_BASED ||
876 table_type == DM_TYPE_MQ_REQUEST_BASED);
877}
878
879void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880{
881 t->type = type;
882}
883EXPORT_SYMBOL_GPL(dm_table_set_type);
884
885static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 sector_t start, sector_t len, void *data)
887{
888 struct request_queue *q = bdev_get_queue(dev->bdev);
889
890 return q && blk_queue_dax(q);
891}
892
893static bool dm_table_supports_dax(struct dm_table *t)
894{
895 struct dm_target *ti;
896 unsigned i;
897
898 /* Ensure that all targets support DAX. */
899 for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 ti = dm_table_get_target(t, i);
901
902 if (!ti->type->direct_access)
903 return false;
904
905 if (!ti->type->iterate_devices ||
906 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
907 return false;
908 }
909
910 return true;
911}
912
913static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
914
915struct verify_rq_based_data {
916 unsigned sq_count;
917 unsigned mq_count;
918};
919
920static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
921 sector_t start, sector_t len, void *data)
922{
923 struct request_queue *q = bdev_get_queue(dev->bdev);
924 struct verify_rq_based_data *v = data;
925
926 if (q->mq_ops)
927 v->mq_count++;
928 else
929 v->sq_count++;
930
931 return queue_is_rq_based(q);
932}
933
934static int dm_table_determine_type(struct dm_table *t)
935{
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
939 struct dm_target *tgt;
940 struct list_head *devices = dm_table_get_devices(t);
941 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
942
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
948 }
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
952 }
953
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
962
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
967 }
968 }
969
970 if (hybrid && !bio_based && !request_based) {
971 /*
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
975 */
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
980 }
981
982 if (bio_based) {
983verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
997 }
998 }
999 return 0;
1000 }
1001
1002 BUG_ON(!request_based); /* No targets in this table */
1003
1004 /*
1005 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006 * having a compatible target use dm_table_set_type.
1007 */
1008 t->type = DM_TYPE_REQUEST_BASED;
1009
1010verify_rq_based:
1011 /*
1012 * Request-based dm supports only tables that have a single target now.
1013 * To support multiple targets, request splitting support is needed,
1014 * and that needs lots of changes in the block-layer.
1015 * (e.g. request completion process for partial completion.)
1016 */
1017 if (t->num_targets > 1) {
1018 DMERR("%s DM doesn't support multiple targets",
1019 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020 return -EINVAL;
1021 }
1022
1023 if (list_empty(devices)) {
1024 int srcu_idx;
1025 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1026
1027 /* inherit live table's type and all_blk_mq */
1028 if (live_table) {
1029 t->type = live_table->type;
1030 t->all_blk_mq = live_table->all_blk_mq;
1031 }
1032 dm_put_live_table(t->md, srcu_idx);
1033 return 0;
1034 }
1035
1036 tgt = dm_table_get_immutable_target(t);
1037 if (!tgt) {
1038 DMERR("table load rejected: immutable target is required");
1039 return -EINVAL;
1040 } else if (tgt->max_io_len) {
1041 DMERR("table load rejected: immutable target that splits IO is not supported");
1042 return -EINVAL;
1043 }
1044
1045 /* Non-request-stackable devices can't be used for request-based dm */
1046 if (!tgt->type->iterate_devices ||
1047 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048 DMERR("table load rejected: including non-request-stackable devices");
1049 return -EINVAL;
1050 }
1051 if (v.sq_count && v.mq_count) {
1052 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053 return -EINVAL;
1054 }
1055 t->all_blk_mq = v.mq_count > 0;
1056
1057 if (!t->all_blk_mq &&
1058 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060 return -EINVAL;
1061 }
1062
1063 return 0;
1064}
1065
1066enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1067{
1068 return t->type;
1069}
1070
1071struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1072{
1073 return t->immutable_target_type;
1074}
1075
1076struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1077{
1078 /* Immutable target is implicitly a singleton */
1079 if (t->num_targets > 1 ||
1080 !dm_target_is_immutable(t->targets[0].type))
1081 return NULL;
1082
1083 return t->targets;
1084}
1085
1086struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1087{
1088 struct dm_target *ti;
1089 unsigned i;
1090
1091 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092 ti = dm_table_get_target(t, i);
1093 if (dm_target_is_wildcard(ti->type))
1094 return ti;
1095 }
1096
1097 return NULL;
1098}
1099
1100bool dm_table_bio_based(struct dm_table *t)
1101{
1102 return __table_type_bio_based(dm_table_get_type(t));
1103}
1104
1105bool dm_table_request_based(struct dm_table *t)
1106{
1107 return __table_type_request_based(dm_table_get_type(t));
1108}
1109
1110bool dm_table_all_blk_mq_devices(struct dm_table *t)
1111{
1112 return t->all_blk_mq;
1113}
1114
1115static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1116{
1117 enum dm_queue_mode type = dm_table_get_type(t);
1118 unsigned per_io_data_size = 0;
1119 unsigned min_pool_size = 0;
1120 struct dm_target *ti;
1121 unsigned i;
1122
1123 if (unlikely(type == DM_TYPE_NONE)) {
1124 DMWARN("no table type is set, can't allocate mempools");
1125 return -EINVAL;
1126 }
1127
1128 if (__table_type_bio_based(type))
1129 for (i = 0; i < t->num_targets; i++) {
1130 ti = t->targets + i;
1131 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1133 }
1134
1135 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136 per_io_data_size, min_pool_size);
1137 if (!t->mempools)
1138 return -ENOMEM;
1139
1140 return 0;
1141}
1142
1143void dm_table_free_md_mempools(struct dm_table *t)
1144{
1145 dm_free_md_mempools(t->mempools);
1146 t->mempools = NULL;
1147}
1148
1149struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1150{
1151 return t->mempools;
1152}
1153
1154static int setup_indexes(struct dm_table *t)
1155{
1156 int i;
1157 unsigned int total = 0;
1158 sector_t *indexes;
1159
1160 /* allocate the space for *all* the indexes */
1161 for (i = t->depth - 2; i >= 0; i--) {
1162 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163 total += t->counts[i];
1164 }
1165
1166 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167 if (!indexes)
1168 return -ENOMEM;
1169
1170 /* set up internal nodes, bottom-up */
1171 for (i = t->depth - 2; i >= 0; i--) {
1172 t->index[i] = indexes;
1173 indexes += (KEYS_PER_NODE * t->counts[i]);
1174 setup_btree_index(i, t);
1175 }
1176
1177 return 0;
1178}
1179
1180/*
1181 * Builds the btree to index the map.
1182 */
1183static int dm_table_build_index(struct dm_table *t)
1184{
1185 int r = 0;
1186 unsigned int leaf_nodes;
1187
1188 /* how many indexes will the btree have ? */
1189 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1191
1192 /* leaf layer has already been set up */
1193 t->counts[t->depth - 1] = leaf_nodes;
1194 t->index[t->depth - 1] = t->highs;
1195
1196 if (t->depth >= 2)
1197 r = setup_indexes(t);
1198
1199 return r;
1200}
1201
1202static bool integrity_profile_exists(struct gendisk *disk)
1203{
1204 return !!blk_get_integrity(disk);
1205}
1206
1207/*
1208 * Get a disk whose integrity profile reflects the table's profile.
1209 * Returns NULL if integrity support was inconsistent or unavailable.
1210 */
1211static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1212{
1213 struct list_head *devices = dm_table_get_devices(t);
1214 struct dm_dev_internal *dd = NULL;
1215 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216 unsigned i;
1217
1218 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219 struct dm_target *ti = dm_table_get_target(t, i);
1220 if (!dm_target_passes_integrity(ti->type))
1221 goto no_integrity;
1222 }
1223
1224 list_for_each_entry(dd, devices, list) {
1225 template_disk = dd->dm_dev->bdev->bd_disk;
1226 if (!integrity_profile_exists(template_disk))
1227 goto no_integrity;
1228 else if (prev_disk &&
1229 blk_integrity_compare(prev_disk, template_disk) < 0)
1230 goto no_integrity;
1231 prev_disk = template_disk;
1232 }
1233
1234 return template_disk;
1235
1236no_integrity:
1237 if (prev_disk)
1238 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239 dm_device_name(t->md),
1240 prev_disk->disk_name,
1241 template_disk->disk_name);
1242 return NULL;
1243}
1244
1245/*
1246 * Register the mapped device for blk_integrity support if the
1247 * underlying devices have an integrity profile. But all devices may
1248 * not have matching profiles (checking all devices isn't reliable
1249 * during table load because this table may use other DM device(s) which
1250 * must be resumed before they will have an initialized integity
1251 * profile). Consequently, stacked DM devices force a 2 stage integrity
1252 * profile validation: First pass during table load, final pass during
1253 * resume.
1254 */
1255static int dm_table_register_integrity(struct dm_table *t)
1256{
1257 struct mapped_device *md = t->md;
1258 struct gendisk *template_disk = NULL;
1259
1260 /* If target handles integrity itself do not register it here. */
1261 if (t->integrity_added)
1262 return 0;
1263
1264 template_disk = dm_table_get_integrity_disk(t);
1265 if (!template_disk)
1266 return 0;
1267
1268 if (!integrity_profile_exists(dm_disk(md))) {
1269 t->integrity_supported = true;
1270 /*
1271 * Register integrity profile during table load; we can do
1272 * this because the final profile must match during resume.
1273 */
1274 blk_integrity_register(dm_disk(md),
1275 blk_get_integrity(template_disk));
1276 return 0;
1277 }
1278
1279 /*
1280 * If DM device already has an initialized integrity
1281 * profile the new profile should not conflict.
1282 */
1283 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284 DMWARN("%s: conflict with existing integrity profile: "
1285 "%s profile mismatch",
1286 dm_device_name(t->md),
1287 template_disk->disk_name);
1288 return 1;
1289 }
1290
1291 /* Preserve existing integrity profile */
1292 t->integrity_supported = true;
1293 return 0;
1294}
1295
1296/*
1297 * Prepares the table for use by building the indices,
1298 * setting the type, and allocating mempools.
1299 */
1300int dm_table_complete(struct dm_table *t)
1301{
1302 int r;
1303
1304 r = dm_table_determine_type(t);
1305 if (r) {
1306 DMERR("unable to determine table type");
1307 return r;
1308 }
1309
1310 r = dm_table_build_index(t);
1311 if (r) {
1312 DMERR("unable to build btrees");
1313 return r;
1314 }
1315
1316 r = dm_table_register_integrity(t);
1317 if (r) {
1318 DMERR("could not register integrity profile.");
1319 return r;
1320 }
1321
1322 r = dm_table_alloc_md_mempools(t, t->md);
1323 if (r)
1324 DMERR("unable to allocate mempools");
1325
1326 return r;
1327}
1328
1329static DEFINE_MUTEX(_event_lock);
1330void dm_table_event_callback(struct dm_table *t,
1331 void (*fn)(void *), void *context)
1332{
1333 mutex_lock(&_event_lock);
1334 t->event_fn = fn;
1335 t->event_context = context;
1336 mutex_unlock(&_event_lock);
1337}
1338
1339void dm_table_event(struct dm_table *t)
1340{
1341 /*
1342 * You can no longer call dm_table_event() from interrupt
1343 * context, use a bottom half instead.
1344 */
1345 BUG_ON(in_interrupt());
1346
1347 mutex_lock(&_event_lock);
1348 if (t->event_fn)
1349 t->event_fn(t->event_context);
1350 mutex_unlock(&_event_lock);
1351}
1352EXPORT_SYMBOL(dm_table_event);
1353
1354sector_t dm_table_get_size(struct dm_table *t)
1355{
1356 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1357}
1358EXPORT_SYMBOL(dm_table_get_size);
1359
1360struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1361{
1362 if (index >= t->num_targets)
1363 return NULL;
1364
1365 return t->targets + index;
1366}
1367
1368/*
1369 * Search the btree for the correct target.
1370 *
1371 * Caller should check returned pointer with dm_target_is_valid()
1372 * to trap I/O beyond end of device.
1373 */
1374struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1375{
1376 unsigned int l, n = 0, k = 0;
1377 sector_t *node;
1378
1379 for (l = 0; l < t->depth; l++) {
1380 n = get_child(n, k);
1381 node = get_node(t, l, n);
1382
1383 for (k = 0; k < KEYS_PER_NODE; k++)
1384 if (node[k] >= sector)
1385 break;
1386 }
1387
1388 return &t->targets[(KEYS_PER_NODE * n) + k];
1389}
1390
1391static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392 sector_t start, sector_t len, void *data)
1393{
1394 unsigned *num_devices = data;
1395
1396 (*num_devices)++;
1397
1398 return 0;
1399}
1400
1401/*
1402 * Check whether a table has no data devices attached using each
1403 * target's iterate_devices method.
1404 * Returns false if the result is unknown because a target doesn't
1405 * support iterate_devices.
1406 */
1407bool dm_table_has_no_data_devices(struct dm_table *table)
1408{
1409 struct dm_target *ti;
1410 unsigned i, num_devices;
1411
1412 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413 ti = dm_table_get_target(table, i);
1414
1415 if (!ti->type->iterate_devices)
1416 return false;
1417
1418 num_devices = 0;
1419 ti->type->iterate_devices(ti, count_device, &num_devices);
1420 if (num_devices)
1421 return false;
1422 }
1423
1424 return true;
1425}
1426
1427static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428 sector_t start, sector_t len, void *data)
1429{
1430 struct request_queue *q = bdev_get_queue(dev->bdev);
1431 enum blk_zoned_model *zoned_model = data;
1432
1433 return q && blk_queue_zoned_model(q) == *zoned_model;
1434}
1435
1436static bool dm_table_supports_zoned_model(struct dm_table *t,
1437 enum blk_zoned_model zoned_model)
1438{
1439 struct dm_target *ti;
1440 unsigned i;
1441
1442 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443 ti = dm_table_get_target(t, i);
1444
1445 if (zoned_model == BLK_ZONED_HM &&
1446 !dm_target_supports_zoned_hm(ti->type))
1447 return false;
1448
1449 if (!ti->type->iterate_devices ||
1450 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451 return false;
1452 }
1453
1454 return true;
1455}
1456
1457static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458 sector_t start, sector_t len, void *data)
1459{
1460 struct request_queue *q = bdev_get_queue(dev->bdev);
1461 unsigned int *zone_sectors = data;
1462
1463 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1464}
1465
1466static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467 unsigned int zone_sectors)
1468{
1469 struct dm_target *ti;
1470 unsigned i;
1471
1472 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473 ti = dm_table_get_target(t, i);
1474
1475 if (!ti->type->iterate_devices ||
1476 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477 return false;
1478 }
1479
1480 return true;
1481}
1482
1483static int validate_hardware_zoned_model(struct dm_table *table,
1484 enum blk_zoned_model zoned_model,
1485 unsigned int zone_sectors)
1486{
1487 if (zoned_model == BLK_ZONED_NONE)
1488 return 0;
1489
1490 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491 DMERR("%s: zoned model is not consistent across all devices",
1492 dm_device_name(table->md));
1493 return -EINVAL;
1494 }
1495
1496 /* Check zone size validity and compatibility */
1497 if (!zone_sectors || !is_power_of_2(zone_sectors))
1498 return -EINVAL;
1499
1500 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501 DMERR("%s: zone sectors is not consistent across all devices",
1502 dm_device_name(table->md));
1503 return -EINVAL;
1504 }
1505
1506 return 0;
1507}
1508
1509/*
1510 * Establish the new table's queue_limits and validate them.
1511 */
1512int dm_calculate_queue_limits(struct dm_table *table,
1513 struct queue_limits *limits)
1514{
1515 struct dm_target *ti;
1516 struct queue_limits ti_limits;
1517 unsigned i;
1518 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519 unsigned int zone_sectors = 0;
1520
1521 blk_set_stacking_limits(limits);
1522
1523 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1524 blk_set_stacking_limits(&ti_limits);
1525
1526 ti = dm_table_get_target(table, i);
1527
1528 if (!ti->type->iterate_devices)
1529 goto combine_limits;
1530
1531 /*
1532 * Combine queue limits of all the devices this target uses.
1533 */
1534 ti->type->iterate_devices(ti, dm_set_device_limits,
1535 &ti_limits);
1536
1537 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1538 /*
1539 * After stacking all limits, validate all devices
1540 * in table support this zoned model and zone sectors.
1541 */
1542 zoned_model = ti_limits.zoned;
1543 zone_sectors = ti_limits.chunk_sectors;
1544 }
1545
1546 /* Set I/O hints portion of queue limits */
1547 if (ti->type->io_hints)
1548 ti->type->io_hints(ti, &ti_limits);
1549
1550 /*
1551 * Check each device area is consistent with the target's
1552 * overall queue limits.
1553 */
1554 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555 &ti_limits))
1556 return -EINVAL;
1557
1558combine_limits:
1559 /*
1560 * Merge this target's queue limits into the overall limits
1561 * for the table.
1562 */
1563 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564 DMWARN("%s: adding target device "
1565 "(start sect %llu len %llu) "
1566 "caused an alignment inconsistency",
1567 dm_device_name(table->md),
1568 (unsigned long long) ti->begin,
1569 (unsigned long long) ti->len);
1570
1571 /*
1572 * FIXME: this should likely be moved to blk_stack_limits(), would
1573 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1574 */
1575 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1576 /*
1577 * By default, the stacked limits zoned model is set to
1578 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579 * this model using the first target model reported
1580 * that is not BLK_ZONED_NONE. This will be either the
1581 * first target device zoned model or the model reported
1582 * by the target .io_hints.
1583 */
1584 limits->zoned = ti_limits.zoned;
1585 }
1586 }
1587
1588 /*
1589 * Verify that the zoned model and zone sectors, as determined before
1590 * any .io_hints override, are the same across all devices in the table.
1591 * - this is especially relevant if .io_hints is emulating a disk-managed
1592 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593 * BUT...
1594 */
1595 if (limits->zoned != BLK_ZONED_NONE) {
1596 /*
1597 * ...IF the above limits stacking determined a zoned model
1598 * validate that all of the table's devices conform to it.
1599 */
1600 zoned_model = limits->zoned;
1601 zone_sectors = limits->chunk_sectors;
1602 }
1603 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604 return -EINVAL;
1605
1606 return validate_hardware_logical_block_alignment(table, limits);
1607}
1608
1609/*
1610 * Verify that all devices have an integrity profile that matches the
1611 * DM device's registered integrity profile. If the profiles don't
1612 * match then unregister the DM device's integrity profile.
1613 */
1614static void dm_table_verify_integrity(struct dm_table *t)
1615{
1616 struct gendisk *template_disk = NULL;
1617
1618 if (t->integrity_added)
1619 return;
1620
1621 if (t->integrity_supported) {
1622 /*
1623 * Verify that the original integrity profile
1624 * matches all the devices in this table.
1625 */
1626 template_disk = dm_table_get_integrity_disk(t);
1627 if (template_disk &&
1628 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629 return;
1630 }
1631
1632 if (integrity_profile_exists(dm_disk(t->md))) {
1633 DMWARN("%s: unable to establish an integrity profile",
1634 dm_device_name(t->md));
1635 blk_integrity_unregister(dm_disk(t->md));
1636 }
1637}
1638
1639static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned long flush = (unsigned long) data;
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645 return q && (q->queue_flags & flush);
1646}
1647
1648static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1649{
1650 struct dm_target *ti;
1651 unsigned i;
1652
1653 /*
1654 * Require at least one underlying device to support flushes.
1655 * t->devices includes internal dm devices such as mirror logs
1656 * so we need to use iterate_devices here, which targets
1657 * supporting flushes must provide.
1658 */
1659 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660 ti = dm_table_get_target(t, i);
1661
1662 if (!ti->num_flush_bios)
1663 continue;
1664
1665 if (ti->flush_supported)
1666 return true;
1667
1668 if (ti->type->iterate_devices &&
1669 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670 return true;
1671 }
1672
1673 return false;
1674}
1675
1676static int device_dax_write_cache_enabled(struct dm_target *ti,
1677 struct dm_dev *dev, sector_t start,
1678 sector_t len, void *data)
1679{
1680 struct dax_device *dax_dev = dev->dax_dev;
1681
1682 if (!dax_dev)
1683 return false;
1684
1685 if (dax_write_cache_enabled(dax_dev))
1686 return true;
1687 return false;
1688}
1689
1690static int dm_table_supports_dax_write_cache(struct dm_table *t)
1691{
1692 struct dm_target *ti;
1693 unsigned i;
1694
1695 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 ti = dm_table_get_target(t, i);
1697
1698 if (ti->type->iterate_devices &&
1699 ti->type->iterate_devices(ti,
1700 device_dax_write_cache_enabled, NULL))
1701 return true;
1702 }
1703
1704 return false;
1705}
1706
1707static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709{
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712 return q && blk_queue_nonrot(q);
1713}
1714
1715static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716 sector_t start, sector_t len, void *data)
1717{
1718 struct request_queue *q = bdev_get_queue(dev->bdev);
1719
1720 return q && !blk_queue_add_random(q);
1721}
1722
1723static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724 sector_t start, sector_t len, void *data)
1725{
1726 struct request_queue *q = bdev_get_queue(dev->bdev);
1727
1728 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1729}
1730
1731static bool dm_table_all_devices_attribute(struct dm_table *t,
1732 iterate_devices_callout_fn func)
1733{
1734 struct dm_target *ti;
1735 unsigned i;
1736
1737 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 ti = dm_table_get_target(t, i);
1739
1740 if (!ti->type->iterate_devices ||
1741 !ti->type->iterate_devices(ti, func, NULL))
1742 return false;
1743 }
1744
1745 return true;
1746}
1747
1748static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749 sector_t start, sector_t len, void *data)
1750{
1751 char b[BDEVNAME_SIZE];
1752
1753 /* For now, NVMe devices are the only devices of this class */
1754 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1755}
1756
1757static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1758{
1759 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1760}
1761
1762static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764{
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !q->limits.max_write_same_sectors;
1768}
1769
1770static bool dm_table_supports_write_same(struct dm_table *t)
1771{
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1777
1778 if (!ti->num_write_same_bios)
1779 return false;
1780
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783 return false;
1784 }
1785
1786 return true;
1787}
1788
1789static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1791{
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794 return q && !q->limits.max_write_zeroes_sectors;
1795}
1796
1797static bool dm_table_supports_write_zeroes(struct dm_table *t)
1798{
1799 struct dm_target *ti;
1800 unsigned i = 0;
1801
1802 while (i < dm_table_get_num_targets(t)) {
1803 ti = dm_table_get_target(t, i++);
1804
1805 if (!ti->num_write_zeroes_bios)
1806 return false;
1807
1808 if (!ti->type->iterate_devices ||
1809 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810 return false;
1811 }
1812
1813 return true;
1814}
1815
1816static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1818{
1819 struct request_queue *q = bdev_get_queue(dev->bdev);
1820
1821 return q && !blk_queue_discard(q);
1822}
1823
1824static bool dm_table_supports_discards(struct dm_table *t)
1825{
1826 struct dm_target *ti;
1827 unsigned i;
1828
1829 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830 ti = dm_table_get_target(t, i);
1831
1832 if (!ti->num_discard_bios)
1833 return false;
1834
1835 /*
1836 * Either the target provides discard support (as implied by setting
1837 * 'discards_supported') or it relies on _all_ data devices having
1838 * discard support.
1839 */
1840 if (!ti->discards_supported &&
1841 (!ti->type->iterate_devices ||
1842 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843 return false;
1844 }
1845
1846 return true;
1847}
1848
1849static int device_not_secure_erase_capable(struct dm_target *ti,
1850 struct dm_dev *dev, sector_t start,
1851 sector_t len, void *data)
1852{
1853 struct request_queue *q = bdev_get_queue(dev->bdev);
1854
1855 return q && !blk_queue_secure_erase(q);
1856}
1857
1858static bool dm_table_supports_secure_erase(struct dm_table *t)
1859{
1860 struct dm_target *ti;
1861 unsigned int i;
1862
1863 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 ti = dm_table_get_target(t, i);
1865
1866 if (!ti->num_secure_erase_bios)
1867 return false;
1868
1869 if (!ti->type->iterate_devices ||
1870 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871 return false;
1872 }
1873
1874 return true;
1875}
1876
1877void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878 struct queue_limits *limits)
1879{
1880 bool wc = false, fua = false;
1881
1882 /*
1883 * Copy table's limits to the DM device's request_queue
1884 */
1885 q->limits = *limits;
1886
1887 if (!dm_table_supports_discards(t)) {
1888 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889 /* Must also clear discard limits... */
1890 q->limits.max_discard_sectors = 0;
1891 q->limits.max_hw_discard_sectors = 0;
1892 q->limits.discard_granularity = 0;
1893 q->limits.discard_alignment = 0;
1894 q->limits.discard_misaligned = 0;
1895 } else
1896 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1897
1898 if (dm_table_supports_secure_erase(t))
1899 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1900
1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902 wc = true;
1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904 fua = true;
1905 }
1906 blk_queue_write_cache(q, wc, fua);
1907
1908 if (dm_table_supports_dax(t))
1909 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910 if (dm_table_supports_dax_write_cache(t))
1911 dax_write_cache(t->md->dax_dev, true);
1912
1913 /* Ensure that all underlying devices are non-rotational. */
1914 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1915 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916 else
1917 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1918
1919 if (!dm_table_supports_write_same(t))
1920 q->limits.max_write_same_sectors = 0;
1921 if (!dm_table_supports_write_zeroes(t))
1922 q->limits.max_write_zeroes_sectors = 0;
1923
1924 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1926 else
1927 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1928
1929 dm_table_verify_integrity(t);
1930
1931 /*
1932 * Determine whether or not this queue's I/O timings contribute
1933 * to the entropy pool, Only request-based targets use this.
1934 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935 * have it set.
1936 */
1937 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1938 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1939}
1940
1941unsigned int dm_table_get_num_targets(struct dm_table *t)
1942{
1943 return t->num_targets;
1944}
1945
1946struct list_head *dm_table_get_devices(struct dm_table *t)
1947{
1948 return &t->devices;
1949}
1950
1951fmode_t dm_table_get_mode(struct dm_table *t)
1952{
1953 return t->mode;
1954}
1955EXPORT_SYMBOL(dm_table_get_mode);
1956
1957enum suspend_mode {
1958 PRESUSPEND,
1959 PRESUSPEND_UNDO,
1960 POSTSUSPEND,
1961};
1962
1963static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1964{
1965 int i = t->num_targets;
1966 struct dm_target *ti = t->targets;
1967
1968 lockdep_assert_held(&t->md->suspend_lock);
1969
1970 while (i--) {
1971 switch (mode) {
1972 case PRESUSPEND:
1973 if (ti->type->presuspend)
1974 ti->type->presuspend(ti);
1975 break;
1976 case PRESUSPEND_UNDO:
1977 if (ti->type->presuspend_undo)
1978 ti->type->presuspend_undo(ti);
1979 break;
1980 case POSTSUSPEND:
1981 if (ti->type->postsuspend)
1982 ti->type->postsuspend(ti);
1983 break;
1984 }
1985 ti++;
1986 }
1987}
1988
1989void dm_table_presuspend_targets(struct dm_table *t)
1990{
1991 if (!t)
1992 return;
1993
1994 suspend_targets(t, PRESUSPEND);
1995}
1996
1997void dm_table_presuspend_undo_targets(struct dm_table *t)
1998{
1999 if (!t)
2000 return;
2001
2002 suspend_targets(t, PRESUSPEND_UNDO);
2003}
2004
2005void dm_table_postsuspend_targets(struct dm_table *t)
2006{
2007 if (!t)
2008 return;
2009
2010 suspend_targets(t, POSTSUSPEND);
2011}
2012
2013int dm_table_resume_targets(struct dm_table *t)
2014{
2015 int i, r = 0;
2016
2017 lockdep_assert_held(&t->md->suspend_lock);
2018
2019 for (i = 0; i < t->num_targets; i++) {
2020 struct dm_target *ti = t->targets + i;
2021
2022 if (!ti->type->preresume)
2023 continue;
2024
2025 r = ti->type->preresume(ti);
2026 if (r) {
2027 DMERR("%s: %s: preresume failed, error = %d",
2028 dm_device_name(t->md), ti->type->name, r);
2029 return r;
2030 }
2031 }
2032
2033 for (i = 0; i < t->num_targets; i++) {
2034 struct dm_target *ti = t->targets + i;
2035
2036 if (ti->type->resume)
2037 ti->type->resume(ti);
2038 }
2039
2040 return 0;
2041}
2042
2043void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2044{
2045 list_add(&cb->list, &t->target_callbacks);
2046}
2047EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2048
2049int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2050{
2051 struct dm_dev_internal *dd;
2052 struct list_head *devices = dm_table_get_devices(t);
2053 struct dm_target_callbacks *cb;
2054 int r = 0;
2055
2056 list_for_each_entry(dd, devices, list) {
2057 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058 char b[BDEVNAME_SIZE];
2059
2060 if (likely(q))
2061 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062 else
2063 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064 dm_device_name(t->md),
2065 bdevname(dd->dm_dev->bdev, b));
2066 }
2067
2068 list_for_each_entry(cb, &t->target_callbacks, list)
2069 if (cb->congested_fn)
2070 r |= cb->congested_fn(cb, bdi_bits);
2071
2072 return r;
2073}
2074
2075struct mapped_device *dm_table_get_md(struct dm_table *t)
2076{
2077 return t->md;
2078}
2079EXPORT_SYMBOL(dm_table_get_md);
2080
2081void dm_table_run_md_queue_async(struct dm_table *t)
2082{
2083 struct mapped_device *md;
2084 struct request_queue *queue;
2085 unsigned long flags;
2086
2087 if (!dm_table_request_based(t))
2088 return;
2089
2090 md = dm_table_get_md(t);
2091 queue = dm_get_md_queue(md);
2092 if (queue) {
2093 if (queue->mq_ops)
2094 blk_mq_run_hw_queues(queue, true);
2095 else {
2096 spin_lock_irqsave(queue->queue_lock, flags);
2097 blk_run_queue_async(queue);
2098 spin_unlock_irqrestore(queue->queue_lock, flags);
2099 }
2100 }
2101}
2102EXPORT_SYMBOL(dm_table_run_md_queue_async);
2103