Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "extent_map.h"
  18#include "disk-io.h"
  19#include "transaction.h"
  20#include "print-tree.h"
  21#include "volumes.h"
  22#include "raid56.h"
  23#include "rcu-string.h"
  24#include "dev-replace.h"
  25#include "sysfs.h"
  26#include "tree-checker.h"
  27#include "space-info.h"
  28#include "block-group.h"
  29#include "discard.h"
  30#include "zoned.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37#include "super.h"
 
  38
  39#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  40					 BTRFS_BLOCK_GROUP_RAID10 | \
  41					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  42
 
 
 
 
 
 
 
 
 
 
 
  43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  44	[BTRFS_RAID_RAID10] = {
  45		.sub_stripes	= 2,
  46		.dev_stripes	= 1,
  47		.devs_max	= 0,	/* 0 == as many as possible */
  48		.devs_min	= 2,
  49		.tolerated_failures = 1,
  50		.devs_increment	= 2,
  51		.ncopies	= 2,
  52		.nparity        = 0,
  53		.raid_name	= "raid10",
  54		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  55		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  56	},
  57	[BTRFS_RAID_RAID1] = {
  58		.sub_stripes	= 1,
  59		.dev_stripes	= 1,
  60		.devs_max	= 2,
  61		.devs_min	= 2,
  62		.tolerated_failures = 1,
  63		.devs_increment	= 2,
  64		.ncopies	= 2,
  65		.nparity        = 0,
  66		.raid_name	= "raid1",
  67		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  68		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  69	},
  70	[BTRFS_RAID_RAID1C3] = {
  71		.sub_stripes	= 1,
  72		.dev_stripes	= 1,
  73		.devs_max	= 3,
  74		.devs_min	= 3,
  75		.tolerated_failures = 2,
  76		.devs_increment	= 3,
  77		.ncopies	= 3,
  78		.nparity        = 0,
  79		.raid_name	= "raid1c3",
  80		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  81		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  82	},
  83	[BTRFS_RAID_RAID1C4] = {
  84		.sub_stripes	= 1,
  85		.dev_stripes	= 1,
  86		.devs_max	= 4,
  87		.devs_min	= 4,
  88		.tolerated_failures = 3,
  89		.devs_increment	= 4,
  90		.ncopies	= 4,
  91		.nparity        = 0,
  92		.raid_name	= "raid1c4",
  93		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
  94		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  95	},
  96	[BTRFS_RAID_DUP] = {
  97		.sub_stripes	= 1,
  98		.dev_stripes	= 2,
  99		.devs_max	= 1,
 100		.devs_min	= 1,
 101		.tolerated_failures = 0,
 102		.devs_increment	= 1,
 103		.ncopies	= 2,
 104		.nparity        = 0,
 105		.raid_name	= "dup",
 106		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 107		.mindev_error	= 0,
 108	},
 109	[BTRFS_RAID_RAID0] = {
 110		.sub_stripes	= 1,
 111		.dev_stripes	= 1,
 112		.devs_max	= 0,
 113		.devs_min	= 1,
 114		.tolerated_failures = 0,
 115		.devs_increment	= 1,
 116		.ncopies	= 1,
 117		.nparity        = 0,
 118		.raid_name	= "raid0",
 119		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 120		.mindev_error	= 0,
 121	},
 122	[BTRFS_RAID_SINGLE] = {
 123		.sub_stripes	= 1,
 124		.dev_stripes	= 1,
 125		.devs_max	= 1,
 126		.devs_min	= 1,
 127		.tolerated_failures = 0,
 128		.devs_increment	= 1,
 129		.ncopies	= 1,
 130		.nparity        = 0,
 131		.raid_name	= "single",
 132		.bg_flag	= 0,
 133		.mindev_error	= 0,
 134	},
 135	[BTRFS_RAID_RAID5] = {
 136		.sub_stripes	= 1,
 137		.dev_stripes	= 1,
 138		.devs_max	= 0,
 139		.devs_min	= 2,
 140		.tolerated_failures = 1,
 141		.devs_increment	= 1,
 142		.ncopies	= 1,
 143		.nparity        = 1,
 144		.raid_name	= "raid5",
 145		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 146		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 147	},
 148	[BTRFS_RAID_RAID6] = {
 149		.sub_stripes	= 1,
 150		.dev_stripes	= 1,
 151		.devs_max	= 0,
 152		.devs_min	= 3,
 153		.tolerated_failures = 2,
 154		.devs_increment	= 1,
 155		.ncopies	= 1,
 156		.nparity        = 2,
 157		.raid_name	= "raid6",
 158		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 159		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 160	},
 161};
 162
 163/*
 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 165 * can be used as index to access btrfs_raid_array[].
 166 */
 167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 168{
 169	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 170
 171	if (!profile)
 172		return BTRFS_RAID_SINGLE;
 173
 174	return BTRFS_BG_FLAG_TO_INDEX(profile);
 175}
 176
 177const char *btrfs_bg_type_to_raid_name(u64 flags)
 178{
 179	const int index = btrfs_bg_flags_to_raid_index(flags);
 180
 181	if (index >= BTRFS_NR_RAID_TYPES)
 182		return NULL;
 183
 184	return btrfs_raid_array[index].raid_name;
 185}
 186
 187int btrfs_nr_parity_stripes(u64 type)
 188{
 189	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 190
 191	return btrfs_raid_array[index].nparity;
 192}
 193
 194/*
 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 196 * bytes including terminating null byte.
 197 */
 198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 199{
 200	int i;
 201	int ret;
 202	char *bp = buf;
 203	u64 flags = bg_flags;
 204	u32 size_bp = size_buf;
 205
 206	if (!flags) {
 207		strcpy(bp, "NONE");
 208		return;
 209	}
 210
 211#define DESCRIBE_FLAG(flag, desc)						\
 212	do {								\
 213		if (flags & (flag)) {					\
 214			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 215			if (ret < 0 || ret >= size_bp)			\
 216				goto out_overflow;			\
 217			size_bp -= ret;					\
 218			bp += ret;					\
 219			flags &= ~(flag);				\
 220		}							\
 221	} while (0)
 222
 223	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 224	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 225	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 226
 227	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 228	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 229		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 230			      btrfs_raid_array[i].raid_name);
 231#undef DESCRIBE_FLAG
 232
 233	if (flags) {
 234		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 235		size_bp -= ret;
 236	}
 237
 238	if (size_bp < size_buf)
 239		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 240
 241	/*
 242	 * The text is trimmed, it's up to the caller to provide sufficiently
 243	 * large buffer
 244	 */
 245out_overflow:;
 246}
 247
 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 251
 252/*
 253 * Device locking
 254 * ==============
 255 *
 256 * There are several mutexes that protect manipulation of devices and low-level
 257 * structures like chunks but not block groups, extents or files
 258 *
 259 * uuid_mutex (global lock)
 260 * ------------------------
 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 263 * device) or requested by the device= mount option
 264 *
 265 * the mutex can be very coarse and can cover long-running operations
 266 *
 267 * protects: updates to fs_devices counters like missing devices, rw devices,
 268 * seeding, structure cloning, opening/closing devices at mount/umount time
 269 *
 270 * global::fs_devs - add, remove, updates to the global list
 271 *
 272 * does not protect: manipulation of the fs_devices::devices list in general
 273 * but in mount context it could be used to exclude list modifications by eg.
 274 * scan ioctl
 275 *
 276 * btrfs_device::name - renames (write side), read is RCU
 277 *
 278 * fs_devices::device_list_mutex (per-fs, with RCU)
 279 * ------------------------------------------------
 280 * protects updates to fs_devices::devices, ie. adding and deleting
 281 *
 282 * simple list traversal with read-only actions can be done with RCU protection
 283 *
 284 * may be used to exclude some operations from running concurrently without any
 285 * modifications to the list (see write_all_supers)
 286 *
 287 * Is not required at mount and close times, because our device list is
 288 * protected by the uuid_mutex at that point.
 289 *
 290 * balance_mutex
 291 * -------------
 292 * protects balance structures (status, state) and context accessed from
 293 * several places (internally, ioctl)
 294 *
 295 * chunk_mutex
 296 * -----------
 297 * protects chunks, adding or removing during allocation, trim or when a new
 298 * device is added/removed. Additionally it also protects post_commit_list of
 299 * individual devices, since they can be added to the transaction's
 300 * post_commit_list only with chunk_mutex held.
 301 *
 302 * cleaner_mutex
 303 * -------------
 304 * a big lock that is held by the cleaner thread and prevents running subvolume
 305 * cleaning together with relocation or delayed iputs
 306 *
 307 *
 308 * Lock nesting
 309 * ============
 310 *
 311 * uuid_mutex
 312 *   device_list_mutex
 313 *     chunk_mutex
 314 *   balance_mutex
 315 *
 316 *
 317 * Exclusive operations
 318 * ====================
 319 *
 320 * Maintains the exclusivity of the following operations that apply to the
 321 * whole filesystem and cannot run in parallel.
 322 *
 323 * - Balance (*)
 324 * - Device add
 325 * - Device remove
 326 * - Device replace (*)
 327 * - Resize
 328 *
 329 * The device operations (as above) can be in one of the following states:
 330 *
 331 * - Running state
 332 * - Paused state
 333 * - Completed state
 334 *
 335 * Only device operations marked with (*) can go into the Paused state for the
 336 * following reasons:
 337 *
 338 * - ioctl (only Balance can be Paused through ioctl)
 339 * - filesystem remounted as read-only
 340 * - filesystem unmounted and mounted as read-only
 341 * - system power-cycle and filesystem mounted as read-only
 342 * - filesystem or device errors leading to forced read-only
 343 *
 344 * The status of exclusive operation is set and cleared atomically.
 345 * During the course of Paused state, fs_info::exclusive_operation remains set.
 346 * A device operation in Paused or Running state can be canceled or resumed
 347 * either by ioctl (Balance only) or when remounted as read-write.
 348 * The exclusive status is cleared when the device operation is canceled or
 349 * completed.
 350 */
 351
 352DEFINE_MUTEX(uuid_mutex);
 353static LIST_HEAD(fs_uuids);
 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 355{
 356	return &fs_uuids;
 357}
 358
 359/*
 360 * alloc_fs_devices - allocate struct btrfs_fs_devices
 361 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 362 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 
 363 *
 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 365 * The returned struct is not linked onto any lists and can be destroyed with
 366 * kfree() right away.
 367 */
 368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 369						 const u8 *metadata_fsid)
 370{
 371	struct btrfs_fs_devices *fs_devs;
 372
 373	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 374	if (!fs_devs)
 375		return ERR_PTR(-ENOMEM);
 376
 377	mutex_init(&fs_devs->device_list_mutex);
 378
 379	INIT_LIST_HEAD(&fs_devs->devices);
 380	INIT_LIST_HEAD(&fs_devs->alloc_list);
 381	INIT_LIST_HEAD(&fs_devs->fs_list);
 382	INIT_LIST_HEAD(&fs_devs->seed_list);
 383	if (fsid)
 384		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 385
 386	if (metadata_fsid)
 387		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 388	else if (fsid)
 389		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 
 390
 391	return fs_devs;
 392}
 393
 394void btrfs_free_device(struct btrfs_device *device)
 395{
 396	WARN_ON(!list_empty(&device->post_commit_list));
 397	rcu_string_free(device->name);
 398	extent_io_tree_release(&device->alloc_state);
 399	btrfs_destroy_dev_zone_info(device);
 400	kfree(device);
 401}
 402
 403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 404{
 405	struct btrfs_device *device;
 406
 407	WARN_ON(fs_devices->opened);
 408	while (!list_empty(&fs_devices->devices)) {
 409		device = list_entry(fs_devices->devices.next,
 410				    struct btrfs_device, dev_list);
 411		list_del(&device->dev_list);
 412		btrfs_free_device(device);
 413	}
 414	kfree(fs_devices);
 415}
 416
 417void __exit btrfs_cleanup_fs_uuids(void)
 418{
 419	struct btrfs_fs_devices *fs_devices;
 420
 421	while (!list_empty(&fs_uuids)) {
 422		fs_devices = list_entry(fs_uuids.next,
 423					struct btrfs_fs_devices, fs_list);
 424		list_del(&fs_devices->fs_list);
 425		free_fs_devices(fs_devices);
 426	}
 427}
 428
 429static noinline struct btrfs_fs_devices *find_fsid(
 430		const u8 *fsid, const u8 *metadata_fsid)
 431{
 432	struct btrfs_fs_devices *fs_devices;
 
 433
 434	ASSERT(fsid);
 
 435
 436	/* Handle non-split brain cases */
 437	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 438		if (metadata_fsid) {
 439			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 440			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 441				      BTRFS_FSID_SIZE) == 0)
 442				return fs_devices;
 443		} else {
 444			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 445				return fs_devices;
 446		}
 447	}
 448	return NULL;
 449}
 450
 451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 452				struct btrfs_super_block *disk_super)
 453{
 454
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	/*
 458	 * Handle scanned device having completed its fsid change but
 459	 * belonging to a fs_devices that was created by first scanning
 460	 * a device which didn't have its fsid/metadata_uuid changed
 461	 * at all and the CHANGING_FSID_V2 flag set.
 462	 */
 463	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 464		if (fs_devices->fsid_change &&
 465		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 466			   BTRFS_FSID_SIZE) == 0 &&
 467		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 468			   BTRFS_FSID_SIZE) == 0) {
 469			return fs_devices;
 470		}
 471	}
 472	/*
 473	 * Handle scanned device having completed its fsid change but
 474	 * belonging to a fs_devices that was created by a device that
 475	 * has an outdated pair of fsid/metadata_uuid and
 476	 * CHANGING_FSID_V2 flag set.
 477	 */
 478	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 479		if (fs_devices->fsid_change &&
 480		    memcmp(fs_devices->metadata_uuid,
 481			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 482		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 483			   BTRFS_FSID_SIZE) == 0) {
 484			return fs_devices;
 485		}
 486	}
 487
 488	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 489}
 490
 491
 492static int
 493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 494		      int flush, struct block_device **bdev,
 495		      struct btrfs_super_block **disk_super)
 496{
 
 497	int ret;
 498
 499	*bdev = blkdev_get_by_path(device_path, flags, holder);
 500
 501	if (IS_ERR(*bdev)) {
 502		ret = PTR_ERR(*bdev);
 503		goto error;
 504	}
 
 505
 506	if (flush)
 507		sync_blockdev(*bdev);
 508	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 509	if (ret) {
 510		blkdev_put(*bdev, flags);
 511		goto error;
 512	}
 513	invalidate_bdev(*bdev);
 514	*disk_super = btrfs_read_dev_super(*bdev);
 515	if (IS_ERR(*disk_super)) {
 516		ret = PTR_ERR(*disk_super);
 517		blkdev_put(*bdev, flags);
 518		goto error;
 519	}
 520
 521	return 0;
 522
 523error:
 524	*bdev = NULL;
 525	return ret;
 526}
 527
 528/*
 529 *  Search and remove all stale devices (which are not mounted).  When both
 530 *  inputs are NULL, it will search and release all stale devices.
 531 *
 532 *  @devt:         Optional. When provided will it release all unmounted devices
 533 *                 matching this devt only.
 534 *  @skip_device:  Optional. Will skip this device when searching for the stale
 535 *                 devices.
 536 *
 537 *  Return:	0 for success or if @devt is 0.
 538 *		-EBUSY if @devt is a mounted device.
 539 *		-ENOENT if @devt does not match any device in the list.
 540 */
 541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 542{
 543	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 544	struct btrfs_device *device, *tmp_device;
 545	int ret = 0;
 
 546
 547	lockdep_assert_held(&uuid_mutex);
 548
 549	if (devt)
 550		ret = -ENOENT;
 551
 552	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 553
 554		mutex_lock(&fs_devices->device_list_mutex);
 555		list_for_each_entry_safe(device, tmp_device,
 556					 &fs_devices->devices, dev_list) {
 557			if (skip_device && skip_device == device)
 558				continue;
 559			if (devt && devt != device->devt)
 560				continue;
 561			if (fs_devices->opened) {
 562				/* for an already deleted device return 0 */
 563				if (devt && ret != 0)
 564					ret = -EBUSY;
 565				break;
 566			}
 567
 568			/* delete the stale device */
 569			fs_devices->num_devices--;
 570			list_del(&device->dev_list);
 571			btrfs_free_device(device);
 572
 573			ret = 0;
 574		}
 575		mutex_unlock(&fs_devices->device_list_mutex);
 576
 577		if (fs_devices->num_devices == 0) {
 578			btrfs_sysfs_remove_fsid(fs_devices);
 579			list_del(&fs_devices->fs_list);
 580			free_fs_devices(fs_devices);
 581		}
 582	}
 583
 
 
 
 
 584	return ret;
 585}
 586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587/*
 588 * This is only used on mount, and we are protected from competing things
 589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 590 * fs_devices->device_list_mutex here.
 591 */
 592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 593			struct btrfs_device *device, fmode_t flags,
 594			void *holder)
 595{
 596	struct block_device *bdev;
 597	struct btrfs_super_block *disk_super;
 598	u64 devid;
 599	int ret;
 600
 601	if (device->bdev)
 602		return -EINVAL;
 603	if (!device->name)
 604		return -EINVAL;
 605
 606	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 607				    &bdev, &disk_super);
 608	if (ret)
 609		return ret;
 610
 611	devid = btrfs_stack_device_id(&disk_super->dev_item);
 612	if (devid != device->devid)
 613		goto error_free_page;
 614
 615	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 616		goto error_free_page;
 617
 618	device->generation = btrfs_super_generation(disk_super);
 619
 620	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 621		if (btrfs_super_incompat_flags(disk_super) &
 622		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 623			pr_err(
 624		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 625			goto error_free_page;
 626		}
 627
 628		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 629		fs_devices->seeding = true;
 630	} else {
 631		if (bdev_read_only(bdev))
 632			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 633		else
 634			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 635	}
 636
 637	if (!bdev_nonrot(bdev))
 638		fs_devices->rotating = true;
 639
 640	if (bdev_max_discard_sectors(bdev))
 641		fs_devices->discardable = true;
 642
 643	device->bdev = bdev;
 
 644	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 645	device->mode = flags;
 
 
 
 
 
 
 
 
 
 646
 647	fs_devices->open_devices++;
 648	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 649	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 650		fs_devices->rw_devices++;
 651		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 652	}
 653	btrfs_release_disk_super(disk_super);
 654
 655	return 0;
 656
 657error_free_page:
 658	btrfs_release_disk_super(disk_super);
 659	blkdev_put(bdev, flags);
 660
 661	return -EINVAL;
 662}
 663
 664/*
 665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 666 * being created with a disk that has already completed its fsid change. Such
 667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 668 * Handle both cases here.
 669 */
 670static struct btrfs_fs_devices *find_fsid_inprogress(
 671					struct btrfs_super_block *disk_super)
 672{
 673	struct btrfs_fs_devices *fs_devices;
 674
 675	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 676		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 677			   BTRFS_FSID_SIZE) != 0 &&
 678		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 679			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 680			return fs_devices;
 681		}
 682	}
 683
 684	return find_fsid(disk_super->fsid, NULL);
 685}
 686
 687
 688static struct btrfs_fs_devices *find_fsid_changed(
 689					struct btrfs_super_block *disk_super)
 690{
 691	struct btrfs_fs_devices *fs_devices;
 
 692
 693	/*
 694	 * Handles the case where scanned device is part of an fs that had
 695	 * multiple successful changes of FSID but currently device didn't
 696	 * observe it. Meaning our fsid will be different than theirs. We need
 697	 * to handle two subcases :
 698	 *  1 - The fs still continues to have different METADATA/FSID uuids.
 699	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
 700	 *  are equal).
 701	 */
 702	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 703		/* Changed UUIDs */
 704		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 705			   BTRFS_FSID_SIZE) != 0 &&
 706		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 707			   BTRFS_FSID_SIZE) == 0 &&
 708		    memcmp(fs_devices->fsid, disk_super->fsid,
 709			   BTRFS_FSID_SIZE) != 0)
 710			return fs_devices;
 711
 712		/* Unchanged UUIDs */
 713		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 714			   BTRFS_FSID_SIZE) == 0 &&
 715		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 716			   BTRFS_FSID_SIZE) == 0)
 717			return fs_devices;
 718	}
 719
 720	return NULL;
 721}
 722
 723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 724				struct btrfs_super_block *disk_super)
 725{
 726	struct btrfs_fs_devices *fs_devices;
 727
 728	/*
 729	 * Handle the case where the scanned device is part of an fs whose last
 730	 * metadata UUID change reverted it to the original FSID. At the same
 731	 * time * fs_devices was first created by another constitutent device
 732	 * which didn't fully observe the operation. This results in an
 733	 * btrfs_fs_devices created with metadata/fsid different AND
 734	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 735	 * fs_devices equal to the FSID of the disk.
 736	 */
 737	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 738		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 739			   BTRFS_FSID_SIZE) != 0 &&
 740		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 741			   BTRFS_FSID_SIZE) == 0 &&
 742		    fs_devices->fsid_change)
 743			return fs_devices;
 744	}
 745
 746	return NULL;
 747}
 748/*
 749 * Add new device to list of registered devices
 750 *
 751 * Returns:
 752 * device pointer which was just added or updated when successful
 753 * error pointer when failed
 754 */
 755static noinline struct btrfs_device *device_list_add(const char *path,
 756			   struct btrfs_super_block *disk_super,
 757			   bool *new_device_added)
 758{
 759	struct btrfs_device *device;
 760	struct btrfs_fs_devices *fs_devices = NULL;
 761	struct rcu_string *name;
 762	u64 found_transid = btrfs_super_generation(disk_super);
 763	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 764	dev_t path_devt;
 765	int error;
 
 766	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 767		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 768	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 769					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 
 
 
 
 
 770
 771	error = lookup_bdev(path, &path_devt);
 772	if (error) {
 773		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 774			  path, error);
 775		return ERR_PTR(error);
 776	}
 777
 778	if (fsid_change_in_progress) {
 779		if (!has_metadata_uuid)
 780			fs_devices = find_fsid_inprogress(disk_super);
 781		else
 782			fs_devices = find_fsid_changed(disk_super);
 783	} else if (has_metadata_uuid) {
 784		fs_devices = find_fsid_with_metadata_uuid(disk_super);
 785	} else {
 786		fs_devices = find_fsid_reverted_metadata(disk_super);
 787		if (!fs_devices)
 788			fs_devices = find_fsid(disk_super->fsid, NULL);
 789	}
 790
 791
 792	if (!fs_devices) {
 793		if (has_metadata_uuid)
 794			fs_devices = alloc_fs_devices(disk_super->fsid,
 795						      disk_super->metadata_uuid);
 796		else
 797			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 798
 799		if (IS_ERR(fs_devices))
 800			return ERR_CAST(fs_devices);
 801
 802		fs_devices->fsid_change = fsid_change_in_progress;
 
 
 
 
 
 
 
 
 
 
 803
 804		mutex_lock(&fs_devices->device_list_mutex);
 805		list_add(&fs_devices->fs_list, &fs_uuids);
 806
 807		device = NULL;
 808	} else {
 809		struct btrfs_dev_lookup_args args = {
 810			.devid = devid,
 811			.uuid = disk_super->dev_item.uuid,
 812		};
 813
 814		mutex_lock(&fs_devices->device_list_mutex);
 815		device = btrfs_find_device(fs_devices, &args);
 816
 817		/*
 818		 * If this disk has been pulled into an fs devices created by
 819		 * a device which had the CHANGING_FSID_V2 flag then replace the
 820		 * metadata_uuid/fsid values of the fs_devices.
 821		 */
 822		if (fs_devices->fsid_change &&
 823		    found_transid > fs_devices->latest_generation) {
 824			memcpy(fs_devices->fsid, disk_super->fsid,
 825					BTRFS_FSID_SIZE);
 826
 827			if (has_metadata_uuid)
 828				memcpy(fs_devices->metadata_uuid,
 829				       disk_super->metadata_uuid,
 830				       BTRFS_FSID_SIZE);
 831			else
 832				memcpy(fs_devices->metadata_uuid,
 833				       disk_super->fsid, BTRFS_FSID_SIZE);
 834
 835			fs_devices->fsid_change = false;
 836		}
 837	}
 838
 839	if (!device) {
 840		unsigned int nofs_flag;
 841
 842		if (fs_devices->opened) {
 843			btrfs_err(NULL,
 844		"device %s belongs to fsid %pU, and the fs is already mounted",
 845				  path, fs_devices->fsid);
 
 
 846			mutex_unlock(&fs_devices->device_list_mutex);
 847			return ERR_PTR(-EBUSY);
 848		}
 849
 850		nofs_flag = memalloc_nofs_save();
 851		device = btrfs_alloc_device(NULL, &devid,
 852					    disk_super->dev_item.uuid, path);
 853		memalloc_nofs_restore(nofs_flag);
 854		if (IS_ERR(device)) {
 855			mutex_unlock(&fs_devices->device_list_mutex);
 856			/* we can safely leave the fs_devices entry around */
 857			return device;
 858		}
 859
 860		device->devt = path_devt;
 861
 862		list_add_rcu(&device->dev_list, &fs_devices->devices);
 863		fs_devices->num_devices++;
 864
 865		device->fs_devices = fs_devices;
 866		*new_device_added = true;
 867
 868		if (disk_super->label[0])
 869			pr_info(
 870	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 871				disk_super->label, devid, found_transid, path,
 
 872				current->comm, task_pid_nr(current));
 873		else
 874			pr_info(
 875	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 876				disk_super->fsid, devid, found_transid, path,
 
 877				current->comm, task_pid_nr(current));
 878
 879	} else if (!device->name || strcmp(device->name->str, path)) {
 880		/*
 881		 * When FS is already mounted.
 882		 * 1. If you are here and if the device->name is NULL that
 883		 *    means this device was missing at time of FS mount.
 884		 * 2. If you are here and if the device->name is different
 885		 *    from 'path' that means either
 886		 *      a. The same device disappeared and reappeared with
 887		 *         different name. or
 888		 *      b. The missing-disk-which-was-replaced, has
 889		 *         reappeared now.
 890		 *
 891		 * We must allow 1 and 2a above. But 2b would be a spurious
 892		 * and unintentional.
 893		 *
 894		 * Further in case of 1 and 2a above, the disk at 'path'
 895		 * would have missed some transaction when it was away and
 896		 * in case of 2a the stale bdev has to be updated as well.
 897		 * 2b must not be allowed at all time.
 898		 */
 899
 900		/*
 901		 * For now, we do allow update to btrfs_fs_device through the
 902		 * btrfs dev scan cli after FS has been mounted.  We're still
 903		 * tracking a problem where systems fail mount by subvolume id
 904		 * when we reject replacement on a mounted FS.
 905		 */
 906		if (!fs_devices->opened && found_transid < device->generation) {
 907			/*
 908			 * That is if the FS is _not_ mounted and if you
 909			 * are here, that means there is more than one
 910			 * disk with same uuid and devid.We keep the one
 911			 * with larger generation number or the last-in if
 912			 * generation are equal.
 913			 */
 914			mutex_unlock(&fs_devices->device_list_mutex);
 915			btrfs_err(NULL,
 916"device %s already registered with a higher generation, found %llu expect %llu",
 917				  path, found_transid, device->generation);
 918			return ERR_PTR(-EEXIST);
 919		}
 920
 921		/*
 922		 * We are going to replace the device path for a given devid,
 923		 * make sure it's the same device if the device is mounted
 924		 *
 925		 * NOTE: the device->fs_info may not be reliable here so pass
 926		 * in a NULL to message helpers instead. This avoids a possible
 927		 * use-after-free when the fs_info and fs_info->sb are already
 928		 * torn down.
 929		 */
 930		if (device->bdev) {
 931			if (device->devt != path_devt) {
 932				mutex_unlock(&fs_devices->device_list_mutex);
 933				btrfs_warn_in_rcu(NULL,
 934	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 935						  path, devid, found_transid,
 936						  current->comm,
 937						  task_pid_nr(current));
 938				return ERR_PTR(-EEXIST);
 939			}
 940			btrfs_info_in_rcu(NULL,
 941	"devid %llu device path %s changed to %s scanned by %s (%d)",
 942					  devid, btrfs_dev_name(device),
 943					  path, current->comm,
 944					  task_pid_nr(current));
 945		}
 946
 947		name = rcu_string_strdup(path, GFP_NOFS);
 948		if (!name) {
 949			mutex_unlock(&fs_devices->device_list_mutex);
 950			return ERR_PTR(-ENOMEM);
 951		}
 952		rcu_string_free(device->name);
 953		rcu_assign_pointer(device->name, name);
 954		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 955			fs_devices->missing_devices--;
 956			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 957		}
 958		device->devt = path_devt;
 959	}
 960
 961	/*
 962	 * Unmount does not free the btrfs_device struct but would zero
 963	 * generation along with most of the other members. So just update
 964	 * it back. We need it to pick the disk with largest generation
 965	 * (as above).
 966	 */
 967	if (!fs_devices->opened) {
 968		device->generation = found_transid;
 969		fs_devices->latest_generation = max_t(u64, found_transid,
 970						fs_devices->latest_generation);
 971	}
 972
 973	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 974
 975	mutex_unlock(&fs_devices->device_list_mutex);
 976	return device;
 977}
 978
 979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 980{
 981	struct btrfs_fs_devices *fs_devices;
 982	struct btrfs_device *device;
 983	struct btrfs_device *orig_dev;
 984	int ret = 0;
 985
 986	lockdep_assert_held(&uuid_mutex);
 987
 988	fs_devices = alloc_fs_devices(orig->fsid, NULL);
 989	if (IS_ERR(fs_devices))
 990		return fs_devices;
 991
 992	fs_devices->total_devices = orig->total_devices;
 993
 994	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 995		const char *dev_path = NULL;
 996
 997		/*
 998		 * This is ok to do without RCU read locked because we hold the
 999		 * uuid mutex so nothing we touch in here is going to disappear.
1000		 */
1001		if (orig_dev->name)
1002			dev_path = orig_dev->name->str;
1003
1004		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005					    orig_dev->uuid, dev_path);
1006		if (IS_ERR(device)) {
1007			ret = PTR_ERR(device);
1008			goto error;
1009		}
1010
1011		if (orig_dev->zone_info) {
1012			struct btrfs_zoned_device_info *zone_info;
1013
1014			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015			if (!zone_info) {
1016				btrfs_free_device(device);
1017				ret = -ENOMEM;
1018				goto error;
1019			}
1020			device->zone_info = zone_info;
1021		}
1022
1023		list_add(&device->dev_list, &fs_devices->devices);
1024		device->fs_devices = fs_devices;
1025		fs_devices->num_devices++;
1026	}
1027	return fs_devices;
1028error:
1029	free_fs_devices(fs_devices);
1030	return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034				      struct btrfs_device **latest_dev)
1035{
1036	struct btrfs_device *device, *next;
1037
1038	/* This is the initialized path, it is safe to release the devices. */
1039	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042				      &device->dev_state) &&
1043			    !test_bit(BTRFS_DEV_STATE_MISSING,
1044				      &device->dev_state) &&
1045			    (!*latest_dev ||
1046			     device->generation > (*latest_dev)->generation)) {
1047				*latest_dev = device;
1048			}
1049			continue;
1050		}
1051
1052		/*
1053		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054		 * in btrfs_init_dev_replace() so just continue.
1055		 */
1056		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057			continue;
1058
1059		if (device->bdev) {
1060			blkdev_put(device->bdev, device->mode);
1061			device->bdev = NULL;
 
1062			fs_devices->open_devices--;
1063		}
1064		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065			list_del_init(&device->dev_alloc_list);
1066			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067			fs_devices->rw_devices--;
1068		}
1069		list_del_init(&device->dev_list);
1070		fs_devices->num_devices--;
1071		btrfs_free_device(device);
1072	}
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082	struct btrfs_device *latest_dev = NULL;
1083	struct btrfs_fs_devices *seed_dev;
1084
1085	mutex_lock(&uuid_mutex);
1086	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091	fs_devices->latest_dev = latest_dev;
1092
1093	mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098	if (!device->bdev)
1099		return;
1100
1101	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102		sync_blockdev(device->bdev);
1103		invalidate_bdev(device->bdev);
1104	}
1105
1106	blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115		list_del_init(&device->dev_alloc_list);
1116		fs_devices->rw_devices--;
1117	}
1118
1119	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124		fs_devices->missing_devices--;
1125	}
1126
1127	btrfs_close_bdev(device);
1128	if (device->bdev) {
1129		fs_devices->open_devices--;
1130		device->bdev = NULL;
1131	}
1132	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133	btrfs_destroy_dev_zone_info(device);
1134
1135	device->fs_info = NULL;
1136	atomic_set(&device->dev_stats_ccnt, 0);
1137	extent_io_tree_release(&device->alloc_state);
1138
1139	/*
1140	 * Reset the flush error record. We might have a transient flush error
1141	 * in this mount, and if so we aborted the current transaction and set
1142	 * the fs to an error state, guaranteeing no super blocks can be further
1143	 * committed. However that error might be transient and if we unmount the
1144	 * filesystem and mount it again, we should allow the mount to succeed
1145	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146	 * filesystem again we still get flush errors, then we will again abort
1147	 * any transaction and set the error state, guaranteeing no commits of
1148	 * unsafe super blocks.
1149	 */
1150	device->last_flush_error = 0;
1151
1152	/* Verify the device is back in a pristine state  */
1153	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155	ASSERT(list_empty(&device->dev_alloc_list));
1156	ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161	struct btrfs_device *device, *tmp;
1162
1163	lockdep_assert_held(&uuid_mutex);
1164
1165	if (--fs_devices->opened > 0)
1166		return;
1167
1168	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169		btrfs_close_one_device(device);
1170
1171	WARN_ON(fs_devices->open_devices);
1172	WARN_ON(fs_devices->rw_devices);
1173	fs_devices->opened = 0;
1174	fs_devices->seeding = false;
1175	fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180	LIST_HEAD(list);
1181	struct btrfs_fs_devices *tmp;
1182
1183	mutex_lock(&uuid_mutex);
1184	close_fs_devices(fs_devices);
1185	if (!fs_devices->opened) {
1186		list_splice_init(&fs_devices->seed_list, &list);
1187
1188		/*
1189		 * If the struct btrfs_fs_devices is not assembled with any
1190		 * other device, it can be re-initialized during the next mount
1191		 * without the needing device-scan step. Therefore, it can be
1192		 * fully freed.
1193		 */
1194		if (fs_devices->num_devices == 1) {
1195			list_del(&fs_devices->fs_list);
1196			free_fs_devices(fs_devices);
1197		}
1198	}
1199
1200
1201	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202		close_fs_devices(fs_devices);
1203		list_del(&fs_devices->seed_list);
1204		free_fs_devices(fs_devices);
1205	}
1206	mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210				fmode_t flags, void *holder)
1211{
1212	struct btrfs_device *device;
1213	struct btrfs_device *latest_dev = NULL;
1214	struct btrfs_device *tmp_device;
1215
1216	flags |= FMODE_EXCL;
1217
1218	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219				 dev_list) {
1220		int ret;
1221
1222		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223		if (ret == 0 &&
1224		    (!latest_dev || device->generation > latest_dev->generation)) {
1225			latest_dev = device;
1226		} else if (ret == -ENODATA) {
1227			fs_devices->num_devices--;
1228			list_del(&device->dev_list);
1229			btrfs_free_device(device);
1230		}
 
 
1231	}
1232	if (fs_devices->open_devices == 0)
 
 
 
1233		return -EINVAL;
 
1234
1235	fs_devices->opened = 1;
1236	fs_devices->latest_dev = latest_dev;
1237	fs_devices->total_rw_bytes = 0;
1238	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241	return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245		     const struct list_head *b)
1246{
1247	const struct btrfs_device *dev1, *dev2;
1248
1249	dev1 = list_entry(a, struct btrfs_device, dev_list);
1250	dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252	if (dev1->devid < dev2->devid)
1253		return -1;
1254	else if (dev1->devid > dev2->devid)
1255		return 1;
1256	return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260		       fmode_t flags, void *holder)
1261{
1262	int ret;
1263
1264	lockdep_assert_held(&uuid_mutex);
1265	/*
1266	 * The device_list_mutex cannot be taken here in case opening the
1267	 * underlying device takes further locks like open_mutex.
1268	 *
1269	 * We also don't need the lock here as this is called during mount and
1270	 * exclusion is provided by uuid_mutex
1271	 */
1272
1273	if (fs_devices->opened) {
1274		fs_devices->opened++;
1275		ret = 0;
1276	} else {
1277		list_sort(NULL, &fs_devices->devices, devid_cmp);
1278		ret = open_fs_devices(fs_devices, flags, holder);
1279	}
1280
1281	return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286	struct page *page = virt_to_page(super);
1287
1288	put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292						       u64 bytenr, u64 bytenr_orig)
1293{
1294	struct btrfs_super_block *disk_super;
1295	struct page *page;
1296	void *p;
1297	pgoff_t index;
1298
1299	/* make sure our super fits in the device */
1300	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301		return ERR_PTR(-EINVAL);
1302
1303	/* make sure our super fits in the page */
1304	if (sizeof(*disk_super) > PAGE_SIZE)
1305		return ERR_PTR(-EINVAL);
1306
1307	/* make sure our super doesn't straddle pages on disk */
1308	index = bytenr >> PAGE_SHIFT;
1309	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310		return ERR_PTR(-EINVAL);
1311
1312	/* pull in the page with our super */
1313	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315	if (IS_ERR(page))
1316		return ERR_CAST(page);
1317
1318	p = page_address(page);
1319
1320	/* align our pointer to the offset of the super block */
1321	disk_super = p + offset_in_page(bytenr);
1322
1323	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325		btrfs_release_disk_super(p);
1326		return ERR_PTR(-EINVAL);
1327	}
1328
1329	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332	return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337	int ret;
1338
1339	mutex_lock(&uuid_mutex);
1340	ret = btrfs_free_stale_devices(devt, NULL);
1341	mutex_unlock(&uuid_mutex);
1342
1343	return ret;
1344}
1345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
 
 
 
 
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352					   void *holder)
1353{
1354	struct btrfs_super_block *disk_super;
1355	bool new_device_added = false;
1356	struct btrfs_device *device = NULL;
1357	struct block_device *bdev;
1358	u64 bytenr, bytenr_orig;
 
1359	int ret;
1360
1361	lockdep_assert_held(&uuid_mutex);
1362
1363	/*
1364	 * we would like to check all the supers, but that would make
1365	 * a btrfs mount succeed after a mkfs from a different FS.
1366	 * So, we need to add a special mount option to scan for
1367	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368	 */
1369	flags |= FMODE_EXCL;
1370
1371	bdev = blkdev_get_by_path(path, flags, holder);
1372	if (IS_ERR(bdev))
1373		return ERR_CAST(bdev);
 
 
 
 
 
 
 
 
 
 
1374
1375	bytenr_orig = btrfs_sb_offset(0);
1376	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377	if (ret) {
1378		device = ERR_PTR(ret);
1379		goto error_bdev_put;
1380	}
1381
1382	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
 
1383	if (IS_ERR(disk_super)) {
1384		device = ERR_CAST(disk_super);
1385		goto error_bdev_put;
1386	}
1387
 
 
 
 
 
 
 
 
 
 
 
1388	device = device_list_add(path, disk_super, &new_device_added);
1389	if (!IS_ERR(device) && new_device_added)
1390		btrfs_free_stale_devices(device->devt, device);
1391
 
1392	btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395	blkdev_put(bdev, flags);
1396
1397	return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405				    u64 len)
1406{
1407	u64 physical_start, physical_end;
1408
1409	lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411	if (!find_first_extent_bit(&device->alloc_state, *start,
1412				   &physical_start, &physical_end,
1413				   CHUNK_ALLOCATED, NULL)) {
1414
1415		if (in_range(physical_start, *start, len) ||
1416		    in_range(*start, physical_start,
1417			     physical_end - physical_start)) {
1418			*start = physical_end + 1;
1419			return true;
1420		}
1421	}
1422	return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427	switch (device->fs_devices->chunk_alloc_policy) {
1428	case BTRFS_CHUNK_ALLOC_REGULAR:
1429		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430	case BTRFS_CHUNK_ALLOC_ZONED:
1431		/*
1432		 * We don't care about the starting region like regular
1433		 * allocator, because we anyway use/reserve the first two zones
1434		 * for superblock logging.
1435		 */
1436		return ALIGN(start, device->zone_info->zone_size);
1437	default:
1438		BUG();
1439	}
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443					u64 *hole_start, u64 *hole_size,
1444					u64 num_bytes)
1445{
1446	u64 zone_size = device->zone_info->zone_size;
1447	u64 pos;
1448	int ret;
1449	bool changed = false;
1450
1451	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453	while (*hole_size > 0) {
1454		pos = btrfs_find_allocatable_zones(device, *hole_start,
1455						   *hole_start + *hole_size,
1456						   num_bytes);
1457		if (pos != *hole_start) {
1458			*hole_size = *hole_start + *hole_size - pos;
1459			*hole_start = pos;
1460			changed = true;
1461			if (*hole_size < num_bytes)
1462				break;
1463		}
1464
1465		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467		/* Range is ensured to be empty */
1468		if (!ret)
1469			return changed;
1470
1471		/* Given hole range was invalid (outside of device) */
1472		if (ret == -ERANGE) {
1473			*hole_start += *hole_size;
1474			*hole_size = 0;
1475			return true;
1476		}
1477
1478		*hole_start += zone_size;
1479		*hole_size -= zone_size;
1480		changed = true;
1481	}
1482
1483	return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device:	the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size:	the size of the hole
1492 * @num_bytes:	the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498				  u64 *hole_size, u64 num_bytes)
1499{
1500	bool changed = false;
1501	u64 hole_end = *hole_start + *hole_size;
1502
1503	for (;;) {
1504		/*
1505		 * Check before we set max_hole_start, otherwise we could end up
1506		 * sending back this offset anyway.
1507		 */
1508		if (contains_pending_extent(device, hole_start, *hole_size)) {
1509			if (hole_end >= *hole_start)
1510				*hole_size = hole_end - *hole_start;
1511			else
1512				*hole_size = 0;
1513			changed = true;
1514		}
1515
1516		switch (device->fs_devices->chunk_alloc_policy) {
1517		case BTRFS_CHUNK_ALLOC_REGULAR:
1518			/* No extra check */
1519			break;
1520		case BTRFS_CHUNK_ALLOC_ZONED:
1521			if (dev_extent_hole_check_zoned(device, hole_start,
1522							hole_size, num_bytes)) {
1523				changed = true;
1524				/*
1525				 * The changed hole can contain pending extent.
1526				 * Loop again to check that.
1527				 */
1528				continue;
1529			}
1530			break;
1531		default:
1532			BUG();
1533		}
1534
1535		break;
1536	}
1537
1538	return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device:	  the device which we search the free space in
1545 * @num_bytes:	  the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start:	  store the start of the free space.
1548 * @len:	  the size of the free space. that we find, or the size
1549 *		  of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569				u64 num_bytes, u64 search_start, u64 *start,
1570				u64 *len)
1571{
1572	struct btrfs_fs_info *fs_info = device->fs_info;
1573	struct btrfs_root *root = fs_info->dev_root;
1574	struct btrfs_key key;
1575	struct btrfs_dev_extent *dev_extent;
1576	struct btrfs_path *path;
 
1577	u64 hole_size;
1578	u64 max_hole_start;
1579	u64 max_hole_size;
1580	u64 extent_end;
1581	u64 search_end = device->total_bytes;
1582	int ret;
1583	int slot;
1584	struct extent_buffer *l;
1585
1586	search_start = dev_extent_search_start(device, search_start);
 
1587
1588	WARN_ON(device->zone_info &&
1589		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591	path = btrfs_alloc_path();
1592	if (!path)
1593		return -ENOMEM;
1594
1595	max_hole_start = search_start;
1596	max_hole_size = 0;
1597
1598again:
1599	if (search_start >= search_end ||
1600		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601		ret = -ENOSPC;
1602		goto out;
1603	}
1604
1605	path->reada = READA_FORWARD;
1606	path->search_commit_root = 1;
1607	path->skip_locking = 1;
1608
1609	key.objectid = device->devid;
1610	key.offset = search_start;
1611	key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613	ret = btrfs_search_backwards(root, &key, path);
1614	if (ret < 0)
1615		goto out;
1616
1617	while (search_start < search_end) {
1618		l = path->nodes[0];
1619		slot = path->slots[0];
1620		if (slot >= btrfs_header_nritems(l)) {
1621			ret = btrfs_next_leaf(root, path);
1622			if (ret == 0)
1623				continue;
1624			if (ret < 0)
1625				goto out;
1626
1627			break;
1628		}
1629		btrfs_item_key_to_cpu(l, &key, slot);
1630
1631		if (key.objectid < device->devid)
1632			goto next;
1633
1634		if (key.objectid > device->devid)
1635			break;
1636
1637		if (key.type != BTRFS_DEV_EXTENT_KEY)
1638			goto next;
1639
1640		if (key.offset > search_end)
1641			break;
1642
1643		if (key.offset > search_start) {
1644			hole_size = key.offset - search_start;
1645			dev_extent_hole_check(device, &search_start, &hole_size,
1646					      num_bytes);
1647
1648			if (hole_size > max_hole_size) {
1649				max_hole_start = search_start;
1650				max_hole_size = hole_size;
1651			}
1652
1653			/*
1654			 * If this free space is greater than which we need,
1655			 * it must be the max free space that we have found
1656			 * until now, so max_hole_start must point to the start
1657			 * of this free space and the length of this free space
1658			 * is stored in max_hole_size. Thus, we return
1659			 * max_hole_start and max_hole_size and go back to the
1660			 * caller.
1661			 */
1662			if (hole_size >= num_bytes) {
1663				ret = 0;
1664				goto out;
1665			}
1666		}
1667
1668		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669		extent_end = key.offset + btrfs_dev_extent_length(l,
1670								  dev_extent);
1671		if (extent_end > search_start)
1672			search_start = extent_end;
1673next:
1674		path->slots[0]++;
1675		cond_resched();
1676	}
1677
1678	/*
1679	 * At this point, search_start should be the end of
1680	 * allocated dev extents, and when shrinking the device,
1681	 * search_end may be smaller than search_start.
1682	 */
1683	if (search_end > search_start) {
1684		hole_size = search_end - search_start;
1685		if (dev_extent_hole_check(device, &search_start, &hole_size,
1686					  num_bytes)) {
1687			btrfs_release_path(path);
1688			goto again;
1689		}
1690
1691		if (hole_size > max_hole_size) {
1692			max_hole_start = search_start;
1693			max_hole_size = hole_size;
1694		}
1695	}
1696
1697	/* See above. */
1698	if (max_hole_size < num_bytes)
1699		ret = -ENOSPC;
1700	else
1701		ret = 0;
1702
1703	ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705	btrfs_free_path(path);
1706	*start = max_hole_start;
1707	if (len)
1708		*len = max_hole_size;
1709	return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713			 u64 *start, u64 *len)
1714{
1715	/* FIXME use last free of some kind */
1716	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720			  struct btrfs_device *device,
1721			  u64 start, u64 *dev_extent_len)
1722{
1723	struct btrfs_fs_info *fs_info = device->fs_info;
1724	struct btrfs_root *root = fs_info->dev_root;
1725	int ret;
1726	struct btrfs_path *path;
1727	struct btrfs_key key;
1728	struct btrfs_key found_key;
1729	struct extent_buffer *leaf = NULL;
1730	struct btrfs_dev_extent *extent = NULL;
1731
1732	path = btrfs_alloc_path();
1733	if (!path)
1734		return -ENOMEM;
1735
1736	key.objectid = device->devid;
1737	key.offset = start;
1738	key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741	if (ret > 0) {
1742		ret = btrfs_previous_item(root, path, key.objectid,
1743					  BTRFS_DEV_EXTENT_KEY);
1744		if (ret)
1745			goto out;
1746		leaf = path->nodes[0];
1747		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748		extent = btrfs_item_ptr(leaf, path->slots[0],
1749					struct btrfs_dev_extent);
1750		BUG_ON(found_key.offset > start || found_key.offset +
1751		       btrfs_dev_extent_length(leaf, extent) < start);
1752		key = found_key;
1753		btrfs_release_path(path);
1754		goto again;
1755	} else if (ret == 0) {
1756		leaf = path->nodes[0];
1757		extent = btrfs_item_ptr(leaf, path->slots[0],
1758					struct btrfs_dev_extent);
1759	} else {
1760		goto out;
1761	}
1762
1763	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765	ret = btrfs_del_item(trans, root, path);
1766	if (ret == 0)
1767		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769	btrfs_free_path(path);
1770	return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775	struct extent_map_tree *em_tree;
1776	struct extent_map *em;
1777	struct rb_node *n;
1778	u64 ret = 0;
1779
1780	em_tree = &fs_info->mapping_tree;
1781	read_lock(&em_tree->lock);
1782	n = rb_last(&em_tree->map.rb_root);
1783	if (n) {
1784		em = rb_entry(n, struct extent_map, rb_node);
1785		ret = em->start + em->len;
 
 
1786	}
1787	read_unlock(&em_tree->lock);
1788
1789	return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793				    u64 *devid_ret)
1794{
1795	int ret;
1796	struct btrfs_key key;
1797	struct btrfs_key found_key;
1798	struct btrfs_path *path;
1799
1800	path = btrfs_alloc_path();
1801	if (!path)
1802		return -ENOMEM;
1803
1804	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805	key.type = BTRFS_DEV_ITEM_KEY;
1806	key.offset = (u64)-1;
1807
1808	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809	if (ret < 0)
1810		goto error;
1811
1812	if (ret == 0) {
1813		/* Corruption */
1814		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815		ret = -EUCLEAN;
1816		goto error;
1817	}
1818
1819	ret = btrfs_previous_item(fs_info->chunk_root, path,
1820				  BTRFS_DEV_ITEMS_OBJECTID,
1821				  BTRFS_DEV_ITEM_KEY);
1822	if (ret) {
1823		*devid_ret = 1;
1824	} else {
1825		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826				      path->slots[0]);
1827		*devid_ret = found_key.offset + 1;
1828	}
1829	ret = 0;
1830error:
1831	btrfs_free_path(path);
1832	return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840			    struct btrfs_device *device)
1841{
1842	int ret;
1843	struct btrfs_path *path;
1844	struct btrfs_dev_item *dev_item;
1845	struct extent_buffer *leaf;
1846	struct btrfs_key key;
1847	unsigned long ptr;
1848
1849	path = btrfs_alloc_path();
1850	if (!path)
1851		return -ENOMEM;
1852
1853	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854	key.type = BTRFS_DEV_ITEM_KEY;
1855	key.offset = device->devid;
1856
1857	btrfs_reserve_chunk_metadata(trans, true);
1858	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859				      &key, sizeof(*dev_item));
1860	btrfs_trans_release_chunk_metadata(trans);
1861	if (ret)
1862		goto out;
1863
1864	leaf = path->nodes[0];
1865	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867	btrfs_set_device_id(leaf, dev_item, device->devid);
1868	btrfs_set_device_generation(leaf, dev_item, 0);
1869	btrfs_set_device_type(leaf, dev_item, device->type);
1870	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873	btrfs_set_device_total_bytes(leaf, dev_item,
1874				     btrfs_device_get_disk_total_bytes(device));
1875	btrfs_set_device_bytes_used(leaf, dev_item,
1876				    btrfs_device_get_bytes_used(device));
1877	btrfs_set_device_group(leaf, dev_item, 0);
1878	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880	btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882	ptr = btrfs_device_uuid(dev_item);
1883	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884	ptr = btrfs_device_fsid(dev_item);
1885	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886			    ptr, BTRFS_FSID_SIZE);
1887	btrfs_mark_buffer_dirty(leaf);
1888
1889	ret = 0;
1890out:
1891	btrfs_free_path(path);
1892	return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903	struct path path;
1904	struct timespec64 now;
1905	int ret;
1906
1907	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908	if (ret)
1909		return;
1910
1911	now = current_time(d_inode(path.dentry));
1912	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913	path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917			     struct btrfs_device *device)
1918{
1919	struct btrfs_root *root = device->fs_info->chunk_root;
1920	int ret;
1921	struct btrfs_path *path;
1922	struct btrfs_key key;
1923
1924	path = btrfs_alloc_path();
1925	if (!path)
1926		return -ENOMEM;
1927
1928	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929	key.type = BTRFS_DEV_ITEM_KEY;
1930	key.offset = device->devid;
1931
1932	btrfs_reserve_chunk_metadata(trans, false);
1933	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934	btrfs_trans_release_chunk_metadata(trans);
1935	if (ret) {
1936		if (ret > 0)
1937			ret = -ENOENT;
1938		goto out;
1939	}
1940
1941	ret = btrfs_del_item(trans, root, path);
1942out:
1943	btrfs_free_path(path);
1944	return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953		u64 num_devices)
1954{
1955	u64 all_avail;
1956	unsigned seq;
1957	int i;
1958
1959	do {
1960		seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962		all_avail = fs_info->avail_data_alloc_bits |
1963			    fs_info->avail_system_alloc_bits |
1964			    fs_info->avail_metadata_alloc_bits;
1965	} while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969			continue;
1970
1971		if (num_devices < btrfs_raid_array[i].devs_min)
1972			return btrfs_raid_array[i].mindev_error;
1973	}
1974
1975	return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981	struct btrfs_device *next_device;
1982
1983	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984		if (next_device != device &&
1985		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986		    && next_device->bdev)
1987			return next_device;
1988	}
1989
1990	return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000					    struct btrfs_device *next_device)
2001{
2002	struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004	if (!next_device)
2005		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006							    device);
2007	ASSERT(next_device);
2008
2009	if (fs_info->sb->s_bdev &&
2010			(fs_info->sb->s_bdev == device->bdev))
2011		fs_info->sb->s_bdev = next_device->bdev;
2012
2013	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014		fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023	u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025	down_read(&fs_info->dev_replace.rwsem);
2026	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027		ASSERT(num_devices > 1);
2028		num_devices--;
2029	}
2030	up_read(&fs_info->dev_replace.rwsem);
2031
2032	return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036				     struct block_device *bdev, int copy_num)
2037{
2038	struct btrfs_super_block *disk_super;
2039	const size_t len = sizeof(disk_super->magic);
2040	const u64 bytenr = btrfs_sb_offset(copy_num);
2041	int ret;
2042
2043	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044	if (IS_ERR(disk_super))
2045		return;
2046
2047	memset(&disk_super->magic, 0, len);
2048	folio_mark_dirty(virt_to_folio(disk_super));
2049	btrfs_release_disk_super(disk_super);
2050
2051	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052	if (ret)
2053		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054			copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058			       struct block_device *bdev,
2059			       const char *device_path)
2060{
2061	int copy_num;
 
2062
2063	if (!bdev)
2064		return;
2065
2066	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067		if (bdev_is_zoned(bdev))
2068			btrfs_reset_sb_log_zones(bdev, copy_num);
2069		else
2070			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071	}
2072
2073	/* Notify udev that device has changed */
2074	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076	/* Update ctime/mtime for device path for libblkid */
2077	update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081		    struct btrfs_dev_lookup_args *args,
2082		    struct block_device **bdev, fmode_t *mode)
2083{
2084	struct btrfs_trans_handle *trans;
2085	struct btrfs_device *device;
2086	struct btrfs_fs_devices *cur_devices;
2087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088	u64 num_devices;
2089	int ret = 0;
2090
2091	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093		return -EINVAL;
2094	}
2095
2096	/*
2097	 * The device list in fs_devices is accessed without locks (neither
2098	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099	 * filesystem and another device rm cannot run.
2100	 */
2101	num_devices = btrfs_num_devices(fs_info);
2102
2103	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104	if (ret)
2105		return ret;
2106
2107	device = btrfs_find_device(fs_info->fs_devices, args);
2108	if (!device) {
2109		if (args->missing)
2110			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111		else
2112			ret = -ENOENT;
2113		return ret;
2114	}
2115
2116	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117		btrfs_warn_in_rcu(fs_info,
2118		  "cannot remove device %s (devid %llu) due to active swapfile",
2119				  btrfs_dev_name(device), device->devid);
2120		return -ETXTBSY;
2121	}
2122
2123	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124		return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127	    fs_info->fs_devices->rw_devices == 1)
2128		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131		mutex_lock(&fs_info->chunk_mutex);
2132		list_del_init(&device->dev_alloc_list);
2133		device->fs_devices->rw_devices--;
2134		mutex_unlock(&fs_info->chunk_mutex);
2135	}
2136
2137	ret = btrfs_shrink_device(device, 0);
2138	if (ret)
2139		goto error_undo;
2140
2141	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142	if (IS_ERR(trans)) {
2143		ret = PTR_ERR(trans);
2144		goto error_undo;
2145	}
2146
2147	ret = btrfs_rm_dev_item(trans, device);
2148	if (ret) {
2149		/* Any error in dev item removal is critical */
2150		btrfs_crit(fs_info,
2151			   "failed to remove device item for devid %llu: %d",
2152			   device->devid, ret);
2153		btrfs_abort_transaction(trans, ret);
2154		btrfs_end_transaction(trans);
2155		return ret;
2156	}
2157
2158	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159	btrfs_scrub_cancel_dev(device);
2160
2161	/*
2162	 * the device list mutex makes sure that we don't change
2163	 * the device list while someone else is writing out all
2164	 * the device supers. Whoever is writing all supers, should
2165	 * lock the device list mutex before getting the number of
2166	 * devices in the super block (super_copy). Conversely,
2167	 * whoever updates the number of devices in the super block
2168	 * (super_copy) should hold the device list mutex.
2169	 */
2170
2171	/*
2172	 * In normal cases the cur_devices == fs_devices. But in case
2173	 * of deleting a seed device, the cur_devices should point to
2174	 * its own fs_devices listed under the fs_devices->seed_list.
2175	 */
2176	cur_devices = device->fs_devices;
2177	mutex_lock(&fs_devices->device_list_mutex);
2178	list_del_rcu(&device->dev_list);
2179
2180	cur_devices->num_devices--;
2181	cur_devices->total_devices--;
2182	/* Update total_devices of the parent fs_devices if it's seed */
2183	if (cur_devices != fs_devices)
2184		fs_devices->total_devices--;
2185
2186	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187		cur_devices->missing_devices--;
2188
2189	btrfs_assign_next_active_device(device, NULL);
2190
2191	if (device->bdev) {
2192		cur_devices->open_devices--;
2193		/* remove sysfs entry */
2194		btrfs_sysfs_remove_device(device);
2195	}
2196
2197	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199	mutex_unlock(&fs_devices->device_list_mutex);
2200
2201	/*
2202	 * At this point, the device is zero sized and detached from the
2203	 * devices list.  All that's left is to zero out the old supers and
2204	 * free the device.
2205	 *
2206	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208	 * block device and it's dependencies.  Instead just flush the device
2209	 * and let the caller do the final blkdev_put.
2210	 */
2211	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212		btrfs_scratch_superblocks(fs_info, device->bdev,
2213					  device->name->str);
2214		if (device->bdev) {
2215			sync_blockdev(device->bdev);
2216			invalidate_bdev(device->bdev);
2217		}
2218	}
2219
2220	*bdev = device->bdev;
2221	*mode = device->mode;
2222	synchronize_rcu();
2223	btrfs_free_device(device);
2224
2225	/*
2226	 * This can happen if cur_devices is the private seed devices list.  We
2227	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228	 * to be held, but in fact we don't need that for the private
2229	 * seed_devices, we can simply decrement cur_devices->opened and then
2230	 * remove it from our list and free the fs_devices.
2231	 */
2232	if (cur_devices->num_devices == 0) {
2233		list_del_init(&cur_devices->seed_list);
2234		ASSERT(cur_devices->opened == 1);
2235		cur_devices->opened--;
2236		free_fs_devices(cur_devices);
2237	}
2238
2239	ret = btrfs_commit_transaction(trans);
2240
2241	return ret;
2242
2243error_undo:
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		mutex_lock(&fs_info->chunk_mutex);
2246		list_add(&device->dev_alloc_list,
2247			 &fs_devices->alloc_list);
2248		device->fs_devices->rw_devices++;
2249		mutex_unlock(&fs_info->chunk_mutex);
2250	}
2251	return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256	struct btrfs_fs_devices *fs_devices;
2257
2258	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260	/*
2261	 * in case of fs with no seed, srcdev->fs_devices will point
2262	 * to fs_devices of fs_info. However when the dev being replaced is
2263	 * a seed dev it will point to the seed's local fs_devices. In short
2264	 * srcdev will have its correct fs_devices in both the cases.
2265	 */
2266	fs_devices = srcdev->fs_devices;
2267
2268	list_del_rcu(&srcdev->dev_list);
2269	list_del(&srcdev->dev_alloc_list);
2270	fs_devices->num_devices--;
2271	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272		fs_devices->missing_devices--;
2273
2274	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275		fs_devices->rw_devices--;
2276
2277	if (srcdev->bdev)
2278		fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285	mutex_lock(&uuid_mutex);
2286
2287	btrfs_close_bdev(srcdev);
2288	synchronize_rcu();
2289	btrfs_free_device(srcdev);
2290
2291	/* if this is no devs we rather delete the fs_devices */
2292	if (!fs_devices->num_devices) {
2293		/*
2294		 * On a mounted FS, num_devices can't be zero unless it's a
2295		 * seed. In case of a seed device being replaced, the replace
2296		 * target added to the sprout FS, so there will be no more
2297		 * device left under the seed FS.
2298		 */
2299		ASSERT(fs_devices->seeding);
2300
2301		list_del_init(&fs_devices->seed_list);
2302		close_fs_devices(fs_devices);
2303		free_fs_devices(fs_devices);
2304	}
2305	mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312	mutex_lock(&fs_devices->device_list_mutex);
2313
2314	btrfs_sysfs_remove_device(tgtdev);
2315
2316	if (tgtdev->bdev)
2317		fs_devices->open_devices--;
2318
2319	fs_devices->num_devices--;
2320
2321	btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323	list_del_rcu(&tgtdev->dev_list);
2324
2325	mutex_unlock(&fs_devices->device_list_mutex);
2326
2327	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328				  tgtdev->name->str);
2329
2330	btrfs_close_bdev(tgtdev);
2331	synchronize_rcu();
2332	btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info:	the filesystem
2339 * @args:	the args to populate
2340 * @path:	the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks.  The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354				 struct btrfs_dev_lookup_args *args,
2355				 const char *path)
2356{
2357	struct btrfs_super_block *disk_super;
2358	struct block_device *bdev;
2359	int ret;
2360
2361	if (!path || !path[0])
2362		return -EINVAL;
2363	if (!strcmp(path, "missing")) {
2364		args->missing = true;
2365		return 0;
2366	}
2367
2368	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370	if (!args->uuid || !args->fsid) {
2371		btrfs_put_dev_args_from_path(args);
2372		return -ENOMEM;
2373	}
2374
2375	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376				    &bdev, &disk_super);
2377	if (ret) {
2378		btrfs_put_dev_args_from_path(args);
2379		return ret;
2380	}
2381
2382	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386	else
2387		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388	btrfs_release_disk_super(disk_super);
2389	blkdev_put(bdev, FMODE_READ);
2390	return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400	kfree(args->uuid);
2401	kfree(args->fsid);
2402	args->uuid = NULL;
2403	args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407		struct btrfs_fs_info *fs_info, u64 devid,
2408		const char *device_path)
2409{
2410	BTRFS_DEV_LOOKUP_ARGS(args);
2411	struct btrfs_device *device;
2412	int ret;
2413
2414	if (devid) {
2415		args.devid = devid;
2416		device = btrfs_find_device(fs_info->fs_devices, &args);
2417		if (!device)
2418			return ERR_PTR(-ENOENT);
2419		return device;
2420	}
2421
2422	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423	if (ret)
2424		return ERR_PTR(ret);
2425	device = btrfs_find_device(fs_info->fs_devices, &args);
2426	btrfs_put_dev_args_from_path(&args);
2427	if (!device)
2428		return ERR_PTR(-ENOENT);
2429	return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435	struct btrfs_fs_devices *old_devices;
2436	struct btrfs_fs_devices *seed_devices;
2437
2438	lockdep_assert_held(&uuid_mutex);
2439	if (!fs_devices->seeding)
2440		return ERR_PTR(-EINVAL);
2441
2442	/*
2443	 * Private copy of the seed devices, anchored at
2444	 * fs_info->fs_devices->seed_list
2445	 */
2446	seed_devices = alloc_fs_devices(NULL, NULL);
2447	if (IS_ERR(seed_devices))
2448		return seed_devices;
2449
2450	/*
2451	 * It's necessary to retain a copy of the original seed fs_devices in
2452	 * fs_uuids so that filesystems which have been seeded can successfully
2453	 * reference the seed device from open_seed_devices. This also supports
2454	 * multiple fs seed.
2455	 */
2456	old_devices = clone_fs_devices(fs_devices);
2457	if (IS_ERR(old_devices)) {
2458		kfree(seed_devices);
2459		return old_devices;
2460	}
2461
2462	list_add(&old_devices->fs_list, &fs_uuids);
2463
2464	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465	seed_devices->opened = 1;
2466	INIT_LIST_HEAD(&seed_devices->devices);
2467	INIT_LIST_HEAD(&seed_devices->alloc_list);
2468	mutex_init(&seed_devices->device_list_mutex);
2469
2470	return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478			       struct btrfs_fs_devices *seed_devices)
2479{
2480	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481	struct btrfs_super_block *disk_super = fs_info->super_copy;
2482	struct btrfs_device *device;
2483	u64 super_flags;
2484
2485	/*
2486	 * We are updating the fsid, the thread leading to device_list_add()
2487	 * could race, so uuid_mutex is needed.
2488	 */
2489	lockdep_assert_held(&uuid_mutex);
2490
2491	/*
2492	 * The threads listed below may traverse dev_list but can do that without
2493	 * device_list_mutex:
2494	 * - All device ops and balance - as we are in btrfs_exclop_start.
2495	 * - Various dev_list readers - are using RCU.
2496	 * - btrfs_ioctl_fitrim() - is using RCU.
2497	 *
2498	 * For-read threads as below are using device_list_mutex:
2499	 * - Readonly scrub btrfs_scrub_dev()
2500	 * - Readonly scrub btrfs_scrub_progress()
2501	 * - btrfs_get_dev_stats()
2502	 */
2503	lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506			      synchronize_rcu);
2507	list_for_each_entry(device, &seed_devices->devices, dev_list)
2508		device->fs_devices = seed_devices;
2509
2510	fs_devices->seeding = false;
2511	fs_devices->num_devices = 0;
2512	fs_devices->open_devices = 0;
2513	fs_devices->missing_devices = 0;
2514	fs_devices->rotating = false;
2515	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517	generate_random_uuid(fs_devices->fsid);
2518	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521	super_flags = btrfs_super_flags(disk_super) &
2522		      ~BTRFS_SUPER_FLAG_SEEDING;
2523	btrfs_set_super_flags(disk_super, super_flags);
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531	BTRFS_DEV_LOOKUP_ARGS(args);
2532	struct btrfs_fs_info *fs_info = trans->fs_info;
2533	struct btrfs_root *root = fs_info->chunk_root;
2534	struct btrfs_path *path;
2535	struct extent_buffer *leaf;
2536	struct btrfs_dev_item *dev_item;
2537	struct btrfs_device *device;
2538	struct btrfs_key key;
2539	u8 fs_uuid[BTRFS_FSID_SIZE];
2540	u8 dev_uuid[BTRFS_UUID_SIZE];
2541	int ret;
2542
2543	path = btrfs_alloc_path();
2544	if (!path)
2545		return -ENOMEM;
2546
2547	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548	key.offset = 0;
2549	key.type = BTRFS_DEV_ITEM_KEY;
2550
2551	while (1) {
2552		btrfs_reserve_chunk_metadata(trans, false);
2553		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554		btrfs_trans_release_chunk_metadata(trans);
2555		if (ret < 0)
2556			goto error;
2557
2558		leaf = path->nodes[0];
2559next_slot:
2560		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561			ret = btrfs_next_leaf(root, path);
2562			if (ret > 0)
2563				break;
2564			if (ret < 0)
2565				goto error;
2566			leaf = path->nodes[0];
2567			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568			btrfs_release_path(path);
2569			continue;
2570		}
2571
2572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574		    key.type != BTRFS_DEV_ITEM_KEY)
2575			break;
2576
2577		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578					  struct btrfs_dev_item);
2579		args.devid = btrfs_device_id(leaf, dev_item);
2580		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581				   BTRFS_UUID_SIZE);
2582		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583				   BTRFS_FSID_SIZE);
2584		args.uuid = dev_uuid;
2585		args.fsid = fs_uuid;
2586		device = btrfs_find_device(fs_info->fs_devices, &args);
2587		BUG_ON(!device); /* Logic error */
2588
2589		if (device->fs_devices->seeding) {
2590			btrfs_set_device_generation(leaf, dev_item,
2591						    device->generation);
2592			btrfs_mark_buffer_dirty(leaf);
2593		}
2594
2595		path->slots[0]++;
2596		goto next_slot;
2597	}
2598	ret = 0;
2599error:
2600	btrfs_free_path(path);
2601	return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606	struct btrfs_root *root = fs_info->dev_root;
2607	struct btrfs_trans_handle *trans;
2608	struct btrfs_device *device;
2609	struct block_device *bdev;
2610	struct super_block *sb = fs_info->sb;
2611	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612	struct btrfs_fs_devices *seed_devices;
2613	u64 orig_super_total_bytes;
2614	u64 orig_super_num_devices;
2615	int ret = 0;
2616	bool seeding_dev = false;
2617	bool locked = false;
2618
2619	if (sb_rdonly(sb) && !fs_devices->seeding)
2620		return -EROFS;
2621
2622	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623				  fs_info->bdev_holder);
2624	if (IS_ERR(bdev))
2625		return PTR_ERR(bdev);
2626
2627	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628		ret = -EINVAL;
2629		goto error;
2630	}
2631
2632	if (fs_devices->seeding) {
2633		seeding_dev = true;
2634		down_write(&sb->s_umount);
2635		mutex_lock(&uuid_mutex);
2636		locked = true;
2637	}
2638
2639	sync_blockdev(bdev);
2640
2641	rcu_read_lock();
2642	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643		if (device->bdev == bdev) {
2644			ret = -EEXIST;
2645			rcu_read_unlock();
2646			goto error;
2647		}
2648	}
2649	rcu_read_unlock();
2650
2651	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652	if (IS_ERR(device)) {
2653		/* we can safely leave the fs_devices entry around */
2654		ret = PTR_ERR(device);
2655		goto error;
2656	}
2657
2658	device->fs_info = fs_info;
2659	device->bdev = bdev;
 
2660	ret = lookup_bdev(device_path, &device->devt);
2661	if (ret)
2662		goto error_free_device;
2663
2664	ret = btrfs_get_dev_zone_info(device, false);
2665	if (ret)
2666		goto error_free_device;
2667
2668	trans = btrfs_start_transaction(root, 0);
2669	if (IS_ERR(trans)) {
2670		ret = PTR_ERR(trans);
2671		goto error_free_zone;
2672	}
2673
2674	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675	device->generation = trans->transid;
2676	device->io_width = fs_info->sectorsize;
2677	device->io_align = fs_info->sectorsize;
2678	device->sector_size = fs_info->sectorsize;
2679	device->total_bytes =
2680		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681	device->disk_total_bytes = device->total_bytes;
2682	device->commit_total_bytes = device->total_bytes;
2683	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685	device->mode = FMODE_EXCL;
2686	device->dev_stats_valid = 1;
2687	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689	if (seeding_dev) {
2690		btrfs_clear_sb_rdonly(sb);
2691
2692		/* GFP_KERNEL allocation must not be under device_list_mutex */
2693		seed_devices = btrfs_init_sprout(fs_info);
2694		if (IS_ERR(seed_devices)) {
2695			ret = PTR_ERR(seed_devices);
2696			btrfs_abort_transaction(trans, ret);
2697			goto error_trans;
2698		}
2699	}
2700
2701	mutex_lock(&fs_devices->device_list_mutex);
2702	if (seeding_dev) {
2703		btrfs_setup_sprout(fs_info, seed_devices);
2704		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705						device);
2706	}
2707
2708	device->fs_devices = fs_devices;
2709
2710	mutex_lock(&fs_info->chunk_mutex);
2711	list_add_rcu(&device->dev_list, &fs_devices->devices);
2712	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713	fs_devices->num_devices++;
2714	fs_devices->open_devices++;
2715	fs_devices->rw_devices++;
2716	fs_devices->total_devices++;
2717	fs_devices->total_rw_bytes += device->total_bytes;
2718
2719	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721	if (!bdev_nonrot(bdev))
2722		fs_devices->rotating = true;
2723
2724	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725	btrfs_set_super_total_bytes(fs_info->super_copy,
2726		round_down(orig_super_total_bytes + device->total_bytes,
2727			   fs_info->sectorsize));
2728
2729	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730	btrfs_set_super_num_devices(fs_info->super_copy,
2731				    orig_super_num_devices + 1);
2732
2733	/*
2734	 * we've got more storage, clear any full flags on the space
2735	 * infos
2736	 */
2737	btrfs_clear_space_info_full(fs_info);
2738
2739	mutex_unlock(&fs_info->chunk_mutex);
2740
2741	/* Add sysfs device entry */
2742	btrfs_sysfs_add_device(device);
2743
2744	mutex_unlock(&fs_devices->device_list_mutex);
2745
2746	if (seeding_dev) {
2747		mutex_lock(&fs_info->chunk_mutex);
2748		ret = init_first_rw_device(trans);
2749		mutex_unlock(&fs_info->chunk_mutex);
2750		if (ret) {
2751			btrfs_abort_transaction(trans, ret);
2752			goto error_sysfs;
2753		}
2754	}
2755
2756	ret = btrfs_add_dev_item(trans, device);
2757	if (ret) {
2758		btrfs_abort_transaction(trans, ret);
2759		goto error_sysfs;
2760	}
2761
2762	if (seeding_dev) {
2763		ret = btrfs_finish_sprout(trans);
2764		if (ret) {
2765			btrfs_abort_transaction(trans, ret);
2766			goto error_sysfs;
2767		}
2768
2769		/*
2770		 * fs_devices now represents the newly sprouted filesystem and
2771		 * its fsid has been changed by btrfs_sprout_splice().
2772		 */
2773		btrfs_sysfs_update_sprout_fsid(fs_devices);
2774	}
2775
2776	ret = btrfs_commit_transaction(trans);
2777
2778	if (seeding_dev) {
2779		mutex_unlock(&uuid_mutex);
2780		up_write(&sb->s_umount);
2781		locked = false;
2782
2783		if (ret) /* transaction commit */
2784			return ret;
2785
2786		ret = btrfs_relocate_sys_chunks(fs_info);
2787		if (ret < 0)
2788			btrfs_handle_fs_error(fs_info, ret,
2789				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790		trans = btrfs_attach_transaction(root);
2791		if (IS_ERR(trans)) {
2792			if (PTR_ERR(trans) == -ENOENT)
2793				return 0;
2794			ret = PTR_ERR(trans);
2795			trans = NULL;
2796			goto error_sysfs;
2797		}
2798		ret = btrfs_commit_transaction(trans);
2799	}
2800
2801	/*
2802	 * Now that we have written a new super block to this device, check all
2803	 * other fs_devices list if device_path alienates any other scanned
2804	 * device.
2805	 * We can ignore the return value as it typically returns -EINVAL and
2806	 * only succeeds if the device was an alien.
2807	 */
2808	btrfs_forget_devices(device->devt);
2809
2810	/* Update ctime/mtime for blkid or udev */
2811	update_dev_time(device_path);
2812
2813	return ret;
2814
2815error_sysfs:
2816	btrfs_sysfs_remove_device(device);
2817	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818	mutex_lock(&fs_info->chunk_mutex);
2819	list_del_rcu(&device->dev_list);
2820	list_del(&device->dev_alloc_list);
2821	fs_info->fs_devices->num_devices--;
2822	fs_info->fs_devices->open_devices--;
2823	fs_info->fs_devices->rw_devices--;
2824	fs_info->fs_devices->total_devices--;
2825	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827	btrfs_set_super_total_bytes(fs_info->super_copy,
2828				    orig_super_total_bytes);
2829	btrfs_set_super_num_devices(fs_info->super_copy,
2830				    orig_super_num_devices);
2831	mutex_unlock(&fs_info->chunk_mutex);
2832	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834	if (seeding_dev)
2835		btrfs_set_sb_rdonly(sb);
2836	if (trans)
2837		btrfs_end_transaction(trans);
2838error_free_zone:
2839	btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841	btrfs_free_device(device);
2842error:
2843	blkdev_put(bdev, FMODE_EXCL);
2844	if (locked) {
2845		mutex_unlock(&uuid_mutex);
2846		up_write(&sb->s_umount);
2847	}
2848	return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852					struct btrfs_device *device)
2853{
2854	int ret;
2855	struct btrfs_path *path;
2856	struct btrfs_root *root = device->fs_info->chunk_root;
2857	struct btrfs_dev_item *dev_item;
2858	struct extent_buffer *leaf;
2859	struct btrfs_key key;
2860
2861	path = btrfs_alloc_path();
2862	if (!path)
2863		return -ENOMEM;
2864
2865	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866	key.type = BTRFS_DEV_ITEM_KEY;
2867	key.offset = device->devid;
2868
2869	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870	if (ret < 0)
2871		goto out;
2872
2873	if (ret > 0) {
2874		ret = -ENOENT;
2875		goto out;
2876	}
2877
2878	leaf = path->nodes[0];
2879	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881	btrfs_set_device_id(leaf, dev_item, device->devid);
2882	btrfs_set_device_type(leaf, dev_item, device->type);
2883	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886	btrfs_set_device_total_bytes(leaf, dev_item,
2887				     btrfs_device_get_disk_total_bytes(device));
2888	btrfs_set_device_bytes_used(leaf, dev_item,
2889				    btrfs_device_get_bytes_used(device));
2890	btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893	btrfs_free_path(path);
2894	return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898		      struct btrfs_device *device, u64 new_size)
2899{
2900	struct btrfs_fs_info *fs_info = device->fs_info;
2901	struct btrfs_super_block *super_copy = fs_info->super_copy;
2902	u64 old_total;
2903	u64 diff;
2904	int ret;
2905
2906	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907		return -EACCES;
2908
2909	new_size = round_down(new_size, fs_info->sectorsize);
2910
2911	mutex_lock(&fs_info->chunk_mutex);
2912	old_total = btrfs_super_total_bytes(super_copy);
2913	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915	if (new_size <= device->total_bytes ||
2916	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917		mutex_unlock(&fs_info->chunk_mutex);
2918		return -EINVAL;
2919	}
2920
2921	btrfs_set_super_total_bytes(super_copy,
2922			round_down(old_total + diff, fs_info->sectorsize));
2923	device->fs_devices->total_rw_bytes += diff;
 
2924
2925	btrfs_device_set_total_bytes(device, new_size);
2926	btrfs_device_set_disk_total_bytes(device, new_size);
2927	btrfs_clear_space_info_full(device->fs_info);
2928	if (list_empty(&device->post_commit_list))
2929		list_add_tail(&device->post_commit_list,
2930			      &trans->transaction->dev_update_list);
2931	mutex_unlock(&fs_info->chunk_mutex);
2932
2933	btrfs_reserve_chunk_metadata(trans, false);
2934	ret = btrfs_update_device(trans, device);
2935	btrfs_trans_release_chunk_metadata(trans);
2936
2937	return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942	struct btrfs_fs_info *fs_info = trans->fs_info;
2943	struct btrfs_root *root = fs_info->chunk_root;
2944	int ret;
2945	struct btrfs_path *path;
2946	struct btrfs_key key;
2947
2948	path = btrfs_alloc_path();
2949	if (!path)
2950		return -ENOMEM;
2951
2952	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953	key.offset = chunk_offset;
2954	key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957	if (ret < 0)
2958		goto out;
2959	else if (ret > 0) { /* Logic error or corruption */
2960		btrfs_handle_fs_error(fs_info, -ENOENT,
2961				      "Failed lookup while freeing chunk.");
2962		ret = -ENOENT;
2963		goto out;
2964	}
2965
2966	ret = btrfs_del_item(trans, root, path);
2967	if (ret < 0)
2968		btrfs_handle_fs_error(fs_info, ret,
2969				      "Failed to delete chunk item.");
2970out:
2971	btrfs_free_path(path);
2972	return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977	struct btrfs_super_block *super_copy = fs_info->super_copy;
2978	struct btrfs_disk_key *disk_key;
2979	struct btrfs_chunk *chunk;
2980	u8 *ptr;
2981	int ret = 0;
2982	u32 num_stripes;
2983	u32 array_size;
2984	u32 len = 0;
2985	u32 cur;
2986	struct btrfs_key key;
2987
2988	lockdep_assert_held(&fs_info->chunk_mutex);
2989	array_size = btrfs_super_sys_array_size(super_copy);
2990
2991	ptr = super_copy->sys_chunk_array;
2992	cur = 0;
2993
2994	while (cur < array_size) {
2995		disk_key = (struct btrfs_disk_key *)ptr;
2996		btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998		len = sizeof(*disk_key);
2999
3000		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001			chunk = (struct btrfs_chunk *)(ptr + len);
3002			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003			len += btrfs_chunk_item_size(num_stripes);
3004		} else {
3005			ret = -EIO;
3006			break;
3007		}
3008		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009		    key.offset == chunk_offset) {
3010			memmove(ptr, ptr + len, array_size - (cur + len));
3011			array_size -= len;
3012			btrfs_set_super_sys_array_size(super_copy, array_size);
3013		} else {
3014			ptr += len;
3015			cur += len;
3016		}
3017	}
3018	return ret;
3019}
3020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
 
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029				       u64 logical, u64 length)
3030{
3031	struct extent_map_tree *em_tree;
3032	struct extent_map *em;
3033
3034	em_tree = &fs_info->mapping_tree;
3035	read_lock(&em_tree->lock);
3036	em = lookup_extent_mapping(em_tree, logical, length);
3037	read_unlock(&em_tree->lock);
3038
3039	if (!em) {
3040		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
 
3041			   logical, length);
3042		return ERR_PTR(-EINVAL);
3043	}
3044
3045	if (em->start > logical || em->start + em->len < logical) {
3046		btrfs_crit(fs_info,
3047			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048			   logical, length, em->start, em->start + em->len);
3049		free_extent_map(em);
 
3050		return ERR_PTR(-EINVAL);
3051	}
3052
3053	/* callers are responsible for dropping em's ref. */
3054	return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058			     struct map_lookup *map, u64 chunk_offset)
3059{
3060	int i;
3061
3062	/*
3063	 * Removing chunk items and updating the device items in the chunks btree
3064	 * requires holding the chunk_mutex.
3065	 * See the comment at btrfs_chunk_alloc() for the details.
3066	 */
3067	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069	for (i = 0; i < map->num_stripes; i++) {
3070		int ret;
3071
3072		ret = btrfs_update_device(trans, map->stripes[i].dev);
3073		if (ret)
3074			return ret;
3075	}
3076
3077	return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082	struct btrfs_fs_info *fs_info = trans->fs_info;
3083	struct extent_map *em;
3084	struct map_lookup *map;
3085	u64 dev_extent_len = 0;
3086	int i, ret = 0;
3087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090	if (IS_ERR(em)) {
3091		/*
3092		 * This is a logic error, but we don't want to just rely on the
3093		 * user having built with ASSERT enabled, so if ASSERT doesn't
3094		 * do anything we still error out.
3095		 */
3096		ASSERT(0);
3097		return PTR_ERR(em);
3098	}
3099	map = em->map_lookup;
3100
3101	/*
3102	 * First delete the device extent items from the devices btree.
3103	 * We take the device_list_mutex to avoid racing with the finishing phase
3104	 * of a device replace operation. See the comment below before acquiring
3105	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106	 * because that can result in a deadlock when deleting the device extent
3107	 * items from the devices btree - COWing an extent buffer from the btree
3108	 * may result in allocating a new metadata chunk, which would attempt to
3109	 * lock again fs_info->chunk_mutex.
3110	 */
3111	mutex_lock(&fs_devices->device_list_mutex);
3112	for (i = 0; i < map->num_stripes; i++) {
3113		struct btrfs_device *device = map->stripes[i].dev;
3114		ret = btrfs_free_dev_extent(trans, device,
3115					    map->stripes[i].physical,
3116					    &dev_extent_len);
3117		if (ret) {
3118			mutex_unlock(&fs_devices->device_list_mutex);
3119			btrfs_abort_transaction(trans, ret);
3120			goto out;
3121		}
3122
3123		if (device->bytes_used > 0) {
3124			mutex_lock(&fs_info->chunk_mutex);
3125			btrfs_device_set_bytes_used(device,
3126					device->bytes_used - dev_extent_len);
3127			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128			btrfs_clear_space_info_full(fs_info);
3129			mutex_unlock(&fs_info->chunk_mutex);
3130		}
3131	}
3132	mutex_unlock(&fs_devices->device_list_mutex);
3133
3134	/*
3135	 * We acquire fs_info->chunk_mutex for 2 reasons:
3136	 *
3137	 * 1) Just like with the first phase of the chunk allocation, we must
3138	 *    reserve system space, do all chunk btree updates and deletions, and
3139	 *    update the system chunk array in the superblock while holding this
3140	 *    mutex. This is for similar reasons as explained on the comment at
3141	 *    the top of btrfs_chunk_alloc();
3142	 *
3143	 * 2) Prevent races with the final phase of a device replace operation
3144	 *    that replaces the device object associated with the map's stripes,
3145	 *    because the device object's id can change at any time during that
3146	 *    final phase of the device replace operation
3147	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148	 *    replaced device and then see it with an ID of
3149	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150	 *    the device item, which does not exists on the chunk btree.
3151	 *    The finishing phase of device replace acquires both the
3152	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3153	 *    safe by just acquiring the chunk_mutex.
3154	 */
3155	trans->removing_chunk = true;
3156	mutex_lock(&fs_info->chunk_mutex);
3157
3158	check_system_chunk(trans, map->type);
3159
3160	ret = remove_chunk_item(trans, map, chunk_offset);
3161	/*
3162	 * Normally we should not get -ENOSPC since we reserved space before
3163	 * through the call to check_system_chunk().
3164	 *
3165	 * Despite our system space_info having enough free space, we may not
3166	 * be able to allocate extents from its block groups, because all have
3167	 * an incompatible profile, which will force us to allocate a new system
3168	 * block group with the right profile, or right after we called
3169	 * check_system_space() above, a scrub turned the only system block group
3170	 * with enough free space into RO mode.
3171	 * This is explained with more detail at do_chunk_alloc().
3172	 *
3173	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174	 */
3175	if (ret == -ENOSPC) {
3176		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177		struct btrfs_block_group *sys_bg;
3178
3179		sys_bg = btrfs_create_chunk(trans, sys_flags);
3180		if (IS_ERR(sys_bg)) {
3181			ret = PTR_ERR(sys_bg);
3182			btrfs_abort_transaction(trans, ret);
3183			goto out;
3184		}
3185
3186		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187		if (ret) {
3188			btrfs_abort_transaction(trans, ret);
3189			goto out;
3190		}
3191
3192		ret = remove_chunk_item(trans, map, chunk_offset);
3193		if (ret) {
3194			btrfs_abort_transaction(trans, ret);
3195			goto out;
3196		}
3197	} else if (ret) {
3198		btrfs_abort_transaction(trans, ret);
3199		goto out;
3200	}
3201
3202	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206		if (ret) {
3207			btrfs_abort_transaction(trans, ret);
3208			goto out;
3209		}
3210	}
3211
3212	mutex_unlock(&fs_info->chunk_mutex);
3213	trans->removing_chunk = false;
3214
3215	/*
3216	 * We are done with chunk btree updates and deletions, so release the
3217	 * system space we previously reserved (with check_system_chunk()).
3218	 */
3219	btrfs_trans_release_chunk_metadata(trans);
3220
3221	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222	if (ret) {
3223		btrfs_abort_transaction(trans, ret);
3224		goto out;
3225	}
3226
3227out:
3228	if (trans->removing_chunk) {
3229		mutex_unlock(&fs_info->chunk_mutex);
3230		trans->removing_chunk = false;
3231	}
3232	/* once for us */
3233	free_extent_map(em);
3234	return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239	struct btrfs_root *root = fs_info->chunk_root;
3240	struct btrfs_trans_handle *trans;
3241	struct btrfs_block_group *block_group;
3242	u64 length;
3243	int ret;
3244
3245	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246		btrfs_err(fs_info,
3247			  "relocate: not supported on extent tree v2 yet");
3248		return -EINVAL;
3249	}
3250
3251	/*
3252	 * Prevent races with automatic removal of unused block groups.
3253	 * After we relocate and before we remove the chunk with offset
3254	 * chunk_offset, automatic removal of the block group can kick in,
3255	 * resulting in a failure when calling btrfs_remove_chunk() below.
3256	 *
3257	 * Make sure to acquire this mutex before doing a tree search (dev
3258	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260	 * we release the path used to search the chunk/dev tree and before
3261	 * the current task acquires this mutex and calls us.
3262	 */
3263	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265	/* step one, relocate all the extents inside this chunk */
3266	btrfs_scrub_pause(fs_info);
3267	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268	btrfs_scrub_continue(fs_info);
3269	if (ret)
 
 
 
 
 
 
3270		return ret;
 
3271
3272	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273	if (!block_group)
3274		return -ENOENT;
3275	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276	length = block_group->length;
3277	btrfs_put_block_group(block_group);
3278
3279	/*
3280	 * On a zoned file system, discard the whole block group, this will
3281	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282	 * resetting the zone fails, don't treat it as a fatal problem from the
3283	 * filesystem's point of view.
3284	 */
3285	if (btrfs_is_zoned(fs_info)) {
3286		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287		if (ret)
3288			btrfs_info(fs_info,
3289				"failed to reset zone %llu after relocation",
3290				chunk_offset);
3291	}
3292
3293	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294						     chunk_offset);
3295	if (IS_ERR(trans)) {
3296		ret = PTR_ERR(trans);
3297		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298		return ret;
3299	}
3300
3301	/*
3302	 * step two, delete the device extents and the
3303	 * chunk tree entries
3304	 */
3305	ret = btrfs_remove_chunk(trans, chunk_offset);
3306	btrfs_end_transaction(trans);
3307	return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312	struct btrfs_root *chunk_root = fs_info->chunk_root;
3313	struct btrfs_path *path;
3314	struct extent_buffer *leaf;
3315	struct btrfs_chunk *chunk;
3316	struct btrfs_key key;
3317	struct btrfs_key found_key;
3318	u64 chunk_type;
3319	bool retried = false;
3320	int failed = 0;
3321	int ret;
3322
3323	path = btrfs_alloc_path();
3324	if (!path)
3325		return -ENOMEM;
3326
3327again:
3328	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329	key.offset = (u64)-1;
3330	key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332	while (1) {
3333		mutex_lock(&fs_info->reclaim_bgs_lock);
3334		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335		if (ret < 0) {
3336			mutex_unlock(&fs_info->reclaim_bgs_lock);
3337			goto error;
3338		}
3339		BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
 
 
 
 
 
 
3340
3341		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342					  key.type);
3343		if (ret)
3344			mutex_unlock(&fs_info->reclaim_bgs_lock);
3345		if (ret < 0)
3346			goto error;
3347		if (ret > 0)
3348			break;
3349
3350		leaf = path->nodes[0];
3351		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353		chunk = btrfs_item_ptr(leaf, path->slots[0],
3354				       struct btrfs_chunk);
3355		chunk_type = btrfs_chunk_type(leaf, chunk);
3356		btrfs_release_path(path);
3357
3358		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360			if (ret == -ENOSPC)
3361				failed++;
3362			else
3363				BUG_ON(ret);
3364		}
3365		mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367		if (found_key.offset == 0)
3368			break;
3369		key.offset = found_key.offset - 1;
3370	}
3371	ret = 0;
3372	if (failed && !retried) {
3373		failed = 0;
3374		retried = true;
3375		goto again;
3376	} else if (WARN_ON(failed && retried)) {
3377		ret = -ENOSPC;
3378	}
3379error:
3380	btrfs_free_path(path);
3381	return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390				      u64 chunk_offset)
3391{
3392	struct btrfs_block_group *cache;
3393	u64 bytes_used;
3394	u64 chunk_type;
3395
3396	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397	ASSERT(cache);
3398	chunk_type = cache->flags;
3399	btrfs_put_block_group(cache);
3400
3401	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402		return 0;
3403
3404	spin_lock(&fs_info->data_sinfo->lock);
3405	bytes_used = fs_info->data_sinfo->bytes_used;
3406	spin_unlock(&fs_info->data_sinfo->lock);
3407
3408	if (!bytes_used) {
3409		struct btrfs_trans_handle *trans;
3410		int ret;
3411
3412		trans =	btrfs_join_transaction(fs_info->tree_root);
3413		if (IS_ERR(trans))
3414			return PTR_ERR(trans);
3415
3416		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417		btrfs_end_transaction(trans);
3418		if (ret < 0)
3419			return ret;
3420		return 1;
3421	}
3422
3423	return 0;
3424}
3425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427			       struct btrfs_balance_control *bctl)
3428{
3429	struct btrfs_root *root = fs_info->tree_root;
3430	struct btrfs_trans_handle *trans;
3431	struct btrfs_balance_item *item;
3432	struct btrfs_disk_balance_args disk_bargs;
3433	struct btrfs_path *path;
3434	struct extent_buffer *leaf;
3435	struct btrfs_key key;
3436	int ret, err;
3437
3438	path = btrfs_alloc_path();
3439	if (!path)
3440		return -ENOMEM;
3441
3442	trans = btrfs_start_transaction(root, 0);
3443	if (IS_ERR(trans)) {
3444		btrfs_free_path(path);
3445		return PTR_ERR(trans);
3446	}
3447
3448	key.objectid = BTRFS_BALANCE_OBJECTID;
3449	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450	key.offset = 0;
3451
3452	ret = btrfs_insert_empty_item(trans, root, path, &key,
3453				      sizeof(*item));
3454	if (ret)
3455		goto out;
3456
3457	leaf = path->nodes[0];
3458	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463	btrfs_set_balance_data(leaf, item, &disk_bargs);
3464	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469	btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471	btrfs_mark_buffer_dirty(leaf);
3472out:
3473	btrfs_free_path(path);
3474	err = btrfs_commit_transaction(trans);
3475	if (err && !ret)
3476		ret = err;
3477	return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482	struct btrfs_root *root = fs_info->tree_root;
3483	struct btrfs_trans_handle *trans;
3484	struct btrfs_path *path;
3485	struct btrfs_key key;
3486	int ret, err;
3487
3488	path = btrfs_alloc_path();
3489	if (!path)
3490		return -ENOMEM;
3491
3492	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493	if (IS_ERR(trans)) {
3494		btrfs_free_path(path);
3495		return PTR_ERR(trans);
3496	}
3497
3498	key.objectid = BTRFS_BALANCE_OBJECTID;
3499	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500	key.offset = 0;
3501
3502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503	if (ret < 0)
3504		goto out;
3505	if (ret > 0) {
3506		ret = -ENOENT;
3507		goto out;
3508	}
3509
3510	ret = btrfs_del_item(trans, root, path);
3511out:
3512	btrfs_free_path(path);
3513	err = btrfs_commit_transaction(trans);
3514	if (err && !ret)
3515		ret = err;
3516	return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525	/*
3526	 * Turn on soft mode for chunk types that were being converted.
3527	 */
3528	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535	/*
3536	 * Turn on usage filter if is not already used.  The idea is
3537	 * that chunks that we have already balanced should be
3538	 * reasonably full.  Don't do it for chunks that are being
3539	 * converted - that will keep us from relocating unconverted
3540	 * (albeit full) chunks.
3541	 */
3542	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546		bctl->data.usage = 90;
3547	}
3548	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552		bctl->sys.usage = 90;
3553	}
3554	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558		bctl->meta.usage = 90;
3559	}
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568	int ret;
3569
3570	BUG_ON(!fs_info->balance_ctl);
3571
3572	spin_lock(&fs_info->balance_lock);
3573	fs_info->balance_ctl = NULL;
3574	spin_unlock(&fs_info->balance_lock);
3575
3576	kfree(bctl);
3577	ret = del_balance_item(fs_info);
3578	if (ret)
3579		btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters.  Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587				 struct btrfs_balance_args *bargs)
3588{
3589	chunk_type = chunk_to_extended(chunk_type) &
3590				BTRFS_EXTENDED_PROFILE_MASK;
3591
3592	if (bargs->profiles & chunk_type)
3593		return 0;
3594
3595	return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599			      struct btrfs_balance_args *bargs)
3600{
3601	struct btrfs_block_group *cache;
3602	u64 chunk_used;
3603	u64 user_thresh_min;
3604	u64 user_thresh_max;
3605	int ret = 1;
3606
3607	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608	chunk_used = cache->used;
3609
3610	if (bargs->usage_min == 0)
3611		user_thresh_min = 0;
3612	else
3613		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615	if (bargs->usage_max == 0)
3616		user_thresh_max = 1;
3617	else if (bargs->usage_max > 100)
3618		user_thresh_max = cache->length;
3619	else
3620		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623		ret = 0;
3624
3625	btrfs_put_block_group(cache);
3626	return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630		u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632	struct btrfs_block_group *cache;
3633	u64 chunk_used, user_thresh;
3634	int ret = 1;
3635
3636	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637	chunk_used = cache->used;
3638
3639	if (bargs->usage_min == 0)
3640		user_thresh = 1;
3641	else if (bargs->usage > 100)
3642		user_thresh = cache->length;
3643	else
3644		user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646	if (chunk_used < user_thresh)
3647		ret = 0;
3648
3649	btrfs_put_block_group(cache);
3650	return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654			      struct btrfs_chunk *chunk,
3655			      struct btrfs_balance_args *bargs)
3656{
3657	struct btrfs_stripe *stripe;
3658	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659	int i;
3660
3661	for (i = 0; i < num_stripes; i++) {
3662		stripe = btrfs_stripe_nr(chunk, i);
3663		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664			return 0;
3665	}
3666
3667	return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672	const int index = btrfs_bg_flags_to_raid_index(type);
3673	const int ncopies = btrfs_raid_array[index].ncopies;
3674	const int nparity = btrfs_raid_array[index].nparity;
3675
3676	return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681			       struct btrfs_chunk *chunk,
3682			       struct btrfs_balance_args *bargs)
3683{
3684	struct btrfs_stripe *stripe;
3685	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686	u64 stripe_offset;
3687	u64 stripe_length;
3688	u64 type;
3689	int factor;
3690	int i;
3691
3692	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693		return 0;
3694
3695	type = btrfs_chunk_type(leaf, chunk);
3696	factor = calc_data_stripes(type, num_stripes);
3697
3698	for (i = 0; i < num_stripes; i++) {
3699		stripe = btrfs_stripe_nr(chunk, i);
3700		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701			continue;
3702
3703		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704		stripe_length = btrfs_chunk_length(leaf, chunk);
3705		stripe_length = div_u64(stripe_length, factor);
3706
3707		if (stripe_offset < bargs->pend &&
3708		    stripe_offset + stripe_length > bargs->pstart)
3709			return 0;
3710	}
3711
3712	return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717			       struct btrfs_chunk *chunk,
3718			       u64 chunk_offset,
3719			       struct btrfs_balance_args *bargs)
3720{
3721	if (chunk_offset < bargs->vend &&
3722	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723		/* at least part of the chunk is inside this vrange */
3724		return 0;
3725
3726	return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730			       struct btrfs_chunk *chunk,
3731			       struct btrfs_balance_args *bargs)
3732{
3733	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735	if (bargs->stripes_min <= num_stripes
3736			&& num_stripes <= bargs->stripes_max)
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743				     struct btrfs_balance_args *bargs)
3744{
3745	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746		return 0;
3747
3748	chunk_type = chunk_to_extended(chunk_type) &
3749				BTRFS_EXTENDED_PROFILE_MASK;
3750
3751	if (bargs->target == chunk_type)
3752		return 1;
3753
3754	return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758				struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760	struct btrfs_fs_info *fs_info = leaf->fs_info;
3761	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762	struct btrfs_balance_args *bargs = NULL;
3763	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765	/* type filter */
3766	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768		return 0;
3769	}
3770
3771	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772		bargs = &bctl->data;
3773	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774		bargs = &bctl->sys;
3775	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776		bargs = &bctl->meta;
3777
3778	/* profiles filter */
3779	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780	    chunk_profiles_filter(chunk_type, bargs)) {
3781		return 0;
3782	}
3783
3784	/* usage filter */
3785	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787		return 0;
3788	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790		return 0;
3791	}
3792
3793	/* devid filter */
3794	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795	    chunk_devid_filter(leaf, chunk, bargs)) {
3796		return 0;
3797	}
3798
3799	/* drange filter, makes sense only with devid filter */
3800	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801	    chunk_drange_filter(leaf, chunk, bargs)) {
3802		return 0;
3803	}
3804
3805	/* vrange filter */
3806	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808		return 0;
3809	}
3810
3811	/* stripes filter */
3812	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814		return 0;
3815	}
3816
3817	/* soft profile changing mode */
3818	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819	    chunk_soft_convert_filter(chunk_type, bargs)) {
3820		return 0;
3821	}
3822
3823	/*
3824	 * limited by count, must be the last filter
3825	 */
3826	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827		if (bargs->limit == 0)
3828			return 0;
3829		else
3830			bargs->limit--;
3831	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832		/*
3833		 * Same logic as the 'limit' filter; the minimum cannot be
3834		 * determined here because we do not have the global information
3835		 * about the count of all chunks that satisfy the filters.
3836		 */
3837		if (bargs->limit_max == 0)
3838			return 0;
3839		else
3840			bargs->limit_max--;
3841	}
3842
3843	return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849	struct btrfs_root *chunk_root = fs_info->chunk_root;
3850	u64 chunk_type;
3851	struct btrfs_chunk *chunk;
3852	struct btrfs_path *path = NULL;
3853	struct btrfs_key key;
3854	struct btrfs_key found_key;
3855	struct extent_buffer *leaf;
3856	int slot;
3857	int ret;
3858	int enospc_errors = 0;
3859	bool counting = true;
3860	/* The single value limit and min/max limits use the same bytes in the */
3861	u64 limit_data = bctl->data.limit;
3862	u64 limit_meta = bctl->meta.limit;
3863	u64 limit_sys = bctl->sys.limit;
3864	u32 count_data = 0;
3865	u32 count_meta = 0;
3866	u32 count_sys = 0;
3867	int chunk_reserved = 0;
3868
3869	path = btrfs_alloc_path();
3870	if (!path) {
3871		ret = -ENOMEM;
3872		goto error;
3873	}
3874
3875	/* zero out stat counters */
3876	spin_lock(&fs_info->balance_lock);
3877	memset(&bctl->stat, 0, sizeof(bctl->stat));
3878	spin_unlock(&fs_info->balance_lock);
3879again:
3880	if (!counting) {
3881		/*
3882		 * The single value limit and min/max limits use the same bytes
3883		 * in the
3884		 */
3885		bctl->data.limit = limit_data;
3886		bctl->meta.limit = limit_meta;
3887		bctl->sys.limit = limit_sys;
3888	}
3889	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890	key.offset = (u64)-1;
3891	key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893	while (1) {
3894		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895		    atomic_read(&fs_info->balance_cancel_req)) {
3896			ret = -ECANCELED;
3897			goto error;
3898		}
3899
3900		mutex_lock(&fs_info->reclaim_bgs_lock);
3901		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902		if (ret < 0) {
3903			mutex_unlock(&fs_info->reclaim_bgs_lock);
3904			goto error;
3905		}
3906
3907		/*
3908		 * this shouldn't happen, it means the last relocate
3909		 * failed
3910		 */
3911		if (ret == 0)
3912			BUG(); /* FIXME break ? */
3913
3914		ret = btrfs_previous_item(chunk_root, path, 0,
3915					  BTRFS_CHUNK_ITEM_KEY);
3916		if (ret) {
3917			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918			ret = 0;
3919			break;
3920		}
3921
3922		leaf = path->nodes[0];
3923		slot = path->slots[0];
3924		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926		if (found_key.objectid != key.objectid) {
3927			mutex_unlock(&fs_info->reclaim_bgs_lock);
3928			break;
3929		}
3930
3931		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932		chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934		if (!counting) {
3935			spin_lock(&fs_info->balance_lock);
3936			bctl->stat.considered++;
3937			spin_unlock(&fs_info->balance_lock);
3938		}
3939
3940		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942		btrfs_release_path(path);
3943		if (!ret) {
3944			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945			goto loop;
3946		}
3947
3948		if (counting) {
3949			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950			spin_lock(&fs_info->balance_lock);
3951			bctl->stat.expected++;
3952			spin_unlock(&fs_info->balance_lock);
3953
3954			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955				count_data++;
3956			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957				count_sys++;
3958			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959				count_meta++;
3960
3961			goto loop;
3962		}
3963
3964		/*
3965		 * Apply limit_min filter, no need to check if the LIMITS
3966		 * filter is used, limit_min is 0 by default
3967		 */
3968		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969					count_data < bctl->data.limit_min)
3970				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971					count_meta < bctl->meta.limit_min)
3972				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973					count_sys < bctl->sys.limit_min)) {
3974			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975			goto loop;
3976		}
3977
3978		if (!chunk_reserved) {
3979			/*
3980			 * We may be relocating the only data chunk we have,
3981			 * which could potentially end up with losing data's
3982			 * raid profile, so lets allocate an empty one in
3983			 * advance.
3984			 */
3985			ret = btrfs_may_alloc_data_chunk(fs_info,
3986							 found_key.offset);
3987			if (ret < 0) {
3988				mutex_unlock(&fs_info->reclaim_bgs_lock);
3989				goto error;
3990			} else if (ret == 1) {
3991				chunk_reserved = 1;
3992			}
3993		}
3994
3995		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996		mutex_unlock(&fs_info->reclaim_bgs_lock);
3997		if (ret == -ENOSPC) {
3998			enospc_errors++;
3999		} else if (ret == -ETXTBSY) {
4000			btrfs_info(fs_info,
4001	   "skipping relocation of block group %llu due to active swapfile",
4002				   found_key.offset);
4003			ret = 0;
4004		} else if (ret) {
4005			goto error;
4006		} else {
4007			spin_lock(&fs_info->balance_lock);
4008			bctl->stat.completed++;
4009			spin_unlock(&fs_info->balance_lock);
4010		}
4011loop:
4012		if (found_key.offset == 0)
4013			break;
4014		key.offset = found_key.offset - 1;
4015	}
4016
4017	if (counting) {
4018		btrfs_release_path(path);
4019		counting = false;
4020		goto again;
4021	}
4022error:
4023	btrfs_free_path(path);
4024	if (enospc_errors) {
4025		btrfs_info(fs_info, "%d enospc errors during balance",
4026			   enospc_errors);
4027		if (!ret)
4028			ret = -ENOSPC;
4029	}
4030
4031	return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags:     profile to validate
4038 * @extended:  if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047	/* 1) check that all other bits are zeroed */
4048	if (flags & ~mask)
4049		return 0;
4050
4051	/* 2) see if profile is reduced */
4052	if (flags == 0)
4053		return !extended; /* "0" is valid for usual profiles */
4054
4055	return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060	/* cancel requested || normal exit path */
4061	return atomic_read(&fs_info->balance_cancel_req) ||
4062		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4063		 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071		const struct btrfs_balance_args *bargs,
4072		u64 allowed, const char *type)
4073{
4074	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075		return true;
4076
4077	/* Profile is valid and does not have bits outside of the allowed set */
4078	if (alloc_profile_is_valid(bargs->target, 1) &&
4079	    (bargs->target & ~allowed) == 0)
4080		return true;
4081
4082	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083			type, btrfs_bg_type_to_raid_name(bargs->target));
4084	return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093				 u32 size_buf)
4094{
4095	int ret;
4096	u32 size_bp = size_buf;
4097	char *bp = buf;
4098	u64 flags = bargs->flags;
4099	char tmp_buf[128] = {'\0'};
4100
4101	if (!flags)
4102		return;
4103
4104#define CHECK_APPEND_NOARG(a)						\
4105	do {								\
4106		ret = snprintf(bp, size_bp, (a));			\
4107		if (ret < 0 || ret >= size_bp)				\
4108			goto out_overflow;				\
4109		size_bp -= ret;						\
4110		bp += ret;						\
4111	} while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1)					\
4114	do {								\
4115		ret = snprintf(bp, size_bp, (a), (v1));			\
4116		if (ret < 0 || ret >= size_bp)				\
4117			goto out_overflow;				\
4118		size_bp -= ret;						\
4119		bp += ret;						\
4120	} while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2)					\
4123	do {								\
4124		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4125		if (ret < 0 || ret >= size_bp)				\
4126			goto out_overflow;				\
4127		size_bp -= ret;						\
4128		bp += ret;						\
4129	} while (0)
4130
4131	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132		CHECK_APPEND_1ARG("convert=%s,",
4133				  btrfs_bg_type_to_raid_name(bargs->target));
4134
4135	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136		CHECK_APPEND_NOARG("soft,");
4137
4138	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140					    sizeof(tmp_buf));
4141		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142	}
4143
4144	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148		CHECK_APPEND_2ARG("usage=%u..%u,",
4149				  bargs->usage_min, bargs->usage_max);
4150
4151	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156				  bargs->pstart, bargs->pend);
4157
4158	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160				  bargs->vstart, bargs->vend);
4161
4162	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166		CHECK_APPEND_2ARG("limit=%u..%u,",
4167				bargs->limit_min, bargs->limit_max);
4168
4169	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170		CHECK_APPEND_2ARG("stripes=%u..%u,",
4171				  bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179	if (size_bp < size_buf)
4180		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181	else
4182		buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187	u32 size_buf = 1024;
4188	char tmp_buf[192] = {'\0'};
4189	char *buf;
4190	char *bp;
4191	u32 size_bp = size_buf;
4192	int ret;
4193	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195	buf = kzalloc(size_buf, GFP_KERNEL);
4196	if (!buf)
4197		return;
4198
4199	bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1)					\
4202	do {								\
4203		ret = snprintf(bp, size_bp, (a), (v1));			\
4204		if (ret < 0 || ret >= size_bp)				\
4205			goto out_overflow;				\
4206		size_bp -= ret;						\
4207		bp += ret;						\
4208	} while (0)
4209
4210	if (bctl->flags & BTRFS_BALANCE_FORCE)
4211		CHECK_APPEND_1ARG("%s", "-f ");
4212
4213	if (bctl->flags & BTRFS_BALANCE_DATA) {
4214		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216	}
4217
4218	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221	}
4222
4223	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226	}
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232	if (size_bp < size_buf)
4233		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234	btrfs_info(fs_info, "balance: %s %s",
4235		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236		   "resume" : "start", buf);
4237
4238	kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245		  struct btrfs_balance_control *bctl,
4246		  struct btrfs_ioctl_balance_args *bargs)
4247{
4248	u64 meta_target, data_target;
4249	u64 allowed;
4250	int mixed = 0;
4251	int ret;
4252	u64 num_devices;
4253	unsigned seq;
4254	bool reducing_redundancy;
 
4255	int i;
4256
4257	if (btrfs_fs_closing(fs_info) ||
4258	    atomic_read(&fs_info->balance_pause_req) ||
4259	    btrfs_should_cancel_balance(fs_info)) {
4260		ret = -EINVAL;
4261		goto out;
4262	}
4263
4264	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266		mixed = 1;
4267
4268	/*
4269	 * In case of mixed groups both data and meta should be picked,
4270	 * and identical options should be given for both of them.
4271	 */
4272	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273	if (mixed && (bctl->flags & allowed)) {
4274		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277			btrfs_err(fs_info,
4278	  "balance: mixed groups data and metadata options must be the same");
4279			ret = -EINVAL;
4280			goto out;
4281		}
4282	}
4283
4284	/*
4285	 * rw_devices will not change at the moment, device add/delete/replace
4286	 * are exclusive
4287	 */
4288	num_devices = fs_info->fs_devices->rw_devices;
4289
4290	/*
4291	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292	 * special bit for it, to make it easier to distinguish.  Thus we need
4293	 * to set it manually, or balance would refuse the profile.
4294	 */
4295	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297		if (num_devices >= btrfs_raid_array[i].devs_min)
4298			allowed |= btrfs_raid_array[i].bg_flag;
4299
4300	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4303		ret = -EINVAL;
4304		goto out;
4305	}
4306
4307	/*
4308	 * Allow to reduce metadata or system integrity only if force set for
4309	 * profiles with redundancy (copies, parity)
4310	 */
4311	allowed = 0;
4312	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313		if (btrfs_raid_array[i].ncopies >= 2 ||
4314		    btrfs_raid_array[i].tolerated_failures >= 1)
4315			allowed |= btrfs_raid_array[i].bg_flag;
4316	}
4317	do {
4318		seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321		     (fs_info->avail_system_alloc_bits & allowed) &&
4322		     !(bctl->sys.target & allowed)) ||
4323		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4325		     !(bctl->meta.target & allowed)))
4326			reducing_redundancy = true;
4327		else
4328			reducing_redundancy = false;
4329
4330		/* if we're not converting, the target field is uninitialized */
4331		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334			bctl->data.target : fs_info->avail_data_alloc_bits;
4335	} while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337	if (reducing_redundancy) {
4338		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339			btrfs_info(fs_info,
4340			   "balance: force reducing metadata redundancy");
4341		} else {
4342			btrfs_err(fs_info,
4343	"balance: reduces metadata redundancy, use --force if you want this");
4344			ret = -EINVAL;
4345			goto out;
4346		}
4347	}
4348
4349	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351		btrfs_warn(fs_info,
4352	"balance: metadata profile %s has lower redundancy than data profile %s",
4353				btrfs_bg_type_to_raid_name(meta_target),
4354				btrfs_bg_type_to_raid_name(data_target));
4355	}
4356
4357	ret = insert_balance_item(fs_info, bctl);
4358	if (ret && ret != -EEXIST)
4359		goto out;
4360
4361	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362		BUG_ON(ret == -EEXIST);
4363		BUG_ON(fs_info->balance_ctl);
4364		spin_lock(&fs_info->balance_lock);
4365		fs_info->balance_ctl = bctl;
4366		spin_unlock(&fs_info->balance_lock);
4367	} else {
4368		BUG_ON(ret != -EEXIST);
4369		spin_lock(&fs_info->balance_lock);
4370		update_balance_args(bctl);
4371		spin_unlock(&fs_info->balance_lock);
4372	}
4373
4374	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376	describe_balance_start_or_resume(fs_info);
4377	mutex_unlock(&fs_info->balance_mutex);
4378
4379	ret = __btrfs_balance(fs_info);
4380
4381	mutex_lock(&fs_info->balance_mutex);
4382	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383		btrfs_info(fs_info, "balance: paused");
4384		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
 
4385	}
4386	/*
4387	 * Balance can be canceled by:
4388	 *
4389	 * - Regular cancel request
4390	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4391	 *
4392	 * - Fatal signal to "btrfs" process
4393	 *   Either the signal caught by wait_reserve_ticket() and callers
4394	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4395	 *   got -ECANCELED.
4396	 *   Either way, in this case balance_cancel_req = 0, and
4397	 *   ret == -EINTR or ret == -ECANCELED.
4398	 *
4399	 * So here we only check the return value to catch canceled balance.
4400	 */
4401	else if (ret == -ECANCELED || ret == -EINTR)
4402		btrfs_info(fs_info, "balance: canceled");
4403	else
4404		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408	if (bargs) {
4409		memset(bargs, 0, sizeof(*bargs));
4410		btrfs_update_ioctl_balance_args(fs_info, bargs);
4411	}
4412
4413	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414	    balance_need_close(fs_info)) {
4415		reset_balance_state(fs_info);
4416		btrfs_exclop_finish(fs_info);
4417	}
4418
4419	wake_up(&fs_info->balance_wait_q);
4420
4421	return ret;
4422out:
4423	if (bctl->flags & BTRFS_BALANCE_RESUME)
4424		reset_balance_state(fs_info);
4425	else
4426		kfree(bctl);
4427	btrfs_exclop_finish(fs_info);
4428
4429	return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434	struct btrfs_fs_info *fs_info = data;
4435	int ret = 0;
4436
4437	sb_start_write(fs_info->sb);
4438	mutex_lock(&fs_info->balance_mutex);
4439	if (fs_info->balance_ctl)
4440		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441	mutex_unlock(&fs_info->balance_mutex);
4442	sb_end_write(fs_info->sb);
4443
4444	return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449	struct task_struct *tsk;
4450
4451	mutex_lock(&fs_info->balance_mutex);
4452	if (!fs_info->balance_ctl) {
4453		mutex_unlock(&fs_info->balance_mutex);
4454		return 0;
4455	}
4456	mutex_unlock(&fs_info->balance_mutex);
4457
4458	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459		btrfs_info(fs_info, "balance: resume skipped");
4460		return 0;
4461	}
4462
4463	spin_lock(&fs_info->super_lock);
4464	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466	spin_unlock(&fs_info->super_lock);
4467	/*
4468	 * A ro->rw remount sequence should continue with the paused balance
4469	 * regardless of who pauses it, system or the user as of now, so set
4470	 * the resume flag.
4471	 */
4472	spin_lock(&fs_info->balance_lock);
4473	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474	spin_unlock(&fs_info->balance_lock);
4475
4476	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477	return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482	struct btrfs_balance_control *bctl;
4483	struct btrfs_balance_item *item;
4484	struct btrfs_disk_balance_args disk_bargs;
4485	struct btrfs_path *path;
4486	struct extent_buffer *leaf;
4487	struct btrfs_key key;
4488	int ret;
4489
4490	path = btrfs_alloc_path();
4491	if (!path)
4492		return -ENOMEM;
4493
4494	key.objectid = BTRFS_BALANCE_OBJECTID;
4495	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496	key.offset = 0;
4497
4498	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499	if (ret < 0)
4500		goto out;
4501	if (ret > 0) { /* ret = -ENOENT; */
4502		ret = 0;
4503		goto out;
4504	}
4505
4506	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507	if (!bctl) {
4508		ret = -ENOMEM;
4509		goto out;
4510	}
4511
4512	leaf = path->nodes[0];
4513	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515	bctl->flags = btrfs_balance_flags(leaf, item);
4516	bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518	btrfs_balance_data(leaf, item, &disk_bargs);
4519	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520	btrfs_balance_meta(leaf, item, &disk_bargs);
4521	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522	btrfs_balance_sys(leaf, item, &disk_bargs);
4523	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525	/*
4526	 * This should never happen, as the paused balance state is recovered
4527	 * during mount without any chance of other exclusive ops to collide.
4528	 *
4529	 * This gives the exclusive op status to balance and keeps in paused
4530	 * state until user intervention (cancel or umount). If the ownership
4531	 * cannot be assigned, show a message but do not fail. The balance
4532	 * is in a paused state and must have fs_info::balance_ctl properly
4533	 * set up.
4534	 */
4535	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536		btrfs_warn(fs_info,
4537	"balance: cannot set exclusive op status, resume manually");
4538
4539	btrfs_release_path(path);
4540
4541	mutex_lock(&fs_info->balance_mutex);
4542	BUG_ON(fs_info->balance_ctl);
4543	spin_lock(&fs_info->balance_lock);
4544	fs_info->balance_ctl = bctl;
4545	spin_unlock(&fs_info->balance_lock);
4546	mutex_unlock(&fs_info->balance_mutex);
4547out:
4548	btrfs_free_path(path);
4549	return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554	int ret = 0;
4555
4556	mutex_lock(&fs_info->balance_mutex);
4557	if (!fs_info->balance_ctl) {
4558		mutex_unlock(&fs_info->balance_mutex);
4559		return -ENOTCONN;
4560	}
4561
4562	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563		atomic_inc(&fs_info->balance_pause_req);
4564		mutex_unlock(&fs_info->balance_mutex);
4565
4566		wait_event(fs_info->balance_wait_q,
4567			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569		mutex_lock(&fs_info->balance_mutex);
4570		/* we are good with balance_ctl ripped off from under us */
4571		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572		atomic_dec(&fs_info->balance_pause_req);
4573	} else {
4574		ret = -ENOTCONN;
4575	}
4576
4577	mutex_unlock(&fs_info->balance_mutex);
4578	return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583	mutex_lock(&fs_info->balance_mutex);
4584	if (!fs_info->balance_ctl) {
4585		mutex_unlock(&fs_info->balance_mutex);
4586		return -ENOTCONN;
4587	}
4588
4589	/*
4590	 * A paused balance with the item stored on disk can be resumed at
4591	 * mount time if the mount is read-write. Otherwise it's still paused
4592	 * and we must not allow cancelling as it deletes the item.
4593	 */
4594	if (sb_rdonly(fs_info->sb)) {
4595		mutex_unlock(&fs_info->balance_mutex);
4596		return -EROFS;
4597	}
4598
4599	atomic_inc(&fs_info->balance_cancel_req);
4600	/*
4601	 * if we are running just wait and return, balance item is
4602	 * deleted in btrfs_balance in this case
4603	 */
4604	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605		mutex_unlock(&fs_info->balance_mutex);
4606		wait_event(fs_info->balance_wait_q,
4607			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608		mutex_lock(&fs_info->balance_mutex);
4609	} else {
4610		mutex_unlock(&fs_info->balance_mutex);
4611		/*
4612		 * Lock released to allow other waiters to continue, we'll
4613		 * reexamine the status again.
4614		 */
4615		mutex_lock(&fs_info->balance_mutex);
4616
4617		if (fs_info->balance_ctl) {
4618			reset_balance_state(fs_info);
4619			btrfs_exclop_finish(fs_info);
4620			btrfs_info(fs_info, "balance: canceled");
4621		}
4622	}
4623
4624	BUG_ON(fs_info->balance_ctl ||
4625		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626	atomic_dec(&fs_info->balance_cancel_req);
4627	mutex_unlock(&fs_info->balance_mutex);
4628	return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633	struct btrfs_fs_info *fs_info = data;
4634	struct btrfs_root *root = fs_info->tree_root;
4635	struct btrfs_key key;
4636	struct btrfs_path *path = NULL;
4637	int ret = 0;
4638	struct extent_buffer *eb;
4639	int slot;
4640	struct btrfs_root_item root_item;
4641	u32 item_size;
4642	struct btrfs_trans_handle *trans = NULL;
4643	bool closing = false;
4644
4645	path = btrfs_alloc_path();
4646	if (!path) {
4647		ret = -ENOMEM;
4648		goto out;
4649	}
4650
4651	key.objectid = 0;
4652	key.type = BTRFS_ROOT_ITEM_KEY;
4653	key.offset = 0;
4654
4655	while (1) {
4656		if (btrfs_fs_closing(fs_info)) {
4657			closing = true;
4658			break;
4659		}
4660		ret = btrfs_search_forward(root, &key, path,
4661				BTRFS_OLDEST_GENERATION);
4662		if (ret) {
4663			if (ret > 0)
4664				ret = 0;
4665			break;
4666		}
4667
4668		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672			goto skip;
4673
4674		eb = path->nodes[0];
4675		slot = path->slots[0];
4676		item_size = btrfs_item_size(eb, slot);
4677		if (item_size < sizeof(root_item))
4678			goto skip;
4679
4680		read_extent_buffer(eb, &root_item,
4681				   btrfs_item_ptr_offset(eb, slot),
4682				   (int)sizeof(root_item));
4683		if (btrfs_root_refs(&root_item) == 0)
4684			goto skip;
4685
4686		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688			if (trans)
4689				goto update_tree;
4690
4691			btrfs_release_path(path);
4692			/*
4693			 * 1 - subvol uuid item
4694			 * 1 - received_subvol uuid item
4695			 */
4696			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697			if (IS_ERR(trans)) {
4698				ret = PTR_ERR(trans);
4699				break;
4700			}
4701			continue;
4702		} else {
4703			goto skip;
4704		}
4705update_tree:
4706		btrfs_release_path(path);
4707		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709						  BTRFS_UUID_KEY_SUBVOL,
4710						  key.objectid);
4711			if (ret < 0) {
4712				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713					ret);
4714				break;
4715			}
4716		}
4717
4718		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719			ret = btrfs_uuid_tree_add(trans,
4720						  root_item.received_uuid,
4721						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722						  key.objectid);
4723			if (ret < 0) {
4724				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725					ret);
4726				break;
4727			}
4728		}
4729
4730skip:
4731		btrfs_release_path(path);
4732		if (trans) {
4733			ret = btrfs_end_transaction(trans);
4734			trans = NULL;
4735			if (ret)
4736				break;
4737		}
4738
4739		if (key.offset < (u64)-1) {
4740			key.offset++;
4741		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742			key.offset = 0;
4743			key.type = BTRFS_ROOT_ITEM_KEY;
4744		} else if (key.objectid < (u64)-1) {
4745			key.offset = 0;
4746			key.type = BTRFS_ROOT_ITEM_KEY;
4747			key.objectid++;
4748		} else {
4749			break;
4750		}
4751		cond_resched();
4752	}
4753
4754out:
4755	btrfs_free_path(path);
4756	if (trans && !IS_ERR(trans))
4757		btrfs_end_transaction(trans);
4758	if (ret)
4759		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760	else if (!closing)
4761		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762	up(&fs_info->uuid_tree_rescan_sem);
4763	return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768	struct btrfs_trans_handle *trans;
4769	struct btrfs_root *tree_root = fs_info->tree_root;
4770	struct btrfs_root *uuid_root;
4771	struct task_struct *task;
4772	int ret;
4773
4774	/*
4775	 * 1 - root node
4776	 * 1 - root item
4777	 */
4778	trans = btrfs_start_transaction(tree_root, 2);
4779	if (IS_ERR(trans))
4780		return PTR_ERR(trans);
4781
4782	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783	if (IS_ERR(uuid_root)) {
4784		ret = PTR_ERR(uuid_root);
4785		btrfs_abort_transaction(trans, ret);
4786		btrfs_end_transaction(trans);
4787		return ret;
4788	}
4789
4790	fs_info->uuid_root = uuid_root;
4791
4792	ret = btrfs_commit_transaction(trans);
4793	if (ret)
4794		return ret;
4795
4796	down(&fs_info->uuid_tree_rescan_sem);
4797	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798	if (IS_ERR(task)) {
4799		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800		btrfs_warn(fs_info, "failed to start uuid_scan task");
4801		up(&fs_info->uuid_tree_rescan_sem);
4802		return PTR_ERR(task);
4803	}
4804
4805	return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815	struct btrfs_fs_info *fs_info = device->fs_info;
4816	struct btrfs_root *root = fs_info->dev_root;
4817	struct btrfs_trans_handle *trans;
4818	struct btrfs_dev_extent *dev_extent = NULL;
4819	struct btrfs_path *path;
4820	u64 length;
4821	u64 chunk_offset;
4822	int ret;
4823	int slot;
4824	int failed = 0;
4825	bool retried = false;
4826	struct extent_buffer *l;
4827	struct btrfs_key key;
4828	struct btrfs_super_block *super_copy = fs_info->super_copy;
4829	u64 old_total = btrfs_super_total_bytes(super_copy);
4830	u64 old_size = btrfs_device_get_total_bytes(device);
4831	u64 diff;
4832	u64 start;
 
4833
4834	new_size = round_down(new_size, fs_info->sectorsize);
4835	start = new_size;
4836	diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839		return -EINVAL;
4840
4841	path = btrfs_alloc_path();
4842	if (!path)
4843		return -ENOMEM;
4844
4845	path->reada = READA_BACK;
4846
4847	trans = btrfs_start_transaction(root, 0);
4848	if (IS_ERR(trans)) {
4849		btrfs_free_path(path);
4850		return PTR_ERR(trans);
4851	}
4852
4853	mutex_lock(&fs_info->chunk_mutex);
4854
4855	btrfs_device_set_total_bytes(device, new_size);
4856	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857		device->fs_devices->total_rw_bytes -= diff;
4858		atomic64_sub(diff, &fs_info->free_chunk_space);
 
 
 
 
 
 
 
 
 
 
 
 
4859	}
4860
4861	/*
4862	 * Once the device's size has been set to the new size, ensure all
4863	 * in-memory chunks are synced to disk so that the loop below sees them
4864	 * and relocates them accordingly.
4865	 */
4866	if (contains_pending_extent(device, &start, diff)) {
4867		mutex_unlock(&fs_info->chunk_mutex);
4868		ret = btrfs_commit_transaction(trans);
4869		if (ret)
4870			goto done;
4871	} else {
4872		mutex_unlock(&fs_info->chunk_mutex);
4873		btrfs_end_transaction(trans);
4874	}
4875
4876again:
4877	key.objectid = device->devid;
4878	key.offset = (u64)-1;
4879	key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881	do {
4882		mutex_lock(&fs_info->reclaim_bgs_lock);
4883		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884		if (ret < 0) {
4885			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886			goto done;
4887		}
4888
4889		ret = btrfs_previous_item(root, path, 0, key.type);
4890		if (ret) {
4891			mutex_unlock(&fs_info->reclaim_bgs_lock);
4892			if (ret < 0)
4893				goto done;
4894			ret = 0;
4895			btrfs_release_path(path);
4896			break;
4897		}
4898
4899		l = path->nodes[0];
4900		slot = path->slots[0];
4901		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903		if (key.objectid != device->devid) {
4904			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905			btrfs_release_path(path);
4906			break;
4907		}
4908
4909		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910		length = btrfs_dev_extent_length(l, dev_extent);
4911
4912		if (key.offset + length <= new_size) {
4913			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914			btrfs_release_path(path);
4915			break;
4916		}
4917
4918		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919		btrfs_release_path(path);
4920
4921		/*
4922		 * We may be relocating the only data chunk we have,
4923		 * which could potentially end up with losing data's
4924		 * raid profile, so lets allocate an empty one in
4925		 * advance.
4926		 */
4927		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928		if (ret < 0) {
4929			mutex_unlock(&fs_info->reclaim_bgs_lock);
4930			goto done;
4931		}
4932
4933		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934		mutex_unlock(&fs_info->reclaim_bgs_lock);
4935		if (ret == -ENOSPC) {
4936			failed++;
4937		} else if (ret) {
4938			if (ret == -ETXTBSY) {
4939				btrfs_warn(fs_info,
4940		   "could not shrink block group %llu due to active swapfile",
4941					   chunk_offset);
4942			}
4943			goto done;
4944		}
4945	} while (key.offset-- > 0);
4946
4947	if (failed && !retried) {
4948		failed = 0;
4949		retried = true;
4950		goto again;
4951	} else if (failed && retried) {
4952		ret = -ENOSPC;
4953		goto done;
4954	}
4955
4956	/* Shrinking succeeded, else we would be at "done". */
4957	trans = btrfs_start_transaction(root, 0);
4958	if (IS_ERR(trans)) {
4959		ret = PTR_ERR(trans);
4960		goto done;
4961	}
4962
4963	mutex_lock(&fs_info->chunk_mutex);
4964	/* Clear all state bits beyond the shrunk device size */
4965	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966			  CHUNK_STATE_MASK);
4967
4968	btrfs_device_set_disk_total_bytes(device, new_size);
4969	if (list_empty(&device->post_commit_list))
4970		list_add_tail(&device->post_commit_list,
4971			      &trans->transaction->dev_update_list);
4972
4973	WARN_ON(diff > old_total);
4974	btrfs_set_super_total_bytes(super_copy,
4975			round_down(old_total - diff, fs_info->sectorsize));
4976	mutex_unlock(&fs_info->chunk_mutex);
4977
4978	btrfs_reserve_chunk_metadata(trans, false);
4979	/* Now btrfs_update_device() will change the on-disk size. */
4980	ret = btrfs_update_device(trans, device);
4981	btrfs_trans_release_chunk_metadata(trans);
4982	if (ret < 0) {
4983		btrfs_abort_transaction(trans, ret);
4984		btrfs_end_transaction(trans);
4985	} else {
4986		ret = btrfs_commit_transaction(trans);
4987	}
4988done:
4989	btrfs_free_path(path);
4990	if (ret) {
4991		mutex_lock(&fs_info->chunk_mutex);
4992		btrfs_device_set_total_bytes(device, old_size);
4993		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994			device->fs_devices->total_rw_bytes += diff;
4995		atomic64_add(diff, &fs_info->free_chunk_space);
 
4996		mutex_unlock(&fs_info->chunk_mutex);
4997	}
4998	return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002			   struct btrfs_key *key,
5003			   struct btrfs_chunk *chunk, int item_size)
5004{
5005	struct btrfs_super_block *super_copy = fs_info->super_copy;
5006	struct btrfs_disk_key disk_key;
5007	u32 array_size;
5008	u8 *ptr;
5009
5010	lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012	array_size = btrfs_super_sys_array_size(super_copy);
5013	if (array_size + item_size + sizeof(disk_key)
5014			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015		return -EFBIG;
5016
5017	ptr = super_copy->sys_chunk_array + array_size;
5018	btrfs_cpu_key_to_disk(&disk_key, key);
5019	memcpy(ptr, &disk_key, sizeof(disk_key));
5020	ptr += sizeof(disk_key);
5021	memcpy(ptr, chunk, item_size);
5022	item_size += sizeof(disk_key);
5023	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025	return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033	const struct btrfs_device_info *di_a = a;
5034	const struct btrfs_device_info *di_b = b;
5035
5036	if (di_a->max_avail > di_b->max_avail)
5037		return -1;
5038	if (di_a->max_avail < di_b->max_avail)
5039		return 1;
5040	if (di_a->total_avail > di_b->total_avail)
5041		return -1;
5042	if (di_a->total_avail < di_b->total_avail)
5043		return 1;
5044	return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050		return;
5051
5052	btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058		return;
5059
5060	btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068	u64 start;
5069	u64 type;
5070	/* Total number of stripes to allocate */
5071	int num_stripes;
5072	/* sub_stripes info for map */
5073	int sub_stripes;
5074	/* Stripes per device */
5075	int dev_stripes;
5076	/* Maximum number of devices to use */
5077	int devs_max;
5078	/* Minimum number of devices to use */
5079	int devs_min;
5080	/* ndevs has to be a multiple of this */
5081	int devs_increment;
5082	/* Number of copies */
5083	int ncopies;
5084	/* Number of stripes worth of bytes to store parity information */
5085	int nparity;
5086	u64 max_stripe_size;
5087	u64 max_chunk_size;
5088	u64 dev_extent_min;
5089	u64 stripe_size;
5090	u64 chunk_size;
5091	int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095				struct btrfs_fs_devices *fs_devices,
5096				struct alloc_chunk_ctl *ctl)
5097{
5098	struct btrfs_space_info *space_info;
5099
5100	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101	ASSERT(space_info);
5102
5103	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104	ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109	/* We don't want a chunk larger than 10% of writable space */
5110	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111				  ctl->max_chunk_size);
5112	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116				      struct btrfs_fs_devices *fs_devices,
5117				      struct alloc_chunk_ctl *ctl)
5118{
5119	u64 zone_size = fs_devices->fs_info->zone_size;
5120	u64 limit;
5121	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123	u64 min_chunk_size = min_data_stripes * zone_size;
5124	u64 type = ctl->type;
5125
5126	ctl->max_stripe_size = zone_size;
5127	if (type & BTRFS_BLOCK_GROUP_DATA) {
5128		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129						 zone_size);
5130	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131		ctl->max_chunk_size = ctl->max_stripe_size;
5132	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134		ctl->devs_max = min_t(int, ctl->devs_max,
5135				      BTRFS_MAX_DEVS_SYS_CHUNK);
5136	} else {
5137		BUG();
5138	}
5139
5140	/* We don't want a chunk larger than 10% of writable space */
5141	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142			       zone_size),
5143		    min_chunk_size);
5144	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149				 struct alloc_chunk_ctl *ctl)
5150{
5151	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155	ctl->devs_max = btrfs_raid_array[index].devs_max;
5156	if (!ctl->devs_max)
5157		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158	ctl->devs_min = btrfs_raid_array[index].devs_min;
5159	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160	ctl->ncopies = btrfs_raid_array[index].ncopies;
5161	ctl->nparity = btrfs_raid_array[index].nparity;
5162	ctl->ndevs = 0;
5163
5164	switch (fs_devices->chunk_alloc_policy) {
5165	case BTRFS_CHUNK_ALLOC_REGULAR:
5166		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167		break;
5168	case BTRFS_CHUNK_ALLOC_ZONED:
5169		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170		break;
5171	default:
5172		BUG();
5173	}
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177			      struct alloc_chunk_ctl *ctl,
5178			      struct btrfs_device_info *devices_info)
5179{
5180	struct btrfs_fs_info *info = fs_devices->fs_info;
5181	struct btrfs_device *device;
5182	u64 total_avail;
5183	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184	int ret;
5185	int ndevs = 0;
5186	u64 max_avail;
5187	u64 dev_offset;
5188
5189	/*
5190	 * in the first pass through the devices list, we gather information
5191	 * about the available holes on each device.
5192	 */
5193	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195			WARN(1, KERN_ERR
5196			       "BTRFS: read-only device in alloc_list\n");
5197			continue;
5198		}
5199
5200		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201					&device->dev_state) ||
5202		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203			continue;
5204
5205		if (device->total_bytes > device->bytes_used)
5206			total_avail = device->total_bytes - device->bytes_used;
5207		else
5208			total_avail = 0;
5209
5210		/* If there is no space on this device, skip it. */
5211		if (total_avail < ctl->dev_extent_min)
5212			continue;
5213
5214		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215					   &max_avail);
5216		if (ret && ret != -ENOSPC)
5217			return ret;
5218
5219		if (ret == 0)
5220			max_avail = dev_extent_want;
5221
5222		if (max_avail < ctl->dev_extent_min) {
5223			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224				btrfs_debug(info,
5225			"%s: devid %llu has no free space, have=%llu want=%llu",
5226					    __func__, device->devid, max_avail,
5227					    ctl->dev_extent_min);
5228			continue;
5229		}
5230
5231		if (ndevs == fs_devices->rw_devices) {
5232			WARN(1, "%s: found more than %llu devices\n",
5233			     __func__, fs_devices->rw_devices);
5234			break;
5235		}
5236		devices_info[ndevs].dev_offset = dev_offset;
5237		devices_info[ndevs].max_avail = max_avail;
5238		devices_info[ndevs].total_avail = total_avail;
5239		devices_info[ndevs].dev = device;
5240		++ndevs;
5241	}
5242	ctl->ndevs = ndevs;
5243
5244	/*
5245	 * now sort the devices by hole size / available space
5246	 */
5247	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248	     btrfs_cmp_device_info, NULL);
5249
5250	return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254				      struct btrfs_device_info *devices_info)
5255{
5256	/* Number of stripes that count for block group size */
5257	int data_stripes;
5258
5259	/*
5260	 * The primary goal is to maximize the number of stripes, so use as
5261	 * many devices as possible, even if the stripes are not maximum sized.
5262	 *
5263	 * The DUP profile stores more than one stripe per device, the
5264	 * max_avail is the total size so we have to adjust.
5265	 */
5266	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267				   ctl->dev_stripes);
5268	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5271	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273	/*
5274	 * Use the number of data stripes to figure out how big this chunk is
5275	 * really going to be in terms of logical address space, and compare
5276	 * that answer with the max chunk size. If it's higher, we try to
5277	 * reduce stripe_size.
5278	 */
5279	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280		/*
5281		 * Reduce stripe_size, round it up to a 16MB boundary again and
5282		 * then use it, unless it ends up being even bigger than the
5283		 * previous value we had already.
5284		 */
5285		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286							data_stripes), SZ_16M),
5287				       ctl->stripe_size);
5288	}
5289
5290	/* Stripe size should not go beyond 1G. */
5291	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293	/* Align to BTRFS_STRIPE_LEN */
5294	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295	ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297	return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301				    struct btrfs_device_info *devices_info)
5302{
5303	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304	/* Number of stripes that count for block group size */
5305	int data_stripes;
5306
5307	/*
5308	 * It should hold because:
5309	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310	 */
5311	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313	ctl->stripe_size = zone_size;
5314	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320					     ctl->stripe_size) + ctl->nparity,
5321				     ctl->dev_stripes);
5322		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325	}
5326
5327	ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329	return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333			      struct alloc_chunk_ctl *ctl,
5334			      struct btrfs_device_info *devices_info)
5335{
5336	struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338	/*
5339	 * Round down to number of usable stripes, devs_increment can be any
5340	 * number so we can't use round_down() that requires power of 2, while
5341	 * rounddown is safe.
5342	 */
5343	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345	if (ctl->ndevs < ctl->devs_min) {
5346		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347			btrfs_debug(info,
5348	"%s: not enough devices with free space: have=%d minimum required=%d",
5349				    __func__, ctl->ndevs, ctl->devs_min);
5350		}
5351		return -ENOSPC;
5352	}
5353
5354	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356	switch (fs_devices->chunk_alloc_policy) {
5357	case BTRFS_CHUNK_ALLOC_REGULAR:
5358		return decide_stripe_size_regular(ctl, devices_info);
5359	case BTRFS_CHUNK_ALLOC_ZONED:
5360		return decide_stripe_size_zoned(ctl, devices_info);
5361	default:
5362		BUG();
5363	}
5364}
5365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367			struct alloc_chunk_ctl *ctl,
5368			struct btrfs_device_info *devices_info)
5369{
5370	struct btrfs_fs_info *info = trans->fs_info;
5371	struct map_lookup *map = NULL;
5372	struct extent_map_tree *em_tree;
5373	struct btrfs_block_group *block_group;
5374	struct extent_map *em;
5375	u64 start = ctl->start;
5376	u64 type = ctl->type;
5377	int ret;
5378	int i;
5379	int j;
5380
5381	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382	if (!map)
5383		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
5384	map->num_stripes = ctl->num_stripes;
5385
5386	for (i = 0; i < ctl->ndevs; ++i) {
5387		for (j = 0; j < ctl->dev_stripes; ++j) {
5388			int s = i * ctl->dev_stripes + j;
5389			map->stripes[s].dev = devices_info[i].dev;
5390			map->stripes[s].physical = devices_info[i].dev_offset +
5391						   j * ctl->stripe_size;
5392		}
5393	}
5394	map->stripe_len = BTRFS_STRIPE_LEN;
5395	map->io_align = BTRFS_STRIPE_LEN;
5396	map->io_width = BTRFS_STRIPE_LEN;
5397	map->type = type;
5398	map->sub_stripes = ctl->sub_stripes;
5399
5400	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402	em = alloc_extent_map();
5403	if (!em) {
5404		kfree(map);
5405		return ERR_PTR(-ENOMEM);
5406	}
5407	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408	em->map_lookup = map;
5409	em->start = start;
5410	em->len = ctl->chunk_size;
5411	em->block_start = 0;
5412	em->block_len = em->len;
5413	em->orig_block_len = ctl->stripe_size;
5414
5415	em_tree = &info->mapping_tree;
5416	write_lock(&em_tree->lock);
5417	ret = add_extent_mapping(em_tree, em, 0);
5418	if (ret) {
5419		write_unlock(&em_tree->lock);
5420		free_extent_map(em);
5421		return ERR_PTR(ret);
5422	}
5423	write_unlock(&em_tree->lock);
5424
5425	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426	if (IS_ERR(block_group))
5427		goto error_del_extent;
 
 
5428
5429	for (i = 0; i < map->num_stripes; i++) {
5430		struct btrfs_device *dev = map->stripes[i].dev;
5431
5432		btrfs_device_set_bytes_used(dev,
5433					    dev->bytes_used + ctl->stripe_size);
5434		if (list_empty(&dev->post_commit_list))
5435			list_add_tail(&dev->post_commit_list,
5436				      &trans->transaction->dev_update_list);
5437	}
5438
5439	atomic64_sub(ctl->stripe_size * map->num_stripes,
5440		     &info->free_chunk_space);
5441
5442	free_extent_map(em);
5443	check_raid56_incompat_flag(info, type);
5444	check_raid1c34_incompat_flag(info, type);
5445
5446	return block_group;
5447
5448error_del_extent:
5449	write_lock(&em_tree->lock);
5450	remove_extent_mapping(em_tree, em);
5451	write_unlock(&em_tree->lock);
5452
5453	/* One for our allocation */
5454	free_extent_map(em);
5455	/* One for the tree reference */
5456	free_extent_map(em);
5457
5458	return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462					    u64 type)
5463{
5464	struct btrfs_fs_info *info = trans->fs_info;
5465	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466	struct btrfs_device_info *devices_info = NULL;
5467	struct alloc_chunk_ctl ctl;
5468	struct btrfs_block_group *block_group;
5469	int ret;
5470
5471	lockdep_assert_held(&info->chunk_mutex);
5472
5473	if (!alloc_profile_is_valid(type, 0)) {
5474		ASSERT(0);
5475		return ERR_PTR(-EINVAL);
5476	}
5477
5478	if (list_empty(&fs_devices->alloc_list)) {
5479		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480			btrfs_debug(info, "%s: no writable device", __func__);
5481		return ERR_PTR(-ENOSPC);
5482	}
5483
5484	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486		ASSERT(0);
5487		return ERR_PTR(-EINVAL);
5488	}
5489
5490	ctl.start = find_next_chunk(info);
5491	ctl.type = type;
5492	init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495			       GFP_NOFS);
5496	if (!devices_info)
5497		return ERR_PTR(-ENOMEM);
5498
5499	ret = gather_device_info(fs_devices, &ctl, devices_info);
5500	if (ret < 0) {
5501		block_group = ERR_PTR(ret);
5502		goto out;
5503	}
5504
5505	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506	if (ret < 0) {
5507		block_group = ERR_PTR(ret);
5508		goto out;
5509	}
5510
5511	block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514	kfree(devices_info);
5515	return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527				     struct btrfs_block_group *bg)
5528{
5529	struct btrfs_fs_info *fs_info = trans->fs_info;
5530	struct btrfs_root *chunk_root = fs_info->chunk_root;
5531	struct btrfs_key key;
5532	struct btrfs_chunk *chunk;
5533	struct btrfs_stripe *stripe;
5534	struct extent_map *em;
5535	struct map_lookup *map;
5536	size_t item_size;
5537	int i;
5538	int ret;
5539
5540	/*
5541	 * We take the chunk_mutex for 2 reasons:
5542	 *
5543	 * 1) Updates and insertions in the chunk btree must be done while holding
5544	 *    the chunk_mutex, as well as updating the system chunk array in the
5545	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5546	 *    details;
5547	 *
5548	 * 2) To prevent races with the final phase of a device replace operation
5549	 *    that replaces the device object associated with the map's stripes,
5550	 *    because the device object's id can change at any time during that
5551	 *    final phase of the device replace operation
5552	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554	 *    which would cause a failure when updating the device item, which does
5555	 *    not exists, or persisting a stripe of the chunk item with such ID.
5556	 *    Here we can't use the device_list_mutex because our caller already
5557	 *    has locked the chunk_mutex, and the final phase of device replace
5558	 *    acquires both mutexes - first the device_list_mutex and then the
5559	 *    chunk_mutex. Using any of those two mutexes protects us from a
5560	 *    concurrent device replace.
5561	 */
5562	lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565	if (IS_ERR(em)) {
5566		ret = PTR_ERR(em);
5567		btrfs_abort_transaction(trans, ret);
5568		return ret;
5569	}
5570
5571	map = em->map_lookup;
5572	item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574	chunk = kzalloc(item_size, GFP_NOFS);
5575	if (!chunk) {
5576		ret = -ENOMEM;
5577		btrfs_abort_transaction(trans, ret);
5578		goto out;
5579	}
5580
5581	for (i = 0; i < map->num_stripes; i++) {
5582		struct btrfs_device *device = map->stripes[i].dev;
5583
5584		ret = btrfs_update_device(trans, device);
5585		if (ret)
5586			goto out;
5587	}
5588
5589	stripe = &chunk->stripe;
5590	for (i = 0; i < map->num_stripes; i++) {
5591		struct btrfs_device *device = map->stripes[i].dev;
5592		const u64 dev_offset = map->stripes[i].physical;
5593
5594		btrfs_set_stack_stripe_devid(stripe, device->devid);
5595		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597		stripe++;
5598	}
5599
5600	btrfs_set_stack_chunk_length(chunk, bg->length);
5601	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603	btrfs_set_stack_chunk_type(chunk, map->type);
5604	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611	key.type = BTRFS_CHUNK_ITEM_KEY;
5612	key.offset = bg->start;
5613
5614	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615	if (ret)
5616		goto out;
5617
5618	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622		if (ret)
5623			goto out;
5624	}
5625
5626out:
5627	kfree(chunk);
5628	free_extent_map(em);
5629	return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634	struct btrfs_fs_info *fs_info = trans->fs_info;
5635	u64 alloc_profile;
5636	struct btrfs_block_group *meta_bg;
5637	struct btrfs_block_group *sys_bg;
5638
5639	/*
5640	 * When adding a new device for sprouting, the seed device is read-only
5641	 * so we must first allocate a metadata and a system chunk. But before
5642	 * adding the block group items to the extent, device and chunk btrees,
5643	 * we must first:
5644	 *
5645	 * 1) Create both chunks without doing any changes to the btrees, as
5646	 *    otherwise we would get -ENOSPC since the block groups from the
5647	 *    seed device are read-only;
5648	 *
5649	 * 2) Add the device item for the new sprout device - finishing the setup
5650	 *    of a new block group requires updating the device item in the chunk
5651	 *    btree, so it must exist when we attempt to do it. The previous step
5652	 *    ensures this does not fail with -ENOSPC.
5653	 *
5654	 * After that we can add the block group items to their btrees:
5655	 * update existing device item in the chunk btree, add a new block group
5656	 * item to the extent btree, add a new chunk item to the chunk btree and
5657	 * finally add the new device extent items to the devices btree.
5658	 */
5659
5660	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662	if (IS_ERR(meta_bg))
5663		return PTR_ERR(meta_bg);
5664
5665	alloc_profile = btrfs_system_alloc_profile(fs_info);
5666	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667	if (IS_ERR(sys_bg))
5668		return PTR_ERR(sys_bg);
5669
5670	return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675	const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677	return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682	struct extent_map *em;
5683	struct map_lookup *map;
5684	int miss_ndevs = 0;
5685	int i;
5686	bool ret = true;
5687
5688	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689	if (IS_ERR(em))
5690		return false;
5691
5692	map = em->map_lookup;
5693	for (i = 0; i < map->num_stripes; i++) {
5694		if (test_bit(BTRFS_DEV_STATE_MISSING,
5695					&map->stripes[i].dev->dev_state)) {
5696			miss_ndevs++;
5697			continue;
5698		}
5699		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700					&map->stripes[i].dev->dev_state)) {
5701			ret = false;
5702			goto end;
5703		}
5704	}
5705
5706	/*
5707	 * If the number of missing devices is larger than max errors, we can
5708	 * not write the data into that chunk successfully.
5709	 */
5710	if (miss_ndevs > btrfs_chunk_max_errors(map))
5711		ret = false;
5712end:
5713	free_extent_map(em);
5714	return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719	struct extent_map *em;
 
 
 
5720
5721	while (1) {
5722		write_lock(&tree->lock);
5723		em = lookup_extent_mapping(tree, 0, (u64)-1);
5724		if (em)
5725			remove_extent_mapping(tree, em);
5726		write_unlock(&tree->lock);
5727		if (!em)
5728			break;
5729		/* once for us */
5730		free_extent_map(em);
5731		/* once for the tree */
5732		free_extent_map(em);
5733	}
 
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738	struct extent_map *em;
5739	struct map_lookup *map;
5740	enum btrfs_raid_types index;
5741	int ret = 1;
5742
5743	em = btrfs_get_chunk_map(fs_info, logical, len);
5744	if (IS_ERR(em))
5745		/*
5746		 * We could return errors for these cases, but that could get
5747		 * ugly and we'd probably do the same thing which is just not do
5748		 * anything else and exit, so return 1 so the callers don't try
5749		 * to use other copies.
5750		 */
5751		return 1;
5752
5753	map = em->map_lookup;
5754	index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758		ret = btrfs_raid_array[index].ncopies;
5759	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760		ret = 2;
5761	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762		/*
5763		 * There could be two corrupted data stripes, we need
5764		 * to loop retry in order to rebuild the correct data.
5765		 *
5766		 * Fail a stripe at a time on every retry except the
5767		 * stripe under reconstruction.
5768		 */
5769		ret = map->num_stripes;
5770	free_extent_map(em);
5771
5772	down_read(&fs_info->dev_replace.rwsem);
5773	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774	    fs_info->dev_replace.tgtdev)
5775		ret++;
5776	up_read(&fs_info->dev_replace.rwsem);
5777
5778	return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782				    u64 logical)
5783{
5784	struct extent_map *em;
5785	struct map_lookup *map;
5786	unsigned long len = fs_info->sectorsize;
5787
5788	if (!btrfs_fs_incompat(fs_info, RAID56))
5789		return len;
5790
5791	em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793	if (!WARN_ON(IS_ERR(em))) {
5794		map = em->map_lookup;
5795		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796			len = map->stripe_len * nr_data_stripes(map);
5797		free_extent_map(em);
5798	}
5799	return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804	struct extent_map *em;
5805	struct map_lookup *map;
5806	int ret = 0;
5807
5808	if (!btrfs_fs_incompat(fs_info, RAID56))
5809		return 0;
5810
5811	em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813	if(!WARN_ON(IS_ERR(em))) {
5814		map = em->map_lookup;
5815		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816			ret = 1;
5817		free_extent_map(em);
5818	}
5819	return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823			    struct map_lookup *map, int first,
5824			    int dev_replace_is_ongoing)
5825{
 
5826	int i;
5827	int num_stripes;
5828	int preferred_mirror;
5829	int tolerance;
5830	struct btrfs_device *srcdev;
5831
5832	ASSERT((map->type &
5833		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836		num_stripes = map->sub_stripes;
5837	else
5838		num_stripes = map->num_stripes;
5839
5840	switch (fs_info->fs_devices->read_policy) {
5841	default:
5842		/* Shouldn't happen, just warn and use pid instead of failing */
5843		btrfs_warn_rl(fs_info,
5844			      "unknown read_policy type %u, reset to pid",
5845			      fs_info->fs_devices->read_policy);
5846		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847		fallthrough;
5848	case BTRFS_READ_POLICY_PID:
5849		preferred_mirror = first + (current->pid % num_stripes);
5850		break;
5851	}
5852
5853	if (dev_replace_is_ongoing &&
5854	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856		srcdev = fs_info->dev_replace.srcdev;
5857	else
5858		srcdev = NULL;
5859
5860	/*
5861	 * try to avoid the drive that is the source drive for a
5862	 * dev-replace procedure, only choose it if no other non-missing
5863	 * mirror is available
5864	 */
5865	for (tolerance = 0; tolerance < 2; tolerance++) {
5866		if (map->stripes[preferred_mirror].dev->bdev &&
5867		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868			return preferred_mirror;
5869		for (i = first; i < first + num_stripes; i++) {
5870			if (map->stripes[i].dev->bdev &&
5871			    (tolerance || map->stripes[i].dev != srcdev))
5872				return i;
5873		}
5874	}
5875
5876	/* we couldn't find one that doesn't fail.  Just return something
5877	 * and the io error handling code will clean up eventually
5878	 */
5879	return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885	int i;
5886	int again = 1;
5887
5888	while (again) {
5889		again = 0;
5890		for (i = 0; i < num_stripes - 1; i++) {
5891			/* Swap if parity is on a smaller index */
5892			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895				again = 1;
5896			}
5897		}
5898	}
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902						       int total_stripes,
5903						       int real_stripes)
5904{
5905	struct btrfs_io_context *bioc = kzalloc(
 
 
5906		 /* The size of btrfs_io_context */
5907		sizeof(struct btrfs_io_context) +
5908		/* Plus the variable array for the stripes */
5909		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910		/* Plus the variable array for the tgt dev */
5911		sizeof(int) * (real_stripes) +
5912		/*
5913		 * Plus the raid_map, which includes both the tgt dev
5914		 * and the stripes.
5915		 */
5916		sizeof(u64) * (total_stripes),
5917		GFP_NOFS);
5918
5919	if (!bioc)
5920		return NULL;
5921
5922	refcount_set(&bioc->refs, 1);
5923
5924	bioc->fs_info = fs_info;
5925	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
 
5927
5928	return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933	WARN_ON(!refcount_read(&bioc->refs));
5934	refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939	if (!bioc)
5940		return;
5941	if (refcount_dec_and_test(&bioc->refs))
5942		kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950					       u64 logical, u64 *length_ret,
5951					       u32 *num_stripes)
5952{
5953	struct extent_map *em;
5954	struct map_lookup *map;
5955	struct btrfs_discard_stripe *stripes;
5956	u64 length = *length_ret;
5957	u64 offset;
5958	u64 stripe_nr;
5959	u64 stripe_nr_end;
 
5960	u64 stripe_end_offset;
5961	u64 stripe_cnt;
5962	u64 stripe_len;
5963	u64 stripe_offset;
5964	u32 stripe_index;
5965	u32 factor = 0;
5966	u32 sub_stripes = 0;
5967	u64 stripes_per_dev = 0;
5968	u32 remaining_stripes = 0;
5969	u32 last_stripe = 0;
5970	int ret;
5971	int i;
5972
5973	em = btrfs_get_chunk_map(fs_info, logical, length);
5974	if (IS_ERR(em))
5975		return ERR_CAST(em);
5976
5977	map = em->map_lookup;
5978
5979	/* we don't discard raid56 yet */
5980	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981		ret = -EOPNOTSUPP;
5982		goto out_free_map;
5983}
5984
5985	offset = logical - em->start;
5986	length = min_t(u64, em->start + em->len - logical, length);
5987	*length_ret = length;
5988
5989	stripe_len = map->stripe_len;
5990	/*
5991	 * stripe_nr counts the total number of stripes we have to stride
5992	 * to get to this block
5993	 */
5994	stripe_nr = div64_u64(offset, stripe_len);
5995
5996	/* stripe_offset is the offset of this block in its stripe */
5997	stripe_offset = offset - stripe_nr * stripe_len;
5998
5999	stripe_nr_end = round_up(offset + length, map->stripe_len);
6000	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001	stripe_cnt = stripe_nr_end - stripe_nr;
6002	stripe_end_offset = stripe_nr_end * map->stripe_len -
6003			    (offset + length);
6004	/*
6005	 * after this, stripe_nr is the number of stripes on this
6006	 * device we have to walk to find the data, and stripe_index is
6007	 * the number of our device in the stripe array
6008	 */
6009	*num_stripes = 1;
6010	stripe_index = 0;
6011	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012			 BTRFS_BLOCK_GROUP_RAID10)) {
6013		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014			sub_stripes = 1;
6015		else
6016			sub_stripes = map->sub_stripes;
6017
6018		factor = map->num_stripes / sub_stripes;
6019		*num_stripes = min_t(u64, map->num_stripes,
6020				    sub_stripes * stripe_cnt);
6021		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
 
6022		stripe_index *= sub_stripes;
6023		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024					      &remaining_stripes);
6025		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026		last_stripe *= sub_stripes;
6027	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028				BTRFS_BLOCK_GROUP_DUP)) {
6029		*num_stripes = map->num_stripes;
6030	} else {
6031		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032					&stripe_index);
6033	}
6034
6035	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036	if (!stripes) {
6037		ret = -ENOMEM;
6038		goto out_free_map;
6039	}
6040
6041	for (i = 0; i < *num_stripes; i++) {
6042		stripes[i].physical =
6043			map->stripes[stripe_index].physical +
6044			stripe_offset + stripe_nr * map->stripe_len;
6045		stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048				 BTRFS_BLOCK_GROUP_RAID10)) {
6049			stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051			if (i / sub_stripes < remaining_stripes)
6052				stripes[i].length += map->stripe_len;
6053
6054			/*
6055			 * Special for the first stripe and
6056			 * the last stripe:
6057			 *
6058			 * |-------|...|-------|
6059			 *     |----------|
6060			 *    off     end_off
6061			 */
6062			if (i < sub_stripes)
6063				stripes[i].length -= stripe_offset;
6064
6065			if (stripe_index >= last_stripe &&
6066			    stripe_index <= (last_stripe +
6067					     sub_stripes - 1))
6068				stripes[i].length -= stripe_end_offset;
6069
6070			if (i == sub_stripes - 1)
6071				stripe_offset = 0;
6072		} else {
6073			stripes[i].length = length;
6074		}
6075
6076		stripe_index++;
6077		if (stripe_index == map->num_stripes) {
6078			stripe_index = 0;
6079			stripe_nr++;
6080		}
6081	}
6082
6083	free_extent_map(em);
6084	return stripes;
6085out_free_map:
6086	free_extent_map(em);
6087	return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104					 u64 logical, u64 length,
6105					 u64 srcdev_devid, int *mirror_num,
6106					 u64 *physical)
6107{
6108	struct btrfs_io_context *bioc = NULL;
6109	int num_stripes;
6110	int index_srcdev = 0;
6111	int found = 0;
6112	u64 physical_of_found = 0;
6113	int i;
6114	int ret = 0;
6115
6116	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117				logical, &length, &bioc, NULL, NULL, 0);
6118	if (ret) {
6119		ASSERT(bioc == NULL);
6120		return ret;
6121	}
6122
6123	num_stripes = bioc->num_stripes;
6124	if (*mirror_num > num_stripes) {
6125		/*
6126		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127		 * that means that the requested area is not left of the left
6128		 * cursor
6129		 */
6130		btrfs_put_bioc(bioc);
6131		return -EIO;
6132	}
6133
6134	/*
6135	 * process the rest of the function using the mirror_num of the source
6136	 * drive. Therefore look it up first.  At the end, patch the device
6137	 * pointer to the one of the target drive.
6138	 */
6139	for (i = 0; i < num_stripes; i++) {
6140		if (bioc->stripes[i].dev->devid != srcdev_devid)
6141			continue;
6142
6143		/*
6144		 * In case of DUP, in order to keep it simple, only add the
6145		 * mirror with the lowest physical address
6146		 */
6147		if (found &&
6148		    physical_of_found <= bioc->stripes[i].physical)
6149			continue;
6150
6151		index_srcdev = i;
6152		found = 1;
6153		physical_of_found = bioc->stripes[i].physical;
6154	}
6155
6156	btrfs_put_bioc(bioc);
6157
6158	ASSERT(found);
6159	if (!found)
6160		return -EIO;
6161
6162	*mirror_num = index_srcdev + 1;
6163	*physical = physical_of_found;
6164	return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169	struct btrfs_block_group *cache;
6170	bool ret;
6171
6172	/* Non zoned filesystem does not use "to_copy" flag */
6173	if (!btrfs_is_zoned(fs_info))
6174		return false;
6175
6176	cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180	btrfs_put_block_group(cache);
6181	return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185				      struct btrfs_io_context **bioc_ret,
6186				      struct btrfs_dev_replace *dev_replace,
6187				      u64 logical,
6188				      int *num_stripes_ret, int *max_errors_ret)
6189{
6190	struct btrfs_io_context *bioc = *bioc_ret;
6191	u64 srcdev_devid = dev_replace->srcdev->devid;
6192	int tgtdev_indexes = 0;
 
 
 
6193	int num_stripes = *num_stripes_ret;
 
6194	int max_errors = *max_errors_ret;
6195	int i;
6196
6197	if (op == BTRFS_MAP_WRITE) {
6198		int index_where_to_add;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6199
6200		/*
6201		 * A block group which have "to_copy" set will eventually
6202		 * copied by dev-replace process. We can avoid cloning IO here.
6203		 */
6204		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6206
6207		/*
6208		 * duplicate the write operations while the dev replace
6209		 * procedure is running. Since the copying of the old disk to
6210		 * the new disk takes place at run time while the filesystem is
6211		 * mounted writable, the regular write operations to the old
6212		 * disk have to be duplicated to go to the new disk as well.
6213		 *
6214		 * Note that device->missing is handled by the caller, and that
6215		 * the write to the old disk is already set up in the stripes
6216		 * array.
6217		 */
6218		index_where_to_add = num_stripes;
6219		for (i = 0; i < num_stripes; i++) {
6220			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221				/* write to new disk, too */
6222				struct btrfs_io_stripe *new =
6223					bioc->stripes + index_where_to_add;
6224				struct btrfs_io_stripe *old =
6225					bioc->stripes + i;
6226
6227				new->physical = old->physical;
6228				new->dev = dev_replace->tgtdev;
6229				bioc->tgtdev_map[i] = index_where_to_add;
6230				index_where_to_add++;
6231				max_errors++;
6232				tgtdev_indexes++;
6233			}
6234		}
6235		num_stripes = index_where_to_add;
6236	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237		int index_srcdev = 0;
6238		int found = 0;
6239		u64 physical_of_found = 0;
6240
 
 
6241		/*
6242		 * During the dev-replace procedure, the target drive can also
6243		 * be used to read data in case it is needed to repair a corrupt
6244		 * block elsewhere. This is possible if the requested area is
6245		 * left of the left cursor. In this area, the target drive is a
6246		 * full copy of the source drive.
6247		 */
6248		for (i = 0; i < num_stripes; i++) {
6249			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250				/*
6251				 * In case of DUP, in order to keep it simple,
6252				 * only add the mirror with the lowest physical
6253				 * address
6254				 */
6255				if (found &&
6256				    physical_of_found <= bioc->stripes[i].physical)
6257					continue;
6258				index_srcdev = i;
6259				found = 1;
6260				physical_of_found = bioc->stripes[i].physical;
6261			}
6262		}
6263		if (found) {
6264			struct btrfs_io_stripe *tgtdev_stripe =
6265				bioc->stripes + num_stripes;
6266
6267			tgtdev_stripe->physical = physical_of_found;
6268			tgtdev_stripe->dev = dev_replace->tgtdev;
6269			bioc->tgtdev_map[index_srcdev] = num_stripes;
 
 
 
 
 
6270
6271			tgtdev_indexes++;
6272			num_stripes++;
6273		}
6274	}
 
 
6275
6276	*num_stripes_ret = num_stripes;
6277	*max_errors_ret = max_errors;
6278	bioc->num_tgtdevs = tgtdev_indexes;
6279	*bioc_ret = bioc;
 
 
 
 
 
 
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
 
 
 
 
6283{
6284	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
 
 
 
 
 
 
 
 
 
 
 
 
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em:      mapping containing the logical extent
6294 * @op:      type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302			  enum btrfs_map_op op, u64 logical,
6303			  struct btrfs_io_geometry *io_geom)
6304{
6305	struct map_lookup *map;
6306	u64 len;
6307	u64 offset;
6308	u64 stripe_offset;
6309	u64 stripe_nr;
6310	u32 stripe_len;
6311	u64 raid56_full_stripe_start = (u64)-1;
6312	int data_stripes;
 
 
 
 
 
 
 
6313
6314	ASSERT(op != BTRFS_MAP_DISCARD);
 
 
 
6315
6316	map = em->map_lookup;
6317	/* Offset of this logical address in the chunk */
6318	offset = logical - em->start;
6319	/* Len of a stripe in a chunk */
6320	stripe_len = map->stripe_len;
6321	/*
6322	 * Stripe_nr is where this block falls in
6323	 * stripe_offset is the offset of this block in its stripe.
6324	 */
6325	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326	ASSERT(stripe_offset < U32_MAX);
6327
6328	data_stripes = nr_data_stripes(map);
 
 
 
 
 
 
6329
6330	/* Only stripe based profiles needs to check against stripe length. */
6331	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332		u64 max_len = stripe_len - stripe_offset;
 
6333
6334		/*
6335		 * In case of raid56, we need to know the stripe aligned start
6336		 */
6337		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338			unsigned long full_stripe_len = stripe_len * data_stripes;
6339			raid56_full_stripe_start = offset;
6340
6341			/*
6342			 * Allow a write of a full stripe, but make sure we
6343			 * don't allow straddling of stripes
6344			 */
6345			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346					full_stripe_len);
6347			raid56_full_stripe_start *= full_stripe_len;
6348
6349			/*
6350			 * For writes to RAID[56], allow a full stripeset across
6351			 * all disks. For other RAID types and for RAID[56]
6352			 * reads, just allow a single stripe (on a single disk).
6353			 */
6354			if (op == BTRFS_MAP_WRITE) {
6355				max_len = stripe_len * data_stripes -
6356					  (offset - raid56_full_stripe_start);
6357			}
6358		}
6359		len = min_t(u64, em->len - offset, max_len);
6360	} else {
6361		len = em->len - offset;
6362	}
6363
6364	io_geom->len = len;
6365	io_geom->offset = offset;
6366	io_geom->stripe_len = stripe_len;
6367	io_geom->stripe_nr = stripe_nr;
6368	io_geom->stripe_offset = stripe_offset;
6369	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371	return 0;
 
 
 
 
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
 
6376{
6377	dst->dev = map->stripes[stripe_index].dev;
6378	dst->physical = map->stripes[stripe_index].physical +
6379			stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383		      u64 logical, u64 *length,
6384		      struct btrfs_io_context **bioc_ret,
6385		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386		      int need_raid_map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6387{
6388	struct extent_map *em;
6389	struct map_lookup *map;
6390	u64 stripe_offset;
6391	u64 stripe_nr;
6392	u64 stripe_len;
6393	u32 stripe_index;
6394	int data_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6395	int i;
6396	int ret = 0;
6397	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398	int num_stripes;
6399	int max_errors = 0;
6400	int tgtdev_indexes = 0;
6401	struct btrfs_io_context *bioc = NULL;
6402	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403	int dev_replace_is_ongoing = 0;
6404	int num_alloc_stripes;
6405	int patch_the_first_stripe_for_dev_replace = 0;
6406	u64 physical_to_patch_in_first_stripe = 0;
6407	u64 raid56_full_stripe_start = (u64)-1;
6408	struct btrfs_io_geometry geom;
6409
6410	ASSERT(bioc_ret);
6411	ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413	em = btrfs_get_chunk_map(fs_info, logical, *length);
6414	ASSERT(!IS_ERR(em));
 
 
6415
6416	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417	if (ret < 0)
6418		return ret;
6419
6420	map = em->map_lookup;
6421
6422	*length = geom.len;
6423	stripe_len = geom.stripe_len;
6424	stripe_nr = geom.stripe_nr;
6425	stripe_offset = geom.stripe_offset;
6426	raid56_full_stripe_start = geom.raid56_stripe_offset;
6427	data_stripes = nr_data_stripes(map);
 
 
6428
6429	down_read(&dev_replace->rwsem);
6430	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431	/*
6432	 * Hold the semaphore for read during the whole operation, write is
6433	 * requested at commit time but must wait.
6434	 */
6435	if (!dev_replace_is_ongoing)
6436		up_read(&dev_replace->rwsem);
6437
6438	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441						    dev_replace->srcdev->devid,
6442						    &mirror_num,
6443					    &physical_to_patch_in_first_stripe);
6444		if (ret)
6445			goto out;
 
 
 
 
 
 
 
 
 
 
 
6446		else
6447			patch_the_first_stripe_for_dev_replace = 1;
6448	} else if (mirror_num > map->num_stripes) {
6449		mirror_num = 0;
6450	}
6451
6452	num_stripes = 1;
6453	stripe_index = 0;
6454	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456				&stripe_index);
6457		if (!need_full_stripe(op))
6458			mirror_num = 1;
6459	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460		if (need_full_stripe(op))
6461			num_stripes = map->num_stripes;
6462		else if (mirror_num)
6463			stripe_index = mirror_num - 1;
6464		else {
6465			stripe_index = find_live_mirror(fs_info, map, 0,
6466					    dev_replace_is_ongoing);
6467			mirror_num = stripe_index + 1;
6468		}
6469
6470	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471		if (need_full_stripe(op)) {
6472			num_stripes = map->num_stripes;
6473		} else if (mirror_num) {
6474			stripe_index = mirror_num - 1;
6475		} else {
6476			mirror_num = 1;
6477		}
6478
6479	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480		u32 factor = map->num_stripes / map->sub_stripes;
6481
6482		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483		stripe_index *= map->sub_stripes;
6484
6485		if (need_full_stripe(op))
6486			num_stripes = map->sub_stripes;
6487		else if (mirror_num)
6488			stripe_index += mirror_num - 1;
6489		else {
6490			int old_stripe_index = stripe_index;
6491			stripe_index = find_live_mirror(fs_info, map,
6492					      stripe_index,
6493					      dev_replace_is_ongoing);
6494			mirror_num = stripe_index - old_stripe_index + 1;
6495		}
6496
6497	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500			/* push stripe_nr back to the start of the full stripe */
6501			stripe_nr = div64_u64(raid56_full_stripe_start,
6502					stripe_len * data_stripes);
6503
6504			/* RAID[56] write or recovery. Return all stripes */
6505			num_stripes = map->num_stripes;
6506			max_errors = btrfs_chunk_max_errors(map);
6507
6508			/* Return the length to the full stripe end */
6509			*length = min(logical + *length,
6510				      raid56_full_stripe_start + em->start +
6511				      data_stripes * stripe_len) - logical;
6512			stripe_index = 0;
6513			stripe_offset = 0;
6514		} else {
6515			/*
6516			 * Mirror #0 or #1 means the original data block.
6517			 * Mirror #2 is RAID5 parity block.
6518			 * Mirror #3 is RAID6 Q block.
6519			 */
6520			stripe_nr = div_u64_rem(stripe_nr,
6521					data_stripes, &stripe_index);
6522			if (mirror_num > 1)
6523				stripe_index = data_stripes + mirror_num - 2;
6524
6525			/* We distribute the parity blocks across stripes */
6526			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527					&stripe_index);
6528			if (!need_full_stripe(op) && mirror_num <= 1)
6529				mirror_num = 1;
6530		}
6531	} else {
6532		/*
6533		 * after this, stripe_nr is the number of stripes on this
6534		 * device we have to walk to find the data, and stripe_index is
6535		 * the number of our device in the stripe array
6536		 */
6537		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538				&stripe_index);
6539		mirror_num = stripe_index + 1;
6540	}
6541	if (stripe_index >= map->num_stripes) {
6542		btrfs_crit(fs_info,
6543			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544			   stripe_index, map->num_stripes);
6545		ret = -EINVAL;
6546		goto out;
6547	}
6548
6549	num_alloc_stripes = num_stripes;
6550	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551		if (op == BTRFS_MAP_WRITE)
6552			num_alloc_stripes <<= 1;
6553		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554			num_alloc_stripes++;
6555		tgtdev_indexes = num_stripes;
6556	}
 
 
 
6557
6558	/*
6559	 * If this I/O maps to a single device, try to return the device and
6560	 * physical block information on the stack instead of allocating an
6561	 * I/O context structure.
6562	 */
6563	if (smap && num_alloc_stripes == 1 &&
6564	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566	     !dev_replace->tgtdev)) {
6567		if (patch_the_first_stripe_for_dev_replace) {
6568			smap->dev = dev_replace->tgtdev;
6569			smap->physical = physical_to_patch_in_first_stripe;
6570			*mirror_num_ret = map->num_stripes + 1;
6571		} else {
6572			set_io_stripe(smap, map, stripe_index, stripe_offset,
6573				      stripe_nr);
6574			*mirror_num_ret = mirror_num;
6575		}
6576		*bioc_ret = NULL;
6577		ret = 0;
6578		goto out;
6579	}
6580
6581	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582	if (!bioc) {
6583		ret = -ENOMEM;
6584		goto out;
6585	}
 
6586
6587	for (i = 0; i < num_stripes; i++) {
6588		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589			      stripe_nr);
6590		stripe_index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6591	}
6592
6593	/* Build raid_map */
6594	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595	    (need_full_stripe(op) || mirror_num > 1)) {
6596		u64 tmp;
6597		unsigned rot;
6598
6599		/* Work out the disk rotation on this stripe-set */
6600		div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602		/* Fill in the logical address of each stripe */
6603		tmp = stripe_nr * data_stripes;
6604		for (i = 0; i < data_stripes; i++)
6605			bioc->raid_map[(i + rot) % num_stripes] =
6606				em->start + (tmp + i) * map->stripe_len;
6607
6608		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610			bioc->raid_map[(i + rot + 1) % num_stripes] =
6611				RAID6_Q_STRIPE;
6612
6613		sort_parity_stripes(bioc, num_stripes);
6614	}
6615
6616	if (need_full_stripe(op))
6617		max_errors = btrfs_chunk_max_errors(map);
6618
6619	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620	    need_full_stripe(op)) {
6621		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622					  &num_stripes, &max_errors);
6623	}
6624
6625	*bioc_ret = bioc;
6626	bioc->map_type = map->type;
6627	bioc->num_stripes = num_stripes;
6628	bioc->max_errors = max_errors;
6629	bioc->mirror_num = mirror_num;
6630
6631	/*
6632	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634	 * available as a mirror
6635	 */
6636	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637		WARN_ON(num_stripes > 1);
6638		bioc->stripes[0].dev = dev_replace->tgtdev;
6639		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640		bioc->mirror_num = map->num_stripes + 1;
6641	}
6642out:
6643	if (dev_replace_is_ongoing) {
6644		lockdep_assert_held(&dev_replace->rwsem);
6645		/* Unlock and let waiting writers proceed */
6646		up_read(&dev_replace->rwsem);
6647	}
6648	free_extent_map(em);
6649	return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653		      u64 logical, u64 *length,
6654		      struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657				 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662		     u64 logical, u64 *length,
6663		     struct btrfs_io_context **bioc_ret)
6664{
6665	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666				 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670				      const struct btrfs_fs_devices *fs_devices)
6671{
6672	if (args->fsid == NULL)
6673		return true;
6674	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675		return true;
6676	return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680				  const struct btrfs_device *device)
6681{
6682	if (args->missing) {
6683		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684		    !device->bdev)
6685			return true;
6686		return false;
6687	}
6688
6689	if (device->devid != args->devid)
6690		return false;
6691	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692		return false;
6693	return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704				       const struct btrfs_dev_lookup_args *args)
6705{
6706	struct btrfs_device *device;
6707	struct btrfs_fs_devices *seed_devs;
6708
6709	if (dev_args_match_fs_devices(args, fs_devices)) {
6710		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711			if (dev_args_match_device(args, device))
6712				return device;
6713		}
6714	}
6715
6716	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717		if (!dev_args_match_fs_devices(args, seed_devs))
6718			continue;
6719		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720			if (dev_args_match_device(args, device))
6721				return device;
6722		}
6723	}
6724
6725	return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729					    u64 devid, u8 *dev_uuid)
6730{
6731	struct btrfs_device *device;
6732	unsigned int nofs_flag;
6733
6734	/*
6735	 * We call this under the chunk_mutex, so we want to use NOFS for this
6736	 * allocation, however we don't want to change btrfs_alloc_device() to
6737	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738	 * places.
6739	 */
6740
6741	nofs_flag = memalloc_nofs_save();
6742	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743	memalloc_nofs_restore(nofs_flag);
6744	if (IS_ERR(device))
6745		return device;
6746
6747	list_add(&device->dev_list, &fs_devices->devices);
6748	device->fs_devices = fs_devices;
6749	fs_devices->num_devices++;
6750
6751	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752	fs_devices->missing_devices++;
6753
6754	return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info:	used only for generating a new devid, can be NULL if
6761 *		devid is provided (i.e. @devid != NULL).
6762 * @devid:	a pointer to devid for this device.  If NULL a new devid
6763 *		is generated.
6764 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6765 *		is generated.
6766 * @path:	a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error.  Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773					const u64 *devid, const u8 *uuid,
6774					const char *path)
6775{
6776	struct btrfs_device *dev;
6777	u64 tmp;
6778
6779	if (WARN_ON(!devid && !fs_info))
6780		return ERR_PTR(-EINVAL);
6781
6782	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783	if (!dev)
6784		return ERR_PTR(-ENOMEM);
6785
6786	INIT_LIST_HEAD(&dev->dev_list);
6787	INIT_LIST_HEAD(&dev->dev_alloc_list);
6788	INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790	atomic_set(&dev->dev_stats_ccnt, 0);
6791	btrfs_device_data_ordered_init(dev);
6792	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794	if (devid)
6795		tmp = *devid;
6796	else {
6797		int ret;
6798
6799		ret = find_next_devid(fs_info, &tmp);
6800		if (ret) {
6801			btrfs_free_device(dev);
6802			return ERR_PTR(ret);
6803		}
6804	}
6805	dev->devid = tmp;
6806
6807	if (uuid)
6808		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809	else
6810		generate_random_uuid(dev->uuid);
6811
6812	if (path) {
6813		struct rcu_string *name;
6814
6815		name = rcu_string_strdup(path, GFP_KERNEL);
6816		if (!name) {
6817			btrfs_free_device(dev);
6818			return ERR_PTR(-ENOMEM);
6819		}
6820		rcu_assign_pointer(dev->name, name);
6821	}
6822
6823	return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827					u64 devid, u8 *uuid, bool error)
6828{
6829	if (error)
6830		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831			      devid, uuid);
6832	else
6833		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834			      devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839	const struct map_lookup *map = em->map_lookup;
6840	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842	return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854				  u64 logical, u64 length, u64 type)
6855{
6856	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857		return 0;
6858
6859	if (logical + length < MAX_LFS_FILESIZE)
6860		return 0;
6861
6862	btrfs_err_32bit_limit(fs_info);
6863	return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873				  u64 logical, u64 length, u64 type)
6874{
6875	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876		return;
6877
6878	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879		return;
6880
6881	btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886						  u64 devid, u8 *uuid)
6887{
6888	struct btrfs_device *dev;
6889
6890	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891		btrfs_report_missing_device(fs_info, devid, uuid, true);
6892		return ERR_PTR(-ENOENT);
6893	}
6894
6895	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896	if (IS_ERR(dev)) {
6897		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898			  devid, PTR_ERR(dev));
6899		return dev;
6900	}
6901	btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903	return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907			  struct btrfs_chunk *chunk)
6908{
6909	BTRFS_DEV_LOOKUP_ARGS(args);
6910	struct btrfs_fs_info *fs_info = leaf->fs_info;
6911	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912	struct map_lookup *map;
6913	struct extent_map *em;
6914	u64 logical;
6915	u64 length;
6916	u64 devid;
6917	u64 type;
6918	u8 uuid[BTRFS_UUID_SIZE];
6919	int index;
6920	int num_stripes;
6921	int ret;
6922	int i;
6923
6924	logical = key->offset;
6925	length = btrfs_chunk_length(leaf, chunk);
6926	type = btrfs_chunk_type(leaf, chunk);
6927	index = btrfs_bg_flags_to_raid_index(type);
6928	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932	if (ret < 0)
6933		return ret;
6934	warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937	/*
6938	 * Only need to verify chunk item if we're reading from sys chunk array,
6939	 * as chunk item in tree block is already verified by tree-checker.
6940	 */
6941	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943		if (ret)
6944			return ret;
6945	}
6946
6947	read_lock(&map_tree->lock);
6948	em = lookup_extent_mapping(map_tree, logical, 1);
6949	read_unlock(&map_tree->lock);
6950
6951	/* already mapped? */
6952	if (em && em->start <= logical && em->start + em->len > logical) {
6953		free_extent_map(em);
6954		return 0;
6955	} else if (em) {
6956		free_extent_map(em);
6957	}
6958
6959	em = alloc_extent_map();
6960	if (!em)
6961		return -ENOMEM;
6962	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963	if (!map) {
6964		free_extent_map(em);
6965		return -ENOMEM;
6966	}
6967
6968	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969	em->map_lookup = map;
6970	em->start = logical;
6971	em->len = length;
6972	em->orig_start = 0;
6973	em->block_start = 0;
6974	em->block_len = em->len;
6975
 
 
6976	map->num_stripes = num_stripes;
6977	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980	map->type = type;
6981	/*
6982	 * We can't use the sub_stripes value, as for profiles other than
6983	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984	 * older mkfs (<v5.4).
6985	 * In that case, it can cause divide-by-zero errors later.
6986	 * Since currently sub_stripes is fixed for each profile, let's
6987	 * use the trusted value instead.
6988	 */
6989	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990	map->verified_stripes = 0;
6991	em->orig_block_len = btrfs_calc_stripe_length(em);
6992	for (i = 0; i < num_stripes; i++) {
6993		map->stripes[i].physical =
6994			btrfs_stripe_offset_nr(leaf, chunk, i);
6995		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996		args.devid = devid;
6997		read_extent_buffer(leaf, uuid, (unsigned long)
6998				   btrfs_stripe_dev_uuid_nr(chunk, i),
6999				   BTRFS_UUID_SIZE);
7000		args.uuid = uuid;
7001		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7002		if (!map->stripes[i].dev) {
7003			map->stripes[i].dev = handle_missing_device(fs_info,
7004								    devid, uuid);
7005			if (IS_ERR(map->stripes[i].dev)) {
7006				ret = PTR_ERR(map->stripes[i].dev);
7007				free_extent_map(em);
7008				return ret;
7009			}
7010		}
7011
7012		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013				&(map->stripes[i].dev->dev_state));
7014	}
7015
7016	write_lock(&map_tree->lock);
7017	ret = add_extent_mapping(map_tree, em, 0);
7018	write_unlock(&map_tree->lock);
7019	if (ret < 0) {
7020		btrfs_err(fs_info,
7021			  "failed to add chunk map, start=%llu len=%llu: %d",
7022			  em->start, em->len, ret);
7023	}
7024	free_extent_map(em);
7025
7026	return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030				 struct btrfs_dev_item *dev_item,
7031				 struct btrfs_device *device)
7032{
7033	unsigned long ptr;
7034
7035	device->devid = btrfs_device_id(leaf, dev_item);
7036	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037	device->total_bytes = device->disk_total_bytes;
7038	device->commit_total_bytes = device->disk_total_bytes;
7039	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040	device->commit_bytes_used = device->bytes_used;
7041	device->type = btrfs_device_type(leaf, dev_item);
7042	device->io_align = btrfs_device_io_align(leaf, dev_item);
7043	device->io_width = btrfs_device_io_width(leaf, dev_item);
7044	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048	ptr = btrfs_device_uuid(dev_item);
7049	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053						  u8 *fsid)
7054{
7055	struct btrfs_fs_devices *fs_devices;
7056	int ret;
7057
7058	lockdep_assert_held(&uuid_mutex);
7059	ASSERT(fsid);
7060
7061	/* This will match only for multi-device seed fs */
7062	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064			return fs_devices;
7065
7066
7067	fs_devices = find_fsid(fsid, NULL);
7068	if (!fs_devices) {
7069		if (!btrfs_test_opt(fs_info, DEGRADED))
7070			return ERR_PTR(-ENOENT);
7071
7072		fs_devices = alloc_fs_devices(fsid, NULL);
7073		if (IS_ERR(fs_devices))
7074			return fs_devices;
7075
7076		fs_devices->seeding = true;
7077		fs_devices->opened = 1;
7078		return fs_devices;
7079	}
7080
7081	/*
7082	 * Upon first call for a seed fs fsid, just create a private copy of the
7083	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084	 */
7085	fs_devices = clone_fs_devices(fs_devices);
7086	if (IS_ERR(fs_devices))
7087		return fs_devices;
7088
7089	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090	if (ret) {
7091		free_fs_devices(fs_devices);
7092		return ERR_PTR(ret);
7093	}
7094
7095	if (!fs_devices->seeding) {
7096		close_fs_devices(fs_devices);
7097		free_fs_devices(fs_devices);
7098		return ERR_PTR(-EINVAL);
7099	}
7100
7101	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103	return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107			struct btrfs_dev_item *dev_item)
7108{
7109	BTRFS_DEV_LOOKUP_ARGS(args);
7110	struct btrfs_fs_info *fs_info = leaf->fs_info;
7111	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112	struct btrfs_device *device;
7113	u64 devid;
7114	int ret;
7115	u8 fs_uuid[BTRFS_FSID_SIZE];
7116	u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118	devid = btrfs_device_id(leaf, dev_item);
7119	args.devid = devid;
7120	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121			   BTRFS_UUID_SIZE);
7122	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123			   BTRFS_FSID_SIZE);
7124	args.uuid = dev_uuid;
7125	args.fsid = fs_uuid;
7126
7127	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128		fs_devices = open_seed_devices(fs_info, fs_uuid);
7129		if (IS_ERR(fs_devices))
7130			return PTR_ERR(fs_devices);
7131	}
7132
7133	device = btrfs_find_device(fs_info->fs_devices, &args);
7134	if (!device) {
7135		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136			btrfs_report_missing_device(fs_info, devid,
7137							dev_uuid, true);
7138			return -ENOENT;
7139		}
7140
7141		device = add_missing_dev(fs_devices, devid, dev_uuid);
7142		if (IS_ERR(device)) {
7143			btrfs_err(fs_info,
7144				"failed to add missing dev %llu: %ld",
7145				devid, PTR_ERR(device));
7146			return PTR_ERR(device);
7147		}
7148		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149	} else {
7150		if (!device->bdev) {
7151			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152				btrfs_report_missing_device(fs_info,
7153						devid, dev_uuid, true);
7154				return -ENOENT;
7155			}
7156			btrfs_report_missing_device(fs_info, devid,
7157							dev_uuid, false);
7158		}
7159
7160		if (!device->bdev &&
7161		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162			/*
7163			 * this happens when a device that was properly setup
7164			 * in the device info lists suddenly goes bad.
7165			 * device->bdev is NULL, and so we have to set
7166			 * device->missing to one here
7167			 */
7168			device->fs_devices->missing_devices++;
7169			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170		}
7171
7172		/* Move the device to its own fs_devices */
7173		if (device->fs_devices != fs_devices) {
7174			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175							&device->dev_state));
7176
7177			list_move(&device->dev_list, &fs_devices->devices);
7178			device->fs_devices->num_devices--;
7179			fs_devices->num_devices++;
7180
7181			device->fs_devices->missing_devices--;
7182			fs_devices->missing_devices++;
7183
7184			device->fs_devices = fs_devices;
7185		}
7186	}
7187
7188	if (device->fs_devices != fs_info->fs_devices) {
7189		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190		if (device->generation !=
7191		    btrfs_device_generation(leaf, dev_item))
7192			return -EINVAL;
7193	}
7194
7195	fill_device_from_item(leaf, dev_item, device);
7196	if (device->bdev) {
7197		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199		if (device->total_bytes > max_total_bytes) {
7200			btrfs_err(fs_info,
7201			"device total_bytes should be at most %llu but found %llu",
7202				  max_total_bytes, device->total_bytes);
7203			return -EINVAL;
7204		}
7205	}
7206	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209		device->fs_devices->total_rw_bytes += device->total_bytes;
7210		atomic64_add(device->total_bytes - device->bytes_used,
7211				&fs_info->free_chunk_space);
7212	}
7213	ret = 0;
7214	return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219	struct btrfs_super_block *super_copy = fs_info->super_copy;
7220	struct extent_buffer *sb;
7221	struct btrfs_disk_key *disk_key;
7222	struct btrfs_chunk *chunk;
7223	u8 *array_ptr;
7224	unsigned long sb_array_offset;
7225	int ret = 0;
7226	u32 num_stripes;
7227	u32 array_size;
7228	u32 len = 0;
7229	u32 cur_offset;
7230	u64 type;
7231	struct btrfs_key key;
7232
7233	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235	/*
7236	 * We allocated a dummy extent, just to use extent buffer accessors.
7237	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238	 * that's fine, we will not go beyond system chunk array anyway.
7239	 */
7240	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241	if (!sb)
7242		return -ENOMEM;
7243	set_extent_buffer_uptodate(sb);
7244
7245	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246	array_size = btrfs_super_sys_array_size(super_copy);
7247
7248	array_ptr = super_copy->sys_chunk_array;
7249	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250	cur_offset = 0;
7251
7252	while (cur_offset < array_size) {
7253		disk_key = (struct btrfs_disk_key *)array_ptr;
7254		len = sizeof(*disk_key);
7255		if (cur_offset + len > array_size)
7256			goto out_short_read;
7257
7258		btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260		array_ptr += len;
7261		sb_array_offset += len;
7262		cur_offset += len;
7263
7264		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265			btrfs_err(fs_info,
7266			    "unexpected item type %u in sys_array at offset %u",
7267				  (u32)key.type, cur_offset);
7268			ret = -EIO;
7269			break;
7270		}
7271
7272		chunk = (struct btrfs_chunk *)sb_array_offset;
7273		/*
7274		 * At least one btrfs_chunk with one stripe must be present,
7275		 * exact stripe count check comes afterwards
7276		 */
7277		len = btrfs_chunk_item_size(1);
7278		if (cur_offset + len > array_size)
7279			goto out_short_read;
7280
7281		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282		if (!num_stripes) {
7283			btrfs_err(fs_info,
7284			"invalid number of stripes %u in sys_array at offset %u",
7285				  num_stripes, cur_offset);
7286			ret = -EIO;
7287			break;
7288		}
7289
7290		type = btrfs_chunk_type(sb, chunk);
7291		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292			btrfs_err(fs_info,
7293			"invalid chunk type %llu in sys_array at offset %u",
7294				  type, cur_offset);
7295			ret = -EIO;
7296			break;
7297		}
7298
7299		len = btrfs_chunk_item_size(num_stripes);
7300		if (cur_offset + len > array_size)
7301			goto out_short_read;
7302
7303		ret = read_one_chunk(&key, sb, chunk);
7304		if (ret)
7305			break;
7306
7307		array_ptr += len;
7308		sb_array_offset += len;
7309		cur_offset += len;
7310	}
7311	clear_extent_buffer_uptodate(sb);
7312	free_extent_buffer_stale(sb);
7313	return ret;
7314
7315out_short_read:
7316	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317			len, cur_offset);
7318	clear_extent_buffer_uptodate(sb);
7319	free_extent_buffer_stale(sb);
7320	return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332					struct btrfs_device *failing_dev)
7333{
7334	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335	struct extent_map *em;
7336	u64 next_start = 0;
7337	bool ret = true;
7338
7339	read_lock(&map_tree->lock);
7340	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341	read_unlock(&map_tree->lock);
7342	/* No chunk at all? Return false anyway */
7343	if (!em) {
7344		ret = false;
7345		goto out;
7346	}
7347	while (em) {
7348		struct map_lookup *map;
7349		int missing = 0;
7350		int max_tolerated;
7351		int i;
7352
7353		map = em->map_lookup;
7354		max_tolerated =
7355			btrfs_get_num_tolerated_disk_barrier_failures(
7356					map->type);
7357		for (i = 0; i < map->num_stripes; i++) {
7358			struct btrfs_device *dev = map->stripes[i].dev;
7359
7360			if (!dev || !dev->bdev ||
7361			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362			    dev->last_flush_error)
7363				missing++;
7364			else if (failing_dev && failing_dev == dev)
7365				missing++;
7366		}
7367		if (missing > max_tolerated) {
7368			if (!failing_dev)
7369				btrfs_warn(fs_info,
7370	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371				   em->start, missing, max_tolerated);
7372			free_extent_map(em);
7373			ret = false;
7374			goto out;
7375		}
7376		next_start = extent_map_end(em);
7377		free_extent_map(em);
7378
7379		read_lock(&map_tree->lock);
7380		em = lookup_extent_mapping(map_tree, next_start,
7381					   (u64)(-1) - next_start);
7382		read_unlock(&map_tree->lock);
7383	}
7384out:
7385	return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390	int i;
7391	const int nr_items = btrfs_header_nritems(node);
7392
7393	for (i = 0; i < nr_items; i++)
7394		btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399	struct btrfs_root *root = fs_info->chunk_root;
7400	struct btrfs_path *path;
7401	struct extent_buffer *leaf;
7402	struct btrfs_key key;
7403	struct btrfs_key found_key;
7404	int ret;
7405	int slot;
7406	int iter_ret = 0;
7407	u64 total_dev = 0;
7408	u64 last_ra_node = 0;
7409
7410	path = btrfs_alloc_path();
7411	if (!path)
7412		return -ENOMEM;
7413
7414	/*
7415	 * uuid_mutex is needed only if we are mounting a sprout FS
7416	 * otherwise we don't need it.
7417	 */
7418	mutex_lock(&uuid_mutex);
7419
7420	/*
7421	 * It is possible for mount and umount to race in such a way that
7422	 * we execute this code path, but open_fs_devices failed to clear
7423	 * total_rw_bytes. We certainly want it cleared before reading the
7424	 * device items, so clear it here.
7425	 */
7426	fs_info->fs_devices->total_rw_bytes = 0;
7427
7428	/*
7429	 * Lockdep complains about possible circular locking dependency between
7430	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431	 * used for freeze procection of a fs (struct super_block.s_writers),
7432	 * which we take when starting a transaction, and extent buffers of the
7433	 * chunk tree if we call read_one_dev() while holding a lock on an
7434	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435	 * and at this point there can't be any concurrent task modifying the
7436	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437	 */
7438	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439	path->skip_locking = 1;
7440
7441	/*
7442	 * Read all device items, and then all the chunk items. All
7443	 * device items are found before any chunk item (their object id
7444	 * is smaller than the lowest possible object id for a chunk
7445	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446	 */
7447	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448	key.offset = 0;
7449	key.type = 0;
7450	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451		struct extent_buffer *node = path->nodes[1];
7452
7453		leaf = path->nodes[0];
7454		slot = path->slots[0];
7455
7456		if (node) {
7457			if (last_ra_node != node->start) {
7458				readahead_tree_node_children(node);
7459				last_ra_node = node->start;
7460			}
7461		}
7462		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463			struct btrfs_dev_item *dev_item;
7464			dev_item = btrfs_item_ptr(leaf, slot,
7465						  struct btrfs_dev_item);
7466			ret = read_one_dev(leaf, dev_item);
7467			if (ret)
7468				goto error;
7469			total_dev++;
7470		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471			struct btrfs_chunk *chunk;
7472
7473			/*
7474			 * We are only called at mount time, so no need to take
7475			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476			 * we always lock first fs_info->chunk_mutex before
7477			 * acquiring any locks on the chunk tree. This is a
7478			 * requirement for chunk allocation, see the comment on
7479			 * top of btrfs_chunk_alloc() for details.
7480			 */
7481			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482			ret = read_one_chunk(&found_key, leaf, chunk);
7483			if (ret)
7484				goto error;
7485		}
7486	}
7487	/* Catch error found during iteration */
7488	if (iter_ret < 0) {
7489		ret = iter_ret;
7490		goto error;
7491	}
7492
7493	/*
7494	 * After loading chunk tree, we've got all device information,
7495	 * do another round of validation checks.
7496	 */
7497	if (total_dev != fs_info->fs_devices->total_devices) {
7498		btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500			  btrfs_super_num_devices(fs_info->super_copy),
7501			  total_dev);
7502		fs_info->fs_devices->total_devices = total_dev;
7503		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504	}
7505	if (btrfs_super_total_bytes(fs_info->super_copy) <
7506	    fs_info->fs_devices->total_rw_bytes) {
7507		btrfs_err(fs_info,
7508	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509			  btrfs_super_total_bytes(fs_info->super_copy),
7510			  fs_info->fs_devices->total_rw_bytes);
7511		ret = -EINVAL;
7512		goto error;
7513	}
7514	ret = 0;
7515error:
7516	mutex_unlock(&uuid_mutex);
7517
7518	btrfs_free_path(path);
7519	return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525	struct btrfs_device *device;
7526	int ret = 0;
7527
7528	fs_devices->fs_info = fs_info;
7529
7530	mutex_lock(&fs_devices->device_list_mutex);
7531	list_for_each_entry(device, &fs_devices->devices, dev_list)
7532		device->fs_info = fs_info;
7533
7534	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536			device->fs_info = fs_info;
7537			ret = btrfs_get_dev_zone_info(device, false);
7538			if (ret)
7539				break;
7540		}
7541
7542		seed_devs->fs_info = fs_info;
7543	}
7544	mutex_unlock(&fs_devices->device_list_mutex);
7545
7546	return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550				 const struct btrfs_dev_stats_item *ptr,
7551				 int index)
7552{
7553	u64 val;
7554
7555	read_extent_buffer(eb, &val,
7556			   offsetof(struct btrfs_dev_stats_item, values) +
7557			    ((unsigned long)ptr) + (index * sizeof(u64)),
7558			   sizeof(val));
7559	return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563				      struct btrfs_dev_stats_item *ptr,
7564				      int index, u64 val)
7565{
7566	write_extent_buffer(eb, &val,
7567			    offsetof(struct btrfs_dev_stats_item, values) +
7568			     ((unsigned long)ptr) + (index * sizeof(u64)),
7569			    sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573				       struct btrfs_path *path)
7574{
7575	struct btrfs_dev_stats_item *ptr;
7576	struct extent_buffer *eb;
7577	struct btrfs_key key;
7578	int item_size;
7579	int i, ret, slot;
7580
7581	if (!device->fs_info->dev_root)
7582		return 0;
7583
7584	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586	key.offset = device->devid;
7587	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588	if (ret) {
7589		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590			btrfs_dev_stat_set(device, i, 0);
7591		device->dev_stats_valid = 1;
7592		btrfs_release_path(path);
7593		return ret < 0 ? ret : 0;
7594	}
7595	slot = path->slots[0];
7596	eb = path->nodes[0];
7597	item_size = btrfs_item_size(eb, slot);
7598
7599	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602		if (item_size >= (1 + i) * sizeof(__le64))
7603			btrfs_dev_stat_set(device, i,
7604					   btrfs_dev_stats_value(eb, ptr, i));
7605		else
7606			btrfs_dev_stat_set(device, i, 0);
7607	}
7608
7609	device->dev_stats_valid = 1;
7610	btrfs_dev_stat_print_on_load(device);
7611	btrfs_release_path(path);
7612
7613	return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619	struct btrfs_device *device;
7620	struct btrfs_path *path = NULL;
7621	int ret = 0;
7622
7623	path = btrfs_alloc_path();
7624	if (!path)
7625		return -ENOMEM;
7626
7627	mutex_lock(&fs_devices->device_list_mutex);
7628	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629		ret = btrfs_device_init_dev_stats(device, path);
7630		if (ret)
7631			goto out;
7632	}
7633	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635			ret = btrfs_device_init_dev_stats(device, path);
7636			if (ret)
7637				goto out;
7638		}
7639	}
7640out:
7641	mutex_unlock(&fs_devices->device_list_mutex);
7642
7643	btrfs_free_path(path);
7644	return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648				struct btrfs_device *device)
7649{
7650	struct btrfs_fs_info *fs_info = trans->fs_info;
7651	struct btrfs_root *dev_root = fs_info->dev_root;
7652	struct btrfs_path *path;
7653	struct btrfs_key key;
7654	struct extent_buffer *eb;
7655	struct btrfs_dev_stats_item *ptr;
7656	int ret;
7657	int i;
7658
7659	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661	key.offset = device->devid;
7662
7663	path = btrfs_alloc_path();
7664	if (!path)
7665		return -ENOMEM;
7666	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667	if (ret < 0) {
7668		btrfs_warn_in_rcu(fs_info,
7669			"error %d while searching for dev_stats item for device %s",
7670				  ret, btrfs_dev_name(device));
7671		goto out;
7672	}
7673
7674	if (ret == 0 &&
7675	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676		/* need to delete old one and insert a new one */
7677		ret = btrfs_del_item(trans, dev_root, path);
7678		if (ret != 0) {
7679			btrfs_warn_in_rcu(fs_info,
7680				"delete too small dev_stats item for device %s failed %d",
7681					  btrfs_dev_name(device), ret);
7682			goto out;
7683		}
7684		ret = 1;
7685	}
7686
7687	if (ret == 1) {
7688		/* need to insert a new item */
7689		btrfs_release_path(path);
7690		ret = btrfs_insert_empty_item(trans, dev_root, path,
7691					      &key, sizeof(*ptr));
7692		if (ret < 0) {
7693			btrfs_warn_in_rcu(fs_info,
7694				"insert dev_stats item for device %s failed %d",
7695				btrfs_dev_name(device), ret);
7696			goto out;
7697		}
7698	}
7699
7700	eb = path->nodes[0];
7701	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703		btrfs_set_dev_stats_value(eb, ptr, i,
7704					  btrfs_dev_stat_read(device, i));
7705	btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708	btrfs_free_path(path);
7709	return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717	struct btrfs_fs_info *fs_info = trans->fs_info;
7718	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719	struct btrfs_device *device;
7720	int stats_cnt;
7721	int ret = 0;
7722
7723	mutex_lock(&fs_devices->device_list_mutex);
7724	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726		if (!device->dev_stats_valid || stats_cnt == 0)
7727			continue;
7728
7729
7730		/*
7731		 * There is a LOAD-LOAD control dependency between the value of
7732		 * dev_stats_ccnt and updating the on-disk values which requires
7733		 * reading the in-memory counters. Such control dependencies
7734		 * require explicit read memory barriers.
7735		 *
7736		 * This memory barriers pairs with smp_mb__before_atomic in
7737		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738		 * barrier implied by atomic_xchg in
7739		 * btrfs_dev_stats_read_and_reset
7740		 */
7741		smp_rmb();
7742
7743		ret = update_dev_stat_item(trans, device);
7744		if (!ret)
7745			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746	}
7747	mutex_unlock(&fs_devices->device_list_mutex);
7748
7749	return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754	btrfs_dev_stat_inc(dev, index);
7755
7756	if (!dev->dev_stats_valid)
7757		return;
7758	btrfs_err_rl_in_rcu(dev->fs_info,
7759		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760			   btrfs_dev_name(dev),
7761			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770	int i;
7771
7772	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773		if (btrfs_dev_stat_read(dev, i) != 0)
7774			break;
7775	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776		return; /* all values == 0, suppress message */
7777
7778	btrfs_info_in_rcu(dev->fs_info,
7779		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780	       btrfs_dev_name(dev),
7781	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789			struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791	BTRFS_DEV_LOOKUP_ARGS(args);
7792	struct btrfs_device *dev;
7793	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794	int i;
7795
7796	mutex_lock(&fs_devices->device_list_mutex);
7797	args.devid = stats->devid;
7798	dev = btrfs_find_device(fs_info->fs_devices, &args);
7799	mutex_unlock(&fs_devices->device_list_mutex);
7800
7801	if (!dev) {
7802		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803		return -ENODEV;
7804	} else if (!dev->dev_stats_valid) {
7805		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806		return -ENODEV;
7807	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809			if (stats->nr_items > i)
7810				stats->values[i] =
7811					btrfs_dev_stat_read_and_reset(dev, i);
7812			else
7813				btrfs_dev_stat_set(dev, i, 0);
7814		}
7815		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816			   current->comm, task_pid_nr(current));
7817	} else {
7818		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819			if (stats->nr_items > i)
7820				stats->values[i] = btrfs_dev_stat_read(dev, i);
7821	}
7822	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824	return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed.  This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836	struct btrfs_device *curr, *next;
7837
7838	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840	if (list_empty(&trans->dev_update_list))
7841		return;
7842
7843	/*
7844	 * We don't need the device_list_mutex here.  This list is owned by the
7845	 * transaction and the transaction must complete before the device is
7846	 * released.
7847	 */
7848	mutex_lock(&trans->fs_info->chunk_mutex);
7849	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850				 post_commit_list) {
7851		list_del_init(&curr->post_commit_list);
7852		curr->commit_total_bytes = curr->disk_total_bytes;
7853		curr->commit_bytes_used = curr->bytes_used;
7854	}
7855	mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863	const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865	return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871				 u64 chunk_offset, u64 devid,
7872				 u64 physical_offset, u64 physical_len)
7873{
7874	struct btrfs_dev_lookup_args args = { .devid = devid };
7875	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876	struct extent_map *em;
7877	struct map_lookup *map;
7878	struct btrfs_device *dev;
7879	u64 stripe_len;
7880	bool found = false;
7881	int ret = 0;
7882	int i;
7883
7884	read_lock(&em_tree->lock);
7885	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886	read_unlock(&em_tree->lock);
7887
7888	if (!em) {
7889		btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891			  physical_offset, devid);
7892		ret = -EUCLEAN;
7893		goto out;
7894	}
7895
7896	map = em->map_lookup;
7897	stripe_len = btrfs_calc_stripe_length(em);
7898	if (physical_len != stripe_len) {
7899		btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901			  physical_offset, devid, em->start, physical_len,
7902			  stripe_len);
7903		ret = -EUCLEAN;
7904		goto out;
7905	}
7906
7907	/*
7908	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909	 * space. Although kernel can handle it without problem, better to warn
7910	 * the users.
7911	 */
7912	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913		btrfs_warn(fs_info,
7914		"devid %llu physical %llu len %llu inside the reserved space",
7915			   devid, physical_offset, physical_len);
7916
7917	for (i = 0; i < map->num_stripes; i++) {
7918		if (map->stripes[i].dev->devid == devid &&
7919		    map->stripes[i].physical == physical_offset) {
7920			found = true;
7921			if (map->verified_stripes >= map->num_stripes) {
7922				btrfs_err(fs_info,
7923				"too many dev extents for chunk %llu found",
7924					  em->start);
7925				ret = -EUCLEAN;
7926				goto out;
7927			}
7928			map->verified_stripes++;
7929			break;
7930		}
7931	}
7932	if (!found) {
7933		btrfs_err(fs_info,
7934	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7935			physical_offset, devid);
7936		ret = -EUCLEAN;
7937	}
7938
7939	/* Make sure no dev extent is beyond device boundary */
7940	dev = btrfs_find_device(fs_info->fs_devices, &args);
7941	if (!dev) {
7942		btrfs_err(fs_info, "failed to find devid %llu", devid);
7943		ret = -EUCLEAN;
7944		goto out;
7945	}
7946
7947	if (physical_offset + physical_len > dev->disk_total_bytes) {
7948		btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950			  devid, physical_offset, physical_len,
7951			  dev->disk_total_bytes);
7952		ret = -EUCLEAN;
7953		goto out;
7954	}
7955
7956	if (dev->zone_info) {
7957		u64 zone_size = dev->zone_info->zone_size;
7958
7959		if (!IS_ALIGNED(physical_offset, zone_size) ||
7960		    !IS_ALIGNED(physical_len, zone_size)) {
7961			btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963				  devid, physical_offset, physical_len);
7964			ret = -EUCLEAN;
7965			goto out;
7966		}
7967	}
7968
7969out:
7970	free_extent_map(em);
7971	return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977	struct extent_map *em;
7978	struct rb_node *node;
7979	int ret = 0;
7980
7981	read_lock(&em_tree->lock);
7982	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983		em = rb_entry(node, struct extent_map, rb_node);
7984		if (em->map_lookup->num_stripes !=
7985		    em->map_lookup->verified_stripes) {
 
7986			btrfs_err(fs_info,
7987			"chunk %llu has missing dev extent, have %d expect %d",
7988				  em->start, em->map_lookup->verified_stripes,
7989				  em->map_lookup->num_stripes);
7990			ret = -EUCLEAN;
7991			goto out;
7992		}
7993	}
7994out:
7995	read_unlock(&em_tree->lock);
7996	return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree.  This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008	struct btrfs_path *path;
8009	struct btrfs_root *root = fs_info->dev_root;
8010	struct btrfs_key key;
8011	u64 prev_devid = 0;
8012	u64 prev_dev_ext_end = 0;
8013	int ret = 0;
8014
8015	/*
8016	 * We don't have a dev_root because we mounted with ignorebadroots and
8017	 * failed to load the root, so we want to skip the verification in this
8018	 * case for sure.
8019	 *
8020	 * However if the dev root is fine, but the tree itself is corrupted
8021	 * we'd still fail to mount.  This verification is only to make sure
8022	 * writes can happen safely, so instead just bypass this check
8023	 * completely in the case of IGNOREBADROOTS.
8024	 */
8025	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026		return 0;
8027
8028	key.objectid = 1;
8029	key.type = BTRFS_DEV_EXTENT_KEY;
8030	key.offset = 0;
8031
8032	path = btrfs_alloc_path();
8033	if (!path)
8034		return -ENOMEM;
8035
8036	path->reada = READA_FORWARD;
8037	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038	if (ret < 0)
8039		goto out;
8040
8041	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042		ret = btrfs_next_leaf(root, path);
8043		if (ret < 0)
8044			goto out;
8045		/* No dev extents at all? Not good */
8046		if (ret > 0) {
8047			ret = -EUCLEAN;
8048			goto out;
8049		}
8050	}
8051	while (1) {
8052		struct extent_buffer *leaf = path->nodes[0];
8053		struct btrfs_dev_extent *dext;
8054		int slot = path->slots[0];
8055		u64 chunk_offset;
8056		u64 physical_offset;
8057		u64 physical_len;
8058		u64 devid;
8059
8060		btrfs_item_key_to_cpu(leaf, &key, slot);
8061		if (key.type != BTRFS_DEV_EXTENT_KEY)
8062			break;
8063		devid = key.objectid;
8064		physical_offset = key.offset;
8065
8066		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068		physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070		/* Check if this dev extent overlaps with the previous one */
8071		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072			btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074				  devid, physical_offset, prev_dev_ext_end);
8075			ret = -EUCLEAN;
8076			goto out;
8077		}
8078
8079		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080					    physical_offset, physical_len);
8081		if (ret < 0)
8082			goto out;
8083		prev_devid = devid;
8084		prev_dev_ext_end = physical_offset + physical_len;
8085
8086		ret = btrfs_next_item(root, path);
8087		if (ret < 0)
8088			goto out;
8089		if (ret > 0) {
8090			ret = 0;
8091			break;
8092		}
8093	}
8094
8095	/* Ensure all chunks have corresponding dev extents */
8096	ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098	btrfs_free_path(path);
8099	return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108	struct btrfs_swapfile_pin *sp;
8109	struct rb_node *node;
8110
8111	spin_lock(&fs_info->swapfile_pins_lock);
8112	node = fs_info->swapfile_pins.rb_node;
8113	while (node) {
8114		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115		if (ptr < sp->ptr)
8116			node = node->rb_left;
8117		else if (ptr > sp->ptr)
8118			node = node->rb_right;
8119		else
8120			break;
8121	}
8122	spin_unlock(&fs_info->swapfile_pins_lock);
8123	return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128	struct btrfs_block_group *cache = data;
8129	struct btrfs_fs_info *fs_info = cache->fs_info;
8130	u64 target;
8131	int ret = 0;
8132
8133	target = cache->start;
8134	btrfs_put_block_group(cache);
8135
8136	sb_start_write(fs_info->sb);
8137	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138		btrfs_info(fs_info,
8139			   "zoned: skip relocating block group %llu to repair: EBUSY",
8140			   target);
8141		sb_end_write(fs_info->sb);
8142		return -EBUSY;
8143	}
8144
8145	mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147	/* Ensure block group still exists */
8148	cache = btrfs_lookup_block_group(fs_info, target);
8149	if (!cache)
8150		goto out;
8151
8152	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153		goto out;
8154
8155	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156	if (ret < 0)
8157		goto out;
8158
8159	btrfs_info(fs_info,
8160		   "zoned: relocating block group %llu to repair IO failure",
8161		   target);
8162	ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165	if (cache)
8166		btrfs_put_block_group(cache);
8167	mutex_unlock(&fs_info->reclaim_bgs_lock);
8168	btrfs_exclop_finish(fs_info);
8169	sb_end_write(fs_info->sb);
8170
8171	return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176	struct btrfs_block_group *cache;
8177
8178	if (!btrfs_is_zoned(fs_info))
8179		return false;
8180
8181	/* Do not attempt to repair in degraded state */
8182	if (btrfs_test_opt(fs_info, DEGRADED))
8183		return true;
8184
8185	cache = btrfs_lookup_block_group(fs_info, logical);
8186	if (!cache)
8187		return true;
8188
8189	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190		btrfs_put_block_group(cache);
8191		return true;
8192	}
8193
8194	kthread_run(relocating_repair_kthread, cache,
8195		    "btrfs-relocating-repair");
8196
8197	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8198}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
 
  17#include "disk-io.h"
  18#include "transaction.h"
 
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "rcu-string.h"
  22#include "dev-replace.h"
  23#include "sysfs.h"
  24#include "tree-checker.h"
  25#include "space-info.h"
  26#include "block-group.h"
  27#include "discard.h"
  28#include "zoned.h"
  29#include "fs.h"
  30#include "accessors.h"
  31#include "uuid-tree.h"
  32#include "ioctl.h"
  33#include "relocation.h"
  34#include "scrub.h"
  35#include "super.h"
  36#include "raid-stripe-tree.h"
  37
  38#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  39					 BTRFS_BLOCK_GROUP_RAID10 | \
  40					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  41
  42struct btrfs_io_geometry {
  43	u32 stripe_index;
  44	u32 stripe_nr;
  45	int mirror_num;
  46	int num_stripes;
  47	u64 stripe_offset;
  48	u64 raid56_full_stripe_start;
  49	int max_errors;
  50	enum btrfs_map_op op;
  51};
  52
  53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  54	[BTRFS_RAID_RAID10] = {
  55		.sub_stripes	= 2,
  56		.dev_stripes	= 1,
  57		.devs_max	= 0,	/* 0 == as many as possible */
  58		.devs_min	= 2,
  59		.tolerated_failures = 1,
  60		.devs_increment	= 2,
  61		.ncopies	= 2,
  62		.nparity        = 0,
  63		.raid_name	= "raid10",
  64		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  65		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  66	},
  67	[BTRFS_RAID_RAID1] = {
  68		.sub_stripes	= 1,
  69		.dev_stripes	= 1,
  70		.devs_max	= 2,
  71		.devs_min	= 2,
  72		.tolerated_failures = 1,
  73		.devs_increment	= 2,
  74		.ncopies	= 2,
  75		.nparity        = 0,
  76		.raid_name	= "raid1",
  77		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  78		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  79	},
  80	[BTRFS_RAID_RAID1C3] = {
  81		.sub_stripes	= 1,
  82		.dev_stripes	= 1,
  83		.devs_max	= 3,
  84		.devs_min	= 3,
  85		.tolerated_failures = 2,
  86		.devs_increment	= 3,
  87		.ncopies	= 3,
  88		.nparity        = 0,
  89		.raid_name	= "raid1c3",
  90		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  91		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  92	},
  93	[BTRFS_RAID_RAID1C4] = {
  94		.sub_stripes	= 1,
  95		.dev_stripes	= 1,
  96		.devs_max	= 4,
  97		.devs_min	= 4,
  98		.tolerated_failures = 3,
  99		.devs_increment	= 4,
 100		.ncopies	= 4,
 101		.nparity        = 0,
 102		.raid_name	= "raid1c4",
 103		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 104		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
 105	},
 106	[BTRFS_RAID_DUP] = {
 107		.sub_stripes	= 1,
 108		.dev_stripes	= 2,
 109		.devs_max	= 1,
 110		.devs_min	= 1,
 111		.tolerated_failures = 0,
 112		.devs_increment	= 1,
 113		.ncopies	= 2,
 114		.nparity        = 0,
 115		.raid_name	= "dup",
 116		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 117		.mindev_error	= 0,
 118	},
 119	[BTRFS_RAID_RAID0] = {
 120		.sub_stripes	= 1,
 121		.dev_stripes	= 1,
 122		.devs_max	= 0,
 123		.devs_min	= 1,
 124		.tolerated_failures = 0,
 125		.devs_increment	= 1,
 126		.ncopies	= 1,
 127		.nparity        = 0,
 128		.raid_name	= "raid0",
 129		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 130		.mindev_error	= 0,
 131	},
 132	[BTRFS_RAID_SINGLE] = {
 133		.sub_stripes	= 1,
 134		.dev_stripes	= 1,
 135		.devs_max	= 1,
 136		.devs_min	= 1,
 137		.tolerated_failures = 0,
 138		.devs_increment	= 1,
 139		.ncopies	= 1,
 140		.nparity        = 0,
 141		.raid_name	= "single",
 142		.bg_flag	= 0,
 143		.mindev_error	= 0,
 144	},
 145	[BTRFS_RAID_RAID5] = {
 146		.sub_stripes	= 1,
 147		.dev_stripes	= 1,
 148		.devs_max	= 0,
 149		.devs_min	= 2,
 150		.tolerated_failures = 1,
 151		.devs_increment	= 1,
 152		.ncopies	= 1,
 153		.nparity        = 1,
 154		.raid_name	= "raid5",
 155		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 156		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 157	},
 158	[BTRFS_RAID_RAID6] = {
 159		.sub_stripes	= 1,
 160		.dev_stripes	= 1,
 161		.devs_max	= 0,
 162		.devs_min	= 3,
 163		.tolerated_failures = 2,
 164		.devs_increment	= 1,
 165		.ncopies	= 1,
 166		.nparity        = 2,
 167		.raid_name	= "raid6",
 168		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 169		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 170	},
 171};
 172
 173/*
 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 175 * can be used as index to access btrfs_raid_array[].
 176 */
 177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 178{
 179	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 180
 181	if (!profile)
 182		return BTRFS_RAID_SINGLE;
 183
 184	return BTRFS_BG_FLAG_TO_INDEX(profile);
 185}
 186
 187const char *btrfs_bg_type_to_raid_name(u64 flags)
 188{
 189	const int index = btrfs_bg_flags_to_raid_index(flags);
 190
 191	if (index >= BTRFS_NR_RAID_TYPES)
 192		return NULL;
 193
 194	return btrfs_raid_array[index].raid_name;
 195}
 196
 197int btrfs_nr_parity_stripes(u64 type)
 198{
 199	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 200
 201	return btrfs_raid_array[index].nparity;
 202}
 203
 204/*
 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 206 * bytes including terminating null byte.
 207 */
 208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 209{
 210	int i;
 211	int ret;
 212	char *bp = buf;
 213	u64 flags = bg_flags;
 214	u32 size_bp = size_buf;
 215
 216	if (!flags) {
 217		strcpy(bp, "NONE");
 218		return;
 219	}
 220
 221#define DESCRIBE_FLAG(flag, desc)						\
 222	do {								\
 223		if (flags & (flag)) {					\
 224			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 225			if (ret < 0 || ret >= size_bp)			\
 226				goto out_overflow;			\
 227			size_bp -= ret;					\
 228			bp += ret;					\
 229			flags &= ~(flag);				\
 230		}							\
 231	} while (0)
 232
 233	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 234	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 236
 237	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 238	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 239		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 240			      btrfs_raid_array[i].raid_name);
 241#undef DESCRIBE_FLAG
 242
 243	if (flags) {
 244		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 245		size_bp -= ret;
 246	}
 247
 248	if (size_bp < size_buf)
 249		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 250
 251	/*
 252	 * The text is trimmed, it's up to the caller to provide sufficiently
 253	 * large buffer
 254	 */
 255out_overflow:;
 256}
 257
 258static int init_first_rw_device(struct btrfs_trans_handle *trans);
 259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 261
 262/*
 263 * Device locking
 264 * ==============
 265 *
 266 * There are several mutexes that protect manipulation of devices and low-level
 267 * structures like chunks but not block groups, extents or files
 268 *
 269 * uuid_mutex (global lock)
 270 * ------------------------
 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 273 * device) or requested by the device= mount option
 274 *
 275 * the mutex can be very coarse and can cover long-running operations
 276 *
 277 * protects: updates to fs_devices counters like missing devices, rw devices,
 278 * seeding, structure cloning, opening/closing devices at mount/umount time
 279 *
 280 * global::fs_devs - add, remove, updates to the global list
 281 *
 282 * does not protect: manipulation of the fs_devices::devices list in general
 283 * but in mount context it could be used to exclude list modifications by eg.
 284 * scan ioctl
 285 *
 286 * btrfs_device::name - renames (write side), read is RCU
 287 *
 288 * fs_devices::device_list_mutex (per-fs, with RCU)
 289 * ------------------------------------------------
 290 * protects updates to fs_devices::devices, ie. adding and deleting
 291 *
 292 * simple list traversal with read-only actions can be done with RCU protection
 293 *
 294 * may be used to exclude some operations from running concurrently without any
 295 * modifications to the list (see write_all_supers)
 296 *
 297 * Is not required at mount and close times, because our device list is
 298 * protected by the uuid_mutex at that point.
 299 *
 300 * balance_mutex
 301 * -------------
 302 * protects balance structures (status, state) and context accessed from
 303 * several places (internally, ioctl)
 304 *
 305 * chunk_mutex
 306 * -----------
 307 * protects chunks, adding or removing during allocation, trim or when a new
 308 * device is added/removed. Additionally it also protects post_commit_list of
 309 * individual devices, since they can be added to the transaction's
 310 * post_commit_list only with chunk_mutex held.
 311 *
 312 * cleaner_mutex
 313 * -------------
 314 * a big lock that is held by the cleaner thread and prevents running subvolume
 315 * cleaning together with relocation or delayed iputs
 316 *
 317 *
 318 * Lock nesting
 319 * ============
 320 *
 321 * uuid_mutex
 322 *   device_list_mutex
 323 *     chunk_mutex
 324 *   balance_mutex
 325 *
 326 *
 327 * Exclusive operations
 328 * ====================
 329 *
 330 * Maintains the exclusivity of the following operations that apply to the
 331 * whole filesystem and cannot run in parallel.
 332 *
 333 * - Balance (*)
 334 * - Device add
 335 * - Device remove
 336 * - Device replace (*)
 337 * - Resize
 338 *
 339 * The device operations (as above) can be in one of the following states:
 340 *
 341 * - Running state
 342 * - Paused state
 343 * - Completed state
 344 *
 345 * Only device operations marked with (*) can go into the Paused state for the
 346 * following reasons:
 347 *
 348 * - ioctl (only Balance can be Paused through ioctl)
 349 * - filesystem remounted as read-only
 350 * - filesystem unmounted and mounted as read-only
 351 * - system power-cycle and filesystem mounted as read-only
 352 * - filesystem or device errors leading to forced read-only
 353 *
 354 * The status of exclusive operation is set and cleared atomically.
 355 * During the course of Paused state, fs_info::exclusive_operation remains set.
 356 * A device operation in Paused or Running state can be canceled or resumed
 357 * either by ioctl (Balance only) or when remounted as read-write.
 358 * The exclusive status is cleared when the device operation is canceled or
 359 * completed.
 360 */
 361
 362DEFINE_MUTEX(uuid_mutex);
 363static LIST_HEAD(fs_uuids);
 364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 365{
 366	return &fs_uuids;
 367}
 368
 369/*
 370 * Allocate new btrfs_fs_devices structure identified by a fsid.
 371 *
 372 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
 373 *           fs_devices::metadata_fsid
 374 *
 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 376 * The returned struct is not linked onto any lists and can be destroyed with
 377 * kfree() right away.
 378 */
 379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 
 380{
 381	struct btrfs_fs_devices *fs_devs;
 382
 383	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 384	if (!fs_devs)
 385		return ERR_PTR(-ENOMEM);
 386
 387	mutex_init(&fs_devs->device_list_mutex);
 388
 389	INIT_LIST_HEAD(&fs_devs->devices);
 390	INIT_LIST_HEAD(&fs_devs->alloc_list);
 391	INIT_LIST_HEAD(&fs_devs->fs_list);
 392	INIT_LIST_HEAD(&fs_devs->seed_list);
 
 
 393
 394	if (fsid) {
 395		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 
 396		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 397	}
 398
 399	return fs_devs;
 400}
 401
 402static void btrfs_free_device(struct btrfs_device *device)
 403{
 404	WARN_ON(!list_empty(&device->post_commit_list));
 405	rcu_string_free(device->name);
 406	extent_io_tree_release(&device->alloc_state);
 407	btrfs_destroy_dev_zone_info(device);
 408	kfree(device);
 409}
 410
 411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 412{
 413	struct btrfs_device *device;
 414
 415	WARN_ON(fs_devices->opened);
 416	while (!list_empty(&fs_devices->devices)) {
 417		device = list_entry(fs_devices->devices.next,
 418				    struct btrfs_device, dev_list);
 419		list_del(&device->dev_list);
 420		btrfs_free_device(device);
 421	}
 422	kfree(fs_devices);
 423}
 424
 425void __exit btrfs_cleanup_fs_uuids(void)
 426{
 427	struct btrfs_fs_devices *fs_devices;
 428
 429	while (!list_empty(&fs_uuids)) {
 430		fs_devices = list_entry(fs_uuids.next,
 431					struct btrfs_fs_devices, fs_list);
 432		list_del(&fs_devices->fs_list);
 433		free_fs_devices(fs_devices);
 434	}
 435}
 436
 437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
 438				  const u8 *fsid, const u8 *metadata_fsid)
 439{
 440	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
 441		return false;
 442
 443	if (!metadata_fsid)
 444		return true;
 445
 446	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
 447		return false;
 448
 449	return true;
 
 
 
 
 
 
 
 
 
 450}
 451
 452static noinline struct btrfs_fs_devices *find_fsid(
 453		const u8 *fsid, const u8 *metadata_fsid)
 454{
 
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	ASSERT(fsid);
 458
 459	/* Handle non-split brain cases */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 461		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
 
 
 
 
 462			return fs_devices;
 
 463	}
 464	return NULL;
 
 465}
 466
 
 467static int
 468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
 469		      int flush, struct file **bdev_file,
 470		      struct btrfs_super_block **disk_super)
 471{
 472	struct block_device *bdev;
 473	int ret;
 474
 475	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
 476
 477	if (IS_ERR(*bdev_file)) {
 478		ret = PTR_ERR(*bdev_file);
 479		goto error;
 480	}
 481	bdev = file_bdev(*bdev_file);
 482
 483	if (flush)
 484		sync_blockdev(bdev);
 485	ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
 486	if (ret) {
 487		fput(*bdev_file);
 488		goto error;
 489	}
 490	invalidate_bdev(bdev);
 491	*disk_super = btrfs_read_dev_super(bdev);
 492	if (IS_ERR(*disk_super)) {
 493		ret = PTR_ERR(*disk_super);
 494		fput(*bdev_file);
 495		goto error;
 496	}
 497
 498	return 0;
 499
 500error:
 501	*bdev_file = NULL;
 502	return ret;
 503}
 504
 505/*
 506 *  Search and remove all stale devices (which are not mounted).  When both
 507 *  inputs are NULL, it will search and release all stale devices.
 508 *
 509 *  @devt:         Optional. When provided will it release all unmounted devices
 510 *                 matching this devt only.
 511 *  @skip_device:  Optional. Will skip this device when searching for the stale
 512 *                 devices.
 513 *
 514 *  Return:	0 for success or if @devt is 0.
 515 *		-EBUSY if @devt is a mounted device.
 516 *		-ENOENT if @devt does not match any device in the list.
 517 */
 518static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 519{
 520	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 521	struct btrfs_device *device, *tmp_device;
 522	int ret;
 523	bool freed = false;
 524
 525	lockdep_assert_held(&uuid_mutex);
 526
 527	/* Return good status if there is no instance of devt. */
 528	ret = 0;
 
 529	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 530
 531		mutex_lock(&fs_devices->device_list_mutex);
 532		list_for_each_entry_safe(device, tmp_device,
 533					 &fs_devices->devices, dev_list) {
 534			if (skip_device && skip_device == device)
 535				continue;
 536			if (devt && devt != device->devt)
 537				continue;
 538			if (fs_devices->opened) {
 539				if (devt)
 
 540					ret = -EBUSY;
 541				break;
 542			}
 543
 544			/* delete the stale device */
 545			fs_devices->num_devices--;
 546			list_del(&device->dev_list);
 547			btrfs_free_device(device);
 548
 549			freed = true;
 550		}
 551		mutex_unlock(&fs_devices->device_list_mutex);
 552
 553		if (fs_devices->num_devices == 0) {
 554			btrfs_sysfs_remove_fsid(fs_devices);
 555			list_del(&fs_devices->fs_list);
 556			free_fs_devices(fs_devices);
 557		}
 558	}
 559
 560	/* If there is at least one freed device return 0. */
 561	if (freed)
 562		return 0;
 563
 564	return ret;
 565}
 566
 567static struct btrfs_fs_devices *find_fsid_by_device(
 568					struct btrfs_super_block *disk_super,
 569					dev_t devt, bool *same_fsid_diff_dev)
 570{
 571	struct btrfs_fs_devices *fsid_fs_devices;
 572	struct btrfs_fs_devices *devt_fs_devices;
 573	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 574					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 575	bool found_by_devt = false;
 576
 577	/* Find the fs_device by the usual method, if found use it. */
 578	fsid_fs_devices = find_fsid(disk_super->fsid,
 579		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
 580
 581	/* The temp_fsid feature is supported only with single device filesystem. */
 582	if (btrfs_super_num_devices(disk_super) != 1)
 583		return fsid_fs_devices;
 584
 585	/*
 586	 * A seed device is an integral component of the sprout device, which
 587	 * functions as a multi-device filesystem. So, temp-fsid feature is
 588	 * not supported.
 589	 */
 590	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
 591		return fsid_fs_devices;
 592
 593	/* Try to find a fs_devices by matching devt. */
 594	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
 595		struct btrfs_device *device;
 596
 597		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
 598			if (device->devt == devt) {
 599				found_by_devt = true;
 600				break;
 601			}
 602		}
 603		if (found_by_devt)
 604			break;
 605	}
 606
 607	if (found_by_devt) {
 608		/* Existing device. */
 609		if (fsid_fs_devices == NULL) {
 610			if (devt_fs_devices->opened == 0) {
 611				/* Stale device. */
 612				return NULL;
 613			} else {
 614				/* temp_fsid is mounting a subvol. */
 615				return devt_fs_devices;
 616			}
 617		} else {
 618			/* Regular or temp_fsid device mounting a subvol. */
 619			return devt_fs_devices;
 620		}
 621	} else {
 622		/* New device. */
 623		if (fsid_fs_devices == NULL) {
 624			return NULL;
 625		} else {
 626			/* sb::fsid is already used create a new temp_fsid. */
 627			*same_fsid_diff_dev = true;
 628			return NULL;
 629		}
 630	}
 631
 632	/* Not reached. */
 633}
 634
 635/*
 636 * This is only used on mount, and we are protected from competing things
 637 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 638 * fs_devices->device_list_mutex here.
 639 */
 640static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 641			struct btrfs_device *device, blk_mode_t flags,
 642			void *holder)
 643{
 644	struct file *bdev_file;
 645	struct btrfs_super_block *disk_super;
 646	u64 devid;
 647	int ret;
 648
 649	if (device->bdev)
 650		return -EINVAL;
 651	if (!device->name)
 652		return -EINVAL;
 653
 654	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 655				    &bdev_file, &disk_super);
 656	if (ret)
 657		return ret;
 658
 659	devid = btrfs_stack_device_id(&disk_super->dev_item);
 660	if (devid != device->devid)
 661		goto error_free_page;
 662
 663	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 664		goto error_free_page;
 665
 666	device->generation = btrfs_super_generation(disk_super);
 667
 668	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 669		if (btrfs_super_incompat_flags(disk_super) &
 670		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 671			pr_err(
 672		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 673			goto error_free_page;
 674		}
 675
 676		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 677		fs_devices->seeding = true;
 678	} else {
 679		if (bdev_read_only(file_bdev(bdev_file)))
 680			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 681		else
 682			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 683	}
 684
 685	if (!bdev_nonrot(file_bdev(bdev_file)))
 686		fs_devices->rotating = true;
 687
 688	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
 689		fs_devices->discardable = true;
 690
 691	device->bdev_file = bdev_file;
 692	device->bdev = file_bdev(bdev_file);
 693	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 694
 695	if (device->devt != device->bdev->bd_dev) {
 696		btrfs_warn(NULL,
 697			   "device %s maj:min changed from %d:%d to %d:%d",
 698			   device->name->str, MAJOR(device->devt),
 699			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
 700			   MINOR(device->bdev->bd_dev));
 701
 702		device->devt = device->bdev->bd_dev;
 703	}
 704
 705	fs_devices->open_devices++;
 706	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 707	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 708		fs_devices->rw_devices++;
 709		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 710	}
 711	btrfs_release_disk_super(disk_super);
 712
 713	return 0;
 714
 715error_free_page:
 716	btrfs_release_disk_super(disk_super);
 717	fput(bdev_file);
 718
 719	return -EINVAL;
 720}
 721
 722u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 723{
 724	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
 725				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 726
 727	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728}
 729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730/*
 731 * Add new device to list of registered devices
 732 *
 733 * Returns:
 734 * device pointer which was just added or updated when successful
 735 * error pointer when failed
 736 */
 737static noinline struct btrfs_device *device_list_add(const char *path,
 738			   struct btrfs_super_block *disk_super,
 739			   bool *new_device_added)
 740{
 741	struct btrfs_device *device;
 742	struct btrfs_fs_devices *fs_devices = NULL;
 743	struct rcu_string *name;
 744	u64 found_transid = btrfs_super_generation(disk_super);
 745	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 746	dev_t path_devt;
 747	int error;
 748	bool same_fsid_diff_dev = false;
 749	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 750		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 751
 752	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
 753		btrfs_err(NULL,
 754"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
 755			  path);
 756		return ERR_PTR(-EAGAIN);
 757	}
 758
 759	error = lookup_bdev(path, &path_devt);
 760	if (error) {
 761		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 762			  path, error);
 763		return ERR_PTR(error);
 764	}
 765
 766	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 767
 768	if (!fs_devices) {
 769		fs_devices = alloc_fs_devices(disk_super->fsid);
 
 
 
 
 
 770		if (IS_ERR(fs_devices))
 771			return ERR_CAST(fs_devices);
 772
 773		if (has_metadata_uuid)
 774			memcpy(fs_devices->metadata_uuid,
 775			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 776
 777		if (same_fsid_diff_dev) {
 778			generate_random_uuid(fs_devices->fsid);
 779			fs_devices->temp_fsid = true;
 780		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
 781				path, MAJOR(path_devt), MINOR(path_devt),
 782				fs_devices->fsid);
 783		}
 784
 785		mutex_lock(&fs_devices->device_list_mutex);
 786		list_add(&fs_devices->fs_list, &fs_uuids);
 787
 788		device = NULL;
 789	} else {
 790		struct btrfs_dev_lookup_args args = {
 791			.devid = devid,
 792			.uuid = disk_super->dev_item.uuid,
 793		};
 794
 795		mutex_lock(&fs_devices->device_list_mutex);
 796		device = btrfs_find_device(fs_devices, &args);
 797
 798		if (found_transid > fs_devices->latest_generation) {
 
 
 
 
 
 
 799			memcpy(fs_devices->fsid, disk_super->fsid,
 800					BTRFS_FSID_SIZE);
 801			memcpy(fs_devices->metadata_uuid,
 802			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 803		}
 804	}
 805
 806	if (!device) {
 807		unsigned int nofs_flag;
 808
 809		if (fs_devices->opened) {
 810			btrfs_err(NULL,
 811"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
 812				  path, MAJOR(path_devt), MINOR(path_devt),
 813				  fs_devices->fsid, current->comm,
 814				  task_pid_nr(current));
 815			mutex_unlock(&fs_devices->device_list_mutex);
 816			return ERR_PTR(-EBUSY);
 817		}
 818
 819		nofs_flag = memalloc_nofs_save();
 820		device = btrfs_alloc_device(NULL, &devid,
 821					    disk_super->dev_item.uuid, path);
 822		memalloc_nofs_restore(nofs_flag);
 823		if (IS_ERR(device)) {
 824			mutex_unlock(&fs_devices->device_list_mutex);
 825			/* we can safely leave the fs_devices entry around */
 826			return device;
 827		}
 828
 829		device->devt = path_devt;
 830
 831		list_add_rcu(&device->dev_list, &fs_devices->devices);
 832		fs_devices->num_devices++;
 833
 834		device->fs_devices = fs_devices;
 835		*new_device_added = true;
 836
 837		if (disk_super->label[0])
 838			pr_info(
 839"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
 840				disk_super->label, devid, found_transid, path,
 841				MAJOR(path_devt), MINOR(path_devt),
 842				current->comm, task_pid_nr(current));
 843		else
 844			pr_info(
 845"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
 846				disk_super->fsid, devid, found_transid, path,
 847				MAJOR(path_devt), MINOR(path_devt),
 848				current->comm, task_pid_nr(current));
 849
 850	} else if (!device->name || strcmp(device->name->str, path)) {
 851		/*
 852		 * When FS is already mounted.
 853		 * 1. If you are here and if the device->name is NULL that
 854		 *    means this device was missing at time of FS mount.
 855		 * 2. If you are here and if the device->name is different
 856		 *    from 'path' that means either
 857		 *      a. The same device disappeared and reappeared with
 858		 *         different name. or
 859		 *      b. The missing-disk-which-was-replaced, has
 860		 *         reappeared now.
 861		 *
 862		 * We must allow 1 and 2a above. But 2b would be a spurious
 863		 * and unintentional.
 864		 *
 865		 * Further in case of 1 and 2a above, the disk at 'path'
 866		 * would have missed some transaction when it was away and
 867		 * in case of 2a the stale bdev has to be updated as well.
 868		 * 2b must not be allowed at all time.
 869		 */
 870
 871		/*
 872		 * For now, we do allow update to btrfs_fs_device through the
 873		 * btrfs dev scan cli after FS has been mounted.  We're still
 874		 * tracking a problem where systems fail mount by subvolume id
 875		 * when we reject replacement on a mounted FS.
 876		 */
 877		if (!fs_devices->opened && found_transid < device->generation) {
 878			/*
 879			 * That is if the FS is _not_ mounted and if you
 880			 * are here, that means there is more than one
 881			 * disk with same uuid and devid.We keep the one
 882			 * with larger generation number or the last-in if
 883			 * generation are equal.
 884			 */
 885			mutex_unlock(&fs_devices->device_list_mutex);
 886			btrfs_err(NULL,
 887"device %s already registered with a higher generation, found %llu expect %llu",
 888				  path, found_transid, device->generation);
 889			return ERR_PTR(-EEXIST);
 890		}
 891
 892		/*
 893		 * We are going to replace the device path for a given devid,
 894		 * make sure it's the same device if the device is mounted
 895		 *
 896		 * NOTE: the device->fs_info may not be reliable here so pass
 897		 * in a NULL to message helpers instead. This avoids a possible
 898		 * use-after-free when the fs_info and fs_info->sb are already
 899		 * torn down.
 900		 */
 901		if (device->bdev) {
 902			if (device->devt != path_devt) {
 903				mutex_unlock(&fs_devices->device_list_mutex);
 904				btrfs_warn_in_rcu(NULL,
 905	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 906						  path, devid, found_transid,
 907						  current->comm,
 908						  task_pid_nr(current));
 909				return ERR_PTR(-EEXIST);
 910			}
 911			btrfs_info_in_rcu(NULL,
 912	"devid %llu device path %s changed to %s scanned by %s (%d)",
 913					  devid, btrfs_dev_name(device),
 914					  path, current->comm,
 915					  task_pid_nr(current));
 916		}
 917
 918		name = rcu_string_strdup(path, GFP_NOFS);
 919		if (!name) {
 920			mutex_unlock(&fs_devices->device_list_mutex);
 921			return ERR_PTR(-ENOMEM);
 922		}
 923		rcu_string_free(device->name);
 924		rcu_assign_pointer(device->name, name);
 925		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 926			fs_devices->missing_devices--;
 927			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 928		}
 929		device->devt = path_devt;
 930	}
 931
 932	/*
 933	 * Unmount does not free the btrfs_device struct but would zero
 934	 * generation along with most of the other members. So just update
 935	 * it back. We need it to pick the disk with largest generation
 936	 * (as above).
 937	 */
 938	if (!fs_devices->opened) {
 939		device->generation = found_transid;
 940		fs_devices->latest_generation = max_t(u64, found_transid,
 941						fs_devices->latest_generation);
 942	}
 943
 944	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 945
 946	mutex_unlock(&fs_devices->device_list_mutex);
 947	return device;
 948}
 949
 950static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 951{
 952	struct btrfs_fs_devices *fs_devices;
 953	struct btrfs_device *device;
 954	struct btrfs_device *orig_dev;
 955	int ret = 0;
 956
 957	lockdep_assert_held(&uuid_mutex);
 958
 959	fs_devices = alloc_fs_devices(orig->fsid);
 960	if (IS_ERR(fs_devices))
 961		return fs_devices;
 962
 963	fs_devices->total_devices = orig->total_devices;
 964
 965	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 966		const char *dev_path = NULL;
 967
 968		/*
 969		 * This is ok to do without RCU read locked because we hold the
 970		 * uuid mutex so nothing we touch in here is going to disappear.
 971		 */
 972		if (orig_dev->name)
 973			dev_path = orig_dev->name->str;
 974
 975		device = btrfs_alloc_device(NULL, &orig_dev->devid,
 976					    orig_dev->uuid, dev_path);
 977		if (IS_ERR(device)) {
 978			ret = PTR_ERR(device);
 979			goto error;
 980		}
 981
 982		if (orig_dev->zone_info) {
 983			struct btrfs_zoned_device_info *zone_info;
 984
 985			zone_info = btrfs_clone_dev_zone_info(orig_dev);
 986			if (!zone_info) {
 987				btrfs_free_device(device);
 988				ret = -ENOMEM;
 989				goto error;
 990			}
 991			device->zone_info = zone_info;
 992		}
 993
 994		list_add(&device->dev_list, &fs_devices->devices);
 995		device->fs_devices = fs_devices;
 996		fs_devices->num_devices++;
 997	}
 998	return fs_devices;
 999error:
1000	free_fs_devices(fs_devices);
1001	return ERR_PTR(ret);
1002}
1003
1004static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005				      struct btrfs_device **latest_dev)
1006{
1007	struct btrfs_device *device, *next;
1008
1009	/* This is the initialized path, it is safe to release the devices. */
1010	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013				      &device->dev_state) &&
1014			    !test_bit(BTRFS_DEV_STATE_MISSING,
1015				      &device->dev_state) &&
1016			    (!*latest_dev ||
1017			     device->generation > (*latest_dev)->generation)) {
1018				*latest_dev = device;
1019			}
1020			continue;
1021		}
1022
1023		/*
1024		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025		 * in btrfs_init_dev_replace() so just continue.
1026		 */
1027		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028			continue;
1029
1030		if (device->bdev_file) {
1031			fput(device->bdev_file);
1032			device->bdev = NULL;
1033			device->bdev_file = NULL;
1034			fs_devices->open_devices--;
1035		}
1036		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037			list_del_init(&device->dev_alloc_list);
1038			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039			fs_devices->rw_devices--;
1040		}
1041		list_del_init(&device->dev_list);
1042		fs_devices->num_devices--;
1043		btrfs_free_device(device);
1044	}
1045
1046}
1047
1048/*
1049 * After we have read the system tree and know devids belonging to this
1050 * filesystem, remove the device which does not belong there.
1051 */
1052void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053{
1054	struct btrfs_device *latest_dev = NULL;
1055	struct btrfs_fs_devices *seed_dev;
1056
1057	mutex_lock(&uuid_mutex);
1058	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1059
1060	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1062
1063	fs_devices->latest_dev = latest_dev;
1064
1065	mutex_unlock(&uuid_mutex);
1066}
1067
1068static void btrfs_close_bdev(struct btrfs_device *device)
1069{
1070	if (!device->bdev)
1071		return;
1072
1073	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074		sync_blockdev(device->bdev);
1075		invalidate_bdev(device->bdev);
1076	}
1077
1078	fput(device->bdev_file);
1079}
1080
1081static void btrfs_close_one_device(struct btrfs_device *device)
1082{
1083	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084
1085	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087		list_del_init(&device->dev_alloc_list);
1088		fs_devices->rw_devices--;
1089	}
1090
1091	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093
1094	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096		fs_devices->missing_devices--;
1097	}
1098
1099	btrfs_close_bdev(device);
1100	if (device->bdev) {
1101		fs_devices->open_devices--;
1102		device->bdev = NULL;
1103	}
1104	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105	btrfs_destroy_dev_zone_info(device);
1106
1107	device->fs_info = NULL;
1108	atomic_set(&device->dev_stats_ccnt, 0);
1109	extent_io_tree_release(&device->alloc_state);
1110
1111	/*
1112	 * Reset the flush error record. We might have a transient flush error
1113	 * in this mount, and if so we aborted the current transaction and set
1114	 * the fs to an error state, guaranteeing no super blocks can be further
1115	 * committed. However that error might be transient and if we unmount the
1116	 * filesystem and mount it again, we should allow the mount to succeed
1117	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118	 * filesystem again we still get flush errors, then we will again abort
1119	 * any transaction and set the error state, guaranteeing no commits of
1120	 * unsafe super blocks.
1121	 */
1122	device->last_flush_error = 0;
1123
1124	/* Verify the device is back in a pristine state  */
1125	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127	WARN_ON(!list_empty(&device->dev_alloc_list));
1128	WARN_ON(!list_empty(&device->post_commit_list));
1129}
1130
1131static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132{
1133	struct btrfs_device *device, *tmp;
1134
1135	lockdep_assert_held(&uuid_mutex);
1136
1137	if (--fs_devices->opened > 0)
1138		return;
1139
1140	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141		btrfs_close_one_device(device);
1142
1143	WARN_ON(fs_devices->open_devices);
1144	WARN_ON(fs_devices->rw_devices);
1145	fs_devices->opened = 0;
1146	fs_devices->seeding = false;
1147	fs_devices->fs_info = NULL;
1148}
1149
1150void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151{
1152	LIST_HEAD(list);
1153	struct btrfs_fs_devices *tmp;
1154
1155	mutex_lock(&uuid_mutex);
1156	close_fs_devices(fs_devices);
1157	if (!fs_devices->opened) {
1158		list_splice_init(&fs_devices->seed_list, &list);
1159
1160		/*
1161		 * If the struct btrfs_fs_devices is not assembled with any
1162		 * other device, it can be re-initialized during the next mount
1163		 * without the needing device-scan step. Therefore, it can be
1164		 * fully freed.
1165		 */
1166		if (fs_devices->num_devices == 1) {
1167			list_del(&fs_devices->fs_list);
1168			free_fs_devices(fs_devices);
1169		}
1170	}
1171
1172
1173	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174		close_fs_devices(fs_devices);
1175		list_del(&fs_devices->seed_list);
1176		free_fs_devices(fs_devices);
1177	}
1178	mutex_unlock(&uuid_mutex);
1179}
1180
1181static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182				blk_mode_t flags, void *holder)
1183{
1184	struct btrfs_device *device;
1185	struct btrfs_device *latest_dev = NULL;
1186	struct btrfs_device *tmp_device;
1187	int ret = 0;
 
1188
1189	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190				 dev_list) {
1191		int ret2;
1192
1193		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194		if (ret2 == 0 &&
1195		    (!latest_dev || device->generation > latest_dev->generation)) {
1196			latest_dev = device;
1197		} else if (ret2 == -ENODATA) {
1198			fs_devices->num_devices--;
1199			list_del(&device->dev_list);
1200			btrfs_free_device(device);
1201		}
1202		if (ret == 0 && ret2 != 0)
1203			ret = ret2;
1204	}
1205
1206	if (fs_devices->open_devices == 0) {
1207		if (ret)
1208			return ret;
1209		return -EINVAL;
1210	}
1211
1212	fs_devices->opened = 1;
1213	fs_devices->latest_dev = latest_dev;
1214	fs_devices->total_rw_bytes = 0;
1215	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217
1218	return 0;
1219}
1220
1221static int devid_cmp(void *priv, const struct list_head *a,
1222		     const struct list_head *b)
1223{
1224	const struct btrfs_device *dev1, *dev2;
1225
1226	dev1 = list_entry(a, struct btrfs_device, dev_list);
1227	dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229	if (dev1->devid < dev2->devid)
1230		return -1;
1231	else if (dev1->devid > dev2->devid)
1232		return 1;
1233	return 0;
1234}
1235
1236int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237		       blk_mode_t flags, void *holder)
1238{
1239	int ret;
1240
1241	lockdep_assert_held(&uuid_mutex);
1242	/*
1243	 * The device_list_mutex cannot be taken here in case opening the
1244	 * underlying device takes further locks like open_mutex.
1245	 *
1246	 * We also don't need the lock here as this is called during mount and
1247	 * exclusion is provided by uuid_mutex
1248	 */
1249
1250	if (fs_devices->opened) {
1251		fs_devices->opened++;
1252		ret = 0;
1253	} else {
1254		list_sort(NULL, &fs_devices->devices, devid_cmp);
1255		ret = open_fs_devices(fs_devices, flags, holder);
1256	}
1257
1258	return ret;
1259}
1260
1261void btrfs_release_disk_super(struct btrfs_super_block *super)
1262{
1263	struct page *page = virt_to_page(super);
1264
1265	put_page(page);
1266}
1267
1268static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269						       u64 bytenr, u64 bytenr_orig)
1270{
1271	struct btrfs_super_block *disk_super;
1272	struct page *page;
1273	void *p;
1274	pgoff_t index;
1275
1276	/* make sure our super fits in the device */
1277	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278		return ERR_PTR(-EINVAL);
1279
1280	/* make sure our super fits in the page */
1281	if (sizeof(*disk_super) > PAGE_SIZE)
1282		return ERR_PTR(-EINVAL);
1283
1284	/* make sure our super doesn't straddle pages on disk */
1285	index = bytenr >> PAGE_SHIFT;
1286	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287		return ERR_PTR(-EINVAL);
1288
1289	/* pull in the page with our super */
1290	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292	if (IS_ERR(page))
1293		return ERR_CAST(page);
1294
1295	p = page_address(page);
1296
1297	/* align our pointer to the offset of the super block */
1298	disk_super = p + offset_in_page(bytenr);
1299
1300	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302		btrfs_release_disk_super(p);
1303		return ERR_PTR(-EINVAL);
1304	}
1305
1306	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309	return disk_super;
1310}
1311
1312int btrfs_forget_devices(dev_t devt)
1313{
1314	int ret;
1315
1316	mutex_lock(&uuid_mutex);
1317	ret = btrfs_free_stale_devices(devt, NULL);
1318	mutex_unlock(&uuid_mutex);
1319
1320	return ret;
1321}
1322
1323static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324				    const char *path, dev_t devt,
1325				    bool mount_arg_dev)
1326{
1327	struct btrfs_fs_devices *fs_devices;
1328
1329	/*
1330	 * Do not skip device registration for mounted devices with matching
1331	 * maj:min but different paths. Booting without initrd relies on
1332	 * /dev/root initially, later replaced with the actual root device.
1333	 * A successful scan ensures grub2-probe selects the correct device.
1334	 */
1335	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336		struct btrfs_device *device;
1337
1338		mutex_lock(&fs_devices->device_list_mutex);
1339
1340		if (!fs_devices->opened) {
1341			mutex_unlock(&fs_devices->device_list_mutex);
1342			continue;
1343		}
1344
1345		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346			if (device->bdev && (device->bdev->bd_dev == devt) &&
1347			    strcmp(device->name->str, path) != 0) {
1348				mutex_unlock(&fs_devices->device_list_mutex);
1349
1350				/* Do not skip registration. */
1351				return false;
1352			}
1353		}
1354		mutex_unlock(&fs_devices->device_list_mutex);
1355	}
1356
1357	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359		return true;
1360
1361	return false;
1362}
1363
1364/*
1365 * Look for a btrfs signature on a device. This may be called out of the mount path
1366 * and we are not allowed to call set_blocksize during the scan. The superblock
1367 * is read via pagecache.
1368 *
1369 * With @mount_arg_dev it's a scan during mount time that will always register
1370 * the device or return an error. Multi-device and seeding devices are registered
1371 * in both cases.
1372 */
1373struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374					   bool mount_arg_dev)
1375{
1376	struct btrfs_super_block *disk_super;
1377	bool new_device_added = false;
1378	struct btrfs_device *device = NULL;
1379	struct file *bdev_file;
1380	u64 bytenr, bytenr_orig;
1381	dev_t devt;
1382	int ret;
1383
1384	lockdep_assert_held(&uuid_mutex);
1385
1386	/*
1387	 * we would like to check all the supers, but that would make
1388	 * a btrfs mount succeed after a mkfs from a different FS.
1389	 * So, we need to add a special mount option to scan for
1390	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391	 */
 
1392
1393	/*
1394	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395	 * device scan which may race with the user's mount or mkfs command,
1396	 * resulting in failure.
1397	 * Since the device scan is solely for reading purposes, there is no
1398	 * need for an exclusive open. Additionally, the devices are read again
1399	 * during the mount process. It is ok to get some inconsistent
1400	 * values temporarily, as the device paths of the fsid are the only
1401	 * required information for assembling the volume.
1402	 */
1403	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404	if (IS_ERR(bdev_file))
1405		return ERR_CAST(bdev_file);
1406
1407	bytenr_orig = btrfs_sb_offset(0);
1408	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409	if (ret) {
1410		device = ERR_PTR(ret);
1411		goto error_bdev_put;
1412	}
1413
1414	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415					   bytenr_orig);
1416	if (IS_ERR(disk_super)) {
1417		device = ERR_CAST(disk_super);
1418		goto error_bdev_put;
1419	}
1420
1421	devt = file_bdev(bdev_file)->bd_dev;
1422	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424			  path, MAJOR(devt), MINOR(devt));
1425
1426		btrfs_free_stale_devices(devt, NULL);
1427
1428		device = NULL;
1429		goto free_disk_super;
1430	}
1431
1432	device = device_list_add(path, disk_super, &new_device_added);
1433	if (!IS_ERR(device) && new_device_added)
1434		btrfs_free_stale_devices(device->devt, device);
1435
1436free_disk_super:
1437	btrfs_release_disk_super(disk_super);
1438
1439error_bdev_put:
1440	fput(bdev_file);
1441
1442	return device;
1443}
1444
1445/*
1446 * Try to find a chunk that intersects [start, start + len] range and when one
1447 * such is found, record the end of it in *start
1448 */
1449static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450				    u64 len)
1451{
1452	u64 physical_start, physical_end;
1453
1454	lockdep_assert_held(&device->fs_info->chunk_mutex);
1455
1456	if (find_first_extent_bit(&device->alloc_state, *start,
1457				  &physical_start, &physical_end,
1458				  CHUNK_ALLOCATED, NULL)) {
1459
1460		if (in_range(physical_start, *start, len) ||
1461		    in_range(*start, physical_start,
1462			     physical_end + 1 - physical_start)) {
1463			*start = physical_end + 1;
1464			return true;
1465		}
1466	}
1467	return false;
1468}
1469
1470static u64 dev_extent_search_start(struct btrfs_device *device)
1471{
1472	switch (device->fs_devices->chunk_alloc_policy) {
1473	case BTRFS_CHUNK_ALLOC_REGULAR:
1474		return BTRFS_DEVICE_RANGE_RESERVED;
1475	case BTRFS_CHUNK_ALLOC_ZONED:
1476		/*
1477		 * We don't care about the starting region like regular
1478		 * allocator, because we anyway use/reserve the first two zones
1479		 * for superblock logging.
1480		 */
1481		return 0;
1482	default:
1483		BUG();
1484	}
1485}
1486
1487static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488					u64 *hole_start, u64 *hole_size,
1489					u64 num_bytes)
1490{
1491	u64 zone_size = device->zone_info->zone_size;
1492	u64 pos;
1493	int ret;
1494	bool changed = false;
1495
1496	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497
1498	while (*hole_size > 0) {
1499		pos = btrfs_find_allocatable_zones(device, *hole_start,
1500						   *hole_start + *hole_size,
1501						   num_bytes);
1502		if (pos != *hole_start) {
1503			*hole_size = *hole_start + *hole_size - pos;
1504			*hole_start = pos;
1505			changed = true;
1506			if (*hole_size < num_bytes)
1507				break;
1508		}
1509
1510		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511
1512		/* Range is ensured to be empty */
1513		if (!ret)
1514			return changed;
1515
1516		/* Given hole range was invalid (outside of device) */
1517		if (ret == -ERANGE) {
1518			*hole_start += *hole_size;
1519			*hole_size = 0;
1520			return true;
1521		}
1522
1523		*hole_start += zone_size;
1524		*hole_size -= zone_size;
1525		changed = true;
1526	}
1527
1528	return changed;
1529}
1530
1531/*
1532 * Check if specified hole is suitable for allocation.
1533 *
1534 * @device:	the device which we have the hole
1535 * @hole_start: starting position of the hole
1536 * @hole_size:	the size of the hole
1537 * @num_bytes:	the size of the free space that we need
1538 *
1539 * This function may modify @hole_start and @hole_size to reflect the suitable
1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541 */
1542static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543				  u64 *hole_size, u64 num_bytes)
1544{
1545	bool changed = false;
1546	u64 hole_end = *hole_start + *hole_size;
1547
1548	for (;;) {
1549		/*
1550		 * Check before we set max_hole_start, otherwise we could end up
1551		 * sending back this offset anyway.
1552		 */
1553		if (contains_pending_extent(device, hole_start, *hole_size)) {
1554			if (hole_end >= *hole_start)
1555				*hole_size = hole_end - *hole_start;
1556			else
1557				*hole_size = 0;
1558			changed = true;
1559		}
1560
1561		switch (device->fs_devices->chunk_alloc_policy) {
1562		case BTRFS_CHUNK_ALLOC_REGULAR:
1563			/* No extra check */
1564			break;
1565		case BTRFS_CHUNK_ALLOC_ZONED:
1566			if (dev_extent_hole_check_zoned(device, hole_start,
1567							hole_size, num_bytes)) {
1568				changed = true;
1569				/*
1570				 * The changed hole can contain pending extent.
1571				 * Loop again to check that.
1572				 */
1573				continue;
1574			}
1575			break;
1576		default:
1577			BUG();
1578		}
1579
1580		break;
1581	}
1582
1583	return changed;
1584}
1585
1586/*
1587 * Find free space in the specified device.
1588 *
1589 * @device:	  the device which we search the free space in
1590 * @num_bytes:	  the size of the free space that we need
1591 * @search_start: the position from which to begin the search
1592 * @start:	  store the start of the free space.
1593 * @len:	  the size of the free space. that we find, or the size
1594 *		  of the max free space if we don't find suitable free space
1595 *
1596 * This does a pretty simple search, the expectation is that it is called very
1597 * infrequently and that a given device has a small number of extents.
1598 *
1599 * @start is used to store the start of the free space if we find. But if we
1600 * don't find suitable free space, it will be used to store the start position
1601 * of the max free space.
1602 *
1603 * @len is used to store the size of the free space that we find.
1604 * But if we don't find suitable free space, it is used to store the size of
1605 * the max free space.
1606 *
1607 * NOTE: This function will search *commit* root of device tree, and does extra
1608 * check to ensure dev extents are not double allocated.
1609 * This makes the function safe to allocate dev extents but may not report
1610 * correct usable device space, as device extent freed in current transaction
1611 * is not reported as available.
1612 */
1613static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614				u64 *start, u64 *len)
 
1615{
1616	struct btrfs_fs_info *fs_info = device->fs_info;
1617	struct btrfs_root *root = fs_info->dev_root;
1618	struct btrfs_key key;
1619	struct btrfs_dev_extent *dev_extent;
1620	struct btrfs_path *path;
1621	u64 search_start;
1622	u64 hole_size;
1623	u64 max_hole_start;
1624	u64 max_hole_size = 0;
1625	u64 extent_end;
1626	u64 search_end = device->total_bytes;
1627	int ret;
1628	int slot;
1629	struct extent_buffer *l;
1630
1631	search_start = dev_extent_search_start(device);
1632	max_hole_start = search_start;
1633
1634	WARN_ON(device->zone_info &&
1635		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636
1637	path = btrfs_alloc_path();
1638	if (!path) {
1639		ret = -ENOMEM;
1640		goto out;
1641	}
 
 
1642again:
1643	if (search_start >= search_end ||
1644		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645		ret = -ENOSPC;
1646		goto out;
1647	}
1648
1649	path->reada = READA_FORWARD;
1650	path->search_commit_root = 1;
1651	path->skip_locking = 1;
1652
1653	key.objectid = device->devid;
1654	key.offset = search_start;
1655	key.type = BTRFS_DEV_EXTENT_KEY;
1656
1657	ret = btrfs_search_backwards(root, &key, path);
1658	if (ret < 0)
1659		goto out;
1660
1661	while (search_start < search_end) {
1662		l = path->nodes[0];
1663		slot = path->slots[0];
1664		if (slot >= btrfs_header_nritems(l)) {
1665			ret = btrfs_next_leaf(root, path);
1666			if (ret == 0)
1667				continue;
1668			if (ret < 0)
1669				goto out;
1670
1671			break;
1672		}
1673		btrfs_item_key_to_cpu(l, &key, slot);
1674
1675		if (key.objectid < device->devid)
1676			goto next;
1677
1678		if (key.objectid > device->devid)
1679			break;
1680
1681		if (key.type != BTRFS_DEV_EXTENT_KEY)
1682			goto next;
1683
1684		if (key.offset > search_end)
1685			break;
1686
1687		if (key.offset > search_start) {
1688			hole_size = key.offset - search_start;
1689			dev_extent_hole_check(device, &search_start, &hole_size,
1690					      num_bytes);
1691
1692			if (hole_size > max_hole_size) {
1693				max_hole_start = search_start;
1694				max_hole_size = hole_size;
1695			}
1696
1697			/*
1698			 * If this free space is greater than which we need,
1699			 * it must be the max free space that we have found
1700			 * until now, so max_hole_start must point to the start
1701			 * of this free space and the length of this free space
1702			 * is stored in max_hole_size. Thus, we return
1703			 * max_hole_start and max_hole_size and go back to the
1704			 * caller.
1705			 */
1706			if (hole_size >= num_bytes) {
1707				ret = 0;
1708				goto out;
1709			}
1710		}
1711
1712		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713		extent_end = key.offset + btrfs_dev_extent_length(l,
1714								  dev_extent);
1715		if (extent_end > search_start)
1716			search_start = extent_end;
1717next:
1718		path->slots[0]++;
1719		cond_resched();
1720	}
1721
1722	/*
1723	 * At this point, search_start should be the end of
1724	 * allocated dev extents, and when shrinking the device,
1725	 * search_end may be smaller than search_start.
1726	 */
1727	if (search_end > search_start) {
1728		hole_size = search_end - search_start;
1729		if (dev_extent_hole_check(device, &search_start, &hole_size,
1730					  num_bytes)) {
1731			btrfs_release_path(path);
1732			goto again;
1733		}
1734
1735		if (hole_size > max_hole_size) {
1736			max_hole_start = search_start;
1737			max_hole_size = hole_size;
1738		}
1739	}
1740
1741	/* See above. */
1742	if (max_hole_size < num_bytes)
1743		ret = -ENOSPC;
1744	else
1745		ret = 0;
1746
1747	ASSERT(max_hole_start + max_hole_size <= search_end);
1748out:
1749	btrfs_free_path(path);
1750	*start = max_hole_start;
1751	if (len)
1752		*len = max_hole_size;
1753	return ret;
1754}
1755
 
 
 
 
 
 
 
1756static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757			  struct btrfs_device *device,
1758			  u64 start, u64 *dev_extent_len)
1759{
1760	struct btrfs_fs_info *fs_info = device->fs_info;
1761	struct btrfs_root *root = fs_info->dev_root;
1762	int ret;
1763	struct btrfs_path *path;
1764	struct btrfs_key key;
1765	struct btrfs_key found_key;
1766	struct extent_buffer *leaf = NULL;
1767	struct btrfs_dev_extent *extent = NULL;
1768
1769	path = btrfs_alloc_path();
1770	if (!path)
1771		return -ENOMEM;
1772
1773	key.objectid = device->devid;
1774	key.offset = start;
1775	key.type = BTRFS_DEV_EXTENT_KEY;
1776again:
1777	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778	if (ret > 0) {
1779		ret = btrfs_previous_item(root, path, key.objectid,
1780					  BTRFS_DEV_EXTENT_KEY);
1781		if (ret)
1782			goto out;
1783		leaf = path->nodes[0];
1784		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785		extent = btrfs_item_ptr(leaf, path->slots[0],
1786					struct btrfs_dev_extent);
1787		BUG_ON(found_key.offset > start || found_key.offset +
1788		       btrfs_dev_extent_length(leaf, extent) < start);
1789		key = found_key;
1790		btrfs_release_path(path);
1791		goto again;
1792	} else if (ret == 0) {
1793		leaf = path->nodes[0];
1794		extent = btrfs_item_ptr(leaf, path->slots[0],
1795					struct btrfs_dev_extent);
1796	} else {
1797		goto out;
1798	}
1799
1800	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801
1802	ret = btrfs_del_item(trans, root, path);
1803	if (ret == 0)
1804		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805out:
1806	btrfs_free_path(path);
1807	return ret;
1808}
1809
1810static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811{
 
 
1812	struct rb_node *n;
1813	u64 ret = 0;
1814
1815	read_lock(&fs_info->mapping_tree_lock);
1816	n = rb_last(&fs_info->mapping_tree.rb_root);
 
1817	if (n) {
1818		struct btrfs_chunk_map *map;
1819
1820		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821		ret = map->start + map->chunk_len;
1822	}
1823	read_unlock(&fs_info->mapping_tree_lock);
1824
1825	return ret;
1826}
1827
1828static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829				    u64 *devid_ret)
1830{
1831	int ret;
1832	struct btrfs_key key;
1833	struct btrfs_key found_key;
1834	struct btrfs_path *path;
1835
1836	path = btrfs_alloc_path();
1837	if (!path)
1838		return -ENOMEM;
1839
1840	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841	key.type = BTRFS_DEV_ITEM_KEY;
1842	key.offset = (u64)-1;
1843
1844	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845	if (ret < 0)
1846		goto error;
1847
1848	if (ret == 0) {
1849		/* Corruption */
1850		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851		ret = -EUCLEAN;
1852		goto error;
1853	}
1854
1855	ret = btrfs_previous_item(fs_info->chunk_root, path,
1856				  BTRFS_DEV_ITEMS_OBJECTID,
1857				  BTRFS_DEV_ITEM_KEY);
1858	if (ret) {
1859		*devid_ret = 1;
1860	} else {
1861		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862				      path->slots[0]);
1863		*devid_ret = found_key.offset + 1;
1864	}
1865	ret = 0;
1866error:
1867	btrfs_free_path(path);
1868	return ret;
1869}
1870
1871/*
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1874 */
1875static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876			    struct btrfs_device *device)
1877{
1878	int ret;
1879	struct btrfs_path *path;
1880	struct btrfs_dev_item *dev_item;
1881	struct extent_buffer *leaf;
1882	struct btrfs_key key;
1883	unsigned long ptr;
1884
1885	path = btrfs_alloc_path();
1886	if (!path)
1887		return -ENOMEM;
1888
1889	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890	key.type = BTRFS_DEV_ITEM_KEY;
1891	key.offset = device->devid;
1892
1893	btrfs_reserve_chunk_metadata(trans, true);
1894	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895				      &key, sizeof(*dev_item));
1896	btrfs_trans_release_chunk_metadata(trans);
1897	if (ret)
1898		goto out;
1899
1900	leaf = path->nodes[0];
1901	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902
1903	btrfs_set_device_id(leaf, dev_item, device->devid);
1904	btrfs_set_device_generation(leaf, dev_item, 0);
1905	btrfs_set_device_type(leaf, dev_item, device->type);
1906	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909	btrfs_set_device_total_bytes(leaf, dev_item,
1910				     btrfs_device_get_disk_total_bytes(device));
1911	btrfs_set_device_bytes_used(leaf, dev_item,
1912				    btrfs_device_get_bytes_used(device));
1913	btrfs_set_device_group(leaf, dev_item, 0);
1914	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916	btrfs_set_device_start_offset(leaf, dev_item, 0);
1917
1918	ptr = btrfs_device_uuid(dev_item);
1919	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920	ptr = btrfs_device_fsid(dev_item);
1921	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922			    ptr, BTRFS_FSID_SIZE);
1923	btrfs_mark_buffer_dirty(trans, leaf);
1924
1925	ret = 0;
1926out:
1927	btrfs_free_path(path);
1928	return ret;
1929}
1930
1931/*
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1934 *
1935 * We don't care about errors here, this is just to be kind to userspace.
1936 */
1937static void update_dev_time(const char *device_path)
1938{
1939	struct path path;
 
1940	int ret;
1941
1942	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943	if (ret)
1944		return;
1945
1946	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
 
1947	path_put(&path);
1948}
1949
1950static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951			     struct btrfs_device *device)
1952{
1953	struct btrfs_root *root = device->fs_info->chunk_root;
1954	int ret;
1955	struct btrfs_path *path;
1956	struct btrfs_key key;
1957
1958	path = btrfs_alloc_path();
1959	if (!path)
1960		return -ENOMEM;
1961
1962	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963	key.type = BTRFS_DEV_ITEM_KEY;
1964	key.offset = device->devid;
1965
1966	btrfs_reserve_chunk_metadata(trans, false);
1967	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968	btrfs_trans_release_chunk_metadata(trans);
1969	if (ret) {
1970		if (ret > 0)
1971			ret = -ENOENT;
1972		goto out;
1973	}
1974
1975	ret = btrfs_del_item(trans, root, path);
1976out:
1977	btrfs_free_path(path);
1978	return ret;
1979}
1980
1981/*
1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983 * filesystem. It's up to the caller to adjust that number regarding eg. device
1984 * replace.
1985 */
1986static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987		u64 num_devices)
1988{
1989	u64 all_avail;
1990	unsigned seq;
1991	int i;
1992
1993	do {
1994		seq = read_seqbegin(&fs_info->profiles_lock);
1995
1996		all_avail = fs_info->avail_data_alloc_bits |
1997			    fs_info->avail_system_alloc_bits |
1998			    fs_info->avail_metadata_alloc_bits;
1999	} while (read_seqretry(&fs_info->profiles_lock, seq));
2000
2001	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003			continue;
2004
2005		if (num_devices < btrfs_raid_array[i].devs_min)
2006			return btrfs_raid_array[i].mindev_error;
2007	}
2008
2009	return 0;
2010}
2011
2012static struct btrfs_device * btrfs_find_next_active_device(
2013		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014{
2015	struct btrfs_device *next_device;
2016
2017	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018		if (next_device != device &&
2019		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020		    && next_device->bdev)
2021			return next_device;
2022	}
2023
2024	return NULL;
2025}
2026
2027/*
2028 * Helper function to check if the given device is part of s_bdev / latest_dev
2029 * and replace it with the provided or the next active device, in the context
2030 * where this function called, there should be always be another device (or
2031 * this_dev) which is active.
2032 */
2033void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034					    struct btrfs_device *next_device)
2035{
2036	struct btrfs_fs_info *fs_info = device->fs_info;
2037
2038	if (!next_device)
2039		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040							    device);
2041	ASSERT(next_device);
2042
2043	if (fs_info->sb->s_bdev &&
2044			(fs_info->sb->s_bdev == device->bdev))
2045		fs_info->sb->s_bdev = next_device->bdev;
2046
2047	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048		fs_info->fs_devices->latest_dev = next_device;
2049}
2050
2051/*
2052 * Return btrfs_fs_devices::num_devices excluding the device that's being
2053 * currently replaced.
2054 */
2055static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056{
2057	u64 num_devices = fs_info->fs_devices->num_devices;
2058
2059	down_read(&fs_info->dev_replace.rwsem);
2060	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061		ASSERT(num_devices > 1);
2062		num_devices--;
2063	}
2064	up_read(&fs_info->dev_replace.rwsem);
2065
2066	return num_devices;
2067}
2068
2069static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070				     struct block_device *bdev, int copy_num)
2071{
2072	struct btrfs_super_block *disk_super;
2073	const size_t len = sizeof(disk_super->magic);
2074	const u64 bytenr = btrfs_sb_offset(copy_num);
2075	int ret;
2076
2077	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078	if (IS_ERR(disk_super))
2079		return;
2080
2081	memset(&disk_super->magic, 0, len);
2082	folio_mark_dirty(virt_to_folio(disk_super));
2083	btrfs_release_disk_super(disk_super);
2084
2085	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086	if (ret)
2087		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088			copy_num, ret);
2089}
2090
2091void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
 
 
2092{
2093	int copy_num;
2094	struct block_device *bdev = device->bdev;
2095
2096	if (!bdev)
2097		return;
2098
2099	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100		if (bdev_is_zoned(bdev))
2101			btrfs_reset_sb_log_zones(bdev, copy_num);
2102		else
2103			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104	}
2105
2106	/* Notify udev that device has changed */
2107	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109	/* Update ctime/mtime for device path for libblkid */
2110	update_dev_time(device->name->str);
2111}
2112
2113int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114		    struct btrfs_dev_lookup_args *args,
2115		    struct file **bdev_file)
2116{
2117	struct btrfs_trans_handle *trans;
2118	struct btrfs_device *device;
2119	struct btrfs_fs_devices *cur_devices;
2120	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121	u64 num_devices;
2122	int ret = 0;
2123
2124	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126		return -EINVAL;
2127	}
2128
2129	/*
2130	 * The device list in fs_devices is accessed without locks (neither
2131	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132	 * filesystem and another device rm cannot run.
2133	 */
2134	num_devices = btrfs_num_devices(fs_info);
2135
2136	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137	if (ret)
2138		return ret;
2139
2140	device = btrfs_find_device(fs_info->fs_devices, args);
2141	if (!device) {
2142		if (args->missing)
2143			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144		else
2145			ret = -ENOENT;
2146		return ret;
2147	}
2148
2149	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150		btrfs_warn_in_rcu(fs_info,
2151		  "cannot remove device %s (devid %llu) due to active swapfile",
2152				  btrfs_dev_name(device), device->devid);
2153		return -ETXTBSY;
2154	}
2155
2156	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157		return BTRFS_ERROR_DEV_TGT_REPLACE;
2158
2159	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160	    fs_info->fs_devices->rw_devices == 1)
2161		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162
2163	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164		mutex_lock(&fs_info->chunk_mutex);
2165		list_del_init(&device->dev_alloc_list);
2166		device->fs_devices->rw_devices--;
2167		mutex_unlock(&fs_info->chunk_mutex);
2168	}
2169
2170	ret = btrfs_shrink_device(device, 0);
2171	if (ret)
2172		goto error_undo;
2173
2174	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175	if (IS_ERR(trans)) {
2176		ret = PTR_ERR(trans);
2177		goto error_undo;
2178	}
2179
2180	ret = btrfs_rm_dev_item(trans, device);
2181	if (ret) {
2182		/* Any error in dev item removal is critical */
2183		btrfs_crit(fs_info,
2184			   "failed to remove device item for devid %llu: %d",
2185			   device->devid, ret);
2186		btrfs_abort_transaction(trans, ret);
2187		btrfs_end_transaction(trans);
2188		return ret;
2189	}
2190
2191	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192	btrfs_scrub_cancel_dev(device);
2193
2194	/*
2195	 * the device list mutex makes sure that we don't change
2196	 * the device list while someone else is writing out all
2197	 * the device supers. Whoever is writing all supers, should
2198	 * lock the device list mutex before getting the number of
2199	 * devices in the super block (super_copy). Conversely,
2200	 * whoever updates the number of devices in the super block
2201	 * (super_copy) should hold the device list mutex.
2202	 */
2203
2204	/*
2205	 * In normal cases the cur_devices == fs_devices. But in case
2206	 * of deleting a seed device, the cur_devices should point to
2207	 * its own fs_devices listed under the fs_devices->seed_list.
2208	 */
2209	cur_devices = device->fs_devices;
2210	mutex_lock(&fs_devices->device_list_mutex);
2211	list_del_rcu(&device->dev_list);
2212
2213	cur_devices->num_devices--;
2214	cur_devices->total_devices--;
2215	/* Update total_devices of the parent fs_devices if it's seed */
2216	if (cur_devices != fs_devices)
2217		fs_devices->total_devices--;
2218
2219	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220		cur_devices->missing_devices--;
2221
2222	btrfs_assign_next_active_device(device, NULL);
2223
2224	if (device->bdev_file) {
2225		cur_devices->open_devices--;
2226		/* remove sysfs entry */
2227		btrfs_sysfs_remove_device(device);
2228	}
2229
2230	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232	mutex_unlock(&fs_devices->device_list_mutex);
2233
2234	/*
2235	 * At this point, the device is zero sized and detached from the
2236	 * devices list.  All that's left is to zero out the old supers and
2237	 * free the device.
2238	 *
2239	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240	 * write lock, and fput() on the block device will pull in the
2241	 * ->open_mutex on the block device and it's dependencies.  Instead
2242	 *  just flush the device and let the caller do the final bdev_release.
2243	 */
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		btrfs_scratch_superblocks(fs_info, device);
 
2246		if (device->bdev) {
2247			sync_blockdev(device->bdev);
2248			invalidate_bdev(device->bdev);
2249		}
2250	}
2251
2252	*bdev_file = device->bdev_file;
 
2253	synchronize_rcu();
2254	btrfs_free_device(device);
2255
2256	/*
2257	 * This can happen if cur_devices is the private seed devices list.  We
2258	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259	 * to be held, but in fact we don't need that for the private
2260	 * seed_devices, we can simply decrement cur_devices->opened and then
2261	 * remove it from our list and free the fs_devices.
2262	 */
2263	if (cur_devices->num_devices == 0) {
2264		list_del_init(&cur_devices->seed_list);
2265		ASSERT(cur_devices->opened == 1);
2266		cur_devices->opened--;
2267		free_fs_devices(cur_devices);
2268	}
2269
2270	ret = btrfs_commit_transaction(trans);
2271
2272	return ret;
2273
2274error_undo:
2275	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276		mutex_lock(&fs_info->chunk_mutex);
2277		list_add(&device->dev_alloc_list,
2278			 &fs_devices->alloc_list);
2279		device->fs_devices->rw_devices++;
2280		mutex_unlock(&fs_info->chunk_mutex);
2281	}
2282	return ret;
2283}
2284
2285void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286{
2287	struct btrfs_fs_devices *fs_devices;
2288
2289	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290
2291	/*
2292	 * in case of fs with no seed, srcdev->fs_devices will point
2293	 * to fs_devices of fs_info. However when the dev being replaced is
2294	 * a seed dev it will point to the seed's local fs_devices. In short
2295	 * srcdev will have its correct fs_devices in both the cases.
2296	 */
2297	fs_devices = srcdev->fs_devices;
2298
2299	list_del_rcu(&srcdev->dev_list);
2300	list_del(&srcdev->dev_alloc_list);
2301	fs_devices->num_devices--;
2302	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303		fs_devices->missing_devices--;
2304
2305	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306		fs_devices->rw_devices--;
2307
2308	if (srcdev->bdev)
2309		fs_devices->open_devices--;
2310}
2311
2312void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313{
2314	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315
2316	mutex_lock(&uuid_mutex);
2317
2318	btrfs_close_bdev(srcdev);
2319	synchronize_rcu();
2320	btrfs_free_device(srcdev);
2321
2322	/* if this is no devs we rather delete the fs_devices */
2323	if (!fs_devices->num_devices) {
2324		/*
2325		 * On a mounted FS, num_devices can't be zero unless it's a
2326		 * seed. In case of a seed device being replaced, the replace
2327		 * target added to the sprout FS, so there will be no more
2328		 * device left under the seed FS.
2329		 */
2330		ASSERT(fs_devices->seeding);
2331
2332		list_del_init(&fs_devices->seed_list);
2333		close_fs_devices(fs_devices);
2334		free_fs_devices(fs_devices);
2335	}
2336	mutex_unlock(&uuid_mutex);
2337}
2338
2339void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340{
2341	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342
2343	mutex_lock(&fs_devices->device_list_mutex);
2344
2345	btrfs_sysfs_remove_device(tgtdev);
2346
2347	if (tgtdev->bdev)
2348		fs_devices->open_devices--;
2349
2350	fs_devices->num_devices--;
2351
2352	btrfs_assign_next_active_device(tgtdev, NULL);
2353
2354	list_del_rcu(&tgtdev->dev_list);
2355
2356	mutex_unlock(&fs_devices->device_list_mutex);
2357
2358	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
 
2359
2360	btrfs_close_bdev(tgtdev);
2361	synchronize_rcu();
2362	btrfs_free_device(tgtdev);
2363}
2364
2365/*
2366 * Populate args from device at path.
2367 *
2368 * @fs_info:	the filesystem
2369 * @args:	the args to populate
2370 * @path:	the path to the device
2371 *
2372 * This will read the super block of the device at @path and populate @args with
2373 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2374 * lookup a device to operate on, but need to do it before we take any locks.
2375 * This properly handles the special case of "missing" that a user may pass in,
2376 * and does some basic sanity checks.  The caller must make sure that @path is
2377 * properly NUL terminated before calling in, and must call
2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379 * uuid buffers.
2380 *
2381 * Return: 0 for success, -errno for failure
2382 */
2383int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384				 struct btrfs_dev_lookup_args *args,
2385				 const char *path)
2386{
2387	struct btrfs_super_block *disk_super;
2388	struct file *bdev_file;
2389	int ret;
2390
2391	if (!path || !path[0])
2392		return -EINVAL;
2393	if (!strcmp(path, "missing")) {
2394		args->missing = true;
2395		return 0;
2396	}
2397
2398	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400	if (!args->uuid || !args->fsid) {
2401		btrfs_put_dev_args_from_path(args);
2402		return -ENOMEM;
2403	}
2404
2405	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406				    &bdev_file, &disk_super);
2407	if (ret) {
2408		btrfs_put_dev_args_from_path(args);
2409		return ret;
2410	}
2411
2412	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416	else
2417		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418	btrfs_release_disk_super(disk_super);
2419	fput(bdev_file);
2420	return 0;
2421}
2422
2423/*
2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426 * that don't need to be freed.
2427 */
2428void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429{
2430	kfree(args->uuid);
2431	kfree(args->fsid);
2432	args->uuid = NULL;
2433	args->fsid = NULL;
2434}
2435
2436struct btrfs_device *btrfs_find_device_by_devspec(
2437		struct btrfs_fs_info *fs_info, u64 devid,
2438		const char *device_path)
2439{
2440	BTRFS_DEV_LOOKUP_ARGS(args);
2441	struct btrfs_device *device;
2442	int ret;
2443
2444	if (devid) {
2445		args.devid = devid;
2446		device = btrfs_find_device(fs_info->fs_devices, &args);
2447		if (!device)
2448			return ERR_PTR(-ENOENT);
2449		return device;
2450	}
2451
2452	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453	if (ret)
2454		return ERR_PTR(ret);
2455	device = btrfs_find_device(fs_info->fs_devices, &args);
2456	btrfs_put_dev_args_from_path(&args);
2457	if (!device)
2458		return ERR_PTR(-ENOENT);
2459	return device;
2460}
2461
2462static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463{
2464	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465	struct btrfs_fs_devices *old_devices;
2466	struct btrfs_fs_devices *seed_devices;
2467
2468	lockdep_assert_held(&uuid_mutex);
2469	if (!fs_devices->seeding)
2470		return ERR_PTR(-EINVAL);
2471
2472	/*
2473	 * Private copy of the seed devices, anchored at
2474	 * fs_info->fs_devices->seed_list
2475	 */
2476	seed_devices = alloc_fs_devices(NULL);
2477	if (IS_ERR(seed_devices))
2478		return seed_devices;
2479
2480	/*
2481	 * It's necessary to retain a copy of the original seed fs_devices in
2482	 * fs_uuids so that filesystems which have been seeded can successfully
2483	 * reference the seed device from open_seed_devices. This also supports
2484	 * multiple fs seed.
2485	 */
2486	old_devices = clone_fs_devices(fs_devices);
2487	if (IS_ERR(old_devices)) {
2488		kfree(seed_devices);
2489		return old_devices;
2490	}
2491
2492	list_add(&old_devices->fs_list, &fs_uuids);
2493
2494	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495	seed_devices->opened = 1;
2496	INIT_LIST_HEAD(&seed_devices->devices);
2497	INIT_LIST_HEAD(&seed_devices->alloc_list);
2498	mutex_init(&seed_devices->device_list_mutex);
2499
2500	return seed_devices;
2501}
2502
2503/*
2504 * Splice seed devices into the sprout fs_devices.
2505 * Generate a new fsid for the sprouted read-write filesystem.
2506 */
2507static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508			       struct btrfs_fs_devices *seed_devices)
2509{
2510	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511	struct btrfs_super_block *disk_super = fs_info->super_copy;
2512	struct btrfs_device *device;
2513	u64 super_flags;
2514
2515	/*
2516	 * We are updating the fsid, the thread leading to device_list_add()
2517	 * could race, so uuid_mutex is needed.
2518	 */
2519	lockdep_assert_held(&uuid_mutex);
2520
2521	/*
2522	 * The threads listed below may traverse dev_list but can do that without
2523	 * device_list_mutex:
2524	 * - All device ops and balance - as we are in btrfs_exclop_start.
2525	 * - Various dev_list readers - are using RCU.
2526	 * - btrfs_ioctl_fitrim() - is using RCU.
2527	 *
2528	 * For-read threads as below are using device_list_mutex:
2529	 * - Readonly scrub btrfs_scrub_dev()
2530	 * - Readonly scrub btrfs_scrub_progress()
2531	 * - btrfs_get_dev_stats()
2532	 */
2533	lockdep_assert_held(&fs_devices->device_list_mutex);
2534
2535	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536			      synchronize_rcu);
2537	list_for_each_entry(device, &seed_devices->devices, dev_list)
2538		device->fs_devices = seed_devices;
2539
2540	fs_devices->seeding = false;
2541	fs_devices->num_devices = 0;
2542	fs_devices->open_devices = 0;
2543	fs_devices->missing_devices = 0;
2544	fs_devices->rotating = false;
2545	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546
2547	generate_random_uuid(fs_devices->fsid);
2548	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550
2551	super_flags = btrfs_super_flags(disk_super) &
2552		      ~BTRFS_SUPER_FLAG_SEEDING;
2553	btrfs_set_super_flags(disk_super, super_flags);
2554}
2555
2556/*
2557 * Store the expected generation for seed devices in device items.
2558 */
2559static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560{
2561	BTRFS_DEV_LOOKUP_ARGS(args);
2562	struct btrfs_fs_info *fs_info = trans->fs_info;
2563	struct btrfs_root *root = fs_info->chunk_root;
2564	struct btrfs_path *path;
2565	struct extent_buffer *leaf;
2566	struct btrfs_dev_item *dev_item;
2567	struct btrfs_device *device;
2568	struct btrfs_key key;
2569	u8 fs_uuid[BTRFS_FSID_SIZE];
2570	u8 dev_uuid[BTRFS_UUID_SIZE];
2571	int ret;
2572
2573	path = btrfs_alloc_path();
2574	if (!path)
2575		return -ENOMEM;
2576
2577	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578	key.offset = 0;
2579	key.type = BTRFS_DEV_ITEM_KEY;
2580
2581	while (1) {
2582		btrfs_reserve_chunk_metadata(trans, false);
2583		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584		btrfs_trans_release_chunk_metadata(trans);
2585		if (ret < 0)
2586			goto error;
2587
2588		leaf = path->nodes[0];
2589next_slot:
2590		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591			ret = btrfs_next_leaf(root, path);
2592			if (ret > 0)
2593				break;
2594			if (ret < 0)
2595				goto error;
2596			leaf = path->nodes[0];
2597			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598			btrfs_release_path(path);
2599			continue;
2600		}
2601
2602		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604		    key.type != BTRFS_DEV_ITEM_KEY)
2605			break;
2606
2607		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608					  struct btrfs_dev_item);
2609		args.devid = btrfs_device_id(leaf, dev_item);
2610		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611				   BTRFS_UUID_SIZE);
2612		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613				   BTRFS_FSID_SIZE);
2614		args.uuid = dev_uuid;
2615		args.fsid = fs_uuid;
2616		device = btrfs_find_device(fs_info->fs_devices, &args);
2617		BUG_ON(!device); /* Logic error */
2618
2619		if (device->fs_devices->seeding) {
2620			btrfs_set_device_generation(leaf, dev_item,
2621						    device->generation);
2622			btrfs_mark_buffer_dirty(trans, leaf);
2623		}
2624
2625		path->slots[0]++;
2626		goto next_slot;
2627	}
2628	ret = 0;
2629error:
2630	btrfs_free_path(path);
2631	return ret;
2632}
2633
2634int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635{
2636	struct btrfs_root *root = fs_info->dev_root;
2637	struct btrfs_trans_handle *trans;
2638	struct btrfs_device *device;
2639	struct file *bdev_file;
2640	struct super_block *sb = fs_info->sb;
2641	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642	struct btrfs_fs_devices *seed_devices = NULL;
2643	u64 orig_super_total_bytes;
2644	u64 orig_super_num_devices;
2645	int ret = 0;
2646	bool seeding_dev = false;
2647	bool locked = false;
2648
2649	if (sb_rdonly(sb) && !fs_devices->seeding)
2650		return -EROFS;
2651
2652	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653					fs_info->bdev_holder, NULL);
2654	if (IS_ERR(bdev_file))
2655		return PTR_ERR(bdev_file);
2656
2657	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658		ret = -EINVAL;
2659		goto error;
2660	}
2661
2662	if (fs_devices->seeding) {
2663		seeding_dev = true;
2664		down_write(&sb->s_umount);
2665		mutex_lock(&uuid_mutex);
2666		locked = true;
2667	}
2668
2669	sync_blockdev(file_bdev(bdev_file));
2670
2671	rcu_read_lock();
2672	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673		if (device->bdev == file_bdev(bdev_file)) {
2674			ret = -EEXIST;
2675			rcu_read_unlock();
2676			goto error;
2677		}
2678	}
2679	rcu_read_unlock();
2680
2681	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682	if (IS_ERR(device)) {
2683		/* we can safely leave the fs_devices entry around */
2684		ret = PTR_ERR(device);
2685		goto error;
2686	}
2687
2688	device->fs_info = fs_info;
2689	device->bdev_file = bdev_file;
2690	device->bdev = file_bdev(bdev_file);
2691	ret = lookup_bdev(device_path, &device->devt);
2692	if (ret)
2693		goto error_free_device;
2694
2695	ret = btrfs_get_dev_zone_info(device, false);
2696	if (ret)
2697		goto error_free_device;
2698
2699	trans = btrfs_start_transaction(root, 0);
2700	if (IS_ERR(trans)) {
2701		ret = PTR_ERR(trans);
2702		goto error_free_zone;
2703	}
2704
2705	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706	device->generation = trans->transid;
2707	device->io_width = fs_info->sectorsize;
2708	device->io_align = fs_info->sectorsize;
2709	device->sector_size = fs_info->sectorsize;
2710	device->total_bytes =
2711		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712	device->disk_total_bytes = device->total_bytes;
2713	device->commit_total_bytes = device->total_bytes;
2714	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
 
2716	device->dev_stats_valid = 1;
2717	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718
2719	if (seeding_dev) {
2720		btrfs_clear_sb_rdonly(sb);
2721
2722		/* GFP_KERNEL allocation must not be under device_list_mutex */
2723		seed_devices = btrfs_init_sprout(fs_info);
2724		if (IS_ERR(seed_devices)) {
2725			ret = PTR_ERR(seed_devices);
2726			btrfs_abort_transaction(trans, ret);
2727			goto error_trans;
2728		}
2729	}
2730
2731	mutex_lock(&fs_devices->device_list_mutex);
2732	if (seeding_dev) {
2733		btrfs_setup_sprout(fs_info, seed_devices);
2734		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735						device);
2736	}
2737
2738	device->fs_devices = fs_devices;
2739
2740	mutex_lock(&fs_info->chunk_mutex);
2741	list_add_rcu(&device->dev_list, &fs_devices->devices);
2742	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743	fs_devices->num_devices++;
2744	fs_devices->open_devices++;
2745	fs_devices->rw_devices++;
2746	fs_devices->total_devices++;
2747	fs_devices->total_rw_bytes += device->total_bytes;
2748
2749	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750
2751	if (!bdev_nonrot(device->bdev))
2752		fs_devices->rotating = true;
2753
2754	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755	btrfs_set_super_total_bytes(fs_info->super_copy,
2756		round_down(orig_super_total_bytes + device->total_bytes,
2757			   fs_info->sectorsize));
2758
2759	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760	btrfs_set_super_num_devices(fs_info->super_copy,
2761				    orig_super_num_devices + 1);
2762
2763	/*
2764	 * we've got more storage, clear any full flags on the space
2765	 * infos
2766	 */
2767	btrfs_clear_space_info_full(fs_info);
2768
2769	mutex_unlock(&fs_info->chunk_mutex);
2770
2771	/* Add sysfs device entry */
2772	btrfs_sysfs_add_device(device);
2773
2774	mutex_unlock(&fs_devices->device_list_mutex);
2775
2776	if (seeding_dev) {
2777		mutex_lock(&fs_info->chunk_mutex);
2778		ret = init_first_rw_device(trans);
2779		mutex_unlock(&fs_info->chunk_mutex);
2780		if (ret) {
2781			btrfs_abort_transaction(trans, ret);
2782			goto error_sysfs;
2783		}
2784	}
2785
2786	ret = btrfs_add_dev_item(trans, device);
2787	if (ret) {
2788		btrfs_abort_transaction(trans, ret);
2789		goto error_sysfs;
2790	}
2791
2792	if (seeding_dev) {
2793		ret = btrfs_finish_sprout(trans);
2794		if (ret) {
2795			btrfs_abort_transaction(trans, ret);
2796			goto error_sysfs;
2797		}
2798
2799		/*
2800		 * fs_devices now represents the newly sprouted filesystem and
2801		 * its fsid has been changed by btrfs_sprout_splice().
2802		 */
2803		btrfs_sysfs_update_sprout_fsid(fs_devices);
2804	}
2805
2806	ret = btrfs_commit_transaction(trans);
2807
2808	if (seeding_dev) {
2809		mutex_unlock(&uuid_mutex);
2810		up_write(&sb->s_umount);
2811		locked = false;
2812
2813		if (ret) /* transaction commit */
2814			return ret;
2815
2816		ret = btrfs_relocate_sys_chunks(fs_info);
2817		if (ret < 0)
2818			btrfs_handle_fs_error(fs_info, ret,
2819				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820		trans = btrfs_attach_transaction(root);
2821		if (IS_ERR(trans)) {
2822			if (PTR_ERR(trans) == -ENOENT)
2823				return 0;
2824			ret = PTR_ERR(trans);
2825			trans = NULL;
2826			goto error_sysfs;
2827		}
2828		ret = btrfs_commit_transaction(trans);
2829	}
2830
2831	/*
2832	 * Now that we have written a new super block to this device, check all
2833	 * other fs_devices list if device_path alienates any other scanned
2834	 * device.
2835	 * We can ignore the return value as it typically returns -EINVAL and
2836	 * only succeeds if the device was an alien.
2837	 */
2838	btrfs_forget_devices(device->devt);
2839
2840	/* Update ctime/mtime for blkid or udev */
2841	update_dev_time(device_path);
2842
2843	return ret;
2844
2845error_sysfs:
2846	btrfs_sysfs_remove_device(device);
2847	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848	mutex_lock(&fs_info->chunk_mutex);
2849	list_del_rcu(&device->dev_list);
2850	list_del(&device->dev_alloc_list);
2851	fs_info->fs_devices->num_devices--;
2852	fs_info->fs_devices->open_devices--;
2853	fs_info->fs_devices->rw_devices--;
2854	fs_info->fs_devices->total_devices--;
2855	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857	btrfs_set_super_total_bytes(fs_info->super_copy,
2858				    orig_super_total_bytes);
2859	btrfs_set_super_num_devices(fs_info->super_copy,
2860				    orig_super_num_devices);
2861	mutex_unlock(&fs_info->chunk_mutex);
2862	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863error_trans:
2864	if (seeding_dev)
2865		btrfs_set_sb_rdonly(sb);
2866	if (trans)
2867		btrfs_end_transaction(trans);
2868error_free_zone:
2869	btrfs_destroy_dev_zone_info(device);
2870error_free_device:
2871	btrfs_free_device(device);
2872error:
2873	fput(bdev_file);
2874	if (locked) {
2875		mutex_unlock(&uuid_mutex);
2876		up_write(&sb->s_umount);
2877	}
2878	return ret;
2879}
2880
2881static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882					struct btrfs_device *device)
2883{
2884	int ret;
2885	struct btrfs_path *path;
2886	struct btrfs_root *root = device->fs_info->chunk_root;
2887	struct btrfs_dev_item *dev_item;
2888	struct extent_buffer *leaf;
2889	struct btrfs_key key;
2890
2891	path = btrfs_alloc_path();
2892	if (!path)
2893		return -ENOMEM;
2894
2895	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896	key.type = BTRFS_DEV_ITEM_KEY;
2897	key.offset = device->devid;
2898
2899	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900	if (ret < 0)
2901		goto out;
2902
2903	if (ret > 0) {
2904		ret = -ENOENT;
2905		goto out;
2906	}
2907
2908	leaf = path->nodes[0];
2909	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910
2911	btrfs_set_device_id(leaf, dev_item, device->devid);
2912	btrfs_set_device_type(leaf, dev_item, device->type);
2913	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916	btrfs_set_device_total_bytes(leaf, dev_item,
2917				     btrfs_device_get_disk_total_bytes(device));
2918	btrfs_set_device_bytes_used(leaf, dev_item,
2919				    btrfs_device_get_bytes_used(device));
2920	btrfs_mark_buffer_dirty(trans, leaf);
2921
2922out:
2923	btrfs_free_path(path);
2924	return ret;
2925}
2926
2927int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928		      struct btrfs_device *device, u64 new_size)
2929{
2930	struct btrfs_fs_info *fs_info = device->fs_info;
2931	struct btrfs_super_block *super_copy = fs_info->super_copy;
2932	u64 old_total;
2933	u64 diff;
2934	int ret;
2935
2936	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937		return -EACCES;
2938
2939	new_size = round_down(new_size, fs_info->sectorsize);
2940
2941	mutex_lock(&fs_info->chunk_mutex);
2942	old_total = btrfs_super_total_bytes(super_copy);
2943	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944
2945	if (new_size <= device->total_bytes ||
2946	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947		mutex_unlock(&fs_info->chunk_mutex);
2948		return -EINVAL;
2949	}
2950
2951	btrfs_set_super_total_bytes(super_copy,
2952			round_down(old_total + diff, fs_info->sectorsize));
2953	device->fs_devices->total_rw_bytes += diff;
2954	atomic64_add(diff, &fs_info->free_chunk_space);
2955
2956	btrfs_device_set_total_bytes(device, new_size);
2957	btrfs_device_set_disk_total_bytes(device, new_size);
2958	btrfs_clear_space_info_full(device->fs_info);
2959	if (list_empty(&device->post_commit_list))
2960		list_add_tail(&device->post_commit_list,
2961			      &trans->transaction->dev_update_list);
2962	mutex_unlock(&fs_info->chunk_mutex);
2963
2964	btrfs_reserve_chunk_metadata(trans, false);
2965	ret = btrfs_update_device(trans, device);
2966	btrfs_trans_release_chunk_metadata(trans);
2967
2968	return ret;
2969}
2970
2971static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972{
2973	struct btrfs_fs_info *fs_info = trans->fs_info;
2974	struct btrfs_root *root = fs_info->chunk_root;
2975	int ret;
2976	struct btrfs_path *path;
2977	struct btrfs_key key;
2978
2979	path = btrfs_alloc_path();
2980	if (!path)
2981		return -ENOMEM;
2982
2983	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984	key.offset = chunk_offset;
2985	key.type = BTRFS_CHUNK_ITEM_KEY;
2986
2987	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988	if (ret < 0)
2989		goto out;
2990	else if (ret > 0) { /* Logic error or corruption */
2991		btrfs_handle_fs_error(fs_info, -ENOENT,
2992				      "Failed lookup while freeing chunk.");
2993		ret = -ENOENT;
2994		goto out;
2995	}
2996
2997	ret = btrfs_del_item(trans, root, path);
2998	if (ret < 0)
2999		btrfs_handle_fs_error(fs_info, ret,
3000				      "Failed to delete chunk item.");
3001out:
3002	btrfs_free_path(path);
3003	return ret;
3004}
3005
3006static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007{
3008	struct btrfs_super_block *super_copy = fs_info->super_copy;
3009	struct btrfs_disk_key *disk_key;
3010	struct btrfs_chunk *chunk;
3011	u8 *ptr;
3012	int ret = 0;
3013	u32 num_stripes;
3014	u32 array_size;
3015	u32 len = 0;
3016	u32 cur;
3017	struct btrfs_key key;
3018
3019	lockdep_assert_held(&fs_info->chunk_mutex);
3020	array_size = btrfs_super_sys_array_size(super_copy);
3021
3022	ptr = super_copy->sys_chunk_array;
3023	cur = 0;
3024
3025	while (cur < array_size) {
3026		disk_key = (struct btrfs_disk_key *)ptr;
3027		btrfs_disk_key_to_cpu(&key, disk_key);
3028
3029		len = sizeof(*disk_key);
3030
3031		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032			chunk = (struct btrfs_chunk *)(ptr + len);
3033			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034			len += btrfs_chunk_item_size(num_stripes);
3035		} else {
3036			ret = -EIO;
3037			break;
3038		}
3039		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040		    key.offset == chunk_offset) {
3041			memmove(ptr, ptr + len, array_size - (cur + len));
3042			array_size -= len;
3043			btrfs_set_super_sys_array_size(super_copy, array_size);
3044		} else {
3045			ptr += len;
3046			cur += len;
3047		}
3048	}
3049	return ret;
3050}
3051
3052struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053						    u64 logical, u64 length)
3054{
3055	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056	struct rb_node *prev = NULL;
3057	struct rb_node *orig_prev;
3058	struct btrfs_chunk_map *map;
3059	struct btrfs_chunk_map *prev_map = NULL;
3060
3061	while (node) {
3062		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063		prev = node;
3064		prev_map = map;
3065
3066		if (logical < map->start) {
3067			node = node->rb_left;
3068		} else if (logical >= map->start + map->chunk_len) {
3069			node = node->rb_right;
3070		} else {
3071			refcount_inc(&map->refs);
3072			return map;
3073		}
3074	}
3075
3076	if (!prev)
3077		return NULL;
3078
3079	orig_prev = prev;
3080	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081		prev = rb_next(prev);
3082		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083	}
3084
3085	if (!prev) {
3086		prev = orig_prev;
3087		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088		while (prev && logical < prev_map->start) {
3089			prev = rb_prev(prev);
3090			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091		}
3092	}
3093
3094	if (prev) {
3095		u64 end = logical + length;
3096
3097		/*
3098		 * Caller can pass a U64_MAX length when it wants to get any
3099		 * chunk starting at an offset of 'logical' or higher, so deal
3100		 * with underflow by resetting the end offset to U64_MAX.
3101		 */
3102		if (end < logical)
3103			end = U64_MAX;
3104
3105		if (end > prev_map->start &&
3106		    logical < prev_map->start + prev_map->chunk_len) {
3107			refcount_inc(&prev_map->refs);
3108			return prev_map;
3109		}
3110	}
3111
3112	return NULL;
3113}
3114
3115struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116					     u64 logical, u64 length)
3117{
3118	struct btrfs_chunk_map *map;
3119
3120	read_lock(&fs_info->mapping_tree_lock);
3121	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122	read_unlock(&fs_info->mapping_tree_lock);
3123
3124	return map;
3125}
3126
3127/*
3128 * Find the mapping containing the given logical extent.
3129 *
3130 * @logical: Logical block offset in bytes.
3131 * @length: Length of extent in bytes.
3132 *
3133 * Return: Chunk mapping or ERR_PTR.
3134 */
3135struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136					    u64 logical, u64 length)
3137{
3138	struct btrfs_chunk_map *map;
 
3139
3140	map = btrfs_find_chunk_map(fs_info, logical, length);
 
 
 
3141
3142	if (unlikely(!map)) {
3143		btrfs_crit(fs_info,
3144			   "unable to find chunk map for logical %llu length %llu",
3145			   logical, length);
3146		return ERR_PTR(-EINVAL);
3147	}
3148
3149	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150		btrfs_crit(fs_info,
3151			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152			   logical, logical + length, map->start,
3153			   map->start + map->chunk_len);
3154		btrfs_free_chunk_map(map);
3155		return ERR_PTR(-EINVAL);
3156	}
3157
3158	/* Callers are responsible for dropping the reference. */
3159	return map;
3160}
3161
3162static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163			     struct btrfs_chunk_map *map, u64 chunk_offset)
3164{
3165	int i;
3166
3167	/*
3168	 * Removing chunk items and updating the device items in the chunks btree
3169	 * requires holding the chunk_mutex.
3170	 * See the comment at btrfs_chunk_alloc() for the details.
3171	 */
3172	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173
3174	for (i = 0; i < map->num_stripes; i++) {
3175		int ret;
3176
3177		ret = btrfs_update_device(trans, map->stripes[i].dev);
3178		if (ret)
3179			return ret;
3180	}
3181
3182	return btrfs_free_chunk(trans, chunk_offset);
3183}
3184
3185int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186{
3187	struct btrfs_fs_info *fs_info = trans->fs_info;
3188	struct btrfs_chunk_map *map;
 
3189	u64 dev_extent_len = 0;
3190	int i, ret = 0;
3191	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192
3193	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194	if (IS_ERR(map)) {
3195		/*
3196		 * This is a logic error, but we don't want to just rely on the
3197		 * user having built with ASSERT enabled, so if ASSERT doesn't
3198		 * do anything we still error out.
3199		 */
3200		ASSERT(0);
3201		return PTR_ERR(map);
3202	}
 
3203
3204	/*
3205	 * First delete the device extent items from the devices btree.
3206	 * We take the device_list_mutex to avoid racing with the finishing phase
3207	 * of a device replace operation. See the comment below before acquiring
3208	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209	 * because that can result in a deadlock when deleting the device extent
3210	 * items from the devices btree - COWing an extent buffer from the btree
3211	 * may result in allocating a new metadata chunk, which would attempt to
3212	 * lock again fs_info->chunk_mutex.
3213	 */
3214	mutex_lock(&fs_devices->device_list_mutex);
3215	for (i = 0; i < map->num_stripes; i++) {
3216		struct btrfs_device *device = map->stripes[i].dev;
3217		ret = btrfs_free_dev_extent(trans, device,
3218					    map->stripes[i].physical,
3219					    &dev_extent_len);
3220		if (ret) {
3221			mutex_unlock(&fs_devices->device_list_mutex);
3222			btrfs_abort_transaction(trans, ret);
3223			goto out;
3224		}
3225
3226		if (device->bytes_used > 0) {
3227			mutex_lock(&fs_info->chunk_mutex);
3228			btrfs_device_set_bytes_used(device,
3229					device->bytes_used - dev_extent_len);
3230			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231			btrfs_clear_space_info_full(fs_info);
3232			mutex_unlock(&fs_info->chunk_mutex);
3233		}
3234	}
3235	mutex_unlock(&fs_devices->device_list_mutex);
3236
3237	/*
3238	 * We acquire fs_info->chunk_mutex for 2 reasons:
3239	 *
3240	 * 1) Just like with the first phase of the chunk allocation, we must
3241	 *    reserve system space, do all chunk btree updates and deletions, and
3242	 *    update the system chunk array in the superblock while holding this
3243	 *    mutex. This is for similar reasons as explained on the comment at
3244	 *    the top of btrfs_chunk_alloc();
3245	 *
3246	 * 2) Prevent races with the final phase of a device replace operation
3247	 *    that replaces the device object associated with the map's stripes,
3248	 *    because the device object's id can change at any time during that
3249	 *    final phase of the device replace operation
3250	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251	 *    replaced device and then see it with an ID of
3252	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253	 *    the device item, which does not exists on the chunk btree.
3254	 *    The finishing phase of device replace acquires both the
3255	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3256	 *    safe by just acquiring the chunk_mutex.
3257	 */
3258	trans->removing_chunk = true;
3259	mutex_lock(&fs_info->chunk_mutex);
3260
3261	check_system_chunk(trans, map->type);
3262
3263	ret = remove_chunk_item(trans, map, chunk_offset);
3264	/*
3265	 * Normally we should not get -ENOSPC since we reserved space before
3266	 * through the call to check_system_chunk().
3267	 *
3268	 * Despite our system space_info having enough free space, we may not
3269	 * be able to allocate extents from its block groups, because all have
3270	 * an incompatible profile, which will force us to allocate a new system
3271	 * block group with the right profile, or right after we called
3272	 * check_system_space() above, a scrub turned the only system block group
3273	 * with enough free space into RO mode.
3274	 * This is explained with more detail at do_chunk_alloc().
3275	 *
3276	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277	 */
3278	if (ret == -ENOSPC) {
3279		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280		struct btrfs_block_group *sys_bg;
3281
3282		sys_bg = btrfs_create_chunk(trans, sys_flags);
3283		if (IS_ERR(sys_bg)) {
3284			ret = PTR_ERR(sys_bg);
3285			btrfs_abort_transaction(trans, ret);
3286			goto out;
3287		}
3288
3289		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290		if (ret) {
3291			btrfs_abort_transaction(trans, ret);
3292			goto out;
3293		}
3294
3295		ret = remove_chunk_item(trans, map, chunk_offset);
3296		if (ret) {
3297			btrfs_abort_transaction(trans, ret);
3298			goto out;
3299		}
3300	} else if (ret) {
3301		btrfs_abort_transaction(trans, ret);
3302		goto out;
3303	}
3304
3305	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306
3307	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309		if (ret) {
3310			btrfs_abort_transaction(trans, ret);
3311			goto out;
3312		}
3313	}
3314
3315	mutex_unlock(&fs_info->chunk_mutex);
3316	trans->removing_chunk = false;
3317
3318	/*
3319	 * We are done with chunk btree updates and deletions, so release the
3320	 * system space we previously reserved (with check_system_chunk()).
3321	 */
3322	btrfs_trans_release_chunk_metadata(trans);
3323
3324	ret = btrfs_remove_block_group(trans, map);
3325	if (ret) {
3326		btrfs_abort_transaction(trans, ret);
3327		goto out;
3328	}
3329
3330out:
3331	if (trans->removing_chunk) {
3332		mutex_unlock(&fs_info->chunk_mutex);
3333		trans->removing_chunk = false;
3334	}
3335	/* once for us */
3336	btrfs_free_chunk_map(map);
3337	return ret;
3338}
3339
3340int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341{
3342	struct btrfs_root *root = fs_info->chunk_root;
3343	struct btrfs_trans_handle *trans;
3344	struct btrfs_block_group *block_group;
3345	u64 length;
3346	int ret;
3347
3348	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349		btrfs_err(fs_info,
3350			  "relocate: not supported on extent tree v2 yet");
3351		return -EINVAL;
3352	}
3353
3354	/*
3355	 * Prevent races with automatic removal of unused block groups.
3356	 * After we relocate and before we remove the chunk with offset
3357	 * chunk_offset, automatic removal of the block group can kick in,
3358	 * resulting in a failure when calling btrfs_remove_chunk() below.
3359	 *
3360	 * Make sure to acquire this mutex before doing a tree search (dev
3361	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363	 * we release the path used to search the chunk/dev tree and before
3364	 * the current task acquires this mutex and calls us.
3365	 */
3366	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367
3368	/* step one, relocate all the extents inside this chunk */
3369	btrfs_scrub_pause(fs_info);
3370	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371	btrfs_scrub_continue(fs_info);
3372	if (ret) {
3373		/*
3374		 * If we had a transaction abort, stop all running scrubs.
3375		 * See transaction.c:cleanup_transaction() why we do it here.
3376		 */
3377		if (BTRFS_FS_ERROR(fs_info))
3378			btrfs_scrub_cancel(fs_info);
3379		return ret;
3380	}
3381
3382	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383	if (!block_group)
3384		return -ENOENT;
3385	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386	length = block_group->length;
3387	btrfs_put_block_group(block_group);
3388
3389	/*
3390	 * On a zoned file system, discard the whole block group, this will
3391	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392	 * resetting the zone fails, don't treat it as a fatal problem from the
3393	 * filesystem's point of view.
3394	 */
3395	if (btrfs_is_zoned(fs_info)) {
3396		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397		if (ret)
3398			btrfs_info(fs_info,
3399				"failed to reset zone %llu after relocation",
3400				chunk_offset);
3401	}
3402
3403	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404						     chunk_offset);
3405	if (IS_ERR(trans)) {
3406		ret = PTR_ERR(trans);
3407		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408		return ret;
3409	}
3410
3411	/*
3412	 * step two, delete the device extents and the
3413	 * chunk tree entries
3414	 */
3415	ret = btrfs_remove_chunk(trans, chunk_offset);
3416	btrfs_end_transaction(trans);
3417	return ret;
3418}
3419
3420static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421{
3422	struct btrfs_root *chunk_root = fs_info->chunk_root;
3423	struct btrfs_path *path;
3424	struct extent_buffer *leaf;
3425	struct btrfs_chunk *chunk;
3426	struct btrfs_key key;
3427	struct btrfs_key found_key;
3428	u64 chunk_type;
3429	bool retried = false;
3430	int failed = 0;
3431	int ret;
3432
3433	path = btrfs_alloc_path();
3434	if (!path)
3435		return -ENOMEM;
3436
3437again:
3438	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439	key.offset = (u64)-1;
3440	key.type = BTRFS_CHUNK_ITEM_KEY;
3441
3442	while (1) {
3443		mutex_lock(&fs_info->reclaim_bgs_lock);
3444		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445		if (ret < 0) {
3446			mutex_unlock(&fs_info->reclaim_bgs_lock);
3447			goto error;
3448		}
3449		if (ret == 0) {
3450			/*
3451			 * On the first search we would find chunk tree with
3452			 * offset -1, which is not possible. On subsequent
3453			 * loops this would find an existing item on an invalid
3454			 * offset (one less than the previous one, wrong
3455			 * alignment and size).
3456			 */
3457			ret = -EUCLEAN;
3458			mutex_unlock(&fs_info->reclaim_bgs_lock);
3459			goto error;
3460		}
3461
3462		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3463					  key.type);
3464		if (ret)
3465			mutex_unlock(&fs_info->reclaim_bgs_lock);
3466		if (ret < 0)
3467			goto error;
3468		if (ret > 0)
3469			break;
3470
3471		leaf = path->nodes[0];
3472		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3473
3474		chunk = btrfs_item_ptr(leaf, path->slots[0],
3475				       struct btrfs_chunk);
3476		chunk_type = btrfs_chunk_type(leaf, chunk);
3477		btrfs_release_path(path);
3478
3479		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3480			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3481			if (ret == -ENOSPC)
3482				failed++;
3483			else
3484				BUG_ON(ret);
3485		}
3486		mutex_unlock(&fs_info->reclaim_bgs_lock);
3487
3488		if (found_key.offset == 0)
3489			break;
3490		key.offset = found_key.offset - 1;
3491	}
3492	ret = 0;
3493	if (failed && !retried) {
3494		failed = 0;
3495		retried = true;
3496		goto again;
3497	} else if (WARN_ON(failed && retried)) {
3498		ret = -ENOSPC;
3499	}
3500error:
3501	btrfs_free_path(path);
3502	return ret;
3503}
3504
3505/*
3506 * return 1 : allocate a data chunk successfully,
3507 * return <0: errors during allocating a data chunk,
3508 * return 0 : no need to allocate a data chunk.
3509 */
3510static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3511				      u64 chunk_offset)
3512{
3513	struct btrfs_block_group *cache;
3514	u64 bytes_used;
3515	u64 chunk_type;
3516
3517	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3518	ASSERT(cache);
3519	chunk_type = cache->flags;
3520	btrfs_put_block_group(cache);
3521
3522	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3523		return 0;
3524
3525	spin_lock(&fs_info->data_sinfo->lock);
3526	bytes_used = fs_info->data_sinfo->bytes_used;
3527	spin_unlock(&fs_info->data_sinfo->lock);
3528
3529	if (!bytes_used) {
3530		struct btrfs_trans_handle *trans;
3531		int ret;
3532
3533		trans =	btrfs_join_transaction(fs_info->tree_root);
3534		if (IS_ERR(trans))
3535			return PTR_ERR(trans);
3536
3537		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3538		btrfs_end_transaction(trans);
3539		if (ret < 0)
3540			return ret;
3541		return 1;
3542	}
3543
3544	return 0;
3545}
3546
3547static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3548					   const struct btrfs_disk_balance_args *disk)
3549{
3550	memset(cpu, 0, sizeof(*cpu));
3551
3552	cpu->profiles = le64_to_cpu(disk->profiles);
3553	cpu->usage = le64_to_cpu(disk->usage);
3554	cpu->devid = le64_to_cpu(disk->devid);
3555	cpu->pstart = le64_to_cpu(disk->pstart);
3556	cpu->pend = le64_to_cpu(disk->pend);
3557	cpu->vstart = le64_to_cpu(disk->vstart);
3558	cpu->vend = le64_to_cpu(disk->vend);
3559	cpu->target = le64_to_cpu(disk->target);
3560	cpu->flags = le64_to_cpu(disk->flags);
3561	cpu->limit = le64_to_cpu(disk->limit);
3562	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3563	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3564}
3565
3566static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3567					   const struct btrfs_balance_args *cpu)
3568{
3569	memset(disk, 0, sizeof(*disk));
3570
3571	disk->profiles = cpu_to_le64(cpu->profiles);
3572	disk->usage = cpu_to_le64(cpu->usage);
3573	disk->devid = cpu_to_le64(cpu->devid);
3574	disk->pstart = cpu_to_le64(cpu->pstart);
3575	disk->pend = cpu_to_le64(cpu->pend);
3576	disk->vstart = cpu_to_le64(cpu->vstart);
3577	disk->vend = cpu_to_le64(cpu->vend);
3578	disk->target = cpu_to_le64(cpu->target);
3579	disk->flags = cpu_to_le64(cpu->flags);
3580	disk->limit = cpu_to_le64(cpu->limit);
3581	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3582	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3583}
3584
3585static int insert_balance_item(struct btrfs_fs_info *fs_info,
3586			       struct btrfs_balance_control *bctl)
3587{
3588	struct btrfs_root *root = fs_info->tree_root;
3589	struct btrfs_trans_handle *trans;
3590	struct btrfs_balance_item *item;
3591	struct btrfs_disk_balance_args disk_bargs;
3592	struct btrfs_path *path;
3593	struct extent_buffer *leaf;
3594	struct btrfs_key key;
3595	int ret, err;
3596
3597	path = btrfs_alloc_path();
3598	if (!path)
3599		return -ENOMEM;
3600
3601	trans = btrfs_start_transaction(root, 0);
3602	if (IS_ERR(trans)) {
3603		btrfs_free_path(path);
3604		return PTR_ERR(trans);
3605	}
3606
3607	key.objectid = BTRFS_BALANCE_OBJECTID;
3608	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3609	key.offset = 0;
3610
3611	ret = btrfs_insert_empty_item(trans, root, path, &key,
3612				      sizeof(*item));
3613	if (ret)
3614		goto out;
3615
3616	leaf = path->nodes[0];
3617	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3618
3619	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3620
3621	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3622	btrfs_set_balance_data(leaf, item, &disk_bargs);
3623	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3624	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3625	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3626	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3627
3628	btrfs_set_balance_flags(leaf, item, bctl->flags);
3629
3630	btrfs_mark_buffer_dirty(trans, leaf);
3631out:
3632	btrfs_free_path(path);
3633	err = btrfs_commit_transaction(trans);
3634	if (err && !ret)
3635		ret = err;
3636	return ret;
3637}
3638
3639static int del_balance_item(struct btrfs_fs_info *fs_info)
3640{
3641	struct btrfs_root *root = fs_info->tree_root;
3642	struct btrfs_trans_handle *trans;
3643	struct btrfs_path *path;
3644	struct btrfs_key key;
3645	int ret, err;
3646
3647	path = btrfs_alloc_path();
3648	if (!path)
3649		return -ENOMEM;
3650
3651	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3652	if (IS_ERR(trans)) {
3653		btrfs_free_path(path);
3654		return PTR_ERR(trans);
3655	}
3656
3657	key.objectid = BTRFS_BALANCE_OBJECTID;
3658	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659	key.offset = 0;
3660
3661	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3662	if (ret < 0)
3663		goto out;
3664	if (ret > 0) {
3665		ret = -ENOENT;
3666		goto out;
3667	}
3668
3669	ret = btrfs_del_item(trans, root, path);
3670out:
3671	btrfs_free_path(path);
3672	err = btrfs_commit_transaction(trans);
3673	if (err && !ret)
3674		ret = err;
3675	return ret;
3676}
3677
3678/*
3679 * This is a heuristic used to reduce the number of chunks balanced on
3680 * resume after balance was interrupted.
3681 */
3682static void update_balance_args(struct btrfs_balance_control *bctl)
3683{
3684	/*
3685	 * Turn on soft mode for chunk types that were being converted.
3686	 */
3687	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3688		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3689	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3690		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3691	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693
3694	/*
3695	 * Turn on usage filter if is not already used.  The idea is
3696	 * that chunks that we have already balanced should be
3697	 * reasonably full.  Don't do it for chunks that are being
3698	 * converted - that will keep us from relocating unconverted
3699	 * (albeit full) chunks.
3700	 */
3701	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3703	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3704		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3705		bctl->data.usage = 90;
3706	}
3707	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711		bctl->sys.usage = 90;
3712	}
3713	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717		bctl->meta.usage = 90;
3718	}
3719}
3720
3721/*
3722 * Clear the balance status in fs_info and delete the balance item from disk.
3723 */
3724static void reset_balance_state(struct btrfs_fs_info *fs_info)
3725{
3726	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727	int ret;
3728
3729	ASSERT(fs_info->balance_ctl);
3730
3731	spin_lock(&fs_info->balance_lock);
3732	fs_info->balance_ctl = NULL;
3733	spin_unlock(&fs_info->balance_lock);
3734
3735	kfree(bctl);
3736	ret = del_balance_item(fs_info);
3737	if (ret)
3738		btrfs_handle_fs_error(fs_info, ret, NULL);
3739}
3740
3741/*
3742 * Balance filters.  Return 1 if chunk should be filtered out
3743 * (should not be balanced).
3744 */
3745static int chunk_profiles_filter(u64 chunk_type,
3746				 struct btrfs_balance_args *bargs)
3747{
3748	chunk_type = chunk_to_extended(chunk_type) &
3749				BTRFS_EXTENDED_PROFILE_MASK;
3750
3751	if (bargs->profiles & chunk_type)
3752		return 0;
3753
3754	return 1;
3755}
3756
3757static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3758			      struct btrfs_balance_args *bargs)
3759{
3760	struct btrfs_block_group *cache;
3761	u64 chunk_used;
3762	u64 user_thresh_min;
3763	u64 user_thresh_max;
3764	int ret = 1;
3765
3766	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3767	chunk_used = cache->used;
3768
3769	if (bargs->usage_min == 0)
3770		user_thresh_min = 0;
3771	else
3772		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3773
3774	if (bargs->usage_max == 0)
3775		user_thresh_max = 1;
3776	else if (bargs->usage_max > 100)
3777		user_thresh_max = cache->length;
3778	else
3779		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3780
3781	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3782		ret = 0;
3783
3784	btrfs_put_block_group(cache);
3785	return ret;
3786}
3787
3788static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3789		u64 chunk_offset, struct btrfs_balance_args *bargs)
3790{
3791	struct btrfs_block_group *cache;
3792	u64 chunk_used, user_thresh;
3793	int ret = 1;
3794
3795	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3796	chunk_used = cache->used;
3797
3798	if (bargs->usage_min == 0)
3799		user_thresh = 1;
3800	else if (bargs->usage > 100)
3801		user_thresh = cache->length;
3802	else
3803		user_thresh = mult_perc(cache->length, bargs->usage);
3804
3805	if (chunk_used < user_thresh)
3806		ret = 0;
3807
3808	btrfs_put_block_group(cache);
3809	return ret;
3810}
3811
3812static int chunk_devid_filter(struct extent_buffer *leaf,
3813			      struct btrfs_chunk *chunk,
3814			      struct btrfs_balance_args *bargs)
3815{
3816	struct btrfs_stripe *stripe;
3817	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3818	int i;
3819
3820	for (i = 0; i < num_stripes; i++) {
3821		stripe = btrfs_stripe_nr(chunk, i);
3822		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3823			return 0;
3824	}
3825
3826	return 1;
3827}
3828
3829static u64 calc_data_stripes(u64 type, int num_stripes)
3830{
3831	const int index = btrfs_bg_flags_to_raid_index(type);
3832	const int ncopies = btrfs_raid_array[index].ncopies;
3833	const int nparity = btrfs_raid_array[index].nparity;
3834
3835	return (num_stripes - nparity) / ncopies;
3836}
3837
3838/* [pstart, pend) */
3839static int chunk_drange_filter(struct extent_buffer *leaf,
3840			       struct btrfs_chunk *chunk,
3841			       struct btrfs_balance_args *bargs)
3842{
3843	struct btrfs_stripe *stripe;
3844	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3845	u64 stripe_offset;
3846	u64 stripe_length;
3847	u64 type;
3848	int factor;
3849	int i;
3850
3851	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3852		return 0;
3853
3854	type = btrfs_chunk_type(leaf, chunk);
3855	factor = calc_data_stripes(type, num_stripes);
3856
3857	for (i = 0; i < num_stripes; i++) {
3858		stripe = btrfs_stripe_nr(chunk, i);
3859		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3860			continue;
3861
3862		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3863		stripe_length = btrfs_chunk_length(leaf, chunk);
3864		stripe_length = div_u64(stripe_length, factor);
3865
3866		if (stripe_offset < bargs->pend &&
3867		    stripe_offset + stripe_length > bargs->pstart)
3868			return 0;
3869	}
3870
3871	return 1;
3872}
3873
3874/* [vstart, vend) */
3875static int chunk_vrange_filter(struct extent_buffer *leaf,
3876			       struct btrfs_chunk *chunk,
3877			       u64 chunk_offset,
3878			       struct btrfs_balance_args *bargs)
3879{
3880	if (chunk_offset < bargs->vend &&
3881	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3882		/* at least part of the chunk is inside this vrange */
3883		return 0;
3884
3885	return 1;
3886}
3887
3888static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3889			       struct btrfs_chunk *chunk,
3890			       struct btrfs_balance_args *bargs)
3891{
3892	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893
3894	if (bargs->stripes_min <= num_stripes
3895			&& num_stripes <= bargs->stripes_max)
3896		return 0;
3897
3898	return 1;
3899}
3900
3901static int chunk_soft_convert_filter(u64 chunk_type,
3902				     struct btrfs_balance_args *bargs)
3903{
3904	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3905		return 0;
3906
3907	chunk_type = chunk_to_extended(chunk_type) &
3908				BTRFS_EXTENDED_PROFILE_MASK;
3909
3910	if (bargs->target == chunk_type)
3911		return 1;
3912
3913	return 0;
3914}
3915
3916static int should_balance_chunk(struct extent_buffer *leaf,
3917				struct btrfs_chunk *chunk, u64 chunk_offset)
3918{
3919	struct btrfs_fs_info *fs_info = leaf->fs_info;
3920	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921	struct btrfs_balance_args *bargs = NULL;
3922	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3923
3924	/* type filter */
3925	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3926	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3927		return 0;
3928	}
3929
3930	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931		bargs = &bctl->data;
3932	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933		bargs = &bctl->sys;
3934	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935		bargs = &bctl->meta;
3936
3937	/* profiles filter */
3938	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3939	    chunk_profiles_filter(chunk_type, bargs)) {
3940		return 0;
3941	}
3942
3943	/* usage filter */
3944	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3945	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3946		return 0;
3947	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3948	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3949		return 0;
3950	}
3951
3952	/* devid filter */
3953	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3954	    chunk_devid_filter(leaf, chunk, bargs)) {
3955		return 0;
3956	}
3957
3958	/* drange filter, makes sense only with devid filter */
3959	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3960	    chunk_drange_filter(leaf, chunk, bargs)) {
3961		return 0;
3962	}
3963
3964	/* vrange filter */
3965	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3966	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3967		return 0;
3968	}
3969
3970	/* stripes filter */
3971	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3972	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3973		return 0;
3974	}
3975
3976	/* soft profile changing mode */
3977	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3978	    chunk_soft_convert_filter(chunk_type, bargs)) {
3979		return 0;
3980	}
3981
3982	/*
3983	 * limited by count, must be the last filter
3984	 */
3985	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3986		if (bargs->limit == 0)
3987			return 0;
3988		else
3989			bargs->limit--;
3990	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3991		/*
3992		 * Same logic as the 'limit' filter; the minimum cannot be
3993		 * determined here because we do not have the global information
3994		 * about the count of all chunks that satisfy the filters.
3995		 */
3996		if (bargs->limit_max == 0)
3997			return 0;
3998		else
3999			bargs->limit_max--;
4000	}
4001
4002	return 1;
4003}
4004
4005static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4006{
4007	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4008	struct btrfs_root *chunk_root = fs_info->chunk_root;
4009	u64 chunk_type;
4010	struct btrfs_chunk *chunk;
4011	struct btrfs_path *path = NULL;
4012	struct btrfs_key key;
4013	struct btrfs_key found_key;
4014	struct extent_buffer *leaf;
4015	int slot;
4016	int ret;
4017	int enospc_errors = 0;
4018	bool counting = true;
4019	/* The single value limit and min/max limits use the same bytes in the */
4020	u64 limit_data = bctl->data.limit;
4021	u64 limit_meta = bctl->meta.limit;
4022	u64 limit_sys = bctl->sys.limit;
4023	u32 count_data = 0;
4024	u32 count_meta = 0;
4025	u32 count_sys = 0;
4026	int chunk_reserved = 0;
4027
4028	path = btrfs_alloc_path();
4029	if (!path) {
4030		ret = -ENOMEM;
4031		goto error;
4032	}
4033
4034	/* zero out stat counters */
4035	spin_lock(&fs_info->balance_lock);
4036	memset(&bctl->stat, 0, sizeof(bctl->stat));
4037	spin_unlock(&fs_info->balance_lock);
4038again:
4039	if (!counting) {
4040		/*
4041		 * The single value limit and min/max limits use the same bytes
4042		 * in the
4043		 */
4044		bctl->data.limit = limit_data;
4045		bctl->meta.limit = limit_meta;
4046		bctl->sys.limit = limit_sys;
4047	}
4048	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4049	key.offset = (u64)-1;
4050	key.type = BTRFS_CHUNK_ITEM_KEY;
4051
4052	while (1) {
4053		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4054		    atomic_read(&fs_info->balance_cancel_req)) {
4055			ret = -ECANCELED;
4056			goto error;
4057		}
4058
4059		mutex_lock(&fs_info->reclaim_bgs_lock);
4060		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4061		if (ret < 0) {
4062			mutex_unlock(&fs_info->reclaim_bgs_lock);
4063			goto error;
4064		}
4065
4066		/*
4067		 * this shouldn't happen, it means the last relocate
4068		 * failed
4069		 */
4070		if (ret == 0)
4071			BUG(); /* FIXME break ? */
4072
4073		ret = btrfs_previous_item(chunk_root, path, 0,
4074					  BTRFS_CHUNK_ITEM_KEY);
4075		if (ret) {
4076			mutex_unlock(&fs_info->reclaim_bgs_lock);
4077			ret = 0;
4078			break;
4079		}
4080
4081		leaf = path->nodes[0];
4082		slot = path->slots[0];
4083		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4084
4085		if (found_key.objectid != key.objectid) {
4086			mutex_unlock(&fs_info->reclaim_bgs_lock);
4087			break;
4088		}
4089
4090		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4091		chunk_type = btrfs_chunk_type(leaf, chunk);
4092
4093		if (!counting) {
4094			spin_lock(&fs_info->balance_lock);
4095			bctl->stat.considered++;
4096			spin_unlock(&fs_info->balance_lock);
4097		}
4098
4099		ret = should_balance_chunk(leaf, chunk, found_key.offset);
4100
4101		btrfs_release_path(path);
4102		if (!ret) {
4103			mutex_unlock(&fs_info->reclaim_bgs_lock);
4104			goto loop;
4105		}
4106
4107		if (counting) {
4108			mutex_unlock(&fs_info->reclaim_bgs_lock);
4109			spin_lock(&fs_info->balance_lock);
4110			bctl->stat.expected++;
4111			spin_unlock(&fs_info->balance_lock);
4112
4113			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4114				count_data++;
4115			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4116				count_sys++;
4117			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4118				count_meta++;
4119
4120			goto loop;
4121		}
4122
4123		/*
4124		 * Apply limit_min filter, no need to check if the LIMITS
4125		 * filter is used, limit_min is 0 by default
4126		 */
4127		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4128					count_data < bctl->data.limit_min)
4129				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4130					count_meta < bctl->meta.limit_min)
4131				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4132					count_sys < bctl->sys.limit_min)) {
4133			mutex_unlock(&fs_info->reclaim_bgs_lock);
4134			goto loop;
4135		}
4136
4137		if (!chunk_reserved) {
4138			/*
4139			 * We may be relocating the only data chunk we have,
4140			 * which could potentially end up with losing data's
4141			 * raid profile, so lets allocate an empty one in
4142			 * advance.
4143			 */
4144			ret = btrfs_may_alloc_data_chunk(fs_info,
4145							 found_key.offset);
4146			if (ret < 0) {
4147				mutex_unlock(&fs_info->reclaim_bgs_lock);
4148				goto error;
4149			} else if (ret == 1) {
4150				chunk_reserved = 1;
4151			}
4152		}
4153
4154		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4155		mutex_unlock(&fs_info->reclaim_bgs_lock);
4156		if (ret == -ENOSPC) {
4157			enospc_errors++;
4158		} else if (ret == -ETXTBSY) {
4159			btrfs_info(fs_info,
4160	   "skipping relocation of block group %llu due to active swapfile",
4161				   found_key.offset);
4162			ret = 0;
4163		} else if (ret) {
4164			goto error;
4165		} else {
4166			spin_lock(&fs_info->balance_lock);
4167			bctl->stat.completed++;
4168			spin_unlock(&fs_info->balance_lock);
4169		}
4170loop:
4171		if (found_key.offset == 0)
4172			break;
4173		key.offset = found_key.offset - 1;
4174	}
4175
4176	if (counting) {
4177		btrfs_release_path(path);
4178		counting = false;
4179		goto again;
4180	}
4181error:
4182	btrfs_free_path(path);
4183	if (enospc_errors) {
4184		btrfs_info(fs_info, "%d enospc errors during balance",
4185			   enospc_errors);
4186		if (!ret)
4187			ret = -ENOSPC;
4188	}
4189
4190	return ret;
4191}
4192
4193/*
4194 * See if a given profile is valid and reduced.
4195 *
4196 * @flags:     profile to validate
4197 * @extended:  if true @flags is treated as an extended profile
4198 */
4199static int alloc_profile_is_valid(u64 flags, int extended)
4200{
4201	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4202			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4203
4204	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4205
4206	/* 1) check that all other bits are zeroed */
4207	if (flags & ~mask)
4208		return 0;
4209
4210	/* 2) see if profile is reduced */
4211	if (flags == 0)
4212		return !extended; /* "0" is valid for usual profiles */
4213
4214	return has_single_bit_set(flags);
4215}
4216
 
 
 
 
 
 
 
 
4217/*
4218 * Validate target profile against allowed profiles and return true if it's OK.
4219 * Otherwise print the error message and return false.
4220 */
4221static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4222		const struct btrfs_balance_args *bargs,
4223		u64 allowed, const char *type)
4224{
4225	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4226		return true;
4227
4228	/* Profile is valid and does not have bits outside of the allowed set */
4229	if (alloc_profile_is_valid(bargs->target, 1) &&
4230	    (bargs->target & ~allowed) == 0)
4231		return true;
4232
4233	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4234			type, btrfs_bg_type_to_raid_name(bargs->target));
4235	return false;
4236}
4237
4238/*
4239 * Fill @buf with textual description of balance filter flags @bargs, up to
4240 * @size_buf including the terminating null. The output may be trimmed if it
4241 * does not fit into the provided buffer.
4242 */
4243static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4244				 u32 size_buf)
4245{
4246	int ret;
4247	u32 size_bp = size_buf;
4248	char *bp = buf;
4249	u64 flags = bargs->flags;
4250	char tmp_buf[128] = {'\0'};
4251
4252	if (!flags)
4253		return;
4254
4255#define CHECK_APPEND_NOARG(a)						\
4256	do {								\
4257		ret = snprintf(bp, size_bp, (a));			\
4258		if (ret < 0 || ret >= size_bp)				\
4259			goto out_overflow;				\
4260		size_bp -= ret;						\
4261		bp += ret;						\
4262	} while (0)
4263
4264#define CHECK_APPEND_1ARG(a, v1)					\
4265	do {								\
4266		ret = snprintf(bp, size_bp, (a), (v1));			\
4267		if (ret < 0 || ret >= size_bp)				\
4268			goto out_overflow;				\
4269		size_bp -= ret;						\
4270		bp += ret;						\
4271	} while (0)
4272
4273#define CHECK_APPEND_2ARG(a, v1, v2)					\
4274	do {								\
4275		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4276		if (ret < 0 || ret >= size_bp)				\
4277			goto out_overflow;				\
4278		size_bp -= ret;						\
4279		bp += ret;						\
4280	} while (0)
4281
4282	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4283		CHECK_APPEND_1ARG("convert=%s,",
4284				  btrfs_bg_type_to_raid_name(bargs->target));
4285
4286	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4287		CHECK_APPEND_NOARG("soft,");
4288
4289	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4290		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4291					    sizeof(tmp_buf));
4292		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4293	}
4294
4295	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4296		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4297
4298	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4299		CHECK_APPEND_2ARG("usage=%u..%u,",
4300				  bargs->usage_min, bargs->usage_max);
4301
4302	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4303		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4304
4305	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4306		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4307				  bargs->pstart, bargs->pend);
4308
4309	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4310		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4311				  bargs->vstart, bargs->vend);
4312
4313	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4314		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4315
4316	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4317		CHECK_APPEND_2ARG("limit=%u..%u,",
4318				bargs->limit_min, bargs->limit_max);
4319
4320	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4321		CHECK_APPEND_2ARG("stripes=%u..%u,",
4322				  bargs->stripes_min, bargs->stripes_max);
4323
4324#undef CHECK_APPEND_2ARG
4325#undef CHECK_APPEND_1ARG
4326#undef CHECK_APPEND_NOARG
4327
4328out_overflow:
4329
4330	if (size_bp < size_buf)
4331		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4332	else
4333		buf[0] = '\0';
4334}
4335
4336static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4337{
4338	u32 size_buf = 1024;
4339	char tmp_buf[192] = {'\0'};
4340	char *buf;
4341	char *bp;
4342	u32 size_bp = size_buf;
4343	int ret;
4344	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345
4346	buf = kzalloc(size_buf, GFP_KERNEL);
4347	if (!buf)
4348		return;
4349
4350	bp = buf;
4351
4352#define CHECK_APPEND_1ARG(a, v1)					\
4353	do {								\
4354		ret = snprintf(bp, size_bp, (a), (v1));			\
4355		if (ret < 0 || ret >= size_bp)				\
4356			goto out_overflow;				\
4357		size_bp -= ret;						\
4358		bp += ret;						\
4359	} while (0)
4360
4361	if (bctl->flags & BTRFS_BALANCE_FORCE)
4362		CHECK_APPEND_1ARG("%s", "-f ");
4363
4364	if (bctl->flags & BTRFS_BALANCE_DATA) {
4365		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4366		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4367	}
4368
4369	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4370		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4371		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4372	}
4373
4374	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4375		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4376		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4377	}
4378
4379#undef CHECK_APPEND_1ARG
4380
4381out_overflow:
4382
4383	if (size_bp < size_buf)
4384		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4385	btrfs_info(fs_info, "balance: %s %s",
4386		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4387		   "resume" : "start", buf);
4388
4389	kfree(buf);
4390}
4391
4392/*
4393 * Should be called with balance mutexe held
4394 */
4395int btrfs_balance(struct btrfs_fs_info *fs_info,
4396		  struct btrfs_balance_control *bctl,
4397		  struct btrfs_ioctl_balance_args *bargs)
4398{
4399	u64 meta_target, data_target;
4400	u64 allowed;
4401	int mixed = 0;
4402	int ret;
4403	u64 num_devices;
4404	unsigned seq;
4405	bool reducing_redundancy;
4406	bool paused = false;
4407	int i;
4408
4409	if (btrfs_fs_closing(fs_info) ||
4410	    atomic_read(&fs_info->balance_pause_req) ||
4411	    btrfs_should_cancel_balance(fs_info)) {
4412		ret = -EINVAL;
4413		goto out;
4414	}
4415
4416	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4417	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4418		mixed = 1;
4419
4420	/*
4421	 * In case of mixed groups both data and meta should be picked,
4422	 * and identical options should be given for both of them.
4423	 */
4424	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4425	if (mixed && (bctl->flags & allowed)) {
4426		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4427		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4428		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4429			btrfs_err(fs_info,
4430	  "balance: mixed groups data and metadata options must be the same");
4431			ret = -EINVAL;
4432			goto out;
4433		}
4434	}
4435
4436	/*
4437	 * rw_devices will not change at the moment, device add/delete/replace
4438	 * are exclusive
4439	 */
4440	num_devices = fs_info->fs_devices->rw_devices;
4441
4442	/*
4443	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4444	 * special bit for it, to make it easier to distinguish.  Thus we need
4445	 * to set it manually, or balance would refuse the profile.
4446	 */
4447	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4448	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4449		if (num_devices >= btrfs_raid_array[i].devs_min)
4450			allowed |= btrfs_raid_array[i].bg_flag;
4451
4452	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4453	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4454	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4455		ret = -EINVAL;
4456		goto out;
4457	}
4458
4459	/*
4460	 * Allow to reduce metadata or system integrity only if force set for
4461	 * profiles with redundancy (copies, parity)
4462	 */
4463	allowed = 0;
4464	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4465		if (btrfs_raid_array[i].ncopies >= 2 ||
4466		    btrfs_raid_array[i].tolerated_failures >= 1)
4467			allowed |= btrfs_raid_array[i].bg_flag;
4468	}
4469	do {
4470		seq = read_seqbegin(&fs_info->profiles_lock);
4471
4472		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4473		     (fs_info->avail_system_alloc_bits & allowed) &&
4474		     !(bctl->sys.target & allowed)) ||
4475		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4477		     !(bctl->meta.target & allowed)))
4478			reducing_redundancy = true;
4479		else
4480			reducing_redundancy = false;
4481
4482		/* if we're not converting, the target field is uninitialized */
4483		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4484			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4485		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4486			bctl->data.target : fs_info->avail_data_alloc_bits;
4487	} while (read_seqretry(&fs_info->profiles_lock, seq));
4488
4489	if (reducing_redundancy) {
4490		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4491			btrfs_info(fs_info,
4492			   "balance: force reducing metadata redundancy");
4493		} else {
4494			btrfs_err(fs_info,
4495	"balance: reduces metadata redundancy, use --force if you want this");
4496			ret = -EINVAL;
4497			goto out;
4498		}
4499	}
4500
4501	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4502		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4503		btrfs_warn(fs_info,
4504	"balance: metadata profile %s has lower redundancy than data profile %s",
4505				btrfs_bg_type_to_raid_name(meta_target),
4506				btrfs_bg_type_to_raid_name(data_target));
4507	}
4508
4509	ret = insert_balance_item(fs_info, bctl);
4510	if (ret && ret != -EEXIST)
4511		goto out;
4512
4513	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4514		BUG_ON(ret == -EEXIST);
4515		BUG_ON(fs_info->balance_ctl);
4516		spin_lock(&fs_info->balance_lock);
4517		fs_info->balance_ctl = bctl;
4518		spin_unlock(&fs_info->balance_lock);
4519	} else {
4520		BUG_ON(ret != -EEXIST);
4521		spin_lock(&fs_info->balance_lock);
4522		update_balance_args(bctl);
4523		spin_unlock(&fs_info->balance_lock);
4524	}
4525
4526	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4528	describe_balance_start_or_resume(fs_info);
4529	mutex_unlock(&fs_info->balance_mutex);
4530
4531	ret = __btrfs_balance(fs_info);
4532
4533	mutex_lock(&fs_info->balance_mutex);
4534	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4535		btrfs_info(fs_info, "balance: paused");
4536		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4537		paused = true;
4538	}
4539	/*
4540	 * Balance can be canceled by:
4541	 *
4542	 * - Regular cancel request
4543	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4544	 *
4545	 * - Fatal signal to "btrfs" process
4546	 *   Either the signal caught by wait_reserve_ticket() and callers
4547	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4548	 *   got -ECANCELED.
4549	 *   Either way, in this case balance_cancel_req = 0, and
4550	 *   ret == -EINTR or ret == -ECANCELED.
4551	 *
4552	 * So here we only check the return value to catch canceled balance.
4553	 */
4554	else if (ret == -ECANCELED || ret == -EINTR)
4555		btrfs_info(fs_info, "balance: canceled");
4556	else
4557		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4558
4559	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4560
4561	if (bargs) {
4562		memset(bargs, 0, sizeof(*bargs));
4563		btrfs_update_ioctl_balance_args(fs_info, bargs);
4564	}
4565
4566	/* We didn't pause, we can clean everything up. */
4567	if (!paused) {
4568		reset_balance_state(fs_info);
4569		btrfs_exclop_finish(fs_info);
4570	}
4571
4572	wake_up(&fs_info->balance_wait_q);
4573
4574	return ret;
4575out:
4576	if (bctl->flags & BTRFS_BALANCE_RESUME)
4577		reset_balance_state(fs_info);
4578	else
4579		kfree(bctl);
4580	btrfs_exclop_finish(fs_info);
4581
4582	return ret;
4583}
4584
4585static int balance_kthread(void *data)
4586{
4587	struct btrfs_fs_info *fs_info = data;
4588	int ret = 0;
4589
4590	sb_start_write(fs_info->sb);
4591	mutex_lock(&fs_info->balance_mutex);
4592	if (fs_info->balance_ctl)
4593		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4594	mutex_unlock(&fs_info->balance_mutex);
4595	sb_end_write(fs_info->sb);
4596
4597	return ret;
4598}
4599
4600int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4601{
4602	struct task_struct *tsk;
4603
4604	mutex_lock(&fs_info->balance_mutex);
4605	if (!fs_info->balance_ctl) {
4606		mutex_unlock(&fs_info->balance_mutex);
4607		return 0;
4608	}
4609	mutex_unlock(&fs_info->balance_mutex);
4610
4611	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4612		btrfs_info(fs_info, "balance: resume skipped");
4613		return 0;
4614	}
4615
4616	spin_lock(&fs_info->super_lock);
4617	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4618	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4619	spin_unlock(&fs_info->super_lock);
4620	/*
4621	 * A ro->rw remount sequence should continue with the paused balance
4622	 * regardless of who pauses it, system or the user as of now, so set
4623	 * the resume flag.
4624	 */
4625	spin_lock(&fs_info->balance_lock);
4626	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4627	spin_unlock(&fs_info->balance_lock);
4628
4629	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4630	return PTR_ERR_OR_ZERO(tsk);
4631}
4632
4633int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4634{
4635	struct btrfs_balance_control *bctl;
4636	struct btrfs_balance_item *item;
4637	struct btrfs_disk_balance_args disk_bargs;
4638	struct btrfs_path *path;
4639	struct extent_buffer *leaf;
4640	struct btrfs_key key;
4641	int ret;
4642
4643	path = btrfs_alloc_path();
4644	if (!path)
4645		return -ENOMEM;
4646
4647	key.objectid = BTRFS_BALANCE_OBJECTID;
4648	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4649	key.offset = 0;
4650
4651	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4652	if (ret < 0)
4653		goto out;
4654	if (ret > 0) { /* ret = -ENOENT; */
4655		ret = 0;
4656		goto out;
4657	}
4658
4659	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4660	if (!bctl) {
4661		ret = -ENOMEM;
4662		goto out;
4663	}
4664
4665	leaf = path->nodes[0];
4666	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4667
4668	bctl->flags = btrfs_balance_flags(leaf, item);
4669	bctl->flags |= BTRFS_BALANCE_RESUME;
4670
4671	btrfs_balance_data(leaf, item, &disk_bargs);
4672	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4673	btrfs_balance_meta(leaf, item, &disk_bargs);
4674	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4675	btrfs_balance_sys(leaf, item, &disk_bargs);
4676	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4677
4678	/*
4679	 * This should never happen, as the paused balance state is recovered
4680	 * during mount without any chance of other exclusive ops to collide.
4681	 *
4682	 * This gives the exclusive op status to balance and keeps in paused
4683	 * state until user intervention (cancel or umount). If the ownership
4684	 * cannot be assigned, show a message but do not fail. The balance
4685	 * is in a paused state and must have fs_info::balance_ctl properly
4686	 * set up.
4687	 */
4688	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4689		btrfs_warn(fs_info,
4690	"balance: cannot set exclusive op status, resume manually");
4691
4692	btrfs_release_path(path);
4693
4694	mutex_lock(&fs_info->balance_mutex);
4695	BUG_ON(fs_info->balance_ctl);
4696	spin_lock(&fs_info->balance_lock);
4697	fs_info->balance_ctl = bctl;
4698	spin_unlock(&fs_info->balance_lock);
4699	mutex_unlock(&fs_info->balance_mutex);
4700out:
4701	btrfs_free_path(path);
4702	return ret;
4703}
4704
4705int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4706{
4707	int ret = 0;
4708
4709	mutex_lock(&fs_info->balance_mutex);
4710	if (!fs_info->balance_ctl) {
4711		mutex_unlock(&fs_info->balance_mutex);
4712		return -ENOTCONN;
4713	}
4714
4715	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4716		atomic_inc(&fs_info->balance_pause_req);
4717		mutex_unlock(&fs_info->balance_mutex);
4718
4719		wait_event(fs_info->balance_wait_q,
4720			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4721
4722		mutex_lock(&fs_info->balance_mutex);
4723		/* we are good with balance_ctl ripped off from under us */
4724		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725		atomic_dec(&fs_info->balance_pause_req);
4726	} else {
4727		ret = -ENOTCONN;
4728	}
4729
4730	mutex_unlock(&fs_info->balance_mutex);
4731	return ret;
4732}
4733
4734int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4735{
4736	mutex_lock(&fs_info->balance_mutex);
4737	if (!fs_info->balance_ctl) {
4738		mutex_unlock(&fs_info->balance_mutex);
4739		return -ENOTCONN;
4740	}
4741
4742	/*
4743	 * A paused balance with the item stored on disk can be resumed at
4744	 * mount time if the mount is read-write. Otherwise it's still paused
4745	 * and we must not allow cancelling as it deletes the item.
4746	 */
4747	if (sb_rdonly(fs_info->sb)) {
4748		mutex_unlock(&fs_info->balance_mutex);
4749		return -EROFS;
4750	}
4751
4752	atomic_inc(&fs_info->balance_cancel_req);
4753	/*
4754	 * if we are running just wait and return, balance item is
4755	 * deleted in btrfs_balance in this case
4756	 */
4757	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4758		mutex_unlock(&fs_info->balance_mutex);
4759		wait_event(fs_info->balance_wait_q,
4760			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4761		mutex_lock(&fs_info->balance_mutex);
4762	} else {
4763		mutex_unlock(&fs_info->balance_mutex);
4764		/*
4765		 * Lock released to allow other waiters to continue, we'll
4766		 * reexamine the status again.
4767		 */
4768		mutex_lock(&fs_info->balance_mutex);
4769
4770		if (fs_info->balance_ctl) {
4771			reset_balance_state(fs_info);
4772			btrfs_exclop_finish(fs_info);
4773			btrfs_info(fs_info, "balance: canceled");
4774		}
4775	}
4776
4777	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
 
4778	atomic_dec(&fs_info->balance_cancel_req);
4779	mutex_unlock(&fs_info->balance_mutex);
4780	return 0;
4781}
4782
4783int btrfs_uuid_scan_kthread(void *data)
4784{
4785	struct btrfs_fs_info *fs_info = data;
4786	struct btrfs_root *root = fs_info->tree_root;
4787	struct btrfs_key key;
4788	struct btrfs_path *path = NULL;
4789	int ret = 0;
4790	struct extent_buffer *eb;
4791	int slot;
4792	struct btrfs_root_item root_item;
4793	u32 item_size;
4794	struct btrfs_trans_handle *trans = NULL;
4795	bool closing = false;
4796
4797	path = btrfs_alloc_path();
4798	if (!path) {
4799		ret = -ENOMEM;
4800		goto out;
4801	}
4802
4803	key.objectid = 0;
4804	key.type = BTRFS_ROOT_ITEM_KEY;
4805	key.offset = 0;
4806
4807	while (1) {
4808		if (btrfs_fs_closing(fs_info)) {
4809			closing = true;
4810			break;
4811		}
4812		ret = btrfs_search_forward(root, &key, path,
4813				BTRFS_OLDEST_GENERATION);
4814		if (ret) {
4815			if (ret > 0)
4816				ret = 0;
4817			break;
4818		}
4819
4820		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4821		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4822		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4823		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4824			goto skip;
4825
4826		eb = path->nodes[0];
4827		slot = path->slots[0];
4828		item_size = btrfs_item_size(eb, slot);
4829		if (item_size < sizeof(root_item))
4830			goto skip;
4831
4832		read_extent_buffer(eb, &root_item,
4833				   btrfs_item_ptr_offset(eb, slot),
4834				   (int)sizeof(root_item));
4835		if (btrfs_root_refs(&root_item) == 0)
4836			goto skip;
4837
4838		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4839		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4840			if (trans)
4841				goto update_tree;
4842
4843			btrfs_release_path(path);
4844			/*
4845			 * 1 - subvol uuid item
4846			 * 1 - received_subvol uuid item
4847			 */
4848			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4849			if (IS_ERR(trans)) {
4850				ret = PTR_ERR(trans);
4851				break;
4852			}
4853			continue;
4854		} else {
4855			goto skip;
4856		}
4857update_tree:
4858		btrfs_release_path(path);
4859		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4860			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4861						  BTRFS_UUID_KEY_SUBVOL,
4862						  key.objectid);
4863			if (ret < 0) {
4864				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4865					ret);
4866				break;
4867			}
4868		}
4869
4870		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4871			ret = btrfs_uuid_tree_add(trans,
4872						  root_item.received_uuid,
4873						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4874						  key.objectid);
4875			if (ret < 0) {
4876				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4877					ret);
4878				break;
4879			}
4880		}
4881
4882skip:
4883		btrfs_release_path(path);
4884		if (trans) {
4885			ret = btrfs_end_transaction(trans);
4886			trans = NULL;
4887			if (ret)
4888				break;
4889		}
4890
4891		if (key.offset < (u64)-1) {
4892			key.offset++;
4893		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4894			key.offset = 0;
4895			key.type = BTRFS_ROOT_ITEM_KEY;
4896		} else if (key.objectid < (u64)-1) {
4897			key.offset = 0;
4898			key.type = BTRFS_ROOT_ITEM_KEY;
4899			key.objectid++;
4900		} else {
4901			break;
4902		}
4903		cond_resched();
4904	}
4905
4906out:
4907	btrfs_free_path(path);
4908	if (trans && !IS_ERR(trans))
4909		btrfs_end_transaction(trans);
4910	if (ret)
4911		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4912	else if (!closing)
4913		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4914	up(&fs_info->uuid_tree_rescan_sem);
4915	return 0;
4916}
4917
4918int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4919{
4920	struct btrfs_trans_handle *trans;
4921	struct btrfs_root *tree_root = fs_info->tree_root;
4922	struct btrfs_root *uuid_root;
4923	struct task_struct *task;
4924	int ret;
4925
4926	/*
4927	 * 1 - root node
4928	 * 1 - root item
4929	 */
4930	trans = btrfs_start_transaction(tree_root, 2);
4931	if (IS_ERR(trans))
4932		return PTR_ERR(trans);
4933
4934	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4935	if (IS_ERR(uuid_root)) {
4936		ret = PTR_ERR(uuid_root);
4937		btrfs_abort_transaction(trans, ret);
4938		btrfs_end_transaction(trans);
4939		return ret;
4940	}
4941
4942	fs_info->uuid_root = uuid_root;
4943
4944	ret = btrfs_commit_transaction(trans);
4945	if (ret)
4946		return ret;
4947
4948	down(&fs_info->uuid_tree_rescan_sem);
4949	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4950	if (IS_ERR(task)) {
4951		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4952		btrfs_warn(fs_info, "failed to start uuid_scan task");
4953		up(&fs_info->uuid_tree_rescan_sem);
4954		return PTR_ERR(task);
4955	}
4956
4957	return 0;
4958}
4959
4960/*
4961 * shrinking a device means finding all of the device extents past
4962 * the new size, and then following the back refs to the chunks.
4963 * The chunk relocation code actually frees the device extent
4964 */
4965int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4966{
4967	struct btrfs_fs_info *fs_info = device->fs_info;
4968	struct btrfs_root *root = fs_info->dev_root;
4969	struct btrfs_trans_handle *trans;
4970	struct btrfs_dev_extent *dev_extent = NULL;
4971	struct btrfs_path *path;
4972	u64 length;
4973	u64 chunk_offset;
4974	int ret;
4975	int slot;
4976	int failed = 0;
4977	bool retried = false;
4978	struct extent_buffer *l;
4979	struct btrfs_key key;
4980	struct btrfs_super_block *super_copy = fs_info->super_copy;
4981	u64 old_total = btrfs_super_total_bytes(super_copy);
4982	u64 old_size = btrfs_device_get_total_bytes(device);
4983	u64 diff;
4984	u64 start;
4985	u64 free_diff = 0;
4986
4987	new_size = round_down(new_size, fs_info->sectorsize);
4988	start = new_size;
4989	diff = round_down(old_size - new_size, fs_info->sectorsize);
4990
4991	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4992		return -EINVAL;
4993
4994	path = btrfs_alloc_path();
4995	if (!path)
4996		return -ENOMEM;
4997
4998	path->reada = READA_BACK;
4999
5000	trans = btrfs_start_transaction(root, 0);
5001	if (IS_ERR(trans)) {
5002		btrfs_free_path(path);
5003		return PTR_ERR(trans);
5004	}
5005
5006	mutex_lock(&fs_info->chunk_mutex);
5007
5008	btrfs_device_set_total_bytes(device, new_size);
5009	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5010		device->fs_devices->total_rw_bytes -= diff;
5011
5012		/*
5013		 * The new free_chunk_space is new_size - used, so we have to
5014		 * subtract the delta of the old free_chunk_space which included
5015		 * old_size - used.  If used > new_size then just subtract this
5016		 * entire device's free space.
5017		 */
5018		if (device->bytes_used < new_size)
5019			free_diff = (old_size - device->bytes_used) -
5020				    (new_size - device->bytes_used);
5021		else
5022			free_diff = old_size - device->bytes_used;
5023		atomic64_sub(free_diff, &fs_info->free_chunk_space);
5024	}
5025
5026	/*
5027	 * Once the device's size has been set to the new size, ensure all
5028	 * in-memory chunks are synced to disk so that the loop below sees them
5029	 * and relocates them accordingly.
5030	 */
5031	if (contains_pending_extent(device, &start, diff)) {
5032		mutex_unlock(&fs_info->chunk_mutex);
5033		ret = btrfs_commit_transaction(trans);
5034		if (ret)
5035			goto done;
5036	} else {
5037		mutex_unlock(&fs_info->chunk_mutex);
5038		btrfs_end_transaction(trans);
5039	}
5040
5041again:
5042	key.objectid = device->devid;
5043	key.offset = (u64)-1;
5044	key.type = BTRFS_DEV_EXTENT_KEY;
5045
5046	do {
5047		mutex_lock(&fs_info->reclaim_bgs_lock);
5048		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5049		if (ret < 0) {
5050			mutex_unlock(&fs_info->reclaim_bgs_lock);
5051			goto done;
5052		}
5053
5054		ret = btrfs_previous_item(root, path, 0, key.type);
5055		if (ret) {
5056			mutex_unlock(&fs_info->reclaim_bgs_lock);
5057			if (ret < 0)
5058				goto done;
5059			ret = 0;
5060			btrfs_release_path(path);
5061			break;
5062		}
5063
5064		l = path->nodes[0];
5065		slot = path->slots[0];
5066		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5067
5068		if (key.objectid != device->devid) {
5069			mutex_unlock(&fs_info->reclaim_bgs_lock);
5070			btrfs_release_path(path);
5071			break;
5072		}
5073
5074		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5075		length = btrfs_dev_extent_length(l, dev_extent);
5076
5077		if (key.offset + length <= new_size) {
5078			mutex_unlock(&fs_info->reclaim_bgs_lock);
5079			btrfs_release_path(path);
5080			break;
5081		}
5082
5083		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5084		btrfs_release_path(path);
5085
5086		/*
5087		 * We may be relocating the only data chunk we have,
5088		 * which could potentially end up with losing data's
5089		 * raid profile, so lets allocate an empty one in
5090		 * advance.
5091		 */
5092		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5093		if (ret < 0) {
5094			mutex_unlock(&fs_info->reclaim_bgs_lock);
5095			goto done;
5096		}
5097
5098		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5099		mutex_unlock(&fs_info->reclaim_bgs_lock);
5100		if (ret == -ENOSPC) {
5101			failed++;
5102		} else if (ret) {
5103			if (ret == -ETXTBSY) {
5104				btrfs_warn(fs_info,
5105		   "could not shrink block group %llu due to active swapfile",
5106					   chunk_offset);
5107			}
5108			goto done;
5109		}
5110	} while (key.offset-- > 0);
5111
5112	if (failed && !retried) {
5113		failed = 0;
5114		retried = true;
5115		goto again;
5116	} else if (failed && retried) {
5117		ret = -ENOSPC;
5118		goto done;
5119	}
5120
5121	/* Shrinking succeeded, else we would be at "done". */
5122	trans = btrfs_start_transaction(root, 0);
5123	if (IS_ERR(trans)) {
5124		ret = PTR_ERR(trans);
5125		goto done;
5126	}
5127
5128	mutex_lock(&fs_info->chunk_mutex);
5129	/* Clear all state bits beyond the shrunk device size */
5130	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5131			  CHUNK_STATE_MASK);
5132
5133	btrfs_device_set_disk_total_bytes(device, new_size);
5134	if (list_empty(&device->post_commit_list))
5135		list_add_tail(&device->post_commit_list,
5136			      &trans->transaction->dev_update_list);
5137
5138	WARN_ON(diff > old_total);
5139	btrfs_set_super_total_bytes(super_copy,
5140			round_down(old_total - diff, fs_info->sectorsize));
5141	mutex_unlock(&fs_info->chunk_mutex);
5142
5143	btrfs_reserve_chunk_metadata(trans, false);
5144	/* Now btrfs_update_device() will change the on-disk size. */
5145	ret = btrfs_update_device(trans, device);
5146	btrfs_trans_release_chunk_metadata(trans);
5147	if (ret < 0) {
5148		btrfs_abort_transaction(trans, ret);
5149		btrfs_end_transaction(trans);
5150	} else {
5151		ret = btrfs_commit_transaction(trans);
5152	}
5153done:
5154	btrfs_free_path(path);
5155	if (ret) {
5156		mutex_lock(&fs_info->chunk_mutex);
5157		btrfs_device_set_total_bytes(device, old_size);
5158		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5159			device->fs_devices->total_rw_bytes += diff;
5160			atomic64_add(free_diff, &fs_info->free_chunk_space);
5161		}
5162		mutex_unlock(&fs_info->chunk_mutex);
5163	}
5164	return ret;
5165}
5166
5167static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5168			   struct btrfs_key *key,
5169			   struct btrfs_chunk *chunk, int item_size)
5170{
5171	struct btrfs_super_block *super_copy = fs_info->super_copy;
5172	struct btrfs_disk_key disk_key;
5173	u32 array_size;
5174	u8 *ptr;
5175
5176	lockdep_assert_held(&fs_info->chunk_mutex);
5177
5178	array_size = btrfs_super_sys_array_size(super_copy);
5179	if (array_size + item_size + sizeof(disk_key)
5180			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5181		return -EFBIG;
5182
5183	ptr = super_copy->sys_chunk_array + array_size;
5184	btrfs_cpu_key_to_disk(&disk_key, key);
5185	memcpy(ptr, &disk_key, sizeof(disk_key));
5186	ptr += sizeof(disk_key);
5187	memcpy(ptr, chunk, item_size);
5188	item_size += sizeof(disk_key);
5189	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5190
5191	return 0;
5192}
5193
5194/*
5195 * sort the devices in descending order by max_avail, total_avail
5196 */
5197static int btrfs_cmp_device_info(const void *a, const void *b)
5198{
5199	const struct btrfs_device_info *di_a = a;
5200	const struct btrfs_device_info *di_b = b;
5201
5202	if (di_a->max_avail > di_b->max_avail)
5203		return -1;
5204	if (di_a->max_avail < di_b->max_avail)
5205		return 1;
5206	if (di_a->total_avail > di_b->total_avail)
5207		return -1;
5208	if (di_a->total_avail < di_b->total_avail)
5209		return 1;
5210	return 0;
5211}
5212
5213static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5214{
5215	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5216		return;
5217
5218	btrfs_set_fs_incompat(info, RAID56);
5219}
5220
5221static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5222{
5223	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5224		return;
5225
5226	btrfs_set_fs_incompat(info, RAID1C34);
5227}
5228
5229/*
5230 * Structure used internally for btrfs_create_chunk() function.
5231 * Wraps needed parameters.
5232 */
5233struct alloc_chunk_ctl {
5234	u64 start;
5235	u64 type;
5236	/* Total number of stripes to allocate */
5237	int num_stripes;
5238	/* sub_stripes info for map */
5239	int sub_stripes;
5240	/* Stripes per device */
5241	int dev_stripes;
5242	/* Maximum number of devices to use */
5243	int devs_max;
5244	/* Minimum number of devices to use */
5245	int devs_min;
5246	/* ndevs has to be a multiple of this */
5247	int devs_increment;
5248	/* Number of copies */
5249	int ncopies;
5250	/* Number of stripes worth of bytes to store parity information */
5251	int nparity;
5252	u64 max_stripe_size;
5253	u64 max_chunk_size;
5254	u64 dev_extent_min;
5255	u64 stripe_size;
5256	u64 chunk_size;
5257	int ndevs;
5258};
5259
5260static void init_alloc_chunk_ctl_policy_regular(
5261				struct btrfs_fs_devices *fs_devices,
5262				struct alloc_chunk_ctl *ctl)
5263{
5264	struct btrfs_space_info *space_info;
5265
5266	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5267	ASSERT(space_info);
5268
5269	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5270	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5271
5272	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5273		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5274
5275	/* We don't want a chunk larger than 10% of writable space */
5276	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5277				  ctl->max_chunk_size);
5278	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5279}
5280
5281static void init_alloc_chunk_ctl_policy_zoned(
5282				      struct btrfs_fs_devices *fs_devices,
5283				      struct alloc_chunk_ctl *ctl)
5284{
5285	u64 zone_size = fs_devices->fs_info->zone_size;
5286	u64 limit;
5287	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5288	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5289	u64 min_chunk_size = min_data_stripes * zone_size;
5290	u64 type = ctl->type;
5291
5292	ctl->max_stripe_size = zone_size;
5293	if (type & BTRFS_BLOCK_GROUP_DATA) {
5294		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5295						 zone_size);
5296	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5297		ctl->max_chunk_size = ctl->max_stripe_size;
5298	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5300		ctl->devs_max = min_t(int, ctl->devs_max,
5301				      BTRFS_MAX_DEVS_SYS_CHUNK);
5302	} else {
5303		BUG();
5304	}
5305
5306	/* We don't want a chunk larger than 10% of writable space */
5307	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5308			       zone_size),
5309		    min_chunk_size);
5310	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5311	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5312}
5313
5314static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5315				 struct alloc_chunk_ctl *ctl)
5316{
5317	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5318
5319	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5320	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5321	ctl->devs_max = btrfs_raid_array[index].devs_max;
5322	if (!ctl->devs_max)
5323		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5324	ctl->devs_min = btrfs_raid_array[index].devs_min;
5325	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5326	ctl->ncopies = btrfs_raid_array[index].ncopies;
5327	ctl->nparity = btrfs_raid_array[index].nparity;
5328	ctl->ndevs = 0;
5329
5330	switch (fs_devices->chunk_alloc_policy) {
5331	case BTRFS_CHUNK_ALLOC_REGULAR:
5332		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5333		break;
5334	case BTRFS_CHUNK_ALLOC_ZONED:
5335		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5336		break;
5337	default:
5338		BUG();
5339	}
5340}
5341
5342static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5343			      struct alloc_chunk_ctl *ctl,
5344			      struct btrfs_device_info *devices_info)
5345{
5346	struct btrfs_fs_info *info = fs_devices->fs_info;
5347	struct btrfs_device *device;
5348	u64 total_avail;
5349	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5350	int ret;
5351	int ndevs = 0;
5352	u64 max_avail;
5353	u64 dev_offset;
5354
5355	/*
5356	 * in the first pass through the devices list, we gather information
5357	 * about the available holes on each device.
5358	 */
5359	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5360		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5361			WARN(1, KERN_ERR
5362			       "BTRFS: read-only device in alloc_list\n");
5363			continue;
5364		}
5365
5366		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5367					&device->dev_state) ||
5368		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5369			continue;
5370
5371		if (device->total_bytes > device->bytes_used)
5372			total_avail = device->total_bytes - device->bytes_used;
5373		else
5374			total_avail = 0;
5375
5376		/* If there is no space on this device, skip it. */
5377		if (total_avail < ctl->dev_extent_min)
5378			continue;
5379
5380		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5381					   &max_avail);
5382		if (ret && ret != -ENOSPC)
5383			return ret;
5384
5385		if (ret == 0)
5386			max_avail = dev_extent_want;
5387
5388		if (max_avail < ctl->dev_extent_min) {
5389			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5390				btrfs_debug(info,
5391			"%s: devid %llu has no free space, have=%llu want=%llu",
5392					    __func__, device->devid, max_avail,
5393					    ctl->dev_extent_min);
5394			continue;
5395		}
5396
5397		if (ndevs == fs_devices->rw_devices) {
5398			WARN(1, "%s: found more than %llu devices\n",
5399			     __func__, fs_devices->rw_devices);
5400			break;
5401		}
5402		devices_info[ndevs].dev_offset = dev_offset;
5403		devices_info[ndevs].max_avail = max_avail;
5404		devices_info[ndevs].total_avail = total_avail;
5405		devices_info[ndevs].dev = device;
5406		++ndevs;
5407	}
5408	ctl->ndevs = ndevs;
5409
5410	/*
5411	 * now sort the devices by hole size / available space
5412	 */
5413	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5414	     btrfs_cmp_device_info, NULL);
5415
5416	return 0;
5417}
5418
5419static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5420				      struct btrfs_device_info *devices_info)
5421{
5422	/* Number of stripes that count for block group size */
5423	int data_stripes;
5424
5425	/*
5426	 * The primary goal is to maximize the number of stripes, so use as
5427	 * many devices as possible, even if the stripes are not maximum sized.
5428	 *
5429	 * The DUP profile stores more than one stripe per device, the
5430	 * max_avail is the total size so we have to adjust.
5431	 */
5432	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5433				   ctl->dev_stripes);
5434	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435
5436	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5437	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5438
5439	/*
5440	 * Use the number of data stripes to figure out how big this chunk is
5441	 * really going to be in terms of logical address space, and compare
5442	 * that answer with the max chunk size. If it's higher, we try to
5443	 * reduce stripe_size.
5444	 */
5445	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5446		/*
5447		 * Reduce stripe_size, round it up to a 16MB boundary again and
5448		 * then use it, unless it ends up being even bigger than the
5449		 * previous value we had already.
5450		 */
5451		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5452							data_stripes), SZ_16M),
5453				       ctl->stripe_size);
5454	}
5455
5456	/* Stripe size should not go beyond 1G. */
5457	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5458
5459	/* Align to BTRFS_STRIPE_LEN */
5460	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5461	ctl->chunk_size = ctl->stripe_size * data_stripes;
5462
5463	return 0;
5464}
5465
5466static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5467				    struct btrfs_device_info *devices_info)
5468{
5469	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5470	/* Number of stripes that count for block group size */
5471	int data_stripes;
5472
5473	/*
5474	 * It should hold because:
5475	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5476	 */
5477	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5478
5479	ctl->stripe_size = zone_size;
5480	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5481	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5482
5483	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5484	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5485		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5486					     ctl->stripe_size) + ctl->nparity,
5487				     ctl->dev_stripes);
5488		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5489		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5490		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5491	}
5492
5493	ctl->chunk_size = ctl->stripe_size * data_stripes;
5494
5495	return 0;
5496}
5497
5498static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5499			      struct alloc_chunk_ctl *ctl,
5500			      struct btrfs_device_info *devices_info)
5501{
5502	struct btrfs_fs_info *info = fs_devices->fs_info;
5503
5504	/*
5505	 * Round down to number of usable stripes, devs_increment can be any
5506	 * number so we can't use round_down() that requires power of 2, while
5507	 * rounddown is safe.
5508	 */
5509	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5510
5511	if (ctl->ndevs < ctl->devs_min) {
5512		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5513			btrfs_debug(info,
5514	"%s: not enough devices with free space: have=%d minimum required=%d",
5515				    __func__, ctl->ndevs, ctl->devs_min);
5516		}
5517		return -ENOSPC;
5518	}
5519
5520	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5521
5522	switch (fs_devices->chunk_alloc_policy) {
5523	case BTRFS_CHUNK_ALLOC_REGULAR:
5524		return decide_stripe_size_regular(ctl, devices_info);
5525	case BTRFS_CHUNK_ALLOC_ZONED:
5526		return decide_stripe_size_zoned(ctl, devices_info);
5527	default:
5528		BUG();
5529	}
5530}
5531
5532static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5533{
5534	for (int i = 0; i < map->num_stripes; i++) {
5535		struct btrfs_io_stripe *stripe = &map->stripes[i];
5536		struct btrfs_device *device = stripe->dev;
5537
5538		set_extent_bit(&device->alloc_state, stripe->physical,
5539			       stripe->physical + map->stripe_size - 1,
5540			       bits | EXTENT_NOWAIT, NULL);
5541	}
5542}
5543
5544static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5545{
5546	for (int i = 0; i < map->num_stripes; i++) {
5547		struct btrfs_io_stripe *stripe = &map->stripes[i];
5548		struct btrfs_device *device = stripe->dev;
5549
5550		__clear_extent_bit(&device->alloc_state, stripe->physical,
5551				   stripe->physical + map->stripe_size - 1,
5552				   bits | EXTENT_NOWAIT,
5553				   NULL, NULL);
5554	}
5555}
5556
5557void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5558{
5559	write_lock(&fs_info->mapping_tree_lock);
5560	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5561	RB_CLEAR_NODE(&map->rb_node);
5562	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5563	write_unlock(&fs_info->mapping_tree_lock);
5564
5565	/* Once for the tree reference. */
5566	btrfs_free_chunk_map(map);
5567}
5568
5569EXPORT_FOR_TESTS
5570int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5571{
5572	struct rb_node **p;
5573	struct rb_node *parent = NULL;
5574	bool leftmost = true;
5575
5576	write_lock(&fs_info->mapping_tree_lock);
5577	p = &fs_info->mapping_tree.rb_root.rb_node;
5578	while (*p) {
5579		struct btrfs_chunk_map *entry;
5580
5581		parent = *p;
5582		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5583
5584		if (map->start < entry->start) {
5585			p = &(*p)->rb_left;
5586		} else if (map->start > entry->start) {
5587			p = &(*p)->rb_right;
5588			leftmost = false;
5589		} else {
5590			write_unlock(&fs_info->mapping_tree_lock);
5591			return -EEXIST;
5592		}
5593	}
5594	rb_link_node(&map->rb_node, parent, p);
5595	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5596	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5597	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5598	write_unlock(&fs_info->mapping_tree_lock);
5599
5600	return 0;
5601}
5602
5603EXPORT_FOR_TESTS
5604struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5605{
5606	struct btrfs_chunk_map *map;
5607
5608	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5609	if (!map)
5610		return NULL;
5611
5612	refcount_set(&map->refs, 1);
5613	RB_CLEAR_NODE(&map->rb_node);
5614
5615	return map;
5616}
5617
5618struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5619{
5620	const int size = btrfs_chunk_map_size(map->num_stripes);
5621	struct btrfs_chunk_map *clone;
5622
5623	clone = kmemdup(map, size, gfp);
5624	if (!clone)
5625		return NULL;
5626
5627	refcount_set(&clone->refs, 1);
5628	RB_CLEAR_NODE(&clone->rb_node);
5629
5630	return clone;
5631}
5632
5633static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5634			struct alloc_chunk_ctl *ctl,
5635			struct btrfs_device_info *devices_info)
5636{
5637	struct btrfs_fs_info *info = trans->fs_info;
5638	struct btrfs_chunk_map *map;
 
5639	struct btrfs_block_group *block_group;
 
5640	u64 start = ctl->start;
5641	u64 type = ctl->type;
5642	int ret;
5643	int i;
5644	int j;
5645
5646	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5647	if (!map)
5648		return ERR_PTR(-ENOMEM);
5649
5650	map->start = start;
5651	map->chunk_len = ctl->chunk_size;
5652	map->stripe_size = ctl->stripe_size;
5653	map->type = type;
5654	map->io_align = BTRFS_STRIPE_LEN;
5655	map->io_width = BTRFS_STRIPE_LEN;
5656	map->sub_stripes = ctl->sub_stripes;
5657	map->num_stripes = ctl->num_stripes;
5658
5659	for (i = 0; i < ctl->ndevs; ++i) {
5660		for (j = 0; j < ctl->dev_stripes; ++j) {
5661			int s = i * ctl->dev_stripes + j;
5662			map->stripes[s].dev = devices_info[i].dev;
5663			map->stripes[s].physical = devices_info[i].dev_offset +
5664						   j * ctl->stripe_size;
5665		}
5666	}
 
 
 
 
 
5667
5668	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5669
5670	ret = btrfs_add_chunk_map(info, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5671	if (ret) {
5672		btrfs_free_chunk_map(map);
 
5673		return ERR_PTR(ret);
5674	}
 
5675
5676	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5677	if (IS_ERR(block_group)) {
5678		btrfs_remove_chunk_map(info, map);
5679		return block_group;
5680	}
5681
5682	for (int i = 0; i < map->num_stripes; i++) {
5683		struct btrfs_device *dev = map->stripes[i].dev;
5684
5685		btrfs_device_set_bytes_used(dev,
5686					    dev->bytes_used + ctl->stripe_size);
5687		if (list_empty(&dev->post_commit_list))
5688			list_add_tail(&dev->post_commit_list,
5689				      &trans->transaction->dev_update_list);
5690	}
5691
5692	atomic64_sub(ctl->stripe_size * map->num_stripes,
5693		     &info->free_chunk_space);
5694
 
5695	check_raid56_incompat_flag(info, type);
5696	check_raid1c34_incompat_flag(info, type);
5697
5698	return block_group;
 
 
 
 
 
 
 
 
 
 
 
 
5699}
5700
5701struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5702					    u64 type)
5703{
5704	struct btrfs_fs_info *info = trans->fs_info;
5705	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5706	struct btrfs_device_info *devices_info = NULL;
5707	struct alloc_chunk_ctl ctl;
5708	struct btrfs_block_group *block_group;
5709	int ret;
5710
5711	lockdep_assert_held(&info->chunk_mutex);
5712
5713	if (!alloc_profile_is_valid(type, 0)) {
5714		ASSERT(0);
5715		return ERR_PTR(-EINVAL);
5716	}
5717
5718	if (list_empty(&fs_devices->alloc_list)) {
5719		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5720			btrfs_debug(info, "%s: no writable device", __func__);
5721		return ERR_PTR(-ENOSPC);
5722	}
5723
5724	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5725		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5726		ASSERT(0);
5727		return ERR_PTR(-EINVAL);
5728	}
5729
5730	ctl.start = find_next_chunk(info);
5731	ctl.type = type;
5732	init_alloc_chunk_ctl(fs_devices, &ctl);
5733
5734	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5735			       GFP_NOFS);
5736	if (!devices_info)
5737		return ERR_PTR(-ENOMEM);
5738
5739	ret = gather_device_info(fs_devices, &ctl, devices_info);
5740	if (ret < 0) {
5741		block_group = ERR_PTR(ret);
5742		goto out;
5743	}
5744
5745	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5746	if (ret < 0) {
5747		block_group = ERR_PTR(ret);
5748		goto out;
5749	}
5750
5751	block_group = create_chunk(trans, &ctl, devices_info);
5752
5753out:
5754	kfree(devices_info);
5755	return block_group;
5756}
5757
5758/*
5759 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5760 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5761 * chunks.
5762 *
5763 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5764 * phases.
5765 */
5766int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5767				     struct btrfs_block_group *bg)
5768{
5769	struct btrfs_fs_info *fs_info = trans->fs_info;
5770	struct btrfs_root *chunk_root = fs_info->chunk_root;
5771	struct btrfs_key key;
5772	struct btrfs_chunk *chunk;
5773	struct btrfs_stripe *stripe;
5774	struct btrfs_chunk_map *map;
 
5775	size_t item_size;
5776	int i;
5777	int ret;
5778
5779	/*
5780	 * We take the chunk_mutex for 2 reasons:
5781	 *
5782	 * 1) Updates and insertions in the chunk btree must be done while holding
5783	 *    the chunk_mutex, as well as updating the system chunk array in the
5784	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5785	 *    details;
5786	 *
5787	 * 2) To prevent races with the final phase of a device replace operation
5788	 *    that replaces the device object associated with the map's stripes,
5789	 *    because the device object's id can change at any time during that
5790	 *    final phase of the device replace operation
5791	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5792	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5793	 *    which would cause a failure when updating the device item, which does
5794	 *    not exists, or persisting a stripe of the chunk item with such ID.
5795	 *    Here we can't use the device_list_mutex because our caller already
5796	 *    has locked the chunk_mutex, and the final phase of device replace
5797	 *    acquires both mutexes - first the device_list_mutex and then the
5798	 *    chunk_mutex. Using any of those two mutexes protects us from a
5799	 *    concurrent device replace.
5800	 */
5801	lockdep_assert_held(&fs_info->chunk_mutex);
5802
5803	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5804	if (IS_ERR(map)) {
5805		ret = PTR_ERR(map);
5806		btrfs_abort_transaction(trans, ret);
5807		return ret;
5808	}
5809
 
5810	item_size = btrfs_chunk_item_size(map->num_stripes);
5811
5812	chunk = kzalloc(item_size, GFP_NOFS);
5813	if (!chunk) {
5814		ret = -ENOMEM;
5815		btrfs_abort_transaction(trans, ret);
5816		goto out;
5817	}
5818
5819	for (i = 0; i < map->num_stripes; i++) {
5820		struct btrfs_device *device = map->stripes[i].dev;
5821
5822		ret = btrfs_update_device(trans, device);
5823		if (ret)
5824			goto out;
5825	}
5826
5827	stripe = &chunk->stripe;
5828	for (i = 0; i < map->num_stripes; i++) {
5829		struct btrfs_device *device = map->stripes[i].dev;
5830		const u64 dev_offset = map->stripes[i].physical;
5831
5832		btrfs_set_stack_stripe_devid(stripe, device->devid);
5833		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5834		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5835		stripe++;
5836	}
5837
5838	btrfs_set_stack_chunk_length(chunk, bg->length);
5839	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5840	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5841	btrfs_set_stack_chunk_type(chunk, map->type);
5842	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5843	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5844	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5845	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5846	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5847
5848	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5849	key.type = BTRFS_CHUNK_ITEM_KEY;
5850	key.offset = bg->start;
5851
5852	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5853	if (ret)
5854		goto out;
5855
5856	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5857
5858	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5859		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5860		if (ret)
5861			goto out;
5862	}
5863
5864out:
5865	kfree(chunk);
5866	btrfs_free_chunk_map(map);
5867	return ret;
5868}
5869
5870static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5871{
5872	struct btrfs_fs_info *fs_info = trans->fs_info;
5873	u64 alloc_profile;
5874	struct btrfs_block_group *meta_bg;
5875	struct btrfs_block_group *sys_bg;
5876
5877	/*
5878	 * When adding a new device for sprouting, the seed device is read-only
5879	 * so we must first allocate a metadata and a system chunk. But before
5880	 * adding the block group items to the extent, device and chunk btrees,
5881	 * we must first:
5882	 *
5883	 * 1) Create both chunks without doing any changes to the btrees, as
5884	 *    otherwise we would get -ENOSPC since the block groups from the
5885	 *    seed device are read-only;
5886	 *
5887	 * 2) Add the device item for the new sprout device - finishing the setup
5888	 *    of a new block group requires updating the device item in the chunk
5889	 *    btree, so it must exist when we attempt to do it. The previous step
5890	 *    ensures this does not fail with -ENOSPC.
5891	 *
5892	 * After that we can add the block group items to their btrees:
5893	 * update existing device item in the chunk btree, add a new block group
5894	 * item to the extent btree, add a new chunk item to the chunk btree and
5895	 * finally add the new device extent items to the devices btree.
5896	 */
5897
5898	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5899	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5900	if (IS_ERR(meta_bg))
5901		return PTR_ERR(meta_bg);
5902
5903	alloc_profile = btrfs_system_alloc_profile(fs_info);
5904	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5905	if (IS_ERR(sys_bg))
5906		return PTR_ERR(sys_bg);
5907
5908	return 0;
5909}
5910
5911static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5912{
5913	const int index = btrfs_bg_flags_to_raid_index(map->type);
5914
5915	return btrfs_raid_array[index].tolerated_failures;
5916}
5917
5918bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5919{
5920	struct btrfs_chunk_map *map;
 
5921	int miss_ndevs = 0;
5922	int i;
5923	bool ret = true;
5924
5925	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5926	if (IS_ERR(map))
5927		return false;
5928
 
5929	for (i = 0; i < map->num_stripes; i++) {
5930		if (test_bit(BTRFS_DEV_STATE_MISSING,
5931					&map->stripes[i].dev->dev_state)) {
5932			miss_ndevs++;
5933			continue;
5934		}
5935		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5936					&map->stripes[i].dev->dev_state)) {
5937			ret = false;
5938			goto end;
5939		}
5940	}
5941
5942	/*
5943	 * If the number of missing devices is larger than max errors, we can
5944	 * not write the data into that chunk successfully.
5945	 */
5946	if (miss_ndevs > btrfs_chunk_max_errors(map))
5947		ret = false;
5948end:
5949	btrfs_free_chunk_map(map);
5950	return ret;
5951}
5952
5953void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5954{
5955	write_lock(&fs_info->mapping_tree_lock);
5956	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5957		struct btrfs_chunk_map *map;
5958		struct rb_node *node;
5959
5960		node = rb_first_cached(&fs_info->mapping_tree);
5961		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5962		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5963		RB_CLEAR_NODE(&map->rb_node);
5964		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5965		/* Once for the tree ref. */
5966		btrfs_free_chunk_map(map);
5967		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
 
 
 
 
5968	}
5969	write_unlock(&fs_info->mapping_tree_lock);
5970}
5971
5972int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5973{
5974	struct btrfs_chunk_map *map;
 
5975	enum btrfs_raid_types index;
5976	int ret = 1;
5977
5978	map = btrfs_get_chunk_map(fs_info, logical, len);
5979	if (IS_ERR(map))
5980		/*
5981		 * We could return errors for these cases, but that could get
5982		 * ugly and we'd probably do the same thing which is just not do
5983		 * anything else and exit, so return 1 so the callers don't try
5984		 * to use other copies.
5985		 */
5986		return 1;
5987
 
5988	index = btrfs_bg_flags_to_raid_index(map->type);
5989
5990	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5991	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5992		ret = btrfs_raid_array[index].ncopies;
5993	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5994		ret = 2;
5995	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5996		/*
5997		 * There could be two corrupted data stripes, we need
5998		 * to loop retry in order to rebuild the correct data.
5999		 *
6000		 * Fail a stripe at a time on every retry except the
6001		 * stripe under reconstruction.
6002		 */
6003		ret = map->num_stripes;
6004	btrfs_free_chunk_map(map);
 
 
 
 
 
 
 
6005	return ret;
6006}
6007
6008unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
6009				    u64 logical)
6010{
6011	struct btrfs_chunk_map *map;
 
6012	unsigned long len = fs_info->sectorsize;
6013
6014	if (!btrfs_fs_incompat(fs_info, RAID56))
6015		return len;
6016
6017	map = btrfs_get_chunk_map(fs_info, logical, len);
6018
6019	if (!WARN_ON(IS_ERR(map))) {
 
6020		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6021			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6022		btrfs_free_chunk_map(map);
6023	}
6024	return len;
6025}
6026
6027int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6028{
6029	struct btrfs_chunk_map *map;
 
6030	int ret = 0;
6031
6032	if (!btrfs_fs_incompat(fs_info, RAID56))
6033		return 0;
6034
6035	map = btrfs_get_chunk_map(fs_info, logical, len);
6036
6037	if (!WARN_ON(IS_ERR(map))) {
 
6038		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6039			ret = 1;
6040		btrfs_free_chunk_map(map);
6041	}
6042	return ret;
6043}
6044
6045static int find_live_mirror(struct btrfs_fs_info *fs_info,
6046			    struct btrfs_chunk_map *map, int first,
6047			    int dev_replace_is_ongoing)
6048{
6049	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6050	int i;
6051	int num_stripes;
6052	int preferred_mirror;
6053	int tolerance;
6054	struct btrfs_device *srcdev;
6055
6056	ASSERT((map->type &
6057		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6058
6059	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6060		num_stripes = map->sub_stripes;
6061	else
6062		num_stripes = map->num_stripes;
6063
6064	switch (policy) {
6065	default:
6066		/* Shouldn't happen, just warn and use pid instead of failing */
6067		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6068			      policy);
6069		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
 
6070		fallthrough;
6071	case BTRFS_READ_POLICY_PID:
6072		preferred_mirror = first + (current->pid % num_stripes);
6073		break;
6074	}
6075
6076	if (dev_replace_is_ongoing &&
6077	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6078	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6079		srcdev = fs_info->dev_replace.srcdev;
6080	else
6081		srcdev = NULL;
6082
6083	/*
6084	 * try to avoid the drive that is the source drive for a
6085	 * dev-replace procedure, only choose it if no other non-missing
6086	 * mirror is available
6087	 */
6088	for (tolerance = 0; tolerance < 2; tolerance++) {
6089		if (map->stripes[preferred_mirror].dev->bdev &&
6090		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6091			return preferred_mirror;
6092		for (i = first; i < first + num_stripes; i++) {
6093			if (map->stripes[i].dev->bdev &&
6094			    (tolerance || map->stripes[i].dev != srcdev))
6095				return i;
6096		}
6097	}
6098
6099	/* we couldn't find one that doesn't fail.  Just return something
6100	 * and the io error handling code will clean up eventually
6101	 */
6102	return preferred_mirror;
6103}
6104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6105static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6106						       u64 logical,
6107						       u16 total_stripes)
6108{
6109	struct btrfs_io_context *bioc;
6110
6111	bioc = kzalloc(
6112		 /* The size of btrfs_io_context */
6113		sizeof(struct btrfs_io_context) +
6114		/* Plus the variable array for the stripes */
6115		sizeof(struct btrfs_io_stripe) * (total_stripes),
 
 
 
 
 
 
 
6116		GFP_NOFS);
6117
6118	if (!bioc)
6119		return NULL;
6120
6121	refcount_set(&bioc->refs, 1);
6122
6123	bioc->fs_info = fs_info;
6124	bioc->replace_stripe_src = -1;
6125	bioc->full_stripe_logical = (u64)-1;
6126	bioc->logical = logical;
6127
6128	return bioc;
6129}
6130
6131void btrfs_get_bioc(struct btrfs_io_context *bioc)
6132{
6133	WARN_ON(!refcount_read(&bioc->refs));
6134	refcount_inc(&bioc->refs);
6135}
6136
6137void btrfs_put_bioc(struct btrfs_io_context *bioc)
6138{
6139	if (!bioc)
6140		return;
6141	if (refcount_dec_and_test(&bioc->refs))
6142		kfree(bioc);
6143}
6144
6145/*
6146 * Please note that, discard won't be sent to target device of device
6147 * replace.
6148 */
6149struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6150					       u64 logical, u64 *length_ret,
6151					       u32 *num_stripes)
6152{
6153	struct btrfs_chunk_map *map;
 
6154	struct btrfs_discard_stripe *stripes;
6155	u64 length = *length_ret;
6156	u64 offset;
6157	u32 stripe_nr;
6158	u32 stripe_nr_end;
6159	u32 stripe_cnt;
6160	u64 stripe_end_offset;
 
 
6161	u64 stripe_offset;
6162	u32 stripe_index;
6163	u32 factor = 0;
6164	u32 sub_stripes = 0;
6165	u32 stripes_per_dev = 0;
6166	u32 remaining_stripes = 0;
6167	u32 last_stripe = 0;
6168	int ret;
6169	int i;
6170
6171	map = btrfs_get_chunk_map(fs_info, logical, length);
6172	if (IS_ERR(map))
6173		return ERR_CAST(map);
 
 
6174
6175	/* we don't discard raid56 yet */
6176	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177		ret = -EOPNOTSUPP;
6178		goto out_free_map;
6179	}
6180
6181	offset = logical - map->start;
6182	length = min_t(u64, map->start + map->chunk_len - logical, length);
6183	*length_ret = length;
6184
 
6185	/*
6186	 * stripe_nr counts the total number of stripes we have to stride
6187	 * to get to this block
6188	 */
6189	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6190
6191	/* stripe_offset is the offset of this block in its stripe */
6192	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6193
6194	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6195			BTRFS_STRIPE_LEN_SHIFT;
6196	stripe_cnt = stripe_nr_end - stripe_nr;
6197	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6198			    (offset + length);
6199	/*
6200	 * after this, stripe_nr is the number of stripes on this
6201	 * device we have to walk to find the data, and stripe_index is
6202	 * the number of our device in the stripe array
6203	 */
6204	*num_stripes = 1;
6205	stripe_index = 0;
6206	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6207			 BTRFS_BLOCK_GROUP_RAID10)) {
6208		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6209			sub_stripes = 1;
6210		else
6211			sub_stripes = map->sub_stripes;
6212
6213		factor = map->num_stripes / sub_stripes;
6214		*num_stripes = min_t(u64, map->num_stripes,
6215				    sub_stripes * stripe_cnt);
6216		stripe_index = stripe_nr % factor;
6217		stripe_nr /= factor;
6218		stripe_index *= sub_stripes;
6219
6220		remaining_stripes = stripe_cnt % factor;
6221		stripes_per_dev = stripe_cnt / factor;
6222		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6223	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6224				BTRFS_BLOCK_GROUP_DUP)) {
6225		*num_stripes = map->num_stripes;
6226	} else {
6227		stripe_index = stripe_nr % map->num_stripes;
6228		stripe_nr /= map->num_stripes;
6229	}
6230
6231	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6232	if (!stripes) {
6233		ret = -ENOMEM;
6234		goto out_free_map;
6235	}
6236
6237	for (i = 0; i < *num_stripes; i++) {
6238		stripes[i].physical =
6239			map->stripes[stripe_index].physical +
6240			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6241		stripes[i].dev = map->stripes[stripe_index].dev;
6242
6243		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6244				 BTRFS_BLOCK_GROUP_RAID10)) {
6245			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6246
6247			if (i / sub_stripes < remaining_stripes)
6248				stripes[i].length += BTRFS_STRIPE_LEN;
6249
6250			/*
6251			 * Special for the first stripe and
6252			 * the last stripe:
6253			 *
6254			 * |-------|...|-------|
6255			 *     |----------|
6256			 *    off     end_off
6257			 */
6258			if (i < sub_stripes)
6259				stripes[i].length -= stripe_offset;
6260
6261			if (stripe_index >= last_stripe &&
6262			    stripe_index <= (last_stripe +
6263					     sub_stripes - 1))
6264				stripes[i].length -= stripe_end_offset;
6265
6266			if (i == sub_stripes - 1)
6267				stripe_offset = 0;
6268		} else {
6269			stripes[i].length = length;
6270		}
6271
6272		stripe_index++;
6273		if (stripe_index == map->num_stripes) {
6274			stripe_index = 0;
6275			stripe_nr++;
6276		}
6277	}
6278
6279	btrfs_free_chunk_map(map);
6280	return stripes;
6281out_free_map:
6282	btrfs_free_chunk_map(map);
6283	return ERR_PTR(ret);
6284}
6285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6286static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6287{
6288	struct btrfs_block_group *cache;
6289	bool ret;
6290
6291	/* Non zoned filesystem does not use "to_copy" flag */
6292	if (!btrfs_is_zoned(fs_info))
6293		return false;
6294
6295	cache = btrfs_lookup_block_group(fs_info, logical);
6296
6297	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6298
6299	btrfs_put_block_group(cache);
6300	return ret;
6301}
6302
6303static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6304				      struct btrfs_io_context *bioc,
6305				      struct btrfs_dev_replace *dev_replace,
6306				      u64 logical,
6307				      int *num_stripes_ret, int *max_errors_ret)
6308{
 
6309	u64 srcdev_devid = dev_replace->srcdev->devid;
6310	/*
6311	 * At this stage, num_stripes is still the real number of stripes,
6312	 * excluding the duplicated stripes.
6313	 */
6314	int num_stripes = *num_stripes_ret;
6315	int nr_extra_stripes = 0;
6316	int max_errors = *max_errors_ret;
6317	int i;
6318
6319	/*
6320	 * A block group which has "to_copy" set will eventually be copied by
6321	 * the dev-replace process. We can avoid cloning IO here.
6322	 */
6323	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6324		return;
6325
6326	/*
6327	 * Duplicate the write operations while the dev-replace procedure is
6328	 * running. Since the copying of the old disk to the new disk takes
6329	 * place at run time while the filesystem is mounted writable, the
6330	 * regular write operations to the old disk have to be duplicated to go
6331	 * to the new disk as well.
6332	 *
6333	 * Note that device->missing is handled by the caller, and that the
6334	 * write to the old disk is already set up in the stripes array.
6335	 */
6336	for (i = 0; i < num_stripes; i++) {
6337		struct btrfs_io_stripe *old = &bioc->stripes[i];
6338		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6339
6340		if (old->dev->devid != srcdev_devid)
6341			continue;
6342
6343		new->physical = old->physical;
6344		new->dev = dev_replace->tgtdev;
6345		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6346			bioc->replace_stripe_src = i;
6347		nr_extra_stripes++;
6348	}
6349
6350	/* We can only have at most 2 extra nr_stripes (for DUP). */
6351	ASSERT(nr_extra_stripes <= 2);
6352	/*
6353	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6354	 * replace.
6355	 * If we have 2 extra stripes, only choose the one with smaller physical.
6356	 */
6357	if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6358		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6359		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6360
6361		/* Only DUP can have two extra stripes. */
6362		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6363
6364		/*
6365		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6366		 * The extra stripe would still be there, but won't be accessed.
6367		 */
6368		if (first->physical > second->physical) {
6369			swap(second->physical, first->physical);
6370			swap(second->dev, first->dev);
6371			nr_extra_stripes--;
6372		}
6373	}
6374
6375	*num_stripes_ret = num_stripes + nr_extra_stripes;
6376	*max_errors_ret = max_errors + nr_extra_stripes;
6377	bioc->replace_nr_stripes = nr_extra_stripes;
6378}
6379
6380static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6381			    struct btrfs_io_geometry *io_geom)
6382{
6383	/*
6384	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6385	 * the offset of this block in its stripe.
6386	 */
6387	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6388	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6389	ASSERT(io_geom->stripe_offset < U32_MAX);
6390
6391	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6392		unsigned long full_stripe_len =
6393			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6394
6395		/*
6396		 * For full stripe start, we use previously calculated
6397		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6398		 * STRIPE_LEN.
 
 
6399		 *
6400		 * By this we can avoid u64 division completely.  And we have
6401		 * to go rounddown(), not round_down(), as nr_data_stripes is
6402		 * not ensured to be power of 2.
6403		 */
6404		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6405			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6406
6407		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6408		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6409		/*
6410		 * For writes to RAID56, allow to write a full stripe set, but
6411		 * no straddling of stripe sets.
 
 
 
6412		 */
6413		if (io_geom->op == BTRFS_MAP_WRITE)
6414			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6415	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6416
6417	/*
6418	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6419	 * a single disk).
6420	 */
6421	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6422		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6423	return U64_MAX;
6424}
6425
6426static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6427			 u64 *length, struct btrfs_io_stripe *dst,
6428			 struct btrfs_chunk_map *map,
6429			 struct btrfs_io_geometry *io_geom)
6430{
6431	dst->dev = map->stripes[io_geom->stripe_index].dev;
6432
6433	if (io_geom->op == BTRFS_MAP_READ &&
6434	    btrfs_need_stripe_tree_update(fs_info, map->type))
6435		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6436						    map->type,
6437						    io_geom->stripe_index, dst);
6438
6439	dst->physical = map->stripes[io_geom->stripe_index].physical +
6440			io_geom->stripe_offset +
6441			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6442	return 0;
6443}
6444
6445static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6446				const struct btrfs_io_stripe *smap,
6447				const struct btrfs_chunk_map *map,
6448				int num_alloc_stripes,
6449				enum btrfs_map_op op, int mirror_num)
6450{
6451	if (!smap)
6452		return false;
6453
6454	if (num_alloc_stripes != 1)
6455		return false;
6456
6457	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6458		return false;
6459
6460	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6461		return false;
6462
6463	return true;
6464}
6465
6466static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6467			     struct btrfs_io_geometry *io_geom)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6468{
6469	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6470	io_geom->stripe_nr /= map->num_stripes;
6471	if (io_geom->op == BTRFS_MAP_READ)
6472		io_geom->mirror_num = 1;
6473}
6474
6475static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6476			     struct btrfs_chunk_map *map,
6477			     struct btrfs_io_geometry *io_geom,
6478			     bool dev_replace_is_ongoing)
6479{
6480	if (io_geom->op != BTRFS_MAP_READ) {
6481		io_geom->num_stripes = map->num_stripes;
6482		return;
6483	}
6484
6485	if (io_geom->mirror_num) {
6486		io_geom->stripe_index = io_geom->mirror_num - 1;
6487		return;
6488	}
6489
6490	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6491						 dev_replace_is_ongoing);
6492	io_geom->mirror_num = io_geom->stripe_index + 1;
6493}
 
 
 
 
 
 
 
6494
6495static void map_blocks_dup(const struct btrfs_chunk_map *map,
6496			   struct btrfs_io_geometry *io_geom)
6497{
6498	if (io_geom->op != BTRFS_MAP_READ) {
6499		io_geom->num_stripes = map->num_stripes;
6500		return;
6501	}
6502
6503	if (io_geom->mirror_num) {
6504		io_geom->stripe_index = io_geom->mirror_num - 1;
6505		return;
6506	}
6507
6508	io_geom->mirror_num = 1;
6509}
 
 
 
 
6510
6511static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6512			      struct btrfs_chunk_map *map,
6513			      struct btrfs_io_geometry *io_geom,
6514			      bool dev_replace_is_ongoing)
6515{
6516	u32 factor = map->num_stripes / map->sub_stripes;
6517	int old_stripe_index;
6518
6519	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6520	io_geom->stripe_nr /= factor;
6521
6522	if (io_geom->op != BTRFS_MAP_READ) {
6523		io_geom->num_stripes = map->sub_stripes;
6524		return;
 
 
 
 
 
 
 
6525	}
6526
6527	if (io_geom->mirror_num) {
6528		io_geom->stripe_index += io_geom->mirror_num - 1;
6529		return;
6530	}
 
 
6531
6532	old_stripe_index = io_geom->stripe_index;
6533	io_geom->stripe_index = find_live_mirror(fs_info, map,
6534						 io_geom->stripe_index,
6535						 dev_replace_is_ongoing);
6536	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6537}
6538
6539static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6540				    struct btrfs_io_geometry *io_geom,
6541				    u64 logical, u64 *length)
6542{
6543	int data_stripes = nr_data_stripes(map);
6544
6545	/*
6546	 * Needs full stripe mapping.
6547	 *
6548	 * Push stripe_nr back to the start of the full stripe For those cases
6549	 * needing a full stripe, @stripe_nr is the full stripe number.
6550	 *
6551	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6552	 * that can be expensive.  Here we just divide @stripe_nr with
6553	 * @data_stripes.
6554	 */
6555	io_geom->stripe_nr /= data_stripes;
6556
6557	/* RAID[56] write or recovery. Return all stripes */
6558	io_geom->num_stripes = map->num_stripes;
6559	io_geom->max_errors = btrfs_chunk_max_errors(map);
6560
6561	/* Return the length to the full stripe end. */
6562	*length = min(logical + *length,
6563		      io_geom->raid56_full_stripe_start + map->start +
6564		      btrfs_stripe_nr_to_offset(data_stripes)) -
6565		logical;
6566	io_geom->stripe_index = 0;
6567	io_geom->stripe_offset = 0;
6568}
6569
6570static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6571				   struct btrfs_io_geometry *io_geom)
6572{
6573	int data_stripes = nr_data_stripes(map);
6574
6575	ASSERT(io_geom->mirror_num <= 1);
6576	/* Just grab the data stripe directly. */
6577	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6578	io_geom->stripe_nr /= data_stripes;
6579
6580	/* We distribute the parity blocks across stripes. */
6581	io_geom->stripe_index =
6582		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6583
6584	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6585		io_geom->mirror_num = 1;
6586}
6587
6588static void map_blocks_single(const struct btrfs_chunk_map *map,
6589			      struct btrfs_io_geometry *io_geom)
6590{
6591	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6592	io_geom->stripe_nr /= map->num_stripes;
6593	io_geom->mirror_num = io_geom->stripe_index + 1;
6594}
6595
6596/*
6597 * Map one logical range to one or more physical ranges.
6598 *
6599 * @length:		(Mandatory) mapped length of this run.
6600 *			One logical range can be split into different segments
6601 *			due to factors like zones and RAID0/5/6/10 stripe
6602 *			boundaries.
6603 *
6604 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6605 *			which has one or more physical ranges (btrfs_io_stripe)
6606 *			recorded inside.
6607 *			Caller should call btrfs_put_bioc() to free it after use.
6608 *
6609 * @smap:		(Optional) single physical range optimization.
6610 *			If the map request can be fulfilled by one single
6611 *			physical range, and this is parameter is not NULL,
6612 *			then @bioc_ret would be NULL, and @smap would be
6613 *			updated.
6614 *
6615 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6616 *			value is 0.
6617 *
6618 *			Mirror number 0 means to choose any live mirrors.
6619 *
6620 *			For non-RAID56 profiles, non-zero mirror_num means
6621 *			the Nth mirror. (e.g. mirror_num 1 means the first
6622 *			copy).
6623 *
6624 *			For RAID56 profile, mirror 1 means rebuild from P and
6625 *			the remaining data stripes.
6626 *
6627 *			For RAID6 profile, mirror > 2 means mark another
6628 *			data/P stripe error and rebuild from the remaining
6629 *			stripes..
6630 */
6631int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6632		    u64 logical, u64 *length,
6633		    struct btrfs_io_context **bioc_ret,
6634		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6635{
6636	struct btrfs_chunk_map *map;
6637	struct btrfs_io_geometry io_geom = { 0 };
6638	u64 map_offset;
6639	int i;
6640	int ret = 0;
6641	int num_copies;
 
 
 
6642	struct btrfs_io_context *bioc = NULL;
6643	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6644	int dev_replace_is_ongoing = 0;
6645	u16 num_alloc_stripes;
6646	u64 max_len;
 
 
 
6647
6648	ASSERT(bioc_ret);
 
6649
6650	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6651	io_geom.num_stripes = 1;
6652	io_geom.stripe_index = 0;
6653	io_geom.op = op;
6654
6655	num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6656	if (io_geom.mirror_num > num_copies)
6657		return -EINVAL;
 
 
6658
6659	map = btrfs_get_chunk_map(fs_info, logical, *length);
6660	if (IS_ERR(map))
6661		return PTR_ERR(map);
6662
6663	map_offset = logical - map->start;
6664	io_geom.raid56_full_stripe_start = (u64)-1;
6665	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6666	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6667
6668	down_read(&dev_replace->rwsem);
6669	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6670	/*
6671	 * Hold the semaphore for read during the whole operation, write is
6672	 * requested at commit time but must wait.
6673	 */
6674	if (!dev_replace_is_ongoing)
6675		up_read(&dev_replace->rwsem);
6676
6677	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6678	case BTRFS_BLOCK_GROUP_RAID0:
6679		map_blocks_raid0(map, &io_geom);
6680		break;
6681	case BTRFS_BLOCK_GROUP_RAID1:
6682	case BTRFS_BLOCK_GROUP_RAID1C3:
6683	case BTRFS_BLOCK_GROUP_RAID1C4:
6684		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6685		break;
6686	case BTRFS_BLOCK_GROUP_DUP:
6687		map_blocks_dup(map, &io_geom);
6688		break;
6689	case BTRFS_BLOCK_GROUP_RAID10:
6690		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6691		break;
6692	case BTRFS_BLOCK_GROUP_RAID5:
6693	case BTRFS_BLOCK_GROUP_RAID6:
6694		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6695			map_blocks_raid56_write(map, &io_geom, logical, length);
6696		else
6697			map_blocks_raid56_read(map, &io_geom);
6698		break;
6699	default:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6700		/*
6701		 * After this, stripe_nr is the number of stripes on this
6702		 * device we have to walk to find the data, and stripe_index is
6703		 * the number of our device in the stripe array
6704		 */
6705		map_blocks_single(map, &io_geom);
6706		break;
 
6707	}
6708	if (io_geom.stripe_index >= map->num_stripes) {
6709		btrfs_crit(fs_info,
6710			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6711			   io_geom.stripe_index, map->num_stripes);
6712		ret = -EINVAL;
6713		goto out;
6714	}
6715
6716	num_alloc_stripes = io_geom.num_stripes;
6717	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6718	    op != BTRFS_MAP_READ)
6719		/*
6720		 * For replace case, we need to add extra stripes for extra
6721		 * duplicated stripes.
6722		 *
6723		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6724		 * 2 more stripes (DUP types, otherwise 1).
6725		 */
6726		num_alloc_stripes += 2;
6727
6728	/*
6729	 * If this I/O maps to a single device, try to return the device and
6730	 * physical block information on the stack instead of allocating an
6731	 * I/O context structure.
6732	 */
6733	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6734				io_geom.mirror_num)) {
6735		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6736		if (mirror_num_ret)
6737			*mirror_num_ret = io_geom.mirror_num;
 
 
 
 
 
 
 
 
6738		*bioc_ret = NULL;
 
6739		goto out;
6740	}
6741
6742	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6743	if (!bioc) {
6744		ret = -ENOMEM;
6745		goto out;
6746	}
6747	bioc->map_type = map->type;
6748
6749	/*
6750	 * For RAID56 full map, we need to make sure the stripes[] follows the
6751	 * rule that data stripes are all ordered, then followed with P and Q
6752	 * (if we have).
6753	 *
6754	 * It's still mostly the same as other profiles, just with extra rotation.
6755	 */
6756	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6757	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6758		/*
6759		 * For RAID56 @stripe_nr is already the number of full stripes
6760		 * before us, which is also the rotation value (needs to modulo
6761		 * with num_stripes).
6762		 *
6763		 * In this case, we just add @stripe_nr with @i, then do the
6764		 * modulo, to reduce one modulo call.
6765		 */
6766		bioc->full_stripe_logical = map->start +
6767			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6768						  nr_data_stripes(map));
6769		for (int i = 0; i < io_geom.num_stripes; i++) {
6770			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6771			u32 stripe_index;
6772
6773			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6774			dst->dev = map->stripes[stripe_index].dev;
6775			dst->physical =
6776				map->stripes[stripe_index].physical +
6777				io_geom.stripe_offset +
6778				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6779		}
6780	} else {
6781		/*
6782		 * For all other non-RAID56 profiles, just copy the target
6783		 * stripe into the bioc.
6784		 */
6785		for (i = 0; i < io_geom.num_stripes; i++) {
6786			ret = set_io_stripe(fs_info, logical, length,
6787					    &bioc->stripes[i], map, &io_geom);
6788			if (ret < 0)
6789				break;
6790			io_geom.stripe_index++;
6791		}
6792	}
6793
6794	if (ret) {
6795		*bioc_ret = NULL;
6796		btrfs_put_bioc(bioc);
6797		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6798	}
6799
6800	if (op != BTRFS_MAP_READ)
6801		io_geom.max_errors = btrfs_chunk_max_errors(map);
6802
6803	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6804	    op != BTRFS_MAP_READ) {
6805		handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6806					  &io_geom.num_stripes, &io_geom.max_errors);
6807	}
6808
6809	*bioc_ret = bioc;
6810	bioc->num_stripes = io_geom.num_stripes;
6811	bioc->max_errors = io_geom.max_errors;
6812	bioc->mirror_num = io_geom.mirror_num;
 
6813
 
 
 
 
 
 
 
 
 
 
 
6814out:
6815	if (dev_replace_is_ongoing) {
6816		lockdep_assert_held(&dev_replace->rwsem);
6817		/* Unlock and let waiting writers proceed */
6818		up_read(&dev_replace->rwsem);
6819	}
6820	btrfs_free_chunk_map(map);
6821	return ret;
6822}
6823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6824static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6825				      const struct btrfs_fs_devices *fs_devices)
6826{
6827	if (args->fsid == NULL)
6828		return true;
6829	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6830		return true;
6831	return false;
6832}
6833
6834static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6835				  const struct btrfs_device *device)
6836{
6837	if (args->missing) {
6838		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6839		    !device->bdev)
6840			return true;
6841		return false;
6842	}
6843
6844	if (device->devid != args->devid)
6845		return false;
6846	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6847		return false;
6848	return true;
6849}
6850
6851/*
6852 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6853 * return NULL.
6854 *
6855 * If devid and uuid are both specified, the match must be exact, otherwise
6856 * only devid is used.
6857 */
6858struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6859				       const struct btrfs_dev_lookup_args *args)
6860{
6861	struct btrfs_device *device;
6862	struct btrfs_fs_devices *seed_devs;
6863
6864	if (dev_args_match_fs_devices(args, fs_devices)) {
6865		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6866			if (dev_args_match_device(args, device))
6867				return device;
6868		}
6869	}
6870
6871	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6872		if (!dev_args_match_fs_devices(args, seed_devs))
6873			continue;
6874		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6875			if (dev_args_match_device(args, device))
6876				return device;
6877		}
6878	}
6879
6880	return NULL;
6881}
6882
6883static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6884					    u64 devid, u8 *dev_uuid)
6885{
6886	struct btrfs_device *device;
6887	unsigned int nofs_flag;
6888
6889	/*
6890	 * We call this under the chunk_mutex, so we want to use NOFS for this
6891	 * allocation, however we don't want to change btrfs_alloc_device() to
6892	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6893	 * places.
6894	 */
6895
6896	nofs_flag = memalloc_nofs_save();
6897	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6898	memalloc_nofs_restore(nofs_flag);
6899	if (IS_ERR(device))
6900		return device;
6901
6902	list_add(&device->dev_list, &fs_devices->devices);
6903	device->fs_devices = fs_devices;
6904	fs_devices->num_devices++;
6905
6906	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6907	fs_devices->missing_devices++;
6908
6909	return device;
6910}
6911
6912/*
6913 * Allocate new device struct, set up devid and UUID.
6914 *
6915 * @fs_info:	used only for generating a new devid, can be NULL if
6916 *		devid is provided (i.e. @devid != NULL).
6917 * @devid:	a pointer to devid for this device.  If NULL a new devid
6918 *		is generated.
6919 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6920 *		is generated.
6921 * @path:	a pointer to device path if available, NULL otherwise.
6922 *
6923 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6924 * on error.  Returned struct is not linked onto any lists and must be
6925 * destroyed with btrfs_free_device.
6926 */
6927struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928					const u64 *devid, const u8 *uuid,
6929					const char *path)
6930{
6931	struct btrfs_device *dev;
6932	u64 tmp;
6933
6934	if (WARN_ON(!devid && !fs_info))
6935		return ERR_PTR(-EINVAL);
6936
6937	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938	if (!dev)
6939		return ERR_PTR(-ENOMEM);
6940
6941	INIT_LIST_HEAD(&dev->dev_list);
6942	INIT_LIST_HEAD(&dev->dev_alloc_list);
6943	INIT_LIST_HEAD(&dev->post_commit_list);
6944
6945	atomic_set(&dev->dev_stats_ccnt, 0);
6946	btrfs_device_data_ordered_init(dev);
6947	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6948
6949	if (devid)
6950		tmp = *devid;
6951	else {
6952		int ret;
6953
6954		ret = find_next_devid(fs_info, &tmp);
6955		if (ret) {
6956			btrfs_free_device(dev);
6957			return ERR_PTR(ret);
6958		}
6959	}
6960	dev->devid = tmp;
6961
6962	if (uuid)
6963		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6964	else
6965		generate_random_uuid(dev->uuid);
6966
6967	if (path) {
6968		struct rcu_string *name;
6969
6970		name = rcu_string_strdup(path, GFP_KERNEL);
6971		if (!name) {
6972			btrfs_free_device(dev);
6973			return ERR_PTR(-ENOMEM);
6974		}
6975		rcu_assign_pointer(dev->name, name);
6976	}
6977
6978	return dev;
6979}
6980
6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982					u64 devid, u8 *uuid, bool error)
6983{
6984	if (error)
6985		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986			      devid, uuid);
6987	else
6988		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989			      devid, uuid);
6990}
6991
6992u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6993{
 
6994	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6995
6996	return div_u64(map->chunk_len, data_stripes);
6997}
6998
6999#if BITS_PER_LONG == 32
7000/*
7001 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002 * can't be accessed on 32bit systems.
7003 *
7004 * This function do mount time check to reject the fs if it already has
7005 * metadata chunk beyond that limit.
7006 */
7007static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008				  u64 logical, u64 length, u64 type)
7009{
7010	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011		return 0;
7012
7013	if (logical + length < MAX_LFS_FILESIZE)
7014		return 0;
7015
7016	btrfs_err_32bit_limit(fs_info);
7017	return -EOVERFLOW;
7018}
7019
7020/*
7021 * This is to give early warning for any metadata chunk reaching
7022 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023 * Although we can still access the metadata, it's not going to be possible
7024 * once the limit is reached.
7025 */
7026static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027				  u64 logical, u64 length, u64 type)
7028{
7029	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030		return;
7031
7032	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033		return;
7034
7035	btrfs_warn_32bit_limit(fs_info);
7036}
7037#endif
7038
7039static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040						  u64 devid, u8 *uuid)
7041{
7042	struct btrfs_device *dev;
7043
7044	if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045		btrfs_report_missing_device(fs_info, devid, uuid, true);
7046		return ERR_PTR(-ENOENT);
7047	}
7048
7049	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050	if (IS_ERR(dev)) {
7051		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052			  devid, PTR_ERR(dev));
7053		return dev;
7054	}
7055	btrfs_report_missing_device(fs_info, devid, uuid, false);
7056
7057	return dev;
7058}
7059
7060static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7061			  struct btrfs_chunk *chunk)
7062{
7063	BTRFS_DEV_LOOKUP_ARGS(args);
7064	struct btrfs_fs_info *fs_info = leaf->fs_info;
7065	struct btrfs_chunk_map *map;
 
 
7066	u64 logical;
7067	u64 length;
7068	u64 devid;
7069	u64 type;
7070	u8 uuid[BTRFS_UUID_SIZE];
7071	int index;
7072	int num_stripes;
7073	int ret;
7074	int i;
7075
7076	logical = key->offset;
7077	length = btrfs_chunk_length(leaf, chunk);
7078	type = btrfs_chunk_type(leaf, chunk);
7079	index = btrfs_bg_flags_to_raid_index(type);
7080	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081
7082#if BITS_PER_LONG == 32
7083	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084	if (ret < 0)
7085		return ret;
7086	warn_32bit_meta_chunk(fs_info, logical, length, type);
7087#endif
7088
7089	/*
7090	 * Only need to verify chunk item if we're reading from sys chunk array,
7091	 * as chunk item in tree block is already verified by tree-checker.
7092	 */
7093	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7094		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7095		if (ret)
7096			return ret;
7097	}
7098
7099	map = btrfs_find_chunk_map(fs_info, logical, 1);
 
 
7100
7101	/* already mapped? */
7102	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7103		btrfs_free_chunk_map(map);
7104		return 0;
7105	} else if (map) {
7106		btrfs_free_chunk_map(map);
7107	}
7108
7109	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7110	if (!map)
 
 
 
 
7111		return -ENOMEM;
 
 
 
 
 
 
 
 
 
7112
7113	map->start = logical;
7114	map->chunk_len = length;
7115	map->num_stripes = num_stripes;
7116	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7117	map->io_align = btrfs_chunk_io_align(leaf, chunk);
 
7118	map->type = type;
7119	/*
7120	 * We can't use the sub_stripes value, as for profiles other than
7121	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7122	 * older mkfs (<v5.4).
7123	 * In that case, it can cause divide-by-zero errors later.
7124	 * Since currently sub_stripes is fixed for each profile, let's
7125	 * use the trusted value instead.
7126	 */
7127	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7128	map->verified_stripes = 0;
7129	map->stripe_size = btrfs_calc_stripe_length(map);
7130	for (i = 0; i < num_stripes; i++) {
7131		map->stripes[i].physical =
7132			btrfs_stripe_offset_nr(leaf, chunk, i);
7133		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7134		args.devid = devid;
7135		read_extent_buffer(leaf, uuid, (unsigned long)
7136				   btrfs_stripe_dev_uuid_nr(chunk, i),
7137				   BTRFS_UUID_SIZE);
7138		args.uuid = uuid;
7139		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7140		if (!map->stripes[i].dev) {
7141			map->stripes[i].dev = handle_missing_device(fs_info,
7142								    devid, uuid);
7143			if (IS_ERR(map->stripes[i].dev)) {
7144				ret = PTR_ERR(map->stripes[i].dev);
7145				btrfs_free_chunk_map(map);
7146				return ret;
7147			}
7148		}
7149
7150		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7151				&(map->stripes[i].dev->dev_state));
7152	}
7153
7154	ret = btrfs_add_chunk_map(fs_info, map);
 
 
7155	if (ret < 0) {
7156		btrfs_err(fs_info,
7157			  "failed to add chunk map, start=%llu len=%llu: %d",
7158			  map->start, map->chunk_len, ret);
7159	}
 
7160
7161	return ret;
7162}
7163
7164static void fill_device_from_item(struct extent_buffer *leaf,
7165				 struct btrfs_dev_item *dev_item,
7166				 struct btrfs_device *device)
7167{
7168	unsigned long ptr;
7169
7170	device->devid = btrfs_device_id(leaf, dev_item);
7171	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7172	device->total_bytes = device->disk_total_bytes;
7173	device->commit_total_bytes = device->disk_total_bytes;
7174	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7175	device->commit_bytes_used = device->bytes_used;
7176	device->type = btrfs_device_type(leaf, dev_item);
7177	device->io_align = btrfs_device_io_align(leaf, dev_item);
7178	device->io_width = btrfs_device_io_width(leaf, dev_item);
7179	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7180	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7181	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7182
7183	ptr = btrfs_device_uuid(dev_item);
7184	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7185}
7186
7187static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7188						  u8 *fsid)
7189{
7190	struct btrfs_fs_devices *fs_devices;
7191	int ret;
7192
7193	lockdep_assert_held(&uuid_mutex);
7194	ASSERT(fsid);
7195
7196	/* This will match only for multi-device seed fs */
7197	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7198		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7199			return fs_devices;
7200
7201
7202	fs_devices = find_fsid(fsid, NULL);
7203	if (!fs_devices) {
7204		if (!btrfs_test_opt(fs_info, DEGRADED))
7205			return ERR_PTR(-ENOENT);
7206
7207		fs_devices = alloc_fs_devices(fsid);
7208		if (IS_ERR(fs_devices))
7209			return fs_devices;
7210
7211		fs_devices->seeding = true;
7212		fs_devices->opened = 1;
7213		return fs_devices;
7214	}
7215
7216	/*
7217	 * Upon first call for a seed fs fsid, just create a private copy of the
7218	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7219	 */
7220	fs_devices = clone_fs_devices(fs_devices);
7221	if (IS_ERR(fs_devices))
7222		return fs_devices;
7223
7224	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7225	if (ret) {
7226		free_fs_devices(fs_devices);
7227		return ERR_PTR(ret);
7228	}
7229
7230	if (!fs_devices->seeding) {
7231		close_fs_devices(fs_devices);
7232		free_fs_devices(fs_devices);
7233		return ERR_PTR(-EINVAL);
7234	}
7235
7236	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7237
7238	return fs_devices;
7239}
7240
7241static int read_one_dev(struct extent_buffer *leaf,
7242			struct btrfs_dev_item *dev_item)
7243{
7244	BTRFS_DEV_LOOKUP_ARGS(args);
7245	struct btrfs_fs_info *fs_info = leaf->fs_info;
7246	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247	struct btrfs_device *device;
7248	u64 devid;
7249	int ret;
7250	u8 fs_uuid[BTRFS_FSID_SIZE];
7251	u8 dev_uuid[BTRFS_UUID_SIZE];
7252
7253	devid = btrfs_device_id(leaf, dev_item);
7254	args.devid = devid;
7255	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7256			   BTRFS_UUID_SIZE);
7257	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7258			   BTRFS_FSID_SIZE);
7259	args.uuid = dev_uuid;
7260	args.fsid = fs_uuid;
7261
7262	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7263		fs_devices = open_seed_devices(fs_info, fs_uuid);
7264		if (IS_ERR(fs_devices))
7265			return PTR_ERR(fs_devices);
7266	}
7267
7268	device = btrfs_find_device(fs_info->fs_devices, &args);
7269	if (!device) {
7270		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7271			btrfs_report_missing_device(fs_info, devid,
7272							dev_uuid, true);
7273			return -ENOENT;
7274		}
7275
7276		device = add_missing_dev(fs_devices, devid, dev_uuid);
7277		if (IS_ERR(device)) {
7278			btrfs_err(fs_info,
7279				"failed to add missing dev %llu: %ld",
7280				devid, PTR_ERR(device));
7281			return PTR_ERR(device);
7282		}
7283		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7284	} else {
7285		if (!device->bdev) {
7286			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7287				btrfs_report_missing_device(fs_info,
7288						devid, dev_uuid, true);
7289				return -ENOENT;
7290			}
7291			btrfs_report_missing_device(fs_info, devid,
7292							dev_uuid, false);
7293		}
7294
7295		if (!device->bdev &&
7296		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7297			/*
7298			 * this happens when a device that was properly setup
7299			 * in the device info lists suddenly goes bad.
7300			 * device->bdev is NULL, and so we have to set
7301			 * device->missing to one here
7302			 */
7303			device->fs_devices->missing_devices++;
7304			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7305		}
7306
7307		/* Move the device to its own fs_devices */
7308		if (device->fs_devices != fs_devices) {
7309			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7310							&device->dev_state));
7311
7312			list_move(&device->dev_list, &fs_devices->devices);
7313			device->fs_devices->num_devices--;
7314			fs_devices->num_devices++;
7315
7316			device->fs_devices->missing_devices--;
7317			fs_devices->missing_devices++;
7318
7319			device->fs_devices = fs_devices;
7320		}
7321	}
7322
7323	if (device->fs_devices != fs_info->fs_devices) {
7324		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7325		if (device->generation !=
7326		    btrfs_device_generation(leaf, dev_item))
7327			return -EINVAL;
7328	}
7329
7330	fill_device_from_item(leaf, dev_item, device);
7331	if (device->bdev) {
7332		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7333
7334		if (device->total_bytes > max_total_bytes) {
7335			btrfs_err(fs_info,
7336			"device total_bytes should be at most %llu but found %llu",
7337				  max_total_bytes, device->total_bytes);
7338			return -EINVAL;
7339		}
7340	}
7341	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7342	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7343	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7344		device->fs_devices->total_rw_bytes += device->total_bytes;
7345		atomic64_add(device->total_bytes - device->bytes_used,
7346				&fs_info->free_chunk_space);
7347	}
7348	ret = 0;
7349	return ret;
7350}
7351
7352int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7353{
7354	struct btrfs_super_block *super_copy = fs_info->super_copy;
7355	struct extent_buffer *sb;
7356	struct btrfs_disk_key *disk_key;
7357	struct btrfs_chunk *chunk;
7358	u8 *array_ptr;
7359	unsigned long sb_array_offset;
7360	int ret = 0;
7361	u32 num_stripes;
7362	u32 array_size;
7363	u32 len = 0;
7364	u32 cur_offset;
7365	u64 type;
7366	struct btrfs_key key;
7367
7368	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7369
7370	/*
7371	 * We allocated a dummy extent, just to use extent buffer accessors.
7372	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7373	 * that's fine, we will not go beyond system chunk array anyway.
7374	 */
7375	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7376	if (!sb)
7377		return -ENOMEM;
7378	set_extent_buffer_uptodate(sb);
7379
7380	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7381	array_size = btrfs_super_sys_array_size(super_copy);
7382
7383	array_ptr = super_copy->sys_chunk_array;
7384	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7385	cur_offset = 0;
7386
7387	while (cur_offset < array_size) {
7388		disk_key = (struct btrfs_disk_key *)array_ptr;
7389		len = sizeof(*disk_key);
7390		if (cur_offset + len > array_size)
7391			goto out_short_read;
7392
7393		btrfs_disk_key_to_cpu(&key, disk_key);
7394
7395		array_ptr += len;
7396		sb_array_offset += len;
7397		cur_offset += len;
7398
7399		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7400			btrfs_err(fs_info,
7401			    "unexpected item type %u in sys_array at offset %u",
7402				  (u32)key.type, cur_offset);
7403			ret = -EIO;
7404			break;
7405		}
7406
7407		chunk = (struct btrfs_chunk *)sb_array_offset;
7408		/*
7409		 * At least one btrfs_chunk with one stripe must be present,
7410		 * exact stripe count check comes afterwards
7411		 */
7412		len = btrfs_chunk_item_size(1);
7413		if (cur_offset + len > array_size)
7414			goto out_short_read;
7415
7416		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7417		if (!num_stripes) {
7418			btrfs_err(fs_info,
7419			"invalid number of stripes %u in sys_array at offset %u",
7420				  num_stripes, cur_offset);
7421			ret = -EIO;
7422			break;
7423		}
7424
7425		type = btrfs_chunk_type(sb, chunk);
7426		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7427			btrfs_err(fs_info,
7428			"invalid chunk type %llu in sys_array at offset %u",
7429				  type, cur_offset);
7430			ret = -EIO;
7431			break;
7432		}
7433
7434		len = btrfs_chunk_item_size(num_stripes);
7435		if (cur_offset + len > array_size)
7436			goto out_short_read;
7437
7438		ret = read_one_chunk(&key, sb, chunk);
7439		if (ret)
7440			break;
7441
7442		array_ptr += len;
7443		sb_array_offset += len;
7444		cur_offset += len;
7445	}
7446	clear_extent_buffer_uptodate(sb);
7447	free_extent_buffer_stale(sb);
7448	return ret;
7449
7450out_short_read:
7451	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7452			len, cur_offset);
7453	clear_extent_buffer_uptodate(sb);
7454	free_extent_buffer_stale(sb);
7455	return -EIO;
7456}
7457
7458/*
7459 * Check if all chunks in the fs are OK for read-write degraded mount
7460 *
7461 * If the @failing_dev is specified, it's accounted as missing.
7462 *
7463 * Return true if all chunks meet the minimal RW mount requirements.
7464 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7465 */
7466bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7467					struct btrfs_device *failing_dev)
7468{
7469	struct btrfs_chunk_map *map;
7470	u64 next_start;
 
7471	bool ret = true;
7472
7473	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
 
 
7474	/* No chunk at all? Return false anyway */
7475	if (!map) {
7476		ret = false;
7477		goto out;
7478	}
7479	while (map) {
 
7480		int missing = 0;
7481		int max_tolerated;
7482		int i;
7483
 
7484		max_tolerated =
7485			btrfs_get_num_tolerated_disk_barrier_failures(
7486					map->type);
7487		for (i = 0; i < map->num_stripes; i++) {
7488			struct btrfs_device *dev = map->stripes[i].dev;
7489
7490			if (!dev || !dev->bdev ||
7491			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7492			    dev->last_flush_error)
7493				missing++;
7494			else if (failing_dev && failing_dev == dev)
7495				missing++;
7496		}
7497		if (missing > max_tolerated) {
7498			if (!failing_dev)
7499				btrfs_warn(fs_info,
7500	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7501				   map->start, missing, max_tolerated);
7502			btrfs_free_chunk_map(map);
7503			ret = false;
7504			goto out;
7505		}
7506		next_start = map->start + map->chunk_len;
7507		btrfs_free_chunk_map(map);
7508
7509		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
 
 
 
7510	}
7511out:
7512	return ret;
7513}
7514
7515static void readahead_tree_node_children(struct extent_buffer *node)
7516{
7517	int i;
7518	const int nr_items = btrfs_header_nritems(node);
7519
7520	for (i = 0; i < nr_items; i++)
7521		btrfs_readahead_node_child(node, i);
7522}
7523
7524int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7525{
7526	struct btrfs_root *root = fs_info->chunk_root;
7527	struct btrfs_path *path;
7528	struct extent_buffer *leaf;
7529	struct btrfs_key key;
7530	struct btrfs_key found_key;
7531	int ret;
7532	int slot;
7533	int iter_ret = 0;
7534	u64 total_dev = 0;
7535	u64 last_ra_node = 0;
7536
7537	path = btrfs_alloc_path();
7538	if (!path)
7539		return -ENOMEM;
7540
7541	/*
7542	 * uuid_mutex is needed only if we are mounting a sprout FS
7543	 * otherwise we don't need it.
7544	 */
7545	mutex_lock(&uuid_mutex);
7546
7547	/*
7548	 * It is possible for mount and umount to race in such a way that
7549	 * we execute this code path, but open_fs_devices failed to clear
7550	 * total_rw_bytes. We certainly want it cleared before reading the
7551	 * device items, so clear it here.
7552	 */
7553	fs_info->fs_devices->total_rw_bytes = 0;
7554
7555	/*
7556	 * Lockdep complains about possible circular locking dependency between
7557	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7558	 * used for freeze procection of a fs (struct super_block.s_writers),
7559	 * which we take when starting a transaction, and extent buffers of the
7560	 * chunk tree if we call read_one_dev() while holding a lock on an
7561	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7562	 * and at this point there can't be any concurrent task modifying the
7563	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7564	 */
7565	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7566	path->skip_locking = 1;
7567
7568	/*
7569	 * Read all device items, and then all the chunk items. All
7570	 * device items are found before any chunk item (their object id
7571	 * is smaller than the lowest possible object id for a chunk
7572	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7573	 */
7574	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7575	key.offset = 0;
7576	key.type = 0;
7577	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7578		struct extent_buffer *node = path->nodes[1];
7579
7580		leaf = path->nodes[0];
7581		slot = path->slots[0];
7582
7583		if (node) {
7584			if (last_ra_node != node->start) {
7585				readahead_tree_node_children(node);
7586				last_ra_node = node->start;
7587			}
7588		}
7589		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7590			struct btrfs_dev_item *dev_item;
7591			dev_item = btrfs_item_ptr(leaf, slot,
7592						  struct btrfs_dev_item);
7593			ret = read_one_dev(leaf, dev_item);
7594			if (ret)
7595				goto error;
7596			total_dev++;
7597		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7598			struct btrfs_chunk *chunk;
7599
7600			/*
7601			 * We are only called at mount time, so no need to take
7602			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7603			 * we always lock first fs_info->chunk_mutex before
7604			 * acquiring any locks on the chunk tree. This is a
7605			 * requirement for chunk allocation, see the comment on
7606			 * top of btrfs_chunk_alloc() for details.
7607			 */
7608			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7609			ret = read_one_chunk(&found_key, leaf, chunk);
7610			if (ret)
7611				goto error;
7612		}
7613	}
7614	/* Catch error found during iteration */
7615	if (iter_ret < 0) {
7616		ret = iter_ret;
7617		goto error;
7618	}
7619
7620	/*
7621	 * After loading chunk tree, we've got all device information,
7622	 * do another round of validation checks.
7623	 */
7624	if (total_dev != fs_info->fs_devices->total_devices) {
7625		btrfs_warn(fs_info,
7626"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7627			  btrfs_super_num_devices(fs_info->super_copy),
7628			  total_dev);
7629		fs_info->fs_devices->total_devices = total_dev;
7630		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7631	}
7632	if (btrfs_super_total_bytes(fs_info->super_copy) <
7633	    fs_info->fs_devices->total_rw_bytes) {
7634		btrfs_err(fs_info,
7635	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7636			  btrfs_super_total_bytes(fs_info->super_copy),
7637			  fs_info->fs_devices->total_rw_bytes);
7638		ret = -EINVAL;
7639		goto error;
7640	}
7641	ret = 0;
7642error:
7643	mutex_unlock(&uuid_mutex);
7644
7645	btrfs_free_path(path);
7646	return ret;
7647}
7648
7649int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7650{
7651	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7652	struct btrfs_device *device;
7653	int ret = 0;
7654
7655	fs_devices->fs_info = fs_info;
7656
7657	mutex_lock(&fs_devices->device_list_mutex);
7658	list_for_each_entry(device, &fs_devices->devices, dev_list)
7659		device->fs_info = fs_info;
7660
7661	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7662		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7663			device->fs_info = fs_info;
7664			ret = btrfs_get_dev_zone_info(device, false);
7665			if (ret)
7666				break;
7667		}
7668
7669		seed_devs->fs_info = fs_info;
7670	}
7671	mutex_unlock(&fs_devices->device_list_mutex);
7672
7673	return ret;
7674}
7675
7676static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7677				 const struct btrfs_dev_stats_item *ptr,
7678				 int index)
7679{
7680	u64 val;
7681
7682	read_extent_buffer(eb, &val,
7683			   offsetof(struct btrfs_dev_stats_item, values) +
7684			    ((unsigned long)ptr) + (index * sizeof(u64)),
7685			   sizeof(val));
7686	return val;
7687}
7688
7689static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7690				      struct btrfs_dev_stats_item *ptr,
7691				      int index, u64 val)
7692{
7693	write_extent_buffer(eb, &val,
7694			    offsetof(struct btrfs_dev_stats_item, values) +
7695			     ((unsigned long)ptr) + (index * sizeof(u64)),
7696			    sizeof(val));
7697}
7698
7699static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7700				       struct btrfs_path *path)
7701{
7702	struct btrfs_dev_stats_item *ptr;
7703	struct extent_buffer *eb;
7704	struct btrfs_key key;
7705	int item_size;
7706	int i, ret, slot;
7707
7708	if (!device->fs_info->dev_root)
7709		return 0;
7710
7711	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7712	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7713	key.offset = device->devid;
7714	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7715	if (ret) {
7716		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7717			btrfs_dev_stat_set(device, i, 0);
7718		device->dev_stats_valid = 1;
7719		btrfs_release_path(path);
7720		return ret < 0 ? ret : 0;
7721	}
7722	slot = path->slots[0];
7723	eb = path->nodes[0];
7724	item_size = btrfs_item_size(eb, slot);
7725
7726	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7727
7728	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7729		if (item_size >= (1 + i) * sizeof(__le64))
7730			btrfs_dev_stat_set(device, i,
7731					   btrfs_dev_stats_value(eb, ptr, i));
7732		else
7733			btrfs_dev_stat_set(device, i, 0);
7734	}
7735
7736	device->dev_stats_valid = 1;
7737	btrfs_dev_stat_print_on_load(device);
7738	btrfs_release_path(path);
7739
7740	return 0;
7741}
7742
7743int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7744{
7745	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7746	struct btrfs_device *device;
7747	struct btrfs_path *path = NULL;
7748	int ret = 0;
7749
7750	path = btrfs_alloc_path();
7751	if (!path)
7752		return -ENOMEM;
7753
7754	mutex_lock(&fs_devices->device_list_mutex);
7755	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7756		ret = btrfs_device_init_dev_stats(device, path);
7757		if (ret)
7758			goto out;
7759	}
7760	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7761		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7762			ret = btrfs_device_init_dev_stats(device, path);
7763			if (ret)
7764				goto out;
7765		}
7766	}
7767out:
7768	mutex_unlock(&fs_devices->device_list_mutex);
7769
7770	btrfs_free_path(path);
7771	return ret;
7772}
7773
7774static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7775				struct btrfs_device *device)
7776{
7777	struct btrfs_fs_info *fs_info = trans->fs_info;
7778	struct btrfs_root *dev_root = fs_info->dev_root;
7779	struct btrfs_path *path;
7780	struct btrfs_key key;
7781	struct extent_buffer *eb;
7782	struct btrfs_dev_stats_item *ptr;
7783	int ret;
7784	int i;
7785
7786	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7787	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7788	key.offset = device->devid;
7789
7790	path = btrfs_alloc_path();
7791	if (!path)
7792		return -ENOMEM;
7793	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7794	if (ret < 0) {
7795		btrfs_warn_in_rcu(fs_info,
7796			"error %d while searching for dev_stats item for device %s",
7797				  ret, btrfs_dev_name(device));
7798		goto out;
7799	}
7800
7801	if (ret == 0 &&
7802	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7803		/* need to delete old one and insert a new one */
7804		ret = btrfs_del_item(trans, dev_root, path);
7805		if (ret != 0) {
7806			btrfs_warn_in_rcu(fs_info,
7807				"delete too small dev_stats item for device %s failed %d",
7808					  btrfs_dev_name(device), ret);
7809			goto out;
7810		}
7811		ret = 1;
7812	}
7813
7814	if (ret == 1) {
7815		/* need to insert a new item */
7816		btrfs_release_path(path);
7817		ret = btrfs_insert_empty_item(trans, dev_root, path,
7818					      &key, sizeof(*ptr));
7819		if (ret < 0) {
7820			btrfs_warn_in_rcu(fs_info,
7821				"insert dev_stats item for device %s failed %d",
7822				btrfs_dev_name(device), ret);
7823			goto out;
7824		}
7825	}
7826
7827	eb = path->nodes[0];
7828	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7829	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7830		btrfs_set_dev_stats_value(eb, ptr, i,
7831					  btrfs_dev_stat_read(device, i));
7832	btrfs_mark_buffer_dirty(trans, eb);
7833
7834out:
7835	btrfs_free_path(path);
7836	return ret;
7837}
7838
7839/*
7840 * called from commit_transaction. Writes all changed device stats to disk.
7841 */
7842int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7843{
7844	struct btrfs_fs_info *fs_info = trans->fs_info;
7845	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7846	struct btrfs_device *device;
7847	int stats_cnt;
7848	int ret = 0;
7849
7850	mutex_lock(&fs_devices->device_list_mutex);
7851	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7852		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7853		if (!device->dev_stats_valid || stats_cnt == 0)
7854			continue;
7855
7856
7857		/*
7858		 * There is a LOAD-LOAD control dependency between the value of
7859		 * dev_stats_ccnt and updating the on-disk values which requires
7860		 * reading the in-memory counters. Such control dependencies
7861		 * require explicit read memory barriers.
7862		 *
7863		 * This memory barriers pairs with smp_mb__before_atomic in
7864		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7865		 * barrier implied by atomic_xchg in
7866		 * btrfs_dev_stats_read_and_reset
7867		 */
7868		smp_rmb();
7869
7870		ret = update_dev_stat_item(trans, device);
7871		if (!ret)
7872			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7873	}
7874	mutex_unlock(&fs_devices->device_list_mutex);
7875
7876	return ret;
7877}
7878
7879void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7880{
7881	btrfs_dev_stat_inc(dev, index);
7882
7883	if (!dev->dev_stats_valid)
7884		return;
7885	btrfs_err_rl_in_rcu(dev->fs_info,
7886		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7887			   btrfs_dev_name(dev),
7888			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7889			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7890			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7891			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7892			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7893}
7894
7895static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7896{
7897	int i;
7898
7899	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7900		if (btrfs_dev_stat_read(dev, i) != 0)
7901			break;
7902	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7903		return; /* all values == 0, suppress message */
7904
7905	btrfs_info_in_rcu(dev->fs_info,
7906		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7907	       btrfs_dev_name(dev),
7908	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7909	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7910	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7911	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7912	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7913}
7914
7915int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7916			struct btrfs_ioctl_get_dev_stats *stats)
7917{
7918	BTRFS_DEV_LOOKUP_ARGS(args);
7919	struct btrfs_device *dev;
7920	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7921	int i;
7922
7923	mutex_lock(&fs_devices->device_list_mutex);
7924	args.devid = stats->devid;
7925	dev = btrfs_find_device(fs_info->fs_devices, &args);
7926	mutex_unlock(&fs_devices->device_list_mutex);
7927
7928	if (!dev) {
7929		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7930		return -ENODEV;
7931	} else if (!dev->dev_stats_valid) {
7932		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7933		return -ENODEV;
7934	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7935		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7936			if (stats->nr_items > i)
7937				stats->values[i] =
7938					btrfs_dev_stat_read_and_reset(dev, i);
7939			else
7940				btrfs_dev_stat_set(dev, i, 0);
7941		}
7942		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7943			   current->comm, task_pid_nr(current));
7944	} else {
7945		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7946			if (stats->nr_items > i)
7947				stats->values[i] = btrfs_dev_stat_read(dev, i);
7948	}
7949	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7950		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7951	return 0;
7952}
7953
7954/*
7955 * Update the size and bytes used for each device where it changed.  This is
7956 * delayed since we would otherwise get errors while writing out the
7957 * superblocks.
7958 *
7959 * Must be invoked during transaction commit.
7960 */
7961void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7962{
7963	struct btrfs_device *curr, *next;
7964
7965	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7966
7967	if (list_empty(&trans->dev_update_list))
7968		return;
7969
7970	/*
7971	 * We don't need the device_list_mutex here.  This list is owned by the
7972	 * transaction and the transaction must complete before the device is
7973	 * released.
7974	 */
7975	mutex_lock(&trans->fs_info->chunk_mutex);
7976	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7977				 post_commit_list) {
7978		list_del_init(&curr->post_commit_list);
7979		curr->commit_total_bytes = curr->disk_total_bytes;
7980		curr->commit_bytes_used = curr->bytes_used;
7981	}
7982	mutex_unlock(&trans->fs_info->chunk_mutex);
7983}
7984
7985/*
7986 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7987 */
7988int btrfs_bg_type_to_factor(u64 flags)
7989{
7990	const int index = btrfs_bg_flags_to_raid_index(flags);
7991
7992	return btrfs_raid_array[index].ncopies;
7993}
7994
7995
7996
7997static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7998				 u64 chunk_offset, u64 devid,
7999				 u64 physical_offset, u64 physical_len)
8000{
8001	struct btrfs_dev_lookup_args args = { .devid = devid };
8002	struct btrfs_chunk_map *map;
 
 
8003	struct btrfs_device *dev;
8004	u64 stripe_len;
8005	bool found = false;
8006	int ret = 0;
8007	int i;
8008
8009	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
8010	if (!map) {
 
 
 
8011		btrfs_err(fs_info,
8012"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8013			  physical_offset, devid);
8014		ret = -EUCLEAN;
8015		goto out;
8016	}
8017
8018	stripe_len = btrfs_calc_stripe_length(map);
 
8019	if (physical_len != stripe_len) {
8020		btrfs_err(fs_info,
8021"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8022			  physical_offset, devid, map->start, physical_len,
8023			  stripe_len);
8024		ret = -EUCLEAN;
8025		goto out;
8026	}
8027
8028	/*
8029	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8030	 * space. Although kernel can handle it without problem, better to warn
8031	 * the users.
8032	 */
8033	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8034		btrfs_warn(fs_info,
8035		"devid %llu physical %llu len %llu inside the reserved space",
8036			   devid, physical_offset, physical_len);
8037
8038	for (i = 0; i < map->num_stripes; i++) {
8039		if (map->stripes[i].dev->devid == devid &&
8040		    map->stripes[i].physical == physical_offset) {
8041			found = true;
8042			if (map->verified_stripes >= map->num_stripes) {
8043				btrfs_err(fs_info,
8044				"too many dev extents for chunk %llu found",
8045					  map->start);
8046				ret = -EUCLEAN;
8047				goto out;
8048			}
8049			map->verified_stripes++;
8050			break;
8051		}
8052	}
8053	if (!found) {
8054		btrfs_err(fs_info,
8055	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8056			physical_offset, devid);
8057		ret = -EUCLEAN;
8058	}
8059
8060	/* Make sure no dev extent is beyond device boundary */
8061	dev = btrfs_find_device(fs_info->fs_devices, &args);
8062	if (!dev) {
8063		btrfs_err(fs_info, "failed to find devid %llu", devid);
8064		ret = -EUCLEAN;
8065		goto out;
8066	}
8067
8068	if (physical_offset + physical_len > dev->disk_total_bytes) {
8069		btrfs_err(fs_info,
8070"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8071			  devid, physical_offset, physical_len,
8072			  dev->disk_total_bytes);
8073		ret = -EUCLEAN;
8074		goto out;
8075	}
8076
8077	if (dev->zone_info) {
8078		u64 zone_size = dev->zone_info->zone_size;
8079
8080		if (!IS_ALIGNED(physical_offset, zone_size) ||
8081		    !IS_ALIGNED(physical_len, zone_size)) {
8082			btrfs_err(fs_info,
8083"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8084				  devid, physical_offset, physical_len);
8085			ret = -EUCLEAN;
8086			goto out;
8087		}
8088	}
8089
8090out:
8091	btrfs_free_chunk_map(map);
8092	return ret;
8093}
8094
8095static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8096{
 
 
8097	struct rb_node *node;
8098	int ret = 0;
8099
8100	read_lock(&fs_info->mapping_tree_lock);
8101	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8102		struct btrfs_chunk_map *map;
8103
8104		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8105		if (map->num_stripes != map->verified_stripes) {
8106			btrfs_err(fs_info,
8107			"chunk %llu has missing dev extent, have %d expect %d",
8108				  map->start, map->verified_stripes, map->num_stripes);
 
8109			ret = -EUCLEAN;
8110			goto out;
8111		}
8112	}
8113out:
8114	read_unlock(&fs_info->mapping_tree_lock);
8115	return ret;
8116}
8117
8118/*
8119 * Ensure that all dev extents are mapped to correct chunk, otherwise
8120 * later chunk allocation/free would cause unexpected behavior.
8121 *
8122 * NOTE: This will iterate through the whole device tree, which should be of
8123 * the same size level as the chunk tree.  This slightly increases mount time.
8124 */
8125int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8126{
8127	struct btrfs_path *path;
8128	struct btrfs_root *root = fs_info->dev_root;
8129	struct btrfs_key key;
8130	u64 prev_devid = 0;
8131	u64 prev_dev_ext_end = 0;
8132	int ret = 0;
8133
8134	/*
8135	 * We don't have a dev_root because we mounted with ignorebadroots and
8136	 * failed to load the root, so we want to skip the verification in this
8137	 * case for sure.
8138	 *
8139	 * However if the dev root is fine, but the tree itself is corrupted
8140	 * we'd still fail to mount.  This verification is only to make sure
8141	 * writes can happen safely, so instead just bypass this check
8142	 * completely in the case of IGNOREBADROOTS.
8143	 */
8144	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8145		return 0;
8146
8147	key.objectid = 1;
8148	key.type = BTRFS_DEV_EXTENT_KEY;
8149	key.offset = 0;
8150
8151	path = btrfs_alloc_path();
8152	if (!path)
8153		return -ENOMEM;
8154
8155	path->reada = READA_FORWARD;
8156	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8157	if (ret < 0)
8158		goto out;
8159
8160	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8161		ret = btrfs_next_leaf(root, path);
8162		if (ret < 0)
8163			goto out;
8164		/* No dev extents at all? Not good */
8165		if (ret > 0) {
8166			ret = -EUCLEAN;
8167			goto out;
8168		}
8169	}
8170	while (1) {
8171		struct extent_buffer *leaf = path->nodes[0];
8172		struct btrfs_dev_extent *dext;
8173		int slot = path->slots[0];
8174		u64 chunk_offset;
8175		u64 physical_offset;
8176		u64 physical_len;
8177		u64 devid;
8178
8179		btrfs_item_key_to_cpu(leaf, &key, slot);
8180		if (key.type != BTRFS_DEV_EXTENT_KEY)
8181			break;
8182		devid = key.objectid;
8183		physical_offset = key.offset;
8184
8185		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8186		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8187		physical_len = btrfs_dev_extent_length(leaf, dext);
8188
8189		/* Check if this dev extent overlaps with the previous one */
8190		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8191			btrfs_err(fs_info,
8192"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8193				  devid, physical_offset, prev_dev_ext_end);
8194			ret = -EUCLEAN;
8195			goto out;
8196		}
8197
8198		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8199					    physical_offset, physical_len);
8200		if (ret < 0)
8201			goto out;
8202		prev_devid = devid;
8203		prev_dev_ext_end = physical_offset + physical_len;
8204
8205		ret = btrfs_next_item(root, path);
8206		if (ret < 0)
8207			goto out;
8208		if (ret > 0) {
8209			ret = 0;
8210			break;
8211		}
8212	}
8213
8214	/* Ensure all chunks have corresponding dev extents */
8215	ret = verify_chunk_dev_extent_mapping(fs_info);
8216out:
8217	btrfs_free_path(path);
8218	return ret;
8219}
8220
8221/*
8222 * Check whether the given block group or device is pinned by any inode being
8223 * used as a swapfile.
8224 */
8225bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8226{
8227	struct btrfs_swapfile_pin *sp;
8228	struct rb_node *node;
8229
8230	spin_lock(&fs_info->swapfile_pins_lock);
8231	node = fs_info->swapfile_pins.rb_node;
8232	while (node) {
8233		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8234		if (ptr < sp->ptr)
8235			node = node->rb_left;
8236		else if (ptr > sp->ptr)
8237			node = node->rb_right;
8238		else
8239			break;
8240	}
8241	spin_unlock(&fs_info->swapfile_pins_lock);
8242	return node != NULL;
8243}
8244
8245static int relocating_repair_kthread(void *data)
8246{
8247	struct btrfs_block_group *cache = data;
8248	struct btrfs_fs_info *fs_info = cache->fs_info;
8249	u64 target;
8250	int ret = 0;
8251
8252	target = cache->start;
8253	btrfs_put_block_group(cache);
8254
8255	sb_start_write(fs_info->sb);
8256	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8257		btrfs_info(fs_info,
8258			   "zoned: skip relocating block group %llu to repair: EBUSY",
8259			   target);
8260		sb_end_write(fs_info->sb);
8261		return -EBUSY;
8262	}
8263
8264	mutex_lock(&fs_info->reclaim_bgs_lock);
8265
8266	/* Ensure block group still exists */
8267	cache = btrfs_lookup_block_group(fs_info, target);
8268	if (!cache)
8269		goto out;
8270
8271	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8272		goto out;
8273
8274	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8275	if (ret < 0)
8276		goto out;
8277
8278	btrfs_info(fs_info,
8279		   "zoned: relocating block group %llu to repair IO failure",
8280		   target);
8281	ret = btrfs_relocate_chunk(fs_info, target);
8282
8283out:
8284	if (cache)
8285		btrfs_put_block_group(cache);
8286	mutex_unlock(&fs_info->reclaim_bgs_lock);
8287	btrfs_exclop_finish(fs_info);
8288	sb_end_write(fs_info->sb);
8289
8290	return ret;
8291}
8292
8293bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8294{
8295	struct btrfs_block_group *cache;
8296
8297	if (!btrfs_is_zoned(fs_info))
8298		return false;
8299
8300	/* Do not attempt to repair in degraded state */
8301	if (btrfs_test_opt(fs_info, DEGRADED))
8302		return true;
8303
8304	cache = btrfs_lookup_block_group(fs_info, logical);
8305	if (!cache)
8306		return true;
8307
8308	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8309		btrfs_put_block_group(cache);
8310		return true;
8311	}
8312
8313	kthread_run(relocating_repair_kthread, cache,
8314		    "btrfs-relocating-repair");
8315
8316	return true;
8317}
8318
8319static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8320				    struct btrfs_io_stripe *smap,
8321				    u64 logical)
8322{
8323	int data_stripes = nr_bioc_data_stripes(bioc);
8324	int i;
8325
8326	for (i = 0; i < data_stripes; i++) {
8327		u64 stripe_start = bioc->full_stripe_logical +
8328				   btrfs_stripe_nr_to_offset(i);
8329
8330		if (logical >= stripe_start &&
8331		    logical < stripe_start + BTRFS_STRIPE_LEN)
8332			break;
8333	}
8334	ASSERT(i < data_stripes);
8335	smap->dev = bioc->stripes[i].dev;
8336	smap->physical = bioc->stripes[i].physical +
8337			((logical - bioc->full_stripe_logical) &
8338			 BTRFS_STRIPE_LEN_MASK);
8339}
8340
8341/*
8342 * Map a repair write into a single device.
8343 *
8344 * A repair write is triggered by read time repair or scrub, which would only
8345 * update the contents of a single device.
8346 * Not update any other mirrors nor go through RMW path.
8347 *
8348 * Callers should ensure:
8349 *
8350 * - Call btrfs_bio_counter_inc_blocked() first
8351 * - The range does not cross stripe boundary
8352 * - Has a valid @mirror_num passed in.
8353 */
8354int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8355			   struct btrfs_io_stripe *smap, u64 logical,
8356			   u32 length, int mirror_num)
8357{
8358	struct btrfs_io_context *bioc = NULL;
8359	u64 map_length = length;
8360	int mirror_ret = mirror_num;
8361	int ret;
8362
8363	ASSERT(mirror_num > 0);
8364
8365	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8366			      &bioc, smap, &mirror_ret);
8367	if (ret < 0)
8368		return ret;
8369
8370	/* The map range should not cross stripe boundary. */
8371	ASSERT(map_length >= length);
8372
8373	/* Already mapped to single stripe. */
8374	if (!bioc)
8375		goto out;
8376
8377	/* Map the RAID56 multi-stripe writes to a single one. */
8378	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8379		map_raid56_repair_block(bioc, smap, logical);
8380		goto out;
8381	}
8382
8383	ASSERT(mirror_num <= bioc->num_stripes);
8384	smap->dev = bioc->stripes[mirror_num - 1].dev;
8385	smap->physical = bioc->stripes[mirror_num - 1].physical;
8386out:
8387	btrfs_put_bioc(bioc);
8388	ASSERT(smap->dev);
8389	return 0;
8390}