Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161};
162
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175}
176
177const char *btrfs_bg_type_to_raid_name(u64 flags)
178{
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185}
186
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
248static int init_first_rw_device(struct btrfs_trans_handle *trans);
249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352DEFINE_MUTEX(uuid_mutex);
353static LIST_HEAD(fs_uuids);
354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355{
356 return &fs_uuids;
357}
358
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370{
371 struct btrfs_fs_devices *fs_devs;
372
373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
381 INIT_LIST_HEAD(&fs_devs->fs_list);
382 INIT_LIST_HEAD(&fs_devs->seed_list);
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
391 return fs_devs;
392}
393
394void btrfs_free_device(struct btrfs_device *device)
395{
396 WARN_ON(!list_empty(&device->post_commit_list));
397 rcu_string_free(device->name);
398 extent_io_tree_release(&device->alloc_state);
399 btrfs_destroy_dev_zone_info(device);
400 kfree(device);
401}
402
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
406
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
412 btrfs_free_device(device);
413 }
414 kfree(fs_devices);
415}
416
417void __exit btrfs_cleanup_fs_uuids(void)
418{
419 struct btrfs_fs_devices *fs_devices;
420
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
425 free_fs_devices(fs_devices);
426 }
427}
428
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
431{
432 struct btrfs_fs_devices *fs_devices;
433
434 ASSERT(fsid);
435
436 /* Handle non-split brain cases */
437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
447 }
448 return NULL;
449}
450
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
495 struct btrfs_super_block **disk_super)
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
503 goto error;
504 }
505
506 if (flush)
507 sync_blockdev(*bdev);
508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
525 return ret;
526}
527
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
531 *
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
534 * @skip_device: Optional. Will skip this device when searching for the stale
535 * devices.
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
540 */
541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
542{
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
545 int ret = 0;
546
547 lockdep_assert_held(&uuid_mutex);
548
549 if (devt)
550 ret = -ENOENT;
551
552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
553
554 mutex_lock(&fs_devices->device_list_mutex);
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
557 if (skip_device && skip_device == device)
558 continue;
559 if (devt && devt != device->devt)
560 continue;
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
563 if (devt && ret != 0)
564 ret = -EBUSY;
565 break;
566 }
567
568 /* delete the stale device */
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
573 ret = 0;
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
576
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
581 }
582 }
583
584 return ret;
585}
586
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
596 struct block_device *bdev;
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
607 &bdev, &disk_super);
608 if (ret)
609 return ret;
610
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
613 goto error_free_page;
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
616 goto error_free_page;
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
625 goto error_free_page;
626 }
627
628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
629 fs_devices->seeding = true;
630 } else {
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 }
636
637 if (!bdev_nonrot(bdev))
638 fs_devices->rotating = true;
639
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
643 device->bdev = bdev;
644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
645 device->mode = flags;
646
647 fs_devices->open_devices++;
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
650 fs_devices->rw_devices++;
651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
652 }
653 btrfs_release_disk_super(disk_super);
654
655 return 0;
656
657error_free_page:
658 btrfs_release_disk_super(disk_super);
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
684 return find_fsid(disk_super->fsid, NULL);
685}
686
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
695 * multiple successful changes of FSID but currently device didn't
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 /* Changed UUIDs */
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
717 return fs_devices;
718 }
719
720 return NULL;
721}
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
731 * time * fs_devices was first created by another constitutent device
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
754 */
755static noinline struct btrfs_device *device_list_add(const char *path,
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
758{
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = NULL;
761 struct rcu_string *name;
762 u64 found_transid = btrfs_super_generation(disk_super);
763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
764 dev_t path_devt;
765 int error;
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
770
771 error = lookup_bdev(path, &path_devt);
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
775 return ERR_PTR(error);
776 }
777
778 if (fsid_change_in_progress) {
779 if (!has_metadata_uuid)
780 fs_devices = find_fsid_inprogress(disk_super);
781 else
782 fs_devices = find_fsid_changed(disk_super);
783 } else if (has_metadata_uuid) {
784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
785 } else {
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
789 }
790
791
792 if (!fs_devices) {
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
799 if (IS_ERR(fs_devices))
800 return ERR_CAST(fs_devices);
801
802 fs_devices->fsid_change = fsid_change_in_progress;
803
804 mutex_lock(&fs_devices->device_list_mutex);
805 list_add(&fs_devices->fs_list, &fs_uuids);
806
807 device = NULL;
808 } else {
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
814 mutex_lock(&fs_devices->device_list_mutex);
815 device = btrfs_find_device(fs_devices, &args);
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
822 if (fs_devices->fsid_change &&
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
834
835 fs_devices->fsid_change = false;
836 }
837 }
838
839 if (!device) {
840 unsigned int nofs_flag;
841
842 if (fs_devices->opened) {
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
846 mutex_unlock(&fs_devices->device_list_mutex);
847 return ERR_PTR(-EBUSY);
848 }
849
850 nofs_flag = memalloc_nofs_save();
851 device = btrfs_alloc_device(NULL, &devid,
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
857 return device;
858 }
859
860 device->devt = path_devt;
861
862 list_add_rcu(&device->dev_list, &fs_devices->devices);
863 fs_devices->num_devices++;
864
865 device->fs_devices = fs_devices;
866 *new_device_added = true;
867
868 if (disk_super->label[0])
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
873 else
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
878
879 } else if (!device->name || strcmp(device->name->str, path)) {
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
905 */
906 if (!fs_devices->opened && found_transid < device->generation) {
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
914 mutex_unlock(&fs_devices->device_list_mutex);
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
918 return ERR_PTR(-EEXIST);
919 }
920
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
929 */
930 if (device->bdev) {
931 if (device->devt != path_devt) {
932 mutex_unlock(&fs_devices->device_list_mutex);
933 btrfs_warn_in_rcu(NULL,
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
938 return ERR_PTR(-EEXIST);
939 }
940 btrfs_info_in_rcu(NULL,
941 "devid %llu device path %s changed to %s scanned by %s (%d)",
942 devid, btrfs_dev_name(device),
943 path, current->comm,
944 task_pid_nr(current));
945 }
946
947 name = rcu_string_strdup(path, GFP_NOFS);
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 return ERR_PTR(-ENOMEM);
951 }
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 fs_devices->missing_devices--;
956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 }
958 device->devt = path_devt;
959 }
960
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
967 if (!fs_devices->opened) {
968 device->generation = found_transid;
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
972
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
975 mutex_unlock(&fs_devices->device_list_mutex);
976 return device;
977}
978
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
984 int ret = 0;
985
986 lockdep_assert_held(&uuid_mutex);
987
988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 if (IS_ERR(fs_devices))
990 return fs_devices;
991
992 fs_devices->total_devices = orig->total_devices;
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
1003
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid, dev_path);
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1008 goto error;
1009 }
1010
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
1030 return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034 struct btrfs_device **latest_dev)
1035{
1036 struct btrfs_device *device, *next;
1037
1038 /* This is the initialized path, it is safe to release the devices. */
1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042 &device->dev_state) &&
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
1048 }
1049 continue;
1050 }
1051
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
1059 if (device->bdev) {
1060 blkdev_put(device->bdev, device->mode);
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065 list_del_init(&device->dev_alloc_list);
1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067 fs_devices->rw_devices--;
1068 }
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
1071 btrfs_free_device(device);
1072 }
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082 struct btrfs_device *latest_dev = NULL;
1083 struct btrfs_fs_devices *seed_dev;
1084
1085 mutex_lock(&uuid_mutex);
1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091 fs_devices->latest_dev = latest_dev;
1092
1093 mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098 if (!device->bdev)
1099 return;
1100
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
1106 blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124 fs_devices->missing_devices--;
1125 }
1126
1127 btrfs_close_bdev(device);
1128 if (device->bdev) {
1129 fs_devices->open_devices--;
1130 device->bdev = NULL;
1131 }
1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 btrfs_destroy_dev_zone_info(device);
1134
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
1138
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
1152 /* Verify the device is back in a pristine state */
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 ASSERT(list_empty(&device->dev_alloc_list));
1156 ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened) {
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 close_fs_devices(fs_devices);
1203 list_del(&fs_devices->seed_list);
1204 free_fs_devices(fs_devices);
1205 }
1206 mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 fmode_t flags, void *holder)
1211{
1212 struct btrfs_device *device;
1213 struct btrfs_device *latest_dev = NULL;
1214 struct btrfs_device *tmp_device;
1215
1216 flags |= FMODE_EXCL;
1217
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
1221
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
1225 latest_dev = device;
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
1231 }
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
1235 fs_devices->opened = 1;
1236 fs_devices->latest_dev = latest_dev;
1237 fs_devices->total_rw_bytes = 0;
1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241 return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
1246{
1247 const struct btrfs_device *dev1, *dev2;
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 fmode_t flags, void *holder)
1261{
1262 int ret;
1263
1264 lockdep_assert_held(&uuid_mutex);
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
1267 * underlying device takes further locks like open_mutex.
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
1272
1273 if (fs_devices->opened) {
1274 fs_devices->opened++;
1275 ret = 0;
1276 } else {
1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 ret = open_fs_devices(fs_devices, flags, holder);
1279 }
1280
1281 return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286 struct page *page = virt_to_page(super);
1287
1288 put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 u64 bytenr, u64 bytenr_orig)
1293{
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 return ERR_PTR(-EINVAL);
1302
1303 /* make sure our super fits in the page */
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
1311
1312 /* pull in the page with our super */
1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
1317
1318 p = page_address(page);
1319
1320 /* align our pointer to the offset of the super block */
1321 disk_super = p + offset_in_page(bytenr);
1322
1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 btrfs_release_disk_super(p);
1326 return ERR_PTR(-EINVAL);
1327 }
1328
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332 return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
1340 ret = btrfs_free_stale_devices(devt, NULL);
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
1353{
1354 struct btrfs_super_block *disk_super;
1355 bool new_device_added = false;
1356 struct btrfs_device *device = NULL;
1357 struct block_device *bdev;
1358 u64 bytenr, bytenr_orig;
1359 int ret;
1360
1361 lockdep_assert_held(&uuid_mutex);
1362
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
1369 flags |= FMODE_EXCL;
1370
1371 bdev = blkdev_get_by_path(path, flags, holder);
1372 if (IS_ERR(bdev))
1373 return ERR_CAST(bdev);
1374
1375 bytenr_orig = btrfs_sb_offset(0);
1376 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 if (ret) {
1378 device = ERR_PTR(ret);
1379 goto error_bdev_put;
1380 }
1381
1382 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 if (IS_ERR(disk_super)) {
1384 device = ERR_CAST(disk_super);
1385 goto error_bdev_put;
1386 }
1387
1388 device = device_list_add(path, disk_super, &new_device_added);
1389 if (!IS_ERR(device) && new_device_added)
1390 btrfs_free_stale_devices(device->devt, device);
1391
1392 btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395 blkdev_put(bdev, flags);
1396
1397 return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 u64 len)
1406{
1407 u64 physical_start, physical_end;
1408
1409 lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411 if (!find_first_extent_bit(&device->alloc_state, *start,
1412 &physical_start, &physical_end,
1413 CHUNK_ALLOCATED, NULL)) {
1414
1415 if (in_range(physical_start, *start, len) ||
1416 in_range(*start, physical_start,
1417 physical_end - physical_start)) {
1418 *start = physical_end + 1;
1419 return true;
1420 }
1421 }
1422 return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
1429 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430 case BTRFS_CHUNK_ALLOC_ZONED:
1431 /*
1432 * We don't care about the starting region like regular
1433 * allocator, because we anyway use/reserve the first two zones
1434 * for superblock logging.
1435 */
1436 return ALIGN(start, device->zone_info->zone_size);
1437 default:
1438 BUG();
1439 }
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 u64 *hole_start, u64 *hole_size,
1444 u64 num_bytes)
1445{
1446 u64 zone_size = device->zone_info->zone_size;
1447 u64 pos;
1448 int ret;
1449 bool changed = false;
1450
1451 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453 while (*hole_size > 0) {
1454 pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 *hole_start + *hole_size,
1456 num_bytes);
1457 if (pos != *hole_start) {
1458 *hole_size = *hole_start + *hole_size - pos;
1459 *hole_start = pos;
1460 changed = true;
1461 if (*hole_size < num_bytes)
1462 break;
1463 }
1464
1465 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467 /* Range is ensured to be empty */
1468 if (!ret)
1469 return changed;
1470
1471 /* Given hole range was invalid (outside of device) */
1472 if (ret == -ERANGE) {
1473 *hole_start += *hole_size;
1474 *hole_size = 0;
1475 return true;
1476 }
1477
1478 *hole_start += zone_size;
1479 *hole_size -= zone_size;
1480 changed = true;
1481 }
1482
1483 return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1499{
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1502
1503 for (;;) {
1504 /*
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1507 */
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1511 else
1512 *hole_size = 0;
1513 changed = true;
1514 }
1515
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1519 break;
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1523 changed = true;
1524 /*
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1527 */
1528 continue;
1529 }
1530 break;
1531 default:
1532 BUG();
1533 }
1534
1535 break;
1536 }
1537
1538 return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device: the device which we search the free space in
1545 * @num_bytes: the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start: store the start of the free space.
1548 * @len: the size of the free space. that we find, or the size
1549 * of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1570 u64 *len)
1571{
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_key key;
1575 struct btrfs_dev_extent *dev_extent;
1576 struct btrfs_path *path;
1577 u64 hole_size;
1578 u64 max_hole_start;
1579 u64 max_hole_size;
1580 u64 extent_end;
1581 u64 search_end = device->total_bytes;
1582 int ret;
1583 int slot;
1584 struct extent_buffer *l;
1585
1586 search_start = dev_extent_search_start(device, search_start);
1587
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 max_hole_start = search_start;
1596 max_hole_size = 0;
1597
1598again:
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 ret = -ENOSPC;
1602 goto out;
1603 }
1604
1605 path->reada = READA_FORWARD;
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
1608
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613 ret = btrfs_search_backwards(root, &key, path);
1614 if (ret < 0)
1615 goto out;
1616
1617 while (search_start < search_end) {
1618 l = path->nodes[0];
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1622 if (ret == 0)
1623 continue;
1624 if (ret < 0)
1625 goto out;
1626
1627 break;
1628 }
1629 btrfs_item_key_to_cpu(l, &key, slot);
1630
1631 if (key.objectid < device->devid)
1632 goto next;
1633
1634 if (key.objectid > device->devid)
1635 break;
1636
1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 goto next;
1639
1640 if (key.offset > search_end)
1641 break;
1642
1643 if (key.offset > search_start) {
1644 hole_size = key.offset - search_start;
1645 dev_extent_hole_check(device, &search_start, &hole_size,
1646 num_bytes);
1647
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
1652
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
1665 }
1666 }
1667
1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
1673next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
1677
1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
1683 if (search_end > search_start) {
1684 hole_size = search_end - search_start;
1685 if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 num_bytes)) {
1687 btrfs_release_path(path);
1688 goto again;
1689 }
1690
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
1695 }
1696
1697 /* See above. */
1698 if (max_hole_size < num_bytes)
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
1703 ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705 btrfs_free_path(path);
1706 *start = max_hole_start;
1707 if (len)
1708 *len = max_hole_size;
1709 return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713 u64 *start, u64 *len)
1714{
1715 /* FIXME use last free of some kind */
1716 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720 struct btrfs_device *device,
1721 u64 start, u64 *dev_extent_len)
1722{
1723 struct btrfs_fs_info *fs_info = device->fs_info;
1724 struct btrfs_root *root = fs_info->dev_root;
1725 int ret;
1726 struct btrfs_path *path;
1727 struct btrfs_key key;
1728 struct btrfs_key found_key;
1729 struct extent_buffer *leaf = NULL;
1730 struct btrfs_dev_extent *extent = NULL;
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
1736 key.objectid = device->devid;
1737 key.offset = start;
1738 key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741 if (ret > 0) {
1742 ret = btrfs_previous_item(root, path, key.objectid,
1743 BTRFS_DEV_EXTENT_KEY);
1744 if (ret)
1745 goto out;
1746 leaf = path->nodes[0];
1747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 extent = btrfs_item_ptr(leaf, path->slots[0],
1749 struct btrfs_dev_extent);
1750 BUG_ON(found_key.offset > start || found_key.offset +
1751 btrfs_dev_extent_length(leaf, extent) < start);
1752 key = found_key;
1753 btrfs_release_path(path);
1754 goto again;
1755 } else if (ret == 0) {
1756 leaf = path->nodes[0];
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
1759 } else {
1760 goto out;
1761 }
1762
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret == 0)
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775 struct extent_map_tree *em_tree;
1776 struct extent_map *em;
1777 struct rb_node *n;
1778 u64 ret = 0;
1779
1780 em_tree = &fs_info->mapping_tree;
1781 read_lock(&em_tree->lock);
1782 n = rb_last(&em_tree->map.rb_root);
1783 if (n) {
1784 em = rb_entry(n, struct extent_map, rb_node);
1785 ret = em->start + em->len;
1786 }
1787 read_unlock(&em_tree->lock);
1788
1789 return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 u64 *devid_ret)
1794{
1795 int ret;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
1798 struct btrfs_path *path;
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = (u64)-1;
1807
1808 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809 if (ret < 0)
1810 goto error;
1811
1812 if (ret == 0) {
1813 /* Corruption */
1814 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = -EUCLEAN;
1816 goto error;
1817 }
1818
1819 ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 BTRFS_DEV_ITEMS_OBJECTID,
1821 BTRFS_DEV_ITEM_KEY);
1822 if (ret) {
1823 *devid_ret = 1;
1824 } else {
1825 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 path->slots[0]);
1827 *devid_ret = found_key.offset + 1;
1828 }
1829 ret = 0;
1830error:
1831 btrfs_free_path(path);
1832 return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840 struct btrfs_device *device)
1841{
1842 int ret;
1843 struct btrfs_path *path;
1844 struct btrfs_dev_item *dev_item;
1845 struct extent_buffer *leaf;
1846 struct btrfs_key key;
1847 unsigned long ptr;
1848
1849 path = btrfs_alloc_path();
1850 if (!path)
1851 return -ENOMEM;
1852
1853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 key.type = BTRFS_DEV_ITEM_KEY;
1855 key.offset = device->devid;
1856
1857 btrfs_reserve_chunk_metadata(trans, true);
1858 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 &key, sizeof(*dev_item));
1860 btrfs_trans_release_chunk_metadata(trans);
1861 if (ret)
1862 goto out;
1863
1864 leaf = path->nodes[0];
1865 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867 btrfs_set_device_id(leaf, dev_item, device->devid);
1868 btrfs_set_device_generation(leaf, dev_item, 0);
1869 btrfs_set_device_type(leaf, dev_item, device->type);
1870 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873 btrfs_set_device_total_bytes(leaf, dev_item,
1874 btrfs_device_get_disk_total_bytes(device));
1875 btrfs_set_device_bytes_used(leaf, dev_item,
1876 btrfs_device_get_bytes_used(device));
1877 btrfs_set_device_group(leaf, dev_item, 0);
1878 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880 btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882 ptr = btrfs_device_uuid(dev_item);
1883 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884 ptr = btrfs_device_fsid(dev_item);
1885 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 ptr, BTRFS_FSID_SIZE);
1887 btrfs_mark_buffer_dirty(leaf);
1888
1889 ret = 0;
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903 struct path path;
1904 struct timespec64 now;
1905 int ret;
1906
1907 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 if (ret)
1909 return;
1910
1911 now = current_time(d_inode(path.dentry));
1912 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 struct btrfs_device *device)
1918{
1919 struct btrfs_root *root = device->fs_info->chunk_root;
1920 int ret;
1921 struct btrfs_path *path;
1922 struct btrfs_key key;
1923
1924 path = btrfs_alloc_path();
1925 if (!path)
1926 return -ENOMEM;
1927
1928 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 key.type = BTRFS_DEV_ITEM_KEY;
1930 key.offset = device->devid;
1931
1932 btrfs_reserve_chunk_metadata(trans, false);
1933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934 btrfs_trans_release_chunk_metadata(trans);
1935 if (ret) {
1936 if (ret > 0)
1937 ret = -ENOENT;
1938 goto out;
1939 }
1940
1941 ret = btrfs_del_item(trans, root, path);
1942out:
1943 btrfs_free_path(path);
1944 return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 u64 num_devices)
1954{
1955 u64 all_avail;
1956 unsigned seq;
1957 int i;
1958
1959 do {
1960 seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962 all_avail = fs_info->avail_data_alloc_bits |
1963 fs_info->avail_system_alloc_bits |
1964 fs_info->avail_metadata_alloc_bits;
1965 } while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969 continue;
1970
1971 if (num_devices < btrfs_raid_array[i].devs_min)
1972 return btrfs_raid_array[i].mindev_error;
1973 }
1974
1975 return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981 struct btrfs_device *next_device;
1982
1983 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 if (next_device != device &&
1985 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 && next_device->bdev)
1987 return next_device;
1988 }
1989
1990 return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000 struct btrfs_device *next_device)
2001{
2002 struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004 if (!next_device)
2005 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006 device);
2007 ASSERT(next_device);
2008
2009 if (fs_info->sb->s_bdev &&
2010 (fs_info->sb->s_bdev == device->bdev))
2011 fs_info->sb->s_bdev = next_device->bdev;
2012
2013 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023 u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025 down_read(&fs_info->dev_replace.rwsem);
2026 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 ASSERT(num_devices > 1);
2028 num_devices--;
2029 }
2030 up_read(&fs_info->dev_replace.rwsem);
2031
2032 return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev, int copy_num)
2037{
2038 struct btrfs_super_block *disk_super;
2039 const size_t len = sizeof(disk_super->magic);
2040 const u64 bytenr = btrfs_sb_offset(copy_num);
2041 int ret;
2042
2043 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044 if (IS_ERR(disk_super))
2045 return;
2046
2047 memset(&disk_super->magic, 0, len);
2048 folio_mark_dirty(virt_to_folio(disk_super));
2049 btrfs_release_disk_super(disk_super);
2050
2051 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052 if (ret)
2053 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
2060{
2061 int copy_num;
2062
2063 if (!bdev)
2064 return;
2065
2066 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067 if (bdev_is_zoned(bdev))
2068 btrfs_reset_sb_log_zones(bdev, copy_num);
2069 else
2070 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071 }
2072
2073 /* Notify udev that device has changed */
2074 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076 /* Update ctime/mtime for device path for libblkid */
2077 update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 struct btrfs_dev_lookup_args *args,
2082 struct block_device **bdev, fmode_t *mode)
2083{
2084 struct btrfs_trans_handle *trans;
2085 struct btrfs_device *device;
2086 struct btrfs_fs_devices *cur_devices;
2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 u64 num_devices;
2089 int ret = 0;
2090
2091 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 return -EINVAL;
2094 }
2095
2096 /*
2097 * The device list in fs_devices is accessed without locks (neither
2098 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 * filesystem and another device rm cannot run.
2100 */
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 return ret;
2106
2107 device = btrfs_find_device(fs_info->fs_devices, args);
2108 if (!device) {
2109 if (args->missing)
2110 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 else
2112 ret = -ENOENT;
2113 return ret;
2114 }
2115
2116 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 btrfs_warn_in_rcu(fs_info,
2118 "cannot remove device %s (devid %llu) due to active swapfile",
2119 btrfs_dev_name(device), device->devid);
2120 return -ETXTBSY;
2121 }
2122
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127 fs_info->fs_devices->rw_devices == 1)
2128 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131 mutex_lock(&fs_info->chunk_mutex);
2132 list_del_init(&device->dev_alloc_list);
2133 device->fs_devices->rw_devices--;
2134 mutex_unlock(&fs_info->chunk_mutex);
2135 }
2136
2137 ret = btrfs_shrink_device(device, 0);
2138 if (ret)
2139 goto error_undo;
2140
2141 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 if (IS_ERR(trans)) {
2143 ret = PTR_ERR(trans);
2144 goto error_undo;
2145 }
2146
2147 ret = btrfs_rm_dev_item(trans, device);
2148 if (ret) {
2149 /* Any error in dev item removal is critical */
2150 btrfs_crit(fs_info,
2151 "failed to remove device item for devid %llu: %d",
2152 device->devid, ret);
2153 btrfs_abort_transaction(trans, ret);
2154 btrfs_end_transaction(trans);
2155 return ret;
2156 }
2157
2158 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159 btrfs_scrub_cancel_dev(device);
2160
2161 /*
2162 * the device list mutex makes sure that we don't change
2163 * the device list while someone else is writing out all
2164 * the device supers. Whoever is writing all supers, should
2165 * lock the device list mutex before getting the number of
2166 * devices in the super block (super_copy). Conversely,
2167 * whoever updates the number of devices in the super block
2168 * (super_copy) should hold the device list mutex.
2169 */
2170
2171 /*
2172 * In normal cases the cur_devices == fs_devices. But in case
2173 * of deleting a seed device, the cur_devices should point to
2174 * its own fs_devices listed under the fs_devices->seed_list.
2175 */
2176 cur_devices = device->fs_devices;
2177 mutex_lock(&fs_devices->device_list_mutex);
2178 list_del_rcu(&device->dev_list);
2179
2180 cur_devices->num_devices--;
2181 cur_devices->total_devices--;
2182 /* Update total_devices of the parent fs_devices if it's seed */
2183 if (cur_devices != fs_devices)
2184 fs_devices->total_devices--;
2185
2186 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187 cur_devices->missing_devices--;
2188
2189 btrfs_assign_next_active_device(device, NULL);
2190
2191 if (device->bdev) {
2192 cur_devices->open_devices--;
2193 /* remove sysfs entry */
2194 btrfs_sysfs_remove_device(device);
2195 }
2196
2197 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199 mutex_unlock(&fs_devices->device_list_mutex);
2200
2201 /*
2202 * At this point, the device is zero sized and detached from the
2203 * devices list. All that's left is to zero out the old supers and
2204 * free the device.
2205 *
2206 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 * block device and it's dependencies. Instead just flush the device
2209 * and let the caller do the final blkdev_put.
2210 */
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 btrfs_scratch_superblocks(fs_info, device->bdev,
2213 device->name->str);
2214 if (device->bdev) {
2215 sync_blockdev(device->bdev);
2216 invalidate_bdev(device->bdev);
2217 }
2218 }
2219
2220 *bdev = device->bdev;
2221 *mode = device->mode;
2222 synchronize_rcu();
2223 btrfs_free_device(device);
2224
2225 /*
2226 * This can happen if cur_devices is the private seed devices list. We
2227 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 * to be held, but in fact we don't need that for the private
2229 * seed_devices, we can simply decrement cur_devices->opened and then
2230 * remove it from our list and free the fs_devices.
2231 */
2232 if (cur_devices->num_devices == 0) {
2233 list_del_init(&cur_devices->seed_list);
2234 ASSERT(cur_devices->opened == 1);
2235 cur_devices->opened--;
2236 free_fs_devices(cur_devices);
2237 }
2238
2239 ret = btrfs_commit_transaction(trans);
2240
2241 return ret;
2242
2243error_undo:
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 mutex_lock(&fs_info->chunk_mutex);
2246 list_add(&device->dev_alloc_list,
2247 &fs_devices->alloc_list);
2248 device->fs_devices->rw_devices++;
2249 mutex_unlock(&fs_info->chunk_mutex);
2250 }
2251 return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256 struct btrfs_fs_devices *fs_devices;
2257
2258 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260 /*
2261 * in case of fs with no seed, srcdev->fs_devices will point
2262 * to fs_devices of fs_info. However when the dev being replaced is
2263 * a seed dev it will point to the seed's local fs_devices. In short
2264 * srcdev will have its correct fs_devices in both the cases.
2265 */
2266 fs_devices = srcdev->fs_devices;
2267
2268 list_del_rcu(&srcdev->dev_list);
2269 list_del(&srcdev->dev_alloc_list);
2270 fs_devices->num_devices--;
2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272 fs_devices->missing_devices--;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275 fs_devices->rw_devices--;
2276
2277 if (srcdev->bdev)
2278 fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285 mutex_lock(&uuid_mutex);
2286
2287 btrfs_close_bdev(srcdev);
2288 synchronize_rcu();
2289 btrfs_free_device(srcdev);
2290
2291 /* if this is no devs we rather delete the fs_devices */
2292 if (!fs_devices->num_devices) {
2293 /*
2294 * On a mounted FS, num_devices can't be zero unless it's a
2295 * seed. In case of a seed device being replaced, the replace
2296 * target added to the sprout FS, so there will be no more
2297 * device left under the seed FS.
2298 */
2299 ASSERT(fs_devices->seeding);
2300
2301 list_del_init(&fs_devices->seed_list);
2302 close_fs_devices(fs_devices);
2303 free_fs_devices(fs_devices);
2304 }
2305 mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312 mutex_lock(&fs_devices->device_list_mutex);
2313
2314 btrfs_sysfs_remove_device(tgtdev);
2315
2316 if (tgtdev->bdev)
2317 fs_devices->open_devices--;
2318
2319 fs_devices->num_devices--;
2320
2321 btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323 list_del_rcu(&tgtdev->dev_list);
2324
2325 mutex_unlock(&fs_devices->device_list_mutex);
2326
2327 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 tgtdev->name->str);
2329
2330 btrfs_close_bdev(tgtdev);
2331 synchronize_rcu();
2332 btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info: the filesystem
2339 * @args: the args to populate
2340 * @path: the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks. The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 struct btrfs_dev_lookup_args *args,
2355 const char *path)
2356{
2357 struct btrfs_super_block *disk_super;
2358 struct block_device *bdev;
2359 int ret;
2360
2361 if (!path || !path[0])
2362 return -EINVAL;
2363 if (!strcmp(path, "missing")) {
2364 args->missing = true;
2365 return 0;
2366 }
2367
2368 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 if (!args->uuid || !args->fsid) {
2371 btrfs_put_dev_args_from_path(args);
2372 return -ENOMEM;
2373 }
2374
2375 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 &bdev, &disk_super);
2377 if (ret) {
2378 btrfs_put_dev_args_from_path(args);
2379 return ret;
2380 }
2381
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 else
2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 btrfs_release_disk_super(disk_super);
2389 blkdev_put(bdev, FMODE_READ);
2390 return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400 kfree(args->uuid);
2401 kfree(args->fsid);
2402 args->uuid = NULL;
2403 args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
2409{
2410 BTRFS_DEV_LOOKUP_ARGS(args);
2411 struct btrfs_device *device;
2412 int ret;
2413
2414 if (devid) {
2415 args.devid = devid;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
2417 if (!device)
2418 return ERR_PTR(-ENOENT);
2419 return device;
2420 }
2421
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 if (ret)
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2427 if (!device)
2428 return ERR_PTR(-ENOENT);
2429 return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 struct btrfs_fs_devices *old_devices;
2436 struct btrfs_fs_devices *seed_devices;
2437
2438 lockdep_assert_held(&uuid_mutex);
2439 if (!fs_devices->seeding)
2440 return ERR_PTR(-EINVAL);
2441
2442 /*
2443 * Private copy of the seed devices, anchored at
2444 * fs_info->fs_devices->seed_list
2445 */
2446 seed_devices = alloc_fs_devices(NULL, NULL);
2447 if (IS_ERR(seed_devices))
2448 return seed_devices;
2449
2450 /*
2451 * It's necessary to retain a copy of the original seed fs_devices in
2452 * fs_uuids so that filesystems which have been seeded can successfully
2453 * reference the seed device from open_seed_devices. This also supports
2454 * multiple fs seed.
2455 */
2456 old_devices = clone_fs_devices(fs_devices);
2457 if (IS_ERR(old_devices)) {
2458 kfree(seed_devices);
2459 return old_devices;
2460 }
2461
2462 list_add(&old_devices->fs_list, &fs_uuids);
2463
2464 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 seed_devices->opened = 1;
2466 INIT_LIST_HEAD(&seed_devices->devices);
2467 INIT_LIST_HEAD(&seed_devices->alloc_list);
2468 mutex_init(&seed_devices->device_list_mutex);
2469
2470 return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 struct btrfs_fs_devices *seed_devices)
2479{
2480 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 struct btrfs_device *device;
2483 u64 super_flags;
2484
2485 /*
2486 * We are updating the fsid, the thread leading to device_list_add()
2487 * could race, so uuid_mutex is needed.
2488 */
2489 lockdep_assert_held(&uuid_mutex);
2490
2491 /*
2492 * The threads listed below may traverse dev_list but can do that without
2493 * device_list_mutex:
2494 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 * - Various dev_list readers - are using RCU.
2496 * - btrfs_ioctl_fitrim() - is using RCU.
2497 *
2498 * For-read threads as below are using device_list_mutex:
2499 * - Readonly scrub btrfs_scrub_dev()
2500 * - Readonly scrub btrfs_scrub_progress()
2501 * - btrfs_get_dev_stats()
2502 */
2503 lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 synchronize_rcu);
2507 list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 device->fs_devices = seed_devices;
2509
2510 fs_devices->seeding = false;
2511 fs_devices->num_devices = 0;
2512 fs_devices->open_devices = 0;
2513 fs_devices->missing_devices = 0;
2514 fs_devices->rotating = false;
2515 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517 generate_random_uuid(fs_devices->fsid);
2518 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521 super_flags = btrfs_super_flags(disk_super) &
2522 ~BTRFS_SUPER_FLAG_SEEDING;
2523 btrfs_set_super_flags(disk_super, super_flags);
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531 BTRFS_DEV_LOOKUP_ARGS(args);
2532 struct btrfs_fs_info *fs_info = trans->fs_info;
2533 struct btrfs_root *root = fs_info->chunk_root;
2534 struct btrfs_path *path;
2535 struct extent_buffer *leaf;
2536 struct btrfs_dev_item *dev_item;
2537 struct btrfs_device *device;
2538 struct btrfs_key key;
2539 u8 fs_uuid[BTRFS_FSID_SIZE];
2540 u8 dev_uuid[BTRFS_UUID_SIZE];
2541 int ret;
2542
2543 path = btrfs_alloc_path();
2544 if (!path)
2545 return -ENOMEM;
2546
2547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 key.offset = 0;
2549 key.type = BTRFS_DEV_ITEM_KEY;
2550
2551 while (1) {
2552 btrfs_reserve_chunk_metadata(trans, false);
2553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554 btrfs_trans_release_chunk_metadata(trans);
2555 if (ret < 0)
2556 goto error;
2557
2558 leaf = path->nodes[0];
2559next_slot:
2560 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 ret = btrfs_next_leaf(root, path);
2562 if (ret > 0)
2563 break;
2564 if (ret < 0)
2565 goto error;
2566 leaf = path->nodes[0];
2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568 btrfs_release_path(path);
2569 continue;
2570 }
2571
2572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 key.type != BTRFS_DEV_ITEM_KEY)
2575 break;
2576
2577 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 struct btrfs_dev_item);
2579 args.devid = btrfs_device_id(leaf, dev_item);
2580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581 BTRFS_UUID_SIZE);
2582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583 BTRFS_FSID_SIZE);
2584 args.uuid = dev_uuid;
2585 args.fsid = fs_uuid;
2586 device = btrfs_find_device(fs_info->fs_devices, &args);
2587 BUG_ON(!device); /* Logic error */
2588
2589 if (device->fs_devices->seeding) {
2590 btrfs_set_device_generation(leaf, dev_item,
2591 device->generation);
2592 btrfs_mark_buffer_dirty(leaf);
2593 }
2594
2595 path->slots[0]++;
2596 goto next_slot;
2597 }
2598 ret = 0;
2599error:
2600 btrfs_free_path(path);
2601 return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606 struct btrfs_root *root = fs_info->dev_root;
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_device *device;
2609 struct block_device *bdev;
2610 struct super_block *sb = fs_info->sb;
2611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612 struct btrfs_fs_devices *seed_devices;
2613 u64 orig_super_total_bytes;
2614 u64 orig_super_num_devices;
2615 int ret = 0;
2616 bool seeding_dev = false;
2617 bool locked = false;
2618
2619 if (sb_rdonly(sb) && !fs_devices->seeding)
2620 return -EROFS;
2621
2622 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623 fs_info->bdev_holder);
2624 if (IS_ERR(bdev))
2625 return PTR_ERR(bdev);
2626
2627 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 ret = -EINVAL;
2629 goto error;
2630 }
2631
2632 if (fs_devices->seeding) {
2633 seeding_dev = true;
2634 down_write(&sb->s_umount);
2635 mutex_lock(&uuid_mutex);
2636 locked = true;
2637 }
2638
2639 sync_blockdev(bdev);
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643 if (device->bdev == bdev) {
2644 ret = -EEXIST;
2645 rcu_read_unlock();
2646 goto error;
2647 }
2648 }
2649 rcu_read_unlock();
2650
2651 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652 if (IS_ERR(device)) {
2653 /* we can safely leave the fs_devices entry around */
2654 ret = PTR_ERR(device);
2655 goto error;
2656 }
2657
2658 device->fs_info = fs_info;
2659 device->bdev = bdev;
2660 ret = lookup_bdev(device_path, &device->devt);
2661 if (ret)
2662 goto error_free_device;
2663
2664 ret = btrfs_get_dev_zone_info(device, false);
2665 if (ret)
2666 goto error_free_device;
2667
2668 trans = btrfs_start_transaction(root, 0);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 goto error_free_zone;
2672 }
2673
2674 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675 device->generation = trans->transid;
2676 device->io_width = fs_info->sectorsize;
2677 device->io_align = fs_info->sectorsize;
2678 device->sector_size = fs_info->sectorsize;
2679 device->total_bytes =
2680 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681 device->disk_total_bytes = device->total_bytes;
2682 device->commit_total_bytes = device->total_bytes;
2683 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685 device->mode = FMODE_EXCL;
2686 device->dev_stats_valid = 1;
2687 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689 if (seeding_dev) {
2690 btrfs_clear_sb_rdonly(sb);
2691
2692 /* GFP_KERNEL allocation must not be under device_list_mutex */
2693 seed_devices = btrfs_init_sprout(fs_info);
2694 if (IS_ERR(seed_devices)) {
2695 ret = PTR_ERR(seed_devices);
2696 btrfs_abort_transaction(trans, ret);
2697 goto error_trans;
2698 }
2699 }
2700
2701 mutex_lock(&fs_devices->device_list_mutex);
2702 if (seeding_dev) {
2703 btrfs_setup_sprout(fs_info, seed_devices);
2704 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 device);
2706 }
2707
2708 device->fs_devices = fs_devices;
2709
2710 mutex_lock(&fs_info->chunk_mutex);
2711 list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 fs_devices->num_devices++;
2714 fs_devices->open_devices++;
2715 fs_devices->rw_devices++;
2716 fs_devices->total_devices++;
2717 fs_devices->total_rw_bytes += device->total_bytes;
2718
2719 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721 if (!bdev_nonrot(bdev))
2722 fs_devices->rotating = true;
2723
2724 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725 btrfs_set_super_total_bytes(fs_info->super_copy,
2726 round_down(orig_super_total_bytes + device->total_bytes,
2727 fs_info->sectorsize));
2728
2729 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 btrfs_set_super_num_devices(fs_info->super_copy,
2731 orig_super_num_devices + 1);
2732
2733 /*
2734 * we've got more storage, clear any full flags on the space
2735 * infos
2736 */
2737 btrfs_clear_space_info_full(fs_info);
2738
2739 mutex_unlock(&fs_info->chunk_mutex);
2740
2741 /* Add sysfs device entry */
2742 btrfs_sysfs_add_device(device);
2743
2744 mutex_unlock(&fs_devices->device_list_mutex);
2745
2746 if (seeding_dev) {
2747 mutex_lock(&fs_info->chunk_mutex);
2748 ret = init_first_rw_device(trans);
2749 mutex_unlock(&fs_info->chunk_mutex);
2750 if (ret) {
2751 btrfs_abort_transaction(trans, ret);
2752 goto error_sysfs;
2753 }
2754 }
2755
2756 ret = btrfs_add_dev_item(trans, device);
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto error_sysfs;
2760 }
2761
2762 if (seeding_dev) {
2763 ret = btrfs_finish_sprout(trans);
2764 if (ret) {
2765 btrfs_abort_transaction(trans, ret);
2766 goto error_sysfs;
2767 }
2768
2769 /*
2770 * fs_devices now represents the newly sprouted filesystem and
2771 * its fsid has been changed by btrfs_sprout_splice().
2772 */
2773 btrfs_sysfs_update_sprout_fsid(fs_devices);
2774 }
2775
2776 ret = btrfs_commit_transaction(trans);
2777
2778 if (seeding_dev) {
2779 mutex_unlock(&uuid_mutex);
2780 up_write(&sb->s_umount);
2781 locked = false;
2782
2783 if (ret) /* transaction commit */
2784 return ret;
2785
2786 ret = btrfs_relocate_sys_chunks(fs_info);
2787 if (ret < 0)
2788 btrfs_handle_fs_error(fs_info, ret,
2789 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790 trans = btrfs_attach_transaction(root);
2791 if (IS_ERR(trans)) {
2792 if (PTR_ERR(trans) == -ENOENT)
2793 return 0;
2794 ret = PTR_ERR(trans);
2795 trans = NULL;
2796 goto error_sysfs;
2797 }
2798 ret = btrfs_commit_transaction(trans);
2799 }
2800
2801 /*
2802 * Now that we have written a new super block to this device, check all
2803 * other fs_devices list if device_path alienates any other scanned
2804 * device.
2805 * We can ignore the return value as it typically returns -EINVAL and
2806 * only succeeds if the device was an alien.
2807 */
2808 btrfs_forget_devices(device->devt);
2809
2810 /* Update ctime/mtime for blkid or udev */
2811 update_dev_time(device_path);
2812
2813 return ret;
2814
2815error_sysfs:
2816 btrfs_sysfs_remove_device(device);
2817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 mutex_lock(&fs_info->chunk_mutex);
2819 list_del_rcu(&device->dev_list);
2820 list_del(&device->dev_alloc_list);
2821 fs_info->fs_devices->num_devices--;
2822 fs_info->fs_devices->open_devices--;
2823 fs_info->fs_devices->rw_devices--;
2824 fs_info->fs_devices->total_devices--;
2825 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 btrfs_set_super_total_bytes(fs_info->super_copy,
2828 orig_super_total_bytes);
2829 btrfs_set_super_num_devices(fs_info->super_copy,
2830 orig_super_num_devices);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834 if (seeding_dev)
2835 btrfs_set_sb_rdonly(sb);
2836 if (trans)
2837 btrfs_end_transaction(trans);
2838error_free_zone:
2839 btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841 btrfs_free_device(device);
2842error:
2843 blkdev_put(bdev, FMODE_EXCL);
2844 if (locked) {
2845 mutex_unlock(&uuid_mutex);
2846 up_write(&sb->s_umount);
2847 }
2848 return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 struct btrfs_device *device)
2853{
2854 int ret;
2855 struct btrfs_path *path;
2856 struct btrfs_root *root = device->fs_info->chunk_root;
2857 struct btrfs_dev_item *dev_item;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860
2861 path = btrfs_alloc_path();
2862 if (!path)
2863 return -ENOMEM;
2864
2865 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 key.type = BTRFS_DEV_ITEM_KEY;
2867 key.offset = device->devid;
2868
2869 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 if (ret < 0)
2871 goto out;
2872
2873 if (ret > 0) {
2874 ret = -ENOENT;
2875 goto out;
2876 }
2877
2878 leaf = path->nodes[0];
2879 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881 btrfs_set_device_id(leaf, dev_item, device->devid);
2882 btrfs_set_device_type(leaf, dev_item, device->type);
2883 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886 btrfs_set_device_total_bytes(leaf, dev_item,
2887 btrfs_device_get_disk_total_bytes(device));
2888 btrfs_set_device_bytes_used(leaf, dev_item,
2889 btrfs_device_get_bytes_used(device));
2890 btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893 btrfs_free_path(path);
2894 return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898 struct btrfs_device *device, u64 new_size)
2899{
2900 struct btrfs_fs_info *fs_info = device->fs_info;
2901 struct btrfs_super_block *super_copy = fs_info->super_copy;
2902 u64 old_total;
2903 u64 diff;
2904 int ret;
2905
2906 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907 return -EACCES;
2908
2909 new_size = round_down(new_size, fs_info->sectorsize);
2910
2911 mutex_lock(&fs_info->chunk_mutex);
2912 old_total = btrfs_super_total_bytes(super_copy);
2913 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915 if (new_size <= device->total_bytes ||
2916 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917 mutex_unlock(&fs_info->chunk_mutex);
2918 return -EINVAL;
2919 }
2920
2921 btrfs_set_super_total_bytes(super_copy,
2922 round_down(old_total + diff, fs_info->sectorsize));
2923 device->fs_devices->total_rw_bytes += diff;
2924
2925 btrfs_device_set_total_bytes(device, new_size);
2926 btrfs_device_set_disk_total_bytes(device, new_size);
2927 btrfs_clear_space_info_full(device->fs_info);
2928 if (list_empty(&device->post_commit_list))
2929 list_add_tail(&device->post_commit_list,
2930 &trans->transaction->dev_update_list);
2931 mutex_unlock(&fs_info->chunk_mutex);
2932
2933 btrfs_reserve_chunk_metadata(trans, false);
2934 ret = btrfs_update_device(trans, device);
2935 btrfs_trans_release_chunk_metadata(trans);
2936
2937 return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942 struct btrfs_fs_info *fs_info = trans->fs_info;
2943 struct btrfs_root *root = fs_info->chunk_root;
2944 int ret;
2945 struct btrfs_path *path;
2946 struct btrfs_key key;
2947
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
2952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953 key.offset = chunk_offset;
2954 key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957 if (ret < 0)
2958 goto out;
2959 else if (ret > 0) { /* Logic error or corruption */
2960 btrfs_handle_fs_error(fs_info, -ENOENT,
2961 "Failed lookup while freeing chunk.");
2962 ret = -ENOENT;
2963 goto out;
2964 }
2965
2966 ret = btrfs_del_item(trans, root, path);
2967 if (ret < 0)
2968 btrfs_handle_fs_error(fs_info, ret,
2969 "Failed to delete chunk item.");
2970out:
2971 btrfs_free_path(path);
2972 return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977 struct btrfs_super_block *super_copy = fs_info->super_copy;
2978 struct btrfs_disk_key *disk_key;
2979 struct btrfs_chunk *chunk;
2980 u8 *ptr;
2981 int ret = 0;
2982 u32 num_stripes;
2983 u32 array_size;
2984 u32 len = 0;
2985 u32 cur;
2986 struct btrfs_key key;
2987
2988 lockdep_assert_held(&fs_info->chunk_mutex);
2989 array_size = btrfs_super_sys_array_size(super_copy);
2990
2991 ptr = super_copy->sys_chunk_array;
2992 cur = 0;
2993
2994 while (cur < array_size) {
2995 disk_key = (struct btrfs_disk_key *)ptr;
2996 btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998 len = sizeof(*disk_key);
2999
3000 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 chunk = (struct btrfs_chunk *)(ptr + len);
3002 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 len += btrfs_chunk_item_size(num_stripes);
3004 } else {
3005 ret = -EIO;
3006 break;
3007 }
3008 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009 key.offset == chunk_offset) {
3010 memmove(ptr, ptr + len, array_size - (cur + len));
3011 array_size -= len;
3012 btrfs_set_super_sys_array_size(super_copy, array_size);
3013 } else {
3014 ptr += len;
3015 cur += len;
3016 }
3017 }
3018 return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 u64 logical, u64 length)
3030{
3031 struct extent_map_tree *em_tree;
3032 struct extent_map *em;
3033
3034 em_tree = &fs_info->mapping_tree;
3035 read_lock(&em_tree->lock);
3036 em = lookup_extent_mapping(em_tree, logical, length);
3037 read_unlock(&em_tree->lock);
3038
3039 if (!em) {
3040 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 logical, length);
3042 return ERR_PTR(-EINVAL);
3043 }
3044
3045 if (em->start > logical || em->start + em->len < logical) {
3046 btrfs_crit(fs_info,
3047 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 logical, length, em->start, em->start + em->len);
3049 free_extent_map(em);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 /* callers are responsible for dropping em's ref. */
3054 return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 struct map_lookup *map, u64 chunk_offset)
3059{
3060 int i;
3061
3062 /*
3063 * Removing chunk items and updating the device items in the chunks btree
3064 * requires holding the chunk_mutex.
3065 * See the comment at btrfs_chunk_alloc() for the details.
3066 */
3067 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069 for (i = 0; i < map->num_stripes; i++) {
3070 int ret;
3071
3072 ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082 struct btrfs_fs_info *fs_info = trans->fs_info;
3083 struct extent_map *em;
3084 struct map_lookup *map;
3085 u64 dev_extent_len = 0;
3086 int i, ret = 0;
3087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090 if (IS_ERR(em)) {
3091 /*
3092 * This is a logic error, but we don't want to just rely on the
3093 * user having built with ASSERT enabled, so if ASSERT doesn't
3094 * do anything we still error out.
3095 */
3096 ASSERT(0);
3097 return PTR_ERR(em);
3098 }
3099 map = em->map_lookup;
3100
3101 /*
3102 * First delete the device extent items from the devices btree.
3103 * We take the device_list_mutex to avoid racing with the finishing phase
3104 * of a device replace operation. See the comment below before acquiring
3105 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 * because that can result in a deadlock when deleting the device extent
3107 * items from the devices btree - COWing an extent buffer from the btree
3108 * may result in allocating a new metadata chunk, which would attempt to
3109 * lock again fs_info->chunk_mutex.
3110 */
3111 mutex_lock(&fs_devices->device_list_mutex);
3112 for (i = 0; i < map->num_stripes; i++) {
3113 struct btrfs_device *device = map->stripes[i].dev;
3114 ret = btrfs_free_dev_extent(trans, device,
3115 map->stripes[i].physical,
3116 &dev_extent_len);
3117 if (ret) {
3118 mutex_unlock(&fs_devices->device_list_mutex);
3119 btrfs_abort_transaction(trans, ret);
3120 goto out;
3121 }
3122
3123 if (device->bytes_used > 0) {
3124 mutex_lock(&fs_info->chunk_mutex);
3125 btrfs_device_set_bytes_used(device,
3126 device->bytes_used - dev_extent_len);
3127 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128 btrfs_clear_space_info_full(fs_info);
3129 mutex_unlock(&fs_info->chunk_mutex);
3130 }
3131 }
3132 mutex_unlock(&fs_devices->device_list_mutex);
3133
3134 /*
3135 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 *
3137 * 1) Just like with the first phase of the chunk allocation, we must
3138 * reserve system space, do all chunk btree updates and deletions, and
3139 * update the system chunk array in the superblock while holding this
3140 * mutex. This is for similar reasons as explained on the comment at
3141 * the top of btrfs_chunk_alloc();
3142 *
3143 * 2) Prevent races with the final phase of a device replace operation
3144 * that replaces the device object associated with the map's stripes,
3145 * because the device object's id can change at any time during that
3146 * final phase of the device replace operation
3147 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 * replaced device and then see it with an ID of
3149 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 * the device item, which does not exists on the chunk btree.
3151 * The finishing phase of device replace acquires both the
3152 * device_list_mutex and the chunk_mutex, in that order, so we are
3153 * safe by just acquiring the chunk_mutex.
3154 */
3155 trans->removing_chunk = true;
3156 mutex_lock(&fs_info->chunk_mutex);
3157
3158 check_system_chunk(trans, map->type);
3159
3160 ret = remove_chunk_item(trans, map, chunk_offset);
3161 /*
3162 * Normally we should not get -ENOSPC since we reserved space before
3163 * through the call to check_system_chunk().
3164 *
3165 * Despite our system space_info having enough free space, we may not
3166 * be able to allocate extents from its block groups, because all have
3167 * an incompatible profile, which will force us to allocate a new system
3168 * block group with the right profile, or right after we called
3169 * check_system_space() above, a scrub turned the only system block group
3170 * with enough free space into RO mode.
3171 * This is explained with more detail at do_chunk_alloc().
3172 *
3173 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 */
3175 if (ret == -ENOSPC) {
3176 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 struct btrfs_block_group *sys_bg;
3178
3179 sys_bg = btrfs_create_chunk(trans, sys_flags);
3180 if (IS_ERR(sys_bg)) {
3181 ret = PTR_ERR(sys_bg);
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187 if (ret) {
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
3190 }
3191
3192 ret = remove_chunk_item(trans, map, chunk_offset);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197 } else if (ret) {
3198 btrfs_abort_transaction(trans, ret);
3199 goto out;
3200 }
3201
3202 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210 }
3211
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214
3215 /*
3216 * We are done with chunk btree updates and deletions, so release the
3217 * system space we previously reserved (with check_system_chunk()).
3218 */
3219 btrfs_trans_release_chunk_metadata(trans);
3220
3221 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222 if (ret) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226
3227out:
3228 if (trans->removing_chunk) {
3229 mutex_unlock(&fs_info->chunk_mutex);
3230 trans->removing_chunk = false;
3231 }
3232 /* once for us */
3233 free_extent_map(em);
3234 return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239 struct btrfs_root *root = fs_info->chunk_root;
3240 struct btrfs_trans_handle *trans;
3241 struct btrfs_block_group *block_group;
3242 u64 length;
3243 int ret;
3244
3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 btrfs_err(fs_info,
3247 "relocate: not supported on extent tree v2 yet");
3248 return -EINVAL;
3249 }
3250
3251 /*
3252 * Prevent races with automatic removal of unused block groups.
3253 * After we relocate and before we remove the chunk with offset
3254 * chunk_offset, automatic removal of the block group can kick in,
3255 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 *
3257 * Make sure to acquire this mutex before doing a tree search (dev
3258 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 * we release the path used to search the chunk/dev tree and before
3261 * the current task acquires this mutex and calls us.
3262 */
3263 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265 /* step one, relocate all the extents inside this chunk */
3266 btrfs_scrub_pause(fs_info);
3267 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268 btrfs_scrub_continue(fs_info);
3269 if (ret)
3270 return ret;
3271
3272 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 if (!block_group)
3274 return -ENOENT;
3275 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276 length = block_group->length;
3277 btrfs_put_block_group(block_group);
3278
3279 /*
3280 * On a zoned file system, discard the whole block group, this will
3281 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 * resetting the zone fails, don't treat it as a fatal problem from the
3283 * filesystem's point of view.
3284 */
3285 if (btrfs_is_zoned(fs_info)) {
3286 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 if (ret)
3288 btrfs_info(fs_info,
3289 "failed to reset zone %llu after relocation",
3290 chunk_offset);
3291 }
3292
3293 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 chunk_offset);
3295 if (IS_ERR(trans)) {
3296 ret = PTR_ERR(trans);
3297 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 return ret;
3299 }
3300
3301 /*
3302 * step two, delete the device extents and the
3303 * chunk tree entries
3304 */
3305 ret = btrfs_remove_chunk(trans, chunk_offset);
3306 btrfs_end_transaction(trans);
3307 return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312 struct btrfs_root *chunk_root = fs_info->chunk_root;
3313 struct btrfs_path *path;
3314 struct extent_buffer *leaf;
3315 struct btrfs_chunk *chunk;
3316 struct btrfs_key key;
3317 struct btrfs_key found_key;
3318 u64 chunk_type;
3319 bool retried = false;
3320 int failed = 0;
3321 int ret;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
3327again:
3328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 key.offset = (u64)-1;
3330 key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332 while (1) {
3333 mutex_lock(&fs_info->reclaim_bgs_lock);
3334 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335 if (ret < 0) {
3336 mutex_unlock(&fs_info->reclaim_bgs_lock);
3337 goto error;
3338 }
3339 BUG_ON(ret == 0); /* Corruption */
3340
3341 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 key.type);
3343 if (ret)
3344 mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 if (ret < 0)
3346 goto error;
3347 if (ret > 0)
3348 break;
3349
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 struct btrfs_chunk);
3355 chunk_type = btrfs_chunk_type(leaf, chunk);
3356 btrfs_release_path(path);
3357
3358 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360 if (ret == -ENOSPC)
3361 failed++;
3362 else
3363 BUG_ON(ret);
3364 }
3365 mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367 if (found_key.offset == 0)
3368 break;
3369 key.offset = found_key.offset - 1;
3370 }
3371 ret = 0;
3372 if (failed && !retried) {
3373 failed = 0;
3374 retried = true;
3375 goto again;
3376 } else if (WARN_ON(failed && retried)) {
3377 ret = -ENOSPC;
3378 }
3379error:
3380 btrfs_free_path(path);
3381 return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 u64 chunk_offset)
3391{
3392 struct btrfs_block_group *cache;
3393 u64 bytes_used;
3394 u64 chunk_type;
3395
3396 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 ASSERT(cache);
3398 chunk_type = cache->flags;
3399 btrfs_put_block_group(cache);
3400
3401 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 return 0;
3403
3404 spin_lock(&fs_info->data_sinfo->lock);
3405 bytes_used = fs_info->data_sinfo->bytes_used;
3406 spin_unlock(&fs_info->data_sinfo->lock);
3407
3408 if (!bytes_used) {
3409 struct btrfs_trans_handle *trans;
3410 int ret;
3411
3412 trans = btrfs_join_transaction(fs_info->tree_root);
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
3415
3416 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 btrfs_end_transaction(trans);
3418 if (ret < 0)
3419 return ret;
3420 return 1;
3421 }
3422
3423 return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427 struct btrfs_balance_control *bctl)
3428{
3429 struct btrfs_root *root = fs_info->tree_root;
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_balance_item *item;
3432 struct btrfs_disk_balance_args disk_bargs;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key;
3436 int ret, err;
3437
3438 path = btrfs_alloc_path();
3439 if (!path)
3440 return -ENOMEM;
3441
3442 trans = btrfs_start_transaction(root, 0);
3443 if (IS_ERR(trans)) {
3444 btrfs_free_path(path);
3445 return PTR_ERR(trans);
3446 }
3447
3448 key.objectid = BTRFS_BALANCE_OBJECTID;
3449 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450 key.offset = 0;
3451
3452 ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 sizeof(*item));
3454 if (ret)
3455 goto out;
3456
3457 leaf = path->nodes[0];
3458 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469 btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471 btrfs_mark_buffer_dirty(leaf);
3472out:
3473 btrfs_free_path(path);
3474 err = btrfs_commit_transaction(trans);
3475 if (err && !ret)
3476 ret = err;
3477 return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482 struct btrfs_root *root = fs_info->tree_root;
3483 struct btrfs_trans_handle *trans;
3484 struct btrfs_path *path;
3485 struct btrfs_key key;
3486 int ret, err;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493 if (IS_ERR(trans)) {
3494 btrfs_free_path(path);
3495 return PTR_ERR(trans);
3496 }
3497
3498 key.objectid = BTRFS_BALANCE_OBJECTID;
3499 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500 key.offset = 0;
3501
3502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 if (ret < 0)
3504 goto out;
3505 if (ret > 0) {
3506 ret = -ENOENT;
3507 goto out;
3508 }
3509
3510 ret = btrfs_del_item(trans, root, path);
3511out:
3512 btrfs_free_path(path);
3513 err = btrfs_commit_transaction(trans);
3514 if (err && !ret)
3515 ret = err;
3516 return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525 /*
3526 * Turn on soft mode for chunk types that were being converted.
3527 */
3528 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535 /*
3536 * Turn on usage filter if is not already used. The idea is
3537 * that chunks that we have already balanced should be
3538 * reasonably full. Don't do it for chunks that are being
3539 * converted - that will keep us from relocating unconverted
3540 * (albeit full) chunks.
3541 */
3542 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->data.usage = 90;
3547 }
3548 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 bctl->sys.usage = 90;
3553 }
3554 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 bctl->meta.usage = 90;
3559 }
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568 int ret;
3569
3570 BUG_ON(!fs_info->balance_ctl);
3571
3572 spin_lock(&fs_info->balance_lock);
3573 fs_info->balance_ctl = NULL;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 kfree(bctl);
3577 ret = del_balance_item(fs_info);
3578 if (ret)
3579 btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters. Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587 struct btrfs_balance_args *bargs)
3588{
3589 chunk_type = chunk_to_extended(chunk_type) &
3590 BTRFS_EXTENDED_PROFILE_MASK;
3591
3592 if (bargs->profiles & chunk_type)
3593 return 0;
3594
3595 return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599 struct btrfs_balance_args *bargs)
3600{
3601 struct btrfs_block_group *cache;
3602 u64 chunk_used;
3603 u64 user_thresh_min;
3604 u64 user_thresh_max;
3605 int ret = 1;
3606
3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608 chunk_used = cache->used;
3609
3610 if (bargs->usage_min == 0)
3611 user_thresh_min = 0;
3612 else
3613 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615 if (bargs->usage_max == 0)
3616 user_thresh_max = 1;
3617 else if (bargs->usage_max > 100)
3618 user_thresh_max = cache->length;
3619 else
3620 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630 u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632 struct btrfs_block_group *cache;
3633 u64 chunk_used, user_thresh;
3634 int ret = 1;
3635
3636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637 chunk_used = cache->used;
3638
3639 if (bargs->usage_min == 0)
3640 user_thresh = 1;
3641 else if (bargs->usage > 100)
3642 user_thresh = cache->length;
3643 else
3644 user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646 if (chunk_used < user_thresh)
3647 ret = 0;
3648
3649 btrfs_put_block_group(cache);
3650 return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654 struct btrfs_chunk *chunk,
3655 struct btrfs_balance_args *bargs)
3656{
3657 struct btrfs_stripe *stripe;
3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 int i;
3660
3661 for (i = 0; i < num_stripes; i++) {
3662 stripe = btrfs_stripe_nr(chunk, i);
3663 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 return 0;
3665 }
3666
3667 return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672 const int index = btrfs_bg_flags_to_raid_index(type);
3673 const int ncopies = btrfs_raid_array[index].ncopies;
3674 const int nparity = btrfs_raid_array[index].nparity;
3675
3676 return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681 struct btrfs_chunk *chunk,
3682 struct btrfs_balance_args *bargs)
3683{
3684 struct btrfs_stripe *stripe;
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 u64 stripe_offset;
3687 u64 stripe_length;
3688 u64 type;
3689 int factor;
3690 int i;
3691
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 return 0;
3694
3695 type = btrfs_chunk_type(leaf, chunk);
3696 factor = calc_data_stripes(type, num_stripes);
3697
3698 for (i = 0; i < num_stripes; i++) {
3699 stripe = btrfs_stripe_nr(chunk, i);
3700 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 continue;
3702
3703 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 stripe_length = btrfs_chunk_length(leaf, chunk);
3705 stripe_length = div_u64(stripe_length, factor);
3706
3707 if (stripe_offset < bargs->pend &&
3708 stripe_offset + stripe_length > bargs->pstart)
3709 return 0;
3710 }
3711
3712 return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 struct btrfs_chunk *chunk,
3718 u64 chunk_offset,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (chunk_offset < bargs->vend &&
3722 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 /* at least part of the chunk is inside this vrange */
3724 return 0;
3725
3726 return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk,
3731 struct btrfs_balance_args *bargs)
3732{
3733 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735 if (bargs->stripes_min <= num_stripes
3736 && num_stripes <= bargs->stripes_max)
3737 return 0;
3738
3739 return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743 struct btrfs_balance_args *bargs)
3744{
3745 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 return 0;
3747
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->target == chunk_type)
3752 return 1;
3753
3754 return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758 struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760 struct btrfs_fs_info *fs_info = leaf->fs_info;
3761 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762 struct btrfs_balance_args *bargs = NULL;
3763 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765 /* type filter */
3766 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 return 0;
3769 }
3770
3771 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 bargs = &bctl->data;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 bargs = &bctl->sys;
3775 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 bargs = &bctl->meta;
3777
3778 /* profiles filter */
3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 chunk_profiles_filter(chunk_type, bargs)) {
3781 return 0;
3782 }
3783
3784 /* usage filter */
3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787 return 0;
3788 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790 return 0;
3791 }
3792
3793 /* devid filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 chunk_devid_filter(leaf, chunk, bargs)) {
3796 return 0;
3797 }
3798
3799 /* drange filter, makes sense only with devid filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801 chunk_drange_filter(leaf, chunk, bargs)) {
3802 return 0;
3803 }
3804
3805 /* vrange filter */
3806 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 return 0;
3809 }
3810
3811 /* stripes filter */
3812 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 return 0;
3815 }
3816
3817 /* soft profile changing mode */
3818 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 chunk_soft_convert_filter(chunk_type, bargs)) {
3820 return 0;
3821 }
3822
3823 /*
3824 * limited by count, must be the last filter
3825 */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 if (bargs->limit == 0)
3828 return 0;
3829 else
3830 bargs->limit--;
3831 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 /*
3833 * Same logic as the 'limit' filter; the minimum cannot be
3834 * determined here because we do not have the global information
3835 * about the count of all chunks that satisfy the filters.
3836 */
3837 if (bargs->limit_max == 0)
3838 return 0;
3839 else
3840 bargs->limit_max--;
3841 }
3842
3843 return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849 struct btrfs_root *chunk_root = fs_info->chunk_root;
3850 u64 chunk_type;
3851 struct btrfs_chunk *chunk;
3852 struct btrfs_path *path = NULL;
3853 struct btrfs_key key;
3854 struct btrfs_key found_key;
3855 struct extent_buffer *leaf;
3856 int slot;
3857 int ret;
3858 int enospc_errors = 0;
3859 bool counting = true;
3860 /* The single value limit and min/max limits use the same bytes in the */
3861 u64 limit_data = bctl->data.limit;
3862 u64 limit_meta = bctl->meta.limit;
3863 u64 limit_sys = bctl->sys.limit;
3864 u32 count_data = 0;
3865 u32 count_meta = 0;
3866 u32 count_sys = 0;
3867 int chunk_reserved = 0;
3868
3869 path = btrfs_alloc_path();
3870 if (!path) {
3871 ret = -ENOMEM;
3872 goto error;
3873 }
3874
3875 /* zero out stat counters */
3876 spin_lock(&fs_info->balance_lock);
3877 memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 spin_unlock(&fs_info->balance_lock);
3879again:
3880 if (!counting) {
3881 /*
3882 * The single value limit and min/max limits use the same bytes
3883 * in the
3884 */
3885 bctl->data.limit = limit_data;
3886 bctl->meta.limit = limit_meta;
3887 bctl->sys.limit = limit_sys;
3888 }
3889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 key.offset = (u64)-1;
3891 key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893 while (1) {
3894 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895 atomic_read(&fs_info->balance_cancel_req)) {
3896 ret = -ECANCELED;
3897 goto error;
3898 }
3899
3900 mutex_lock(&fs_info->reclaim_bgs_lock);
3901 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902 if (ret < 0) {
3903 mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 goto error;
3905 }
3906
3907 /*
3908 * this shouldn't happen, it means the last relocate
3909 * failed
3910 */
3911 if (ret == 0)
3912 BUG(); /* FIXME break ? */
3913
3914 ret = btrfs_previous_item(chunk_root, path, 0,
3915 BTRFS_CHUNK_ITEM_KEY);
3916 if (ret) {
3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 ret = 0;
3919 break;
3920 }
3921
3922 leaf = path->nodes[0];
3923 slot = path->slots[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926 if (found_key.objectid != key.objectid) {
3927 mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 break;
3929 }
3930
3931 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932 chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934 if (!counting) {
3935 spin_lock(&fs_info->balance_lock);
3936 bctl->stat.considered++;
3937 spin_unlock(&fs_info->balance_lock);
3938 }
3939
3940 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942 btrfs_release_path(path);
3943 if (!ret) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 goto loop;
3946 }
3947
3948 if (counting) {
3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.expected++;
3952 spin_unlock(&fs_info->balance_lock);
3953
3954 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 count_data++;
3956 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 count_sys++;
3958 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 count_meta++;
3960
3961 goto loop;
3962 }
3963
3964 /*
3965 * Apply limit_min filter, no need to check if the LIMITS
3966 * filter is used, limit_min is 0 by default
3967 */
3968 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 count_data < bctl->data.limit_min)
3970 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 count_meta < bctl->meta.limit_min)
3972 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 count_sys < bctl->sys.limit_min)) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 goto loop;
3976 }
3977
3978 if (!chunk_reserved) {
3979 /*
3980 * We may be relocating the only data chunk we have,
3981 * which could potentially end up with losing data's
3982 * raid profile, so lets allocate an empty one in
3983 * advance.
3984 */
3985 ret = btrfs_may_alloc_data_chunk(fs_info,
3986 found_key.offset);
3987 if (ret < 0) {
3988 mutex_unlock(&fs_info->reclaim_bgs_lock);
3989 goto error;
3990 } else if (ret == 1) {
3991 chunk_reserved = 1;
3992 }
3993 }
3994
3995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996 mutex_unlock(&fs_info->reclaim_bgs_lock);
3997 if (ret == -ENOSPC) {
3998 enospc_errors++;
3999 } else if (ret == -ETXTBSY) {
4000 btrfs_info(fs_info,
4001 "skipping relocation of block group %llu due to active swapfile",
4002 found_key.offset);
4003 ret = 0;
4004 } else if (ret) {
4005 goto error;
4006 } else {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.completed++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
4011loop:
4012 if (found_key.offset == 0)
4013 break;
4014 key.offset = found_key.offset - 1;
4015 }
4016
4017 if (counting) {
4018 btrfs_release_path(path);
4019 counting = false;
4020 goto again;
4021 }
4022error:
4023 btrfs_free_path(path);
4024 if (enospc_errors) {
4025 btrfs_info(fs_info, "%d enospc errors during balance",
4026 enospc_errors);
4027 if (!ret)
4028 ret = -ENOSPC;
4029 }
4030
4031 return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags: profile to validate
4038 * @extended: if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047 /* 1) check that all other bits are zeroed */
4048 if (flags & ~mask)
4049 return 0;
4050
4051 /* 2) see if profile is reduced */
4052 if (flags == 0)
4053 return !extended; /* "0" is valid for usual profiles */
4054
4055 return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060 /* cancel requested || normal exit path */
4061 return atomic_read(&fs_info->balance_cancel_req) ||
4062 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 const struct btrfs_balance_args *bargs,
4072 u64 allowed, const char *type)
4073{
4074 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 return true;
4076
4077 /* Profile is valid and does not have bits outside of the allowed set */
4078 if (alloc_profile_is_valid(bargs->target, 1) &&
4079 (bargs->target & ~allowed) == 0)
4080 return true;
4081
4082 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 type, btrfs_bg_type_to_raid_name(bargs->target));
4084 return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 u32 size_buf)
4094{
4095 int ret;
4096 u32 size_bp = size_buf;
4097 char *bp = buf;
4098 u64 flags = bargs->flags;
4099 char tmp_buf[128] = {'\0'};
4100
4101 if (!flags)
4102 return;
4103
4104#define CHECK_APPEND_NOARG(a) \
4105 do { \
4106 ret = snprintf(bp, size_bp, (a)); \
4107 if (ret < 0 || ret >= size_bp) \
4108 goto out_overflow; \
4109 size_bp -= ret; \
4110 bp += ret; \
4111 } while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1) \
4114 do { \
4115 ret = snprintf(bp, size_bp, (a), (v1)); \
4116 if (ret < 0 || ret >= size_bp) \
4117 goto out_overflow; \
4118 size_bp -= ret; \
4119 bp += ret; \
4120 } while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2) \
4123 do { \
4124 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4125 if (ret < 0 || ret >= size_bp) \
4126 goto out_overflow; \
4127 size_bp -= ret; \
4128 bp += ret; \
4129 } while (0)
4130
4131 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 CHECK_APPEND_1ARG("convert=%s,",
4133 btrfs_bg_type_to_raid_name(bargs->target));
4134
4135 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 CHECK_APPEND_NOARG("soft,");
4137
4138 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 sizeof(tmp_buf));
4141 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 }
4143
4144 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 CHECK_APPEND_2ARG("usage=%u..%u,",
4149 bargs->usage_min, bargs->usage_max);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 bargs->pstart, bargs->pend);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 bargs->vstart, bargs->vend);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 CHECK_APPEND_2ARG("limit=%u..%u,",
4167 bargs->limit_min, bargs->limit_max);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179 if (size_bp < size_buf)
4180 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 else
4182 buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187 u32 size_buf = 1024;
4188 char tmp_buf[192] = {'\0'};
4189 char *buf;
4190 char *bp;
4191 u32 size_bp = size_buf;
4192 int ret;
4193 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195 buf = kzalloc(size_buf, GFP_KERNEL);
4196 if (!buf)
4197 return;
4198
4199 bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1) \
4202 do { \
4203 ret = snprintf(bp, size_bp, (a), (v1)); \
4204 if (ret < 0 || ret >= size_bp) \
4205 goto out_overflow; \
4206 size_bp -= ret; \
4207 bp += ret; \
4208 } while (0)
4209
4210 if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 CHECK_APPEND_1ARG("%s", "-f ");
4212
4213 if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 }
4217
4218 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 }
4222
4223 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 }
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232 if (size_bp < size_buf)
4233 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 btrfs_info(fs_info, "balance: %s %s",
4235 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 "resume" : "start", buf);
4237
4238 kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 struct btrfs_balance_control *bctl,
4246 struct btrfs_ioctl_balance_args *bargs)
4247{
4248 u64 meta_target, data_target;
4249 u64 allowed;
4250 int mixed = 0;
4251 int ret;
4252 u64 num_devices;
4253 unsigned seq;
4254 bool reducing_redundancy;
4255 int i;
4256
4257 if (btrfs_fs_closing(fs_info) ||
4258 atomic_read(&fs_info->balance_pause_req) ||
4259 btrfs_should_cancel_balance(fs_info)) {
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
4264 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 mixed = 1;
4267
4268 /*
4269 * In case of mixed groups both data and meta should be picked,
4270 * and identical options should be given for both of them.
4271 */
4272 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 if (mixed && (bctl->flags & allowed)) {
4274 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277 btrfs_err(fs_info,
4278 "balance: mixed groups data and metadata options must be the same");
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282 }
4283
4284 /*
4285 * rw_devices will not change at the moment, device add/delete/replace
4286 * are exclusive
4287 */
4288 num_devices = fs_info->fs_devices->rw_devices;
4289
4290 /*
4291 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 * special bit for it, to make it easier to distinguish. Thus we need
4293 * to set it manually, or balance would refuse the profile.
4294 */
4295 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 if (num_devices >= btrfs_raid_array[i].devs_min)
4298 allowed |= btrfs_raid_array[i].bg_flag;
4299
4300 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
4307 /*
4308 * Allow to reduce metadata or system integrity only if force set for
4309 * profiles with redundancy (copies, parity)
4310 */
4311 allowed = 0;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 if (btrfs_raid_array[i].ncopies >= 2 ||
4314 btrfs_raid_array[i].tolerated_failures >= 1)
4315 allowed |= btrfs_raid_array[i].bg_flag;
4316 }
4317 do {
4318 seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 (fs_info->avail_system_alloc_bits & allowed) &&
4322 !(bctl->sys.target & allowed)) ||
4323 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_metadata_alloc_bits & allowed) &&
4325 !(bctl->meta.target & allowed)))
4326 reducing_redundancy = true;
4327 else
4328 reducing_redundancy = false;
4329
4330 /* if we're not converting, the target field is uninitialized */
4331 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 bctl->data.target : fs_info->avail_data_alloc_bits;
4335 } while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337 if (reducing_redundancy) {
4338 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 btrfs_info(fs_info,
4340 "balance: force reducing metadata redundancy");
4341 } else {
4342 btrfs_err(fs_info,
4343 "balance: reduces metadata redundancy, use --force if you want this");
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351 btrfs_warn(fs_info,
4352 "balance: metadata profile %s has lower redundancy than data profile %s",
4353 btrfs_bg_type_to_raid_name(meta_target),
4354 btrfs_bg_type_to_raid_name(data_target));
4355 }
4356
4357 ret = insert_balance_item(fs_info, bctl);
4358 if (ret && ret != -EEXIST)
4359 goto out;
4360
4361 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 BUG_ON(ret == -EEXIST);
4363 BUG_ON(fs_info->balance_ctl);
4364 spin_lock(&fs_info->balance_lock);
4365 fs_info->balance_ctl = bctl;
4366 spin_unlock(&fs_info->balance_lock);
4367 } else {
4368 BUG_ON(ret != -EEXIST);
4369 spin_lock(&fs_info->balance_lock);
4370 update_balance_args(bctl);
4371 spin_unlock(&fs_info->balance_lock);
4372 }
4373
4374 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376 describe_balance_start_or_resume(fs_info);
4377 mutex_unlock(&fs_info->balance_mutex);
4378
4379 ret = __btrfs_balance(fs_info);
4380
4381 mutex_lock(&fs_info->balance_mutex);
4382 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383 btrfs_info(fs_info, "balance: paused");
4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 }
4386 /*
4387 * Balance can be canceled by:
4388 *
4389 * - Regular cancel request
4390 * Then ret == -ECANCELED and balance_cancel_req > 0
4391 *
4392 * - Fatal signal to "btrfs" process
4393 * Either the signal caught by wait_reserve_ticket() and callers
4394 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 * got -ECANCELED.
4396 * Either way, in this case balance_cancel_req = 0, and
4397 * ret == -EINTR or ret == -ECANCELED.
4398 *
4399 * So here we only check the return value to catch canceled balance.
4400 */
4401 else if (ret == -ECANCELED || ret == -EINTR)
4402 btrfs_info(fs_info, "balance: canceled");
4403 else
4404 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408 if (bargs) {
4409 memset(bargs, 0, sizeof(*bargs));
4410 btrfs_update_ioctl_balance_args(fs_info, bargs);
4411 }
4412
4413 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 balance_need_close(fs_info)) {
4415 reset_balance_state(fs_info);
4416 btrfs_exclop_finish(fs_info);
4417 }
4418
4419 wake_up(&fs_info->balance_wait_q);
4420
4421 return ret;
4422out:
4423 if (bctl->flags & BTRFS_BALANCE_RESUME)
4424 reset_balance_state(fs_info);
4425 else
4426 kfree(bctl);
4427 btrfs_exclop_finish(fs_info);
4428
4429 return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434 struct btrfs_fs_info *fs_info = data;
4435 int ret = 0;
4436
4437 sb_start_write(fs_info->sb);
4438 mutex_lock(&fs_info->balance_mutex);
4439 if (fs_info->balance_ctl)
4440 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441 mutex_unlock(&fs_info->balance_mutex);
4442 sb_end_write(fs_info->sb);
4443
4444 return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449 struct task_struct *tsk;
4450
4451 mutex_lock(&fs_info->balance_mutex);
4452 if (!fs_info->balance_ctl) {
4453 mutex_unlock(&fs_info->balance_mutex);
4454 return 0;
4455 }
4456 mutex_unlock(&fs_info->balance_mutex);
4457
4458 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459 btrfs_info(fs_info, "balance: resume skipped");
4460 return 0;
4461 }
4462
4463 spin_lock(&fs_info->super_lock);
4464 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 spin_unlock(&fs_info->super_lock);
4467 /*
4468 * A ro->rw remount sequence should continue with the paused balance
4469 * regardless of who pauses it, system or the user as of now, so set
4470 * the resume flag.
4471 */
4472 spin_lock(&fs_info->balance_lock);
4473 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 spin_unlock(&fs_info->balance_lock);
4475
4476 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477 return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482 struct btrfs_balance_control *bctl;
4483 struct btrfs_balance_item *item;
4484 struct btrfs_disk_balance_args disk_bargs;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_key key;
4488 int ret;
4489
4490 path = btrfs_alloc_path();
4491 if (!path)
4492 return -ENOMEM;
4493
4494 key.objectid = BTRFS_BALANCE_OBJECTID;
4495 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496 key.offset = 0;
4497
4498 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499 if (ret < 0)
4500 goto out;
4501 if (ret > 0) { /* ret = -ENOENT; */
4502 ret = 0;
4503 goto out;
4504 }
4505
4506 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 if (!bctl) {
4508 ret = -ENOMEM;
4509 goto out;
4510 }
4511
4512 leaf = path->nodes[0];
4513 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515 bctl->flags = btrfs_balance_flags(leaf, item);
4516 bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518 btrfs_balance_data(leaf, item, &disk_bargs);
4519 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 btrfs_balance_meta(leaf, item, &disk_bargs);
4521 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 btrfs_balance_sys(leaf, item, &disk_bargs);
4523 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525 /*
4526 * This should never happen, as the paused balance state is recovered
4527 * during mount without any chance of other exclusive ops to collide.
4528 *
4529 * This gives the exclusive op status to balance and keeps in paused
4530 * state until user intervention (cancel or umount). If the ownership
4531 * cannot be assigned, show a message but do not fail. The balance
4532 * is in a paused state and must have fs_info::balance_ctl properly
4533 * set up.
4534 */
4535 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536 btrfs_warn(fs_info,
4537 "balance: cannot set exclusive op status, resume manually");
4538
4539 btrfs_release_path(path);
4540
4541 mutex_lock(&fs_info->balance_mutex);
4542 BUG_ON(fs_info->balance_ctl);
4543 spin_lock(&fs_info->balance_lock);
4544 fs_info->balance_ctl = bctl;
4545 spin_unlock(&fs_info->balance_lock);
4546 mutex_unlock(&fs_info->balance_mutex);
4547out:
4548 btrfs_free_path(path);
4549 return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554 int ret = 0;
4555
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
4562 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563 atomic_inc(&fs_info->balance_pause_req);
4564 mutex_unlock(&fs_info->balance_mutex);
4565
4566 wait_event(fs_info->balance_wait_q,
4567 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 /* we are good with balance_ctl ripped off from under us */
4571 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572 atomic_dec(&fs_info->balance_pause_req);
4573 } else {
4574 ret = -ENOTCONN;
4575 }
4576
4577 mutex_unlock(&fs_info->balance_mutex);
4578 return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (!fs_info->balance_ctl) {
4585 mutex_unlock(&fs_info->balance_mutex);
4586 return -ENOTCONN;
4587 }
4588
4589 /*
4590 * A paused balance with the item stored on disk can be resumed at
4591 * mount time if the mount is read-write. Otherwise it's still paused
4592 * and we must not allow cancelling as it deletes the item.
4593 */
4594 if (sb_rdonly(fs_info->sb)) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -EROFS;
4597 }
4598
4599 atomic_inc(&fs_info->balance_cancel_req);
4600 /*
4601 * if we are running just wait and return, balance item is
4602 * deleted in btrfs_balance in this case
4603 */
4604 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605 mutex_unlock(&fs_info->balance_mutex);
4606 wait_event(fs_info->balance_wait_q,
4607 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 mutex_lock(&fs_info->balance_mutex);
4609 } else {
4610 mutex_unlock(&fs_info->balance_mutex);
4611 /*
4612 * Lock released to allow other waiters to continue, we'll
4613 * reexamine the status again.
4614 */
4615 mutex_lock(&fs_info->balance_mutex);
4616
4617 if (fs_info->balance_ctl) {
4618 reset_balance_state(fs_info);
4619 btrfs_exclop_finish(fs_info);
4620 btrfs_info(fs_info, "balance: canceled");
4621 }
4622 }
4623
4624 BUG_ON(fs_info->balance_ctl ||
4625 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626 atomic_dec(&fs_info->balance_cancel_req);
4627 mutex_unlock(&fs_info->balance_mutex);
4628 return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633 struct btrfs_fs_info *fs_info = data;
4634 struct btrfs_root *root = fs_info->tree_root;
4635 struct btrfs_key key;
4636 struct btrfs_path *path = NULL;
4637 int ret = 0;
4638 struct extent_buffer *eb;
4639 int slot;
4640 struct btrfs_root_item root_item;
4641 u32 item_size;
4642 struct btrfs_trans_handle *trans = NULL;
4643 bool closing = false;
4644
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 ret = -ENOMEM;
4648 goto out;
4649 }
4650
4651 key.objectid = 0;
4652 key.type = BTRFS_ROOT_ITEM_KEY;
4653 key.offset = 0;
4654
4655 while (1) {
4656 if (btrfs_fs_closing(fs_info)) {
4657 closing = true;
4658 break;
4659 }
4660 ret = btrfs_search_forward(root, &key, path,
4661 BTRFS_OLDEST_GENERATION);
4662 if (ret) {
4663 if (ret > 0)
4664 ret = 0;
4665 break;
4666 }
4667
4668 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 goto skip;
4673
4674 eb = path->nodes[0];
4675 slot = path->slots[0];
4676 item_size = btrfs_item_size(eb, slot);
4677 if (item_size < sizeof(root_item))
4678 goto skip;
4679
4680 read_extent_buffer(eb, &root_item,
4681 btrfs_item_ptr_offset(eb, slot),
4682 (int)sizeof(root_item));
4683 if (btrfs_root_refs(&root_item) == 0)
4684 goto skip;
4685
4686 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 if (trans)
4689 goto update_tree;
4690
4691 btrfs_release_path(path);
4692 /*
4693 * 1 - subvol uuid item
4694 * 1 - received_subvol uuid item
4695 */
4696 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 if (IS_ERR(trans)) {
4698 ret = PTR_ERR(trans);
4699 break;
4700 }
4701 continue;
4702 } else {
4703 goto skip;
4704 }
4705update_tree:
4706 btrfs_release_path(path);
4707 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709 BTRFS_UUID_KEY_SUBVOL,
4710 key.objectid);
4711 if (ret < 0) {
4712 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713 ret);
4714 break;
4715 }
4716 }
4717
4718 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719 ret = btrfs_uuid_tree_add(trans,
4720 root_item.received_uuid,
4721 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 key.objectid);
4723 if (ret < 0) {
4724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725 ret);
4726 break;
4727 }
4728 }
4729
4730skip:
4731 btrfs_release_path(path);
4732 if (trans) {
4733 ret = btrfs_end_transaction(trans);
4734 trans = NULL;
4735 if (ret)
4736 break;
4737 }
4738
4739 if (key.offset < (u64)-1) {
4740 key.offset++;
4741 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 key.offset = 0;
4743 key.type = BTRFS_ROOT_ITEM_KEY;
4744 } else if (key.objectid < (u64)-1) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 key.objectid++;
4748 } else {
4749 break;
4750 }
4751 cond_resched();
4752 }
4753
4754out:
4755 btrfs_free_path(path);
4756 if (trans && !IS_ERR(trans))
4757 btrfs_end_transaction(trans);
4758 if (ret)
4759 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760 else if (!closing)
4761 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762 up(&fs_info->uuid_tree_rescan_sem);
4763 return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *tree_root = fs_info->tree_root;
4770 struct btrfs_root *uuid_root;
4771 struct task_struct *task;
4772 int ret;
4773
4774 /*
4775 * 1 - root node
4776 * 1 - root item
4777 */
4778 trans = btrfs_start_transaction(tree_root, 2);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
4782 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783 if (IS_ERR(uuid_root)) {
4784 ret = PTR_ERR(uuid_root);
4785 btrfs_abort_transaction(trans, ret);
4786 btrfs_end_transaction(trans);
4787 return ret;
4788 }
4789
4790 fs_info->uuid_root = uuid_root;
4791
4792 ret = btrfs_commit_transaction(trans);
4793 if (ret)
4794 return ret;
4795
4796 down(&fs_info->uuid_tree_rescan_sem);
4797 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 if (IS_ERR(task)) {
4799 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800 btrfs_warn(fs_info, "failed to start uuid_scan task");
4801 up(&fs_info->uuid_tree_rescan_sem);
4802 return PTR_ERR(task);
4803 }
4804
4805 return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815 struct btrfs_fs_info *fs_info = device->fs_info;
4816 struct btrfs_root *root = fs_info->dev_root;
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_dev_extent *dev_extent = NULL;
4819 struct btrfs_path *path;
4820 u64 length;
4821 u64 chunk_offset;
4822 int ret;
4823 int slot;
4824 int failed = 0;
4825 bool retried = false;
4826 struct extent_buffer *l;
4827 struct btrfs_key key;
4828 struct btrfs_super_block *super_copy = fs_info->super_copy;
4829 u64 old_total = btrfs_super_total_bytes(super_copy);
4830 u64 old_size = btrfs_device_get_total_bytes(device);
4831 u64 diff;
4832 u64 start;
4833
4834 new_size = round_down(new_size, fs_info->sectorsize);
4835 start = new_size;
4836 diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839 return -EINVAL;
4840
4841 path = btrfs_alloc_path();
4842 if (!path)
4843 return -ENOMEM;
4844
4845 path->reada = READA_BACK;
4846
4847 trans = btrfs_start_transaction(root, 0);
4848 if (IS_ERR(trans)) {
4849 btrfs_free_path(path);
4850 return PTR_ERR(trans);
4851 }
4852
4853 mutex_lock(&fs_info->chunk_mutex);
4854
4855 btrfs_device_set_total_bytes(device, new_size);
4856 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857 device->fs_devices->total_rw_bytes -= diff;
4858 atomic64_sub(diff, &fs_info->free_chunk_space);
4859 }
4860
4861 /*
4862 * Once the device's size has been set to the new size, ensure all
4863 * in-memory chunks are synced to disk so that the loop below sees them
4864 * and relocates them accordingly.
4865 */
4866 if (contains_pending_extent(device, &start, diff)) {
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 ret = btrfs_commit_transaction(trans);
4869 if (ret)
4870 goto done;
4871 } else {
4872 mutex_unlock(&fs_info->chunk_mutex);
4873 btrfs_end_transaction(trans);
4874 }
4875
4876again:
4877 key.objectid = device->devid;
4878 key.offset = (u64)-1;
4879 key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881 do {
4882 mutex_lock(&fs_info->reclaim_bgs_lock);
4883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884 if (ret < 0) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 goto done;
4887 }
4888
4889 ret = btrfs_previous_item(root, path, 0, key.type);
4890 if (ret) {
4891 mutex_unlock(&fs_info->reclaim_bgs_lock);
4892 if (ret < 0)
4893 goto done;
4894 ret = 0;
4895 btrfs_release_path(path);
4896 break;
4897 }
4898
4899 l = path->nodes[0];
4900 slot = path->slots[0];
4901 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903 if (key.objectid != device->devid) {
4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 btrfs_release_path(path);
4906 break;
4907 }
4908
4909 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 length = btrfs_dev_extent_length(l, dev_extent);
4911
4912 if (key.offset + length <= new_size) {
4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 btrfs_release_path(path);
4915 break;
4916 }
4917
4918 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919 btrfs_release_path(path);
4920
4921 /*
4922 * We may be relocating the only data chunk we have,
4923 * which could potentially end up with losing data's
4924 * raid profile, so lets allocate an empty one in
4925 * advance.
4926 */
4927 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 if (ret < 0) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 goto done;
4931 }
4932
4933 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934 mutex_unlock(&fs_info->reclaim_bgs_lock);
4935 if (ret == -ENOSPC) {
4936 failed++;
4937 } else if (ret) {
4938 if (ret == -ETXTBSY) {
4939 btrfs_warn(fs_info,
4940 "could not shrink block group %llu due to active swapfile",
4941 chunk_offset);
4942 }
4943 goto done;
4944 }
4945 } while (key.offset-- > 0);
4946
4947 if (failed && !retried) {
4948 failed = 0;
4949 retried = true;
4950 goto again;
4951 } else if (failed && retried) {
4952 ret = -ENOSPC;
4953 goto done;
4954 }
4955
4956 /* Shrinking succeeded, else we would be at "done". */
4957 trans = btrfs_start_transaction(root, 0);
4958 if (IS_ERR(trans)) {
4959 ret = PTR_ERR(trans);
4960 goto done;
4961 }
4962
4963 mutex_lock(&fs_info->chunk_mutex);
4964 /* Clear all state bits beyond the shrunk device size */
4965 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 CHUNK_STATE_MASK);
4967
4968 btrfs_device_set_disk_total_bytes(device, new_size);
4969 if (list_empty(&device->post_commit_list))
4970 list_add_tail(&device->post_commit_list,
4971 &trans->transaction->dev_update_list);
4972
4973 WARN_ON(diff > old_total);
4974 btrfs_set_super_total_bytes(super_copy,
4975 round_down(old_total - diff, fs_info->sectorsize));
4976 mutex_unlock(&fs_info->chunk_mutex);
4977
4978 btrfs_reserve_chunk_metadata(trans, false);
4979 /* Now btrfs_update_device() will change the on-disk size. */
4980 ret = btrfs_update_device(trans, device);
4981 btrfs_trans_release_chunk_metadata(trans);
4982 if (ret < 0) {
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4985 } else {
4986 ret = btrfs_commit_transaction(trans);
4987 }
4988done:
4989 btrfs_free_path(path);
4990 if (ret) {
4991 mutex_lock(&fs_info->chunk_mutex);
4992 btrfs_device_set_total_bytes(device, old_size);
4993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994 device->fs_devices->total_rw_bytes += diff;
4995 atomic64_add(diff, &fs_info->free_chunk_space);
4996 mutex_unlock(&fs_info->chunk_mutex);
4997 }
4998 return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002 struct btrfs_key *key,
5003 struct btrfs_chunk *chunk, int item_size)
5004{
5005 struct btrfs_super_block *super_copy = fs_info->super_copy;
5006 struct btrfs_disk_key disk_key;
5007 u32 array_size;
5008 u8 *ptr;
5009
5010 lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012 array_size = btrfs_super_sys_array_size(super_copy);
5013 if (array_size + item_size + sizeof(disk_key)
5014 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015 return -EFBIG;
5016
5017 ptr = super_copy->sys_chunk_array + array_size;
5018 btrfs_cpu_key_to_disk(&disk_key, key);
5019 memcpy(ptr, &disk_key, sizeof(disk_key));
5020 ptr += sizeof(disk_key);
5021 memcpy(ptr, chunk, item_size);
5022 item_size += sizeof(disk_key);
5023 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025 return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033 const struct btrfs_device_info *di_a = a;
5034 const struct btrfs_device_info *di_b = b;
5035
5036 if (di_a->max_avail > di_b->max_avail)
5037 return -1;
5038 if (di_a->max_avail < di_b->max_avail)
5039 return 1;
5040 if (di_a->total_avail > di_b->total_avail)
5041 return -1;
5042 if (di_a->total_avail < di_b->total_avail)
5043 return 1;
5044 return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050 return;
5051
5052 btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068 u64 start;
5069 u64 type;
5070 /* Total number of stripes to allocate */
5071 int num_stripes;
5072 /* sub_stripes info for map */
5073 int sub_stripes;
5074 /* Stripes per device */
5075 int dev_stripes;
5076 /* Maximum number of devices to use */
5077 int devs_max;
5078 /* Minimum number of devices to use */
5079 int devs_min;
5080 /* ndevs has to be a multiple of this */
5081 int devs_increment;
5082 /* Number of copies */
5083 int ncopies;
5084 /* Number of stripes worth of bytes to store parity information */
5085 int nparity;
5086 u64 max_stripe_size;
5087 u64 max_chunk_size;
5088 u64 dev_extent_min;
5089 u64 stripe_size;
5090 u64 chunk_size;
5091 int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095 struct btrfs_fs_devices *fs_devices,
5096 struct alloc_chunk_ctl *ctl)
5097{
5098 struct btrfs_space_info *space_info;
5099
5100 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 ASSERT(space_info);
5102
5103 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109 /* We don't want a chunk larger than 10% of writable space */
5110 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111 ctl->max_chunk_size);
5112 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116 struct btrfs_fs_devices *fs_devices,
5117 struct alloc_chunk_ctl *ctl)
5118{
5119 u64 zone_size = fs_devices->fs_info->zone_size;
5120 u64 limit;
5121 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 u64 min_chunk_size = min_data_stripes * zone_size;
5124 u64 type = ctl->type;
5125
5126 ctl->max_stripe_size = zone_size;
5127 if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 zone_size);
5130 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 ctl->max_chunk_size = ctl->max_stripe_size;
5132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 ctl->devs_max = min_t(int, ctl->devs_max,
5135 BTRFS_MAX_DEVS_SYS_CHUNK);
5136 } else {
5137 BUG();
5138 }
5139
5140 /* We don't want a chunk larger than 10% of writable space */
5141 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142 zone_size),
5143 min_chunk_size);
5144 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 struct alloc_chunk_ctl *ctl)
5150{
5151 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 if (!ctl->devs_max)
5157 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 ctl->nparity = btrfs_raid_array[index].nparity;
5162 ctl->ndevs = 0;
5163
5164 switch (fs_devices->chunk_alloc_policy) {
5165 case BTRFS_CHUNK_ALLOC_REGULAR:
5166 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 break;
5168 case BTRFS_CHUNK_ALLOC_ZONED:
5169 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 break;
5171 default:
5172 BUG();
5173 }
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl,
5178 struct btrfs_device_info *devices_info)
5179{
5180 struct btrfs_fs_info *info = fs_devices->fs_info;
5181 struct btrfs_device *device;
5182 u64 total_avail;
5183 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184 int ret;
5185 int ndevs = 0;
5186 u64 max_avail;
5187 u64 dev_offset;
5188
5189 /*
5190 * in the first pass through the devices list, we gather information
5191 * about the available holes on each device.
5192 */
5193 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195 WARN(1, KERN_ERR
5196 "BTRFS: read-only device in alloc_list\n");
5197 continue;
5198 }
5199
5200 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 &device->dev_state) ||
5202 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203 continue;
5204
5205 if (device->total_bytes > device->bytes_used)
5206 total_avail = device->total_bytes - device->bytes_used;
5207 else
5208 total_avail = 0;
5209
5210 /* If there is no space on this device, skip it. */
5211 if (total_avail < ctl->dev_extent_min)
5212 continue;
5213
5214 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 &max_avail);
5216 if (ret && ret != -ENOSPC)
5217 return ret;
5218
5219 if (ret == 0)
5220 max_avail = dev_extent_want;
5221
5222 if (max_avail < ctl->dev_extent_min) {
5223 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 btrfs_debug(info,
5225 "%s: devid %llu has no free space, have=%llu want=%llu",
5226 __func__, device->devid, max_avail,
5227 ctl->dev_extent_min);
5228 continue;
5229 }
5230
5231 if (ndevs == fs_devices->rw_devices) {
5232 WARN(1, "%s: found more than %llu devices\n",
5233 __func__, fs_devices->rw_devices);
5234 break;
5235 }
5236 devices_info[ndevs].dev_offset = dev_offset;
5237 devices_info[ndevs].max_avail = max_avail;
5238 devices_info[ndevs].total_avail = total_avail;
5239 devices_info[ndevs].dev = device;
5240 ++ndevs;
5241 }
5242 ctl->ndevs = ndevs;
5243
5244 /*
5245 * now sort the devices by hole size / available space
5246 */
5247 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248 btrfs_cmp_device_info, NULL);
5249
5250 return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 struct btrfs_device_info *devices_info)
5255{
5256 /* Number of stripes that count for block group size */
5257 int data_stripes;
5258
5259 /*
5260 * The primary goal is to maximize the number of stripes, so use as
5261 * many devices as possible, even if the stripes are not maximum sized.
5262 *
5263 * The DUP profile stores more than one stripe per device, the
5264 * max_avail is the total size so we have to adjust.
5265 */
5266 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 ctl->dev_stripes);
5268 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273 /*
5274 * Use the number of data stripes to figure out how big this chunk is
5275 * really going to be in terms of logical address space, and compare
5276 * that answer with the max chunk size. If it's higher, we try to
5277 * reduce stripe_size.
5278 */
5279 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 /*
5281 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 * then use it, unless it ends up being even bigger than the
5283 * previous value we had already.
5284 */
5285 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 data_stripes), SZ_16M),
5287 ctl->stripe_size);
5288 }
5289
5290 /* Stripe size should not go beyond 1G. */
5291 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293 /* Align to BTRFS_STRIPE_LEN */
5294 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297 return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 struct btrfs_device_info *devices_info)
5302{
5303 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 /* Number of stripes that count for block group size */
5305 int data_stripes;
5306
5307 /*
5308 * It should hold because:
5309 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 */
5311 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313 ctl->stripe_size = zone_size;
5314 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 ctl->stripe_size) + ctl->nparity,
5321 ctl->dev_stripes);
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 }
5326
5327 ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329 return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 struct alloc_chunk_ctl *ctl,
5334 struct btrfs_device_info *devices_info)
5335{
5336 struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338 /*
5339 * Round down to number of usable stripes, devs_increment can be any
5340 * number so we can't use round_down() that requires power of 2, while
5341 * rounddown is safe.
5342 */
5343 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345 if (ctl->ndevs < ctl->devs_min) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 btrfs_debug(info,
5348 "%s: not enough devices with free space: have=%d minimum required=%d",
5349 __func__, ctl->ndevs, ctl->devs_min);
5350 }
5351 return -ENOSPC;
5352 }
5353
5354 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356 switch (fs_devices->chunk_alloc_policy) {
5357 case BTRFS_CHUNK_ALLOC_REGULAR:
5358 return decide_stripe_size_regular(ctl, devices_info);
5359 case BTRFS_CHUNK_ALLOC_ZONED:
5360 return decide_stripe_size_zoned(ctl, devices_info);
5361 default:
5362 BUG();
5363 }
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369{
5370 struct btrfs_fs_info *info = trans->fs_info;
5371 struct map_lookup *map = NULL;
5372 struct extent_map_tree *em_tree;
5373 struct btrfs_block_group *block_group;
5374 struct extent_map *em;
5375 u64 start = ctl->start;
5376 u64 type = ctl->type;
5377 int ret;
5378 int i;
5379 int j;
5380
5381 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 if (!map)
5383 return ERR_PTR(-ENOMEM);
5384 map->num_stripes = ctl->num_stripes;
5385
5386 for (i = 0; i < ctl->ndevs; ++i) {
5387 for (j = 0; j < ctl->dev_stripes; ++j) {
5388 int s = i * ctl->dev_stripes + j;
5389 map->stripes[s].dev = devices_info[i].dev;
5390 map->stripes[s].physical = devices_info[i].dev_offset +
5391 j * ctl->stripe_size;
5392 }
5393 }
5394 map->stripe_len = BTRFS_STRIPE_LEN;
5395 map->io_align = BTRFS_STRIPE_LEN;
5396 map->io_width = BTRFS_STRIPE_LEN;
5397 map->type = type;
5398 map->sub_stripes = ctl->sub_stripes;
5399
5400 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402 em = alloc_extent_map();
5403 if (!em) {
5404 kfree(map);
5405 return ERR_PTR(-ENOMEM);
5406 }
5407 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408 em->map_lookup = map;
5409 em->start = start;
5410 em->len = ctl->chunk_size;
5411 em->block_start = 0;
5412 em->block_len = em->len;
5413 em->orig_block_len = ctl->stripe_size;
5414
5415 em_tree = &info->mapping_tree;
5416 write_lock(&em_tree->lock);
5417 ret = add_extent_mapping(em_tree, em, 0);
5418 if (ret) {
5419 write_unlock(&em_tree->lock);
5420 free_extent_map(em);
5421 return ERR_PTR(ret);
5422 }
5423 write_unlock(&em_tree->lock);
5424
5425 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 if (IS_ERR(block_group))
5427 goto error_del_extent;
5428
5429 for (i = 0; i < map->num_stripes; i++) {
5430 struct btrfs_device *dev = map->stripes[i].dev;
5431
5432 btrfs_device_set_bytes_used(dev,
5433 dev->bytes_used + ctl->stripe_size);
5434 if (list_empty(&dev->post_commit_list))
5435 list_add_tail(&dev->post_commit_list,
5436 &trans->transaction->dev_update_list);
5437 }
5438
5439 atomic64_sub(ctl->stripe_size * map->num_stripes,
5440 &info->free_chunk_space);
5441
5442 free_extent_map(em);
5443 check_raid56_incompat_flag(info, type);
5444 check_raid1c34_incompat_flag(info, type);
5445
5446 return block_group;
5447
5448error_del_extent:
5449 write_lock(&em_tree->lock);
5450 remove_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452
5453 /* One for our allocation */
5454 free_extent_map(em);
5455 /* One for the tree reference */
5456 free_extent_map(em);
5457
5458 return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462 u64 type)
5463{
5464 struct btrfs_fs_info *info = trans->fs_info;
5465 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 struct btrfs_device_info *devices_info = NULL;
5467 struct alloc_chunk_ctl ctl;
5468 struct btrfs_block_group *block_group;
5469 int ret;
5470
5471 lockdep_assert_held(&info->chunk_mutex);
5472
5473 if (!alloc_profile_is_valid(type, 0)) {
5474 ASSERT(0);
5475 return ERR_PTR(-EINVAL);
5476 }
5477
5478 if (list_empty(&fs_devices->alloc_list)) {
5479 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 btrfs_debug(info, "%s: no writable device", __func__);
5481 return ERR_PTR(-ENOSPC);
5482 }
5483
5484 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 ASSERT(0);
5487 return ERR_PTR(-EINVAL);
5488 }
5489
5490 ctl.start = find_next_chunk(info);
5491 ctl.type = type;
5492 init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 GFP_NOFS);
5496 if (!devices_info)
5497 return ERR_PTR(-ENOMEM);
5498
5499 ret = gather_device_info(fs_devices, &ctl, devices_info);
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
5502 goto out;
5503 }
5504
5505 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506 if (ret < 0) {
5507 block_group = ERR_PTR(ret);
5508 goto out;
5509 }
5510
5511 block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514 kfree(devices_info);
5515 return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 struct btrfs_block_group *bg)
5528{
5529 struct btrfs_fs_info *fs_info = trans->fs_info;
5530 struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 struct btrfs_key key;
5532 struct btrfs_chunk *chunk;
5533 struct btrfs_stripe *stripe;
5534 struct extent_map *em;
5535 struct map_lookup *map;
5536 size_t item_size;
5537 int i;
5538 int ret;
5539
5540 /*
5541 * We take the chunk_mutex for 2 reasons:
5542 *
5543 * 1) Updates and insertions in the chunk btree must be done while holding
5544 * the chunk_mutex, as well as updating the system chunk array in the
5545 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 * details;
5547 *
5548 * 2) To prevent races with the final phase of a device replace operation
5549 * that replaces the device object associated with the map's stripes,
5550 * because the device object's id can change at any time during that
5551 * final phase of the device replace operation
5552 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 * which would cause a failure when updating the device item, which does
5555 * not exists, or persisting a stripe of the chunk item with such ID.
5556 * Here we can't use the device_list_mutex because our caller already
5557 * has locked the chunk_mutex, and the final phase of device replace
5558 * acquires both mutexes - first the device_list_mutex and then the
5559 * chunk_mutex. Using any of those two mutexes protects us from a
5560 * concurrent device replace.
5561 */
5562 lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 if (IS_ERR(em)) {
5566 ret = PTR_ERR(em);
5567 btrfs_abort_transaction(trans, ret);
5568 return ret;
5569 }
5570
5571 map = em->map_lookup;
5572 item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574 chunk = kzalloc(item_size, GFP_NOFS);
5575 if (!chunk) {
5576 ret = -ENOMEM;
5577 btrfs_abort_transaction(trans, ret);
5578 goto out;
5579 }
5580
5581 for (i = 0; i < map->num_stripes; i++) {
5582 struct btrfs_device *device = map->stripes[i].dev;
5583
5584 ret = btrfs_update_device(trans, device);
5585 if (ret)
5586 goto out;
5587 }
5588
5589 stripe = &chunk->stripe;
5590 for (i = 0; i < map->num_stripes; i++) {
5591 struct btrfs_device *device = map->stripes[i].dev;
5592 const u64 dev_offset = map->stripes[i].physical;
5593
5594 btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597 stripe++;
5598 }
5599
5600 btrfs_set_stack_chunk_length(chunk, bg->length);
5601 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 btrfs_set_stack_chunk_type(chunk, map->type);
5604 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 key.type = BTRFS_CHUNK_ITEM_KEY;
5612 key.offset = bg->start;
5613
5614 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615 if (ret)
5616 goto out;
5617
5618 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622 if (ret)
5623 goto out;
5624 }
5625
5626out:
5627 kfree(chunk);
5628 free_extent_map(em);
5629 return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634 struct btrfs_fs_info *fs_info = trans->fs_info;
5635 u64 alloc_profile;
5636 struct btrfs_block_group *meta_bg;
5637 struct btrfs_block_group *sys_bg;
5638
5639 /*
5640 * When adding a new device for sprouting, the seed device is read-only
5641 * so we must first allocate a metadata and a system chunk. But before
5642 * adding the block group items to the extent, device and chunk btrees,
5643 * we must first:
5644 *
5645 * 1) Create both chunks without doing any changes to the btrees, as
5646 * otherwise we would get -ENOSPC since the block groups from the
5647 * seed device are read-only;
5648 *
5649 * 2) Add the device item for the new sprout device - finishing the setup
5650 * of a new block group requires updating the device item in the chunk
5651 * btree, so it must exist when we attempt to do it. The previous step
5652 * ensures this does not fail with -ENOSPC.
5653 *
5654 * After that we can add the block group items to their btrees:
5655 * update existing device item in the chunk btree, add a new block group
5656 * item to the extent btree, add a new chunk item to the chunk btree and
5657 * finally add the new device extent items to the devices btree.
5658 */
5659
5660 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662 if (IS_ERR(meta_bg))
5663 return PTR_ERR(meta_bg);
5664
5665 alloc_profile = btrfs_system_alloc_profile(fs_info);
5666 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667 if (IS_ERR(sys_bg))
5668 return PTR_ERR(sys_bg);
5669
5670 return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675 const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677 return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682 struct extent_map *em;
5683 struct map_lookup *map;
5684 int miss_ndevs = 0;
5685 int i;
5686 bool ret = true;
5687
5688 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689 if (IS_ERR(em))
5690 return false;
5691
5692 map = em->map_lookup;
5693 for (i = 0; i < map->num_stripes; i++) {
5694 if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 &map->stripes[i].dev->dev_state)) {
5696 miss_ndevs++;
5697 continue;
5698 }
5699 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 &map->stripes[i].dev->dev_state)) {
5701 ret = false;
5702 goto end;
5703 }
5704 }
5705
5706 /*
5707 * If the number of missing devices is larger than max errors, we can
5708 * not write the data into that chunk successfully.
5709 */
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
5711 ret = false;
5712end:
5713 free_extent_map(em);
5714 return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719 struct extent_map *em;
5720
5721 while (1) {
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
5724 if (em)
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
5727 if (!em)
5728 break;
5729 /* once for us */
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5733 }
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738 struct extent_map *em;
5739 struct map_lookup *map;
5740 enum btrfs_raid_types index;
5741 int ret = 1;
5742
5743 em = btrfs_get_chunk_map(fs_info, logical, len);
5744 if (IS_ERR(em))
5745 /*
5746 * We could return errors for these cases, but that could get
5747 * ugly and we'd probably do the same thing which is just not do
5748 * anything else and exit, so return 1 so the callers don't try
5749 * to use other copies.
5750 */
5751 return 1;
5752
5753 map = em->map_lookup;
5754 index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 ret = btrfs_raid_array[index].ncopies;
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 ret = 2;
5761 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762 /*
5763 * There could be two corrupted data stripes, we need
5764 * to loop retry in order to rebuild the correct data.
5765 *
5766 * Fail a stripe at a time on every retry except the
5767 * stripe under reconstruction.
5768 */
5769 ret = map->num_stripes;
5770 free_extent_map(em);
5771
5772 down_read(&fs_info->dev_replace.rwsem);
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
5775 ret++;
5776 up_read(&fs_info->dev_replace.rwsem);
5777
5778 return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 u64 logical)
5783{
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5787
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
5791 em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = map->stripe_len * nr_data_stripes(map);
5797 free_extent_map(em);
5798 }
5799 return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804 struct extent_map *em;
5805 struct map_lookup *map;
5806 int ret = 0;
5807
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
5811 em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
5819 return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 struct map_lookup *map, int first,
5824 int dev_replace_is_ongoing)
5825{
5826 int i;
5827 int num_stripes;
5828 int preferred_mirror;
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
5832 ASSERT((map->type &
5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
5852
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
5869 for (i = first; i < first + num_stripes; i++) {
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
5874 }
5875
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
5879 return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885 int i;
5886 int again = 1;
5887
5888 while (again) {
5889 again = 0;
5890 for (i = 0; i < num_stripes - 1; i++) {
5891 /* Swap if parity is on a smaller index */
5892 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895 again = 1;
5896 }
5897 }
5898 }
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 int total_stripes,
5903 int real_stripes)
5904{
5905 struct btrfs_io_context *bioc = kzalloc(
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
5909 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 /* Plus the variable array for the tgt dev */
5911 sizeof(int) * (real_stripes) +
5912 /*
5913 * Plus the raid_map, which includes both the tgt dev
5914 * and the stripes.
5915 */
5916 sizeof(u64) * (total_stripes),
5917 GFP_NOFS);
5918
5919 if (!bioc)
5920 return NULL;
5921
5922 refcount_set(&bioc->refs, 1);
5923
5924 bioc->fs_info = fs_info;
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928 return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939 if (!bioc)
5940 return;
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
5952{
5953 struct extent_map *em;
5954 struct map_lookup *map;
5955 struct btrfs_discard_stripe *stripes;
5956 u64 length = *length_ret;
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
5970 int ret;
5971 int i;
5972
5973 em = btrfs_get_chunk_map(fs_info, logical, length);
5974 if (IS_ERR(em))
5975 return ERR_CAST(em);
5976
5977 map = em->map_lookup;
5978
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
5982 goto out_free_map;
5983}
5984
5985 offset = logical - em->start;
5986 length = min_t(u64, em->start + em->len - logical, length);
5987 *length_ret = length;
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
6009 *num_stripes = 1;
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
6019 *num_stripes = min_t(u64, map->num_stripes,
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 BTRFS_BLOCK_GROUP_DUP)) {
6029 *num_stripes = map->num_stripes;
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
6037 ret = -ENOMEM;
6038 goto out_free_map;
6039 }
6040
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
6045 stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
6049 stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051 if (i / sub_stripes < remaining_stripes)
6052 stripes[i].length += map->stripe_len;
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
6063 stripes[i].length -= stripe_offset;
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
6068 stripes[i].length -= stripe_end_offset;
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
6073 stripes[i].length = length;
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
6083 free_extent_map(em);
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107{
6108 struct btrfs_io_context *bioc = NULL;
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 logical, &length, &bioc, NULL, NULL, 0);
6118 if (ret) {
6119 ASSERT(bioc == NULL);
6120 return ret;
6121 }
6122
6123 num_stripes = bioc->num_stripes;
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
6130 btrfs_put_bioc(bioc);
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
6148 physical_of_found <= bioc->stripes[i].physical)
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bioc->stripes[i].physical;
6154 }
6155
6156 btrfs_put_bioc(bioc);
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
6172 /* Non zoned filesystem does not use "to_copy" flag */
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_io_context **bioc_ret,
6186 struct btrfs_dev_replace *dev_replace,
6187 u64 logical,
6188 int *num_stripes_ret, int *max_errors_ret)
6189{
6190 struct btrfs_io_context *bioc = *bioc_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
6226
6227 new->physical = old->physical;
6228 new->dev = dev_replace->tgtdev;
6229 bioc->tgtdev_map[i] = index_where_to_add;
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
6256 physical_of_found <= bioc->stripes[i].physical)
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
6260 physical_of_found = bioc->stripes[i].physical;
6261 }
6262 }
6263 if (found) {
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
6266
6267 tgtdev_stripe->physical = physical_of_found;
6268 tgtdev_stripe->dev = dev_replace->tgtdev;
6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302 enum btrfs_map_op op, u64 logical,
6303 struct btrfs_io_geometry *io_geom)
6304{
6305 struct map_lookup *map;
6306 u64 len;
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
6310 u32 stripe_len;
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
6327
6328 data_stripes = nr_data_stripes(map);
6329
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371 return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383 u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386 int need_raid_map)
6387{
6388 struct extent_map *em;
6389 struct map_lookup *map;
6390 u64 stripe_offset;
6391 u64 stripe_nr;
6392 u64 stripe_len;
6393 u32 stripe_index;
6394 int data_stripes;
6395 int i;
6396 int ret = 0;
6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398 int num_stripes;
6399 int max_errors = 0;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_io_context *bioc = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6409
6410 ASSERT(bioc_ret);
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417 if (ret < 0)
6418 return ret;
6419
6420 map = em->map_lookup;
6421
6422 *length = geom.len;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6428
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6437
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
6445 goto out;
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
6452 num_stripes = 1;
6453 stripe_index = 0;
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
6457 if (!need_full_stripe(op))
6458 mirror_num = 1;
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6464 else {
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6475 } else {
6476 mirror_num = 1;
6477 }
6478
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6484
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6489 else {
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6495 }
6496
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 /* push stripe_nr back to the start of the full stripe */
6501 stripe_nr = div64_u64(raid56_full_stripe_start,
6502 stripe_len * data_stripes);
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6506 max_errors = btrfs_chunk_max_errors(map);
6507
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
6520 stripe_nr = div_u64_rem(stripe_nr,
6521 data_stripes, &stripe_index);
6522 if (mirror_num > 1)
6523 stripe_index = data_stripes + mirror_num - 2;
6524
6525 /* We distribute the parity blocks across stripes */
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
6528 if (!need_full_stripe(op) && mirror_num <= 1)
6529 mirror_num = 1;
6530 }
6531 } else {
6532 /*
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
6536 */
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
6539 mirror_num = stripe_index + 1;
6540 }
6541 if (stripe_index >= map->num_stripes) {
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
6548
6549 num_alloc_stripes = num_stripes;
6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551 if (op == BTRFS_MAP_WRITE)
6552 num_alloc_stripes <<= 1;
6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554 num_alloc_stripes++;
6555 tgtdev_indexes = num_stripes;
6556 }
6557
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582 if (!bioc) {
6583 ret = -ENOMEM;
6584 goto out;
6585 }
6586
6587 for (i = 0; i < num_stripes; i++) {
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
6590 stripe_index++;
6591 }
6592
6593 /* Build raid_map */
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
6596 u64 tmp;
6597 unsigned rot;
6598
6599 /* Work out the disk rotation on this stripe-set */
6600 div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602 /* Fill in the logical address of each stripe */
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
6605 bioc->raid_map[(i + rot) % num_stripes] =
6606 em->start + (tmp + i) * map->stripe_len;
6607
6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
6611 RAID6_Q_STRIPE;
6612
6613 sort_parity_stripes(bioc, num_stripes);
6614 }
6615
6616 if (need_full_stripe(op))
6617 max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 need_full_stripe(op)) {
6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622 &num_stripes, &max_errors);
6623 }
6624
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
6641 }
6642out:
6643 if (dev_replace_is_ongoing) {
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
6646 up_read(&dev_replace->rwsem);
6647 }
6648 free_extent_map(em);
6649 return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662 u64 logical, u64 *length,
6663 struct btrfs_io_context **bioc_ret)
6664{
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670 const struct btrfs_fs_devices *fs_devices)
6671{
6672 if (args->fsid == NULL)
6673 return true;
6674 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675 return true;
6676 return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680 const struct btrfs_device *device)
6681{
6682 if (args->missing) {
6683 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684 !device->bdev)
6685 return true;
6686 return false;
6687 }
6688
6689 if (device->devid != args->devid)
6690 return false;
6691 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692 return false;
6693 return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704 const struct btrfs_dev_lookup_args *args)
6705{
6706 struct btrfs_device *device;
6707 struct btrfs_fs_devices *seed_devs;
6708
6709 if (dev_args_match_fs_devices(args, fs_devices)) {
6710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711 if (dev_args_match_device(args, device))
6712 return device;
6713 }
6714 }
6715
6716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717 if (!dev_args_match_fs_devices(args, seed_devs))
6718 continue;
6719 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720 if (dev_args_match_device(args, device))
6721 return device;
6722 }
6723 }
6724
6725 return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729 u64 devid, u8 *dev_uuid)
6730{
6731 struct btrfs_device *device;
6732 unsigned int nofs_flag;
6733
6734 /*
6735 * We call this under the chunk_mutex, so we want to use NOFS for this
6736 * allocation, however we don't want to change btrfs_alloc_device() to
6737 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738 * places.
6739 */
6740
6741 nofs_flag = memalloc_nofs_save();
6742 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743 memalloc_nofs_restore(nofs_flag);
6744 if (IS_ERR(device))
6745 return device;
6746
6747 list_add(&device->dev_list, &fs_devices->devices);
6748 device->fs_devices = fs_devices;
6749 fs_devices->num_devices++;
6750
6751 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752 fs_devices->missing_devices++;
6753
6754 return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info: used only for generating a new devid, can be NULL if
6761 * devid is provided (i.e. @devid != NULL).
6762 * @devid: a pointer to devid for this device. If NULL a new devid
6763 * is generated.
6764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6765 * is generated.
6766 * @path: a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error. Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773 const u64 *devid, const u8 *uuid,
6774 const char *path)
6775{
6776 struct btrfs_device *dev;
6777 u64 tmp;
6778
6779 if (WARN_ON(!devid && !fs_info))
6780 return ERR_PTR(-EINVAL);
6781
6782 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783 if (!dev)
6784 return ERR_PTR(-ENOMEM);
6785
6786 INIT_LIST_HEAD(&dev->dev_list);
6787 INIT_LIST_HEAD(&dev->dev_alloc_list);
6788 INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790 atomic_set(&dev->dev_stats_ccnt, 0);
6791 btrfs_device_data_ordered_init(dev);
6792 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794 if (devid)
6795 tmp = *devid;
6796 else {
6797 int ret;
6798
6799 ret = find_next_devid(fs_info, &tmp);
6800 if (ret) {
6801 btrfs_free_device(dev);
6802 return ERR_PTR(ret);
6803 }
6804 }
6805 dev->devid = tmp;
6806
6807 if (uuid)
6808 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809 else
6810 generate_random_uuid(dev->uuid);
6811
6812 if (path) {
6813 struct rcu_string *name;
6814
6815 name = rcu_string_strdup(path, GFP_KERNEL);
6816 if (!name) {
6817 btrfs_free_device(dev);
6818 return ERR_PTR(-ENOMEM);
6819 }
6820 rcu_assign_pointer(dev->name, name);
6821 }
6822
6823 return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827 u64 devid, u8 *uuid, bool error)
6828{
6829 if (error)
6830 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831 devid, uuid);
6832 else
6833 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834 devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839 const struct map_lookup *map = em->map_lookup;
6840 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842 return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854 u64 logical, u64 length, u64 type)
6855{
6856 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857 return 0;
6858
6859 if (logical + length < MAX_LFS_FILESIZE)
6860 return 0;
6861
6862 btrfs_err_32bit_limit(fs_info);
6863 return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873 u64 logical, u64 length, u64 type)
6874{
6875 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876 return;
6877
6878 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879 return;
6880
6881 btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886 u64 devid, u8 *uuid)
6887{
6888 struct btrfs_device *dev;
6889
6890 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891 btrfs_report_missing_device(fs_info, devid, uuid, true);
6892 return ERR_PTR(-ENOENT);
6893 }
6894
6895 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896 if (IS_ERR(dev)) {
6897 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898 devid, PTR_ERR(dev));
6899 return dev;
6900 }
6901 btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903 return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907 struct btrfs_chunk *chunk)
6908{
6909 BTRFS_DEV_LOOKUP_ARGS(args);
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
6916 u64 devid;
6917 u64 type;
6918 u8 uuid[BTRFS_UUID_SIZE];
6919 int index;
6920 int num_stripes;
6921 int ret;
6922 int i;
6923
6924 logical = key->offset;
6925 length = btrfs_chunk_length(leaf, chunk);
6926 type = btrfs_chunk_type(leaf, chunk);
6927 index = btrfs_bg_flags_to_raid_index(type);
6928 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932 if (ret < 0)
6933 return ret;
6934 warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937 /*
6938 * Only need to verify chunk item if we're reading from sys chunk array,
6939 * as chunk item in tree block is already verified by tree-checker.
6940 */
6941 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943 if (ret)
6944 return ret;
6945 }
6946
6947 read_lock(&map_tree->lock);
6948 em = lookup_extent_mapping(map_tree, logical, 1);
6949 read_unlock(&map_tree->lock);
6950
6951 /* already mapped? */
6952 if (em && em->start <= logical && em->start + em->len > logical) {
6953 free_extent_map(em);
6954 return 0;
6955 } else if (em) {
6956 free_extent_map(em);
6957 }
6958
6959 em = alloc_extent_map();
6960 if (!em)
6961 return -ENOMEM;
6962 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963 if (!map) {
6964 free_extent_map(em);
6965 return -ENOMEM;
6966 }
6967
6968 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969 em->map_lookup = map;
6970 em->start = logical;
6971 em->len = length;
6972 em->orig_start = 0;
6973 em->block_start = 0;
6974 em->block_len = em->len;
6975
6976 map->num_stripes = num_stripes;
6977 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980 map->type = type;
6981 /*
6982 * We can't use the sub_stripes value, as for profiles other than
6983 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984 * older mkfs (<v5.4).
6985 * In that case, it can cause divide-by-zero errors later.
6986 * Since currently sub_stripes is fixed for each profile, let's
6987 * use the trusted value instead.
6988 */
6989 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990 map->verified_stripes = 0;
6991 em->orig_block_len = btrfs_calc_stripe_length(em);
6992 for (i = 0; i < num_stripes; i++) {
6993 map->stripes[i].physical =
6994 btrfs_stripe_offset_nr(leaf, chunk, i);
6995 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996 args.devid = devid;
6997 read_extent_buffer(leaf, uuid, (unsigned long)
6998 btrfs_stripe_dev_uuid_nr(chunk, i),
6999 BTRFS_UUID_SIZE);
7000 args.uuid = uuid;
7001 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7002 if (!map->stripes[i].dev) {
7003 map->stripes[i].dev = handle_missing_device(fs_info,
7004 devid, uuid);
7005 if (IS_ERR(map->stripes[i].dev)) {
7006 ret = PTR_ERR(map->stripes[i].dev);
7007 free_extent_map(em);
7008 return ret;
7009 }
7010 }
7011
7012 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013 &(map->stripes[i].dev->dev_state));
7014 }
7015
7016 write_lock(&map_tree->lock);
7017 ret = add_extent_mapping(map_tree, em, 0);
7018 write_unlock(&map_tree->lock);
7019 if (ret < 0) {
7020 btrfs_err(fs_info,
7021 "failed to add chunk map, start=%llu len=%llu: %d",
7022 em->start, em->len, ret);
7023 }
7024 free_extent_map(em);
7025
7026 return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030 struct btrfs_dev_item *dev_item,
7031 struct btrfs_device *device)
7032{
7033 unsigned long ptr;
7034
7035 device->devid = btrfs_device_id(leaf, dev_item);
7036 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037 device->total_bytes = device->disk_total_bytes;
7038 device->commit_total_bytes = device->disk_total_bytes;
7039 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040 device->commit_bytes_used = device->bytes_used;
7041 device->type = btrfs_device_type(leaf, dev_item);
7042 device->io_align = btrfs_device_io_align(leaf, dev_item);
7043 device->io_width = btrfs_device_io_width(leaf, dev_item);
7044 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048 ptr = btrfs_device_uuid(dev_item);
7049 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053 u8 *fsid)
7054{
7055 struct btrfs_fs_devices *fs_devices;
7056 int ret;
7057
7058 lockdep_assert_held(&uuid_mutex);
7059 ASSERT(fsid);
7060
7061 /* This will match only for multi-device seed fs */
7062 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064 return fs_devices;
7065
7066
7067 fs_devices = find_fsid(fsid, NULL);
7068 if (!fs_devices) {
7069 if (!btrfs_test_opt(fs_info, DEGRADED))
7070 return ERR_PTR(-ENOENT);
7071
7072 fs_devices = alloc_fs_devices(fsid, NULL);
7073 if (IS_ERR(fs_devices))
7074 return fs_devices;
7075
7076 fs_devices->seeding = true;
7077 fs_devices->opened = 1;
7078 return fs_devices;
7079 }
7080
7081 /*
7082 * Upon first call for a seed fs fsid, just create a private copy of the
7083 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084 */
7085 fs_devices = clone_fs_devices(fs_devices);
7086 if (IS_ERR(fs_devices))
7087 return fs_devices;
7088
7089 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090 if (ret) {
7091 free_fs_devices(fs_devices);
7092 return ERR_PTR(ret);
7093 }
7094
7095 if (!fs_devices->seeding) {
7096 close_fs_devices(fs_devices);
7097 free_fs_devices(fs_devices);
7098 return ERR_PTR(-EINVAL);
7099 }
7100
7101 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103 return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107 struct btrfs_dev_item *dev_item)
7108{
7109 BTRFS_DEV_LOOKUP_ARGS(args);
7110 struct btrfs_fs_info *fs_info = leaf->fs_info;
7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 struct btrfs_device *device;
7113 u64 devid;
7114 int ret;
7115 u8 fs_uuid[BTRFS_FSID_SIZE];
7116 u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118 devid = btrfs_device_id(leaf, dev_item);
7119 args.devid = devid;
7120 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121 BTRFS_UUID_SIZE);
7122 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123 BTRFS_FSID_SIZE);
7124 args.uuid = dev_uuid;
7125 args.fsid = fs_uuid;
7126
7127 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128 fs_devices = open_seed_devices(fs_info, fs_uuid);
7129 if (IS_ERR(fs_devices))
7130 return PTR_ERR(fs_devices);
7131 }
7132
7133 device = btrfs_find_device(fs_info->fs_devices, &args);
7134 if (!device) {
7135 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136 btrfs_report_missing_device(fs_info, devid,
7137 dev_uuid, true);
7138 return -ENOENT;
7139 }
7140
7141 device = add_missing_dev(fs_devices, devid, dev_uuid);
7142 if (IS_ERR(device)) {
7143 btrfs_err(fs_info,
7144 "failed to add missing dev %llu: %ld",
7145 devid, PTR_ERR(device));
7146 return PTR_ERR(device);
7147 }
7148 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149 } else {
7150 if (!device->bdev) {
7151 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152 btrfs_report_missing_device(fs_info,
7153 devid, dev_uuid, true);
7154 return -ENOENT;
7155 }
7156 btrfs_report_missing_device(fs_info, devid,
7157 dev_uuid, false);
7158 }
7159
7160 if (!device->bdev &&
7161 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162 /*
7163 * this happens when a device that was properly setup
7164 * in the device info lists suddenly goes bad.
7165 * device->bdev is NULL, and so we have to set
7166 * device->missing to one here
7167 */
7168 device->fs_devices->missing_devices++;
7169 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170 }
7171
7172 /* Move the device to its own fs_devices */
7173 if (device->fs_devices != fs_devices) {
7174 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175 &device->dev_state));
7176
7177 list_move(&device->dev_list, &fs_devices->devices);
7178 device->fs_devices->num_devices--;
7179 fs_devices->num_devices++;
7180
7181 device->fs_devices->missing_devices--;
7182 fs_devices->missing_devices++;
7183
7184 device->fs_devices = fs_devices;
7185 }
7186 }
7187
7188 if (device->fs_devices != fs_info->fs_devices) {
7189 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190 if (device->generation !=
7191 btrfs_device_generation(leaf, dev_item))
7192 return -EINVAL;
7193 }
7194
7195 fill_device_from_item(leaf, dev_item, device);
7196 if (device->bdev) {
7197 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199 if (device->total_bytes > max_total_bytes) {
7200 btrfs_err(fs_info,
7201 "device total_bytes should be at most %llu but found %llu",
7202 max_total_bytes, device->total_bytes);
7203 return -EINVAL;
7204 }
7205 }
7206 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209 device->fs_devices->total_rw_bytes += device->total_bytes;
7210 atomic64_add(device->total_bytes - device->bytes_used,
7211 &fs_info->free_chunk_space);
7212 }
7213 ret = 0;
7214 return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219 struct btrfs_super_block *super_copy = fs_info->super_copy;
7220 struct extent_buffer *sb;
7221 struct btrfs_disk_key *disk_key;
7222 struct btrfs_chunk *chunk;
7223 u8 *array_ptr;
7224 unsigned long sb_array_offset;
7225 int ret = 0;
7226 u32 num_stripes;
7227 u32 array_size;
7228 u32 len = 0;
7229 u32 cur_offset;
7230 u64 type;
7231 struct btrfs_key key;
7232
7233 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235 /*
7236 * We allocated a dummy extent, just to use extent buffer accessors.
7237 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238 * that's fine, we will not go beyond system chunk array anyway.
7239 */
7240 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241 if (!sb)
7242 return -ENOMEM;
7243 set_extent_buffer_uptodate(sb);
7244
7245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246 array_size = btrfs_super_sys_array_size(super_copy);
7247
7248 array_ptr = super_copy->sys_chunk_array;
7249 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250 cur_offset = 0;
7251
7252 while (cur_offset < array_size) {
7253 disk_key = (struct btrfs_disk_key *)array_ptr;
7254 len = sizeof(*disk_key);
7255 if (cur_offset + len > array_size)
7256 goto out_short_read;
7257
7258 btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260 array_ptr += len;
7261 sb_array_offset += len;
7262 cur_offset += len;
7263
7264 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265 btrfs_err(fs_info,
7266 "unexpected item type %u in sys_array at offset %u",
7267 (u32)key.type, cur_offset);
7268 ret = -EIO;
7269 break;
7270 }
7271
7272 chunk = (struct btrfs_chunk *)sb_array_offset;
7273 /*
7274 * At least one btrfs_chunk with one stripe must be present,
7275 * exact stripe count check comes afterwards
7276 */
7277 len = btrfs_chunk_item_size(1);
7278 if (cur_offset + len > array_size)
7279 goto out_short_read;
7280
7281 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282 if (!num_stripes) {
7283 btrfs_err(fs_info,
7284 "invalid number of stripes %u in sys_array at offset %u",
7285 num_stripes, cur_offset);
7286 ret = -EIO;
7287 break;
7288 }
7289
7290 type = btrfs_chunk_type(sb, chunk);
7291 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292 btrfs_err(fs_info,
7293 "invalid chunk type %llu in sys_array at offset %u",
7294 type, cur_offset);
7295 ret = -EIO;
7296 break;
7297 }
7298
7299 len = btrfs_chunk_item_size(num_stripes);
7300 if (cur_offset + len > array_size)
7301 goto out_short_read;
7302
7303 ret = read_one_chunk(&key, sb, chunk);
7304 if (ret)
7305 break;
7306
7307 array_ptr += len;
7308 sb_array_offset += len;
7309 cur_offset += len;
7310 }
7311 clear_extent_buffer_uptodate(sb);
7312 free_extent_buffer_stale(sb);
7313 return ret;
7314
7315out_short_read:
7316 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317 len, cur_offset);
7318 clear_extent_buffer_uptodate(sb);
7319 free_extent_buffer_stale(sb);
7320 return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332 struct btrfs_device *failing_dev)
7333{
7334 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335 struct extent_map *em;
7336 u64 next_start = 0;
7337 bool ret = true;
7338
7339 read_lock(&map_tree->lock);
7340 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341 read_unlock(&map_tree->lock);
7342 /* No chunk at all? Return false anyway */
7343 if (!em) {
7344 ret = false;
7345 goto out;
7346 }
7347 while (em) {
7348 struct map_lookup *map;
7349 int missing = 0;
7350 int max_tolerated;
7351 int i;
7352
7353 map = em->map_lookup;
7354 max_tolerated =
7355 btrfs_get_num_tolerated_disk_barrier_failures(
7356 map->type);
7357 for (i = 0; i < map->num_stripes; i++) {
7358 struct btrfs_device *dev = map->stripes[i].dev;
7359
7360 if (!dev || !dev->bdev ||
7361 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362 dev->last_flush_error)
7363 missing++;
7364 else if (failing_dev && failing_dev == dev)
7365 missing++;
7366 }
7367 if (missing > max_tolerated) {
7368 if (!failing_dev)
7369 btrfs_warn(fs_info,
7370 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371 em->start, missing, max_tolerated);
7372 free_extent_map(em);
7373 ret = false;
7374 goto out;
7375 }
7376 next_start = extent_map_end(em);
7377 free_extent_map(em);
7378
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, next_start,
7381 (u64)(-1) - next_start);
7382 read_unlock(&map_tree->lock);
7383 }
7384out:
7385 return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390 int i;
7391 const int nr_items = btrfs_header_nritems(node);
7392
7393 for (i = 0; i < nr_items; i++)
7394 btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399 struct btrfs_root *root = fs_info->chunk_root;
7400 struct btrfs_path *path;
7401 struct extent_buffer *leaf;
7402 struct btrfs_key key;
7403 struct btrfs_key found_key;
7404 int ret;
7405 int slot;
7406 int iter_ret = 0;
7407 u64 total_dev = 0;
7408 u64 last_ra_node = 0;
7409
7410 path = btrfs_alloc_path();
7411 if (!path)
7412 return -ENOMEM;
7413
7414 /*
7415 * uuid_mutex is needed only if we are mounting a sprout FS
7416 * otherwise we don't need it.
7417 */
7418 mutex_lock(&uuid_mutex);
7419
7420 /*
7421 * It is possible for mount and umount to race in such a way that
7422 * we execute this code path, but open_fs_devices failed to clear
7423 * total_rw_bytes. We certainly want it cleared before reading the
7424 * device items, so clear it here.
7425 */
7426 fs_info->fs_devices->total_rw_bytes = 0;
7427
7428 /*
7429 * Lockdep complains about possible circular locking dependency between
7430 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431 * used for freeze procection of a fs (struct super_block.s_writers),
7432 * which we take when starting a transaction, and extent buffers of the
7433 * chunk tree if we call read_one_dev() while holding a lock on an
7434 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435 * and at this point there can't be any concurrent task modifying the
7436 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437 */
7438 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439 path->skip_locking = 1;
7440
7441 /*
7442 * Read all device items, and then all the chunk items. All
7443 * device items are found before any chunk item (their object id
7444 * is smaller than the lowest possible object id for a chunk
7445 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446 */
7447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448 key.offset = 0;
7449 key.type = 0;
7450 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451 struct extent_buffer *node = path->nodes[1];
7452
7453 leaf = path->nodes[0];
7454 slot = path->slots[0];
7455
7456 if (node) {
7457 if (last_ra_node != node->start) {
7458 readahead_tree_node_children(node);
7459 last_ra_node = node->start;
7460 }
7461 }
7462 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463 struct btrfs_dev_item *dev_item;
7464 dev_item = btrfs_item_ptr(leaf, slot,
7465 struct btrfs_dev_item);
7466 ret = read_one_dev(leaf, dev_item);
7467 if (ret)
7468 goto error;
7469 total_dev++;
7470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471 struct btrfs_chunk *chunk;
7472
7473 /*
7474 * We are only called at mount time, so no need to take
7475 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476 * we always lock first fs_info->chunk_mutex before
7477 * acquiring any locks on the chunk tree. This is a
7478 * requirement for chunk allocation, see the comment on
7479 * top of btrfs_chunk_alloc() for details.
7480 */
7481 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482 ret = read_one_chunk(&found_key, leaf, chunk);
7483 if (ret)
7484 goto error;
7485 }
7486 }
7487 /* Catch error found during iteration */
7488 if (iter_ret < 0) {
7489 ret = iter_ret;
7490 goto error;
7491 }
7492
7493 /*
7494 * After loading chunk tree, we've got all device information,
7495 * do another round of validation checks.
7496 */
7497 if (total_dev != fs_info->fs_devices->total_devices) {
7498 btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500 btrfs_super_num_devices(fs_info->super_copy),
7501 total_dev);
7502 fs_info->fs_devices->total_devices = total_dev;
7503 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504 }
7505 if (btrfs_super_total_bytes(fs_info->super_copy) <
7506 fs_info->fs_devices->total_rw_bytes) {
7507 btrfs_err(fs_info,
7508 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509 btrfs_super_total_bytes(fs_info->super_copy),
7510 fs_info->fs_devices->total_rw_bytes);
7511 ret = -EINVAL;
7512 goto error;
7513 }
7514 ret = 0;
7515error:
7516 mutex_unlock(&uuid_mutex);
7517
7518 btrfs_free_path(path);
7519 return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525 struct btrfs_device *device;
7526 int ret = 0;
7527
7528 fs_devices->fs_info = fs_info;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
7531 list_for_each_entry(device, &fs_devices->devices, dev_list)
7532 device->fs_info = fs_info;
7533
7534 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536 device->fs_info = fs_info;
7537 ret = btrfs_get_dev_zone_info(device, false);
7538 if (ret)
7539 break;
7540 }
7541
7542 seed_devs->fs_info = fs_info;
7543 }
7544 mutex_unlock(&fs_devices->device_list_mutex);
7545
7546 return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550 const struct btrfs_dev_stats_item *ptr,
7551 int index)
7552{
7553 u64 val;
7554
7555 read_extent_buffer(eb, &val,
7556 offsetof(struct btrfs_dev_stats_item, values) +
7557 ((unsigned long)ptr) + (index * sizeof(u64)),
7558 sizeof(val));
7559 return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563 struct btrfs_dev_stats_item *ptr,
7564 int index, u64 val)
7565{
7566 write_extent_buffer(eb, &val,
7567 offsetof(struct btrfs_dev_stats_item, values) +
7568 ((unsigned long)ptr) + (index * sizeof(u64)),
7569 sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573 struct btrfs_path *path)
7574{
7575 struct btrfs_dev_stats_item *ptr;
7576 struct extent_buffer *eb;
7577 struct btrfs_key key;
7578 int item_size;
7579 int i, ret, slot;
7580
7581 if (!device->fs_info->dev_root)
7582 return 0;
7583
7584 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586 key.offset = device->devid;
7587 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588 if (ret) {
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590 btrfs_dev_stat_set(device, i, 0);
7591 device->dev_stats_valid = 1;
7592 btrfs_release_path(path);
7593 return ret < 0 ? ret : 0;
7594 }
7595 slot = path->slots[0];
7596 eb = path->nodes[0];
7597 item_size = btrfs_item_size(eb, slot);
7598
7599 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602 if (item_size >= (1 + i) * sizeof(__le64))
7603 btrfs_dev_stat_set(device, i,
7604 btrfs_dev_stats_value(eb, ptr, i));
7605 else
7606 btrfs_dev_stat_set(device, i, 0);
7607 }
7608
7609 device->dev_stats_valid = 1;
7610 btrfs_dev_stat_print_on_load(device);
7611 btrfs_release_path(path);
7612
7613 return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619 struct btrfs_device *device;
7620 struct btrfs_path *path = NULL;
7621 int ret = 0;
7622
7623 path = btrfs_alloc_path();
7624 if (!path)
7625 return -ENOMEM;
7626
7627 mutex_lock(&fs_devices->device_list_mutex);
7628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629 ret = btrfs_device_init_dev_stats(device, path);
7630 if (ret)
7631 goto out;
7632 }
7633 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635 ret = btrfs_device_init_dev_stats(device, path);
7636 if (ret)
7637 goto out;
7638 }
7639 }
7640out:
7641 mutex_unlock(&fs_devices->device_list_mutex);
7642
7643 btrfs_free_path(path);
7644 return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648 struct btrfs_device *device)
7649{
7650 struct btrfs_fs_info *fs_info = trans->fs_info;
7651 struct btrfs_root *dev_root = fs_info->dev_root;
7652 struct btrfs_path *path;
7653 struct btrfs_key key;
7654 struct extent_buffer *eb;
7655 struct btrfs_dev_stats_item *ptr;
7656 int ret;
7657 int i;
7658
7659 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661 key.offset = device->devid;
7662
7663 path = btrfs_alloc_path();
7664 if (!path)
7665 return -ENOMEM;
7666 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667 if (ret < 0) {
7668 btrfs_warn_in_rcu(fs_info,
7669 "error %d while searching for dev_stats item for device %s",
7670 ret, btrfs_dev_name(device));
7671 goto out;
7672 }
7673
7674 if (ret == 0 &&
7675 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676 /* need to delete old one and insert a new one */
7677 ret = btrfs_del_item(trans, dev_root, path);
7678 if (ret != 0) {
7679 btrfs_warn_in_rcu(fs_info,
7680 "delete too small dev_stats item for device %s failed %d",
7681 btrfs_dev_name(device), ret);
7682 goto out;
7683 }
7684 ret = 1;
7685 }
7686
7687 if (ret == 1) {
7688 /* need to insert a new item */
7689 btrfs_release_path(path);
7690 ret = btrfs_insert_empty_item(trans, dev_root, path,
7691 &key, sizeof(*ptr));
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "insert dev_stats item for device %s failed %d",
7695 btrfs_dev_name(device), ret);
7696 goto out;
7697 }
7698 }
7699
7700 eb = path->nodes[0];
7701 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703 btrfs_set_dev_stats_value(eb, ptr, i,
7704 btrfs_dev_stat_read(device, i));
7705 btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708 btrfs_free_path(path);
7709 return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717 struct btrfs_fs_info *fs_info = trans->fs_info;
7718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719 struct btrfs_device *device;
7720 int stats_cnt;
7721 int ret = 0;
7722
7723 mutex_lock(&fs_devices->device_list_mutex);
7724 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726 if (!device->dev_stats_valid || stats_cnt == 0)
7727 continue;
7728
7729
7730 /*
7731 * There is a LOAD-LOAD control dependency between the value of
7732 * dev_stats_ccnt and updating the on-disk values which requires
7733 * reading the in-memory counters. Such control dependencies
7734 * require explicit read memory barriers.
7735 *
7736 * This memory barriers pairs with smp_mb__before_atomic in
7737 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738 * barrier implied by atomic_xchg in
7739 * btrfs_dev_stats_read_and_reset
7740 */
7741 smp_rmb();
7742
7743 ret = update_dev_stat_item(trans, device);
7744 if (!ret)
7745 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746 }
7747 mutex_unlock(&fs_devices->device_list_mutex);
7748
7749 return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754 btrfs_dev_stat_inc(dev, index);
7755
7756 if (!dev->dev_stats_valid)
7757 return;
7758 btrfs_err_rl_in_rcu(dev->fs_info,
7759 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760 btrfs_dev_name(dev),
7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770 int i;
7771
7772 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773 if (btrfs_dev_stat_read(dev, i) != 0)
7774 break;
7775 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776 return; /* all values == 0, suppress message */
7777
7778 btrfs_info_in_rcu(dev->fs_info,
7779 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780 btrfs_dev_name(dev),
7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789 struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791 BTRFS_DEV_LOOKUP_ARGS(args);
7792 struct btrfs_device *dev;
7793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794 int i;
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
7797 args.devid = stats->devid;
7798 dev = btrfs_find_device(fs_info->fs_devices, &args);
7799 mutex_unlock(&fs_devices->device_list_mutex);
7800
7801 if (!dev) {
7802 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803 return -ENODEV;
7804 } else if (!dev->dev_stats_valid) {
7805 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806 return -ENODEV;
7807 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809 if (stats->nr_items > i)
7810 stats->values[i] =
7811 btrfs_dev_stat_read_and_reset(dev, i);
7812 else
7813 btrfs_dev_stat_set(dev, i, 0);
7814 }
7815 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816 current->comm, task_pid_nr(current));
7817 } else {
7818 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819 if (stats->nr_items > i)
7820 stats->values[i] = btrfs_dev_stat_read(dev, i);
7821 }
7822 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824 return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed. This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836 struct btrfs_device *curr, *next;
7837
7838 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840 if (list_empty(&trans->dev_update_list))
7841 return;
7842
7843 /*
7844 * We don't need the device_list_mutex here. This list is owned by the
7845 * transaction and the transaction must complete before the device is
7846 * released.
7847 */
7848 mutex_lock(&trans->fs_info->chunk_mutex);
7849 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850 post_commit_list) {
7851 list_del_init(&curr->post_commit_list);
7852 curr->commit_total_bytes = curr->disk_total_bytes;
7853 curr->commit_bytes_used = curr->bytes_used;
7854 }
7855 mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863 const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865 return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873{
7874 struct btrfs_dev_lookup_args args = { .devid = devid };
7875 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876 struct extent_map *em;
7877 struct map_lookup *map;
7878 struct btrfs_device *dev;
7879 u64 stripe_len;
7880 bool found = false;
7881 int ret = 0;
7882 int i;
7883
7884 read_lock(&em_tree->lock);
7885 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886 read_unlock(&em_tree->lock);
7887
7888 if (!em) {
7889 btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891 physical_offset, devid);
7892 ret = -EUCLEAN;
7893 goto out;
7894 }
7895
7896 map = em->map_lookup;
7897 stripe_len = btrfs_calc_stripe_length(em);
7898 if (physical_len != stripe_len) {
7899 btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901 physical_offset, devid, em->start, physical_len,
7902 stripe_len);
7903 ret = -EUCLEAN;
7904 goto out;
7905 }
7906
7907 /*
7908 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909 * space. Although kernel can handle it without problem, better to warn
7910 * the users.
7911 */
7912 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913 btrfs_warn(fs_info,
7914 "devid %llu physical %llu len %llu inside the reserved space",
7915 devid, physical_offset, physical_len);
7916
7917 for (i = 0; i < map->num_stripes; i++) {
7918 if (map->stripes[i].dev->devid == devid &&
7919 map->stripes[i].physical == physical_offset) {
7920 found = true;
7921 if (map->verified_stripes >= map->num_stripes) {
7922 btrfs_err(fs_info,
7923 "too many dev extents for chunk %llu found",
7924 em->start);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 map->verified_stripes++;
7929 break;
7930 }
7931 }
7932 if (!found) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 }
7938
7939 /* Make sure no dev extent is beyond device boundary */
7940 dev = btrfs_find_device(fs_info->fs_devices, &args);
7941 if (!dev) {
7942 btrfs_err(fs_info, "failed to find devid %llu", devid);
7943 ret = -EUCLEAN;
7944 goto out;
7945 }
7946
7947 if (physical_offset + physical_len > dev->disk_total_bytes) {
7948 btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950 devid, physical_offset, physical_len,
7951 dev->disk_total_bytes);
7952 ret = -EUCLEAN;
7953 goto out;
7954 }
7955
7956 if (dev->zone_info) {
7957 u64 zone_size = dev->zone_info->zone_size;
7958
7959 if (!IS_ALIGNED(physical_offset, zone_size) ||
7960 !IS_ALIGNED(physical_len, zone_size)) {
7961 btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963 devid, physical_offset, physical_len);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
7967 }
7968
7969out:
7970 free_extent_map(em);
7971 return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977 struct extent_map *em;
7978 struct rb_node *node;
7979 int ret = 0;
7980
7981 read_lock(&em_tree->lock);
7982 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983 em = rb_entry(node, struct extent_map, rb_node);
7984 if (em->map_lookup->num_stripes !=
7985 em->map_lookup->verified_stripes) {
7986 btrfs_err(fs_info,
7987 "chunk %llu has missing dev extent, have %d expect %d",
7988 em->start, em->map_lookup->verified_stripes,
7989 em->map_lookup->num_stripes);
7990 ret = -EUCLEAN;
7991 goto out;
7992 }
7993 }
7994out:
7995 read_unlock(&em_tree->lock);
7996 return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree. This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008 struct btrfs_path *path;
8009 struct btrfs_root *root = fs_info->dev_root;
8010 struct btrfs_key key;
8011 u64 prev_devid = 0;
8012 u64 prev_dev_ext_end = 0;
8013 int ret = 0;
8014
8015 /*
8016 * We don't have a dev_root because we mounted with ignorebadroots and
8017 * failed to load the root, so we want to skip the verification in this
8018 * case for sure.
8019 *
8020 * However if the dev root is fine, but the tree itself is corrupted
8021 * we'd still fail to mount. This verification is only to make sure
8022 * writes can happen safely, so instead just bypass this check
8023 * completely in the case of IGNOREBADROOTS.
8024 */
8025 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026 return 0;
8027
8028 key.objectid = 1;
8029 key.type = BTRFS_DEV_EXTENT_KEY;
8030 key.offset = 0;
8031
8032 path = btrfs_alloc_path();
8033 if (!path)
8034 return -ENOMEM;
8035
8036 path->reada = READA_FORWARD;
8037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038 if (ret < 0)
8039 goto out;
8040
8041 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042 ret = btrfs_next_leaf(root, path);
8043 if (ret < 0)
8044 goto out;
8045 /* No dev extents at all? Not good */
8046 if (ret > 0) {
8047 ret = -EUCLEAN;
8048 goto out;
8049 }
8050 }
8051 while (1) {
8052 struct extent_buffer *leaf = path->nodes[0];
8053 struct btrfs_dev_extent *dext;
8054 int slot = path->slots[0];
8055 u64 chunk_offset;
8056 u64 physical_offset;
8057 u64 physical_len;
8058 u64 devid;
8059
8060 btrfs_item_key_to_cpu(leaf, &key, slot);
8061 if (key.type != BTRFS_DEV_EXTENT_KEY)
8062 break;
8063 devid = key.objectid;
8064 physical_offset = key.offset;
8065
8066 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068 physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070 /* Check if this dev extent overlaps with the previous one */
8071 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072 btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074 devid, physical_offset, prev_dev_ext_end);
8075 ret = -EUCLEAN;
8076 goto out;
8077 }
8078
8079 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080 physical_offset, physical_len);
8081 if (ret < 0)
8082 goto out;
8083 prev_devid = devid;
8084 prev_dev_ext_end = physical_offset + physical_len;
8085
8086 ret = btrfs_next_item(root, path);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0) {
8090 ret = 0;
8091 break;
8092 }
8093 }
8094
8095 /* Ensure all chunks have corresponding dev extents */
8096 ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098 btrfs_free_path(path);
8099 return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108 struct btrfs_swapfile_pin *sp;
8109 struct rb_node *node;
8110
8111 spin_lock(&fs_info->swapfile_pins_lock);
8112 node = fs_info->swapfile_pins.rb_node;
8113 while (node) {
8114 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115 if (ptr < sp->ptr)
8116 node = node->rb_left;
8117 else if (ptr > sp->ptr)
8118 node = node->rb_right;
8119 else
8120 break;
8121 }
8122 spin_unlock(&fs_info->swapfile_pins_lock);
8123 return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128 struct btrfs_block_group *cache = data;
8129 struct btrfs_fs_info *fs_info = cache->fs_info;
8130 u64 target;
8131 int ret = 0;
8132
8133 target = cache->start;
8134 btrfs_put_block_group(cache);
8135
8136 sb_start_write(fs_info->sb);
8137 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138 btrfs_info(fs_info,
8139 "zoned: skip relocating block group %llu to repair: EBUSY",
8140 target);
8141 sb_end_write(fs_info->sb);
8142 return -EBUSY;
8143 }
8144
8145 mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147 /* Ensure block group still exists */
8148 cache = btrfs_lookup_block_group(fs_info, target);
8149 if (!cache)
8150 goto out;
8151
8152 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153 goto out;
8154
8155 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156 if (ret < 0)
8157 goto out;
8158
8159 btrfs_info(fs_info,
8160 "zoned: relocating block group %llu to repair IO failure",
8161 target);
8162 ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165 if (cache)
8166 btrfs_put_block_group(cache);
8167 mutex_unlock(&fs_info->reclaim_bgs_lock);
8168 btrfs_exclop_finish(fs_info);
8169 sb_end_write(fs_info->sb);
8170
8171 return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176 struct btrfs_block_group *cache;
8177
8178 if (!btrfs_is_zoned(fs_info))
8179 return false;
8180
8181 /* Do not attempt to repair in degraded state */
8182 if (btrfs_test_opt(fs_info, DEGRADED))
8183 return true;
8184
8185 cache = btrfs_lookup_block_group(fs_info, logical);
8186 if (!cache)
8187 return true;
8188
8189 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190 btrfs_put_block_group(cache);
8191 return true;
8192 }
8193
8194 kthread_run(relocating_repair_kthread, cache,
8195 "btrfs-relocating-repair");
8196
8197 return true;
8198}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "rcu-string.h"
22#include "dev-replace.h"
23#include "sysfs.h"
24#include "tree-checker.h"
25#include "space-info.h"
26#include "block-group.h"
27#include "discard.h"
28#include "zoned.h"
29#include "fs.h"
30#include "accessors.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35#include "super.h"
36#include "raid-stripe-tree.h"
37
38#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51};
52
53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171};
172
173/*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178{
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185}
186
187const char *btrfs_bg_type_to_raid_name(u64 flags)
188{
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195}
196
197int btrfs_nr_parity_stripes(u64 type)
198{
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202}
203
204/*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209{
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221#define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241#undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255out_overflow:;
256}
257
258static int init_first_rw_device(struct btrfs_trans_handle *trans);
259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262/*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362DEFINE_MUTEX(uuid_mutex);
363static LIST_HEAD(fs_uuids);
364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365{
366 return &fs_uuids;
367}
368
369/*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380{
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400}
401
402static void btrfs_free_device(struct btrfs_device *device)
403{
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409}
410
411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412{
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423}
424
425void __exit btrfs_cleanup_fs_uuids(void)
426{
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435}
436
437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439{
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450}
451
452static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454{
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471{
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 goto error;
480 }
481 bdev = file_bdev(*bdev_file);
482
483 if (flush)
484 sync_blockdev(bdev);
485 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486 if (ret) {
487 fput(*bdev_file);
488 goto error;
489 }
490 invalidate_bdev(bdev);
491 *disk_super = btrfs_read_dev_super(bdev);
492 if (IS_ERR(*disk_super)) {
493 ret = PTR_ERR(*disk_super);
494 fput(*bdev_file);
495 goto error;
496 }
497
498 return 0;
499
500error:
501 *bdev_file = NULL;
502 return ret;
503}
504
505/*
506 * Search and remove all stale devices (which are not mounted). When both
507 * inputs are NULL, it will search and release all stale devices.
508 *
509 * @devt: Optional. When provided will it release all unmounted devices
510 * matching this devt only.
511 * @skip_device: Optional. Will skip this device when searching for the stale
512 * devices.
513 *
514 * Return: 0 for success or if @devt is 0.
515 * -EBUSY if @devt is a mounted device.
516 * -ENOENT if @devt does not match any device in the list.
517 */
518static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519{
520 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521 struct btrfs_device *device, *tmp_device;
522 int ret;
523 bool freed = false;
524
525 lockdep_assert_held(&uuid_mutex);
526
527 /* Return good status if there is no instance of devt. */
528 ret = 0;
529 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530
531 mutex_lock(&fs_devices->device_list_mutex);
532 list_for_each_entry_safe(device, tmp_device,
533 &fs_devices->devices, dev_list) {
534 if (skip_device && skip_device == device)
535 continue;
536 if (devt && devt != device->devt)
537 continue;
538 if (fs_devices->opened) {
539 if (devt)
540 ret = -EBUSY;
541 break;
542 }
543
544 /* delete the stale device */
545 fs_devices->num_devices--;
546 list_del(&device->dev_list);
547 btrfs_free_device(device);
548
549 freed = true;
550 }
551 mutex_unlock(&fs_devices->device_list_mutex);
552
553 if (fs_devices->num_devices == 0) {
554 btrfs_sysfs_remove_fsid(fs_devices);
555 list_del(&fs_devices->fs_list);
556 free_fs_devices(fs_devices);
557 }
558 }
559
560 /* If there is at least one freed device return 0. */
561 if (freed)
562 return 0;
563
564 return ret;
565}
566
567static struct btrfs_fs_devices *find_fsid_by_device(
568 struct btrfs_super_block *disk_super,
569 dev_t devt, bool *same_fsid_diff_dev)
570{
571 struct btrfs_fs_devices *fsid_fs_devices;
572 struct btrfs_fs_devices *devt_fs_devices;
573 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575 bool found_by_devt = false;
576
577 /* Find the fs_device by the usual method, if found use it. */
578 fsid_fs_devices = find_fsid(disk_super->fsid,
579 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580
581 /* The temp_fsid feature is supported only with single device filesystem. */
582 if (btrfs_super_num_devices(disk_super) != 1)
583 return fsid_fs_devices;
584
585 /*
586 * A seed device is an integral component of the sprout device, which
587 * functions as a multi-device filesystem. So, temp-fsid feature is
588 * not supported.
589 */
590 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591 return fsid_fs_devices;
592
593 /* Try to find a fs_devices by matching devt. */
594 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595 struct btrfs_device *device;
596
597 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598 if (device->devt == devt) {
599 found_by_devt = true;
600 break;
601 }
602 }
603 if (found_by_devt)
604 break;
605 }
606
607 if (found_by_devt) {
608 /* Existing device. */
609 if (fsid_fs_devices == NULL) {
610 if (devt_fs_devices->opened == 0) {
611 /* Stale device. */
612 return NULL;
613 } else {
614 /* temp_fsid is mounting a subvol. */
615 return devt_fs_devices;
616 }
617 } else {
618 /* Regular or temp_fsid device mounting a subvol. */
619 return devt_fs_devices;
620 }
621 } else {
622 /* New device. */
623 if (fsid_fs_devices == NULL) {
624 return NULL;
625 } else {
626 /* sb::fsid is already used create a new temp_fsid. */
627 *same_fsid_diff_dev = true;
628 return NULL;
629 }
630 }
631
632 /* Not reached. */
633}
634
635/*
636 * This is only used on mount, and we are protected from competing things
637 * messing with our fs_devices by the uuid_mutex, thus we do not need the
638 * fs_devices->device_list_mutex here.
639 */
640static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641 struct btrfs_device *device, blk_mode_t flags,
642 void *holder)
643{
644 struct file *bdev_file;
645 struct btrfs_super_block *disk_super;
646 u64 devid;
647 int ret;
648
649 if (device->bdev)
650 return -EINVAL;
651 if (!device->name)
652 return -EINVAL;
653
654 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655 &bdev_file, &disk_super);
656 if (ret)
657 return ret;
658
659 devid = btrfs_stack_device_id(&disk_super->dev_item);
660 if (devid != device->devid)
661 goto error_free_page;
662
663 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664 goto error_free_page;
665
666 device->generation = btrfs_super_generation(disk_super);
667
668 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 if (btrfs_super_incompat_flags(disk_super) &
670 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671 pr_err(
672 "BTRFS: Invalid seeding and uuid-changed device detected\n");
673 goto error_free_page;
674 }
675
676 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677 fs_devices->seeding = true;
678 } else {
679 if (bdev_read_only(file_bdev(bdev_file)))
680 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681 else
682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 }
684
685 if (!bdev_nonrot(file_bdev(bdev_file)))
686 fs_devices->rotating = true;
687
688 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689 fs_devices->discardable = true;
690
691 device->bdev_file = bdev_file;
692 device->bdev = file_bdev(bdev_file);
693 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694
695 if (device->devt != device->bdev->bd_dev) {
696 btrfs_warn(NULL,
697 "device %s maj:min changed from %d:%d to %d:%d",
698 device->name->str, MAJOR(device->devt),
699 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
700 MINOR(device->bdev->bd_dev));
701
702 device->devt = device->bdev->bd_dev;
703 }
704
705 fs_devices->open_devices++;
706 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
707 device->devid != BTRFS_DEV_REPLACE_DEVID) {
708 fs_devices->rw_devices++;
709 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
710 }
711 btrfs_release_disk_super(disk_super);
712
713 return 0;
714
715error_free_page:
716 btrfs_release_disk_super(disk_super);
717 fput(bdev_file);
718
719 return -EINVAL;
720}
721
722u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
723{
724 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
725 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
726
727 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
728}
729
730/*
731 * Add new device to list of registered devices
732 *
733 * Returns:
734 * device pointer which was just added or updated when successful
735 * error pointer when failed
736 */
737static noinline struct btrfs_device *device_list_add(const char *path,
738 struct btrfs_super_block *disk_super,
739 bool *new_device_added)
740{
741 struct btrfs_device *device;
742 struct btrfs_fs_devices *fs_devices = NULL;
743 struct rcu_string *name;
744 u64 found_transid = btrfs_super_generation(disk_super);
745 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
746 dev_t path_devt;
747 int error;
748 bool same_fsid_diff_dev = false;
749 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
750 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
751
752 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
753 btrfs_err(NULL,
754"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
755 path);
756 return ERR_PTR(-EAGAIN);
757 }
758
759 error = lookup_bdev(path, &path_devt);
760 if (error) {
761 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
762 path, error);
763 return ERR_PTR(error);
764 }
765
766 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
767
768 if (!fs_devices) {
769 fs_devices = alloc_fs_devices(disk_super->fsid);
770 if (IS_ERR(fs_devices))
771 return ERR_CAST(fs_devices);
772
773 if (has_metadata_uuid)
774 memcpy(fs_devices->metadata_uuid,
775 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
776
777 if (same_fsid_diff_dev) {
778 generate_random_uuid(fs_devices->fsid);
779 fs_devices->temp_fsid = true;
780 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
781 path, MAJOR(path_devt), MINOR(path_devt),
782 fs_devices->fsid);
783 }
784
785 mutex_lock(&fs_devices->device_list_mutex);
786 list_add(&fs_devices->fs_list, &fs_uuids);
787
788 device = NULL;
789 } else {
790 struct btrfs_dev_lookup_args args = {
791 .devid = devid,
792 .uuid = disk_super->dev_item.uuid,
793 };
794
795 mutex_lock(&fs_devices->device_list_mutex);
796 device = btrfs_find_device(fs_devices, &args);
797
798 if (found_transid > fs_devices->latest_generation) {
799 memcpy(fs_devices->fsid, disk_super->fsid,
800 BTRFS_FSID_SIZE);
801 memcpy(fs_devices->metadata_uuid,
802 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
803 }
804 }
805
806 if (!device) {
807 unsigned int nofs_flag;
808
809 if (fs_devices->opened) {
810 btrfs_err(NULL,
811"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
812 path, MAJOR(path_devt), MINOR(path_devt),
813 fs_devices->fsid, current->comm,
814 task_pid_nr(current));
815 mutex_unlock(&fs_devices->device_list_mutex);
816 return ERR_PTR(-EBUSY);
817 }
818
819 nofs_flag = memalloc_nofs_save();
820 device = btrfs_alloc_device(NULL, &devid,
821 disk_super->dev_item.uuid, path);
822 memalloc_nofs_restore(nofs_flag);
823 if (IS_ERR(device)) {
824 mutex_unlock(&fs_devices->device_list_mutex);
825 /* we can safely leave the fs_devices entry around */
826 return device;
827 }
828
829 device->devt = path_devt;
830
831 list_add_rcu(&device->dev_list, &fs_devices->devices);
832 fs_devices->num_devices++;
833
834 device->fs_devices = fs_devices;
835 *new_device_added = true;
836
837 if (disk_super->label[0])
838 pr_info(
839"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
840 disk_super->label, devid, found_transid, path,
841 MAJOR(path_devt), MINOR(path_devt),
842 current->comm, task_pid_nr(current));
843 else
844 pr_info(
845"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
846 disk_super->fsid, devid, found_transid, path,
847 MAJOR(path_devt), MINOR(path_devt),
848 current->comm, task_pid_nr(current));
849
850 } else if (!device->name || strcmp(device->name->str, path)) {
851 /*
852 * When FS is already mounted.
853 * 1. If you are here and if the device->name is NULL that
854 * means this device was missing at time of FS mount.
855 * 2. If you are here and if the device->name is different
856 * from 'path' that means either
857 * a. The same device disappeared and reappeared with
858 * different name. or
859 * b. The missing-disk-which-was-replaced, has
860 * reappeared now.
861 *
862 * We must allow 1 and 2a above. But 2b would be a spurious
863 * and unintentional.
864 *
865 * Further in case of 1 and 2a above, the disk at 'path'
866 * would have missed some transaction when it was away and
867 * in case of 2a the stale bdev has to be updated as well.
868 * 2b must not be allowed at all time.
869 */
870
871 /*
872 * For now, we do allow update to btrfs_fs_device through the
873 * btrfs dev scan cli after FS has been mounted. We're still
874 * tracking a problem where systems fail mount by subvolume id
875 * when we reject replacement on a mounted FS.
876 */
877 if (!fs_devices->opened && found_transid < device->generation) {
878 /*
879 * That is if the FS is _not_ mounted and if you
880 * are here, that means there is more than one
881 * disk with same uuid and devid.We keep the one
882 * with larger generation number or the last-in if
883 * generation are equal.
884 */
885 mutex_unlock(&fs_devices->device_list_mutex);
886 btrfs_err(NULL,
887"device %s already registered with a higher generation, found %llu expect %llu",
888 path, found_transid, device->generation);
889 return ERR_PTR(-EEXIST);
890 }
891
892 /*
893 * We are going to replace the device path for a given devid,
894 * make sure it's the same device if the device is mounted
895 *
896 * NOTE: the device->fs_info may not be reliable here so pass
897 * in a NULL to message helpers instead. This avoids a possible
898 * use-after-free when the fs_info and fs_info->sb are already
899 * torn down.
900 */
901 if (device->bdev) {
902 if (device->devt != path_devt) {
903 mutex_unlock(&fs_devices->device_list_mutex);
904 btrfs_warn_in_rcu(NULL,
905 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
906 path, devid, found_transid,
907 current->comm,
908 task_pid_nr(current));
909 return ERR_PTR(-EEXIST);
910 }
911 btrfs_info_in_rcu(NULL,
912 "devid %llu device path %s changed to %s scanned by %s (%d)",
913 devid, btrfs_dev_name(device),
914 path, current->comm,
915 task_pid_nr(current));
916 }
917
918 name = rcu_string_strdup(path, GFP_NOFS);
919 if (!name) {
920 mutex_unlock(&fs_devices->device_list_mutex);
921 return ERR_PTR(-ENOMEM);
922 }
923 rcu_string_free(device->name);
924 rcu_assign_pointer(device->name, name);
925 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
926 fs_devices->missing_devices--;
927 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
928 }
929 device->devt = path_devt;
930 }
931
932 /*
933 * Unmount does not free the btrfs_device struct but would zero
934 * generation along with most of the other members. So just update
935 * it back. We need it to pick the disk with largest generation
936 * (as above).
937 */
938 if (!fs_devices->opened) {
939 device->generation = found_transid;
940 fs_devices->latest_generation = max_t(u64, found_transid,
941 fs_devices->latest_generation);
942 }
943
944 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
945
946 mutex_unlock(&fs_devices->device_list_mutex);
947 return device;
948}
949
950static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
951{
952 struct btrfs_fs_devices *fs_devices;
953 struct btrfs_device *device;
954 struct btrfs_device *orig_dev;
955 int ret = 0;
956
957 lockdep_assert_held(&uuid_mutex);
958
959 fs_devices = alloc_fs_devices(orig->fsid);
960 if (IS_ERR(fs_devices))
961 return fs_devices;
962
963 fs_devices->total_devices = orig->total_devices;
964
965 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
966 const char *dev_path = NULL;
967
968 /*
969 * This is ok to do without RCU read locked because we hold the
970 * uuid mutex so nothing we touch in here is going to disappear.
971 */
972 if (orig_dev->name)
973 dev_path = orig_dev->name->str;
974
975 device = btrfs_alloc_device(NULL, &orig_dev->devid,
976 orig_dev->uuid, dev_path);
977 if (IS_ERR(device)) {
978 ret = PTR_ERR(device);
979 goto error;
980 }
981
982 if (orig_dev->zone_info) {
983 struct btrfs_zoned_device_info *zone_info;
984
985 zone_info = btrfs_clone_dev_zone_info(orig_dev);
986 if (!zone_info) {
987 btrfs_free_device(device);
988 ret = -ENOMEM;
989 goto error;
990 }
991 device->zone_info = zone_info;
992 }
993
994 list_add(&device->dev_list, &fs_devices->devices);
995 device->fs_devices = fs_devices;
996 fs_devices->num_devices++;
997 }
998 return fs_devices;
999error:
1000 free_fs_devices(fs_devices);
1001 return ERR_PTR(ret);
1002}
1003
1004static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005 struct btrfs_device **latest_dev)
1006{
1007 struct btrfs_device *device, *next;
1008
1009 /* This is the initialized path, it is safe to release the devices. */
1010 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013 &device->dev_state) &&
1014 !test_bit(BTRFS_DEV_STATE_MISSING,
1015 &device->dev_state) &&
1016 (!*latest_dev ||
1017 device->generation > (*latest_dev)->generation)) {
1018 *latest_dev = device;
1019 }
1020 continue;
1021 }
1022
1023 /*
1024 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025 * in btrfs_init_dev_replace() so just continue.
1026 */
1027 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028 continue;
1029
1030 if (device->bdev_file) {
1031 fput(device->bdev_file);
1032 device->bdev = NULL;
1033 device->bdev_file = NULL;
1034 fs_devices->open_devices--;
1035 }
1036 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037 list_del_init(&device->dev_alloc_list);
1038 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039 fs_devices->rw_devices--;
1040 }
1041 list_del_init(&device->dev_list);
1042 fs_devices->num_devices--;
1043 btrfs_free_device(device);
1044 }
1045
1046}
1047
1048/*
1049 * After we have read the system tree and know devids belonging to this
1050 * filesystem, remove the device which does not belong there.
1051 */
1052void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053{
1054 struct btrfs_device *latest_dev = NULL;
1055 struct btrfs_fs_devices *seed_dev;
1056
1057 mutex_lock(&uuid_mutex);
1058 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1059
1060 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1062
1063 fs_devices->latest_dev = latest_dev;
1064
1065 mutex_unlock(&uuid_mutex);
1066}
1067
1068static void btrfs_close_bdev(struct btrfs_device *device)
1069{
1070 if (!device->bdev)
1071 return;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 sync_blockdev(device->bdev);
1075 invalidate_bdev(device->bdev);
1076 }
1077
1078 fput(device->bdev_file);
1079}
1080
1081static void btrfs_close_one_device(struct btrfs_device *device)
1082{
1083 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084
1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087 list_del_init(&device->dev_alloc_list);
1088 fs_devices->rw_devices--;
1089 }
1090
1091 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093
1094 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096 fs_devices->missing_devices--;
1097 }
1098
1099 btrfs_close_bdev(device);
1100 if (device->bdev) {
1101 fs_devices->open_devices--;
1102 device->bdev = NULL;
1103 }
1104 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105 btrfs_destroy_dev_zone_info(device);
1106
1107 device->fs_info = NULL;
1108 atomic_set(&device->dev_stats_ccnt, 0);
1109 extent_io_tree_release(&device->alloc_state);
1110
1111 /*
1112 * Reset the flush error record. We might have a transient flush error
1113 * in this mount, and if so we aborted the current transaction and set
1114 * the fs to an error state, guaranteeing no super blocks can be further
1115 * committed. However that error might be transient and if we unmount the
1116 * filesystem and mount it again, we should allow the mount to succeed
1117 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118 * filesystem again we still get flush errors, then we will again abort
1119 * any transaction and set the error state, guaranteeing no commits of
1120 * unsafe super blocks.
1121 */
1122 device->last_flush_error = 0;
1123
1124 /* Verify the device is back in a pristine state */
1125 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127 WARN_ON(!list_empty(&device->dev_alloc_list));
1128 WARN_ON(!list_empty(&device->post_commit_list));
1129}
1130
1131static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132{
1133 struct btrfs_device *device, *tmp;
1134
1135 lockdep_assert_held(&uuid_mutex);
1136
1137 if (--fs_devices->opened > 0)
1138 return;
1139
1140 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141 btrfs_close_one_device(device);
1142
1143 WARN_ON(fs_devices->open_devices);
1144 WARN_ON(fs_devices->rw_devices);
1145 fs_devices->opened = 0;
1146 fs_devices->seeding = false;
1147 fs_devices->fs_info = NULL;
1148}
1149
1150void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151{
1152 LIST_HEAD(list);
1153 struct btrfs_fs_devices *tmp;
1154
1155 mutex_lock(&uuid_mutex);
1156 close_fs_devices(fs_devices);
1157 if (!fs_devices->opened) {
1158 list_splice_init(&fs_devices->seed_list, &list);
1159
1160 /*
1161 * If the struct btrfs_fs_devices is not assembled with any
1162 * other device, it can be re-initialized during the next mount
1163 * without the needing device-scan step. Therefore, it can be
1164 * fully freed.
1165 */
1166 if (fs_devices->num_devices == 1) {
1167 list_del(&fs_devices->fs_list);
1168 free_fs_devices(fs_devices);
1169 }
1170 }
1171
1172
1173 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174 close_fs_devices(fs_devices);
1175 list_del(&fs_devices->seed_list);
1176 free_fs_devices(fs_devices);
1177 }
1178 mutex_unlock(&uuid_mutex);
1179}
1180
1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182 blk_mode_t flags, void *holder)
1183{
1184 struct btrfs_device *device;
1185 struct btrfs_device *latest_dev = NULL;
1186 struct btrfs_device *tmp_device;
1187 int ret = 0;
1188
1189 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190 dev_list) {
1191 int ret2;
1192
1193 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194 if (ret2 == 0 &&
1195 (!latest_dev || device->generation > latest_dev->generation)) {
1196 latest_dev = device;
1197 } else if (ret2 == -ENODATA) {
1198 fs_devices->num_devices--;
1199 list_del(&device->dev_list);
1200 btrfs_free_device(device);
1201 }
1202 if (ret == 0 && ret2 != 0)
1203 ret = ret2;
1204 }
1205
1206 if (fs_devices->open_devices == 0) {
1207 if (ret)
1208 return ret;
1209 return -EINVAL;
1210 }
1211
1212 fs_devices->opened = 1;
1213 fs_devices->latest_dev = latest_dev;
1214 fs_devices->total_rw_bytes = 0;
1215 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217
1218 return 0;
1219}
1220
1221static int devid_cmp(void *priv, const struct list_head *a,
1222 const struct list_head *b)
1223{
1224 const struct btrfs_device *dev1, *dev2;
1225
1226 dev1 = list_entry(a, struct btrfs_device, dev_list);
1227 dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229 if (dev1->devid < dev2->devid)
1230 return -1;
1231 else if (dev1->devid > dev2->devid)
1232 return 1;
1233 return 0;
1234}
1235
1236int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237 blk_mode_t flags, void *holder)
1238{
1239 int ret;
1240
1241 lockdep_assert_held(&uuid_mutex);
1242 /*
1243 * The device_list_mutex cannot be taken here in case opening the
1244 * underlying device takes further locks like open_mutex.
1245 *
1246 * We also don't need the lock here as this is called during mount and
1247 * exclusion is provided by uuid_mutex
1248 */
1249
1250 if (fs_devices->opened) {
1251 fs_devices->opened++;
1252 ret = 0;
1253 } else {
1254 list_sort(NULL, &fs_devices->devices, devid_cmp);
1255 ret = open_fs_devices(fs_devices, flags, holder);
1256 }
1257
1258 return ret;
1259}
1260
1261void btrfs_release_disk_super(struct btrfs_super_block *super)
1262{
1263 struct page *page = virt_to_page(super);
1264
1265 put_page(page);
1266}
1267
1268static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269 u64 bytenr, u64 bytenr_orig)
1270{
1271 struct btrfs_super_block *disk_super;
1272 struct page *page;
1273 void *p;
1274 pgoff_t index;
1275
1276 /* make sure our super fits in the device */
1277 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278 return ERR_PTR(-EINVAL);
1279
1280 /* make sure our super fits in the page */
1281 if (sizeof(*disk_super) > PAGE_SIZE)
1282 return ERR_PTR(-EINVAL);
1283
1284 /* make sure our super doesn't straddle pages on disk */
1285 index = bytenr >> PAGE_SHIFT;
1286 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287 return ERR_PTR(-EINVAL);
1288
1289 /* pull in the page with our super */
1290 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292 if (IS_ERR(page))
1293 return ERR_CAST(page);
1294
1295 p = page_address(page);
1296
1297 /* align our pointer to the offset of the super block */
1298 disk_super = p + offset_in_page(bytenr);
1299
1300 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302 btrfs_release_disk_super(p);
1303 return ERR_PTR(-EINVAL);
1304 }
1305
1306 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309 return disk_super;
1310}
1311
1312int btrfs_forget_devices(dev_t devt)
1313{
1314 int ret;
1315
1316 mutex_lock(&uuid_mutex);
1317 ret = btrfs_free_stale_devices(devt, NULL);
1318 mutex_unlock(&uuid_mutex);
1319
1320 return ret;
1321}
1322
1323static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324 const char *path, dev_t devt,
1325 bool mount_arg_dev)
1326{
1327 struct btrfs_fs_devices *fs_devices;
1328
1329 /*
1330 * Do not skip device registration for mounted devices with matching
1331 * maj:min but different paths. Booting without initrd relies on
1332 * /dev/root initially, later replaced with the actual root device.
1333 * A successful scan ensures grub2-probe selects the correct device.
1334 */
1335 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336 struct btrfs_device *device;
1337
1338 mutex_lock(&fs_devices->device_list_mutex);
1339
1340 if (!fs_devices->opened) {
1341 mutex_unlock(&fs_devices->device_list_mutex);
1342 continue;
1343 }
1344
1345 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346 if (device->bdev && (device->bdev->bd_dev == devt) &&
1347 strcmp(device->name->str, path) != 0) {
1348 mutex_unlock(&fs_devices->device_list_mutex);
1349
1350 /* Do not skip registration. */
1351 return false;
1352 }
1353 }
1354 mutex_unlock(&fs_devices->device_list_mutex);
1355 }
1356
1357 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359 return true;
1360
1361 return false;
1362}
1363
1364/*
1365 * Look for a btrfs signature on a device. This may be called out of the mount path
1366 * and we are not allowed to call set_blocksize during the scan. The superblock
1367 * is read via pagecache.
1368 *
1369 * With @mount_arg_dev it's a scan during mount time that will always register
1370 * the device or return an error. Multi-device and seeding devices are registered
1371 * in both cases.
1372 */
1373struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374 bool mount_arg_dev)
1375{
1376 struct btrfs_super_block *disk_super;
1377 bool new_device_added = false;
1378 struct btrfs_device *device = NULL;
1379 struct file *bdev_file;
1380 u64 bytenr, bytenr_orig;
1381 dev_t devt;
1382 int ret;
1383
1384 lockdep_assert_held(&uuid_mutex);
1385
1386 /*
1387 * we would like to check all the supers, but that would make
1388 * a btrfs mount succeed after a mkfs from a different FS.
1389 * So, we need to add a special mount option to scan for
1390 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391 */
1392
1393 /*
1394 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395 * device scan which may race with the user's mount or mkfs command,
1396 * resulting in failure.
1397 * Since the device scan is solely for reading purposes, there is no
1398 * need for an exclusive open. Additionally, the devices are read again
1399 * during the mount process. It is ok to get some inconsistent
1400 * values temporarily, as the device paths of the fsid are the only
1401 * required information for assembling the volume.
1402 */
1403 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404 if (IS_ERR(bdev_file))
1405 return ERR_CAST(bdev_file);
1406
1407 bytenr_orig = btrfs_sb_offset(0);
1408 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409 if (ret) {
1410 device = ERR_PTR(ret);
1411 goto error_bdev_put;
1412 }
1413
1414 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415 bytenr_orig);
1416 if (IS_ERR(disk_super)) {
1417 device = ERR_CAST(disk_super);
1418 goto error_bdev_put;
1419 }
1420
1421 devt = file_bdev(bdev_file)->bd_dev;
1422 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424 path, MAJOR(devt), MINOR(devt));
1425
1426 btrfs_free_stale_devices(devt, NULL);
1427
1428 device = NULL;
1429 goto free_disk_super;
1430 }
1431
1432 device = device_list_add(path, disk_super, &new_device_added);
1433 if (!IS_ERR(device) && new_device_added)
1434 btrfs_free_stale_devices(device->devt, device);
1435
1436free_disk_super:
1437 btrfs_release_disk_super(disk_super);
1438
1439error_bdev_put:
1440 fput(bdev_file);
1441
1442 return device;
1443}
1444
1445/*
1446 * Try to find a chunk that intersects [start, start + len] range and when one
1447 * such is found, record the end of it in *start
1448 */
1449static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450 u64 len)
1451{
1452 u64 physical_start, physical_end;
1453
1454 lockdep_assert_held(&device->fs_info->chunk_mutex);
1455
1456 if (find_first_extent_bit(&device->alloc_state, *start,
1457 &physical_start, &physical_end,
1458 CHUNK_ALLOCATED, NULL)) {
1459
1460 if (in_range(physical_start, *start, len) ||
1461 in_range(*start, physical_start,
1462 physical_end + 1 - physical_start)) {
1463 *start = physical_end + 1;
1464 return true;
1465 }
1466 }
1467 return false;
1468}
1469
1470static u64 dev_extent_search_start(struct btrfs_device *device)
1471{
1472 switch (device->fs_devices->chunk_alloc_policy) {
1473 case BTRFS_CHUNK_ALLOC_REGULAR:
1474 return BTRFS_DEVICE_RANGE_RESERVED;
1475 case BTRFS_CHUNK_ALLOC_ZONED:
1476 /*
1477 * We don't care about the starting region like regular
1478 * allocator, because we anyway use/reserve the first two zones
1479 * for superblock logging.
1480 */
1481 return 0;
1482 default:
1483 BUG();
1484 }
1485}
1486
1487static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488 u64 *hole_start, u64 *hole_size,
1489 u64 num_bytes)
1490{
1491 u64 zone_size = device->zone_info->zone_size;
1492 u64 pos;
1493 int ret;
1494 bool changed = false;
1495
1496 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497
1498 while (*hole_size > 0) {
1499 pos = btrfs_find_allocatable_zones(device, *hole_start,
1500 *hole_start + *hole_size,
1501 num_bytes);
1502 if (pos != *hole_start) {
1503 *hole_size = *hole_start + *hole_size - pos;
1504 *hole_start = pos;
1505 changed = true;
1506 if (*hole_size < num_bytes)
1507 break;
1508 }
1509
1510 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511
1512 /* Range is ensured to be empty */
1513 if (!ret)
1514 return changed;
1515
1516 /* Given hole range was invalid (outside of device) */
1517 if (ret == -ERANGE) {
1518 *hole_start += *hole_size;
1519 *hole_size = 0;
1520 return true;
1521 }
1522
1523 *hole_start += zone_size;
1524 *hole_size -= zone_size;
1525 changed = true;
1526 }
1527
1528 return changed;
1529}
1530
1531/*
1532 * Check if specified hole is suitable for allocation.
1533 *
1534 * @device: the device which we have the hole
1535 * @hole_start: starting position of the hole
1536 * @hole_size: the size of the hole
1537 * @num_bytes: the size of the free space that we need
1538 *
1539 * This function may modify @hole_start and @hole_size to reflect the suitable
1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541 */
1542static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543 u64 *hole_size, u64 num_bytes)
1544{
1545 bool changed = false;
1546 u64 hole_end = *hole_start + *hole_size;
1547
1548 for (;;) {
1549 /*
1550 * Check before we set max_hole_start, otherwise we could end up
1551 * sending back this offset anyway.
1552 */
1553 if (contains_pending_extent(device, hole_start, *hole_size)) {
1554 if (hole_end >= *hole_start)
1555 *hole_size = hole_end - *hole_start;
1556 else
1557 *hole_size = 0;
1558 changed = true;
1559 }
1560
1561 switch (device->fs_devices->chunk_alloc_policy) {
1562 case BTRFS_CHUNK_ALLOC_REGULAR:
1563 /* No extra check */
1564 break;
1565 case BTRFS_CHUNK_ALLOC_ZONED:
1566 if (dev_extent_hole_check_zoned(device, hole_start,
1567 hole_size, num_bytes)) {
1568 changed = true;
1569 /*
1570 * The changed hole can contain pending extent.
1571 * Loop again to check that.
1572 */
1573 continue;
1574 }
1575 break;
1576 default:
1577 BUG();
1578 }
1579
1580 break;
1581 }
1582
1583 return changed;
1584}
1585
1586/*
1587 * Find free space in the specified device.
1588 *
1589 * @device: the device which we search the free space in
1590 * @num_bytes: the size of the free space that we need
1591 * @search_start: the position from which to begin the search
1592 * @start: store the start of the free space.
1593 * @len: the size of the free space. that we find, or the size
1594 * of the max free space if we don't find suitable free space
1595 *
1596 * This does a pretty simple search, the expectation is that it is called very
1597 * infrequently and that a given device has a small number of extents.
1598 *
1599 * @start is used to store the start of the free space if we find. But if we
1600 * don't find suitable free space, it will be used to store the start position
1601 * of the max free space.
1602 *
1603 * @len is used to store the size of the free space that we find.
1604 * But if we don't find suitable free space, it is used to store the size of
1605 * the max free space.
1606 *
1607 * NOTE: This function will search *commit* root of device tree, and does extra
1608 * check to ensure dev extents are not double allocated.
1609 * This makes the function safe to allocate dev extents but may not report
1610 * correct usable device space, as device extent freed in current transaction
1611 * is not reported as available.
1612 */
1613static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614 u64 *start, u64 *len)
1615{
1616 struct btrfs_fs_info *fs_info = device->fs_info;
1617 struct btrfs_root *root = fs_info->dev_root;
1618 struct btrfs_key key;
1619 struct btrfs_dev_extent *dev_extent;
1620 struct btrfs_path *path;
1621 u64 search_start;
1622 u64 hole_size;
1623 u64 max_hole_start;
1624 u64 max_hole_size = 0;
1625 u64 extent_end;
1626 u64 search_end = device->total_bytes;
1627 int ret;
1628 int slot;
1629 struct extent_buffer *l;
1630
1631 search_start = dev_extent_search_start(device);
1632 max_hole_start = search_start;
1633
1634 WARN_ON(device->zone_info &&
1635 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636
1637 path = btrfs_alloc_path();
1638 if (!path) {
1639 ret = -ENOMEM;
1640 goto out;
1641 }
1642again:
1643 if (search_start >= search_end ||
1644 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645 ret = -ENOSPC;
1646 goto out;
1647 }
1648
1649 path->reada = READA_FORWARD;
1650 path->search_commit_root = 1;
1651 path->skip_locking = 1;
1652
1653 key.objectid = device->devid;
1654 key.offset = search_start;
1655 key.type = BTRFS_DEV_EXTENT_KEY;
1656
1657 ret = btrfs_search_backwards(root, &key, path);
1658 if (ret < 0)
1659 goto out;
1660
1661 while (search_start < search_end) {
1662 l = path->nodes[0];
1663 slot = path->slots[0];
1664 if (slot >= btrfs_header_nritems(l)) {
1665 ret = btrfs_next_leaf(root, path);
1666 if (ret == 0)
1667 continue;
1668 if (ret < 0)
1669 goto out;
1670
1671 break;
1672 }
1673 btrfs_item_key_to_cpu(l, &key, slot);
1674
1675 if (key.objectid < device->devid)
1676 goto next;
1677
1678 if (key.objectid > device->devid)
1679 break;
1680
1681 if (key.type != BTRFS_DEV_EXTENT_KEY)
1682 goto next;
1683
1684 if (key.offset > search_end)
1685 break;
1686
1687 if (key.offset > search_start) {
1688 hole_size = key.offset - search_start;
1689 dev_extent_hole_check(device, &search_start, &hole_size,
1690 num_bytes);
1691
1692 if (hole_size > max_hole_size) {
1693 max_hole_start = search_start;
1694 max_hole_size = hole_size;
1695 }
1696
1697 /*
1698 * If this free space is greater than which we need,
1699 * it must be the max free space that we have found
1700 * until now, so max_hole_start must point to the start
1701 * of this free space and the length of this free space
1702 * is stored in max_hole_size. Thus, we return
1703 * max_hole_start and max_hole_size and go back to the
1704 * caller.
1705 */
1706 if (hole_size >= num_bytes) {
1707 ret = 0;
1708 goto out;
1709 }
1710 }
1711
1712 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713 extent_end = key.offset + btrfs_dev_extent_length(l,
1714 dev_extent);
1715 if (extent_end > search_start)
1716 search_start = extent_end;
1717next:
1718 path->slots[0]++;
1719 cond_resched();
1720 }
1721
1722 /*
1723 * At this point, search_start should be the end of
1724 * allocated dev extents, and when shrinking the device,
1725 * search_end may be smaller than search_start.
1726 */
1727 if (search_end > search_start) {
1728 hole_size = search_end - search_start;
1729 if (dev_extent_hole_check(device, &search_start, &hole_size,
1730 num_bytes)) {
1731 btrfs_release_path(path);
1732 goto again;
1733 }
1734
1735 if (hole_size > max_hole_size) {
1736 max_hole_start = search_start;
1737 max_hole_size = hole_size;
1738 }
1739 }
1740
1741 /* See above. */
1742 if (max_hole_size < num_bytes)
1743 ret = -ENOSPC;
1744 else
1745 ret = 0;
1746
1747 ASSERT(max_hole_start + max_hole_size <= search_end);
1748out:
1749 btrfs_free_path(path);
1750 *start = max_hole_start;
1751 if (len)
1752 *len = max_hole_size;
1753 return ret;
1754}
1755
1756static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757 struct btrfs_device *device,
1758 u64 start, u64 *dev_extent_len)
1759{
1760 struct btrfs_fs_info *fs_info = device->fs_info;
1761 struct btrfs_root *root = fs_info->dev_root;
1762 int ret;
1763 struct btrfs_path *path;
1764 struct btrfs_key key;
1765 struct btrfs_key found_key;
1766 struct extent_buffer *leaf = NULL;
1767 struct btrfs_dev_extent *extent = NULL;
1768
1769 path = btrfs_alloc_path();
1770 if (!path)
1771 return -ENOMEM;
1772
1773 key.objectid = device->devid;
1774 key.offset = start;
1775 key.type = BTRFS_DEV_EXTENT_KEY;
1776again:
1777 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778 if (ret > 0) {
1779 ret = btrfs_previous_item(root, path, key.objectid,
1780 BTRFS_DEV_EXTENT_KEY);
1781 if (ret)
1782 goto out;
1783 leaf = path->nodes[0];
1784 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785 extent = btrfs_item_ptr(leaf, path->slots[0],
1786 struct btrfs_dev_extent);
1787 BUG_ON(found_key.offset > start || found_key.offset +
1788 btrfs_dev_extent_length(leaf, extent) < start);
1789 key = found_key;
1790 btrfs_release_path(path);
1791 goto again;
1792 } else if (ret == 0) {
1793 leaf = path->nodes[0];
1794 extent = btrfs_item_ptr(leaf, path->slots[0],
1795 struct btrfs_dev_extent);
1796 } else {
1797 goto out;
1798 }
1799
1800 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801
1802 ret = btrfs_del_item(trans, root, path);
1803 if (ret == 0)
1804 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805out:
1806 btrfs_free_path(path);
1807 return ret;
1808}
1809
1810static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811{
1812 struct rb_node *n;
1813 u64 ret = 0;
1814
1815 read_lock(&fs_info->mapping_tree_lock);
1816 n = rb_last(&fs_info->mapping_tree.rb_root);
1817 if (n) {
1818 struct btrfs_chunk_map *map;
1819
1820 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821 ret = map->start + map->chunk_len;
1822 }
1823 read_unlock(&fs_info->mapping_tree_lock);
1824
1825 return ret;
1826}
1827
1828static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829 u64 *devid_ret)
1830{
1831 int ret;
1832 struct btrfs_key key;
1833 struct btrfs_key found_key;
1834 struct btrfs_path *path;
1835
1836 path = btrfs_alloc_path();
1837 if (!path)
1838 return -ENOMEM;
1839
1840 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841 key.type = BTRFS_DEV_ITEM_KEY;
1842 key.offset = (u64)-1;
1843
1844 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845 if (ret < 0)
1846 goto error;
1847
1848 if (ret == 0) {
1849 /* Corruption */
1850 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851 ret = -EUCLEAN;
1852 goto error;
1853 }
1854
1855 ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 BTRFS_DEV_ITEMS_OBJECTID,
1857 BTRFS_DEV_ITEM_KEY);
1858 if (ret) {
1859 *devid_ret = 1;
1860 } else {
1861 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862 path->slots[0]);
1863 *devid_ret = found_key.offset + 1;
1864 }
1865 ret = 0;
1866error:
1867 btrfs_free_path(path);
1868 return ret;
1869}
1870
1871/*
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1874 */
1875static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 struct btrfs_device *device)
1877{
1878 int ret;
1879 struct btrfs_path *path;
1880 struct btrfs_dev_item *dev_item;
1881 struct extent_buffer *leaf;
1882 struct btrfs_key key;
1883 unsigned long ptr;
1884
1885 path = btrfs_alloc_path();
1886 if (!path)
1887 return -ENOMEM;
1888
1889 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 key.type = BTRFS_DEV_ITEM_KEY;
1891 key.offset = device->devid;
1892
1893 btrfs_reserve_chunk_metadata(trans, true);
1894 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895 &key, sizeof(*dev_item));
1896 btrfs_trans_release_chunk_metadata(trans);
1897 if (ret)
1898 goto out;
1899
1900 leaf = path->nodes[0];
1901 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902
1903 btrfs_set_device_id(leaf, dev_item, device->devid);
1904 btrfs_set_device_generation(leaf, dev_item, 0);
1905 btrfs_set_device_type(leaf, dev_item, device->type);
1906 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909 btrfs_set_device_total_bytes(leaf, dev_item,
1910 btrfs_device_get_disk_total_bytes(device));
1911 btrfs_set_device_bytes_used(leaf, dev_item,
1912 btrfs_device_get_bytes_used(device));
1913 btrfs_set_device_group(leaf, dev_item, 0);
1914 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916 btrfs_set_device_start_offset(leaf, dev_item, 0);
1917
1918 ptr = btrfs_device_uuid(dev_item);
1919 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920 ptr = btrfs_device_fsid(dev_item);
1921 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922 ptr, BTRFS_FSID_SIZE);
1923 btrfs_mark_buffer_dirty(trans, leaf);
1924
1925 ret = 0;
1926out:
1927 btrfs_free_path(path);
1928 return ret;
1929}
1930
1931/*
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1934 *
1935 * We don't care about errors here, this is just to be kind to userspace.
1936 */
1937static void update_dev_time(const char *device_path)
1938{
1939 struct path path;
1940 int ret;
1941
1942 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943 if (ret)
1944 return;
1945
1946 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947 path_put(&path);
1948}
1949
1950static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951 struct btrfs_device *device)
1952{
1953 struct btrfs_root *root = device->fs_info->chunk_root;
1954 int ret;
1955 struct btrfs_path *path;
1956 struct btrfs_key key;
1957
1958 path = btrfs_alloc_path();
1959 if (!path)
1960 return -ENOMEM;
1961
1962 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963 key.type = BTRFS_DEV_ITEM_KEY;
1964 key.offset = device->devid;
1965
1966 btrfs_reserve_chunk_metadata(trans, false);
1967 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968 btrfs_trans_release_chunk_metadata(trans);
1969 if (ret) {
1970 if (ret > 0)
1971 ret = -ENOENT;
1972 goto out;
1973 }
1974
1975 ret = btrfs_del_item(trans, root, path);
1976out:
1977 btrfs_free_path(path);
1978 return ret;
1979}
1980
1981/*
1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983 * filesystem. It's up to the caller to adjust that number regarding eg. device
1984 * replace.
1985 */
1986static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987 u64 num_devices)
1988{
1989 u64 all_avail;
1990 unsigned seq;
1991 int i;
1992
1993 do {
1994 seq = read_seqbegin(&fs_info->profiles_lock);
1995
1996 all_avail = fs_info->avail_data_alloc_bits |
1997 fs_info->avail_system_alloc_bits |
1998 fs_info->avail_metadata_alloc_bits;
1999 } while (read_seqretry(&fs_info->profiles_lock, seq));
2000
2001 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003 continue;
2004
2005 if (num_devices < btrfs_raid_array[i].devs_min)
2006 return btrfs_raid_array[i].mindev_error;
2007 }
2008
2009 return 0;
2010}
2011
2012static struct btrfs_device * btrfs_find_next_active_device(
2013 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014{
2015 struct btrfs_device *next_device;
2016
2017 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018 if (next_device != device &&
2019 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020 && next_device->bdev)
2021 return next_device;
2022 }
2023
2024 return NULL;
2025}
2026
2027/*
2028 * Helper function to check if the given device is part of s_bdev / latest_dev
2029 * and replace it with the provided or the next active device, in the context
2030 * where this function called, there should be always be another device (or
2031 * this_dev) which is active.
2032 */
2033void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034 struct btrfs_device *next_device)
2035{
2036 struct btrfs_fs_info *fs_info = device->fs_info;
2037
2038 if (!next_device)
2039 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040 device);
2041 ASSERT(next_device);
2042
2043 if (fs_info->sb->s_bdev &&
2044 (fs_info->sb->s_bdev == device->bdev))
2045 fs_info->sb->s_bdev = next_device->bdev;
2046
2047 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048 fs_info->fs_devices->latest_dev = next_device;
2049}
2050
2051/*
2052 * Return btrfs_fs_devices::num_devices excluding the device that's being
2053 * currently replaced.
2054 */
2055static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056{
2057 u64 num_devices = fs_info->fs_devices->num_devices;
2058
2059 down_read(&fs_info->dev_replace.rwsem);
2060 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061 ASSERT(num_devices > 1);
2062 num_devices--;
2063 }
2064 up_read(&fs_info->dev_replace.rwsem);
2065
2066 return num_devices;
2067}
2068
2069static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070 struct block_device *bdev, int copy_num)
2071{
2072 struct btrfs_super_block *disk_super;
2073 const size_t len = sizeof(disk_super->magic);
2074 const u64 bytenr = btrfs_sb_offset(copy_num);
2075 int ret;
2076
2077 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078 if (IS_ERR(disk_super))
2079 return;
2080
2081 memset(&disk_super->magic, 0, len);
2082 folio_mark_dirty(virt_to_folio(disk_super));
2083 btrfs_release_disk_super(disk_super);
2084
2085 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086 if (ret)
2087 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088 copy_num, ret);
2089}
2090
2091void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2092{
2093 int copy_num;
2094 struct block_device *bdev = device->bdev;
2095
2096 if (!bdev)
2097 return;
2098
2099 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100 if (bdev_is_zoned(bdev))
2101 btrfs_reset_sb_log_zones(bdev, copy_num);
2102 else
2103 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104 }
2105
2106 /* Notify udev that device has changed */
2107 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109 /* Update ctime/mtime for device path for libblkid */
2110 update_dev_time(device->name->str);
2111}
2112
2113int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114 struct btrfs_dev_lookup_args *args,
2115 struct file **bdev_file)
2116{
2117 struct btrfs_trans_handle *trans;
2118 struct btrfs_device *device;
2119 struct btrfs_fs_devices *cur_devices;
2120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121 u64 num_devices;
2122 int ret = 0;
2123
2124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126 return -EINVAL;
2127 }
2128
2129 /*
2130 * The device list in fs_devices is accessed without locks (neither
2131 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132 * filesystem and another device rm cannot run.
2133 */
2134 num_devices = btrfs_num_devices(fs_info);
2135
2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137 if (ret)
2138 return ret;
2139
2140 device = btrfs_find_device(fs_info->fs_devices, args);
2141 if (!device) {
2142 if (args->missing)
2143 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 else
2145 ret = -ENOENT;
2146 return ret;
2147 }
2148
2149 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150 btrfs_warn_in_rcu(fs_info,
2151 "cannot remove device %s (devid %llu) due to active swapfile",
2152 btrfs_dev_name(device), device->devid);
2153 return -ETXTBSY;
2154 }
2155
2156 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157 return BTRFS_ERROR_DEV_TGT_REPLACE;
2158
2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160 fs_info->fs_devices->rw_devices == 1)
2161 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162
2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164 mutex_lock(&fs_info->chunk_mutex);
2165 list_del_init(&device->dev_alloc_list);
2166 device->fs_devices->rw_devices--;
2167 mutex_unlock(&fs_info->chunk_mutex);
2168 }
2169
2170 ret = btrfs_shrink_device(device, 0);
2171 if (ret)
2172 goto error_undo;
2173
2174 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175 if (IS_ERR(trans)) {
2176 ret = PTR_ERR(trans);
2177 goto error_undo;
2178 }
2179
2180 ret = btrfs_rm_dev_item(trans, device);
2181 if (ret) {
2182 /* Any error in dev item removal is critical */
2183 btrfs_crit(fs_info,
2184 "failed to remove device item for devid %llu: %d",
2185 device->devid, ret);
2186 btrfs_abort_transaction(trans, ret);
2187 btrfs_end_transaction(trans);
2188 return ret;
2189 }
2190
2191 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192 btrfs_scrub_cancel_dev(device);
2193
2194 /*
2195 * the device list mutex makes sure that we don't change
2196 * the device list while someone else is writing out all
2197 * the device supers. Whoever is writing all supers, should
2198 * lock the device list mutex before getting the number of
2199 * devices in the super block (super_copy). Conversely,
2200 * whoever updates the number of devices in the super block
2201 * (super_copy) should hold the device list mutex.
2202 */
2203
2204 /*
2205 * In normal cases the cur_devices == fs_devices. But in case
2206 * of deleting a seed device, the cur_devices should point to
2207 * its own fs_devices listed under the fs_devices->seed_list.
2208 */
2209 cur_devices = device->fs_devices;
2210 mutex_lock(&fs_devices->device_list_mutex);
2211 list_del_rcu(&device->dev_list);
2212
2213 cur_devices->num_devices--;
2214 cur_devices->total_devices--;
2215 /* Update total_devices of the parent fs_devices if it's seed */
2216 if (cur_devices != fs_devices)
2217 fs_devices->total_devices--;
2218
2219 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220 cur_devices->missing_devices--;
2221
2222 btrfs_assign_next_active_device(device, NULL);
2223
2224 if (device->bdev_file) {
2225 cur_devices->open_devices--;
2226 /* remove sysfs entry */
2227 btrfs_sysfs_remove_device(device);
2228 }
2229
2230 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232 mutex_unlock(&fs_devices->device_list_mutex);
2233
2234 /*
2235 * At this point, the device is zero sized and detached from the
2236 * devices list. All that's left is to zero out the old supers and
2237 * free the device.
2238 *
2239 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240 * write lock, and fput() on the block device will pull in the
2241 * ->open_mutex on the block device and it's dependencies. Instead
2242 * just flush the device and let the caller do the final bdev_release.
2243 */
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 btrfs_scratch_superblocks(fs_info, device);
2246 if (device->bdev) {
2247 sync_blockdev(device->bdev);
2248 invalidate_bdev(device->bdev);
2249 }
2250 }
2251
2252 *bdev_file = device->bdev_file;
2253 synchronize_rcu();
2254 btrfs_free_device(device);
2255
2256 /*
2257 * This can happen if cur_devices is the private seed devices list. We
2258 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259 * to be held, but in fact we don't need that for the private
2260 * seed_devices, we can simply decrement cur_devices->opened and then
2261 * remove it from our list and free the fs_devices.
2262 */
2263 if (cur_devices->num_devices == 0) {
2264 list_del_init(&cur_devices->seed_list);
2265 ASSERT(cur_devices->opened == 1);
2266 cur_devices->opened--;
2267 free_fs_devices(cur_devices);
2268 }
2269
2270 ret = btrfs_commit_transaction(trans);
2271
2272 return ret;
2273
2274error_undo:
2275 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276 mutex_lock(&fs_info->chunk_mutex);
2277 list_add(&device->dev_alloc_list,
2278 &fs_devices->alloc_list);
2279 device->fs_devices->rw_devices++;
2280 mutex_unlock(&fs_info->chunk_mutex);
2281 }
2282 return ret;
2283}
2284
2285void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286{
2287 struct btrfs_fs_devices *fs_devices;
2288
2289 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290
2291 /*
2292 * in case of fs with no seed, srcdev->fs_devices will point
2293 * to fs_devices of fs_info. However when the dev being replaced is
2294 * a seed dev it will point to the seed's local fs_devices. In short
2295 * srcdev will have its correct fs_devices in both the cases.
2296 */
2297 fs_devices = srcdev->fs_devices;
2298
2299 list_del_rcu(&srcdev->dev_list);
2300 list_del(&srcdev->dev_alloc_list);
2301 fs_devices->num_devices--;
2302 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303 fs_devices->missing_devices--;
2304
2305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306 fs_devices->rw_devices--;
2307
2308 if (srcdev->bdev)
2309 fs_devices->open_devices--;
2310}
2311
2312void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313{
2314 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315
2316 mutex_lock(&uuid_mutex);
2317
2318 btrfs_close_bdev(srcdev);
2319 synchronize_rcu();
2320 btrfs_free_device(srcdev);
2321
2322 /* if this is no devs we rather delete the fs_devices */
2323 if (!fs_devices->num_devices) {
2324 /*
2325 * On a mounted FS, num_devices can't be zero unless it's a
2326 * seed. In case of a seed device being replaced, the replace
2327 * target added to the sprout FS, so there will be no more
2328 * device left under the seed FS.
2329 */
2330 ASSERT(fs_devices->seeding);
2331
2332 list_del_init(&fs_devices->seed_list);
2333 close_fs_devices(fs_devices);
2334 free_fs_devices(fs_devices);
2335 }
2336 mutex_unlock(&uuid_mutex);
2337}
2338
2339void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340{
2341 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342
2343 mutex_lock(&fs_devices->device_list_mutex);
2344
2345 btrfs_sysfs_remove_device(tgtdev);
2346
2347 if (tgtdev->bdev)
2348 fs_devices->open_devices--;
2349
2350 fs_devices->num_devices--;
2351
2352 btrfs_assign_next_active_device(tgtdev, NULL);
2353
2354 list_del_rcu(&tgtdev->dev_list);
2355
2356 mutex_unlock(&fs_devices->device_list_mutex);
2357
2358 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2359
2360 btrfs_close_bdev(tgtdev);
2361 synchronize_rcu();
2362 btrfs_free_device(tgtdev);
2363}
2364
2365/*
2366 * Populate args from device at path.
2367 *
2368 * @fs_info: the filesystem
2369 * @args: the args to populate
2370 * @path: the path to the device
2371 *
2372 * This will read the super block of the device at @path and populate @args with
2373 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2374 * lookup a device to operate on, but need to do it before we take any locks.
2375 * This properly handles the special case of "missing" that a user may pass in,
2376 * and does some basic sanity checks. The caller must make sure that @path is
2377 * properly NUL terminated before calling in, and must call
2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379 * uuid buffers.
2380 *
2381 * Return: 0 for success, -errno for failure
2382 */
2383int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384 struct btrfs_dev_lookup_args *args,
2385 const char *path)
2386{
2387 struct btrfs_super_block *disk_super;
2388 struct file *bdev_file;
2389 int ret;
2390
2391 if (!path || !path[0])
2392 return -EINVAL;
2393 if (!strcmp(path, "missing")) {
2394 args->missing = true;
2395 return 0;
2396 }
2397
2398 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400 if (!args->uuid || !args->fsid) {
2401 btrfs_put_dev_args_from_path(args);
2402 return -ENOMEM;
2403 }
2404
2405 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406 &bdev_file, &disk_super);
2407 if (ret) {
2408 btrfs_put_dev_args_from_path(args);
2409 return ret;
2410 }
2411
2412 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416 else
2417 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418 btrfs_release_disk_super(disk_super);
2419 fput(bdev_file);
2420 return 0;
2421}
2422
2423/*
2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426 * that don't need to be freed.
2427 */
2428void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429{
2430 kfree(args->uuid);
2431 kfree(args->fsid);
2432 args->uuid = NULL;
2433 args->fsid = NULL;
2434}
2435
2436struct btrfs_device *btrfs_find_device_by_devspec(
2437 struct btrfs_fs_info *fs_info, u64 devid,
2438 const char *device_path)
2439{
2440 BTRFS_DEV_LOOKUP_ARGS(args);
2441 struct btrfs_device *device;
2442 int ret;
2443
2444 if (devid) {
2445 args.devid = devid;
2446 device = btrfs_find_device(fs_info->fs_devices, &args);
2447 if (!device)
2448 return ERR_PTR(-ENOENT);
2449 return device;
2450 }
2451
2452 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453 if (ret)
2454 return ERR_PTR(ret);
2455 device = btrfs_find_device(fs_info->fs_devices, &args);
2456 btrfs_put_dev_args_from_path(&args);
2457 if (!device)
2458 return ERR_PTR(-ENOENT);
2459 return device;
2460}
2461
2462static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463{
2464 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465 struct btrfs_fs_devices *old_devices;
2466 struct btrfs_fs_devices *seed_devices;
2467
2468 lockdep_assert_held(&uuid_mutex);
2469 if (!fs_devices->seeding)
2470 return ERR_PTR(-EINVAL);
2471
2472 /*
2473 * Private copy of the seed devices, anchored at
2474 * fs_info->fs_devices->seed_list
2475 */
2476 seed_devices = alloc_fs_devices(NULL);
2477 if (IS_ERR(seed_devices))
2478 return seed_devices;
2479
2480 /*
2481 * It's necessary to retain a copy of the original seed fs_devices in
2482 * fs_uuids so that filesystems which have been seeded can successfully
2483 * reference the seed device from open_seed_devices. This also supports
2484 * multiple fs seed.
2485 */
2486 old_devices = clone_fs_devices(fs_devices);
2487 if (IS_ERR(old_devices)) {
2488 kfree(seed_devices);
2489 return old_devices;
2490 }
2491
2492 list_add(&old_devices->fs_list, &fs_uuids);
2493
2494 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495 seed_devices->opened = 1;
2496 INIT_LIST_HEAD(&seed_devices->devices);
2497 INIT_LIST_HEAD(&seed_devices->alloc_list);
2498 mutex_init(&seed_devices->device_list_mutex);
2499
2500 return seed_devices;
2501}
2502
2503/*
2504 * Splice seed devices into the sprout fs_devices.
2505 * Generate a new fsid for the sprouted read-write filesystem.
2506 */
2507static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508 struct btrfs_fs_devices *seed_devices)
2509{
2510 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511 struct btrfs_super_block *disk_super = fs_info->super_copy;
2512 struct btrfs_device *device;
2513 u64 super_flags;
2514
2515 /*
2516 * We are updating the fsid, the thread leading to device_list_add()
2517 * could race, so uuid_mutex is needed.
2518 */
2519 lockdep_assert_held(&uuid_mutex);
2520
2521 /*
2522 * The threads listed below may traverse dev_list but can do that without
2523 * device_list_mutex:
2524 * - All device ops and balance - as we are in btrfs_exclop_start.
2525 * - Various dev_list readers - are using RCU.
2526 * - btrfs_ioctl_fitrim() - is using RCU.
2527 *
2528 * For-read threads as below are using device_list_mutex:
2529 * - Readonly scrub btrfs_scrub_dev()
2530 * - Readonly scrub btrfs_scrub_progress()
2531 * - btrfs_get_dev_stats()
2532 */
2533 lockdep_assert_held(&fs_devices->device_list_mutex);
2534
2535 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536 synchronize_rcu);
2537 list_for_each_entry(device, &seed_devices->devices, dev_list)
2538 device->fs_devices = seed_devices;
2539
2540 fs_devices->seeding = false;
2541 fs_devices->num_devices = 0;
2542 fs_devices->open_devices = 0;
2543 fs_devices->missing_devices = 0;
2544 fs_devices->rotating = false;
2545 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546
2547 generate_random_uuid(fs_devices->fsid);
2548 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550
2551 super_flags = btrfs_super_flags(disk_super) &
2552 ~BTRFS_SUPER_FLAG_SEEDING;
2553 btrfs_set_super_flags(disk_super, super_flags);
2554}
2555
2556/*
2557 * Store the expected generation for seed devices in device items.
2558 */
2559static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560{
2561 BTRFS_DEV_LOOKUP_ARGS(args);
2562 struct btrfs_fs_info *fs_info = trans->fs_info;
2563 struct btrfs_root *root = fs_info->chunk_root;
2564 struct btrfs_path *path;
2565 struct extent_buffer *leaf;
2566 struct btrfs_dev_item *dev_item;
2567 struct btrfs_device *device;
2568 struct btrfs_key key;
2569 u8 fs_uuid[BTRFS_FSID_SIZE];
2570 u8 dev_uuid[BTRFS_UUID_SIZE];
2571 int ret;
2572
2573 path = btrfs_alloc_path();
2574 if (!path)
2575 return -ENOMEM;
2576
2577 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578 key.offset = 0;
2579 key.type = BTRFS_DEV_ITEM_KEY;
2580
2581 while (1) {
2582 btrfs_reserve_chunk_metadata(trans, false);
2583 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584 btrfs_trans_release_chunk_metadata(trans);
2585 if (ret < 0)
2586 goto error;
2587
2588 leaf = path->nodes[0];
2589next_slot:
2590 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591 ret = btrfs_next_leaf(root, path);
2592 if (ret > 0)
2593 break;
2594 if (ret < 0)
2595 goto error;
2596 leaf = path->nodes[0];
2597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598 btrfs_release_path(path);
2599 continue;
2600 }
2601
2602 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604 key.type != BTRFS_DEV_ITEM_KEY)
2605 break;
2606
2607 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608 struct btrfs_dev_item);
2609 args.devid = btrfs_device_id(leaf, dev_item);
2610 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611 BTRFS_UUID_SIZE);
2612 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613 BTRFS_FSID_SIZE);
2614 args.uuid = dev_uuid;
2615 args.fsid = fs_uuid;
2616 device = btrfs_find_device(fs_info->fs_devices, &args);
2617 BUG_ON(!device); /* Logic error */
2618
2619 if (device->fs_devices->seeding) {
2620 btrfs_set_device_generation(leaf, dev_item,
2621 device->generation);
2622 btrfs_mark_buffer_dirty(trans, leaf);
2623 }
2624
2625 path->slots[0]++;
2626 goto next_slot;
2627 }
2628 ret = 0;
2629error:
2630 btrfs_free_path(path);
2631 return ret;
2632}
2633
2634int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635{
2636 struct btrfs_root *root = fs_info->dev_root;
2637 struct btrfs_trans_handle *trans;
2638 struct btrfs_device *device;
2639 struct file *bdev_file;
2640 struct super_block *sb = fs_info->sb;
2641 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642 struct btrfs_fs_devices *seed_devices = NULL;
2643 u64 orig_super_total_bytes;
2644 u64 orig_super_num_devices;
2645 int ret = 0;
2646 bool seeding_dev = false;
2647 bool locked = false;
2648
2649 if (sb_rdonly(sb) && !fs_devices->seeding)
2650 return -EROFS;
2651
2652 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653 fs_info->bdev_holder, NULL);
2654 if (IS_ERR(bdev_file))
2655 return PTR_ERR(bdev_file);
2656
2657 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658 ret = -EINVAL;
2659 goto error;
2660 }
2661
2662 if (fs_devices->seeding) {
2663 seeding_dev = true;
2664 down_write(&sb->s_umount);
2665 mutex_lock(&uuid_mutex);
2666 locked = true;
2667 }
2668
2669 sync_blockdev(file_bdev(bdev_file));
2670
2671 rcu_read_lock();
2672 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673 if (device->bdev == file_bdev(bdev_file)) {
2674 ret = -EEXIST;
2675 rcu_read_unlock();
2676 goto error;
2677 }
2678 }
2679 rcu_read_unlock();
2680
2681 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682 if (IS_ERR(device)) {
2683 /* we can safely leave the fs_devices entry around */
2684 ret = PTR_ERR(device);
2685 goto error;
2686 }
2687
2688 device->fs_info = fs_info;
2689 device->bdev_file = bdev_file;
2690 device->bdev = file_bdev(bdev_file);
2691 ret = lookup_bdev(device_path, &device->devt);
2692 if (ret)
2693 goto error_free_device;
2694
2695 ret = btrfs_get_dev_zone_info(device, false);
2696 if (ret)
2697 goto error_free_device;
2698
2699 trans = btrfs_start_transaction(root, 0);
2700 if (IS_ERR(trans)) {
2701 ret = PTR_ERR(trans);
2702 goto error_free_zone;
2703 }
2704
2705 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706 device->generation = trans->transid;
2707 device->io_width = fs_info->sectorsize;
2708 device->io_align = fs_info->sectorsize;
2709 device->sector_size = fs_info->sectorsize;
2710 device->total_bytes =
2711 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712 device->disk_total_bytes = device->total_bytes;
2713 device->commit_total_bytes = device->total_bytes;
2714 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716 device->dev_stats_valid = 1;
2717 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718
2719 if (seeding_dev) {
2720 btrfs_clear_sb_rdonly(sb);
2721
2722 /* GFP_KERNEL allocation must not be under device_list_mutex */
2723 seed_devices = btrfs_init_sprout(fs_info);
2724 if (IS_ERR(seed_devices)) {
2725 ret = PTR_ERR(seed_devices);
2726 btrfs_abort_transaction(trans, ret);
2727 goto error_trans;
2728 }
2729 }
2730
2731 mutex_lock(&fs_devices->device_list_mutex);
2732 if (seeding_dev) {
2733 btrfs_setup_sprout(fs_info, seed_devices);
2734 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735 device);
2736 }
2737
2738 device->fs_devices = fs_devices;
2739
2740 mutex_lock(&fs_info->chunk_mutex);
2741 list_add_rcu(&device->dev_list, &fs_devices->devices);
2742 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743 fs_devices->num_devices++;
2744 fs_devices->open_devices++;
2745 fs_devices->rw_devices++;
2746 fs_devices->total_devices++;
2747 fs_devices->total_rw_bytes += device->total_bytes;
2748
2749 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750
2751 if (!bdev_nonrot(device->bdev))
2752 fs_devices->rotating = true;
2753
2754 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755 btrfs_set_super_total_bytes(fs_info->super_copy,
2756 round_down(orig_super_total_bytes + device->total_bytes,
2757 fs_info->sectorsize));
2758
2759 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760 btrfs_set_super_num_devices(fs_info->super_copy,
2761 orig_super_num_devices + 1);
2762
2763 /*
2764 * we've got more storage, clear any full flags on the space
2765 * infos
2766 */
2767 btrfs_clear_space_info_full(fs_info);
2768
2769 mutex_unlock(&fs_info->chunk_mutex);
2770
2771 /* Add sysfs device entry */
2772 btrfs_sysfs_add_device(device);
2773
2774 mutex_unlock(&fs_devices->device_list_mutex);
2775
2776 if (seeding_dev) {
2777 mutex_lock(&fs_info->chunk_mutex);
2778 ret = init_first_rw_device(trans);
2779 mutex_unlock(&fs_info->chunk_mutex);
2780 if (ret) {
2781 btrfs_abort_transaction(trans, ret);
2782 goto error_sysfs;
2783 }
2784 }
2785
2786 ret = btrfs_add_dev_item(trans, device);
2787 if (ret) {
2788 btrfs_abort_transaction(trans, ret);
2789 goto error_sysfs;
2790 }
2791
2792 if (seeding_dev) {
2793 ret = btrfs_finish_sprout(trans);
2794 if (ret) {
2795 btrfs_abort_transaction(trans, ret);
2796 goto error_sysfs;
2797 }
2798
2799 /*
2800 * fs_devices now represents the newly sprouted filesystem and
2801 * its fsid has been changed by btrfs_sprout_splice().
2802 */
2803 btrfs_sysfs_update_sprout_fsid(fs_devices);
2804 }
2805
2806 ret = btrfs_commit_transaction(trans);
2807
2808 if (seeding_dev) {
2809 mutex_unlock(&uuid_mutex);
2810 up_write(&sb->s_umount);
2811 locked = false;
2812
2813 if (ret) /* transaction commit */
2814 return ret;
2815
2816 ret = btrfs_relocate_sys_chunks(fs_info);
2817 if (ret < 0)
2818 btrfs_handle_fs_error(fs_info, ret,
2819 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820 trans = btrfs_attach_transaction(root);
2821 if (IS_ERR(trans)) {
2822 if (PTR_ERR(trans) == -ENOENT)
2823 return 0;
2824 ret = PTR_ERR(trans);
2825 trans = NULL;
2826 goto error_sysfs;
2827 }
2828 ret = btrfs_commit_transaction(trans);
2829 }
2830
2831 /*
2832 * Now that we have written a new super block to this device, check all
2833 * other fs_devices list if device_path alienates any other scanned
2834 * device.
2835 * We can ignore the return value as it typically returns -EINVAL and
2836 * only succeeds if the device was an alien.
2837 */
2838 btrfs_forget_devices(device->devt);
2839
2840 /* Update ctime/mtime for blkid or udev */
2841 update_dev_time(device_path);
2842
2843 return ret;
2844
2845error_sysfs:
2846 btrfs_sysfs_remove_device(device);
2847 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848 mutex_lock(&fs_info->chunk_mutex);
2849 list_del_rcu(&device->dev_list);
2850 list_del(&device->dev_alloc_list);
2851 fs_info->fs_devices->num_devices--;
2852 fs_info->fs_devices->open_devices--;
2853 fs_info->fs_devices->rw_devices--;
2854 fs_info->fs_devices->total_devices--;
2855 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857 btrfs_set_super_total_bytes(fs_info->super_copy,
2858 orig_super_total_bytes);
2859 btrfs_set_super_num_devices(fs_info->super_copy,
2860 orig_super_num_devices);
2861 mutex_unlock(&fs_info->chunk_mutex);
2862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863error_trans:
2864 if (seeding_dev)
2865 btrfs_set_sb_rdonly(sb);
2866 if (trans)
2867 btrfs_end_transaction(trans);
2868error_free_zone:
2869 btrfs_destroy_dev_zone_info(device);
2870error_free_device:
2871 btrfs_free_device(device);
2872error:
2873 fput(bdev_file);
2874 if (locked) {
2875 mutex_unlock(&uuid_mutex);
2876 up_write(&sb->s_umount);
2877 }
2878 return ret;
2879}
2880
2881static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882 struct btrfs_device *device)
2883{
2884 int ret;
2885 struct btrfs_path *path;
2886 struct btrfs_root *root = device->fs_info->chunk_root;
2887 struct btrfs_dev_item *dev_item;
2888 struct extent_buffer *leaf;
2889 struct btrfs_key key;
2890
2891 path = btrfs_alloc_path();
2892 if (!path)
2893 return -ENOMEM;
2894
2895 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896 key.type = BTRFS_DEV_ITEM_KEY;
2897 key.offset = device->devid;
2898
2899 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900 if (ret < 0)
2901 goto out;
2902
2903 if (ret > 0) {
2904 ret = -ENOENT;
2905 goto out;
2906 }
2907
2908 leaf = path->nodes[0];
2909 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910
2911 btrfs_set_device_id(leaf, dev_item, device->devid);
2912 btrfs_set_device_type(leaf, dev_item, device->type);
2913 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916 btrfs_set_device_total_bytes(leaf, dev_item,
2917 btrfs_device_get_disk_total_bytes(device));
2918 btrfs_set_device_bytes_used(leaf, dev_item,
2919 btrfs_device_get_bytes_used(device));
2920 btrfs_mark_buffer_dirty(trans, leaf);
2921
2922out:
2923 btrfs_free_path(path);
2924 return ret;
2925}
2926
2927int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928 struct btrfs_device *device, u64 new_size)
2929{
2930 struct btrfs_fs_info *fs_info = device->fs_info;
2931 struct btrfs_super_block *super_copy = fs_info->super_copy;
2932 u64 old_total;
2933 u64 diff;
2934 int ret;
2935
2936 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937 return -EACCES;
2938
2939 new_size = round_down(new_size, fs_info->sectorsize);
2940
2941 mutex_lock(&fs_info->chunk_mutex);
2942 old_total = btrfs_super_total_bytes(super_copy);
2943 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944
2945 if (new_size <= device->total_bytes ||
2946 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947 mutex_unlock(&fs_info->chunk_mutex);
2948 return -EINVAL;
2949 }
2950
2951 btrfs_set_super_total_bytes(super_copy,
2952 round_down(old_total + diff, fs_info->sectorsize));
2953 device->fs_devices->total_rw_bytes += diff;
2954 atomic64_add(diff, &fs_info->free_chunk_space);
2955
2956 btrfs_device_set_total_bytes(device, new_size);
2957 btrfs_device_set_disk_total_bytes(device, new_size);
2958 btrfs_clear_space_info_full(device->fs_info);
2959 if (list_empty(&device->post_commit_list))
2960 list_add_tail(&device->post_commit_list,
2961 &trans->transaction->dev_update_list);
2962 mutex_unlock(&fs_info->chunk_mutex);
2963
2964 btrfs_reserve_chunk_metadata(trans, false);
2965 ret = btrfs_update_device(trans, device);
2966 btrfs_trans_release_chunk_metadata(trans);
2967
2968 return ret;
2969}
2970
2971static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972{
2973 struct btrfs_fs_info *fs_info = trans->fs_info;
2974 struct btrfs_root *root = fs_info->chunk_root;
2975 int ret;
2976 struct btrfs_path *path;
2977 struct btrfs_key key;
2978
2979 path = btrfs_alloc_path();
2980 if (!path)
2981 return -ENOMEM;
2982
2983 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984 key.offset = chunk_offset;
2985 key.type = BTRFS_CHUNK_ITEM_KEY;
2986
2987 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988 if (ret < 0)
2989 goto out;
2990 else if (ret > 0) { /* Logic error or corruption */
2991 btrfs_handle_fs_error(fs_info, -ENOENT,
2992 "Failed lookup while freeing chunk.");
2993 ret = -ENOENT;
2994 goto out;
2995 }
2996
2997 ret = btrfs_del_item(trans, root, path);
2998 if (ret < 0)
2999 btrfs_handle_fs_error(fs_info, ret,
3000 "Failed to delete chunk item.");
3001out:
3002 btrfs_free_path(path);
3003 return ret;
3004}
3005
3006static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007{
3008 struct btrfs_super_block *super_copy = fs_info->super_copy;
3009 struct btrfs_disk_key *disk_key;
3010 struct btrfs_chunk *chunk;
3011 u8 *ptr;
3012 int ret = 0;
3013 u32 num_stripes;
3014 u32 array_size;
3015 u32 len = 0;
3016 u32 cur;
3017 struct btrfs_key key;
3018
3019 lockdep_assert_held(&fs_info->chunk_mutex);
3020 array_size = btrfs_super_sys_array_size(super_copy);
3021
3022 ptr = super_copy->sys_chunk_array;
3023 cur = 0;
3024
3025 while (cur < array_size) {
3026 disk_key = (struct btrfs_disk_key *)ptr;
3027 btrfs_disk_key_to_cpu(&key, disk_key);
3028
3029 len = sizeof(*disk_key);
3030
3031 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032 chunk = (struct btrfs_chunk *)(ptr + len);
3033 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034 len += btrfs_chunk_item_size(num_stripes);
3035 } else {
3036 ret = -EIO;
3037 break;
3038 }
3039 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040 key.offset == chunk_offset) {
3041 memmove(ptr, ptr + len, array_size - (cur + len));
3042 array_size -= len;
3043 btrfs_set_super_sys_array_size(super_copy, array_size);
3044 } else {
3045 ptr += len;
3046 cur += len;
3047 }
3048 }
3049 return ret;
3050}
3051
3052struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053 u64 logical, u64 length)
3054{
3055 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056 struct rb_node *prev = NULL;
3057 struct rb_node *orig_prev;
3058 struct btrfs_chunk_map *map;
3059 struct btrfs_chunk_map *prev_map = NULL;
3060
3061 while (node) {
3062 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063 prev = node;
3064 prev_map = map;
3065
3066 if (logical < map->start) {
3067 node = node->rb_left;
3068 } else if (logical >= map->start + map->chunk_len) {
3069 node = node->rb_right;
3070 } else {
3071 refcount_inc(&map->refs);
3072 return map;
3073 }
3074 }
3075
3076 if (!prev)
3077 return NULL;
3078
3079 orig_prev = prev;
3080 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081 prev = rb_next(prev);
3082 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083 }
3084
3085 if (!prev) {
3086 prev = orig_prev;
3087 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088 while (prev && logical < prev_map->start) {
3089 prev = rb_prev(prev);
3090 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091 }
3092 }
3093
3094 if (prev) {
3095 u64 end = logical + length;
3096
3097 /*
3098 * Caller can pass a U64_MAX length when it wants to get any
3099 * chunk starting at an offset of 'logical' or higher, so deal
3100 * with underflow by resetting the end offset to U64_MAX.
3101 */
3102 if (end < logical)
3103 end = U64_MAX;
3104
3105 if (end > prev_map->start &&
3106 logical < prev_map->start + prev_map->chunk_len) {
3107 refcount_inc(&prev_map->refs);
3108 return prev_map;
3109 }
3110 }
3111
3112 return NULL;
3113}
3114
3115struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116 u64 logical, u64 length)
3117{
3118 struct btrfs_chunk_map *map;
3119
3120 read_lock(&fs_info->mapping_tree_lock);
3121 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122 read_unlock(&fs_info->mapping_tree_lock);
3123
3124 return map;
3125}
3126
3127/*
3128 * Find the mapping containing the given logical extent.
3129 *
3130 * @logical: Logical block offset in bytes.
3131 * @length: Length of extent in bytes.
3132 *
3133 * Return: Chunk mapping or ERR_PTR.
3134 */
3135struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136 u64 logical, u64 length)
3137{
3138 struct btrfs_chunk_map *map;
3139
3140 map = btrfs_find_chunk_map(fs_info, logical, length);
3141
3142 if (unlikely(!map)) {
3143 btrfs_crit(fs_info,
3144 "unable to find chunk map for logical %llu length %llu",
3145 logical, length);
3146 return ERR_PTR(-EINVAL);
3147 }
3148
3149 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150 btrfs_crit(fs_info,
3151 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152 logical, logical + length, map->start,
3153 map->start + map->chunk_len);
3154 btrfs_free_chunk_map(map);
3155 return ERR_PTR(-EINVAL);
3156 }
3157
3158 /* Callers are responsible for dropping the reference. */
3159 return map;
3160}
3161
3162static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163 struct btrfs_chunk_map *map, u64 chunk_offset)
3164{
3165 int i;
3166
3167 /*
3168 * Removing chunk items and updating the device items in the chunks btree
3169 * requires holding the chunk_mutex.
3170 * See the comment at btrfs_chunk_alloc() for the details.
3171 */
3172 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173
3174 for (i = 0; i < map->num_stripes; i++) {
3175 int ret;
3176
3177 ret = btrfs_update_device(trans, map->stripes[i].dev);
3178 if (ret)
3179 return ret;
3180 }
3181
3182 return btrfs_free_chunk(trans, chunk_offset);
3183}
3184
3185int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186{
3187 struct btrfs_fs_info *fs_info = trans->fs_info;
3188 struct btrfs_chunk_map *map;
3189 u64 dev_extent_len = 0;
3190 int i, ret = 0;
3191 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192
3193 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194 if (IS_ERR(map)) {
3195 /*
3196 * This is a logic error, but we don't want to just rely on the
3197 * user having built with ASSERT enabled, so if ASSERT doesn't
3198 * do anything we still error out.
3199 */
3200 ASSERT(0);
3201 return PTR_ERR(map);
3202 }
3203
3204 /*
3205 * First delete the device extent items from the devices btree.
3206 * We take the device_list_mutex to avoid racing with the finishing phase
3207 * of a device replace operation. See the comment below before acquiring
3208 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209 * because that can result in a deadlock when deleting the device extent
3210 * items from the devices btree - COWing an extent buffer from the btree
3211 * may result in allocating a new metadata chunk, which would attempt to
3212 * lock again fs_info->chunk_mutex.
3213 */
3214 mutex_lock(&fs_devices->device_list_mutex);
3215 for (i = 0; i < map->num_stripes; i++) {
3216 struct btrfs_device *device = map->stripes[i].dev;
3217 ret = btrfs_free_dev_extent(trans, device,
3218 map->stripes[i].physical,
3219 &dev_extent_len);
3220 if (ret) {
3221 mutex_unlock(&fs_devices->device_list_mutex);
3222 btrfs_abort_transaction(trans, ret);
3223 goto out;
3224 }
3225
3226 if (device->bytes_used > 0) {
3227 mutex_lock(&fs_info->chunk_mutex);
3228 btrfs_device_set_bytes_used(device,
3229 device->bytes_used - dev_extent_len);
3230 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231 btrfs_clear_space_info_full(fs_info);
3232 mutex_unlock(&fs_info->chunk_mutex);
3233 }
3234 }
3235 mutex_unlock(&fs_devices->device_list_mutex);
3236
3237 /*
3238 * We acquire fs_info->chunk_mutex for 2 reasons:
3239 *
3240 * 1) Just like with the first phase of the chunk allocation, we must
3241 * reserve system space, do all chunk btree updates and deletions, and
3242 * update the system chunk array in the superblock while holding this
3243 * mutex. This is for similar reasons as explained on the comment at
3244 * the top of btrfs_chunk_alloc();
3245 *
3246 * 2) Prevent races with the final phase of a device replace operation
3247 * that replaces the device object associated with the map's stripes,
3248 * because the device object's id can change at any time during that
3249 * final phase of the device replace operation
3250 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251 * replaced device and then see it with an ID of
3252 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253 * the device item, which does not exists on the chunk btree.
3254 * The finishing phase of device replace acquires both the
3255 * device_list_mutex and the chunk_mutex, in that order, so we are
3256 * safe by just acquiring the chunk_mutex.
3257 */
3258 trans->removing_chunk = true;
3259 mutex_lock(&fs_info->chunk_mutex);
3260
3261 check_system_chunk(trans, map->type);
3262
3263 ret = remove_chunk_item(trans, map, chunk_offset);
3264 /*
3265 * Normally we should not get -ENOSPC since we reserved space before
3266 * through the call to check_system_chunk().
3267 *
3268 * Despite our system space_info having enough free space, we may not
3269 * be able to allocate extents from its block groups, because all have
3270 * an incompatible profile, which will force us to allocate a new system
3271 * block group with the right profile, or right after we called
3272 * check_system_space() above, a scrub turned the only system block group
3273 * with enough free space into RO mode.
3274 * This is explained with more detail at do_chunk_alloc().
3275 *
3276 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277 */
3278 if (ret == -ENOSPC) {
3279 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280 struct btrfs_block_group *sys_bg;
3281
3282 sys_bg = btrfs_create_chunk(trans, sys_flags);
3283 if (IS_ERR(sys_bg)) {
3284 ret = PTR_ERR(sys_bg);
3285 btrfs_abort_transaction(trans, ret);
3286 goto out;
3287 }
3288
3289 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290 if (ret) {
3291 btrfs_abort_transaction(trans, ret);
3292 goto out;
3293 }
3294
3295 ret = remove_chunk_item(trans, map, chunk_offset);
3296 if (ret) {
3297 btrfs_abort_transaction(trans, ret);
3298 goto out;
3299 }
3300 } else if (ret) {
3301 btrfs_abort_transaction(trans, ret);
3302 goto out;
3303 }
3304
3305 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306
3307 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309 if (ret) {
3310 btrfs_abort_transaction(trans, ret);
3311 goto out;
3312 }
3313 }
3314
3315 mutex_unlock(&fs_info->chunk_mutex);
3316 trans->removing_chunk = false;
3317
3318 /*
3319 * We are done with chunk btree updates and deletions, so release the
3320 * system space we previously reserved (with check_system_chunk()).
3321 */
3322 btrfs_trans_release_chunk_metadata(trans);
3323
3324 ret = btrfs_remove_block_group(trans, map);
3325 if (ret) {
3326 btrfs_abort_transaction(trans, ret);
3327 goto out;
3328 }
3329
3330out:
3331 if (trans->removing_chunk) {
3332 mutex_unlock(&fs_info->chunk_mutex);
3333 trans->removing_chunk = false;
3334 }
3335 /* once for us */
3336 btrfs_free_chunk_map(map);
3337 return ret;
3338}
3339
3340int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341{
3342 struct btrfs_root *root = fs_info->chunk_root;
3343 struct btrfs_trans_handle *trans;
3344 struct btrfs_block_group *block_group;
3345 u64 length;
3346 int ret;
3347
3348 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349 btrfs_err(fs_info,
3350 "relocate: not supported on extent tree v2 yet");
3351 return -EINVAL;
3352 }
3353
3354 /*
3355 * Prevent races with automatic removal of unused block groups.
3356 * After we relocate and before we remove the chunk with offset
3357 * chunk_offset, automatic removal of the block group can kick in,
3358 * resulting in a failure when calling btrfs_remove_chunk() below.
3359 *
3360 * Make sure to acquire this mutex before doing a tree search (dev
3361 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363 * we release the path used to search the chunk/dev tree and before
3364 * the current task acquires this mutex and calls us.
3365 */
3366 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367
3368 /* step one, relocate all the extents inside this chunk */
3369 btrfs_scrub_pause(fs_info);
3370 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371 btrfs_scrub_continue(fs_info);
3372 if (ret) {
3373 /*
3374 * If we had a transaction abort, stop all running scrubs.
3375 * See transaction.c:cleanup_transaction() why we do it here.
3376 */
3377 if (BTRFS_FS_ERROR(fs_info))
3378 btrfs_scrub_cancel(fs_info);
3379 return ret;
3380 }
3381
3382 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383 if (!block_group)
3384 return -ENOENT;
3385 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386 length = block_group->length;
3387 btrfs_put_block_group(block_group);
3388
3389 /*
3390 * On a zoned file system, discard the whole block group, this will
3391 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392 * resetting the zone fails, don't treat it as a fatal problem from the
3393 * filesystem's point of view.
3394 */
3395 if (btrfs_is_zoned(fs_info)) {
3396 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397 if (ret)
3398 btrfs_info(fs_info,
3399 "failed to reset zone %llu after relocation",
3400 chunk_offset);
3401 }
3402
3403 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404 chunk_offset);
3405 if (IS_ERR(trans)) {
3406 ret = PTR_ERR(trans);
3407 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408 return ret;
3409 }
3410
3411 /*
3412 * step two, delete the device extents and the
3413 * chunk tree entries
3414 */
3415 ret = btrfs_remove_chunk(trans, chunk_offset);
3416 btrfs_end_transaction(trans);
3417 return ret;
3418}
3419
3420static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421{
3422 struct btrfs_root *chunk_root = fs_info->chunk_root;
3423 struct btrfs_path *path;
3424 struct extent_buffer *leaf;
3425 struct btrfs_chunk *chunk;
3426 struct btrfs_key key;
3427 struct btrfs_key found_key;
3428 u64 chunk_type;
3429 bool retried = false;
3430 int failed = 0;
3431 int ret;
3432
3433 path = btrfs_alloc_path();
3434 if (!path)
3435 return -ENOMEM;
3436
3437again:
3438 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439 key.offset = (u64)-1;
3440 key.type = BTRFS_CHUNK_ITEM_KEY;
3441
3442 while (1) {
3443 mutex_lock(&fs_info->reclaim_bgs_lock);
3444 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445 if (ret < 0) {
3446 mutex_unlock(&fs_info->reclaim_bgs_lock);
3447 goto error;
3448 }
3449 if (ret == 0) {
3450 /*
3451 * On the first search we would find chunk tree with
3452 * offset -1, which is not possible. On subsequent
3453 * loops this would find an existing item on an invalid
3454 * offset (one less than the previous one, wrong
3455 * alignment and size).
3456 */
3457 ret = -EUCLEAN;
3458 mutex_unlock(&fs_info->reclaim_bgs_lock);
3459 goto error;
3460 }
3461
3462 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3463 key.type);
3464 if (ret)
3465 mutex_unlock(&fs_info->reclaim_bgs_lock);
3466 if (ret < 0)
3467 goto error;
3468 if (ret > 0)
3469 break;
3470
3471 leaf = path->nodes[0];
3472 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3473
3474 chunk = btrfs_item_ptr(leaf, path->slots[0],
3475 struct btrfs_chunk);
3476 chunk_type = btrfs_chunk_type(leaf, chunk);
3477 btrfs_release_path(path);
3478
3479 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3480 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3481 if (ret == -ENOSPC)
3482 failed++;
3483 else
3484 BUG_ON(ret);
3485 }
3486 mutex_unlock(&fs_info->reclaim_bgs_lock);
3487
3488 if (found_key.offset == 0)
3489 break;
3490 key.offset = found_key.offset - 1;
3491 }
3492 ret = 0;
3493 if (failed && !retried) {
3494 failed = 0;
3495 retried = true;
3496 goto again;
3497 } else if (WARN_ON(failed && retried)) {
3498 ret = -ENOSPC;
3499 }
3500error:
3501 btrfs_free_path(path);
3502 return ret;
3503}
3504
3505/*
3506 * return 1 : allocate a data chunk successfully,
3507 * return <0: errors during allocating a data chunk,
3508 * return 0 : no need to allocate a data chunk.
3509 */
3510static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3511 u64 chunk_offset)
3512{
3513 struct btrfs_block_group *cache;
3514 u64 bytes_used;
3515 u64 chunk_type;
3516
3517 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3518 ASSERT(cache);
3519 chunk_type = cache->flags;
3520 btrfs_put_block_group(cache);
3521
3522 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3523 return 0;
3524
3525 spin_lock(&fs_info->data_sinfo->lock);
3526 bytes_used = fs_info->data_sinfo->bytes_used;
3527 spin_unlock(&fs_info->data_sinfo->lock);
3528
3529 if (!bytes_used) {
3530 struct btrfs_trans_handle *trans;
3531 int ret;
3532
3533 trans = btrfs_join_transaction(fs_info->tree_root);
3534 if (IS_ERR(trans))
3535 return PTR_ERR(trans);
3536
3537 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3538 btrfs_end_transaction(trans);
3539 if (ret < 0)
3540 return ret;
3541 return 1;
3542 }
3543
3544 return 0;
3545}
3546
3547static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3548 const struct btrfs_disk_balance_args *disk)
3549{
3550 memset(cpu, 0, sizeof(*cpu));
3551
3552 cpu->profiles = le64_to_cpu(disk->profiles);
3553 cpu->usage = le64_to_cpu(disk->usage);
3554 cpu->devid = le64_to_cpu(disk->devid);
3555 cpu->pstart = le64_to_cpu(disk->pstart);
3556 cpu->pend = le64_to_cpu(disk->pend);
3557 cpu->vstart = le64_to_cpu(disk->vstart);
3558 cpu->vend = le64_to_cpu(disk->vend);
3559 cpu->target = le64_to_cpu(disk->target);
3560 cpu->flags = le64_to_cpu(disk->flags);
3561 cpu->limit = le64_to_cpu(disk->limit);
3562 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3563 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3564}
3565
3566static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3567 const struct btrfs_balance_args *cpu)
3568{
3569 memset(disk, 0, sizeof(*disk));
3570
3571 disk->profiles = cpu_to_le64(cpu->profiles);
3572 disk->usage = cpu_to_le64(cpu->usage);
3573 disk->devid = cpu_to_le64(cpu->devid);
3574 disk->pstart = cpu_to_le64(cpu->pstart);
3575 disk->pend = cpu_to_le64(cpu->pend);
3576 disk->vstart = cpu_to_le64(cpu->vstart);
3577 disk->vend = cpu_to_le64(cpu->vend);
3578 disk->target = cpu_to_le64(cpu->target);
3579 disk->flags = cpu_to_le64(cpu->flags);
3580 disk->limit = cpu_to_le64(cpu->limit);
3581 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3582 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3583}
3584
3585static int insert_balance_item(struct btrfs_fs_info *fs_info,
3586 struct btrfs_balance_control *bctl)
3587{
3588 struct btrfs_root *root = fs_info->tree_root;
3589 struct btrfs_trans_handle *trans;
3590 struct btrfs_balance_item *item;
3591 struct btrfs_disk_balance_args disk_bargs;
3592 struct btrfs_path *path;
3593 struct extent_buffer *leaf;
3594 struct btrfs_key key;
3595 int ret, err;
3596
3597 path = btrfs_alloc_path();
3598 if (!path)
3599 return -ENOMEM;
3600
3601 trans = btrfs_start_transaction(root, 0);
3602 if (IS_ERR(trans)) {
3603 btrfs_free_path(path);
3604 return PTR_ERR(trans);
3605 }
3606
3607 key.objectid = BTRFS_BALANCE_OBJECTID;
3608 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3609 key.offset = 0;
3610
3611 ret = btrfs_insert_empty_item(trans, root, path, &key,
3612 sizeof(*item));
3613 if (ret)
3614 goto out;
3615
3616 leaf = path->nodes[0];
3617 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3618
3619 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3620
3621 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3622 btrfs_set_balance_data(leaf, item, &disk_bargs);
3623 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3624 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3625 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3626 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3627
3628 btrfs_set_balance_flags(leaf, item, bctl->flags);
3629
3630 btrfs_mark_buffer_dirty(trans, leaf);
3631out:
3632 btrfs_free_path(path);
3633 err = btrfs_commit_transaction(trans);
3634 if (err && !ret)
3635 ret = err;
3636 return ret;
3637}
3638
3639static int del_balance_item(struct btrfs_fs_info *fs_info)
3640{
3641 struct btrfs_root *root = fs_info->tree_root;
3642 struct btrfs_trans_handle *trans;
3643 struct btrfs_path *path;
3644 struct btrfs_key key;
3645 int ret, err;
3646
3647 path = btrfs_alloc_path();
3648 if (!path)
3649 return -ENOMEM;
3650
3651 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3652 if (IS_ERR(trans)) {
3653 btrfs_free_path(path);
3654 return PTR_ERR(trans);
3655 }
3656
3657 key.objectid = BTRFS_BALANCE_OBJECTID;
3658 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659 key.offset = 0;
3660
3661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3662 if (ret < 0)
3663 goto out;
3664 if (ret > 0) {
3665 ret = -ENOENT;
3666 goto out;
3667 }
3668
3669 ret = btrfs_del_item(trans, root, path);
3670out:
3671 btrfs_free_path(path);
3672 err = btrfs_commit_transaction(trans);
3673 if (err && !ret)
3674 ret = err;
3675 return ret;
3676}
3677
3678/*
3679 * This is a heuristic used to reduce the number of chunks balanced on
3680 * resume after balance was interrupted.
3681 */
3682static void update_balance_args(struct btrfs_balance_control *bctl)
3683{
3684 /*
3685 * Turn on soft mode for chunk types that were being converted.
3686 */
3687 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3688 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3689 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3690 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3691 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693
3694 /*
3695 * Turn on usage filter if is not already used. The idea is
3696 * that chunks that we have already balanced should be
3697 * reasonably full. Don't do it for chunks that are being
3698 * converted - that will keep us from relocating unconverted
3699 * (albeit full) chunks.
3700 */
3701 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3703 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3704 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3705 bctl->data.usage = 90;
3706 }
3707 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711 bctl->sys.usage = 90;
3712 }
3713 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717 bctl->meta.usage = 90;
3718 }
3719}
3720
3721/*
3722 * Clear the balance status in fs_info and delete the balance item from disk.
3723 */
3724static void reset_balance_state(struct btrfs_fs_info *fs_info)
3725{
3726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 int ret;
3728
3729 ASSERT(fs_info->balance_ctl);
3730
3731 spin_lock(&fs_info->balance_lock);
3732 fs_info->balance_ctl = NULL;
3733 spin_unlock(&fs_info->balance_lock);
3734
3735 kfree(bctl);
3736 ret = del_balance_item(fs_info);
3737 if (ret)
3738 btrfs_handle_fs_error(fs_info, ret, NULL);
3739}
3740
3741/*
3742 * Balance filters. Return 1 if chunk should be filtered out
3743 * (should not be balanced).
3744 */
3745static int chunk_profiles_filter(u64 chunk_type,
3746 struct btrfs_balance_args *bargs)
3747{
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->profiles & chunk_type)
3752 return 0;
3753
3754 return 1;
3755}
3756
3757static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3758 struct btrfs_balance_args *bargs)
3759{
3760 struct btrfs_block_group *cache;
3761 u64 chunk_used;
3762 u64 user_thresh_min;
3763 u64 user_thresh_max;
3764 int ret = 1;
3765
3766 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3767 chunk_used = cache->used;
3768
3769 if (bargs->usage_min == 0)
3770 user_thresh_min = 0;
3771 else
3772 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3773
3774 if (bargs->usage_max == 0)
3775 user_thresh_max = 1;
3776 else if (bargs->usage_max > 100)
3777 user_thresh_max = cache->length;
3778 else
3779 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3780
3781 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3782 ret = 0;
3783
3784 btrfs_put_block_group(cache);
3785 return ret;
3786}
3787
3788static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3789 u64 chunk_offset, struct btrfs_balance_args *bargs)
3790{
3791 struct btrfs_block_group *cache;
3792 u64 chunk_used, user_thresh;
3793 int ret = 1;
3794
3795 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3796 chunk_used = cache->used;
3797
3798 if (bargs->usage_min == 0)
3799 user_thresh = 1;
3800 else if (bargs->usage > 100)
3801 user_thresh = cache->length;
3802 else
3803 user_thresh = mult_perc(cache->length, bargs->usage);
3804
3805 if (chunk_used < user_thresh)
3806 ret = 0;
3807
3808 btrfs_put_block_group(cache);
3809 return ret;
3810}
3811
3812static int chunk_devid_filter(struct extent_buffer *leaf,
3813 struct btrfs_chunk *chunk,
3814 struct btrfs_balance_args *bargs)
3815{
3816 struct btrfs_stripe *stripe;
3817 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3818 int i;
3819
3820 for (i = 0; i < num_stripes; i++) {
3821 stripe = btrfs_stripe_nr(chunk, i);
3822 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3823 return 0;
3824 }
3825
3826 return 1;
3827}
3828
3829static u64 calc_data_stripes(u64 type, int num_stripes)
3830{
3831 const int index = btrfs_bg_flags_to_raid_index(type);
3832 const int ncopies = btrfs_raid_array[index].ncopies;
3833 const int nparity = btrfs_raid_array[index].nparity;
3834
3835 return (num_stripes - nparity) / ncopies;
3836}
3837
3838/* [pstart, pend) */
3839static int chunk_drange_filter(struct extent_buffer *leaf,
3840 struct btrfs_chunk *chunk,
3841 struct btrfs_balance_args *bargs)
3842{
3843 struct btrfs_stripe *stripe;
3844 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3845 u64 stripe_offset;
3846 u64 stripe_length;
3847 u64 type;
3848 int factor;
3849 int i;
3850
3851 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3852 return 0;
3853
3854 type = btrfs_chunk_type(leaf, chunk);
3855 factor = calc_data_stripes(type, num_stripes);
3856
3857 for (i = 0; i < num_stripes; i++) {
3858 stripe = btrfs_stripe_nr(chunk, i);
3859 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3860 continue;
3861
3862 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3863 stripe_length = btrfs_chunk_length(leaf, chunk);
3864 stripe_length = div_u64(stripe_length, factor);
3865
3866 if (stripe_offset < bargs->pend &&
3867 stripe_offset + stripe_length > bargs->pstart)
3868 return 0;
3869 }
3870
3871 return 1;
3872}
3873
3874/* [vstart, vend) */
3875static int chunk_vrange_filter(struct extent_buffer *leaf,
3876 struct btrfs_chunk *chunk,
3877 u64 chunk_offset,
3878 struct btrfs_balance_args *bargs)
3879{
3880 if (chunk_offset < bargs->vend &&
3881 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3882 /* at least part of the chunk is inside this vrange */
3883 return 0;
3884
3885 return 1;
3886}
3887
3888static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3889 struct btrfs_chunk *chunk,
3890 struct btrfs_balance_args *bargs)
3891{
3892 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893
3894 if (bargs->stripes_min <= num_stripes
3895 && num_stripes <= bargs->stripes_max)
3896 return 0;
3897
3898 return 1;
3899}
3900
3901static int chunk_soft_convert_filter(u64 chunk_type,
3902 struct btrfs_balance_args *bargs)
3903{
3904 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3905 return 0;
3906
3907 chunk_type = chunk_to_extended(chunk_type) &
3908 BTRFS_EXTENDED_PROFILE_MASK;
3909
3910 if (bargs->target == chunk_type)
3911 return 1;
3912
3913 return 0;
3914}
3915
3916static int should_balance_chunk(struct extent_buffer *leaf,
3917 struct btrfs_chunk *chunk, u64 chunk_offset)
3918{
3919 struct btrfs_fs_info *fs_info = leaf->fs_info;
3920 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921 struct btrfs_balance_args *bargs = NULL;
3922 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3923
3924 /* type filter */
3925 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3926 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3927 return 0;
3928 }
3929
3930 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931 bargs = &bctl->data;
3932 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933 bargs = &bctl->sys;
3934 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 bargs = &bctl->meta;
3936
3937 /* profiles filter */
3938 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3939 chunk_profiles_filter(chunk_type, bargs)) {
3940 return 0;
3941 }
3942
3943 /* usage filter */
3944 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3945 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3946 return 0;
3947 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3948 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3949 return 0;
3950 }
3951
3952 /* devid filter */
3953 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3954 chunk_devid_filter(leaf, chunk, bargs)) {
3955 return 0;
3956 }
3957
3958 /* drange filter, makes sense only with devid filter */
3959 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3960 chunk_drange_filter(leaf, chunk, bargs)) {
3961 return 0;
3962 }
3963
3964 /* vrange filter */
3965 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3966 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3967 return 0;
3968 }
3969
3970 /* stripes filter */
3971 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3972 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3973 return 0;
3974 }
3975
3976 /* soft profile changing mode */
3977 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3978 chunk_soft_convert_filter(chunk_type, bargs)) {
3979 return 0;
3980 }
3981
3982 /*
3983 * limited by count, must be the last filter
3984 */
3985 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3986 if (bargs->limit == 0)
3987 return 0;
3988 else
3989 bargs->limit--;
3990 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3991 /*
3992 * Same logic as the 'limit' filter; the minimum cannot be
3993 * determined here because we do not have the global information
3994 * about the count of all chunks that satisfy the filters.
3995 */
3996 if (bargs->limit_max == 0)
3997 return 0;
3998 else
3999 bargs->limit_max--;
4000 }
4001
4002 return 1;
4003}
4004
4005static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4006{
4007 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4008 struct btrfs_root *chunk_root = fs_info->chunk_root;
4009 u64 chunk_type;
4010 struct btrfs_chunk *chunk;
4011 struct btrfs_path *path = NULL;
4012 struct btrfs_key key;
4013 struct btrfs_key found_key;
4014 struct extent_buffer *leaf;
4015 int slot;
4016 int ret;
4017 int enospc_errors = 0;
4018 bool counting = true;
4019 /* The single value limit and min/max limits use the same bytes in the */
4020 u64 limit_data = bctl->data.limit;
4021 u64 limit_meta = bctl->meta.limit;
4022 u64 limit_sys = bctl->sys.limit;
4023 u32 count_data = 0;
4024 u32 count_meta = 0;
4025 u32 count_sys = 0;
4026 int chunk_reserved = 0;
4027
4028 path = btrfs_alloc_path();
4029 if (!path) {
4030 ret = -ENOMEM;
4031 goto error;
4032 }
4033
4034 /* zero out stat counters */
4035 spin_lock(&fs_info->balance_lock);
4036 memset(&bctl->stat, 0, sizeof(bctl->stat));
4037 spin_unlock(&fs_info->balance_lock);
4038again:
4039 if (!counting) {
4040 /*
4041 * The single value limit and min/max limits use the same bytes
4042 * in the
4043 */
4044 bctl->data.limit = limit_data;
4045 bctl->meta.limit = limit_meta;
4046 bctl->sys.limit = limit_sys;
4047 }
4048 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4049 key.offset = (u64)-1;
4050 key.type = BTRFS_CHUNK_ITEM_KEY;
4051
4052 while (1) {
4053 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4054 atomic_read(&fs_info->balance_cancel_req)) {
4055 ret = -ECANCELED;
4056 goto error;
4057 }
4058
4059 mutex_lock(&fs_info->reclaim_bgs_lock);
4060 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4061 if (ret < 0) {
4062 mutex_unlock(&fs_info->reclaim_bgs_lock);
4063 goto error;
4064 }
4065
4066 /*
4067 * this shouldn't happen, it means the last relocate
4068 * failed
4069 */
4070 if (ret == 0)
4071 BUG(); /* FIXME break ? */
4072
4073 ret = btrfs_previous_item(chunk_root, path, 0,
4074 BTRFS_CHUNK_ITEM_KEY);
4075 if (ret) {
4076 mutex_unlock(&fs_info->reclaim_bgs_lock);
4077 ret = 0;
4078 break;
4079 }
4080
4081 leaf = path->nodes[0];
4082 slot = path->slots[0];
4083 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4084
4085 if (found_key.objectid != key.objectid) {
4086 mutex_unlock(&fs_info->reclaim_bgs_lock);
4087 break;
4088 }
4089
4090 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4091 chunk_type = btrfs_chunk_type(leaf, chunk);
4092
4093 if (!counting) {
4094 spin_lock(&fs_info->balance_lock);
4095 bctl->stat.considered++;
4096 spin_unlock(&fs_info->balance_lock);
4097 }
4098
4099 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4100
4101 btrfs_release_path(path);
4102 if (!ret) {
4103 mutex_unlock(&fs_info->reclaim_bgs_lock);
4104 goto loop;
4105 }
4106
4107 if (counting) {
4108 mutex_unlock(&fs_info->reclaim_bgs_lock);
4109 spin_lock(&fs_info->balance_lock);
4110 bctl->stat.expected++;
4111 spin_unlock(&fs_info->balance_lock);
4112
4113 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4114 count_data++;
4115 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4116 count_sys++;
4117 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4118 count_meta++;
4119
4120 goto loop;
4121 }
4122
4123 /*
4124 * Apply limit_min filter, no need to check if the LIMITS
4125 * filter is used, limit_min is 0 by default
4126 */
4127 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4128 count_data < bctl->data.limit_min)
4129 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4130 count_meta < bctl->meta.limit_min)
4131 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4132 count_sys < bctl->sys.limit_min)) {
4133 mutex_unlock(&fs_info->reclaim_bgs_lock);
4134 goto loop;
4135 }
4136
4137 if (!chunk_reserved) {
4138 /*
4139 * We may be relocating the only data chunk we have,
4140 * which could potentially end up with losing data's
4141 * raid profile, so lets allocate an empty one in
4142 * advance.
4143 */
4144 ret = btrfs_may_alloc_data_chunk(fs_info,
4145 found_key.offset);
4146 if (ret < 0) {
4147 mutex_unlock(&fs_info->reclaim_bgs_lock);
4148 goto error;
4149 } else if (ret == 1) {
4150 chunk_reserved = 1;
4151 }
4152 }
4153
4154 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4155 mutex_unlock(&fs_info->reclaim_bgs_lock);
4156 if (ret == -ENOSPC) {
4157 enospc_errors++;
4158 } else if (ret == -ETXTBSY) {
4159 btrfs_info(fs_info,
4160 "skipping relocation of block group %llu due to active swapfile",
4161 found_key.offset);
4162 ret = 0;
4163 } else if (ret) {
4164 goto error;
4165 } else {
4166 spin_lock(&fs_info->balance_lock);
4167 bctl->stat.completed++;
4168 spin_unlock(&fs_info->balance_lock);
4169 }
4170loop:
4171 if (found_key.offset == 0)
4172 break;
4173 key.offset = found_key.offset - 1;
4174 }
4175
4176 if (counting) {
4177 btrfs_release_path(path);
4178 counting = false;
4179 goto again;
4180 }
4181error:
4182 btrfs_free_path(path);
4183 if (enospc_errors) {
4184 btrfs_info(fs_info, "%d enospc errors during balance",
4185 enospc_errors);
4186 if (!ret)
4187 ret = -ENOSPC;
4188 }
4189
4190 return ret;
4191}
4192
4193/*
4194 * See if a given profile is valid and reduced.
4195 *
4196 * @flags: profile to validate
4197 * @extended: if true @flags is treated as an extended profile
4198 */
4199static int alloc_profile_is_valid(u64 flags, int extended)
4200{
4201 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4202 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4203
4204 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4205
4206 /* 1) check that all other bits are zeroed */
4207 if (flags & ~mask)
4208 return 0;
4209
4210 /* 2) see if profile is reduced */
4211 if (flags == 0)
4212 return !extended; /* "0" is valid for usual profiles */
4213
4214 return has_single_bit_set(flags);
4215}
4216
4217/*
4218 * Validate target profile against allowed profiles and return true if it's OK.
4219 * Otherwise print the error message and return false.
4220 */
4221static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4222 const struct btrfs_balance_args *bargs,
4223 u64 allowed, const char *type)
4224{
4225 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4226 return true;
4227
4228 /* Profile is valid and does not have bits outside of the allowed set */
4229 if (alloc_profile_is_valid(bargs->target, 1) &&
4230 (bargs->target & ~allowed) == 0)
4231 return true;
4232
4233 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4234 type, btrfs_bg_type_to_raid_name(bargs->target));
4235 return false;
4236}
4237
4238/*
4239 * Fill @buf with textual description of balance filter flags @bargs, up to
4240 * @size_buf including the terminating null. The output may be trimmed if it
4241 * does not fit into the provided buffer.
4242 */
4243static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4244 u32 size_buf)
4245{
4246 int ret;
4247 u32 size_bp = size_buf;
4248 char *bp = buf;
4249 u64 flags = bargs->flags;
4250 char tmp_buf[128] = {'\0'};
4251
4252 if (!flags)
4253 return;
4254
4255#define CHECK_APPEND_NOARG(a) \
4256 do { \
4257 ret = snprintf(bp, size_bp, (a)); \
4258 if (ret < 0 || ret >= size_bp) \
4259 goto out_overflow; \
4260 size_bp -= ret; \
4261 bp += ret; \
4262 } while (0)
4263
4264#define CHECK_APPEND_1ARG(a, v1) \
4265 do { \
4266 ret = snprintf(bp, size_bp, (a), (v1)); \
4267 if (ret < 0 || ret >= size_bp) \
4268 goto out_overflow; \
4269 size_bp -= ret; \
4270 bp += ret; \
4271 } while (0)
4272
4273#define CHECK_APPEND_2ARG(a, v1, v2) \
4274 do { \
4275 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4276 if (ret < 0 || ret >= size_bp) \
4277 goto out_overflow; \
4278 size_bp -= ret; \
4279 bp += ret; \
4280 } while (0)
4281
4282 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4283 CHECK_APPEND_1ARG("convert=%s,",
4284 btrfs_bg_type_to_raid_name(bargs->target));
4285
4286 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4287 CHECK_APPEND_NOARG("soft,");
4288
4289 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4290 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4291 sizeof(tmp_buf));
4292 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4293 }
4294
4295 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4296 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4297
4298 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4299 CHECK_APPEND_2ARG("usage=%u..%u,",
4300 bargs->usage_min, bargs->usage_max);
4301
4302 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4303 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4304
4305 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4306 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4307 bargs->pstart, bargs->pend);
4308
4309 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4310 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4311 bargs->vstart, bargs->vend);
4312
4313 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4314 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4315
4316 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4317 CHECK_APPEND_2ARG("limit=%u..%u,",
4318 bargs->limit_min, bargs->limit_max);
4319
4320 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4321 CHECK_APPEND_2ARG("stripes=%u..%u,",
4322 bargs->stripes_min, bargs->stripes_max);
4323
4324#undef CHECK_APPEND_2ARG
4325#undef CHECK_APPEND_1ARG
4326#undef CHECK_APPEND_NOARG
4327
4328out_overflow:
4329
4330 if (size_bp < size_buf)
4331 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4332 else
4333 buf[0] = '\0';
4334}
4335
4336static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4337{
4338 u32 size_buf = 1024;
4339 char tmp_buf[192] = {'\0'};
4340 char *buf;
4341 char *bp;
4342 u32 size_bp = size_buf;
4343 int ret;
4344 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345
4346 buf = kzalloc(size_buf, GFP_KERNEL);
4347 if (!buf)
4348 return;
4349
4350 bp = buf;
4351
4352#define CHECK_APPEND_1ARG(a, v1) \
4353 do { \
4354 ret = snprintf(bp, size_bp, (a), (v1)); \
4355 if (ret < 0 || ret >= size_bp) \
4356 goto out_overflow; \
4357 size_bp -= ret; \
4358 bp += ret; \
4359 } while (0)
4360
4361 if (bctl->flags & BTRFS_BALANCE_FORCE)
4362 CHECK_APPEND_1ARG("%s", "-f ");
4363
4364 if (bctl->flags & BTRFS_BALANCE_DATA) {
4365 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4366 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4367 }
4368
4369 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4370 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4371 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4372 }
4373
4374 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4375 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4376 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4377 }
4378
4379#undef CHECK_APPEND_1ARG
4380
4381out_overflow:
4382
4383 if (size_bp < size_buf)
4384 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4385 btrfs_info(fs_info, "balance: %s %s",
4386 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4387 "resume" : "start", buf);
4388
4389 kfree(buf);
4390}
4391
4392/*
4393 * Should be called with balance mutexe held
4394 */
4395int btrfs_balance(struct btrfs_fs_info *fs_info,
4396 struct btrfs_balance_control *bctl,
4397 struct btrfs_ioctl_balance_args *bargs)
4398{
4399 u64 meta_target, data_target;
4400 u64 allowed;
4401 int mixed = 0;
4402 int ret;
4403 u64 num_devices;
4404 unsigned seq;
4405 bool reducing_redundancy;
4406 bool paused = false;
4407 int i;
4408
4409 if (btrfs_fs_closing(fs_info) ||
4410 atomic_read(&fs_info->balance_pause_req) ||
4411 btrfs_should_cancel_balance(fs_info)) {
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4417 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4418 mixed = 1;
4419
4420 /*
4421 * In case of mixed groups both data and meta should be picked,
4422 * and identical options should be given for both of them.
4423 */
4424 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4425 if (mixed && (bctl->flags & allowed)) {
4426 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4427 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4428 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4429 btrfs_err(fs_info,
4430 "balance: mixed groups data and metadata options must be the same");
4431 ret = -EINVAL;
4432 goto out;
4433 }
4434 }
4435
4436 /*
4437 * rw_devices will not change at the moment, device add/delete/replace
4438 * are exclusive
4439 */
4440 num_devices = fs_info->fs_devices->rw_devices;
4441
4442 /*
4443 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4444 * special bit for it, to make it easier to distinguish. Thus we need
4445 * to set it manually, or balance would refuse the profile.
4446 */
4447 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4448 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4449 if (num_devices >= btrfs_raid_array[i].devs_min)
4450 allowed |= btrfs_raid_array[i].bg_flag;
4451
4452 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4453 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4454 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 /*
4460 * Allow to reduce metadata or system integrity only if force set for
4461 * profiles with redundancy (copies, parity)
4462 */
4463 allowed = 0;
4464 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4465 if (btrfs_raid_array[i].ncopies >= 2 ||
4466 btrfs_raid_array[i].tolerated_failures >= 1)
4467 allowed |= btrfs_raid_array[i].bg_flag;
4468 }
4469 do {
4470 seq = read_seqbegin(&fs_info->profiles_lock);
4471
4472 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4473 (fs_info->avail_system_alloc_bits & allowed) &&
4474 !(bctl->sys.target & allowed)) ||
4475 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476 (fs_info->avail_metadata_alloc_bits & allowed) &&
4477 !(bctl->meta.target & allowed)))
4478 reducing_redundancy = true;
4479 else
4480 reducing_redundancy = false;
4481
4482 /* if we're not converting, the target field is uninitialized */
4483 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4484 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4485 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4486 bctl->data.target : fs_info->avail_data_alloc_bits;
4487 } while (read_seqretry(&fs_info->profiles_lock, seq));
4488
4489 if (reducing_redundancy) {
4490 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4491 btrfs_info(fs_info,
4492 "balance: force reducing metadata redundancy");
4493 } else {
4494 btrfs_err(fs_info,
4495 "balance: reduces metadata redundancy, use --force if you want this");
4496 ret = -EINVAL;
4497 goto out;
4498 }
4499 }
4500
4501 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4502 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4503 btrfs_warn(fs_info,
4504 "balance: metadata profile %s has lower redundancy than data profile %s",
4505 btrfs_bg_type_to_raid_name(meta_target),
4506 btrfs_bg_type_to_raid_name(data_target));
4507 }
4508
4509 ret = insert_balance_item(fs_info, bctl);
4510 if (ret && ret != -EEXIST)
4511 goto out;
4512
4513 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4514 BUG_ON(ret == -EEXIST);
4515 BUG_ON(fs_info->balance_ctl);
4516 spin_lock(&fs_info->balance_lock);
4517 fs_info->balance_ctl = bctl;
4518 spin_unlock(&fs_info->balance_lock);
4519 } else {
4520 BUG_ON(ret != -EEXIST);
4521 spin_lock(&fs_info->balance_lock);
4522 update_balance_args(bctl);
4523 spin_unlock(&fs_info->balance_lock);
4524 }
4525
4526 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4528 describe_balance_start_or_resume(fs_info);
4529 mutex_unlock(&fs_info->balance_mutex);
4530
4531 ret = __btrfs_balance(fs_info);
4532
4533 mutex_lock(&fs_info->balance_mutex);
4534 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4535 btrfs_info(fs_info, "balance: paused");
4536 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4537 paused = true;
4538 }
4539 /*
4540 * Balance can be canceled by:
4541 *
4542 * - Regular cancel request
4543 * Then ret == -ECANCELED and balance_cancel_req > 0
4544 *
4545 * - Fatal signal to "btrfs" process
4546 * Either the signal caught by wait_reserve_ticket() and callers
4547 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4548 * got -ECANCELED.
4549 * Either way, in this case balance_cancel_req = 0, and
4550 * ret == -EINTR or ret == -ECANCELED.
4551 *
4552 * So here we only check the return value to catch canceled balance.
4553 */
4554 else if (ret == -ECANCELED || ret == -EINTR)
4555 btrfs_info(fs_info, "balance: canceled");
4556 else
4557 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4558
4559 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4560
4561 if (bargs) {
4562 memset(bargs, 0, sizeof(*bargs));
4563 btrfs_update_ioctl_balance_args(fs_info, bargs);
4564 }
4565
4566 /* We didn't pause, we can clean everything up. */
4567 if (!paused) {
4568 reset_balance_state(fs_info);
4569 btrfs_exclop_finish(fs_info);
4570 }
4571
4572 wake_up(&fs_info->balance_wait_q);
4573
4574 return ret;
4575out:
4576 if (bctl->flags & BTRFS_BALANCE_RESUME)
4577 reset_balance_state(fs_info);
4578 else
4579 kfree(bctl);
4580 btrfs_exclop_finish(fs_info);
4581
4582 return ret;
4583}
4584
4585static int balance_kthread(void *data)
4586{
4587 struct btrfs_fs_info *fs_info = data;
4588 int ret = 0;
4589
4590 sb_start_write(fs_info->sb);
4591 mutex_lock(&fs_info->balance_mutex);
4592 if (fs_info->balance_ctl)
4593 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4594 mutex_unlock(&fs_info->balance_mutex);
4595 sb_end_write(fs_info->sb);
4596
4597 return ret;
4598}
4599
4600int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4601{
4602 struct task_struct *tsk;
4603
4604 mutex_lock(&fs_info->balance_mutex);
4605 if (!fs_info->balance_ctl) {
4606 mutex_unlock(&fs_info->balance_mutex);
4607 return 0;
4608 }
4609 mutex_unlock(&fs_info->balance_mutex);
4610
4611 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4612 btrfs_info(fs_info, "balance: resume skipped");
4613 return 0;
4614 }
4615
4616 spin_lock(&fs_info->super_lock);
4617 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4618 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4619 spin_unlock(&fs_info->super_lock);
4620 /*
4621 * A ro->rw remount sequence should continue with the paused balance
4622 * regardless of who pauses it, system or the user as of now, so set
4623 * the resume flag.
4624 */
4625 spin_lock(&fs_info->balance_lock);
4626 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4627 spin_unlock(&fs_info->balance_lock);
4628
4629 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4630 return PTR_ERR_OR_ZERO(tsk);
4631}
4632
4633int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4634{
4635 struct btrfs_balance_control *bctl;
4636 struct btrfs_balance_item *item;
4637 struct btrfs_disk_balance_args disk_bargs;
4638 struct btrfs_path *path;
4639 struct extent_buffer *leaf;
4640 struct btrfs_key key;
4641 int ret;
4642
4643 path = btrfs_alloc_path();
4644 if (!path)
4645 return -ENOMEM;
4646
4647 key.objectid = BTRFS_BALANCE_OBJECTID;
4648 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4649 key.offset = 0;
4650
4651 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4652 if (ret < 0)
4653 goto out;
4654 if (ret > 0) { /* ret = -ENOENT; */
4655 ret = 0;
4656 goto out;
4657 }
4658
4659 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4660 if (!bctl) {
4661 ret = -ENOMEM;
4662 goto out;
4663 }
4664
4665 leaf = path->nodes[0];
4666 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4667
4668 bctl->flags = btrfs_balance_flags(leaf, item);
4669 bctl->flags |= BTRFS_BALANCE_RESUME;
4670
4671 btrfs_balance_data(leaf, item, &disk_bargs);
4672 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4673 btrfs_balance_meta(leaf, item, &disk_bargs);
4674 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4675 btrfs_balance_sys(leaf, item, &disk_bargs);
4676 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4677
4678 /*
4679 * This should never happen, as the paused balance state is recovered
4680 * during mount without any chance of other exclusive ops to collide.
4681 *
4682 * This gives the exclusive op status to balance and keeps in paused
4683 * state until user intervention (cancel or umount). If the ownership
4684 * cannot be assigned, show a message but do not fail. The balance
4685 * is in a paused state and must have fs_info::balance_ctl properly
4686 * set up.
4687 */
4688 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4689 btrfs_warn(fs_info,
4690 "balance: cannot set exclusive op status, resume manually");
4691
4692 btrfs_release_path(path);
4693
4694 mutex_lock(&fs_info->balance_mutex);
4695 BUG_ON(fs_info->balance_ctl);
4696 spin_lock(&fs_info->balance_lock);
4697 fs_info->balance_ctl = bctl;
4698 spin_unlock(&fs_info->balance_lock);
4699 mutex_unlock(&fs_info->balance_mutex);
4700out:
4701 btrfs_free_path(path);
4702 return ret;
4703}
4704
4705int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4706{
4707 int ret = 0;
4708
4709 mutex_lock(&fs_info->balance_mutex);
4710 if (!fs_info->balance_ctl) {
4711 mutex_unlock(&fs_info->balance_mutex);
4712 return -ENOTCONN;
4713 }
4714
4715 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4716 atomic_inc(&fs_info->balance_pause_req);
4717 mutex_unlock(&fs_info->balance_mutex);
4718
4719 wait_event(fs_info->balance_wait_q,
4720 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4721
4722 mutex_lock(&fs_info->balance_mutex);
4723 /* we are good with balance_ctl ripped off from under us */
4724 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725 atomic_dec(&fs_info->balance_pause_req);
4726 } else {
4727 ret = -ENOTCONN;
4728 }
4729
4730 mutex_unlock(&fs_info->balance_mutex);
4731 return ret;
4732}
4733
4734int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4735{
4736 mutex_lock(&fs_info->balance_mutex);
4737 if (!fs_info->balance_ctl) {
4738 mutex_unlock(&fs_info->balance_mutex);
4739 return -ENOTCONN;
4740 }
4741
4742 /*
4743 * A paused balance with the item stored on disk can be resumed at
4744 * mount time if the mount is read-write. Otherwise it's still paused
4745 * and we must not allow cancelling as it deletes the item.
4746 */
4747 if (sb_rdonly(fs_info->sb)) {
4748 mutex_unlock(&fs_info->balance_mutex);
4749 return -EROFS;
4750 }
4751
4752 atomic_inc(&fs_info->balance_cancel_req);
4753 /*
4754 * if we are running just wait and return, balance item is
4755 * deleted in btrfs_balance in this case
4756 */
4757 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4758 mutex_unlock(&fs_info->balance_mutex);
4759 wait_event(fs_info->balance_wait_q,
4760 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4761 mutex_lock(&fs_info->balance_mutex);
4762 } else {
4763 mutex_unlock(&fs_info->balance_mutex);
4764 /*
4765 * Lock released to allow other waiters to continue, we'll
4766 * reexamine the status again.
4767 */
4768 mutex_lock(&fs_info->balance_mutex);
4769
4770 if (fs_info->balance_ctl) {
4771 reset_balance_state(fs_info);
4772 btrfs_exclop_finish(fs_info);
4773 btrfs_info(fs_info, "balance: canceled");
4774 }
4775 }
4776
4777 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4778 atomic_dec(&fs_info->balance_cancel_req);
4779 mutex_unlock(&fs_info->balance_mutex);
4780 return 0;
4781}
4782
4783int btrfs_uuid_scan_kthread(void *data)
4784{
4785 struct btrfs_fs_info *fs_info = data;
4786 struct btrfs_root *root = fs_info->tree_root;
4787 struct btrfs_key key;
4788 struct btrfs_path *path = NULL;
4789 int ret = 0;
4790 struct extent_buffer *eb;
4791 int slot;
4792 struct btrfs_root_item root_item;
4793 u32 item_size;
4794 struct btrfs_trans_handle *trans = NULL;
4795 bool closing = false;
4796
4797 path = btrfs_alloc_path();
4798 if (!path) {
4799 ret = -ENOMEM;
4800 goto out;
4801 }
4802
4803 key.objectid = 0;
4804 key.type = BTRFS_ROOT_ITEM_KEY;
4805 key.offset = 0;
4806
4807 while (1) {
4808 if (btrfs_fs_closing(fs_info)) {
4809 closing = true;
4810 break;
4811 }
4812 ret = btrfs_search_forward(root, &key, path,
4813 BTRFS_OLDEST_GENERATION);
4814 if (ret) {
4815 if (ret > 0)
4816 ret = 0;
4817 break;
4818 }
4819
4820 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4821 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4822 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4823 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4824 goto skip;
4825
4826 eb = path->nodes[0];
4827 slot = path->slots[0];
4828 item_size = btrfs_item_size(eb, slot);
4829 if (item_size < sizeof(root_item))
4830 goto skip;
4831
4832 read_extent_buffer(eb, &root_item,
4833 btrfs_item_ptr_offset(eb, slot),
4834 (int)sizeof(root_item));
4835 if (btrfs_root_refs(&root_item) == 0)
4836 goto skip;
4837
4838 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4839 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4840 if (trans)
4841 goto update_tree;
4842
4843 btrfs_release_path(path);
4844 /*
4845 * 1 - subvol uuid item
4846 * 1 - received_subvol uuid item
4847 */
4848 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4851 break;
4852 }
4853 continue;
4854 } else {
4855 goto skip;
4856 }
4857update_tree:
4858 btrfs_release_path(path);
4859 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4860 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4861 BTRFS_UUID_KEY_SUBVOL,
4862 key.objectid);
4863 if (ret < 0) {
4864 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4865 ret);
4866 break;
4867 }
4868 }
4869
4870 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4871 ret = btrfs_uuid_tree_add(trans,
4872 root_item.received_uuid,
4873 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4874 key.objectid);
4875 if (ret < 0) {
4876 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4877 ret);
4878 break;
4879 }
4880 }
4881
4882skip:
4883 btrfs_release_path(path);
4884 if (trans) {
4885 ret = btrfs_end_transaction(trans);
4886 trans = NULL;
4887 if (ret)
4888 break;
4889 }
4890
4891 if (key.offset < (u64)-1) {
4892 key.offset++;
4893 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4894 key.offset = 0;
4895 key.type = BTRFS_ROOT_ITEM_KEY;
4896 } else if (key.objectid < (u64)-1) {
4897 key.offset = 0;
4898 key.type = BTRFS_ROOT_ITEM_KEY;
4899 key.objectid++;
4900 } else {
4901 break;
4902 }
4903 cond_resched();
4904 }
4905
4906out:
4907 btrfs_free_path(path);
4908 if (trans && !IS_ERR(trans))
4909 btrfs_end_transaction(trans);
4910 if (ret)
4911 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4912 else if (!closing)
4913 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4914 up(&fs_info->uuid_tree_rescan_sem);
4915 return 0;
4916}
4917
4918int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4919{
4920 struct btrfs_trans_handle *trans;
4921 struct btrfs_root *tree_root = fs_info->tree_root;
4922 struct btrfs_root *uuid_root;
4923 struct task_struct *task;
4924 int ret;
4925
4926 /*
4927 * 1 - root node
4928 * 1 - root item
4929 */
4930 trans = btrfs_start_transaction(tree_root, 2);
4931 if (IS_ERR(trans))
4932 return PTR_ERR(trans);
4933
4934 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4935 if (IS_ERR(uuid_root)) {
4936 ret = PTR_ERR(uuid_root);
4937 btrfs_abort_transaction(trans, ret);
4938 btrfs_end_transaction(trans);
4939 return ret;
4940 }
4941
4942 fs_info->uuid_root = uuid_root;
4943
4944 ret = btrfs_commit_transaction(trans);
4945 if (ret)
4946 return ret;
4947
4948 down(&fs_info->uuid_tree_rescan_sem);
4949 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4950 if (IS_ERR(task)) {
4951 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4952 btrfs_warn(fs_info, "failed to start uuid_scan task");
4953 up(&fs_info->uuid_tree_rescan_sem);
4954 return PTR_ERR(task);
4955 }
4956
4957 return 0;
4958}
4959
4960/*
4961 * shrinking a device means finding all of the device extents past
4962 * the new size, and then following the back refs to the chunks.
4963 * The chunk relocation code actually frees the device extent
4964 */
4965int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4966{
4967 struct btrfs_fs_info *fs_info = device->fs_info;
4968 struct btrfs_root *root = fs_info->dev_root;
4969 struct btrfs_trans_handle *trans;
4970 struct btrfs_dev_extent *dev_extent = NULL;
4971 struct btrfs_path *path;
4972 u64 length;
4973 u64 chunk_offset;
4974 int ret;
4975 int slot;
4976 int failed = 0;
4977 bool retried = false;
4978 struct extent_buffer *l;
4979 struct btrfs_key key;
4980 struct btrfs_super_block *super_copy = fs_info->super_copy;
4981 u64 old_total = btrfs_super_total_bytes(super_copy);
4982 u64 old_size = btrfs_device_get_total_bytes(device);
4983 u64 diff;
4984 u64 start;
4985 u64 free_diff = 0;
4986
4987 new_size = round_down(new_size, fs_info->sectorsize);
4988 start = new_size;
4989 diff = round_down(old_size - new_size, fs_info->sectorsize);
4990
4991 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4992 return -EINVAL;
4993
4994 path = btrfs_alloc_path();
4995 if (!path)
4996 return -ENOMEM;
4997
4998 path->reada = READA_BACK;
4999
5000 trans = btrfs_start_transaction(root, 0);
5001 if (IS_ERR(trans)) {
5002 btrfs_free_path(path);
5003 return PTR_ERR(trans);
5004 }
5005
5006 mutex_lock(&fs_info->chunk_mutex);
5007
5008 btrfs_device_set_total_bytes(device, new_size);
5009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5010 device->fs_devices->total_rw_bytes -= diff;
5011
5012 /*
5013 * The new free_chunk_space is new_size - used, so we have to
5014 * subtract the delta of the old free_chunk_space which included
5015 * old_size - used. If used > new_size then just subtract this
5016 * entire device's free space.
5017 */
5018 if (device->bytes_used < new_size)
5019 free_diff = (old_size - device->bytes_used) -
5020 (new_size - device->bytes_used);
5021 else
5022 free_diff = old_size - device->bytes_used;
5023 atomic64_sub(free_diff, &fs_info->free_chunk_space);
5024 }
5025
5026 /*
5027 * Once the device's size has been set to the new size, ensure all
5028 * in-memory chunks are synced to disk so that the loop below sees them
5029 * and relocates them accordingly.
5030 */
5031 if (contains_pending_extent(device, &start, diff)) {
5032 mutex_unlock(&fs_info->chunk_mutex);
5033 ret = btrfs_commit_transaction(trans);
5034 if (ret)
5035 goto done;
5036 } else {
5037 mutex_unlock(&fs_info->chunk_mutex);
5038 btrfs_end_transaction(trans);
5039 }
5040
5041again:
5042 key.objectid = device->devid;
5043 key.offset = (u64)-1;
5044 key.type = BTRFS_DEV_EXTENT_KEY;
5045
5046 do {
5047 mutex_lock(&fs_info->reclaim_bgs_lock);
5048 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5049 if (ret < 0) {
5050 mutex_unlock(&fs_info->reclaim_bgs_lock);
5051 goto done;
5052 }
5053
5054 ret = btrfs_previous_item(root, path, 0, key.type);
5055 if (ret) {
5056 mutex_unlock(&fs_info->reclaim_bgs_lock);
5057 if (ret < 0)
5058 goto done;
5059 ret = 0;
5060 btrfs_release_path(path);
5061 break;
5062 }
5063
5064 l = path->nodes[0];
5065 slot = path->slots[0];
5066 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5067
5068 if (key.objectid != device->devid) {
5069 mutex_unlock(&fs_info->reclaim_bgs_lock);
5070 btrfs_release_path(path);
5071 break;
5072 }
5073
5074 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5075 length = btrfs_dev_extent_length(l, dev_extent);
5076
5077 if (key.offset + length <= new_size) {
5078 mutex_unlock(&fs_info->reclaim_bgs_lock);
5079 btrfs_release_path(path);
5080 break;
5081 }
5082
5083 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5084 btrfs_release_path(path);
5085
5086 /*
5087 * We may be relocating the only data chunk we have,
5088 * which could potentially end up with losing data's
5089 * raid profile, so lets allocate an empty one in
5090 * advance.
5091 */
5092 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5093 if (ret < 0) {
5094 mutex_unlock(&fs_info->reclaim_bgs_lock);
5095 goto done;
5096 }
5097
5098 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5099 mutex_unlock(&fs_info->reclaim_bgs_lock);
5100 if (ret == -ENOSPC) {
5101 failed++;
5102 } else if (ret) {
5103 if (ret == -ETXTBSY) {
5104 btrfs_warn(fs_info,
5105 "could not shrink block group %llu due to active swapfile",
5106 chunk_offset);
5107 }
5108 goto done;
5109 }
5110 } while (key.offset-- > 0);
5111
5112 if (failed && !retried) {
5113 failed = 0;
5114 retried = true;
5115 goto again;
5116 } else if (failed && retried) {
5117 ret = -ENOSPC;
5118 goto done;
5119 }
5120
5121 /* Shrinking succeeded, else we would be at "done". */
5122 trans = btrfs_start_transaction(root, 0);
5123 if (IS_ERR(trans)) {
5124 ret = PTR_ERR(trans);
5125 goto done;
5126 }
5127
5128 mutex_lock(&fs_info->chunk_mutex);
5129 /* Clear all state bits beyond the shrunk device size */
5130 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5131 CHUNK_STATE_MASK);
5132
5133 btrfs_device_set_disk_total_bytes(device, new_size);
5134 if (list_empty(&device->post_commit_list))
5135 list_add_tail(&device->post_commit_list,
5136 &trans->transaction->dev_update_list);
5137
5138 WARN_ON(diff > old_total);
5139 btrfs_set_super_total_bytes(super_copy,
5140 round_down(old_total - diff, fs_info->sectorsize));
5141 mutex_unlock(&fs_info->chunk_mutex);
5142
5143 btrfs_reserve_chunk_metadata(trans, false);
5144 /* Now btrfs_update_device() will change the on-disk size. */
5145 ret = btrfs_update_device(trans, device);
5146 btrfs_trans_release_chunk_metadata(trans);
5147 if (ret < 0) {
5148 btrfs_abort_transaction(trans, ret);
5149 btrfs_end_transaction(trans);
5150 } else {
5151 ret = btrfs_commit_transaction(trans);
5152 }
5153done:
5154 btrfs_free_path(path);
5155 if (ret) {
5156 mutex_lock(&fs_info->chunk_mutex);
5157 btrfs_device_set_total_bytes(device, old_size);
5158 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5159 device->fs_devices->total_rw_bytes += diff;
5160 atomic64_add(free_diff, &fs_info->free_chunk_space);
5161 }
5162 mutex_unlock(&fs_info->chunk_mutex);
5163 }
5164 return ret;
5165}
5166
5167static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5168 struct btrfs_key *key,
5169 struct btrfs_chunk *chunk, int item_size)
5170{
5171 struct btrfs_super_block *super_copy = fs_info->super_copy;
5172 struct btrfs_disk_key disk_key;
5173 u32 array_size;
5174 u8 *ptr;
5175
5176 lockdep_assert_held(&fs_info->chunk_mutex);
5177
5178 array_size = btrfs_super_sys_array_size(super_copy);
5179 if (array_size + item_size + sizeof(disk_key)
5180 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5181 return -EFBIG;
5182
5183 ptr = super_copy->sys_chunk_array + array_size;
5184 btrfs_cpu_key_to_disk(&disk_key, key);
5185 memcpy(ptr, &disk_key, sizeof(disk_key));
5186 ptr += sizeof(disk_key);
5187 memcpy(ptr, chunk, item_size);
5188 item_size += sizeof(disk_key);
5189 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5190
5191 return 0;
5192}
5193
5194/*
5195 * sort the devices in descending order by max_avail, total_avail
5196 */
5197static int btrfs_cmp_device_info(const void *a, const void *b)
5198{
5199 const struct btrfs_device_info *di_a = a;
5200 const struct btrfs_device_info *di_b = b;
5201
5202 if (di_a->max_avail > di_b->max_avail)
5203 return -1;
5204 if (di_a->max_avail < di_b->max_avail)
5205 return 1;
5206 if (di_a->total_avail > di_b->total_avail)
5207 return -1;
5208 if (di_a->total_avail < di_b->total_avail)
5209 return 1;
5210 return 0;
5211}
5212
5213static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5214{
5215 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5216 return;
5217
5218 btrfs_set_fs_incompat(info, RAID56);
5219}
5220
5221static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5222{
5223 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5224 return;
5225
5226 btrfs_set_fs_incompat(info, RAID1C34);
5227}
5228
5229/*
5230 * Structure used internally for btrfs_create_chunk() function.
5231 * Wraps needed parameters.
5232 */
5233struct alloc_chunk_ctl {
5234 u64 start;
5235 u64 type;
5236 /* Total number of stripes to allocate */
5237 int num_stripes;
5238 /* sub_stripes info for map */
5239 int sub_stripes;
5240 /* Stripes per device */
5241 int dev_stripes;
5242 /* Maximum number of devices to use */
5243 int devs_max;
5244 /* Minimum number of devices to use */
5245 int devs_min;
5246 /* ndevs has to be a multiple of this */
5247 int devs_increment;
5248 /* Number of copies */
5249 int ncopies;
5250 /* Number of stripes worth of bytes to store parity information */
5251 int nparity;
5252 u64 max_stripe_size;
5253 u64 max_chunk_size;
5254 u64 dev_extent_min;
5255 u64 stripe_size;
5256 u64 chunk_size;
5257 int ndevs;
5258};
5259
5260static void init_alloc_chunk_ctl_policy_regular(
5261 struct btrfs_fs_devices *fs_devices,
5262 struct alloc_chunk_ctl *ctl)
5263{
5264 struct btrfs_space_info *space_info;
5265
5266 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5267 ASSERT(space_info);
5268
5269 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5270 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5271
5272 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5273 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5274
5275 /* We don't want a chunk larger than 10% of writable space */
5276 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5277 ctl->max_chunk_size);
5278 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5279}
5280
5281static void init_alloc_chunk_ctl_policy_zoned(
5282 struct btrfs_fs_devices *fs_devices,
5283 struct alloc_chunk_ctl *ctl)
5284{
5285 u64 zone_size = fs_devices->fs_info->zone_size;
5286 u64 limit;
5287 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5288 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5289 u64 min_chunk_size = min_data_stripes * zone_size;
5290 u64 type = ctl->type;
5291
5292 ctl->max_stripe_size = zone_size;
5293 if (type & BTRFS_BLOCK_GROUP_DATA) {
5294 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5295 zone_size);
5296 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5297 ctl->max_chunk_size = ctl->max_stripe_size;
5298 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5300 ctl->devs_max = min_t(int, ctl->devs_max,
5301 BTRFS_MAX_DEVS_SYS_CHUNK);
5302 } else {
5303 BUG();
5304 }
5305
5306 /* We don't want a chunk larger than 10% of writable space */
5307 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5308 zone_size),
5309 min_chunk_size);
5310 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5311 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5312}
5313
5314static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5315 struct alloc_chunk_ctl *ctl)
5316{
5317 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5318
5319 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5320 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5321 ctl->devs_max = btrfs_raid_array[index].devs_max;
5322 if (!ctl->devs_max)
5323 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5324 ctl->devs_min = btrfs_raid_array[index].devs_min;
5325 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5326 ctl->ncopies = btrfs_raid_array[index].ncopies;
5327 ctl->nparity = btrfs_raid_array[index].nparity;
5328 ctl->ndevs = 0;
5329
5330 switch (fs_devices->chunk_alloc_policy) {
5331 case BTRFS_CHUNK_ALLOC_REGULAR:
5332 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5333 break;
5334 case BTRFS_CHUNK_ALLOC_ZONED:
5335 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5336 break;
5337 default:
5338 BUG();
5339 }
5340}
5341
5342static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5343 struct alloc_chunk_ctl *ctl,
5344 struct btrfs_device_info *devices_info)
5345{
5346 struct btrfs_fs_info *info = fs_devices->fs_info;
5347 struct btrfs_device *device;
5348 u64 total_avail;
5349 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5350 int ret;
5351 int ndevs = 0;
5352 u64 max_avail;
5353 u64 dev_offset;
5354
5355 /*
5356 * in the first pass through the devices list, we gather information
5357 * about the available holes on each device.
5358 */
5359 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5360 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5361 WARN(1, KERN_ERR
5362 "BTRFS: read-only device in alloc_list\n");
5363 continue;
5364 }
5365
5366 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5367 &device->dev_state) ||
5368 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5369 continue;
5370
5371 if (device->total_bytes > device->bytes_used)
5372 total_avail = device->total_bytes - device->bytes_used;
5373 else
5374 total_avail = 0;
5375
5376 /* If there is no space on this device, skip it. */
5377 if (total_avail < ctl->dev_extent_min)
5378 continue;
5379
5380 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5381 &max_avail);
5382 if (ret && ret != -ENOSPC)
5383 return ret;
5384
5385 if (ret == 0)
5386 max_avail = dev_extent_want;
5387
5388 if (max_avail < ctl->dev_extent_min) {
5389 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5390 btrfs_debug(info,
5391 "%s: devid %llu has no free space, have=%llu want=%llu",
5392 __func__, device->devid, max_avail,
5393 ctl->dev_extent_min);
5394 continue;
5395 }
5396
5397 if (ndevs == fs_devices->rw_devices) {
5398 WARN(1, "%s: found more than %llu devices\n",
5399 __func__, fs_devices->rw_devices);
5400 break;
5401 }
5402 devices_info[ndevs].dev_offset = dev_offset;
5403 devices_info[ndevs].max_avail = max_avail;
5404 devices_info[ndevs].total_avail = total_avail;
5405 devices_info[ndevs].dev = device;
5406 ++ndevs;
5407 }
5408 ctl->ndevs = ndevs;
5409
5410 /*
5411 * now sort the devices by hole size / available space
5412 */
5413 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5414 btrfs_cmp_device_info, NULL);
5415
5416 return 0;
5417}
5418
5419static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5420 struct btrfs_device_info *devices_info)
5421{
5422 /* Number of stripes that count for block group size */
5423 int data_stripes;
5424
5425 /*
5426 * The primary goal is to maximize the number of stripes, so use as
5427 * many devices as possible, even if the stripes are not maximum sized.
5428 *
5429 * The DUP profile stores more than one stripe per device, the
5430 * max_avail is the total size so we have to adjust.
5431 */
5432 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5433 ctl->dev_stripes);
5434 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435
5436 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5437 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5438
5439 /*
5440 * Use the number of data stripes to figure out how big this chunk is
5441 * really going to be in terms of logical address space, and compare
5442 * that answer with the max chunk size. If it's higher, we try to
5443 * reduce stripe_size.
5444 */
5445 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5446 /*
5447 * Reduce stripe_size, round it up to a 16MB boundary again and
5448 * then use it, unless it ends up being even bigger than the
5449 * previous value we had already.
5450 */
5451 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5452 data_stripes), SZ_16M),
5453 ctl->stripe_size);
5454 }
5455
5456 /* Stripe size should not go beyond 1G. */
5457 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5458
5459 /* Align to BTRFS_STRIPE_LEN */
5460 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5461 ctl->chunk_size = ctl->stripe_size * data_stripes;
5462
5463 return 0;
5464}
5465
5466static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5467 struct btrfs_device_info *devices_info)
5468{
5469 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5470 /* Number of stripes that count for block group size */
5471 int data_stripes;
5472
5473 /*
5474 * It should hold because:
5475 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5476 */
5477 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5478
5479 ctl->stripe_size = zone_size;
5480 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5481 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5482
5483 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5484 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5485 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5486 ctl->stripe_size) + ctl->nparity,
5487 ctl->dev_stripes);
5488 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5489 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5490 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5491 }
5492
5493 ctl->chunk_size = ctl->stripe_size * data_stripes;
5494
5495 return 0;
5496}
5497
5498static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5499 struct alloc_chunk_ctl *ctl,
5500 struct btrfs_device_info *devices_info)
5501{
5502 struct btrfs_fs_info *info = fs_devices->fs_info;
5503
5504 /*
5505 * Round down to number of usable stripes, devs_increment can be any
5506 * number so we can't use round_down() that requires power of 2, while
5507 * rounddown is safe.
5508 */
5509 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5510
5511 if (ctl->ndevs < ctl->devs_min) {
5512 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5513 btrfs_debug(info,
5514 "%s: not enough devices with free space: have=%d minimum required=%d",
5515 __func__, ctl->ndevs, ctl->devs_min);
5516 }
5517 return -ENOSPC;
5518 }
5519
5520 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5521
5522 switch (fs_devices->chunk_alloc_policy) {
5523 case BTRFS_CHUNK_ALLOC_REGULAR:
5524 return decide_stripe_size_regular(ctl, devices_info);
5525 case BTRFS_CHUNK_ALLOC_ZONED:
5526 return decide_stripe_size_zoned(ctl, devices_info);
5527 default:
5528 BUG();
5529 }
5530}
5531
5532static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5533{
5534 for (int i = 0; i < map->num_stripes; i++) {
5535 struct btrfs_io_stripe *stripe = &map->stripes[i];
5536 struct btrfs_device *device = stripe->dev;
5537
5538 set_extent_bit(&device->alloc_state, stripe->physical,
5539 stripe->physical + map->stripe_size - 1,
5540 bits | EXTENT_NOWAIT, NULL);
5541 }
5542}
5543
5544static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5545{
5546 for (int i = 0; i < map->num_stripes; i++) {
5547 struct btrfs_io_stripe *stripe = &map->stripes[i];
5548 struct btrfs_device *device = stripe->dev;
5549
5550 __clear_extent_bit(&device->alloc_state, stripe->physical,
5551 stripe->physical + map->stripe_size - 1,
5552 bits | EXTENT_NOWAIT,
5553 NULL, NULL);
5554 }
5555}
5556
5557void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5558{
5559 write_lock(&fs_info->mapping_tree_lock);
5560 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5561 RB_CLEAR_NODE(&map->rb_node);
5562 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5563 write_unlock(&fs_info->mapping_tree_lock);
5564
5565 /* Once for the tree reference. */
5566 btrfs_free_chunk_map(map);
5567}
5568
5569EXPORT_FOR_TESTS
5570int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5571{
5572 struct rb_node **p;
5573 struct rb_node *parent = NULL;
5574 bool leftmost = true;
5575
5576 write_lock(&fs_info->mapping_tree_lock);
5577 p = &fs_info->mapping_tree.rb_root.rb_node;
5578 while (*p) {
5579 struct btrfs_chunk_map *entry;
5580
5581 parent = *p;
5582 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5583
5584 if (map->start < entry->start) {
5585 p = &(*p)->rb_left;
5586 } else if (map->start > entry->start) {
5587 p = &(*p)->rb_right;
5588 leftmost = false;
5589 } else {
5590 write_unlock(&fs_info->mapping_tree_lock);
5591 return -EEXIST;
5592 }
5593 }
5594 rb_link_node(&map->rb_node, parent, p);
5595 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5596 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5597 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5598 write_unlock(&fs_info->mapping_tree_lock);
5599
5600 return 0;
5601}
5602
5603EXPORT_FOR_TESTS
5604struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5605{
5606 struct btrfs_chunk_map *map;
5607
5608 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5609 if (!map)
5610 return NULL;
5611
5612 refcount_set(&map->refs, 1);
5613 RB_CLEAR_NODE(&map->rb_node);
5614
5615 return map;
5616}
5617
5618struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5619{
5620 const int size = btrfs_chunk_map_size(map->num_stripes);
5621 struct btrfs_chunk_map *clone;
5622
5623 clone = kmemdup(map, size, gfp);
5624 if (!clone)
5625 return NULL;
5626
5627 refcount_set(&clone->refs, 1);
5628 RB_CLEAR_NODE(&clone->rb_node);
5629
5630 return clone;
5631}
5632
5633static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5634 struct alloc_chunk_ctl *ctl,
5635 struct btrfs_device_info *devices_info)
5636{
5637 struct btrfs_fs_info *info = trans->fs_info;
5638 struct btrfs_chunk_map *map;
5639 struct btrfs_block_group *block_group;
5640 u64 start = ctl->start;
5641 u64 type = ctl->type;
5642 int ret;
5643 int i;
5644 int j;
5645
5646 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5647 if (!map)
5648 return ERR_PTR(-ENOMEM);
5649
5650 map->start = start;
5651 map->chunk_len = ctl->chunk_size;
5652 map->stripe_size = ctl->stripe_size;
5653 map->type = type;
5654 map->io_align = BTRFS_STRIPE_LEN;
5655 map->io_width = BTRFS_STRIPE_LEN;
5656 map->sub_stripes = ctl->sub_stripes;
5657 map->num_stripes = ctl->num_stripes;
5658
5659 for (i = 0; i < ctl->ndevs; ++i) {
5660 for (j = 0; j < ctl->dev_stripes; ++j) {
5661 int s = i * ctl->dev_stripes + j;
5662 map->stripes[s].dev = devices_info[i].dev;
5663 map->stripes[s].physical = devices_info[i].dev_offset +
5664 j * ctl->stripe_size;
5665 }
5666 }
5667
5668 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5669
5670 ret = btrfs_add_chunk_map(info, map);
5671 if (ret) {
5672 btrfs_free_chunk_map(map);
5673 return ERR_PTR(ret);
5674 }
5675
5676 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5677 if (IS_ERR(block_group)) {
5678 btrfs_remove_chunk_map(info, map);
5679 return block_group;
5680 }
5681
5682 for (int i = 0; i < map->num_stripes; i++) {
5683 struct btrfs_device *dev = map->stripes[i].dev;
5684
5685 btrfs_device_set_bytes_used(dev,
5686 dev->bytes_used + ctl->stripe_size);
5687 if (list_empty(&dev->post_commit_list))
5688 list_add_tail(&dev->post_commit_list,
5689 &trans->transaction->dev_update_list);
5690 }
5691
5692 atomic64_sub(ctl->stripe_size * map->num_stripes,
5693 &info->free_chunk_space);
5694
5695 check_raid56_incompat_flag(info, type);
5696 check_raid1c34_incompat_flag(info, type);
5697
5698 return block_group;
5699}
5700
5701struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5702 u64 type)
5703{
5704 struct btrfs_fs_info *info = trans->fs_info;
5705 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5706 struct btrfs_device_info *devices_info = NULL;
5707 struct alloc_chunk_ctl ctl;
5708 struct btrfs_block_group *block_group;
5709 int ret;
5710
5711 lockdep_assert_held(&info->chunk_mutex);
5712
5713 if (!alloc_profile_is_valid(type, 0)) {
5714 ASSERT(0);
5715 return ERR_PTR(-EINVAL);
5716 }
5717
5718 if (list_empty(&fs_devices->alloc_list)) {
5719 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5720 btrfs_debug(info, "%s: no writable device", __func__);
5721 return ERR_PTR(-ENOSPC);
5722 }
5723
5724 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5725 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5726 ASSERT(0);
5727 return ERR_PTR(-EINVAL);
5728 }
5729
5730 ctl.start = find_next_chunk(info);
5731 ctl.type = type;
5732 init_alloc_chunk_ctl(fs_devices, &ctl);
5733
5734 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5735 GFP_NOFS);
5736 if (!devices_info)
5737 return ERR_PTR(-ENOMEM);
5738
5739 ret = gather_device_info(fs_devices, &ctl, devices_info);
5740 if (ret < 0) {
5741 block_group = ERR_PTR(ret);
5742 goto out;
5743 }
5744
5745 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5746 if (ret < 0) {
5747 block_group = ERR_PTR(ret);
5748 goto out;
5749 }
5750
5751 block_group = create_chunk(trans, &ctl, devices_info);
5752
5753out:
5754 kfree(devices_info);
5755 return block_group;
5756}
5757
5758/*
5759 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5760 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5761 * chunks.
5762 *
5763 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5764 * phases.
5765 */
5766int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5767 struct btrfs_block_group *bg)
5768{
5769 struct btrfs_fs_info *fs_info = trans->fs_info;
5770 struct btrfs_root *chunk_root = fs_info->chunk_root;
5771 struct btrfs_key key;
5772 struct btrfs_chunk *chunk;
5773 struct btrfs_stripe *stripe;
5774 struct btrfs_chunk_map *map;
5775 size_t item_size;
5776 int i;
5777 int ret;
5778
5779 /*
5780 * We take the chunk_mutex for 2 reasons:
5781 *
5782 * 1) Updates and insertions in the chunk btree must be done while holding
5783 * the chunk_mutex, as well as updating the system chunk array in the
5784 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5785 * details;
5786 *
5787 * 2) To prevent races with the final phase of a device replace operation
5788 * that replaces the device object associated with the map's stripes,
5789 * because the device object's id can change at any time during that
5790 * final phase of the device replace operation
5791 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5792 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5793 * which would cause a failure when updating the device item, which does
5794 * not exists, or persisting a stripe of the chunk item with such ID.
5795 * Here we can't use the device_list_mutex because our caller already
5796 * has locked the chunk_mutex, and the final phase of device replace
5797 * acquires both mutexes - first the device_list_mutex and then the
5798 * chunk_mutex. Using any of those two mutexes protects us from a
5799 * concurrent device replace.
5800 */
5801 lockdep_assert_held(&fs_info->chunk_mutex);
5802
5803 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5804 if (IS_ERR(map)) {
5805 ret = PTR_ERR(map);
5806 btrfs_abort_transaction(trans, ret);
5807 return ret;
5808 }
5809
5810 item_size = btrfs_chunk_item_size(map->num_stripes);
5811
5812 chunk = kzalloc(item_size, GFP_NOFS);
5813 if (!chunk) {
5814 ret = -ENOMEM;
5815 btrfs_abort_transaction(trans, ret);
5816 goto out;
5817 }
5818
5819 for (i = 0; i < map->num_stripes; i++) {
5820 struct btrfs_device *device = map->stripes[i].dev;
5821
5822 ret = btrfs_update_device(trans, device);
5823 if (ret)
5824 goto out;
5825 }
5826
5827 stripe = &chunk->stripe;
5828 for (i = 0; i < map->num_stripes; i++) {
5829 struct btrfs_device *device = map->stripes[i].dev;
5830 const u64 dev_offset = map->stripes[i].physical;
5831
5832 btrfs_set_stack_stripe_devid(stripe, device->devid);
5833 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5834 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5835 stripe++;
5836 }
5837
5838 btrfs_set_stack_chunk_length(chunk, bg->length);
5839 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5840 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5841 btrfs_set_stack_chunk_type(chunk, map->type);
5842 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5843 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5844 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5845 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5846 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5847
5848 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5849 key.type = BTRFS_CHUNK_ITEM_KEY;
5850 key.offset = bg->start;
5851
5852 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5853 if (ret)
5854 goto out;
5855
5856 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5857
5858 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5859 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5860 if (ret)
5861 goto out;
5862 }
5863
5864out:
5865 kfree(chunk);
5866 btrfs_free_chunk_map(map);
5867 return ret;
5868}
5869
5870static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5871{
5872 struct btrfs_fs_info *fs_info = trans->fs_info;
5873 u64 alloc_profile;
5874 struct btrfs_block_group *meta_bg;
5875 struct btrfs_block_group *sys_bg;
5876
5877 /*
5878 * When adding a new device for sprouting, the seed device is read-only
5879 * so we must first allocate a metadata and a system chunk. But before
5880 * adding the block group items to the extent, device and chunk btrees,
5881 * we must first:
5882 *
5883 * 1) Create both chunks without doing any changes to the btrees, as
5884 * otherwise we would get -ENOSPC since the block groups from the
5885 * seed device are read-only;
5886 *
5887 * 2) Add the device item for the new sprout device - finishing the setup
5888 * of a new block group requires updating the device item in the chunk
5889 * btree, so it must exist when we attempt to do it. The previous step
5890 * ensures this does not fail with -ENOSPC.
5891 *
5892 * After that we can add the block group items to their btrees:
5893 * update existing device item in the chunk btree, add a new block group
5894 * item to the extent btree, add a new chunk item to the chunk btree and
5895 * finally add the new device extent items to the devices btree.
5896 */
5897
5898 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5899 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5900 if (IS_ERR(meta_bg))
5901 return PTR_ERR(meta_bg);
5902
5903 alloc_profile = btrfs_system_alloc_profile(fs_info);
5904 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5905 if (IS_ERR(sys_bg))
5906 return PTR_ERR(sys_bg);
5907
5908 return 0;
5909}
5910
5911static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5912{
5913 const int index = btrfs_bg_flags_to_raid_index(map->type);
5914
5915 return btrfs_raid_array[index].tolerated_failures;
5916}
5917
5918bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5919{
5920 struct btrfs_chunk_map *map;
5921 int miss_ndevs = 0;
5922 int i;
5923 bool ret = true;
5924
5925 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5926 if (IS_ERR(map))
5927 return false;
5928
5929 for (i = 0; i < map->num_stripes; i++) {
5930 if (test_bit(BTRFS_DEV_STATE_MISSING,
5931 &map->stripes[i].dev->dev_state)) {
5932 miss_ndevs++;
5933 continue;
5934 }
5935 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5936 &map->stripes[i].dev->dev_state)) {
5937 ret = false;
5938 goto end;
5939 }
5940 }
5941
5942 /*
5943 * If the number of missing devices is larger than max errors, we can
5944 * not write the data into that chunk successfully.
5945 */
5946 if (miss_ndevs > btrfs_chunk_max_errors(map))
5947 ret = false;
5948end:
5949 btrfs_free_chunk_map(map);
5950 return ret;
5951}
5952
5953void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5954{
5955 write_lock(&fs_info->mapping_tree_lock);
5956 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5957 struct btrfs_chunk_map *map;
5958 struct rb_node *node;
5959
5960 node = rb_first_cached(&fs_info->mapping_tree);
5961 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5962 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5963 RB_CLEAR_NODE(&map->rb_node);
5964 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5965 /* Once for the tree ref. */
5966 btrfs_free_chunk_map(map);
5967 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5968 }
5969 write_unlock(&fs_info->mapping_tree_lock);
5970}
5971
5972int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5973{
5974 struct btrfs_chunk_map *map;
5975 enum btrfs_raid_types index;
5976 int ret = 1;
5977
5978 map = btrfs_get_chunk_map(fs_info, logical, len);
5979 if (IS_ERR(map))
5980 /*
5981 * We could return errors for these cases, but that could get
5982 * ugly and we'd probably do the same thing which is just not do
5983 * anything else and exit, so return 1 so the callers don't try
5984 * to use other copies.
5985 */
5986 return 1;
5987
5988 index = btrfs_bg_flags_to_raid_index(map->type);
5989
5990 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5991 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5992 ret = btrfs_raid_array[index].ncopies;
5993 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5994 ret = 2;
5995 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5996 /*
5997 * There could be two corrupted data stripes, we need
5998 * to loop retry in order to rebuild the correct data.
5999 *
6000 * Fail a stripe at a time on every retry except the
6001 * stripe under reconstruction.
6002 */
6003 ret = map->num_stripes;
6004 btrfs_free_chunk_map(map);
6005 return ret;
6006}
6007
6008unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6009 u64 logical)
6010{
6011 struct btrfs_chunk_map *map;
6012 unsigned long len = fs_info->sectorsize;
6013
6014 if (!btrfs_fs_incompat(fs_info, RAID56))
6015 return len;
6016
6017 map = btrfs_get_chunk_map(fs_info, logical, len);
6018
6019 if (!WARN_ON(IS_ERR(map))) {
6020 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6021 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6022 btrfs_free_chunk_map(map);
6023 }
6024 return len;
6025}
6026
6027int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6028{
6029 struct btrfs_chunk_map *map;
6030 int ret = 0;
6031
6032 if (!btrfs_fs_incompat(fs_info, RAID56))
6033 return 0;
6034
6035 map = btrfs_get_chunk_map(fs_info, logical, len);
6036
6037 if (!WARN_ON(IS_ERR(map))) {
6038 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6039 ret = 1;
6040 btrfs_free_chunk_map(map);
6041 }
6042 return ret;
6043}
6044
6045static int find_live_mirror(struct btrfs_fs_info *fs_info,
6046 struct btrfs_chunk_map *map, int first,
6047 int dev_replace_is_ongoing)
6048{
6049 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6050 int i;
6051 int num_stripes;
6052 int preferred_mirror;
6053 int tolerance;
6054 struct btrfs_device *srcdev;
6055
6056 ASSERT((map->type &
6057 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6058
6059 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6060 num_stripes = map->sub_stripes;
6061 else
6062 num_stripes = map->num_stripes;
6063
6064 switch (policy) {
6065 default:
6066 /* Shouldn't happen, just warn and use pid instead of failing */
6067 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6068 policy);
6069 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6070 fallthrough;
6071 case BTRFS_READ_POLICY_PID:
6072 preferred_mirror = first + (current->pid % num_stripes);
6073 break;
6074 }
6075
6076 if (dev_replace_is_ongoing &&
6077 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6078 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6079 srcdev = fs_info->dev_replace.srcdev;
6080 else
6081 srcdev = NULL;
6082
6083 /*
6084 * try to avoid the drive that is the source drive for a
6085 * dev-replace procedure, only choose it if no other non-missing
6086 * mirror is available
6087 */
6088 for (tolerance = 0; tolerance < 2; tolerance++) {
6089 if (map->stripes[preferred_mirror].dev->bdev &&
6090 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6091 return preferred_mirror;
6092 for (i = first; i < first + num_stripes; i++) {
6093 if (map->stripes[i].dev->bdev &&
6094 (tolerance || map->stripes[i].dev != srcdev))
6095 return i;
6096 }
6097 }
6098
6099 /* we couldn't find one that doesn't fail. Just return something
6100 * and the io error handling code will clean up eventually
6101 */
6102 return preferred_mirror;
6103}
6104
6105static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6106 u64 logical,
6107 u16 total_stripes)
6108{
6109 struct btrfs_io_context *bioc;
6110
6111 bioc = kzalloc(
6112 /* The size of btrfs_io_context */
6113 sizeof(struct btrfs_io_context) +
6114 /* Plus the variable array for the stripes */
6115 sizeof(struct btrfs_io_stripe) * (total_stripes),
6116 GFP_NOFS);
6117
6118 if (!bioc)
6119 return NULL;
6120
6121 refcount_set(&bioc->refs, 1);
6122
6123 bioc->fs_info = fs_info;
6124 bioc->replace_stripe_src = -1;
6125 bioc->full_stripe_logical = (u64)-1;
6126 bioc->logical = logical;
6127
6128 return bioc;
6129}
6130
6131void btrfs_get_bioc(struct btrfs_io_context *bioc)
6132{
6133 WARN_ON(!refcount_read(&bioc->refs));
6134 refcount_inc(&bioc->refs);
6135}
6136
6137void btrfs_put_bioc(struct btrfs_io_context *bioc)
6138{
6139 if (!bioc)
6140 return;
6141 if (refcount_dec_and_test(&bioc->refs))
6142 kfree(bioc);
6143}
6144
6145/*
6146 * Please note that, discard won't be sent to target device of device
6147 * replace.
6148 */
6149struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6150 u64 logical, u64 *length_ret,
6151 u32 *num_stripes)
6152{
6153 struct btrfs_chunk_map *map;
6154 struct btrfs_discard_stripe *stripes;
6155 u64 length = *length_ret;
6156 u64 offset;
6157 u32 stripe_nr;
6158 u32 stripe_nr_end;
6159 u32 stripe_cnt;
6160 u64 stripe_end_offset;
6161 u64 stripe_offset;
6162 u32 stripe_index;
6163 u32 factor = 0;
6164 u32 sub_stripes = 0;
6165 u32 stripes_per_dev = 0;
6166 u32 remaining_stripes = 0;
6167 u32 last_stripe = 0;
6168 int ret;
6169 int i;
6170
6171 map = btrfs_get_chunk_map(fs_info, logical, length);
6172 if (IS_ERR(map))
6173 return ERR_CAST(map);
6174
6175 /* we don't discard raid56 yet */
6176 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177 ret = -EOPNOTSUPP;
6178 goto out_free_map;
6179 }
6180
6181 offset = logical - map->start;
6182 length = min_t(u64, map->start + map->chunk_len - logical, length);
6183 *length_ret = length;
6184
6185 /*
6186 * stripe_nr counts the total number of stripes we have to stride
6187 * to get to this block
6188 */
6189 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6190
6191 /* stripe_offset is the offset of this block in its stripe */
6192 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6193
6194 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6195 BTRFS_STRIPE_LEN_SHIFT;
6196 stripe_cnt = stripe_nr_end - stripe_nr;
6197 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6198 (offset + length);
6199 /*
6200 * after this, stripe_nr is the number of stripes on this
6201 * device we have to walk to find the data, and stripe_index is
6202 * the number of our device in the stripe array
6203 */
6204 *num_stripes = 1;
6205 stripe_index = 0;
6206 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6207 BTRFS_BLOCK_GROUP_RAID10)) {
6208 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6209 sub_stripes = 1;
6210 else
6211 sub_stripes = map->sub_stripes;
6212
6213 factor = map->num_stripes / sub_stripes;
6214 *num_stripes = min_t(u64, map->num_stripes,
6215 sub_stripes * stripe_cnt);
6216 stripe_index = stripe_nr % factor;
6217 stripe_nr /= factor;
6218 stripe_index *= sub_stripes;
6219
6220 remaining_stripes = stripe_cnt % factor;
6221 stripes_per_dev = stripe_cnt / factor;
6222 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6223 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6224 BTRFS_BLOCK_GROUP_DUP)) {
6225 *num_stripes = map->num_stripes;
6226 } else {
6227 stripe_index = stripe_nr % map->num_stripes;
6228 stripe_nr /= map->num_stripes;
6229 }
6230
6231 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6232 if (!stripes) {
6233 ret = -ENOMEM;
6234 goto out_free_map;
6235 }
6236
6237 for (i = 0; i < *num_stripes; i++) {
6238 stripes[i].physical =
6239 map->stripes[stripe_index].physical +
6240 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6241 stripes[i].dev = map->stripes[stripe_index].dev;
6242
6243 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6244 BTRFS_BLOCK_GROUP_RAID10)) {
6245 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6246
6247 if (i / sub_stripes < remaining_stripes)
6248 stripes[i].length += BTRFS_STRIPE_LEN;
6249
6250 /*
6251 * Special for the first stripe and
6252 * the last stripe:
6253 *
6254 * |-------|...|-------|
6255 * |----------|
6256 * off end_off
6257 */
6258 if (i < sub_stripes)
6259 stripes[i].length -= stripe_offset;
6260
6261 if (stripe_index >= last_stripe &&
6262 stripe_index <= (last_stripe +
6263 sub_stripes - 1))
6264 stripes[i].length -= stripe_end_offset;
6265
6266 if (i == sub_stripes - 1)
6267 stripe_offset = 0;
6268 } else {
6269 stripes[i].length = length;
6270 }
6271
6272 stripe_index++;
6273 if (stripe_index == map->num_stripes) {
6274 stripe_index = 0;
6275 stripe_nr++;
6276 }
6277 }
6278
6279 btrfs_free_chunk_map(map);
6280 return stripes;
6281out_free_map:
6282 btrfs_free_chunk_map(map);
6283 return ERR_PTR(ret);
6284}
6285
6286static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6287{
6288 struct btrfs_block_group *cache;
6289 bool ret;
6290
6291 /* Non zoned filesystem does not use "to_copy" flag */
6292 if (!btrfs_is_zoned(fs_info))
6293 return false;
6294
6295 cache = btrfs_lookup_block_group(fs_info, logical);
6296
6297 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6298
6299 btrfs_put_block_group(cache);
6300 return ret;
6301}
6302
6303static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6304 struct btrfs_io_context *bioc,
6305 struct btrfs_dev_replace *dev_replace,
6306 u64 logical,
6307 int *num_stripes_ret, int *max_errors_ret)
6308{
6309 u64 srcdev_devid = dev_replace->srcdev->devid;
6310 /*
6311 * At this stage, num_stripes is still the real number of stripes,
6312 * excluding the duplicated stripes.
6313 */
6314 int num_stripes = *num_stripes_ret;
6315 int nr_extra_stripes = 0;
6316 int max_errors = *max_errors_ret;
6317 int i;
6318
6319 /*
6320 * A block group which has "to_copy" set will eventually be copied by
6321 * the dev-replace process. We can avoid cloning IO here.
6322 */
6323 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6324 return;
6325
6326 /*
6327 * Duplicate the write operations while the dev-replace procedure is
6328 * running. Since the copying of the old disk to the new disk takes
6329 * place at run time while the filesystem is mounted writable, the
6330 * regular write operations to the old disk have to be duplicated to go
6331 * to the new disk as well.
6332 *
6333 * Note that device->missing is handled by the caller, and that the
6334 * write to the old disk is already set up in the stripes array.
6335 */
6336 for (i = 0; i < num_stripes; i++) {
6337 struct btrfs_io_stripe *old = &bioc->stripes[i];
6338 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6339
6340 if (old->dev->devid != srcdev_devid)
6341 continue;
6342
6343 new->physical = old->physical;
6344 new->dev = dev_replace->tgtdev;
6345 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6346 bioc->replace_stripe_src = i;
6347 nr_extra_stripes++;
6348 }
6349
6350 /* We can only have at most 2 extra nr_stripes (for DUP). */
6351 ASSERT(nr_extra_stripes <= 2);
6352 /*
6353 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6354 * replace.
6355 * If we have 2 extra stripes, only choose the one with smaller physical.
6356 */
6357 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6358 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6359 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6360
6361 /* Only DUP can have two extra stripes. */
6362 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6363
6364 /*
6365 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6366 * The extra stripe would still be there, but won't be accessed.
6367 */
6368 if (first->physical > second->physical) {
6369 swap(second->physical, first->physical);
6370 swap(second->dev, first->dev);
6371 nr_extra_stripes--;
6372 }
6373 }
6374
6375 *num_stripes_ret = num_stripes + nr_extra_stripes;
6376 *max_errors_ret = max_errors + nr_extra_stripes;
6377 bioc->replace_nr_stripes = nr_extra_stripes;
6378}
6379
6380static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6381 struct btrfs_io_geometry *io_geom)
6382{
6383 /*
6384 * Stripe_nr is the stripe where this block falls. stripe_offset is
6385 * the offset of this block in its stripe.
6386 */
6387 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6388 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6389 ASSERT(io_geom->stripe_offset < U32_MAX);
6390
6391 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6392 unsigned long full_stripe_len =
6393 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6394
6395 /*
6396 * For full stripe start, we use previously calculated
6397 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6398 * STRIPE_LEN.
6399 *
6400 * By this we can avoid u64 division completely. And we have
6401 * to go rounddown(), not round_down(), as nr_data_stripes is
6402 * not ensured to be power of 2.
6403 */
6404 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6405 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6406
6407 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6408 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6409 /*
6410 * For writes to RAID56, allow to write a full stripe set, but
6411 * no straddling of stripe sets.
6412 */
6413 if (io_geom->op == BTRFS_MAP_WRITE)
6414 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6415 }
6416
6417 /*
6418 * For other RAID types and for RAID56 reads, allow a single stripe (on
6419 * a single disk).
6420 */
6421 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6422 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6423 return U64_MAX;
6424}
6425
6426static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6427 u64 *length, struct btrfs_io_stripe *dst,
6428 struct btrfs_chunk_map *map,
6429 struct btrfs_io_geometry *io_geom)
6430{
6431 dst->dev = map->stripes[io_geom->stripe_index].dev;
6432
6433 if (io_geom->op == BTRFS_MAP_READ &&
6434 btrfs_need_stripe_tree_update(fs_info, map->type))
6435 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6436 map->type,
6437 io_geom->stripe_index, dst);
6438
6439 dst->physical = map->stripes[io_geom->stripe_index].physical +
6440 io_geom->stripe_offset +
6441 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6442 return 0;
6443}
6444
6445static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6446 const struct btrfs_io_stripe *smap,
6447 const struct btrfs_chunk_map *map,
6448 int num_alloc_stripes,
6449 enum btrfs_map_op op, int mirror_num)
6450{
6451 if (!smap)
6452 return false;
6453
6454 if (num_alloc_stripes != 1)
6455 return false;
6456
6457 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6458 return false;
6459
6460 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6461 return false;
6462
6463 return true;
6464}
6465
6466static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6467 struct btrfs_io_geometry *io_geom)
6468{
6469 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6470 io_geom->stripe_nr /= map->num_stripes;
6471 if (io_geom->op == BTRFS_MAP_READ)
6472 io_geom->mirror_num = 1;
6473}
6474
6475static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6476 struct btrfs_chunk_map *map,
6477 struct btrfs_io_geometry *io_geom,
6478 bool dev_replace_is_ongoing)
6479{
6480 if (io_geom->op != BTRFS_MAP_READ) {
6481 io_geom->num_stripes = map->num_stripes;
6482 return;
6483 }
6484
6485 if (io_geom->mirror_num) {
6486 io_geom->stripe_index = io_geom->mirror_num - 1;
6487 return;
6488 }
6489
6490 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6491 dev_replace_is_ongoing);
6492 io_geom->mirror_num = io_geom->stripe_index + 1;
6493}
6494
6495static void map_blocks_dup(const struct btrfs_chunk_map *map,
6496 struct btrfs_io_geometry *io_geom)
6497{
6498 if (io_geom->op != BTRFS_MAP_READ) {
6499 io_geom->num_stripes = map->num_stripes;
6500 return;
6501 }
6502
6503 if (io_geom->mirror_num) {
6504 io_geom->stripe_index = io_geom->mirror_num - 1;
6505 return;
6506 }
6507
6508 io_geom->mirror_num = 1;
6509}
6510
6511static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6512 struct btrfs_chunk_map *map,
6513 struct btrfs_io_geometry *io_geom,
6514 bool dev_replace_is_ongoing)
6515{
6516 u32 factor = map->num_stripes / map->sub_stripes;
6517 int old_stripe_index;
6518
6519 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6520 io_geom->stripe_nr /= factor;
6521
6522 if (io_geom->op != BTRFS_MAP_READ) {
6523 io_geom->num_stripes = map->sub_stripes;
6524 return;
6525 }
6526
6527 if (io_geom->mirror_num) {
6528 io_geom->stripe_index += io_geom->mirror_num - 1;
6529 return;
6530 }
6531
6532 old_stripe_index = io_geom->stripe_index;
6533 io_geom->stripe_index = find_live_mirror(fs_info, map,
6534 io_geom->stripe_index,
6535 dev_replace_is_ongoing);
6536 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6537}
6538
6539static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6540 struct btrfs_io_geometry *io_geom,
6541 u64 logical, u64 *length)
6542{
6543 int data_stripes = nr_data_stripes(map);
6544
6545 /*
6546 * Needs full stripe mapping.
6547 *
6548 * Push stripe_nr back to the start of the full stripe For those cases
6549 * needing a full stripe, @stripe_nr is the full stripe number.
6550 *
6551 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6552 * that can be expensive. Here we just divide @stripe_nr with
6553 * @data_stripes.
6554 */
6555 io_geom->stripe_nr /= data_stripes;
6556
6557 /* RAID[56] write or recovery. Return all stripes */
6558 io_geom->num_stripes = map->num_stripes;
6559 io_geom->max_errors = btrfs_chunk_max_errors(map);
6560
6561 /* Return the length to the full stripe end. */
6562 *length = min(logical + *length,
6563 io_geom->raid56_full_stripe_start + map->start +
6564 btrfs_stripe_nr_to_offset(data_stripes)) -
6565 logical;
6566 io_geom->stripe_index = 0;
6567 io_geom->stripe_offset = 0;
6568}
6569
6570static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6571 struct btrfs_io_geometry *io_geom)
6572{
6573 int data_stripes = nr_data_stripes(map);
6574
6575 ASSERT(io_geom->mirror_num <= 1);
6576 /* Just grab the data stripe directly. */
6577 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6578 io_geom->stripe_nr /= data_stripes;
6579
6580 /* We distribute the parity blocks across stripes. */
6581 io_geom->stripe_index =
6582 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6583
6584 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6585 io_geom->mirror_num = 1;
6586}
6587
6588static void map_blocks_single(const struct btrfs_chunk_map *map,
6589 struct btrfs_io_geometry *io_geom)
6590{
6591 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6592 io_geom->stripe_nr /= map->num_stripes;
6593 io_geom->mirror_num = io_geom->stripe_index + 1;
6594}
6595
6596/*
6597 * Map one logical range to one or more physical ranges.
6598 *
6599 * @length: (Mandatory) mapped length of this run.
6600 * One logical range can be split into different segments
6601 * due to factors like zones and RAID0/5/6/10 stripe
6602 * boundaries.
6603 *
6604 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6605 * which has one or more physical ranges (btrfs_io_stripe)
6606 * recorded inside.
6607 * Caller should call btrfs_put_bioc() to free it after use.
6608 *
6609 * @smap: (Optional) single physical range optimization.
6610 * If the map request can be fulfilled by one single
6611 * physical range, and this is parameter is not NULL,
6612 * then @bioc_ret would be NULL, and @smap would be
6613 * updated.
6614 *
6615 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6616 * value is 0.
6617 *
6618 * Mirror number 0 means to choose any live mirrors.
6619 *
6620 * For non-RAID56 profiles, non-zero mirror_num means
6621 * the Nth mirror. (e.g. mirror_num 1 means the first
6622 * copy).
6623 *
6624 * For RAID56 profile, mirror 1 means rebuild from P and
6625 * the remaining data stripes.
6626 *
6627 * For RAID6 profile, mirror > 2 means mark another
6628 * data/P stripe error and rebuild from the remaining
6629 * stripes..
6630 */
6631int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6632 u64 logical, u64 *length,
6633 struct btrfs_io_context **bioc_ret,
6634 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6635{
6636 struct btrfs_chunk_map *map;
6637 struct btrfs_io_geometry io_geom = { 0 };
6638 u64 map_offset;
6639 int i;
6640 int ret = 0;
6641 int num_copies;
6642 struct btrfs_io_context *bioc = NULL;
6643 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6644 int dev_replace_is_ongoing = 0;
6645 u16 num_alloc_stripes;
6646 u64 max_len;
6647
6648 ASSERT(bioc_ret);
6649
6650 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6651 io_geom.num_stripes = 1;
6652 io_geom.stripe_index = 0;
6653 io_geom.op = op;
6654
6655 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6656 if (io_geom.mirror_num > num_copies)
6657 return -EINVAL;
6658
6659 map = btrfs_get_chunk_map(fs_info, logical, *length);
6660 if (IS_ERR(map))
6661 return PTR_ERR(map);
6662
6663 map_offset = logical - map->start;
6664 io_geom.raid56_full_stripe_start = (u64)-1;
6665 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6666 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6667
6668 down_read(&dev_replace->rwsem);
6669 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6670 /*
6671 * Hold the semaphore for read during the whole operation, write is
6672 * requested at commit time but must wait.
6673 */
6674 if (!dev_replace_is_ongoing)
6675 up_read(&dev_replace->rwsem);
6676
6677 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6678 case BTRFS_BLOCK_GROUP_RAID0:
6679 map_blocks_raid0(map, &io_geom);
6680 break;
6681 case BTRFS_BLOCK_GROUP_RAID1:
6682 case BTRFS_BLOCK_GROUP_RAID1C3:
6683 case BTRFS_BLOCK_GROUP_RAID1C4:
6684 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6685 break;
6686 case BTRFS_BLOCK_GROUP_DUP:
6687 map_blocks_dup(map, &io_geom);
6688 break;
6689 case BTRFS_BLOCK_GROUP_RAID10:
6690 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6691 break;
6692 case BTRFS_BLOCK_GROUP_RAID5:
6693 case BTRFS_BLOCK_GROUP_RAID6:
6694 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6695 map_blocks_raid56_write(map, &io_geom, logical, length);
6696 else
6697 map_blocks_raid56_read(map, &io_geom);
6698 break;
6699 default:
6700 /*
6701 * After this, stripe_nr is the number of stripes on this
6702 * device we have to walk to find the data, and stripe_index is
6703 * the number of our device in the stripe array
6704 */
6705 map_blocks_single(map, &io_geom);
6706 break;
6707 }
6708 if (io_geom.stripe_index >= map->num_stripes) {
6709 btrfs_crit(fs_info,
6710 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6711 io_geom.stripe_index, map->num_stripes);
6712 ret = -EINVAL;
6713 goto out;
6714 }
6715
6716 num_alloc_stripes = io_geom.num_stripes;
6717 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6718 op != BTRFS_MAP_READ)
6719 /*
6720 * For replace case, we need to add extra stripes for extra
6721 * duplicated stripes.
6722 *
6723 * For both WRITE and GET_READ_MIRRORS, we may have at most
6724 * 2 more stripes (DUP types, otherwise 1).
6725 */
6726 num_alloc_stripes += 2;
6727
6728 /*
6729 * If this I/O maps to a single device, try to return the device and
6730 * physical block information on the stack instead of allocating an
6731 * I/O context structure.
6732 */
6733 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6734 io_geom.mirror_num)) {
6735 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6736 if (mirror_num_ret)
6737 *mirror_num_ret = io_geom.mirror_num;
6738 *bioc_ret = NULL;
6739 goto out;
6740 }
6741
6742 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6743 if (!bioc) {
6744 ret = -ENOMEM;
6745 goto out;
6746 }
6747 bioc->map_type = map->type;
6748
6749 /*
6750 * For RAID56 full map, we need to make sure the stripes[] follows the
6751 * rule that data stripes are all ordered, then followed with P and Q
6752 * (if we have).
6753 *
6754 * It's still mostly the same as other profiles, just with extra rotation.
6755 */
6756 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6757 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6758 /*
6759 * For RAID56 @stripe_nr is already the number of full stripes
6760 * before us, which is also the rotation value (needs to modulo
6761 * with num_stripes).
6762 *
6763 * In this case, we just add @stripe_nr with @i, then do the
6764 * modulo, to reduce one modulo call.
6765 */
6766 bioc->full_stripe_logical = map->start +
6767 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6768 nr_data_stripes(map));
6769 for (int i = 0; i < io_geom.num_stripes; i++) {
6770 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6771 u32 stripe_index;
6772
6773 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6774 dst->dev = map->stripes[stripe_index].dev;
6775 dst->physical =
6776 map->stripes[stripe_index].physical +
6777 io_geom.stripe_offset +
6778 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6779 }
6780 } else {
6781 /*
6782 * For all other non-RAID56 profiles, just copy the target
6783 * stripe into the bioc.
6784 */
6785 for (i = 0; i < io_geom.num_stripes; i++) {
6786 ret = set_io_stripe(fs_info, logical, length,
6787 &bioc->stripes[i], map, &io_geom);
6788 if (ret < 0)
6789 break;
6790 io_geom.stripe_index++;
6791 }
6792 }
6793
6794 if (ret) {
6795 *bioc_ret = NULL;
6796 btrfs_put_bioc(bioc);
6797 goto out;
6798 }
6799
6800 if (op != BTRFS_MAP_READ)
6801 io_geom.max_errors = btrfs_chunk_max_errors(map);
6802
6803 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6804 op != BTRFS_MAP_READ) {
6805 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6806 &io_geom.num_stripes, &io_geom.max_errors);
6807 }
6808
6809 *bioc_ret = bioc;
6810 bioc->num_stripes = io_geom.num_stripes;
6811 bioc->max_errors = io_geom.max_errors;
6812 bioc->mirror_num = io_geom.mirror_num;
6813
6814out:
6815 if (dev_replace_is_ongoing) {
6816 lockdep_assert_held(&dev_replace->rwsem);
6817 /* Unlock and let waiting writers proceed */
6818 up_read(&dev_replace->rwsem);
6819 }
6820 btrfs_free_chunk_map(map);
6821 return ret;
6822}
6823
6824static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6825 const struct btrfs_fs_devices *fs_devices)
6826{
6827 if (args->fsid == NULL)
6828 return true;
6829 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6830 return true;
6831 return false;
6832}
6833
6834static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6835 const struct btrfs_device *device)
6836{
6837 if (args->missing) {
6838 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6839 !device->bdev)
6840 return true;
6841 return false;
6842 }
6843
6844 if (device->devid != args->devid)
6845 return false;
6846 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6847 return false;
6848 return true;
6849}
6850
6851/*
6852 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6853 * return NULL.
6854 *
6855 * If devid and uuid are both specified, the match must be exact, otherwise
6856 * only devid is used.
6857 */
6858struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6859 const struct btrfs_dev_lookup_args *args)
6860{
6861 struct btrfs_device *device;
6862 struct btrfs_fs_devices *seed_devs;
6863
6864 if (dev_args_match_fs_devices(args, fs_devices)) {
6865 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6866 if (dev_args_match_device(args, device))
6867 return device;
6868 }
6869 }
6870
6871 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6872 if (!dev_args_match_fs_devices(args, seed_devs))
6873 continue;
6874 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6875 if (dev_args_match_device(args, device))
6876 return device;
6877 }
6878 }
6879
6880 return NULL;
6881}
6882
6883static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6884 u64 devid, u8 *dev_uuid)
6885{
6886 struct btrfs_device *device;
6887 unsigned int nofs_flag;
6888
6889 /*
6890 * We call this under the chunk_mutex, so we want to use NOFS for this
6891 * allocation, however we don't want to change btrfs_alloc_device() to
6892 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6893 * places.
6894 */
6895
6896 nofs_flag = memalloc_nofs_save();
6897 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6898 memalloc_nofs_restore(nofs_flag);
6899 if (IS_ERR(device))
6900 return device;
6901
6902 list_add(&device->dev_list, &fs_devices->devices);
6903 device->fs_devices = fs_devices;
6904 fs_devices->num_devices++;
6905
6906 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6907 fs_devices->missing_devices++;
6908
6909 return device;
6910}
6911
6912/*
6913 * Allocate new device struct, set up devid and UUID.
6914 *
6915 * @fs_info: used only for generating a new devid, can be NULL if
6916 * devid is provided (i.e. @devid != NULL).
6917 * @devid: a pointer to devid for this device. If NULL a new devid
6918 * is generated.
6919 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6920 * is generated.
6921 * @path: a pointer to device path if available, NULL otherwise.
6922 *
6923 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6924 * on error. Returned struct is not linked onto any lists and must be
6925 * destroyed with btrfs_free_device.
6926 */
6927struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928 const u64 *devid, const u8 *uuid,
6929 const char *path)
6930{
6931 struct btrfs_device *dev;
6932 u64 tmp;
6933
6934 if (WARN_ON(!devid && !fs_info))
6935 return ERR_PTR(-EINVAL);
6936
6937 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938 if (!dev)
6939 return ERR_PTR(-ENOMEM);
6940
6941 INIT_LIST_HEAD(&dev->dev_list);
6942 INIT_LIST_HEAD(&dev->dev_alloc_list);
6943 INIT_LIST_HEAD(&dev->post_commit_list);
6944
6945 atomic_set(&dev->dev_stats_ccnt, 0);
6946 btrfs_device_data_ordered_init(dev);
6947 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6948
6949 if (devid)
6950 tmp = *devid;
6951 else {
6952 int ret;
6953
6954 ret = find_next_devid(fs_info, &tmp);
6955 if (ret) {
6956 btrfs_free_device(dev);
6957 return ERR_PTR(ret);
6958 }
6959 }
6960 dev->devid = tmp;
6961
6962 if (uuid)
6963 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6964 else
6965 generate_random_uuid(dev->uuid);
6966
6967 if (path) {
6968 struct rcu_string *name;
6969
6970 name = rcu_string_strdup(path, GFP_KERNEL);
6971 if (!name) {
6972 btrfs_free_device(dev);
6973 return ERR_PTR(-ENOMEM);
6974 }
6975 rcu_assign_pointer(dev->name, name);
6976 }
6977
6978 return dev;
6979}
6980
6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982 u64 devid, u8 *uuid, bool error)
6983{
6984 if (error)
6985 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986 devid, uuid);
6987 else
6988 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989 devid, uuid);
6990}
6991
6992u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6993{
6994 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6995
6996 return div_u64(map->chunk_len, data_stripes);
6997}
6998
6999#if BITS_PER_LONG == 32
7000/*
7001 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002 * can't be accessed on 32bit systems.
7003 *
7004 * This function do mount time check to reject the fs if it already has
7005 * metadata chunk beyond that limit.
7006 */
7007static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008 u64 logical, u64 length, u64 type)
7009{
7010 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011 return 0;
7012
7013 if (logical + length < MAX_LFS_FILESIZE)
7014 return 0;
7015
7016 btrfs_err_32bit_limit(fs_info);
7017 return -EOVERFLOW;
7018}
7019
7020/*
7021 * This is to give early warning for any metadata chunk reaching
7022 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023 * Although we can still access the metadata, it's not going to be possible
7024 * once the limit is reached.
7025 */
7026static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027 u64 logical, u64 length, u64 type)
7028{
7029 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030 return;
7031
7032 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033 return;
7034
7035 btrfs_warn_32bit_limit(fs_info);
7036}
7037#endif
7038
7039static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040 u64 devid, u8 *uuid)
7041{
7042 struct btrfs_device *dev;
7043
7044 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045 btrfs_report_missing_device(fs_info, devid, uuid, true);
7046 return ERR_PTR(-ENOENT);
7047 }
7048
7049 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050 if (IS_ERR(dev)) {
7051 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052 devid, PTR_ERR(dev));
7053 return dev;
7054 }
7055 btrfs_report_missing_device(fs_info, devid, uuid, false);
7056
7057 return dev;
7058}
7059
7060static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061 struct btrfs_chunk *chunk)
7062{
7063 BTRFS_DEV_LOOKUP_ARGS(args);
7064 struct btrfs_fs_info *fs_info = leaf->fs_info;
7065 struct btrfs_chunk_map *map;
7066 u64 logical;
7067 u64 length;
7068 u64 devid;
7069 u64 type;
7070 u8 uuid[BTRFS_UUID_SIZE];
7071 int index;
7072 int num_stripes;
7073 int ret;
7074 int i;
7075
7076 logical = key->offset;
7077 length = btrfs_chunk_length(leaf, chunk);
7078 type = btrfs_chunk_type(leaf, chunk);
7079 index = btrfs_bg_flags_to_raid_index(type);
7080 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081
7082#if BITS_PER_LONG == 32
7083 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 if (ret < 0)
7085 return ret;
7086 warn_32bit_meta_chunk(fs_info, logical, length, type);
7087#endif
7088
7089 /*
7090 * Only need to verify chunk item if we're reading from sys chunk array,
7091 * as chunk item in tree block is already verified by tree-checker.
7092 */
7093 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095 if (ret)
7096 return ret;
7097 }
7098
7099 map = btrfs_find_chunk_map(fs_info, logical, 1);
7100
7101 /* already mapped? */
7102 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7103 btrfs_free_chunk_map(map);
7104 return 0;
7105 } else if (map) {
7106 btrfs_free_chunk_map(map);
7107 }
7108
7109 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7110 if (!map)
7111 return -ENOMEM;
7112
7113 map->start = logical;
7114 map->chunk_len = length;
7115 map->num_stripes = num_stripes;
7116 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7117 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7118 map->type = type;
7119 /*
7120 * We can't use the sub_stripes value, as for profiles other than
7121 * RAID10, they may have 0 as sub_stripes for filesystems created by
7122 * older mkfs (<v5.4).
7123 * In that case, it can cause divide-by-zero errors later.
7124 * Since currently sub_stripes is fixed for each profile, let's
7125 * use the trusted value instead.
7126 */
7127 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7128 map->verified_stripes = 0;
7129 map->stripe_size = btrfs_calc_stripe_length(map);
7130 for (i = 0; i < num_stripes; i++) {
7131 map->stripes[i].physical =
7132 btrfs_stripe_offset_nr(leaf, chunk, i);
7133 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7134 args.devid = devid;
7135 read_extent_buffer(leaf, uuid, (unsigned long)
7136 btrfs_stripe_dev_uuid_nr(chunk, i),
7137 BTRFS_UUID_SIZE);
7138 args.uuid = uuid;
7139 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7140 if (!map->stripes[i].dev) {
7141 map->stripes[i].dev = handle_missing_device(fs_info,
7142 devid, uuid);
7143 if (IS_ERR(map->stripes[i].dev)) {
7144 ret = PTR_ERR(map->stripes[i].dev);
7145 btrfs_free_chunk_map(map);
7146 return ret;
7147 }
7148 }
7149
7150 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7151 &(map->stripes[i].dev->dev_state));
7152 }
7153
7154 ret = btrfs_add_chunk_map(fs_info, map);
7155 if (ret < 0) {
7156 btrfs_err(fs_info,
7157 "failed to add chunk map, start=%llu len=%llu: %d",
7158 map->start, map->chunk_len, ret);
7159 }
7160
7161 return ret;
7162}
7163
7164static void fill_device_from_item(struct extent_buffer *leaf,
7165 struct btrfs_dev_item *dev_item,
7166 struct btrfs_device *device)
7167{
7168 unsigned long ptr;
7169
7170 device->devid = btrfs_device_id(leaf, dev_item);
7171 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7172 device->total_bytes = device->disk_total_bytes;
7173 device->commit_total_bytes = device->disk_total_bytes;
7174 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7175 device->commit_bytes_used = device->bytes_used;
7176 device->type = btrfs_device_type(leaf, dev_item);
7177 device->io_align = btrfs_device_io_align(leaf, dev_item);
7178 device->io_width = btrfs_device_io_width(leaf, dev_item);
7179 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7180 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7181 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7182
7183 ptr = btrfs_device_uuid(dev_item);
7184 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7185}
7186
7187static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7188 u8 *fsid)
7189{
7190 struct btrfs_fs_devices *fs_devices;
7191 int ret;
7192
7193 lockdep_assert_held(&uuid_mutex);
7194 ASSERT(fsid);
7195
7196 /* This will match only for multi-device seed fs */
7197 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7198 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7199 return fs_devices;
7200
7201
7202 fs_devices = find_fsid(fsid, NULL);
7203 if (!fs_devices) {
7204 if (!btrfs_test_opt(fs_info, DEGRADED))
7205 return ERR_PTR(-ENOENT);
7206
7207 fs_devices = alloc_fs_devices(fsid);
7208 if (IS_ERR(fs_devices))
7209 return fs_devices;
7210
7211 fs_devices->seeding = true;
7212 fs_devices->opened = 1;
7213 return fs_devices;
7214 }
7215
7216 /*
7217 * Upon first call for a seed fs fsid, just create a private copy of the
7218 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7219 */
7220 fs_devices = clone_fs_devices(fs_devices);
7221 if (IS_ERR(fs_devices))
7222 return fs_devices;
7223
7224 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7225 if (ret) {
7226 free_fs_devices(fs_devices);
7227 return ERR_PTR(ret);
7228 }
7229
7230 if (!fs_devices->seeding) {
7231 close_fs_devices(fs_devices);
7232 free_fs_devices(fs_devices);
7233 return ERR_PTR(-EINVAL);
7234 }
7235
7236 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7237
7238 return fs_devices;
7239}
7240
7241static int read_one_dev(struct extent_buffer *leaf,
7242 struct btrfs_dev_item *dev_item)
7243{
7244 BTRFS_DEV_LOOKUP_ARGS(args);
7245 struct btrfs_fs_info *fs_info = leaf->fs_info;
7246 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247 struct btrfs_device *device;
7248 u64 devid;
7249 int ret;
7250 u8 fs_uuid[BTRFS_FSID_SIZE];
7251 u8 dev_uuid[BTRFS_UUID_SIZE];
7252
7253 devid = btrfs_device_id(leaf, dev_item);
7254 args.devid = devid;
7255 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7256 BTRFS_UUID_SIZE);
7257 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7258 BTRFS_FSID_SIZE);
7259 args.uuid = dev_uuid;
7260 args.fsid = fs_uuid;
7261
7262 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7263 fs_devices = open_seed_devices(fs_info, fs_uuid);
7264 if (IS_ERR(fs_devices))
7265 return PTR_ERR(fs_devices);
7266 }
7267
7268 device = btrfs_find_device(fs_info->fs_devices, &args);
7269 if (!device) {
7270 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271 btrfs_report_missing_device(fs_info, devid,
7272 dev_uuid, true);
7273 return -ENOENT;
7274 }
7275
7276 device = add_missing_dev(fs_devices, devid, dev_uuid);
7277 if (IS_ERR(device)) {
7278 btrfs_err(fs_info,
7279 "failed to add missing dev %llu: %ld",
7280 devid, PTR_ERR(device));
7281 return PTR_ERR(device);
7282 }
7283 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7284 } else {
7285 if (!device->bdev) {
7286 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7287 btrfs_report_missing_device(fs_info,
7288 devid, dev_uuid, true);
7289 return -ENOENT;
7290 }
7291 btrfs_report_missing_device(fs_info, devid,
7292 dev_uuid, false);
7293 }
7294
7295 if (!device->bdev &&
7296 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7297 /*
7298 * this happens when a device that was properly setup
7299 * in the device info lists suddenly goes bad.
7300 * device->bdev is NULL, and so we have to set
7301 * device->missing to one here
7302 */
7303 device->fs_devices->missing_devices++;
7304 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7305 }
7306
7307 /* Move the device to its own fs_devices */
7308 if (device->fs_devices != fs_devices) {
7309 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7310 &device->dev_state));
7311
7312 list_move(&device->dev_list, &fs_devices->devices);
7313 device->fs_devices->num_devices--;
7314 fs_devices->num_devices++;
7315
7316 device->fs_devices->missing_devices--;
7317 fs_devices->missing_devices++;
7318
7319 device->fs_devices = fs_devices;
7320 }
7321 }
7322
7323 if (device->fs_devices != fs_info->fs_devices) {
7324 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7325 if (device->generation !=
7326 btrfs_device_generation(leaf, dev_item))
7327 return -EINVAL;
7328 }
7329
7330 fill_device_from_item(leaf, dev_item, device);
7331 if (device->bdev) {
7332 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7333
7334 if (device->total_bytes > max_total_bytes) {
7335 btrfs_err(fs_info,
7336 "device total_bytes should be at most %llu but found %llu",
7337 max_total_bytes, device->total_bytes);
7338 return -EINVAL;
7339 }
7340 }
7341 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7342 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7343 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7344 device->fs_devices->total_rw_bytes += device->total_bytes;
7345 atomic64_add(device->total_bytes - device->bytes_used,
7346 &fs_info->free_chunk_space);
7347 }
7348 ret = 0;
7349 return ret;
7350}
7351
7352int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7353{
7354 struct btrfs_super_block *super_copy = fs_info->super_copy;
7355 struct extent_buffer *sb;
7356 struct btrfs_disk_key *disk_key;
7357 struct btrfs_chunk *chunk;
7358 u8 *array_ptr;
7359 unsigned long sb_array_offset;
7360 int ret = 0;
7361 u32 num_stripes;
7362 u32 array_size;
7363 u32 len = 0;
7364 u32 cur_offset;
7365 u64 type;
7366 struct btrfs_key key;
7367
7368 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7369
7370 /*
7371 * We allocated a dummy extent, just to use extent buffer accessors.
7372 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7373 * that's fine, we will not go beyond system chunk array anyway.
7374 */
7375 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7376 if (!sb)
7377 return -ENOMEM;
7378 set_extent_buffer_uptodate(sb);
7379
7380 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7381 array_size = btrfs_super_sys_array_size(super_copy);
7382
7383 array_ptr = super_copy->sys_chunk_array;
7384 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7385 cur_offset = 0;
7386
7387 while (cur_offset < array_size) {
7388 disk_key = (struct btrfs_disk_key *)array_ptr;
7389 len = sizeof(*disk_key);
7390 if (cur_offset + len > array_size)
7391 goto out_short_read;
7392
7393 btrfs_disk_key_to_cpu(&key, disk_key);
7394
7395 array_ptr += len;
7396 sb_array_offset += len;
7397 cur_offset += len;
7398
7399 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7400 btrfs_err(fs_info,
7401 "unexpected item type %u in sys_array at offset %u",
7402 (u32)key.type, cur_offset);
7403 ret = -EIO;
7404 break;
7405 }
7406
7407 chunk = (struct btrfs_chunk *)sb_array_offset;
7408 /*
7409 * At least one btrfs_chunk with one stripe must be present,
7410 * exact stripe count check comes afterwards
7411 */
7412 len = btrfs_chunk_item_size(1);
7413 if (cur_offset + len > array_size)
7414 goto out_short_read;
7415
7416 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7417 if (!num_stripes) {
7418 btrfs_err(fs_info,
7419 "invalid number of stripes %u in sys_array at offset %u",
7420 num_stripes, cur_offset);
7421 ret = -EIO;
7422 break;
7423 }
7424
7425 type = btrfs_chunk_type(sb, chunk);
7426 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7427 btrfs_err(fs_info,
7428 "invalid chunk type %llu in sys_array at offset %u",
7429 type, cur_offset);
7430 ret = -EIO;
7431 break;
7432 }
7433
7434 len = btrfs_chunk_item_size(num_stripes);
7435 if (cur_offset + len > array_size)
7436 goto out_short_read;
7437
7438 ret = read_one_chunk(&key, sb, chunk);
7439 if (ret)
7440 break;
7441
7442 array_ptr += len;
7443 sb_array_offset += len;
7444 cur_offset += len;
7445 }
7446 clear_extent_buffer_uptodate(sb);
7447 free_extent_buffer_stale(sb);
7448 return ret;
7449
7450out_short_read:
7451 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7452 len, cur_offset);
7453 clear_extent_buffer_uptodate(sb);
7454 free_extent_buffer_stale(sb);
7455 return -EIO;
7456}
7457
7458/*
7459 * Check if all chunks in the fs are OK for read-write degraded mount
7460 *
7461 * If the @failing_dev is specified, it's accounted as missing.
7462 *
7463 * Return true if all chunks meet the minimal RW mount requirements.
7464 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7465 */
7466bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7467 struct btrfs_device *failing_dev)
7468{
7469 struct btrfs_chunk_map *map;
7470 u64 next_start;
7471 bool ret = true;
7472
7473 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7474 /* No chunk at all? Return false anyway */
7475 if (!map) {
7476 ret = false;
7477 goto out;
7478 }
7479 while (map) {
7480 int missing = 0;
7481 int max_tolerated;
7482 int i;
7483
7484 max_tolerated =
7485 btrfs_get_num_tolerated_disk_barrier_failures(
7486 map->type);
7487 for (i = 0; i < map->num_stripes; i++) {
7488 struct btrfs_device *dev = map->stripes[i].dev;
7489
7490 if (!dev || !dev->bdev ||
7491 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7492 dev->last_flush_error)
7493 missing++;
7494 else if (failing_dev && failing_dev == dev)
7495 missing++;
7496 }
7497 if (missing > max_tolerated) {
7498 if (!failing_dev)
7499 btrfs_warn(fs_info,
7500 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7501 map->start, missing, max_tolerated);
7502 btrfs_free_chunk_map(map);
7503 ret = false;
7504 goto out;
7505 }
7506 next_start = map->start + map->chunk_len;
7507 btrfs_free_chunk_map(map);
7508
7509 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7510 }
7511out:
7512 return ret;
7513}
7514
7515static void readahead_tree_node_children(struct extent_buffer *node)
7516{
7517 int i;
7518 const int nr_items = btrfs_header_nritems(node);
7519
7520 for (i = 0; i < nr_items; i++)
7521 btrfs_readahead_node_child(node, i);
7522}
7523
7524int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7525{
7526 struct btrfs_root *root = fs_info->chunk_root;
7527 struct btrfs_path *path;
7528 struct extent_buffer *leaf;
7529 struct btrfs_key key;
7530 struct btrfs_key found_key;
7531 int ret;
7532 int slot;
7533 int iter_ret = 0;
7534 u64 total_dev = 0;
7535 u64 last_ra_node = 0;
7536
7537 path = btrfs_alloc_path();
7538 if (!path)
7539 return -ENOMEM;
7540
7541 /*
7542 * uuid_mutex is needed only if we are mounting a sprout FS
7543 * otherwise we don't need it.
7544 */
7545 mutex_lock(&uuid_mutex);
7546
7547 /*
7548 * It is possible for mount and umount to race in such a way that
7549 * we execute this code path, but open_fs_devices failed to clear
7550 * total_rw_bytes. We certainly want it cleared before reading the
7551 * device items, so clear it here.
7552 */
7553 fs_info->fs_devices->total_rw_bytes = 0;
7554
7555 /*
7556 * Lockdep complains about possible circular locking dependency between
7557 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7558 * used for freeze procection of a fs (struct super_block.s_writers),
7559 * which we take when starting a transaction, and extent buffers of the
7560 * chunk tree if we call read_one_dev() while holding a lock on an
7561 * extent buffer of the chunk tree. Since we are mounting the filesystem
7562 * and at this point there can't be any concurrent task modifying the
7563 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7564 */
7565 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7566 path->skip_locking = 1;
7567
7568 /*
7569 * Read all device items, and then all the chunk items. All
7570 * device items are found before any chunk item (their object id
7571 * is smaller than the lowest possible object id for a chunk
7572 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7573 */
7574 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7575 key.offset = 0;
7576 key.type = 0;
7577 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7578 struct extent_buffer *node = path->nodes[1];
7579
7580 leaf = path->nodes[0];
7581 slot = path->slots[0];
7582
7583 if (node) {
7584 if (last_ra_node != node->start) {
7585 readahead_tree_node_children(node);
7586 last_ra_node = node->start;
7587 }
7588 }
7589 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7590 struct btrfs_dev_item *dev_item;
7591 dev_item = btrfs_item_ptr(leaf, slot,
7592 struct btrfs_dev_item);
7593 ret = read_one_dev(leaf, dev_item);
7594 if (ret)
7595 goto error;
7596 total_dev++;
7597 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7598 struct btrfs_chunk *chunk;
7599
7600 /*
7601 * We are only called at mount time, so no need to take
7602 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7603 * we always lock first fs_info->chunk_mutex before
7604 * acquiring any locks on the chunk tree. This is a
7605 * requirement for chunk allocation, see the comment on
7606 * top of btrfs_chunk_alloc() for details.
7607 */
7608 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7609 ret = read_one_chunk(&found_key, leaf, chunk);
7610 if (ret)
7611 goto error;
7612 }
7613 }
7614 /* Catch error found during iteration */
7615 if (iter_ret < 0) {
7616 ret = iter_ret;
7617 goto error;
7618 }
7619
7620 /*
7621 * After loading chunk tree, we've got all device information,
7622 * do another round of validation checks.
7623 */
7624 if (total_dev != fs_info->fs_devices->total_devices) {
7625 btrfs_warn(fs_info,
7626"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7627 btrfs_super_num_devices(fs_info->super_copy),
7628 total_dev);
7629 fs_info->fs_devices->total_devices = total_dev;
7630 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7631 }
7632 if (btrfs_super_total_bytes(fs_info->super_copy) <
7633 fs_info->fs_devices->total_rw_bytes) {
7634 btrfs_err(fs_info,
7635 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7636 btrfs_super_total_bytes(fs_info->super_copy),
7637 fs_info->fs_devices->total_rw_bytes);
7638 ret = -EINVAL;
7639 goto error;
7640 }
7641 ret = 0;
7642error:
7643 mutex_unlock(&uuid_mutex);
7644
7645 btrfs_free_path(path);
7646 return ret;
7647}
7648
7649int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7650{
7651 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7652 struct btrfs_device *device;
7653 int ret = 0;
7654
7655 fs_devices->fs_info = fs_info;
7656
7657 mutex_lock(&fs_devices->device_list_mutex);
7658 list_for_each_entry(device, &fs_devices->devices, dev_list)
7659 device->fs_info = fs_info;
7660
7661 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7662 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7663 device->fs_info = fs_info;
7664 ret = btrfs_get_dev_zone_info(device, false);
7665 if (ret)
7666 break;
7667 }
7668
7669 seed_devs->fs_info = fs_info;
7670 }
7671 mutex_unlock(&fs_devices->device_list_mutex);
7672
7673 return ret;
7674}
7675
7676static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7677 const struct btrfs_dev_stats_item *ptr,
7678 int index)
7679{
7680 u64 val;
7681
7682 read_extent_buffer(eb, &val,
7683 offsetof(struct btrfs_dev_stats_item, values) +
7684 ((unsigned long)ptr) + (index * sizeof(u64)),
7685 sizeof(val));
7686 return val;
7687}
7688
7689static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7690 struct btrfs_dev_stats_item *ptr,
7691 int index, u64 val)
7692{
7693 write_extent_buffer(eb, &val,
7694 offsetof(struct btrfs_dev_stats_item, values) +
7695 ((unsigned long)ptr) + (index * sizeof(u64)),
7696 sizeof(val));
7697}
7698
7699static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7700 struct btrfs_path *path)
7701{
7702 struct btrfs_dev_stats_item *ptr;
7703 struct extent_buffer *eb;
7704 struct btrfs_key key;
7705 int item_size;
7706 int i, ret, slot;
7707
7708 if (!device->fs_info->dev_root)
7709 return 0;
7710
7711 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7712 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7713 key.offset = device->devid;
7714 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7715 if (ret) {
7716 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7717 btrfs_dev_stat_set(device, i, 0);
7718 device->dev_stats_valid = 1;
7719 btrfs_release_path(path);
7720 return ret < 0 ? ret : 0;
7721 }
7722 slot = path->slots[0];
7723 eb = path->nodes[0];
7724 item_size = btrfs_item_size(eb, slot);
7725
7726 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7727
7728 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7729 if (item_size >= (1 + i) * sizeof(__le64))
7730 btrfs_dev_stat_set(device, i,
7731 btrfs_dev_stats_value(eb, ptr, i));
7732 else
7733 btrfs_dev_stat_set(device, i, 0);
7734 }
7735
7736 device->dev_stats_valid = 1;
7737 btrfs_dev_stat_print_on_load(device);
7738 btrfs_release_path(path);
7739
7740 return 0;
7741}
7742
7743int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7744{
7745 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7746 struct btrfs_device *device;
7747 struct btrfs_path *path = NULL;
7748 int ret = 0;
7749
7750 path = btrfs_alloc_path();
7751 if (!path)
7752 return -ENOMEM;
7753
7754 mutex_lock(&fs_devices->device_list_mutex);
7755 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7756 ret = btrfs_device_init_dev_stats(device, path);
7757 if (ret)
7758 goto out;
7759 }
7760 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7761 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7762 ret = btrfs_device_init_dev_stats(device, path);
7763 if (ret)
7764 goto out;
7765 }
7766 }
7767out:
7768 mutex_unlock(&fs_devices->device_list_mutex);
7769
7770 btrfs_free_path(path);
7771 return ret;
7772}
7773
7774static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7775 struct btrfs_device *device)
7776{
7777 struct btrfs_fs_info *fs_info = trans->fs_info;
7778 struct btrfs_root *dev_root = fs_info->dev_root;
7779 struct btrfs_path *path;
7780 struct btrfs_key key;
7781 struct extent_buffer *eb;
7782 struct btrfs_dev_stats_item *ptr;
7783 int ret;
7784 int i;
7785
7786 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7787 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7788 key.offset = device->devid;
7789
7790 path = btrfs_alloc_path();
7791 if (!path)
7792 return -ENOMEM;
7793 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7794 if (ret < 0) {
7795 btrfs_warn_in_rcu(fs_info,
7796 "error %d while searching for dev_stats item for device %s",
7797 ret, btrfs_dev_name(device));
7798 goto out;
7799 }
7800
7801 if (ret == 0 &&
7802 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7803 /* need to delete old one and insert a new one */
7804 ret = btrfs_del_item(trans, dev_root, path);
7805 if (ret != 0) {
7806 btrfs_warn_in_rcu(fs_info,
7807 "delete too small dev_stats item for device %s failed %d",
7808 btrfs_dev_name(device), ret);
7809 goto out;
7810 }
7811 ret = 1;
7812 }
7813
7814 if (ret == 1) {
7815 /* need to insert a new item */
7816 btrfs_release_path(path);
7817 ret = btrfs_insert_empty_item(trans, dev_root, path,
7818 &key, sizeof(*ptr));
7819 if (ret < 0) {
7820 btrfs_warn_in_rcu(fs_info,
7821 "insert dev_stats item for device %s failed %d",
7822 btrfs_dev_name(device), ret);
7823 goto out;
7824 }
7825 }
7826
7827 eb = path->nodes[0];
7828 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7829 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7830 btrfs_set_dev_stats_value(eb, ptr, i,
7831 btrfs_dev_stat_read(device, i));
7832 btrfs_mark_buffer_dirty(trans, eb);
7833
7834out:
7835 btrfs_free_path(path);
7836 return ret;
7837}
7838
7839/*
7840 * called from commit_transaction. Writes all changed device stats to disk.
7841 */
7842int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7843{
7844 struct btrfs_fs_info *fs_info = trans->fs_info;
7845 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846 struct btrfs_device *device;
7847 int stats_cnt;
7848 int ret = 0;
7849
7850 mutex_lock(&fs_devices->device_list_mutex);
7851 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7852 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7853 if (!device->dev_stats_valid || stats_cnt == 0)
7854 continue;
7855
7856
7857 /*
7858 * There is a LOAD-LOAD control dependency between the value of
7859 * dev_stats_ccnt and updating the on-disk values which requires
7860 * reading the in-memory counters. Such control dependencies
7861 * require explicit read memory barriers.
7862 *
7863 * This memory barriers pairs with smp_mb__before_atomic in
7864 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7865 * barrier implied by atomic_xchg in
7866 * btrfs_dev_stats_read_and_reset
7867 */
7868 smp_rmb();
7869
7870 ret = update_dev_stat_item(trans, device);
7871 if (!ret)
7872 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7873 }
7874 mutex_unlock(&fs_devices->device_list_mutex);
7875
7876 return ret;
7877}
7878
7879void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7880{
7881 btrfs_dev_stat_inc(dev, index);
7882
7883 if (!dev->dev_stats_valid)
7884 return;
7885 btrfs_err_rl_in_rcu(dev->fs_info,
7886 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7887 btrfs_dev_name(dev),
7888 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7889 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7890 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7891 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7892 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7893}
7894
7895static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7896{
7897 int i;
7898
7899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7900 if (btrfs_dev_stat_read(dev, i) != 0)
7901 break;
7902 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7903 return; /* all values == 0, suppress message */
7904
7905 btrfs_info_in_rcu(dev->fs_info,
7906 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7907 btrfs_dev_name(dev),
7908 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7909 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7910 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7913}
7914
7915int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7916 struct btrfs_ioctl_get_dev_stats *stats)
7917{
7918 BTRFS_DEV_LOOKUP_ARGS(args);
7919 struct btrfs_device *dev;
7920 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7921 int i;
7922
7923 mutex_lock(&fs_devices->device_list_mutex);
7924 args.devid = stats->devid;
7925 dev = btrfs_find_device(fs_info->fs_devices, &args);
7926 mutex_unlock(&fs_devices->device_list_mutex);
7927
7928 if (!dev) {
7929 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7930 return -ENODEV;
7931 } else if (!dev->dev_stats_valid) {
7932 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7933 return -ENODEV;
7934 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7935 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7936 if (stats->nr_items > i)
7937 stats->values[i] =
7938 btrfs_dev_stat_read_and_reset(dev, i);
7939 else
7940 btrfs_dev_stat_set(dev, i, 0);
7941 }
7942 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7943 current->comm, task_pid_nr(current));
7944 } else {
7945 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946 if (stats->nr_items > i)
7947 stats->values[i] = btrfs_dev_stat_read(dev, i);
7948 }
7949 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7950 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7951 return 0;
7952}
7953
7954/*
7955 * Update the size and bytes used for each device where it changed. This is
7956 * delayed since we would otherwise get errors while writing out the
7957 * superblocks.
7958 *
7959 * Must be invoked during transaction commit.
7960 */
7961void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7962{
7963 struct btrfs_device *curr, *next;
7964
7965 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7966
7967 if (list_empty(&trans->dev_update_list))
7968 return;
7969
7970 /*
7971 * We don't need the device_list_mutex here. This list is owned by the
7972 * transaction and the transaction must complete before the device is
7973 * released.
7974 */
7975 mutex_lock(&trans->fs_info->chunk_mutex);
7976 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7977 post_commit_list) {
7978 list_del_init(&curr->post_commit_list);
7979 curr->commit_total_bytes = curr->disk_total_bytes;
7980 curr->commit_bytes_used = curr->bytes_used;
7981 }
7982 mutex_unlock(&trans->fs_info->chunk_mutex);
7983}
7984
7985/*
7986 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7987 */
7988int btrfs_bg_type_to_factor(u64 flags)
7989{
7990 const int index = btrfs_bg_flags_to_raid_index(flags);
7991
7992 return btrfs_raid_array[index].ncopies;
7993}
7994
7995
7996
7997static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7998 u64 chunk_offset, u64 devid,
7999 u64 physical_offset, u64 physical_len)
8000{
8001 struct btrfs_dev_lookup_args args = { .devid = devid };
8002 struct btrfs_chunk_map *map;
8003 struct btrfs_device *dev;
8004 u64 stripe_len;
8005 bool found = false;
8006 int ret = 0;
8007 int i;
8008
8009 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8010 if (!map) {
8011 btrfs_err(fs_info,
8012"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8013 physical_offset, devid);
8014 ret = -EUCLEAN;
8015 goto out;
8016 }
8017
8018 stripe_len = btrfs_calc_stripe_length(map);
8019 if (physical_len != stripe_len) {
8020 btrfs_err(fs_info,
8021"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8022 physical_offset, devid, map->start, physical_len,
8023 stripe_len);
8024 ret = -EUCLEAN;
8025 goto out;
8026 }
8027
8028 /*
8029 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8030 * space. Although kernel can handle it without problem, better to warn
8031 * the users.
8032 */
8033 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8034 btrfs_warn(fs_info,
8035 "devid %llu physical %llu len %llu inside the reserved space",
8036 devid, physical_offset, physical_len);
8037
8038 for (i = 0; i < map->num_stripes; i++) {
8039 if (map->stripes[i].dev->devid == devid &&
8040 map->stripes[i].physical == physical_offset) {
8041 found = true;
8042 if (map->verified_stripes >= map->num_stripes) {
8043 btrfs_err(fs_info,
8044 "too many dev extents for chunk %llu found",
8045 map->start);
8046 ret = -EUCLEAN;
8047 goto out;
8048 }
8049 map->verified_stripes++;
8050 break;
8051 }
8052 }
8053 if (!found) {
8054 btrfs_err(fs_info,
8055 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8056 physical_offset, devid);
8057 ret = -EUCLEAN;
8058 }
8059
8060 /* Make sure no dev extent is beyond device boundary */
8061 dev = btrfs_find_device(fs_info->fs_devices, &args);
8062 if (!dev) {
8063 btrfs_err(fs_info, "failed to find devid %llu", devid);
8064 ret = -EUCLEAN;
8065 goto out;
8066 }
8067
8068 if (physical_offset + physical_len > dev->disk_total_bytes) {
8069 btrfs_err(fs_info,
8070"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8071 devid, physical_offset, physical_len,
8072 dev->disk_total_bytes);
8073 ret = -EUCLEAN;
8074 goto out;
8075 }
8076
8077 if (dev->zone_info) {
8078 u64 zone_size = dev->zone_info->zone_size;
8079
8080 if (!IS_ALIGNED(physical_offset, zone_size) ||
8081 !IS_ALIGNED(physical_len, zone_size)) {
8082 btrfs_err(fs_info,
8083"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8084 devid, physical_offset, physical_len);
8085 ret = -EUCLEAN;
8086 goto out;
8087 }
8088 }
8089
8090out:
8091 btrfs_free_chunk_map(map);
8092 return ret;
8093}
8094
8095static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8096{
8097 struct rb_node *node;
8098 int ret = 0;
8099
8100 read_lock(&fs_info->mapping_tree_lock);
8101 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8102 struct btrfs_chunk_map *map;
8103
8104 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8105 if (map->num_stripes != map->verified_stripes) {
8106 btrfs_err(fs_info,
8107 "chunk %llu has missing dev extent, have %d expect %d",
8108 map->start, map->verified_stripes, map->num_stripes);
8109 ret = -EUCLEAN;
8110 goto out;
8111 }
8112 }
8113out:
8114 read_unlock(&fs_info->mapping_tree_lock);
8115 return ret;
8116}
8117
8118/*
8119 * Ensure that all dev extents are mapped to correct chunk, otherwise
8120 * later chunk allocation/free would cause unexpected behavior.
8121 *
8122 * NOTE: This will iterate through the whole device tree, which should be of
8123 * the same size level as the chunk tree. This slightly increases mount time.
8124 */
8125int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8126{
8127 struct btrfs_path *path;
8128 struct btrfs_root *root = fs_info->dev_root;
8129 struct btrfs_key key;
8130 u64 prev_devid = 0;
8131 u64 prev_dev_ext_end = 0;
8132 int ret = 0;
8133
8134 /*
8135 * We don't have a dev_root because we mounted with ignorebadroots and
8136 * failed to load the root, so we want to skip the verification in this
8137 * case for sure.
8138 *
8139 * However if the dev root is fine, but the tree itself is corrupted
8140 * we'd still fail to mount. This verification is only to make sure
8141 * writes can happen safely, so instead just bypass this check
8142 * completely in the case of IGNOREBADROOTS.
8143 */
8144 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8145 return 0;
8146
8147 key.objectid = 1;
8148 key.type = BTRFS_DEV_EXTENT_KEY;
8149 key.offset = 0;
8150
8151 path = btrfs_alloc_path();
8152 if (!path)
8153 return -ENOMEM;
8154
8155 path->reada = READA_FORWARD;
8156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8157 if (ret < 0)
8158 goto out;
8159
8160 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8161 ret = btrfs_next_leaf(root, path);
8162 if (ret < 0)
8163 goto out;
8164 /* No dev extents at all? Not good */
8165 if (ret > 0) {
8166 ret = -EUCLEAN;
8167 goto out;
8168 }
8169 }
8170 while (1) {
8171 struct extent_buffer *leaf = path->nodes[0];
8172 struct btrfs_dev_extent *dext;
8173 int slot = path->slots[0];
8174 u64 chunk_offset;
8175 u64 physical_offset;
8176 u64 physical_len;
8177 u64 devid;
8178
8179 btrfs_item_key_to_cpu(leaf, &key, slot);
8180 if (key.type != BTRFS_DEV_EXTENT_KEY)
8181 break;
8182 devid = key.objectid;
8183 physical_offset = key.offset;
8184
8185 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8186 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8187 physical_len = btrfs_dev_extent_length(leaf, dext);
8188
8189 /* Check if this dev extent overlaps with the previous one */
8190 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8191 btrfs_err(fs_info,
8192"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8193 devid, physical_offset, prev_dev_ext_end);
8194 ret = -EUCLEAN;
8195 goto out;
8196 }
8197
8198 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8199 physical_offset, physical_len);
8200 if (ret < 0)
8201 goto out;
8202 prev_devid = devid;
8203 prev_dev_ext_end = physical_offset + physical_len;
8204
8205 ret = btrfs_next_item(root, path);
8206 if (ret < 0)
8207 goto out;
8208 if (ret > 0) {
8209 ret = 0;
8210 break;
8211 }
8212 }
8213
8214 /* Ensure all chunks have corresponding dev extents */
8215 ret = verify_chunk_dev_extent_mapping(fs_info);
8216out:
8217 btrfs_free_path(path);
8218 return ret;
8219}
8220
8221/*
8222 * Check whether the given block group or device is pinned by any inode being
8223 * used as a swapfile.
8224 */
8225bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8226{
8227 struct btrfs_swapfile_pin *sp;
8228 struct rb_node *node;
8229
8230 spin_lock(&fs_info->swapfile_pins_lock);
8231 node = fs_info->swapfile_pins.rb_node;
8232 while (node) {
8233 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8234 if (ptr < sp->ptr)
8235 node = node->rb_left;
8236 else if (ptr > sp->ptr)
8237 node = node->rb_right;
8238 else
8239 break;
8240 }
8241 spin_unlock(&fs_info->swapfile_pins_lock);
8242 return node != NULL;
8243}
8244
8245static int relocating_repair_kthread(void *data)
8246{
8247 struct btrfs_block_group *cache = data;
8248 struct btrfs_fs_info *fs_info = cache->fs_info;
8249 u64 target;
8250 int ret = 0;
8251
8252 target = cache->start;
8253 btrfs_put_block_group(cache);
8254
8255 sb_start_write(fs_info->sb);
8256 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8257 btrfs_info(fs_info,
8258 "zoned: skip relocating block group %llu to repair: EBUSY",
8259 target);
8260 sb_end_write(fs_info->sb);
8261 return -EBUSY;
8262 }
8263
8264 mutex_lock(&fs_info->reclaim_bgs_lock);
8265
8266 /* Ensure block group still exists */
8267 cache = btrfs_lookup_block_group(fs_info, target);
8268 if (!cache)
8269 goto out;
8270
8271 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8272 goto out;
8273
8274 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8275 if (ret < 0)
8276 goto out;
8277
8278 btrfs_info(fs_info,
8279 "zoned: relocating block group %llu to repair IO failure",
8280 target);
8281 ret = btrfs_relocate_chunk(fs_info, target);
8282
8283out:
8284 if (cache)
8285 btrfs_put_block_group(cache);
8286 mutex_unlock(&fs_info->reclaim_bgs_lock);
8287 btrfs_exclop_finish(fs_info);
8288 sb_end_write(fs_info->sb);
8289
8290 return ret;
8291}
8292
8293bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8294{
8295 struct btrfs_block_group *cache;
8296
8297 if (!btrfs_is_zoned(fs_info))
8298 return false;
8299
8300 /* Do not attempt to repair in degraded state */
8301 if (btrfs_test_opt(fs_info, DEGRADED))
8302 return true;
8303
8304 cache = btrfs_lookup_block_group(fs_info, logical);
8305 if (!cache)
8306 return true;
8307
8308 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8309 btrfs_put_block_group(cache);
8310 return true;
8311 }
8312
8313 kthread_run(relocating_repair_kthread, cache,
8314 "btrfs-relocating-repair");
8315
8316 return true;
8317}
8318
8319static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8320 struct btrfs_io_stripe *smap,
8321 u64 logical)
8322{
8323 int data_stripes = nr_bioc_data_stripes(bioc);
8324 int i;
8325
8326 for (i = 0; i < data_stripes; i++) {
8327 u64 stripe_start = bioc->full_stripe_logical +
8328 btrfs_stripe_nr_to_offset(i);
8329
8330 if (logical >= stripe_start &&
8331 logical < stripe_start + BTRFS_STRIPE_LEN)
8332 break;
8333 }
8334 ASSERT(i < data_stripes);
8335 smap->dev = bioc->stripes[i].dev;
8336 smap->physical = bioc->stripes[i].physical +
8337 ((logical - bioc->full_stripe_logical) &
8338 BTRFS_STRIPE_LEN_MASK);
8339}
8340
8341/*
8342 * Map a repair write into a single device.
8343 *
8344 * A repair write is triggered by read time repair or scrub, which would only
8345 * update the contents of a single device.
8346 * Not update any other mirrors nor go through RMW path.
8347 *
8348 * Callers should ensure:
8349 *
8350 * - Call btrfs_bio_counter_inc_blocked() first
8351 * - The range does not cross stripe boundary
8352 * - Has a valid @mirror_num passed in.
8353 */
8354int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8355 struct btrfs_io_stripe *smap, u64 logical,
8356 u32 length, int mirror_num)
8357{
8358 struct btrfs_io_context *bioc = NULL;
8359 u64 map_length = length;
8360 int mirror_ret = mirror_num;
8361 int ret;
8362
8363 ASSERT(mirror_num > 0);
8364
8365 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8366 &bioc, smap, &mirror_ret);
8367 if (ret < 0)
8368 return ret;
8369
8370 /* The map range should not cross stripe boundary. */
8371 ASSERT(map_length >= length);
8372
8373 /* Already mapped to single stripe. */
8374 if (!bioc)
8375 goto out;
8376
8377 /* Map the RAID56 multi-stripe writes to a single one. */
8378 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8379 map_raid56_repair_block(bioc, smap, logical);
8380 goto out;
8381 }
8382
8383 ASSERT(mirror_num <= bioc->num_stripes);
8384 smap->dev = bioc->stripes[mirror_num - 1].dev;
8385 smap->physical = bioc->stripes[mirror_num - 1].physical;
8386out:
8387 btrfs_put_bioc(bioc);
8388 ASSERT(smap->dev);
8389 return 0;
8390}