Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
 
   8#include <linux/slab.h>
 
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
 
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "extent_map.h"
  18#include "disk-io.h"
  19#include "transaction.h"
  20#include "print-tree.h"
  21#include "volumes.h"
  22#include "raid56.h"
 
 
  23#include "rcu-string.h"
  24#include "dev-replace.h"
  25#include "sysfs.h"
  26#include "tree-checker.h"
  27#include "space-info.h"
  28#include "block-group.h"
  29#include "discard.h"
  30#include "zoned.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37#include "super.h"
  38
  39#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  40					 BTRFS_BLOCK_GROUP_RAID10 | \
  41					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  42
  43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  44	[BTRFS_RAID_RAID10] = {
  45		.sub_stripes	= 2,
  46		.dev_stripes	= 1,
  47		.devs_max	= 0,	/* 0 == as many as possible */
  48		.devs_min	= 2,
  49		.tolerated_failures = 1,
  50		.devs_increment	= 2,
  51		.ncopies	= 2,
  52		.nparity        = 0,
  53		.raid_name	= "raid10",
  54		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  55		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  56	},
  57	[BTRFS_RAID_RAID1] = {
  58		.sub_stripes	= 1,
  59		.dev_stripes	= 1,
  60		.devs_max	= 2,
  61		.devs_min	= 2,
  62		.tolerated_failures = 1,
  63		.devs_increment	= 2,
  64		.ncopies	= 2,
  65		.nparity        = 0,
  66		.raid_name	= "raid1",
  67		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  68		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  69	},
  70	[BTRFS_RAID_RAID1C3] = {
  71		.sub_stripes	= 1,
  72		.dev_stripes	= 1,
  73		.devs_max	= 3,
  74		.devs_min	= 3,
  75		.tolerated_failures = 2,
  76		.devs_increment	= 3,
  77		.ncopies	= 3,
  78		.nparity        = 0,
  79		.raid_name	= "raid1c3",
  80		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  81		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  82	},
  83	[BTRFS_RAID_RAID1C4] = {
  84		.sub_stripes	= 1,
  85		.dev_stripes	= 1,
  86		.devs_max	= 4,
  87		.devs_min	= 4,
  88		.tolerated_failures = 3,
  89		.devs_increment	= 4,
  90		.ncopies	= 4,
  91		.nparity        = 0,
  92		.raid_name	= "raid1c4",
  93		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
  94		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  95	},
  96	[BTRFS_RAID_DUP] = {
  97		.sub_stripes	= 1,
  98		.dev_stripes	= 2,
  99		.devs_max	= 1,
 100		.devs_min	= 1,
 101		.tolerated_failures = 0,
 102		.devs_increment	= 1,
 103		.ncopies	= 2,
 104		.nparity        = 0,
 105		.raid_name	= "dup",
 106		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 107		.mindev_error	= 0,
 108	},
 109	[BTRFS_RAID_RAID0] = {
 110		.sub_stripes	= 1,
 111		.dev_stripes	= 1,
 112		.devs_max	= 0,
 113		.devs_min	= 1,
 114		.tolerated_failures = 0,
 115		.devs_increment	= 1,
 116		.ncopies	= 1,
 117		.nparity        = 0,
 118		.raid_name	= "raid0",
 119		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 120		.mindev_error	= 0,
 121	},
 122	[BTRFS_RAID_SINGLE] = {
 123		.sub_stripes	= 1,
 124		.dev_stripes	= 1,
 125		.devs_max	= 1,
 126		.devs_min	= 1,
 127		.tolerated_failures = 0,
 128		.devs_increment	= 1,
 129		.ncopies	= 1,
 130		.nparity        = 0,
 131		.raid_name	= "single",
 132		.bg_flag	= 0,
 133		.mindev_error	= 0,
 134	},
 135	[BTRFS_RAID_RAID5] = {
 136		.sub_stripes	= 1,
 137		.dev_stripes	= 1,
 138		.devs_max	= 0,
 139		.devs_min	= 2,
 140		.tolerated_failures = 1,
 141		.devs_increment	= 1,
 142		.ncopies	= 1,
 143		.nparity        = 1,
 144		.raid_name	= "raid5",
 145		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 146		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 147	},
 148	[BTRFS_RAID_RAID6] = {
 149		.sub_stripes	= 1,
 150		.dev_stripes	= 1,
 151		.devs_max	= 0,
 152		.devs_min	= 3,
 153		.tolerated_failures = 2,
 154		.devs_increment	= 1,
 155		.ncopies	= 1,
 156		.nparity        = 2,
 157		.raid_name	= "raid6",
 158		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 159		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 160	},
 161};
 162
 163/*
 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 165 * can be used as index to access btrfs_raid_array[].
 166 */
 167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 168{
 169	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 170
 171	if (!profile)
 172		return BTRFS_RAID_SINGLE;
 173
 174	return BTRFS_BG_FLAG_TO_INDEX(profile);
 175}
 176
 177const char *btrfs_bg_type_to_raid_name(u64 flags)
 178{
 179	const int index = btrfs_bg_flags_to_raid_index(flags);
 180
 181	if (index >= BTRFS_NR_RAID_TYPES)
 182		return NULL;
 183
 184	return btrfs_raid_array[index].raid_name;
 185}
 186
 187int btrfs_nr_parity_stripes(u64 type)
 188{
 189	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 190
 191	return btrfs_raid_array[index].nparity;
 192}
 193
 194/*
 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 196 * bytes including terminating null byte.
 197 */
 198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 199{
 200	int i;
 201	int ret;
 202	char *bp = buf;
 203	u64 flags = bg_flags;
 204	u32 size_bp = size_buf;
 205
 206	if (!flags) {
 207		strcpy(bp, "NONE");
 208		return;
 209	}
 210
 211#define DESCRIBE_FLAG(flag, desc)						\
 212	do {								\
 213		if (flags & (flag)) {					\
 214			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 215			if (ret < 0 || ret >= size_bp)			\
 216				goto out_overflow;			\
 217			size_bp -= ret;					\
 218			bp += ret;					\
 219			flags &= ~(flag);				\
 220		}							\
 221	} while (0)
 222
 223	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 224	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 225	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 226
 227	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 228	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 229		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 230			      btrfs_raid_array[i].raid_name);
 231#undef DESCRIBE_FLAG
 232
 233	if (flags) {
 234		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 235		size_bp -= ret;
 236	}
 237
 238	if (size_bp < size_buf)
 239		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 240
 241	/*
 242	 * The text is trimmed, it's up to the caller to provide sufficiently
 243	 * large buffer
 244	 */
 245out_overflow:;
 246}
 247
 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 
 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 
 
 
 
 
 251
 252/*
 253 * Device locking
 254 * ==============
 255 *
 256 * There are several mutexes that protect manipulation of devices and low-level
 257 * structures like chunks but not block groups, extents or files
 258 *
 259 * uuid_mutex (global lock)
 260 * ------------------------
 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 263 * device) or requested by the device= mount option
 264 *
 265 * the mutex can be very coarse and can cover long-running operations
 266 *
 267 * protects: updates to fs_devices counters like missing devices, rw devices,
 268 * seeding, structure cloning, opening/closing devices at mount/umount time
 269 *
 270 * global::fs_devs - add, remove, updates to the global list
 271 *
 272 * does not protect: manipulation of the fs_devices::devices list in general
 273 * but in mount context it could be used to exclude list modifications by eg.
 274 * scan ioctl
 275 *
 276 * btrfs_device::name - renames (write side), read is RCU
 277 *
 278 * fs_devices::device_list_mutex (per-fs, with RCU)
 279 * ------------------------------------------------
 280 * protects updates to fs_devices::devices, ie. adding and deleting
 281 *
 282 * simple list traversal with read-only actions can be done with RCU protection
 283 *
 284 * may be used to exclude some operations from running concurrently without any
 285 * modifications to the list (see write_all_supers)
 286 *
 287 * Is not required at mount and close times, because our device list is
 288 * protected by the uuid_mutex at that point.
 289 *
 290 * balance_mutex
 291 * -------------
 292 * protects balance structures (status, state) and context accessed from
 293 * several places (internally, ioctl)
 294 *
 295 * chunk_mutex
 296 * -----------
 297 * protects chunks, adding or removing during allocation, trim or when a new
 298 * device is added/removed. Additionally it also protects post_commit_list of
 299 * individual devices, since they can be added to the transaction's
 300 * post_commit_list only with chunk_mutex held.
 301 *
 302 * cleaner_mutex
 303 * -------------
 304 * a big lock that is held by the cleaner thread and prevents running subvolume
 305 * cleaning together with relocation or delayed iputs
 306 *
 307 *
 308 * Lock nesting
 309 * ============
 310 *
 311 * uuid_mutex
 312 *   device_list_mutex
 313 *     chunk_mutex
 314 *   balance_mutex
 315 *
 316 *
 317 * Exclusive operations
 318 * ====================
 319 *
 320 * Maintains the exclusivity of the following operations that apply to the
 321 * whole filesystem and cannot run in parallel.
 322 *
 323 * - Balance (*)
 324 * - Device add
 325 * - Device remove
 326 * - Device replace (*)
 327 * - Resize
 328 *
 329 * The device operations (as above) can be in one of the following states:
 330 *
 331 * - Running state
 332 * - Paused state
 333 * - Completed state
 334 *
 335 * Only device operations marked with (*) can go into the Paused state for the
 336 * following reasons:
 337 *
 338 * - ioctl (only Balance can be Paused through ioctl)
 339 * - filesystem remounted as read-only
 340 * - filesystem unmounted and mounted as read-only
 341 * - system power-cycle and filesystem mounted as read-only
 342 * - filesystem or device errors leading to forced read-only
 343 *
 344 * The status of exclusive operation is set and cleared atomically.
 345 * During the course of Paused state, fs_info::exclusive_operation remains set.
 346 * A device operation in Paused or Running state can be canceled or resumed
 347 * either by ioctl (Balance only) or when remounted as read-write.
 348 * The exclusive status is cleared when the device operation is canceled or
 349 * completed.
 350 */
 351
 352DEFINE_MUTEX(uuid_mutex);
 353static LIST_HEAD(fs_uuids);
 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 355{
 356	return &fs_uuids;
 357}
 358
 359/*
 360 * alloc_fs_devices - allocate struct btrfs_fs_devices
 361 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 362 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 363 *
 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 365 * The returned struct is not linked onto any lists and can be destroyed with
 366 * kfree() right away.
 367 */
 368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 369						 const u8 *metadata_fsid)
 370{
 371	struct btrfs_fs_devices *fs_devs;
 372
 373	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 374	if (!fs_devs)
 375		return ERR_PTR(-ENOMEM);
 376
 377	mutex_init(&fs_devs->device_list_mutex);
 378
 379	INIT_LIST_HEAD(&fs_devs->devices);
 380	INIT_LIST_HEAD(&fs_devs->alloc_list);
 381	INIT_LIST_HEAD(&fs_devs->fs_list);
 382	INIT_LIST_HEAD(&fs_devs->seed_list);
 383	if (fsid)
 384		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 385
 386	if (metadata_fsid)
 387		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 388	else if (fsid)
 389		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 390
 391	return fs_devs;
 392}
 393
 394void btrfs_free_device(struct btrfs_device *device)
 395{
 396	WARN_ON(!list_empty(&device->post_commit_list));
 397	rcu_string_free(device->name);
 398	extent_io_tree_release(&device->alloc_state);
 
 399	btrfs_destroy_dev_zone_info(device);
 400	kfree(device);
 401}
 402
 403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 404{
 405	struct btrfs_device *device;
 406
 407	WARN_ON(fs_devices->opened);
 408	while (!list_empty(&fs_devices->devices)) {
 409		device = list_entry(fs_devices->devices.next,
 410				    struct btrfs_device, dev_list);
 411		list_del(&device->dev_list);
 412		btrfs_free_device(device);
 413	}
 414	kfree(fs_devices);
 415}
 416
 417void __exit btrfs_cleanup_fs_uuids(void)
 418{
 419	struct btrfs_fs_devices *fs_devices;
 420
 421	while (!list_empty(&fs_uuids)) {
 422		fs_devices = list_entry(fs_uuids.next,
 423					struct btrfs_fs_devices, fs_list);
 424		list_del(&fs_devices->fs_list);
 425		free_fs_devices(fs_devices);
 426	}
 427}
 428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429static noinline struct btrfs_fs_devices *find_fsid(
 430		const u8 *fsid, const u8 *metadata_fsid)
 431{
 432	struct btrfs_fs_devices *fs_devices;
 433
 434	ASSERT(fsid);
 435
 436	/* Handle non-split brain cases */
 437	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 438		if (metadata_fsid) {
 439			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 440			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 441				      BTRFS_FSID_SIZE) == 0)
 442				return fs_devices;
 443		} else {
 444			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 445				return fs_devices;
 446		}
 447	}
 448	return NULL;
 449}
 450
 451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 452				struct btrfs_super_block *disk_super)
 453{
 454
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	/*
 458	 * Handle scanned device having completed its fsid change but
 459	 * belonging to a fs_devices that was created by first scanning
 460	 * a device which didn't have its fsid/metadata_uuid changed
 461	 * at all and the CHANGING_FSID_V2 flag set.
 462	 */
 463	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 464		if (fs_devices->fsid_change &&
 465		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 466			   BTRFS_FSID_SIZE) == 0 &&
 467		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 468			   BTRFS_FSID_SIZE) == 0) {
 469			return fs_devices;
 470		}
 471	}
 472	/*
 473	 * Handle scanned device having completed its fsid change but
 474	 * belonging to a fs_devices that was created by a device that
 475	 * has an outdated pair of fsid/metadata_uuid and
 476	 * CHANGING_FSID_V2 flag set.
 477	 */
 478	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 479		if (fs_devices->fsid_change &&
 480		    memcmp(fs_devices->metadata_uuid,
 481			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 482		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 483			   BTRFS_FSID_SIZE) == 0) {
 484			return fs_devices;
 485		}
 486	}
 487
 488	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 489}
 490
 491
 492static int
 493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 494		      int flush, struct block_device **bdev,
 495		      struct btrfs_super_block **disk_super)
 496{
 497	int ret;
 498
 499	*bdev = blkdev_get_by_path(device_path, flags, holder);
 500
 501	if (IS_ERR(*bdev)) {
 502		ret = PTR_ERR(*bdev);
 503		goto error;
 504	}
 505
 506	if (flush)
 507		sync_blockdev(*bdev);
 508	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 509	if (ret) {
 510		blkdev_put(*bdev, flags);
 511		goto error;
 512	}
 513	invalidate_bdev(*bdev);
 514	*disk_super = btrfs_read_dev_super(*bdev);
 515	if (IS_ERR(*disk_super)) {
 516		ret = PTR_ERR(*disk_super);
 517		blkdev_put(*bdev, flags);
 518		goto error;
 519	}
 520
 521	return 0;
 522
 523error:
 524	*bdev = NULL;
 525	return ret;
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 528/*
 529 *  Search and remove all stale devices (which are not mounted).  When both
 530 *  inputs are NULL, it will search and release all stale devices.
 531 *
 532 *  @devt:         Optional. When provided will it release all unmounted devices
 533 *                 matching this devt only.
 534 *  @skip_device:  Optional. Will skip this device when searching for the stale
 535 *                 devices.
 536 *
 537 *  Return:	0 for success or if @devt is 0.
 538 *		-EBUSY if @devt is a mounted device.
 539 *		-ENOENT if @devt does not match any device in the list.
 540 */
 541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 
 542{
 543	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 544	struct btrfs_device *device, *tmp_device;
 545	int ret = 0;
 546
 547	lockdep_assert_held(&uuid_mutex);
 548
 549	if (devt)
 550		ret = -ENOENT;
 551
 552	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 553
 554		mutex_lock(&fs_devices->device_list_mutex);
 555		list_for_each_entry_safe(device, tmp_device,
 556					 &fs_devices->devices, dev_list) {
 557			if (skip_device && skip_device == device)
 558				continue;
 559			if (devt && devt != device->devt)
 
 
 560				continue;
 561			if (fs_devices->opened) {
 562				/* for an already deleted device return 0 */
 563				if (devt && ret != 0)
 564					ret = -EBUSY;
 565				break;
 566			}
 567
 568			/* delete the stale device */
 569			fs_devices->num_devices--;
 570			list_del(&device->dev_list);
 571			btrfs_free_device(device);
 572
 573			ret = 0;
 574		}
 575		mutex_unlock(&fs_devices->device_list_mutex);
 576
 577		if (fs_devices->num_devices == 0) {
 578			btrfs_sysfs_remove_fsid(fs_devices);
 579			list_del(&fs_devices->fs_list);
 580			free_fs_devices(fs_devices);
 581		}
 582	}
 583
 584	return ret;
 585}
 586
 587/*
 588 * This is only used on mount, and we are protected from competing things
 589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 590 * fs_devices->device_list_mutex here.
 591 */
 592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 593			struct btrfs_device *device, fmode_t flags,
 594			void *holder)
 595{
 
 596	struct block_device *bdev;
 597	struct btrfs_super_block *disk_super;
 598	u64 devid;
 599	int ret;
 600
 601	if (device->bdev)
 602		return -EINVAL;
 603	if (!device->name)
 604		return -EINVAL;
 605
 606	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 607				    &bdev, &disk_super);
 608	if (ret)
 609		return ret;
 610
 611	devid = btrfs_stack_device_id(&disk_super->dev_item);
 612	if (devid != device->devid)
 613		goto error_free_page;
 614
 615	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 616		goto error_free_page;
 617
 618	device->generation = btrfs_super_generation(disk_super);
 619
 620	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 621		if (btrfs_super_incompat_flags(disk_super) &
 622		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 623			pr_err(
 624		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 625			goto error_free_page;
 626		}
 627
 628		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 629		fs_devices->seeding = true;
 630	} else {
 631		if (bdev_read_only(bdev))
 632			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 633		else
 634			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 635	}
 636
 637	if (!bdev_nonrot(bdev))
 
 638		fs_devices->rotating = true;
 639
 640	if (bdev_max_discard_sectors(bdev))
 641		fs_devices->discardable = true;
 642
 643	device->bdev = bdev;
 644	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 645	device->mode = flags;
 646
 647	fs_devices->open_devices++;
 648	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 649	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 650		fs_devices->rw_devices++;
 651		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 652	}
 653	btrfs_release_disk_super(disk_super);
 654
 655	return 0;
 656
 657error_free_page:
 658	btrfs_release_disk_super(disk_super);
 659	blkdev_put(bdev, flags);
 660
 661	return -EINVAL;
 662}
 663
 664/*
 665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 666 * being created with a disk that has already completed its fsid change. Such
 667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 668 * Handle both cases here.
 669 */
 670static struct btrfs_fs_devices *find_fsid_inprogress(
 671					struct btrfs_super_block *disk_super)
 672{
 673	struct btrfs_fs_devices *fs_devices;
 674
 675	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 676		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 677			   BTRFS_FSID_SIZE) != 0 &&
 678		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 679			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 680			return fs_devices;
 681		}
 682	}
 683
 684	return find_fsid(disk_super->fsid, NULL);
 685}
 686
 687
 688static struct btrfs_fs_devices *find_fsid_changed(
 689					struct btrfs_super_block *disk_super)
 690{
 691	struct btrfs_fs_devices *fs_devices;
 692
 693	/*
 694	 * Handles the case where scanned device is part of an fs that had
 695	 * multiple successful changes of FSID but currently device didn't
 696	 * observe it. Meaning our fsid will be different than theirs. We need
 697	 * to handle two subcases :
 698	 *  1 - The fs still continues to have different METADATA/FSID uuids.
 699	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
 700	 *  are equal).
 701	 */
 702	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 703		/* Changed UUIDs */
 704		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 705			   BTRFS_FSID_SIZE) != 0 &&
 706		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 707			   BTRFS_FSID_SIZE) == 0 &&
 708		    memcmp(fs_devices->fsid, disk_super->fsid,
 709			   BTRFS_FSID_SIZE) != 0)
 710			return fs_devices;
 711
 712		/* Unchanged UUIDs */
 713		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 714			   BTRFS_FSID_SIZE) == 0 &&
 715		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 716			   BTRFS_FSID_SIZE) == 0)
 717			return fs_devices;
 718	}
 719
 720	return NULL;
 721}
 722
 723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 724				struct btrfs_super_block *disk_super)
 725{
 726	struct btrfs_fs_devices *fs_devices;
 727
 728	/*
 729	 * Handle the case where the scanned device is part of an fs whose last
 730	 * metadata UUID change reverted it to the original FSID. At the same
 731	 * time * fs_devices was first created by another constitutent device
 732	 * which didn't fully observe the operation. This results in an
 733	 * btrfs_fs_devices created with metadata/fsid different AND
 734	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 735	 * fs_devices equal to the FSID of the disk.
 736	 */
 737	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 738		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 739			   BTRFS_FSID_SIZE) != 0 &&
 740		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 741			   BTRFS_FSID_SIZE) == 0 &&
 742		    fs_devices->fsid_change)
 743			return fs_devices;
 744	}
 745
 746	return NULL;
 747}
 748/*
 749 * Add new device to list of registered devices
 750 *
 751 * Returns:
 752 * device pointer which was just added or updated when successful
 753 * error pointer when failed
 754 */
 755static noinline struct btrfs_device *device_list_add(const char *path,
 756			   struct btrfs_super_block *disk_super,
 757			   bool *new_device_added)
 758{
 759	struct btrfs_device *device;
 760	struct btrfs_fs_devices *fs_devices = NULL;
 761	struct rcu_string *name;
 762	u64 found_transid = btrfs_super_generation(disk_super);
 763	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 764	dev_t path_devt;
 765	int error;
 766	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 767		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 768	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 769					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 770
 771	error = lookup_bdev(path, &path_devt);
 772	if (error) {
 773		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 774			  path, error);
 775		return ERR_PTR(error);
 776	}
 777
 778	if (fsid_change_in_progress) {
 779		if (!has_metadata_uuid)
 780			fs_devices = find_fsid_inprogress(disk_super);
 781		else
 782			fs_devices = find_fsid_changed(disk_super);
 783	} else if (has_metadata_uuid) {
 784		fs_devices = find_fsid_with_metadata_uuid(disk_super);
 785	} else {
 786		fs_devices = find_fsid_reverted_metadata(disk_super);
 787		if (!fs_devices)
 788			fs_devices = find_fsid(disk_super->fsid, NULL);
 789	}
 790
 791
 792	if (!fs_devices) {
 793		if (has_metadata_uuid)
 794			fs_devices = alloc_fs_devices(disk_super->fsid,
 795						      disk_super->metadata_uuid);
 796		else
 797			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 798
 799		if (IS_ERR(fs_devices))
 800			return ERR_CAST(fs_devices);
 801
 802		fs_devices->fsid_change = fsid_change_in_progress;
 803
 804		mutex_lock(&fs_devices->device_list_mutex);
 805		list_add(&fs_devices->fs_list, &fs_uuids);
 806
 807		device = NULL;
 808	} else {
 809		struct btrfs_dev_lookup_args args = {
 810			.devid = devid,
 811			.uuid = disk_super->dev_item.uuid,
 812		};
 813
 814		mutex_lock(&fs_devices->device_list_mutex);
 815		device = btrfs_find_device(fs_devices, &args);
 
 816
 817		/*
 818		 * If this disk has been pulled into an fs devices created by
 819		 * a device which had the CHANGING_FSID_V2 flag then replace the
 820		 * metadata_uuid/fsid values of the fs_devices.
 821		 */
 822		if (fs_devices->fsid_change &&
 823		    found_transid > fs_devices->latest_generation) {
 824			memcpy(fs_devices->fsid, disk_super->fsid,
 825					BTRFS_FSID_SIZE);
 826
 827			if (has_metadata_uuid)
 828				memcpy(fs_devices->metadata_uuid,
 829				       disk_super->metadata_uuid,
 830				       BTRFS_FSID_SIZE);
 831			else
 832				memcpy(fs_devices->metadata_uuid,
 833				       disk_super->fsid, BTRFS_FSID_SIZE);
 834
 835			fs_devices->fsid_change = false;
 836		}
 837	}
 838
 839	if (!device) {
 840		unsigned int nofs_flag;
 841
 842		if (fs_devices->opened) {
 843			btrfs_err(NULL,
 844		"device %s belongs to fsid %pU, and the fs is already mounted",
 845				  path, fs_devices->fsid);
 846			mutex_unlock(&fs_devices->device_list_mutex);
 847			return ERR_PTR(-EBUSY);
 848		}
 849
 850		nofs_flag = memalloc_nofs_save();
 851		device = btrfs_alloc_device(NULL, &devid,
 852					    disk_super->dev_item.uuid, path);
 853		memalloc_nofs_restore(nofs_flag);
 854		if (IS_ERR(device)) {
 855			mutex_unlock(&fs_devices->device_list_mutex);
 856			/* we can safely leave the fs_devices entry around */
 857			return device;
 858		}
 859
 860		device->devt = path_devt;
 
 
 
 
 
 
 861
 862		list_add_rcu(&device->dev_list, &fs_devices->devices);
 863		fs_devices->num_devices++;
 864
 865		device->fs_devices = fs_devices;
 866		*new_device_added = true;
 867
 868		if (disk_super->label[0])
 869			pr_info(
 870	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 871				disk_super->label, devid, found_transid, path,
 872				current->comm, task_pid_nr(current));
 873		else
 874			pr_info(
 875	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 876				disk_super->fsid, devid, found_transid, path,
 877				current->comm, task_pid_nr(current));
 878
 879	} else if (!device->name || strcmp(device->name->str, path)) {
 880		/*
 881		 * When FS is already mounted.
 882		 * 1. If you are here and if the device->name is NULL that
 883		 *    means this device was missing at time of FS mount.
 884		 * 2. If you are here and if the device->name is different
 885		 *    from 'path' that means either
 886		 *      a. The same device disappeared and reappeared with
 887		 *         different name. or
 888		 *      b. The missing-disk-which-was-replaced, has
 889		 *         reappeared now.
 890		 *
 891		 * We must allow 1 and 2a above. But 2b would be a spurious
 892		 * and unintentional.
 893		 *
 894		 * Further in case of 1 and 2a above, the disk at 'path'
 895		 * would have missed some transaction when it was away and
 896		 * in case of 2a the stale bdev has to be updated as well.
 897		 * 2b must not be allowed at all time.
 898		 */
 899
 900		/*
 901		 * For now, we do allow update to btrfs_fs_device through the
 902		 * btrfs dev scan cli after FS has been mounted.  We're still
 903		 * tracking a problem where systems fail mount by subvolume id
 904		 * when we reject replacement on a mounted FS.
 905		 */
 906		if (!fs_devices->opened && found_transid < device->generation) {
 907			/*
 908			 * That is if the FS is _not_ mounted and if you
 909			 * are here, that means there is more than one
 910			 * disk with same uuid and devid.We keep the one
 911			 * with larger generation number or the last-in if
 912			 * generation are equal.
 913			 */
 914			mutex_unlock(&fs_devices->device_list_mutex);
 915			btrfs_err(NULL,
 916"device %s already registered with a higher generation, found %llu expect %llu",
 917				  path, found_transid, device->generation);
 918			return ERR_PTR(-EEXIST);
 919		}
 920
 921		/*
 922		 * We are going to replace the device path for a given devid,
 923		 * make sure it's the same device if the device is mounted
 924		 *
 925		 * NOTE: the device->fs_info may not be reliable here so pass
 926		 * in a NULL to message helpers instead. This avoids a possible
 927		 * use-after-free when the fs_info and fs_info->sb are already
 928		 * torn down.
 929		 */
 930		if (device->bdev) {
 931			if (device->devt != path_devt) {
 
 
 
 
 
 
 
 
 
 932				mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 933				btrfs_warn_in_rcu(NULL,
 934	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 935						  path, devid, found_transid,
 936						  current->comm,
 937						  task_pid_nr(current));
 938				return ERR_PTR(-EEXIST);
 939			}
 940			btrfs_info_in_rcu(NULL,
 941	"devid %llu device path %s changed to %s scanned by %s (%d)",
 942					  devid, btrfs_dev_name(device),
 943					  path, current->comm,
 944					  task_pid_nr(current));
 945		}
 946
 947		name = rcu_string_strdup(path, GFP_NOFS);
 948		if (!name) {
 949			mutex_unlock(&fs_devices->device_list_mutex);
 950			return ERR_PTR(-ENOMEM);
 951		}
 952		rcu_string_free(device->name);
 953		rcu_assign_pointer(device->name, name);
 954		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 955			fs_devices->missing_devices--;
 956			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 957		}
 958		device->devt = path_devt;
 959	}
 960
 961	/*
 962	 * Unmount does not free the btrfs_device struct but would zero
 963	 * generation along with most of the other members. So just update
 964	 * it back. We need it to pick the disk with largest generation
 965	 * (as above).
 966	 */
 967	if (!fs_devices->opened) {
 968		device->generation = found_transid;
 969		fs_devices->latest_generation = max_t(u64, found_transid,
 970						fs_devices->latest_generation);
 971	}
 972
 973	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 974
 975	mutex_unlock(&fs_devices->device_list_mutex);
 976	return device;
 977}
 978
 979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 980{
 981	struct btrfs_fs_devices *fs_devices;
 982	struct btrfs_device *device;
 983	struct btrfs_device *orig_dev;
 984	int ret = 0;
 985
 986	lockdep_assert_held(&uuid_mutex);
 987
 988	fs_devices = alloc_fs_devices(orig->fsid, NULL);
 989	if (IS_ERR(fs_devices))
 990		return fs_devices;
 991
 992	fs_devices->total_devices = orig->total_devices;
 993
 994	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 995		const char *dev_path = NULL;
 996
 997		/*
 998		 * This is ok to do without RCU read locked because we hold the
 999		 * uuid mutex so nothing we touch in here is going to disappear.
1000		 */
1001		if (orig_dev->name)
1002			dev_path = orig_dev->name->str;
1003
1004		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005					    orig_dev->uuid, dev_path);
1006		if (IS_ERR(device)) {
1007			ret = PTR_ERR(device);
1008			goto error;
1009		}
1010
1011		if (orig_dev->zone_info) {
1012			struct btrfs_zoned_device_info *zone_info;
1013
1014			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015			if (!zone_info) {
 
 
 
1016				btrfs_free_device(device);
1017				ret = -ENOMEM;
1018				goto error;
1019			}
1020			device->zone_info = zone_info;
1021		}
1022
1023		list_add(&device->dev_list, &fs_devices->devices);
1024		device->fs_devices = fs_devices;
1025		fs_devices->num_devices++;
1026	}
1027	return fs_devices;
1028error:
1029	free_fs_devices(fs_devices);
1030	return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034				      struct btrfs_device **latest_dev)
1035{
1036	struct btrfs_device *device, *next;
1037
1038	/* This is the initialized path, it is safe to release the devices. */
1039	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042				      &device->dev_state) &&
1043			    !test_bit(BTRFS_DEV_STATE_MISSING,
1044				      &device->dev_state) &&
1045			    (!*latest_dev ||
1046			     device->generation > (*latest_dev)->generation)) {
1047				*latest_dev = device;
1048			}
1049			continue;
1050		}
1051
1052		/*
1053		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054		 * in btrfs_init_dev_replace() so just continue.
1055		 */
1056		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057			continue;
1058
1059		if (device->bdev) {
1060			blkdev_put(device->bdev, device->mode);
1061			device->bdev = NULL;
1062			fs_devices->open_devices--;
1063		}
1064		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065			list_del_init(&device->dev_alloc_list);
1066			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067			fs_devices->rw_devices--;
1068		}
1069		list_del_init(&device->dev_list);
1070		fs_devices->num_devices--;
1071		btrfs_free_device(device);
1072	}
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082	struct btrfs_device *latest_dev = NULL;
1083	struct btrfs_fs_devices *seed_dev;
1084
1085	mutex_lock(&uuid_mutex);
1086	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091	fs_devices->latest_dev = latest_dev;
1092
1093	mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098	if (!device->bdev)
1099		return;
1100
1101	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102		sync_blockdev(device->bdev);
1103		invalidate_bdev(device->bdev);
1104	}
1105
1106	blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115		list_del_init(&device->dev_alloc_list);
1116		fs_devices->rw_devices--;
1117	}
1118
1119	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124		fs_devices->missing_devices--;
1125	}
1126
1127	btrfs_close_bdev(device);
1128	if (device->bdev) {
1129		fs_devices->open_devices--;
1130		device->bdev = NULL;
1131	}
1132	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133	btrfs_destroy_dev_zone_info(device);
1134
1135	device->fs_info = NULL;
1136	atomic_set(&device->dev_stats_ccnt, 0);
1137	extent_io_tree_release(&device->alloc_state);
1138
1139	/*
1140	 * Reset the flush error record. We might have a transient flush error
1141	 * in this mount, and if so we aborted the current transaction and set
1142	 * the fs to an error state, guaranteeing no super blocks can be further
1143	 * committed. However that error might be transient and if we unmount the
1144	 * filesystem and mount it again, we should allow the mount to succeed
1145	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146	 * filesystem again we still get flush errors, then we will again abort
1147	 * any transaction and set the error state, guaranteeing no commits of
1148	 * unsafe super blocks.
1149	 */
1150	device->last_flush_error = 0;
1151
1152	/* Verify the device is back in a pristine state  */
1153	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155	ASSERT(list_empty(&device->dev_alloc_list));
1156	ASSERT(list_empty(&device->post_commit_list));
 
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161	struct btrfs_device *device, *tmp;
1162
1163	lockdep_assert_held(&uuid_mutex);
1164
1165	if (--fs_devices->opened > 0)
1166		return;
1167
1168	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169		btrfs_close_one_device(device);
1170
1171	WARN_ON(fs_devices->open_devices);
1172	WARN_ON(fs_devices->rw_devices);
1173	fs_devices->opened = 0;
1174	fs_devices->seeding = false;
1175	fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180	LIST_HEAD(list);
1181	struct btrfs_fs_devices *tmp;
1182
1183	mutex_lock(&uuid_mutex);
1184	close_fs_devices(fs_devices);
1185	if (!fs_devices->opened) {
1186		list_splice_init(&fs_devices->seed_list, &list);
1187
1188		/*
1189		 * If the struct btrfs_fs_devices is not assembled with any
1190		 * other device, it can be re-initialized during the next mount
1191		 * without the needing device-scan step. Therefore, it can be
1192		 * fully freed.
1193		 */
1194		if (fs_devices->num_devices == 1) {
1195			list_del(&fs_devices->fs_list);
1196			free_fs_devices(fs_devices);
1197		}
1198	}
1199
1200
1201	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202		close_fs_devices(fs_devices);
1203		list_del(&fs_devices->seed_list);
1204		free_fs_devices(fs_devices);
1205	}
1206	mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210				fmode_t flags, void *holder)
1211{
1212	struct btrfs_device *device;
1213	struct btrfs_device *latest_dev = NULL;
1214	struct btrfs_device *tmp_device;
1215
1216	flags |= FMODE_EXCL;
1217
1218	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219				 dev_list) {
1220		int ret;
1221
1222		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223		if (ret == 0 &&
1224		    (!latest_dev || device->generation > latest_dev->generation)) {
1225			latest_dev = device;
1226		} else if (ret == -ENODATA) {
1227			fs_devices->num_devices--;
1228			list_del(&device->dev_list);
1229			btrfs_free_device(device);
1230		}
1231	}
1232	if (fs_devices->open_devices == 0)
1233		return -EINVAL;
1234
1235	fs_devices->opened = 1;
1236	fs_devices->latest_dev = latest_dev;
1237	fs_devices->total_rw_bytes = 0;
1238	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241	return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245		     const struct list_head *b)
1246{
1247	const struct btrfs_device *dev1, *dev2;
1248
1249	dev1 = list_entry(a, struct btrfs_device, dev_list);
1250	dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252	if (dev1->devid < dev2->devid)
1253		return -1;
1254	else if (dev1->devid > dev2->devid)
1255		return 1;
1256	return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260		       fmode_t flags, void *holder)
1261{
1262	int ret;
1263
1264	lockdep_assert_held(&uuid_mutex);
1265	/*
1266	 * The device_list_mutex cannot be taken here in case opening the
1267	 * underlying device takes further locks like open_mutex.
1268	 *
1269	 * We also don't need the lock here as this is called during mount and
1270	 * exclusion is provided by uuid_mutex
1271	 */
1272
1273	if (fs_devices->opened) {
1274		fs_devices->opened++;
1275		ret = 0;
1276	} else {
1277		list_sort(NULL, &fs_devices->devices, devid_cmp);
1278		ret = open_fs_devices(fs_devices, flags, holder);
1279	}
1280
1281	return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286	struct page *page = virt_to_page(super);
1287
1288	put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292						       u64 bytenr, u64 bytenr_orig)
1293{
1294	struct btrfs_super_block *disk_super;
1295	struct page *page;
1296	void *p;
1297	pgoff_t index;
1298
1299	/* make sure our super fits in the device */
1300	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301		return ERR_PTR(-EINVAL);
1302
1303	/* make sure our super fits in the page */
1304	if (sizeof(*disk_super) > PAGE_SIZE)
1305		return ERR_PTR(-EINVAL);
1306
1307	/* make sure our super doesn't straddle pages on disk */
1308	index = bytenr >> PAGE_SHIFT;
1309	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310		return ERR_PTR(-EINVAL);
1311
1312	/* pull in the page with our super */
1313	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315	if (IS_ERR(page))
1316		return ERR_CAST(page);
1317
1318	p = page_address(page);
1319
1320	/* align our pointer to the offset of the super block */
1321	disk_super = p + offset_in_page(bytenr);
1322
1323	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325		btrfs_release_disk_super(p);
1326		return ERR_PTR(-EINVAL);
1327	}
1328
1329	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332	return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337	int ret;
1338
1339	mutex_lock(&uuid_mutex);
1340	ret = btrfs_free_stale_devices(devt, NULL);
1341	mutex_unlock(&uuid_mutex);
1342
1343	return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352					   void *holder)
1353{
1354	struct btrfs_super_block *disk_super;
1355	bool new_device_added = false;
1356	struct btrfs_device *device = NULL;
1357	struct block_device *bdev;
1358	u64 bytenr, bytenr_orig;
1359	int ret;
1360
1361	lockdep_assert_held(&uuid_mutex);
1362
1363	/*
1364	 * we would like to check all the supers, but that would make
1365	 * a btrfs mount succeed after a mkfs from a different FS.
1366	 * So, we need to add a special mount option to scan for
1367	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368	 */
1369	flags |= FMODE_EXCL;
1370
1371	bdev = blkdev_get_by_path(path, flags, holder);
1372	if (IS_ERR(bdev))
1373		return ERR_CAST(bdev);
1374
1375	bytenr_orig = btrfs_sb_offset(0);
1376	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377	if (ret) {
1378		device = ERR_PTR(ret);
1379		goto error_bdev_put;
1380	}
1381
1382	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383	if (IS_ERR(disk_super)) {
1384		device = ERR_CAST(disk_super);
1385		goto error_bdev_put;
1386	}
1387
1388	device = device_list_add(path, disk_super, &new_device_added);
1389	if (!IS_ERR(device) && new_device_added)
1390		btrfs_free_stale_devices(device->devt, device);
 
 
1391
1392	btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395	blkdev_put(bdev, flags);
1396
1397	return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405				    u64 len)
1406{
1407	u64 physical_start, physical_end;
1408
1409	lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411	if (!find_first_extent_bit(&device->alloc_state, *start,
1412				   &physical_start, &physical_end,
1413				   CHUNK_ALLOCATED, NULL)) {
1414
1415		if (in_range(physical_start, *start, len) ||
1416		    in_range(*start, physical_start,
1417			     physical_end - physical_start)) {
1418			*start = physical_end + 1;
1419			return true;
1420		}
1421	}
1422	return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427	switch (device->fs_devices->chunk_alloc_policy) {
1428	case BTRFS_CHUNK_ALLOC_REGULAR:
1429		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
 
 
 
 
 
1430	case BTRFS_CHUNK_ALLOC_ZONED:
1431		/*
1432		 * We don't care about the starting region like regular
1433		 * allocator, because we anyway use/reserve the first two zones
1434		 * for superblock logging.
1435		 */
1436		return ALIGN(start, device->zone_info->zone_size);
1437	default:
1438		BUG();
1439	}
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443					u64 *hole_start, u64 *hole_size,
1444					u64 num_bytes)
1445{
1446	u64 zone_size = device->zone_info->zone_size;
1447	u64 pos;
1448	int ret;
1449	bool changed = false;
1450
1451	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453	while (*hole_size > 0) {
1454		pos = btrfs_find_allocatable_zones(device, *hole_start,
1455						   *hole_start + *hole_size,
1456						   num_bytes);
1457		if (pos != *hole_start) {
1458			*hole_size = *hole_start + *hole_size - pos;
1459			*hole_start = pos;
1460			changed = true;
1461			if (*hole_size < num_bytes)
1462				break;
1463		}
1464
1465		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467		/* Range is ensured to be empty */
1468		if (!ret)
1469			return changed;
1470
1471		/* Given hole range was invalid (outside of device) */
1472		if (ret == -ERANGE) {
1473			*hole_start += *hole_size;
1474			*hole_size = 0;
1475			return true;
1476		}
1477
1478		*hole_start += zone_size;
1479		*hole_size -= zone_size;
1480		changed = true;
1481	}
1482
1483	return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device:	the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size:	the size of the hole
1492 * @num_bytes:	the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498				  u64 *hole_size, u64 num_bytes)
1499{
1500	bool changed = false;
1501	u64 hole_end = *hole_start + *hole_size;
1502
1503	for (;;) {
1504		/*
1505		 * Check before we set max_hole_start, otherwise we could end up
1506		 * sending back this offset anyway.
1507		 */
1508		if (contains_pending_extent(device, hole_start, *hole_size)) {
1509			if (hole_end >= *hole_start)
1510				*hole_size = hole_end - *hole_start;
1511			else
1512				*hole_size = 0;
1513			changed = true;
1514		}
1515
1516		switch (device->fs_devices->chunk_alloc_policy) {
1517		case BTRFS_CHUNK_ALLOC_REGULAR:
1518			/* No extra check */
1519			break;
1520		case BTRFS_CHUNK_ALLOC_ZONED:
1521			if (dev_extent_hole_check_zoned(device, hole_start,
1522							hole_size, num_bytes)) {
1523				changed = true;
1524				/*
1525				 * The changed hole can contain pending extent.
1526				 * Loop again to check that.
1527				 */
1528				continue;
1529			}
1530			break;
1531		default:
1532			BUG();
1533		}
1534
1535		break;
1536	}
1537
1538	return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device:	  the device which we search the free space in
1545 * @num_bytes:	  the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start:	  store the start of the free space.
1548 * @len:	  the size of the free space. that we find, or the size
1549 *		  of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
 
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569				u64 num_bytes, u64 search_start, u64 *start,
1570				u64 *len)
1571{
1572	struct btrfs_fs_info *fs_info = device->fs_info;
1573	struct btrfs_root *root = fs_info->dev_root;
1574	struct btrfs_key key;
1575	struct btrfs_dev_extent *dev_extent;
1576	struct btrfs_path *path;
1577	u64 hole_size;
1578	u64 max_hole_start;
1579	u64 max_hole_size;
1580	u64 extent_end;
1581	u64 search_end = device->total_bytes;
1582	int ret;
1583	int slot;
1584	struct extent_buffer *l;
1585
1586	search_start = dev_extent_search_start(device, search_start);
1587
1588	WARN_ON(device->zone_info &&
1589		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591	path = btrfs_alloc_path();
1592	if (!path)
1593		return -ENOMEM;
1594
1595	max_hole_start = search_start;
1596	max_hole_size = 0;
1597
1598again:
1599	if (search_start >= search_end ||
1600		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601		ret = -ENOSPC;
1602		goto out;
1603	}
1604
1605	path->reada = READA_FORWARD;
1606	path->search_commit_root = 1;
1607	path->skip_locking = 1;
1608
1609	key.objectid = device->devid;
1610	key.offset = search_start;
1611	key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613	ret = btrfs_search_backwards(root, &key, path);
1614	if (ret < 0)
1615		goto out;
 
 
 
 
 
1616
1617	while (search_start < search_end) {
1618		l = path->nodes[0];
1619		slot = path->slots[0];
1620		if (slot >= btrfs_header_nritems(l)) {
1621			ret = btrfs_next_leaf(root, path);
1622			if (ret == 0)
1623				continue;
1624			if (ret < 0)
1625				goto out;
1626
1627			break;
1628		}
1629		btrfs_item_key_to_cpu(l, &key, slot);
1630
1631		if (key.objectid < device->devid)
1632			goto next;
1633
1634		if (key.objectid > device->devid)
1635			break;
1636
1637		if (key.type != BTRFS_DEV_EXTENT_KEY)
1638			goto next;
1639
1640		if (key.offset > search_end)
1641			break;
1642
1643		if (key.offset > search_start) {
1644			hole_size = key.offset - search_start;
1645			dev_extent_hole_check(device, &search_start, &hole_size,
1646					      num_bytes);
1647
1648			if (hole_size > max_hole_size) {
1649				max_hole_start = search_start;
1650				max_hole_size = hole_size;
1651			}
1652
1653			/*
1654			 * If this free space is greater than which we need,
1655			 * it must be the max free space that we have found
1656			 * until now, so max_hole_start must point to the start
1657			 * of this free space and the length of this free space
1658			 * is stored in max_hole_size. Thus, we return
1659			 * max_hole_start and max_hole_size and go back to the
1660			 * caller.
1661			 */
1662			if (hole_size >= num_bytes) {
1663				ret = 0;
1664				goto out;
1665			}
1666		}
1667
1668		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669		extent_end = key.offset + btrfs_dev_extent_length(l,
1670								  dev_extent);
1671		if (extent_end > search_start)
1672			search_start = extent_end;
1673next:
1674		path->slots[0]++;
1675		cond_resched();
1676	}
1677
1678	/*
1679	 * At this point, search_start should be the end of
1680	 * allocated dev extents, and when shrinking the device,
1681	 * search_end may be smaller than search_start.
1682	 */
1683	if (search_end > search_start) {
1684		hole_size = search_end - search_start;
1685		if (dev_extent_hole_check(device, &search_start, &hole_size,
1686					  num_bytes)) {
1687			btrfs_release_path(path);
1688			goto again;
1689		}
1690
1691		if (hole_size > max_hole_size) {
1692			max_hole_start = search_start;
1693			max_hole_size = hole_size;
1694		}
1695	}
1696
1697	/* See above. */
1698	if (max_hole_size < num_bytes)
1699		ret = -ENOSPC;
1700	else
1701		ret = 0;
1702
1703	ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705	btrfs_free_path(path);
1706	*start = max_hole_start;
1707	if (len)
1708		*len = max_hole_size;
1709	return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713			 u64 *start, u64 *len)
1714{
1715	/* FIXME use last free of some kind */
1716	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720			  struct btrfs_device *device,
1721			  u64 start, u64 *dev_extent_len)
1722{
1723	struct btrfs_fs_info *fs_info = device->fs_info;
1724	struct btrfs_root *root = fs_info->dev_root;
1725	int ret;
1726	struct btrfs_path *path;
1727	struct btrfs_key key;
1728	struct btrfs_key found_key;
1729	struct extent_buffer *leaf = NULL;
1730	struct btrfs_dev_extent *extent = NULL;
1731
1732	path = btrfs_alloc_path();
1733	if (!path)
1734		return -ENOMEM;
1735
1736	key.objectid = device->devid;
1737	key.offset = start;
1738	key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741	if (ret > 0) {
1742		ret = btrfs_previous_item(root, path, key.objectid,
1743					  BTRFS_DEV_EXTENT_KEY);
1744		if (ret)
1745			goto out;
1746		leaf = path->nodes[0];
1747		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748		extent = btrfs_item_ptr(leaf, path->slots[0],
1749					struct btrfs_dev_extent);
1750		BUG_ON(found_key.offset > start || found_key.offset +
1751		       btrfs_dev_extent_length(leaf, extent) < start);
1752		key = found_key;
1753		btrfs_release_path(path);
1754		goto again;
1755	} else if (ret == 0) {
1756		leaf = path->nodes[0];
1757		extent = btrfs_item_ptr(leaf, path->slots[0],
1758					struct btrfs_dev_extent);
1759	} else {
1760		goto out;
1761	}
1762
1763	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765	ret = btrfs_del_item(trans, root, path);
1766	if (ret == 0)
1767		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769	btrfs_free_path(path);
1770	return ret;
1771}
1772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775	struct extent_map_tree *em_tree;
1776	struct extent_map *em;
1777	struct rb_node *n;
1778	u64 ret = 0;
1779
1780	em_tree = &fs_info->mapping_tree;
1781	read_lock(&em_tree->lock);
1782	n = rb_last(&em_tree->map.rb_root);
1783	if (n) {
1784		em = rb_entry(n, struct extent_map, rb_node);
1785		ret = em->start + em->len;
1786	}
1787	read_unlock(&em_tree->lock);
1788
1789	return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793				    u64 *devid_ret)
1794{
1795	int ret;
1796	struct btrfs_key key;
1797	struct btrfs_key found_key;
1798	struct btrfs_path *path;
1799
1800	path = btrfs_alloc_path();
1801	if (!path)
1802		return -ENOMEM;
1803
1804	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805	key.type = BTRFS_DEV_ITEM_KEY;
1806	key.offset = (u64)-1;
1807
1808	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809	if (ret < 0)
1810		goto error;
1811
1812	if (ret == 0) {
1813		/* Corruption */
1814		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815		ret = -EUCLEAN;
1816		goto error;
1817	}
1818
1819	ret = btrfs_previous_item(fs_info->chunk_root, path,
1820				  BTRFS_DEV_ITEMS_OBJECTID,
1821				  BTRFS_DEV_ITEM_KEY);
1822	if (ret) {
1823		*devid_ret = 1;
1824	} else {
1825		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826				      path->slots[0]);
1827		*devid_ret = found_key.offset + 1;
1828	}
1829	ret = 0;
1830error:
1831	btrfs_free_path(path);
1832	return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840			    struct btrfs_device *device)
1841{
1842	int ret;
1843	struct btrfs_path *path;
1844	struct btrfs_dev_item *dev_item;
1845	struct extent_buffer *leaf;
1846	struct btrfs_key key;
1847	unsigned long ptr;
1848
1849	path = btrfs_alloc_path();
1850	if (!path)
1851		return -ENOMEM;
1852
1853	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854	key.type = BTRFS_DEV_ITEM_KEY;
1855	key.offset = device->devid;
1856
1857	btrfs_reserve_chunk_metadata(trans, true);
1858	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859				      &key, sizeof(*dev_item));
1860	btrfs_trans_release_chunk_metadata(trans);
1861	if (ret)
1862		goto out;
1863
1864	leaf = path->nodes[0];
1865	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867	btrfs_set_device_id(leaf, dev_item, device->devid);
1868	btrfs_set_device_generation(leaf, dev_item, 0);
1869	btrfs_set_device_type(leaf, dev_item, device->type);
1870	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873	btrfs_set_device_total_bytes(leaf, dev_item,
1874				     btrfs_device_get_disk_total_bytes(device));
1875	btrfs_set_device_bytes_used(leaf, dev_item,
1876				    btrfs_device_get_bytes_used(device));
1877	btrfs_set_device_group(leaf, dev_item, 0);
1878	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880	btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882	ptr = btrfs_device_uuid(dev_item);
1883	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884	ptr = btrfs_device_fsid(dev_item);
1885	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886			    ptr, BTRFS_FSID_SIZE);
1887	btrfs_mark_buffer_dirty(leaf);
1888
1889	ret = 0;
1890out:
1891	btrfs_free_path(path);
1892	return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903	struct path path;
1904	struct timespec64 now;
1905	int ret;
1906
1907	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908	if (ret)
1909		return;
1910
1911	now = current_time(d_inode(path.dentry));
1912	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913	path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917			     struct btrfs_device *device)
1918{
1919	struct btrfs_root *root = device->fs_info->chunk_root;
1920	int ret;
1921	struct btrfs_path *path;
1922	struct btrfs_key key;
 
1923
1924	path = btrfs_alloc_path();
1925	if (!path)
1926		return -ENOMEM;
1927
 
 
 
 
 
1928	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929	key.type = BTRFS_DEV_ITEM_KEY;
1930	key.offset = device->devid;
1931
1932	btrfs_reserve_chunk_metadata(trans, false);
1933	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934	btrfs_trans_release_chunk_metadata(trans);
1935	if (ret) {
1936		if (ret > 0)
1937			ret = -ENOENT;
 
 
1938		goto out;
1939	}
1940
1941	ret = btrfs_del_item(trans, root, path);
 
 
 
 
 
1942out:
1943	btrfs_free_path(path);
 
 
1944	return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953		u64 num_devices)
1954{
1955	u64 all_avail;
1956	unsigned seq;
1957	int i;
1958
1959	do {
1960		seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962		all_avail = fs_info->avail_data_alloc_bits |
1963			    fs_info->avail_system_alloc_bits |
1964			    fs_info->avail_metadata_alloc_bits;
1965	} while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969			continue;
1970
1971		if (num_devices < btrfs_raid_array[i].devs_min)
1972			return btrfs_raid_array[i].mindev_error;
 
 
 
 
1973	}
1974
1975	return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981	struct btrfs_device *next_device;
1982
1983	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984		if (next_device != device &&
1985		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986		    && next_device->bdev)
1987			return next_device;
1988	}
1989
1990	return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000					    struct btrfs_device *next_device)
2001{
2002	struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004	if (!next_device)
2005		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006							    device);
2007	ASSERT(next_device);
2008
2009	if (fs_info->sb->s_bdev &&
2010			(fs_info->sb->s_bdev == device->bdev))
2011		fs_info->sb->s_bdev = next_device->bdev;
2012
2013	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014		fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023	u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025	down_read(&fs_info->dev_replace.rwsem);
2026	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027		ASSERT(num_devices > 1);
2028		num_devices--;
2029	}
2030	up_read(&fs_info->dev_replace.rwsem);
2031
2032	return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036				     struct block_device *bdev, int copy_num)
2037{
2038	struct btrfs_super_block *disk_super;
2039	const size_t len = sizeof(disk_super->magic);
2040	const u64 bytenr = btrfs_sb_offset(copy_num);
2041	int ret;
2042
2043	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044	if (IS_ERR(disk_super))
2045		return;
2046
2047	memset(&disk_super->magic, 0, len);
2048	folio_mark_dirty(virt_to_folio(disk_super));
2049	btrfs_release_disk_super(disk_super);
2050
2051	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052	if (ret)
2053		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054			copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058			       struct block_device *bdev,
2059			       const char *device_path)
2060{
 
2061	int copy_num;
2062
2063	if (!bdev)
2064		return;
2065
2066	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067		if (bdev_is_zoned(bdev))
 
 
 
 
 
 
 
2068			btrfs_reset_sb_log_zones(bdev, copy_num);
2069		else
2070			btrfs_scratch_superblock(fs_info, bdev, copy_num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071	}
2072
2073	/* Notify udev that device has changed */
2074	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076	/* Update ctime/mtime for device path for libblkid */
2077	update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081		    struct btrfs_dev_lookup_args *args,
2082		    struct block_device **bdev, fmode_t *mode)
2083{
2084	struct btrfs_trans_handle *trans;
2085	struct btrfs_device *device;
2086	struct btrfs_fs_devices *cur_devices;
2087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088	u64 num_devices;
2089	int ret = 0;
2090
2091	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093		return -EINVAL;
2094	}
2095
2096	/*
2097	 * The device list in fs_devices is accessed without locks (neither
2098	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099	 * filesystem and another device rm cannot run.
2100	 */
2101	num_devices = btrfs_num_devices(fs_info);
2102
2103	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104	if (ret)
2105		return ret;
2106
2107	device = btrfs_find_device(fs_info->fs_devices, args);
2108	if (!device) {
2109		if (args->missing)
 
 
2110			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111		else
2112			ret = -ENOENT;
2113		return ret;
2114	}
2115
2116	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117		btrfs_warn_in_rcu(fs_info,
2118		  "cannot remove device %s (devid %llu) due to active swapfile",
2119				  btrfs_dev_name(device), device->devid);
2120		return -ETXTBSY;
 
2121	}
2122
2123	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124		return BTRFS_ERROR_DEV_TGT_REPLACE;
 
 
2125
2126	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127	    fs_info->fs_devices->rw_devices == 1)
2128		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
 
 
2129
2130	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131		mutex_lock(&fs_info->chunk_mutex);
2132		list_del_init(&device->dev_alloc_list);
2133		device->fs_devices->rw_devices--;
2134		mutex_unlock(&fs_info->chunk_mutex);
2135	}
2136
 
2137	ret = btrfs_shrink_device(device, 0);
 
 
 
2138	if (ret)
2139		goto error_undo;
2140
2141	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142	if (IS_ERR(trans)) {
2143		ret = PTR_ERR(trans);
 
 
 
 
2144		goto error_undo;
2145	}
2146
2147	ret = btrfs_rm_dev_item(trans, device);
2148	if (ret) {
2149		/* Any error in dev item removal is critical */
2150		btrfs_crit(fs_info,
2151			   "failed to remove device item for devid %llu: %d",
2152			   device->devid, ret);
2153		btrfs_abort_transaction(trans, ret);
2154		btrfs_end_transaction(trans);
2155		return ret;
2156	}
2157
2158	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159	btrfs_scrub_cancel_dev(device);
2160
2161	/*
2162	 * the device list mutex makes sure that we don't change
2163	 * the device list while someone else is writing out all
2164	 * the device supers. Whoever is writing all supers, should
2165	 * lock the device list mutex before getting the number of
2166	 * devices in the super block (super_copy). Conversely,
2167	 * whoever updates the number of devices in the super block
2168	 * (super_copy) should hold the device list mutex.
2169	 */
2170
2171	/*
2172	 * In normal cases the cur_devices == fs_devices. But in case
2173	 * of deleting a seed device, the cur_devices should point to
2174	 * its own fs_devices listed under the fs_devices->seed_list.
2175	 */
2176	cur_devices = device->fs_devices;
2177	mutex_lock(&fs_devices->device_list_mutex);
2178	list_del_rcu(&device->dev_list);
2179
2180	cur_devices->num_devices--;
2181	cur_devices->total_devices--;
2182	/* Update total_devices of the parent fs_devices if it's seed */
2183	if (cur_devices != fs_devices)
2184		fs_devices->total_devices--;
2185
2186	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187		cur_devices->missing_devices--;
2188
2189	btrfs_assign_next_active_device(device, NULL);
2190
2191	if (device->bdev) {
2192		cur_devices->open_devices--;
2193		/* remove sysfs entry */
2194		btrfs_sysfs_remove_device(device);
2195	}
2196
2197	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199	mutex_unlock(&fs_devices->device_list_mutex);
2200
2201	/*
2202	 * At this point, the device is zero sized and detached from the
2203	 * devices list.  All that's left is to zero out the old supers and
2204	 * free the device.
2205	 *
2206	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208	 * block device and it's dependencies.  Instead just flush the device
2209	 * and let the caller do the final blkdev_put.
2210	 */
2211	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212		btrfs_scratch_superblocks(fs_info, device->bdev,
2213					  device->name->str);
2214		if (device->bdev) {
2215			sync_blockdev(device->bdev);
2216			invalidate_bdev(device->bdev);
2217		}
2218	}
2219
2220	*bdev = device->bdev;
2221	*mode = device->mode;
2222	synchronize_rcu();
2223	btrfs_free_device(device);
2224
2225	/*
2226	 * This can happen if cur_devices is the private seed devices list.  We
2227	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228	 * to be held, but in fact we don't need that for the private
2229	 * seed_devices, we can simply decrement cur_devices->opened and then
2230	 * remove it from our list and free the fs_devices.
2231	 */
2232	if (cur_devices->num_devices == 0) {
2233		list_del_init(&cur_devices->seed_list);
2234		ASSERT(cur_devices->opened == 1);
2235		cur_devices->opened--;
2236		free_fs_devices(cur_devices);
2237	}
2238
2239	ret = btrfs_commit_transaction(trans);
2240
2241	return ret;
2242
2243error_undo:
 
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		mutex_lock(&fs_info->chunk_mutex);
2246		list_add(&device->dev_alloc_list,
2247			 &fs_devices->alloc_list);
2248		device->fs_devices->rw_devices++;
2249		mutex_unlock(&fs_info->chunk_mutex);
2250	}
2251	return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256	struct btrfs_fs_devices *fs_devices;
2257
2258	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260	/*
2261	 * in case of fs with no seed, srcdev->fs_devices will point
2262	 * to fs_devices of fs_info. However when the dev being replaced is
2263	 * a seed dev it will point to the seed's local fs_devices. In short
2264	 * srcdev will have its correct fs_devices in both the cases.
2265	 */
2266	fs_devices = srcdev->fs_devices;
2267
2268	list_del_rcu(&srcdev->dev_list);
2269	list_del(&srcdev->dev_alloc_list);
2270	fs_devices->num_devices--;
2271	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272		fs_devices->missing_devices--;
2273
2274	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275		fs_devices->rw_devices--;
2276
2277	if (srcdev->bdev)
2278		fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285	mutex_lock(&uuid_mutex);
2286
2287	btrfs_close_bdev(srcdev);
2288	synchronize_rcu();
2289	btrfs_free_device(srcdev);
2290
2291	/* if this is no devs we rather delete the fs_devices */
2292	if (!fs_devices->num_devices) {
2293		/*
2294		 * On a mounted FS, num_devices can't be zero unless it's a
2295		 * seed. In case of a seed device being replaced, the replace
2296		 * target added to the sprout FS, so there will be no more
2297		 * device left under the seed FS.
2298		 */
2299		ASSERT(fs_devices->seeding);
2300
2301		list_del_init(&fs_devices->seed_list);
2302		close_fs_devices(fs_devices);
2303		free_fs_devices(fs_devices);
2304	}
2305	mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312	mutex_lock(&fs_devices->device_list_mutex);
2313
2314	btrfs_sysfs_remove_device(tgtdev);
2315
2316	if (tgtdev->bdev)
2317		fs_devices->open_devices--;
2318
2319	fs_devices->num_devices--;
2320
2321	btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323	list_del_rcu(&tgtdev->dev_list);
2324
2325	mutex_unlock(&fs_devices->device_list_mutex);
2326
 
 
 
 
 
 
 
2327	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328				  tgtdev->name->str);
2329
2330	btrfs_close_bdev(tgtdev);
2331	synchronize_rcu();
2332	btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info:	the filesystem
2339 * @args:	the args to populate
2340 * @path:	the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks.  The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354				 struct btrfs_dev_lookup_args *args,
2355				 const char *path)
2356{
 
2357	struct btrfs_super_block *disk_super;
 
 
2358	struct block_device *bdev;
2359	int ret;
2360
2361	if (!path || !path[0])
2362		return -EINVAL;
2363	if (!strcmp(path, "missing")) {
2364		args->missing = true;
2365		return 0;
2366	}
2367
2368	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370	if (!args->uuid || !args->fsid) {
2371		btrfs_put_dev_args_from_path(args);
2372		return -ENOMEM;
2373	}
2374
2375	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376				    &bdev, &disk_super);
2377	if (ret) {
2378		btrfs_put_dev_args_from_path(args);
2379		return ret;
2380	}
2381
2382	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 
2386	else
2387		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
 
 
2388	btrfs_release_disk_super(disk_super);
 
 
2389	blkdev_put(bdev, FMODE_READ);
2390	return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400	kfree(args->uuid);
2401	kfree(args->fsid);
2402	args->uuid = NULL;
2403	args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407		struct btrfs_fs_info *fs_info, u64 devid,
2408		const char *device_path)
2409{
2410	BTRFS_DEV_LOOKUP_ARGS(args);
2411	struct btrfs_device *device;
2412	int ret;
2413
2414	if (devid) {
2415		args.devid = devid;
2416		device = btrfs_find_device(fs_info->fs_devices, &args);
2417		if (!device)
2418			return ERR_PTR(-ENOENT);
2419		return device;
2420	}
2421
2422	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423	if (ret)
2424		return ERR_PTR(ret);
2425	device = btrfs_find_device(fs_info->fs_devices, &args);
2426	btrfs_put_dev_args_from_path(&args);
2427	if (!device)
 
 
 
 
 
2428		return ERR_PTR(-ENOENT);
2429	return device;
 
 
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
 
 
 
2433{
2434	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435	struct btrfs_fs_devices *old_devices;
2436	struct btrfs_fs_devices *seed_devices;
 
 
 
2437
2438	lockdep_assert_held(&uuid_mutex);
2439	if (!fs_devices->seeding)
2440		return ERR_PTR(-EINVAL);
2441
2442	/*
2443	 * Private copy of the seed devices, anchored at
2444	 * fs_info->fs_devices->seed_list
2445	 */
2446	seed_devices = alloc_fs_devices(NULL, NULL);
2447	if (IS_ERR(seed_devices))
2448		return seed_devices;
2449
2450	/*
2451	 * It's necessary to retain a copy of the original seed fs_devices in
2452	 * fs_uuids so that filesystems which have been seeded can successfully
2453	 * reference the seed device from open_seed_devices. This also supports
2454	 * multiple fs seed.
2455	 */
2456	old_devices = clone_fs_devices(fs_devices);
2457	if (IS_ERR(old_devices)) {
2458		kfree(seed_devices);
2459		return old_devices;
2460	}
2461
2462	list_add(&old_devices->fs_list, &fs_uuids);
2463
2464	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465	seed_devices->opened = 1;
2466	INIT_LIST_HEAD(&seed_devices->devices);
2467	INIT_LIST_HEAD(&seed_devices->alloc_list);
2468	mutex_init(&seed_devices->device_list_mutex);
2469
2470	return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478			       struct btrfs_fs_devices *seed_devices)
2479{
2480	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481	struct btrfs_super_block *disk_super = fs_info->super_copy;
2482	struct btrfs_device *device;
2483	u64 super_flags;
2484
2485	/*
2486	 * We are updating the fsid, the thread leading to device_list_add()
2487	 * could race, so uuid_mutex is needed.
2488	 */
2489	lockdep_assert_held(&uuid_mutex);
2490
2491	/*
2492	 * The threads listed below may traverse dev_list but can do that without
2493	 * device_list_mutex:
2494	 * - All device ops and balance - as we are in btrfs_exclop_start.
2495	 * - Various dev_list readers - are using RCU.
2496	 * - btrfs_ioctl_fitrim() - is using RCU.
2497	 *
2498	 * For-read threads as below are using device_list_mutex:
2499	 * - Readonly scrub btrfs_scrub_dev()
2500	 * - Readonly scrub btrfs_scrub_progress()
2501	 * - btrfs_get_dev_stats()
2502	 */
2503	lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506			      synchronize_rcu);
2507	list_for_each_entry(device, &seed_devices->devices, dev_list)
2508		device->fs_devices = seed_devices;
2509
2510	fs_devices->seeding = false;
2511	fs_devices->num_devices = 0;
2512	fs_devices->open_devices = 0;
2513	fs_devices->missing_devices = 0;
2514	fs_devices->rotating = false;
2515	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517	generate_random_uuid(fs_devices->fsid);
2518	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 
2520
2521	super_flags = btrfs_super_flags(disk_super) &
2522		      ~BTRFS_SUPER_FLAG_SEEDING;
2523	btrfs_set_super_flags(disk_super, super_flags);
 
 
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531	BTRFS_DEV_LOOKUP_ARGS(args);
2532	struct btrfs_fs_info *fs_info = trans->fs_info;
2533	struct btrfs_root *root = fs_info->chunk_root;
2534	struct btrfs_path *path;
2535	struct extent_buffer *leaf;
2536	struct btrfs_dev_item *dev_item;
2537	struct btrfs_device *device;
2538	struct btrfs_key key;
2539	u8 fs_uuid[BTRFS_FSID_SIZE];
2540	u8 dev_uuid[BTRFS_UUID_SIZE];
 
2541	int ret;
2542
2543	path = btrfs_alloc_path();
2544	if (!path)
2545		return -ENOMEM;
2546
2547	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548	key.offset = 0;
2549	key.type = BTRFS_DEV_ITEM_KEY;
2550
2551	while (1) {
2552		btrfs_reserve_chunk_metadata(trans, false);
2553		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554		btrfs_trans_release_chunk_metadata(trans);
2555		if (ret < 0)
2556			goto error;
2557
2558		leaf = path->nodes[0];
2559next_slot:
2560		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561			ret = btrfs_next_leaf(root, path);
2562			if (ret > 0)
2563				break;
2564			if (ret < 0)
2565				goto error;
2566			leaf = path->nodes[0];
2567			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568			btrfs_release_path(path);
2569			continue;
2570		}
2571
2572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574		    key.type != BTRFS_DEV_ITEM_KEY)
2575			break;
2576
2577		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578					  struct btrfs_dev_item);
2579		args.devid = btrfs_device_id(leaf, dev_item);
2580		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581				   BTRFS_UUID_SIZE);
2582		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583				   BTRFS_FSID_SIZE);
2584		args.uuid = dev_uuid;
2585		args.fsid = fs_uuid;
2586		device = btrfs_find_device(fs_info->fs_devices, &args);
2587		BUG_ON(!device); /* Logic error */
2588
2589		if (device->fs_devices->seeding) {
2590			btrfs_set_device_generation(leaf, dev_item,
2591						    device->generation);
2592			btrfs_mark_buffer_dirty(leaf);
2593		}
2594
2595		path->slots[0]++;
2596		goto next_slot;
2597	}
2598	ret = 0;
2599error:
2600	btrfs_free_path(path);
2601	return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606	struct btrfs_root *root = fs_info->dev_root;
 
2607	struct btrfs_trans_handle *trans;
2608	struct btrfs_device *device;
2609	struct block_device *bdev;
2610	struct super_block *sb = fs_info->sb;
 
2611	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612	struct btrfs_fs_devices *seed_devices;
2613	u64 orig_super_total_bytes;
2614	u64 orig_super_num_devices;
 
2615	int ret = 0;
2616	bool seeding_dev = false;
2617	bool locked = false;
2618
2619	if (sb_rdonly(sb) && !fs_devices->seeding)
2620		return -EROFS;
2621
2622	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623				  fs_info->bdev_holder);
2624	if (IS_ERR(bdev))
2625		return PTR_ERR(bdev);
2626
2627	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628		ret = -EINVAL;
2629		goto error;
2630	}
2631
2632	if (fs_devices->seeding) {
2633		seeding_dev = true;
2634		down_write(&sb->s_umount);
2635		mutex_lock(&uuid_mutex);
2636		locked = true;
2637	}
2638
2639	sync_blockdev(bdev);
2640
2641	rcu_read_lock();
2642	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643		if (device->bdev == bdev) {
2644			ret = -EEXIST;
2645			rcu_read_unlock();
2646			goto error;
2647		}
2648	}
2649	rcu_read_unlock();
2650
2651	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652	if (IS_ERR(device)) {
2653		/* we can safely leave the fs_devices entry around */
2654		ret = PTR_ERR(device);
2655		goto error;
2656	}
2657
 
 
 
 
 
 
 
2658	device->fs_info = fs_info;
2659	device->bdev = bdev;
2660	ret = lookup_bdev(device_path, &device->devt);
2661	if (ret)
2662		goto error_free_device;
2663
2664	ret = btrfs_get_dev_zone_info(device, false);
2665	if (ret)
2666		goto error_free_device;
2667
2668	trans = btrfs_start_transaction(root, 0);
2669	if (IS_ERR(trans)) {
2670		ret = PTR_ERR(trans);
2671		goto error_free_zone;
2672	}
2673
 
2674	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675	device->generation = trans->transid;
2676	device->io_width = fs_info->sectorsize;
2677	device->io_align = fs_info->sectorsize;
2678	device->sector_size = fs_info->sectorsize;
2679	device->total_bytes =
2680		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681	device->disk_total_bytes = device->total_bytes;
2682	device->commit_total_bytes = device->total_bytes;
2683	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685	device->mode = FMODE_EXCL;
2686	device->dev_stats_valid = 1;
2687	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689	if (seeding_dev) {
2690		btrfs_clear_sb_rdonly(sb);
2691
2692		/* GFP_KERNEL allocation must not be under device_list_mutex */
2693		seed_devices = btrfs_init_sprout(fs_info);
2694		if (IS_ERR(seed_devices)) {
2695			ret = PTR_ERR(seed_devices);
2696			btrfs_abort_transaction(trans, ret);
2697			goto error_trans;
2698		}
2699	}
2700
2701	mutex_lock(&fs_devices->device_list_mutex);
2702	if (seeding_dev) {
2703		btrfs_setup_sprout(fs_info, seed_devices);
2704		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705						device);
2706	}
2707
2708	device->fs_devices = fs_devices;
2709
 
2710	mutex_lock(&fs_info->chunk_mutex);
2711	list_add_rcu(&device->dev_list, &fs_devices->devices);
2712	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713	fs_devices->num_devices++;
2714	fs_devices->open_devices++;
2715	fs_devices->rw_devices++;
2716	fs_devices->total_devices++;
2717	fs_devices->total_rw_bytes += device->total_bytes;
2718
2719	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721	if (!bdev_nonrot(bdev))
2722		fs_devices->rotating = true;
2723
2724	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725	btrfs_set_super_total_bytes(fs_info->super_copy,
2726		round_down(orig_super_total_bytes + device->total_bytes,
2727			   fs_info->sectorsize));
2728
2729	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730	btrfs_set_super_num_devices(fs_info->super_copy,
2731				    orig_super_num_devices + 1);
2732
2733	/*
2734	 * we've got more storage, clear any full flags on the space
2735	 * infos
2736	 */
2737	btrfs_clear_space_info_full(fs_info);
2738
2739	mutex_unlock(&fs_info->chunk_mutex);
2740
2741	/* Add sysfs device entry */
2742	btrfs_sysfs_add_device(device);
2743
2744	mutex_unlock(&fs_devices->device_list_mutex);
2745
2746	if (seeding_dev) {
2747		mutex_lock(&fs_info->chunk_mutex);
2748		ret = init_first_rw_device(trans);
2749		mutex_unlock(&fs_info->chunk_mutex);
2750		if (ret) {
2751			btrfs_abort_transaction(trans, ret);
2752			goto error_sysfs;
2753		}
2754	}
2755
2756	ret = btrfs_add_dev_item(trans, device);
2757	if (ret) {
2758		btrfs_abort_transaction(trans, ret);
2759		goto error_sysfs;
2760	}
2761
2762	if (seeding_dev) {
2763		ret = btrfs_finish_sprout(trans);
2764		if (ret) {
2765			btrfs_abort_transaction(trans, ret);
2766			goto error_sysfs;
2767		}
2768
2769		/*
2770		 * fs_devices now represents the newly sprouted filesystem and
2771		 * its fsid has been changed by btrfs_sprout_splice().
2772		 */
2773		btrfs_sysfs_update_sprout_fsid(fs_devices);
2774	}
2775
2776	ret = btrfs_commit_transaction(trans);
2777
2778	if (seeding_dev) {
2779		mutex_unlock(&uuid_mutex);
2780		up_write(&sb->s_umount);
2781		locked = false;
2782
2783		if (ret) /* transaction commit */
2784			return ret;
2785
2786		ret = btrfs_relocate_sys_chunks(fs_info);
2787		if (ret < 0)
2788			btrfs_handle_fs_error(fs_info, ret,
2789				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790		trans = btrfs_attach_transaction(root);
2791		if (IS_ERR(trans)) {
2792			if (PTR_ERR(trans) == -ENOENT)
2793				return 0;
2794			ret = PTR_ERR(trans);
2795			trans = NULL;
2796			goto error_sysfs;
2797		}
2798		ret = btrfs_commit_transaction(trans);
2799	}
2800
2801	/*
2802	 * Now that we have written a new super block to this device, check all
2803	 * other fs_devices list if device_path alienates any other scanned
2804	 * device.
2805	 * We can ignore the return value as it typically returns -EINVAL and
2806	 * only succeeds if the device was an alien.
2807	 */
2808	btrfs_forget_devices(device->devt);
2809
2810	/* Update ctime/mtime for blkid or udev */
2811	update_dev_time(device_path);
2812
2813	return ret;
2814
2815error_sysfs:
2816	btrfs_sysfs_remove_device(device);
2817	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818	mutex_lock(&fs_info->chunk_mutex);
2819	list_del_rcu(&device->dev_list);
2820	list_del(&device->dev_alloc_list);
2821	fs_info->fs_devices->num_devices--;
2822	fs_info->fs_devices->open_devices--;
2823	fs_info->fs_devices->rw_devices--;
2824	fs_info->fs_devices->total_devices--;
2825	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827	btrfs_set_super_total_bytes(fs_info->super_copy,
2828				    orig_super_total_bytes);
2829	btrfs_set_super_num_devices(fs_info->super_copy,
2830				    orig_super_num_devices);
2831	mutex_unlock(&fs_info->chunk_mutex);
2832	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834	if (seeding_dev)
2835		btrfs_set_sb_rdonly(sb);
2836	if (trans)
2837		btrfs_end_transaction(trans);
2838error_free_zone:
2839	btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841	btrfs_free_device(device);
2842error:
2843	blkdev_put(bdev, FMODE_EXCL);
2844	if (locked) {
2845		mutex_unlock(&uuid_mutex);
2846		up_write(&sb->s_umount);
2847	}
2848	return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852					struct btrfs_device *device)
2853{
2854	int ret;
2855	struct btrfs_path *path;
2856	struct btrfs_root *root = device->fs_info->chunk_root;
2857	struct btrfs_dev_item *dev_item;
2858	struct extent_buffer *leaf;
2859	struct btrfs_key key;
2860
2861	path = btrfs_alloc_path();
2862	if (!path)
2863		return -ENOMEM;
2864
2865	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866	key.type = BTRFS_DEV_ITEM_KEY;
2867	key.offset = device->devid;
2868
2869	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870	if (ret < 0)
2871		goto out;
2872
2873	if (ret > 0) {
2874		ret = -ENOENT;
2875		goto out;
2876	}
2877
2878	leaf = path->nodes[0];
2879	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881	btrfs_set_device_id(leaf, dev_item, device->devid);
2882	btrfs_set_device_type(leaf, dev_item, device->type);
2883	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886	btrfs_set_device_total_bytes(leaf, dev_item,
2887				     btrfs_device_get_disk_total_bytes(device));
2888	btrfs_set_device_bytes_used(leaf, dev_item,
2889				    btrfs_device_get_bytes_used(device));
2890	btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893	btrfs_free_path(path);
2894	return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898		      struct btrfs_device *device, u64 new_size)
2899{
2900	struct btrfs_fs_info *fs_info = device->fs_info;
2901	struct btrfs_super_block *super_copy = fs_info->super_copy;
2902	u64 old_total;
2903	u64 diff;
2904	int ret;
2905
2906	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907		return -EACCES;
2908
2909	new_size = round_down(new_size, fs_info->sectorsize);
2910
2911	mutex_lock(&fs_info->chunk_mutex);
2912	old_total = btrfs_super_total_bytes(super_copy);
2913	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915	if (new_size <= device->total_bytes ||
2916	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917		mutex_unlock(&fs_info->chunk_mutex);
2918		return -EINVAL;
2919	}
2920
2921	btrfs_set_super_total_bytes(super_copy,
2922			round_down(old_total + diff, fs_info->sectorsize));
2923	device->fs_devices->total_rw_bytes += diff;
2924
2925	btrfs_device_set_total_bytes(device, new_size);
2926	btrfs_device_set_disk_total_bytes(device, new_size);
2927	btrfs_clear_space_info_full(device->fs_info);
2928	if (list_empty(&device->post_commit_list))
2929		list_add_tail(&device->post_commit_list,
2930			      &trans->transaction->dev_update_list);
2931	mutex_unlock(&fs_info->chunk_mutex);
2932
2933	btrfs_reserve_chunk_metadata(trans, false);
2934	ret = btrfs_update_device(trans, device);
2935	btrfs_trans_release_chunk_metadata(trans);
2936
2937	return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942	struct btrfs_fs_info *fs_info = trans->fs_info;
2943	struct btrfs_root *root = fs_info->chunk_root;
2944	int ret;
2945	struct btrfs_path *path;
2946	struct btrfs_key key;
2947
2948	path = btrfs_alloc_path();
2949	if (!path)
2950		return -ENOMEM;
2951
2952	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953	key.offset = chunk_offset;
2954	key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957	if (ret < 0)
2958		goto out;
2959	else if (ret > 0) { /* Logic error or corruption */
2960		btrfs_handle_fs_error(fs_info, -ENOENT,
2961				      "Failed lookup while freeing chunk.");
2962		ret = -ENOENT;
2963		goto out;
2964	}
2965
2966	ret = btrfs_del_item(trans, root, path);
2967	if (ret < 0)
2968		btrfs_handle_fs_error(fs_info, ret,
2969				      "Failed to delete chunk item.");
2970out:
2971	btrfs_free_path(path);
2972	return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977	struct btrfs_super_block *super_copy = fs_info->super_copy;
2978	struct btrfs_disk_key *disk_key;
2979	struct btrfs_chunk *chunk;
2980	u8 *ptr;
2981	int ret = 0;
2982	u32 num_stripes;
2983	u32 array_size;
2984	u32 len = 0;
2985	u32 cur;
2986	struct btrfs_key key;
2987
2988	lockdep_assert_held(&fs_info->chunk_mutex);
2989	array_size = btrfs_super_sys_array_size(super_copy);
2990
2991	ptr = super_copy->sys_chunk_array;
2992	cur = 0;
2993
2994	while (cur < array_size) {
2995		disk_key = (struct btrfs_disk_key *)ptr;
2996		btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998		len = sizeof(*disk_key);
2999
3000		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001			chunk = (struct btrfs_chunk *)(ptr + len);
3002			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003			len += btrfs_chunk_item_size(num_stripes);
3004		} else {
3005			ret = -EIO;
3006			break;
3007		}
3008		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009		    key.offset == chunk_offset) {
3010			memmove(ptr, ptr + len, array_size - (cur + len));
3011			array_size -= len;
3012			btrfs_set_super_sys_array_size(super_copy, array_size);
3013		} else {
3014			ptr += len;
3015			cur += len;
3016		}
3017	}
3018	return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029				       u64 logical, u64 length)
3030{
3031	struct extent_map_tree *em_tree;
3032	struct extent_map *em;
3033
3034	em_tree = &fs_info->mapping_tree;
3035	read_lock(&em_tree->lock);
3036	em = lookup_extent_mapping(em_tree, logical, length);
3037	read_unlock(&em_tree->lock);
3038
3039	if (!em) {
3040		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041			   logical, length);
3042		return ERR_PTR(-EINVAL);
3043	}
3044
3045	if (em->start > logical || em->start + em->len < logical) {
3046		btrfs_crit(fs_info,
3047			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048			   logical, length, em->start, em->start + em->len);
3049		free_extent_map(em);
3050		return ERR_PTR(-EINVAL);
3051	}
3052
3053	/* callers are responsible for dropping em's ref. */
3054	return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058			     struct map_lookup *map, u64 chunk_offset)
3059{
3060	int i;
3061
3062	/*
3063	 * Removing chunk items and updating the device items in the chunks btree
3064	 * requires holding the chunk_mutex.
3065	 * See the comment at btrfs_chunk_alloc() for the details.
3066	 */
3067	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069	for (i = 0; i < map->num_stripes; i++) {
3070		int ret;
3071
3072		ret = btrfs_update_device(trans, map->stripes[i].dev);
3073		if (ret)
3074			return ret;
3075	}
3076
3077	return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082	struct btrfs_fs_info *fs_info = trans->fs_info;
3083	struct extent_map *em;
3084	struct map_lookup *map;
3085	u64 dev_extent_len = 0;
3086	int i, ret = 0;
3087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090	if (IS_ERR(em)) {
3091		/*
3092		 * This is a logic error, but we don't want to just rely on the
3093		 * user having built with ASSERT enabled, so if ASSERT doesn't
3094		 * do anything we still error out.
3095		 */
3096		ASSERT(0);
3097		return PTR_ERR(em);
3098	}
3099	map = em->map_lookup;
3100
3101	/*
3102	 * First delete the device extent items from the devices btree.
3103	 * We take the device_list_mutex to avoid racing with the finishing phase
3104	 * of a device replace operation. See the comment below before acquiring
3105	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106	 * because that can result in a deadlock when deleting the device extent
3107	 * items from the devices btree - COWing an extent buffer from the btree
3108	 * may result in allocating a new metadata chunk, which would attempt to
3109	 * lock again fs_info->chunk_mutex.
3110	 */
3111	mutex_lock(&fs_devices->device_list_mutex);
3112	for (i = 0; i < map->num_stripes; i++) {
3113		struct btrfs_device *device = map->stripes[i].dev;
3114		ret = btrfs_free_dev_extent(trans, device,
3115					    map->stripes[i].physical,
3116					    &dev_extent_len);
3117		if (ret) {
3118			mutex_unlock(&fs_devices->device_list_mutex);
3119			btrfs_abort_transaction(trans, ret);
3120			goto out;
3121		}
3122
3123		if (device->bytes_used > 0) {
3124			mutex_lock(&fs_info->chunk_mutex);
3125			btrfs_device_set_bytes_used(device,
3126					device->bytes_used - dev_extent_len);
3127			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128			btrfs_clear_space_info_full(fs_info);
3129			mutex_unlock(&fs_info->chunk_mutex);
3130		}
3131	}
3132	mutex_unlock(&fs_devices->device_list_mutex);
3133
3134	/*
3135	 * We acquire fs_info->chunk_mutex for 2 reasons:
3136	 *
3137	 * 1) Just like with the first phase of the chunk allocation, we must
3138	 *    reserve system space, do all chunk btree updates and deletions, and
3139	 *    update the system chunk array in the superblock while holding this
3140	 *    mutex. This is for similar reasons as explained on the comment at
3141	 *    the top of btrfs_chunk_alloc();
3142	 *
3143	 * 2) Prevent races with the final phase of a device replace operation
3144	 *    that replaces the device object associated with the map's stripes,
3145	 *    because the device object's id can change at any time during that
3146	 *    final phase of the device replace operation
3147	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148	 *    replaced device and then see it with an ID of
3149	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150	 *    the device item, which does not exists on the chunk btree.
3151	 *    The finishing phase of device replace acquires both the
3152	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3153	 *    safe by just acquiring the chunk_mutex.
3154	 */
3155	trans->removing_chunk = true;
3156	mutex_lock(&fs_info->chunk_mutex);
3157
3158	check_system_chunk(trans, map->type);
3159
3160	ret = remove_chunk_item(trans, map, chunk_offset);
3161	/*
3162	 * Normally we should not get -ENOSPC since we reserved space before
3163	 * through the call to check_system_chunk().
3164	 *
3165	 * Despite our system space_info having enough free space, we may not
3166	 * be able to allocate extents from its block groups, because all have
3167	 * an incompatible profile, which will force us to allocate a new system
3168	 * block group with the right profile, or right after we called
3169	 * check_system_space() above, a scrub turned the only system block group
3170	 * with enough free space into RO mode.
3171	 * This is explained with more detail at do_chunk_alloc().
3172	 *
3173	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174	 */
3175	if (ret == -ENOSPC) {
3176		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177		struct btrfs_block_group *sys_bg;
3178
3179		sys_bg = btrfs_create_chunk(trans, sys_flags);
3180		if (IS_ERR(sys_bg)) {
3181			ret = PTR_ERR(sys_bg);
3182			btrfs_abort_transaction(trans, ret);
3183			goto out;
3184		}
3185
3186		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187		if (ret) {
3188			btrfs_abort_transaction(trans, ret);
3189			goto out;
3190		}
3191
3192		ret = remove_chunk_item(trans, map, chunk_offset);
3193		if (ret) {
3194			btrfs_abort_transaction(trans, ret);
3195			goto out;
3196		}
3197	} else if (ret) {
3198		btrfs_abort_transaction(trans, ret);
3199		goto out;
3200	}
3201
3202	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206		if (ret) {
3207			btrfs_abort_transaction(trans, ret);
3208			goto out;
3209		}
3210	}
3211
3212	mutex_unlock(&fs_info->chunk_mutex);
3213	trans->removing_chunk = false;
3214
3215	/*
3216	 * We are done with chunk btree updates and deletions, so release the
3217	 * system space we previously reserved (with check_system_chunk()).
3218	 */
3219	btrfs_trans_release_chunk_metadata(trans);
3220
3221	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222	if (ret) {
3223		btrfs_abort_transaction(trans, ret);
3224		goto out;
3225	}
3226
3227out:
3228	if (trans->removing_chunk) {
3229		mutex_unlock(&fs_info->chunk_mutex);
3230		trans->removing_chunk = false;
3231	}
3232	/* once for us */
3233	free_extent_map(em);
3234	return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239	struct btrfs_root *root = fs_info->chunk_root;
3240	struct btrfs_trans_handle *trans;
3241	struct btrfs_block_group *block_group;
3242	u64 length;
3243	int ret;
3244
3245	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246		btrfs_err(fs_info,
3247			  "relocate: not supported on extent tree v2 yet");
3248		return -EINVAL;
3249	}
3250
3251	/*
3252	 * Prevent races with automatic removal of unused block groups.
3253	 * After we relocate and before we remove the chunk with offset
3254	 * chunk_offset, automatic removal of the block group can kick in,
3255	 * resulting in a failure when calling btrfs_remove_chunk() below.
3256	 *
3257	 * Make sure to acquire this mutex before doing a tree search (dev
3258	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260	 * we release the path used to search the chunk/dev tree and before
3261	 * the current task acquires this mutex and calls us.
3262	 */
3263	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265	/* step one, relocate all the extents inside this chunk */
3266	btrfs_scrub_pause(fs_info);
3267	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268	btrfs_scrub_continue(fs_info);
3269	if (ret)
3270		return ret;
3271
3272	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273	if (!block_group)
3274		return -ENOENT;
3275	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276	length = block_group->length;
3277	btrfs_put_block_group(block_group);
3278
3279	/*
3280	 * On a zoned file system, discard the whole block group, this will
3281	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282	 * resetting the zone fails, don't treat it as a fatal problem from the
3283	 * filesystem's point of view.
3284	 */
3285	if (btrfs_is_zoned(fs_info)) {
3286		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287		if (ret)
3288			btrfs_info(fs_info,
3289				"failed to reset zone %llu after relocation",
3290				chunk_offset);
3291	}
3292
3293	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294						     chunk_offset);
3295	if (IS_ERR(trans)) {
3296		ret = PTR_ERR(trans);
3297		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298		return ret;
3299	}
3300
3301	/*
3302	 * step two, delete the device extents and the
3303	 * chunk tree entries
3304	 */
3305	ret = btrfs_remove_chunk(trans, chunk_offset);
3306	btrfs_end_transaction(trans);
3307	return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312	struct btrfs_root *chunk_root = fs_info->chunk_root;
3313	struct btrfs_path *path;
3314	struct extent_buffer *leaf;
3315	struct btrfs_chunk *chunk;
3316	struct btrfs_key key;
3317	struct btrfs_key found_key;
3318	u64 chunk_type;
3319	bool retried = false;
3320	int failed = 0;
3321	int ret;
3322
3323	path = btrfs_alloc_path();
3324	if (!path)
3325		return -ENOMEM;
3326
3327again:
3328	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329	key.offset = (u64)-1;
3330	key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332	while (1) {
3333		mutex_lock(&fs_info->reclaim_bgs_lock);
3334		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335		if (ret < 0) {
3336			mutex_unlock(&fs_info->reclaim_bgs_lock);
3337			goto error;
3338		}
3339		BUG_ON(ret == 0); /* Corruption */
3340
3341		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342					  key.type);
3343		if (ret)
3344			mutex_unlock(&fs_info->reclaim_bgs_lock);
3345		if (ret < 0)
3346			goto error;
3347		if (ret > 0)
3348			break;
3349
3350		leaf = path->nodes[0];
3351		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353		chunk = btrfs_item_ptr(leaf, path->slots[0],
3354				       struct btrfs_chunk);
3355		chunk_type = btrfs_chunk_type(leaf, chunk);
3356		btrfs_release_path(path);
3357
3358		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360			if (ret == -ENOSPC)
3361				failed++;
3362			else
3363				BUG_ON(ret);
3364		}
3365		mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367		if (found_key.offset == 0)
3368			break;
3369		key.offset = found_key.offset - 1;
3370	}
3371	ret = 0;
3372	if (failed && !retried) {
3373		failed = 0;
3374		retried = true;
3375		goto again;
3376	} else if (WARN_ON(failed && retried)) {
3377		ret = -ENOSPC;
3378	}
3379error:
3380	btrfs_free_path(path);
3381	return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390				      u64 chunk_offset)
3391{
3392	struct btrfs_block_group *cache;
3393	u64 bytes_used;
3394	u64 chunk_type;
3395
3396	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397	ASSERT(cache);
3398	chunk_type = cache->flags;
3399	btrfs_put_block_group(cache);
3400
3401	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402		return 0;
3403
3404	spin_lock(&fs_info->data_sinfo->lock);
3405	bytes_used = fs_info->data_sinfo->bytes_used;
3406	spin_unlock(&fs_info->data_sinfo->lock);
3407
3408	if (!bytes_used) {
3409		struct btrfs_trans_handle *trans;
3410		int ret;
3411
3412		trans =	btrfs_join_transaction(fs_info->tree_root);
3413		if (IS_ERR(trans))
3414			return PTR_ERR(trans);
3415
3416		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417		btrfs_end_transaction(trans);
3418		if (ret < 0)
3419			return ret;
3420		return 1;
3421	}
3422
3423	return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427			       struct btrfs_balance_control *bctl)
3428{
3429	struct btrfs_root *root = fs_info->tree_root;
3430	struct btrfs_trans_handle *trans;
3431	struct btrfs_balance_item *item;
3432	struct btrfs_disk_balance_args disk_bargs;
3433	struct btrfs_path *path;
3434	struct extent_buffer *leaf;
3435	struct btrfs_key key;
3436	int ret, err;
3437
3438	path = btrfs_alloc_path();
3439	if (!path)
3440		return -ENOMEM;
3441
3442	trans = btrfs_start_transaction(root, 0);
3443	if (IS_ERR(trans)) {
3444		btrfs_free_path(path);
3445		return PTR_ERR(trans);
3446	}
3447
3448	key.objectid = BTRFS_BALANCE_OBJECTID;
3449	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450	key.offset = 0;
3451
3452	ret = btrfs_insert_empty_item(trans, root, path, &key,
3453				      sizeof(*item));
3454	if (ret)
3455		goto out;
3456
3457	leaf = path->nodes[0];
3458	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463	btrfs_set_balance_data(leaf, item, &disk_bargs);
3464	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469	btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471	btrfs_mark_buffer_dirty(leaf);
3472out:
3473	btrfs_free_path(path);
3474	err = btrfs_commit_transaction(trans);
3475	if (err && !ret)
3476		ret = err;
3477	return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482	struct btrfs_root *root = fs_info->tree_root;
3483	struct btrfs_trans_handle *trans;
3484	struct btrfs_path *path;
3485	struct btrfs_key key;
3486	int ret, err;
3487
3488	path = btrfs_alloc_path();
3489	if (!path)
3490		return -ENOMEM;
3491
3492	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493	if (IS_ERR(trans)) {
3494		btrfs_free_path(path);
3495		return PTR_ERR(trans);
3496	}
3497
3498	key.objectid = BTRFS_BALANCE_OBJECTID;
3499	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500	key.offset = 0;
3501
3502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503	if (ret < 0)
3504		goto out;
3505	if (ret > 0) {
3506		ret = -ENOENT;
3507		goto out;
3508	}
3509
3510	ret = btrfs_del_item(trans, root, path);
3511out:
3512	btrfs_free_path(path);
3513	err = btrfs_commit_transaction(trans);
3514	if (err && !ret)
3515		ret = err;
3516	return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525	/*
3526	 * Turn on soft mode for chunk types that were being converted.
3527	 */
3528	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535	/*
3536	 * Turn on usage filter if is not already used.  The idea is
3537	 * that chunks that we have already balanced should be
3538	 * reasonably full.  Don't do it for chunks that are being
3539	 * converted - that will keep us from relocating unconverted
3540	 * (albeit full) chunks.
3541	 */
3542	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546		bctl->data.usage = 90;
3547	}
3548	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552		bctl->sys.usage = 90;
3553	}
3554	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558		bctl->meta.usage = 90;
3559	}
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568	int ret;
3569
3570	BUG_ON(!fs_info->balance_ctl);
3571
3572	spin_lock(&fs_info->balance_lock);
3573	fs_info->balance_ctl = NULL;
3574	spin_unlock(&fs_info->balance_lock);
3575
3576	kfree(bctl);
3577	ret = del_balance_item(fs_info);
3578	if (ret)
3579		btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters.  Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587				 struct btrfs_balance_args *bargs)
3588{
3589	chunk_type = chunk_to_extended(chunk_type) &
3590				BTRFS_EXTENDED_PROFILE_MASK;
3591
3592	if (bargs->profiles & chunk_type)
3593		return 0;
3594
3595	return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599			      struct btrfs_balance_args *bargs)
3600{
3601	struct btrfs_block_group *cache;
3602	u64 chunk_used;
3603	u64 user_thresh_min;
3604	u64 user_thresh_max;
3605	int ret = 1;
3606
3607	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608	chunk_used = cache->used;
3609
3610	if (bargs->usage_min == 0)
3611		user_thresh_min = 0;
3612	else
3613		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
 
3614
3615	if (bargs->usage_max == 0)
3616		user_thresh_max = 1;
3617	else if (bargs->usage_max > 100)
3618		user_thresh_max = cache->length;
3619	else
3620		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
 
3621
3622	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623		ret = 0;
3624
3625	btrfs_put_block_group(cache);
3626	return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630		u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632	struct btrfs_block_group *cache;
3633	u64 chunk_used, user_thresh;
3634	int ret = 1;
3635
3636	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637	chunk_used = cache->used;
3638
3639	if (bargs->usage_min == 0)
3640		user_thresh = 1;
3641	else if (bargs->usage > 100)
3642		user_thresh = cache->length;
3643	else
3644		user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646	if (chunk_used < user_thresh)
3647		ret = 0;
3648
3649	btrfs_put_block_group(cache);
3650	return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654			      struct btrfs_chunk *chunk,
3655			      struct btrfs_balance_args *bargs)
3656{
3657	struct btrfs_stripe *stripe;
3658	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659	int i;
3660
3661	for (i = 0; i < num_stripes; i++) {
3662		stripe = btrfs_stripe_nr(chunk, i);
3663		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664			return 0;
3665	}
3666
3667	return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672	const int index = btrfs_bg_flags_to_raid_index(type);
3673	const int ncopies = btrfs_raid_array[index].ncopies;
3674	const int nparity = btrfs_raid_array[index].nparity;
3675
3676	return (num_stripes - nparity) / ncopies;
 
 
 
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681			       struct btrfs_chunk *chunk,
3682			       struct btrfs_balance_args *bargs)
3683{
3684	struct btrfs_stripe *stripe;
3685	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686	u64 stripe_offset;
3687	u64 stripe_length;
3688	u64 type;
3689	int factor;
3690	int i;
3691
3692	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693		return 0;
3694
3695	type = btrfs_chunk_type(leaf, chunk);
3696	factor = calc_data_stripes(type, num_stripes);
3697
3698	for (i = 0; i < num_stripes; i++) {
3699		stripe = btrfs_stripe_nr(chunk, i);
3700		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701			continue;
3702
3703		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704		stripe_length = btrfs_chunk_length(leaf, chunk);
3705		stripe_length = div_u64(stripe_length, factor);
3706
3707		if (stripe_offset < bargs->pend &&
3708		    stripe_offset + stripe_length > bargs->pstart)
3709			return 0;
3710	}
3711
3712	return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717			       struct btrfs_chunk *chunk,
3718			       u64 chunk_offset,
3719			       struct btrfs_balance_args *bargs)
3720{
3721	if (chunk_offset < bargs->vend &&
3722	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723		/* at least part of the chunk is inside this vrange */
3724		return 0;
3725
3726	return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730			       struct btrfs_chunk *chunk,
3731			       struct btrfs_balance_args *bargs)
3732{
3733	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735	if (bargs->stripes_min <= num_stripes
3736			&& num_stripes <= bargs->stripes_max)
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743				     struct btrfs_balance_args *bargs)
3744{
3745	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746		return 0;
3747
3748	chunk_type = chunk_to_extended(chunk_type) &
3749				BTRFS_EXTENDED_PROFILE_MASK;
3750
3751	if (bargs->target == chunk_type)
3752		return 1;
3753
3754	return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758				struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760	struct btrfs_fs_info *fs_info = leaf->fs_info;
3761	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762	struct btrfs_balance_args *bargs = NULL;
3763	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765	/* type filter */
3766	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768		return 0;
3769	}
3770
3771	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772		bargs = &bctl->data;
3773	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774		bargs = &bctl->sys;
3775	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776		bargs = &bctl->meta;
3777
3778	/* profiles filter */
3779	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780	    chunk_profiles_filter(chunk_type, bargs)) {
3781		return 0;
3782	}
3783
3784	/* usage filter */
3785	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787		return 0;
3788	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790		return 0;
3791	}
3792
3793	/* devid filter */
3794	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795	    chunk_devid_filter(leaf, chunk, bargs)) {
3796		return 0;
3797	}
3798
3799	/* drange filter, makes sense only with devid filter */
3800	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801	    chunk_drange_filter(leaf, chunk, bargs)) {
3802		return 0;
3803	}
3804
3805	/* vrange filter */
3806	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808		return 0;
3809	}
3810
3811	/* stripes filter */
3812	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814		return 0;
3815	}
3816
3817	/* soft profile changing mode */
3818	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819	    chunk_soft_convert_filter(chunk_type, bargs)) {
3820		return 0;
3821	}
3822
3823	/*
3824	 * limited by count, must be the last filter
3825	 */
3826	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827		if (bargs->limit == 0)
3828			return 0;
3829		else
3830			bargs->limit--;
3831	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832		/*
3833		 * Same logic as the 'limit' filter; the minimum cannot be
3834		 * determined here because we do not have the global information
3835		 * about the count of all chunks that satisfy the filters.
3836		 */
3837		if (bargs->limit_max == 0)
3838			return 0;
3839		else
3840			bargs->limit_max--;
3841	}
3842
3843	return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849	struct btrfs_root *chunk_root = fs_info->chunk_root;
3850	u64 chunk_type;
3851	struct btrfs_chunk *chunk;
3852	struct btrfs_path *path = NULL;
3853	struct btrfs_key key;
3854	struct btrfs_key found_key;
3855	struct extent_buffer *leaf;
3856	int slot;
3857	int ret;
3858	int enospc_errors = 0;
3859	bool counting = true;
3860	/* The single value limit and min/max limits use the same bytes in the */
3861	u64 limit_data = bctl->data.limit;
3862	u64 limit_meta = bctl->meta.limit;
3863	u64 limit_sys = bctl->sys.limit;
3864	u32 count_data = 0;
3865	u32 count_meta = 0;
3866	u32 count_sys = 0;
3867	int chunk_reserved = 0;
3868
3869	path = btrfs_alloc_path();
3870	if (!path) {
3871		ret = -ENOMEM;
3872		goto error;
3873	}
3874
3875	/* zero out stat counters */
3876	spin_lock(&fs_info->balance_lock);
3877	memset(&bctl->stat, 0, sizeof(bctl->stat));
3878	spin_unlock(&fs_info->balance_lock);
3879again:
3880	if (!counting) {
3881		/*
3882		 * The single value limit and min/max limits use the same bytes
3883		 * in the
3884		 */
3885		bctl->data.limit = limit_data;
3886		bctl->meta.limit = limit_meta;
3887		bctl->sys.limit = limit_sys;
3888	}
3889	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890	key.offset = (u64)-1;
3891	key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893	while (1) {
3894		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895		    atomic_read(&fs_info->balance_cancel_req)) {
3896			ret = -ECANCELED;
3897			goto error;
3898		}
3899
3900		mutex_lock(&fs_info->reclaim_bgs_lock);
3901		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902		if (ret < 0) {
3903			mutex_unlock(&fs_info->reclaim_bgs_lock);
3904			goto error;
3905		}
3906
3907		/*
3908		 * this shouldn't happen, it means the last relocate
3909		 * failed
3910		 */
3911		if (ret == 0)
3912			BUG(); /* FIXME break ? */
3913
3914		ret = btrfs_previous_item(chunk_root, path, 0,
3915					  BTRFS_CHUNK_ITEM_KEY);
3916		if (ret) {
3917			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918			ret = 0;
3919			break;
3920		}
3921
3922		leaf = path->nodes[0];
3923		slot = path->slots[0];
3924		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926		if (found_key.objectid != key.objectid) {
3927			mutex_unlock(&fs_info->reclaim_bgs_lock);
3928			break;
3929		}
3930
3931		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932		chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934		if (!counting) {
3935			spin_lock(&fs_info->balance_lock);
3936			bctl->stat.considered++;
3937			spin_unlock(&fs_info->balance_lock);
3938		}
3939
3940		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942		btrfs_release_path(path);
3943		if (!ret) {
3944			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945			goto loop;
3946		}
3947
3948		if (counting) {
3949			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950			spin_lock(&fs_info->balance_lock);
3951			bctl->stat.expected++;
3952			spin_unlock(&fs_info->balance_lock);
3953
3954			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955				count_data++;
3956			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957				count_sys++;
3958			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959				count_meta++;
3960
3961			goto loop;
3962		}
3963
3964		/*
3965		 * Apply limit_min filter, no need to check if the LIMITS
3966		 * filter is used, limit_min is 0 by default
3967		 */
3968		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969					count_data < bctl->data.limit_min)
3970				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971					count_meta < bctl->meta.limit_min)
3972				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973					count_sys < bctl->sys.limit_min)) {
3974			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975			goto loop;
3976		}
3977
3978		if (!chunk_reserved) {
3979			/*
3980			 * We may be relocating the only data chunk we have,
3981			 * which could potentially end up with losing data's
3982			 * raid profile, so lets allocate an empty one in
3983			 * advance.
3984			 */
3985			ret = btrfs_may_alloc_data_chunk(fs_info,
3986							 found_key.offset);
3987			if (ret < 0) {
3988				mutex_unlock(&fs_info->reclaim_bgs_lock);
3989				goto error;
3990			} else if (ret == 1) {
3991				chunk_reserved = 1;
3992			}
3993		}
3994
3995		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996		mutex_unlock(&fs_info->reclaim_bgs_lock);
3997		if (ret == -ENOSPC) {
3998			enospc_errors++;
3999		} else if (ret == -ETXTBSY) {
4000			btrfs_info(fs_info,
4001	   "skipping relocation of block group %llu due to active swapfile",
4002				   found_key.offset);
4003			ret = 0;
4004		} else if (ret) {
4005			goto error;
4006		} else {
4007			spin_lock(&fs_info->balance_lock);
4008			bctl->stat.completed++;
4009			spin_unlock(&fs_info->balance_lock);
4010		}
4011loop:
4012		if (found_key.offset == 0)
4013			break;
4014		key.offset = found_key.offset - 1;
4015	}
4016
4017	if (counting) {
4018		btrfs_release_path(path);
4019		counting = false;
4020		goto again;
4021	}
4022error:
4023	btrfs_free_path(path);
4024	if (enospc_errors) {
4025		btrfs_info(fs_info, "%d enospc errors during balance",
4026			   enospc_errors);
4027		if (!ret)
4028			ret = -ENOSPC;
4029	}
4030
4031	return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags:     profile to validate
4038 * @extended:  if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047	/* 1) check that all other bits are zeroed */
4048	if (flags & ~mask)
4049		return 0;
4050
4051	/* 2) see if profile is reduced */
4052	if (flags == 0)
4053		return !extended; /* "0" is valid for usual profiles */
4054
4055	return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060	/* cancel requested || normal exit path */
4061	return atomic_read(&fs_info->balance_cancel_req) ||
4062		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4063		 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071		const struct btrfs_balance_args *bargs,
4072		u64 allowed, const char *type)
4073{
4074	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075		return true;
4076
4077	/* Profile is valid and does not have bits outside of the allowed set */
4078	if (alloc_profile_is_valid(bargs->target, 1) &&
4079	    (bargs->target & ~allowed) == 0)
4080		return true;
4081
4082	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083			type, btrfs_bg_type_to_raid_name(bargs->target));
4084	return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093				 u32 size_buf)
4094{
4095	int ret;
4096	u32 size_bp = size_buf;
4097	char *bp = buf;
4098	u64 flags = bargs->flags;
4099	char tmp_buf[128] = {'\0'};
4100
4101	if (!flags)
4102		return;
4103
4104#define CHECK_APPEND_NOARG(a)						\
4105	do {								\
4106		ret = snprintf(bp, size_bp, (a));			\
4107		if (ret < 0 || ret >= size_bp)				\
4108			goto out_overflow;				\
4109		size_bp -= ret;						\
4110		bp += ret;						\
4111	} while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1)					\
4114	do {								\
4115		ret = snprintf(bp, size_bp, (a), (v1));			\
4116		if (ret < 0 || ret >= size_bp)				\
4117			goto out_overflow;				\
4118		size_bp -= ret;						\
4119		bp += ret;						\
4120	} while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2)					\
4123	do {								\
4124		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4125		if (ret < 0 || ret >= size_bp)				\
4126			goto out_overflow;				\
4127		size_bp -= ret;						\
4128		bp += ret;						\
4129	} while (0)
4130
4131	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132		CHECK_APPEND_1ARG("convert=%s,",
4133				  btrfs_bg_type_to_raid_name(bargs->target));
4134
4135	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136		CHECK_APPEND_NOARG("soft,");
4137
4138	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140					    sizeof(tmp_buf));
4141		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142	}
4143
4144	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148		CHECK_APPEND_2ARG("usage=%u..%u,",
4149				  bargs->usage_min, bargs->usage_max);
4150
4151	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156				  bargs->pstart, bargs->pend);
4157
4158	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160				  bargs->vstart, bargs->vend);
4161
4162	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166		CHECK_APPEND_2ARG("limit=%u..%u,",
4167				bargs->limit_min, bargs->limit_max);
4168
4169	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170		CHECK_APPEND_2ARG("stripes=%u..%u,",
4171				  bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179	if (size_bp < size_buf)
4180		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181	else
4182		buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187	u32 size_buf = 1024;
4188	char tmp_buf[192] = {'\0'};
4189	char *buf;
4190	char *bp;
4191	u32 size_bp = size_buf;
4192	int ret;
4193	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195	buf = kzalloc(size_buf, GFP_KERNEL);
4196	if (!buf)
4197		return;
4198
4199	bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1)					\
4202	do {								\
4203		ret = snprintf(bp, size_bp, (a), (v1));			\
4204		if (ret < 0 || ret >= size_bp)				\
4205			goto out_overflow;				\
4206		size_bp -= ret;						\
4207		bp += ret;						\
4208	} while (0)
4209
4210	if (bctl->flags & BTRFS_BALANCE_FORCE)
4211		CHECK_APPEND_1ARG("%s", "-f ");
4212
4213	if (bctl->flags & BTRFS_BALANCE_DATA) {
4214		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216	}
4217
4218	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221	}
4222
4223	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226	}
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232	if (size_bp < size_buf)
4233		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234	btrfs_info(fs_info, "balance: %s %s",
4235		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236		   "resume" : "start", buf);
4237
4238	kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245		  struct btrfs_balance_control *bctl,
4246		  struct btrfs_ioctl_balance_args *bargs)
4247{
4248	u64 meta_target, data_target;
4249	u64 allowed;
4250	int mixed = 0;
4251	int ret;
4252	u64 num_devices;
4253	unsigned seq;
4254	bool reducing_redundancy;
4255	int i;
4256
4257	if (btrfs_fs_closing(fs_info) ||
4258	    atomic_read(&fs_info->balance_pause_req) ||
4259	    btrfs_should_cancel_balance(fs_info)) {
4260		ret = -EINVAL;
4261		goto out;
4262	}
4263
4264	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266		mixed = 1;
4267
4268	/*
4269	 * In case of mixed groups both data and meta should be picked,
4270	 * and identical options should be given for both of them.
4271	 */
4272	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273	if (mixed && (bctl->flags & allowed)) {
4274		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277			btrfs_err(fs_info,
4278	  "balance: mixed groups data and metadata options must be the same");
4279			ret = -EINVAL;
4280			goto out;
4281		}
4282	}
4283
4284	/*
4285	 * rw_devices will not change at the moment, device add/delete/replace
4286	 * are exclusive
4287	 */
4288	num_devices = fs_info->fs_devices->rw_devices;
4289
4290	/*
4291	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292	 * special bit for it, to make it easier to distinguish.  Thus we need
4293	 * to set it manually, or balance would refuse the profile.
4294	 */
4295	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297		if (num_devices >= btrfs_raid_array[i].devs_min)
4298			allowed |= btrfs_raid_array[i].bg_flag;
4299
4300	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4303		ret = -EINVAL;
4304		goto out;
4305	}
4306
4307	/*
4308	 * Allow to reduce metadata or system integrity only if force set for
4309	 * profiles with redundancy (copies, parity)
4310	 */
4311	allowed = 0;
4312	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313		if (btrfs_raid_array[i].ncopies >= 2 ||
4314		    btrfs_raid_array[i].tolerated_failures >= 1)
4315			allowed |= btrfs_raid_array[i].bg_flag;
4316	}
4317	do {
4318		seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321		     (fs_info->avail_system_alloc_bits & allowed) &&
4322		     !(bctl->sys.target & allowed)) ||
4323		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4325		     !(bctl->meta.target & allowed)))
4326			reducing_redundancy = true;
4327		else
4328			reducing_redundancy = false;
4329
4330		/* if we're not converting, the target field is uninitialized */
4331		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334			bctl->data.target : fs_info->avail_data_alloc_bits;
4335	} while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337	if (reducing_redundancy) {
4338		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339			btrfs_info(fs_info,
4340			   "balance: force reducing metadata redundancy");
4341		} else {
4342			btrfs_err(fs_info,
4343	"balance: reduces metadata redundancy, use --force if you want this");
4344			ret = -EINVAL;
4345			goto out;
4346		}
4347	}
4348
4349	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351		btrfs_warn(fs_info,
4352	"balance: metadata profile %s has lower redundancy than data profile %s",
4353				btrfs_bg_type_to_raid_name(meta_target),
4354				btrfs_bg_type_to_raid_name(data_target));
4355	}
4356
4357	ret = insert_balance_item(fs_info, bctl);
4358	if (ret && ret != -EEXIST)
4359		goto out;
4360
4361	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362		BUG_ON(ret == -EEXIST);
4363		BUG_ON(fs_info->balance_ctl);
4364		spin_lock(&fs_info->balance_lock);
4365		fs_info->balance_ctl = bctl;
4366		spin_unlock(&fs_info->balance_lock);
4367	} else {
4368		BUG_ON(ret != -EEXIST);
4369		spin_lock(&fs_info->balance_lock);
4370		update_balance_args(bctl);
4371		spin_unlock(&fs_info->balance_lock);
4372	}
4373
4374	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376	describe_balance_start_or_resume(fs_info);
4377	mutex_unlock(&fs_info->balance_mutex);
4378
4379	ret = __btrfs_balance(fs_info);
4380
4381	mutex_lock(&fs_info->balance_mutex);
4382	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383		btrfs_info(fs_info, "balance: paused");
4384		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385	}
4386	/*
4387	 * Balance can be canceled by:
4388	 *
4389	 * - Regular cancel request
4390	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4391	 *
4392	 * - Fatal signal to "btrfs" process
4393	 *   Either the signal caught by wait_reserve_ticket() and callers
4394	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4395	 *   got -ECANCELED.
4396	 *   Either way, in this case balance_cancel_req = 0, and
4397	 *   ret == -EINTR or ret == -ECANCELED.
4398	 *
4399	 * So here we only check the return value to catch canceled balance.
4400	 */
4401	else if (ret == -ECANCELED || ret == -EINTR)
4402		btrfs_info(fs_info, "balance: canceled");
4403	else
4404		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408	if (bargs) {
4409		memset(bargs, 0, sizeof(*bargs));
4410		btrfs_update_ioctl_balance_args(fs_info, bargs);
4411	}
4412
4413	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414	    balance_need_close(fs_info)) {
4415		reset_balance_state(fs_info);
4416		btrfs_exclop_finish(fs_info);
4417	}
4418
4419	wake_up(&fs_info->balance_wait_q);
4420
4421	return ret;
4422out:
4423	if (bctl->flags & BTRFS_BALANCE_RESUME)
4424		reset_balance_state(fs_info);
4425	else
4426		kfree(bctl);
4427	btrfs_exclop_finish(fs_info);
4428
4429	return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434	struct btrfs_fs_info *fs_info = data;
4435	int ret = 0;
4436
4437	sb_start_write(fs_info->sb);
4438	mutex_lock(&fs_info->balance_mutex);
4439	if (fs_info->balance_ctl)
4440		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441	mutex_unlock(&fs_info->balance_mutex);
4442	sb_end_write(fs_info->sb);
4443
4444	return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449	struct task_struct *tsk;
4450
4451	mutex_lock(&fs_info->balance_mutex);
4452	if (!fs_info->balance_ctl) {
4453		mutex_unlock(&fs_info->balance_mutex);
4454		return 0;
4455	}
4456	mutex_unlock(&fs_info->balance_mutex);
4457
4458	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459		btrfs_info(fs_info, "balance: resume skipped");
4460		return 0;
4461	}
4462
4463	spin_lock(&fs_info->super_lock);
4464	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466	spin_unlock(&fs_info->super_lock);
4467	/*
4468	 * A ro->rw remount sequence should continue with the paused balance
4469	 * regardless of who pauses it, system or the user as of now, so set
4470	 * the resume flag.
4471	 */
4472	spin_lock(&fs_info->balance_lock);
4473	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474	spin_unlock(&fs_info->balance_lock);
4475
4476	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477	return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482	struct btrfs_balance_control *bctl;
4483	struct btrfs_balance_item *item;
4484	struct btrfs_disk_balance_args disk_bargs;
4485	struct btrfs_path *path;
4486	struct extent_buffer *leaf;
4487	struct btrfs_key key;
4488	int ret;
4489
4490	path = btrfs_alloc_path();
4491	if (!path)
4492		return -ENOMEM;
4493
4494	key.objectid = BTRFS_BALANCE_OBJECTID;
4495	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496	key.offset = 0;
4497
4498	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499	if (ret < 0)
4500		goto out;
4501	if (ret > 0) { /* ret = -ENOENT; */
4502		ret = 0;
4503		goto out;
4504	}
4505
4506	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507	if (!bctl) {
4508		ret = -ENOMEM;
4509		goto out;
4510	}
4511
4512	leaf = path->nodes[0];
4513	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515	bctl->flags = btrfs_balance_flags(leaf, item);
4516	bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518	btrfs_balance_data(leaf, item, &disk_bargs);
4519	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520	btrfs_balance_meta(leaf, item, &disk_bargs);
4521	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522	btrfs_balance_sys(leaf, item, &disk_bargs);
4523	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525	/*
4526	 * This should never happen, as the paused balance state is recovered
4527	 * during mount without any chance of other exclusive ops to collide.
4528	 *
4529	 * This gives the exclusive op status to balance and keeps in paused
4530	 * state until user intervention (cancel or umount). If the ownership
4531	 * cannot be assigned, show a message but do not fail. The balance
4532	 * is in a paused state and must have fs_info::balance_ctl properly
4533	 * set up.
4534	 */
4535	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536		btrfs_warn(fs_info,
4537	"balance: cannot set exclusive op status, resume manually");
4538
4539	btrfs_release_path(path);
4540
4541	mutex_lock(&fs_info->balance_mutex);
4542	BUG_ON(fs_info->balance_ctl);
4543	spin_lock(&fs_info->balance_lock);
4544	fs_info->balance_ctl = bctl;
4545	spin_unlock(&fs_info->balance_lock);
4546	mutex_unlock(&fs_info->balance_mutex);
4547out:
4548	btrfs_free_path(path);
4549	return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554	int ret = 0;
4555
4556	mutex_lock(&fs_info->balance_mutex);
4557	if (!fs_info->balance_ctl) {
4558		mutex_unlock(&fs_info->balance_mutex);
4559		return -ENOTCONN;
4560	}
4561
4562	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563		atomic_inc(&fs_info->balance_pause_req);
4564		mutex_unlock(&fs_info->balance_mutex);
4565
4566		wait_event(fs_info->balance_wait_q,
4567			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569		mutex_lock(&fs_info->balance_mutex);
4570		/* we are good with balance_ctl ripped off from under us */
4571		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572		atomic_dec(&fs_info->balance_pause_req);
4573	} else {
4574		ret = -ENOTCONN;
4575	}
4576
4577	mutex_unlock(&fs_info->balance_mutex);
4578	return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583	mutex_lock(&fs_info->balance_mutex);
4584	if (!fs_info->balance_ctl) {
4585		mutex_unlock(&fs_info->balance_mutex);
4586		return -ENOTCONN;
4587	}
4588
4589	/*
4590	 * A paused balance with the item stored on disk can be resumed at
4591	 * mount time if the mount is read-write. Otherwise it's still paused
4592	 * and we must not allow cancelling as it deletes the item.
4593	 */
4594	if (sb_rdonly(fs_info->sb)) {
4595		mutex_unlock(&fs_info->balance_mutex);
4596		return -EROFS;
4597	}
4598
4599	atomic_inc(&fs_info->balance_cancel_req);
4600	/*
4601	 * if we are running just wait and return, balance item is
4602	 * deleted in btrfs_balance in this case
4603	 */
4604	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605		mutex_unlock(&fs_info->balance_mutex);
4606		wait_event(fs_info->balance_wait_q,
4607			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608		mutex_lock(&fs_info->balance_mutex);
4609	} else {
4610		mutex_unlock(&fs_info->balance_mutex);
4611		/*
4612		 * Lock released to allow other waiters to continue, we'll
4613		 * reexamine the status again.
4614		 */
4615		mutex_lock(&fs_info->balance_mutex);
4616
4617		if (fs_info->balance_ctl) {
4618			reset_balance_state(fs_info);
4619			btrfs_exclop_finish(fs_info);
4620			btrfs_info(fs_info, "balance: canceled");
4621		}
4622	}
4623
4624	BUG_ON(fs_info->balance_ctl ||
4625		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626	atomic_dec(&fs_info->balance_cancel_req);
4627	mutex_unlock(&fs_info->balance_mutex);
4628	return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633	struct btrfs_fs_info *fs_info = data;
4634	struct btrfs_root *root = fs_info->tree_root;
4635	struct btrfs_key key;
4636	struct btrfs_path *path = NULL;
4637	int ret = 0;
4638	struct extent_buffer *eb;
4639	int slot;
4640	struct btrfs_root_item root_item;
4641	u32 item_size;
4642	struct btrfs_trans_handle *trans = NULL;
4643	bool closing = false;
4644
4645	path = btrfs_alloc_path();
4646	if (!path) {
4647		ret = -ENOMEM;
4648		goto out;
4649	}
4650
4651	key.objectid = 0;
4652	key.type = BTRFS_ROOT_ITEM_KEY;
4653	key.offset = 0;
4654
4655	while (1) {
4656		if (btrfs_fs_closing(fs_info)) {
4657			closing = true;
4658			break;
4659		}
4660		ret = btrfs_search_forward(root, &key, path,
4661				BTRFS_OLDEST_GENERATION);
4662		if (ret) {
4663			if (ret > 0)
4664				ret = 0;
4665			break;
4666		}
4667
4668		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672			goto skip;
4673
4674		eb = path->nodes[0];
4675		slot = path->slots[0];
4676		item_size = btrfs_item_size(eb, slot);
4677		if (item_size < sizeof(root_item))
4678			goto skip;
4679
4680		read_extent_buffer(eb, &root_item,
4681				   btrfs_item_ptr_offset(eb, slot),
4682				   (int)sizeof(root_item));
4683		if (btrfs_root_refs(&root_item) == 0)
4684			goto skip;
4685
4686		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688			if (trans)
4689				goto update_tree;
4690
4691			btrfs_release_path(path);
4692			/*
4693			 * 1 - subvol uuid item
4694			 * 1 - received_subvol uuid item
4695			 */
4696			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697			if (IS_ERR(trans)) {
4698				ret = PTR_ERR(trans);
4699				break;
4700			}
4701			continue;
4702		} else {
4703			goto skip;
4704		}
4705update_tree:
4706		btrfs_release_path(path);
4707		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709						  BTRFS_UUID_KEY_SUBVOL,
4710						  key.objectid);
4711			if (ret < 0) {
4712				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713					ret);
4714				break;
4715			}
4716		}
4717
4718		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719			ret = btrfs_uuid_tree_add(trans,
4720						  root_item.received_uuid,
4721						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722						  key.objectid);
4723			if (ret < 0) {
4724				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725					ret);
4726				break;
4727			}
4728		}
4729
4730skip:
4731		btrfs_release_path(path);
4732		if (trans) {
4733			ret = btrfs_end_transaction(trans);
4734			trans = NULL;
4735			if (ret)
4736				break;
4737		}
4738
4739		if (key.offset < (u64)-1) {
4740			key.offset++;
4741		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742			key.offset = 0;
4743			key.type = BTRFS_ROOT_ITEM_KEY;
4744		} else if (key.objectid < (u64)-1) {
4745			key.offset = 0;
4746			key.type = BTRFS_ROOT_ITEM_KEY;
4747			key.objectid++;
4748		} else {
4749			break;
4750		}
4751		cond_resched();
4752	}
4753
4754out:
4755	btrfs_free_path(path);
4756	if (trans && !IS_ERR(trans))
4757		btrfs_end_transaction(trans);
4758	if (ret)
4759		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760	else if (!closing)
4761		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762	up(&fs_info->uuid_tree_rescan_sem);
4763	return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768	struct btrfs_trans_handle *trans;
4769	struct btrfs_root *tree_root = fs_info->tree_root;
4770	struct btrfs_root *uuid_root;
4771	struct task_struct *task;
4772	int ret;
4773
4774	/*
4775	 * 1 - root node
4776	 * 1 - root item
4777	 */
4778	trans = btrfs_start_transaction(tree_root, 2);
4779	if (IS_ERR(trans))
4780		return PTR_ERR(trans);
4781
4782	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783	if (IS_ERR(uuid_root)) {
4784		ret = PTR_ERR(uuid_root);
4785		btrfs_abort_transaction(trans, ret);
4786		btrfs_end_transaction(trans);
4787		return ret;
4788	}
4789
4790	fs_info->uuid_root = uuid_root;
4791
4792	ret = btrfs_commit_transaction(trans);
4793	if (ret)
4794		return ret;
4795
4796	down(&fs_info->uuid_tree_rescan_sem);
4797	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798	if (IS_ERR(task)) {
4799		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800		btrfs_warn(fs_info, "failed to start uuid_scan task");
4801		up(&fs_info->uuid_tree_rescan_sem);
4802		return PTR_ERR(task);
4803	}
4804
4805	return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815	struct btrfs_fs_info *fs_info = device->fs_info;
4816	struct btrfs_root *root = fs_info->dev_root;
4817	struct btrfs_trans_handle *trans;
4818	struct btrfs_dev_extent *dev_extent = NULL;
4819	struct btrfs_path *path;
4820	u64 length;
4821	u64 chunk_offset;
4822	int ret;
4823	int slot;
4824	int failed = 0;
4825	bool retried = false;
4826	struct extent_buffer *l;
4827	struct btrfs_key key;
4828	struct btrfs_super_block *super_copy = fs_info->super_copy;
4829	u64 old_total = btrfs_super_total_bytes(super_copy);
4830	u64 old_size = btrfs_device_get_total_bytes(device);
4831	u64 diff;
4832	u64 start;
4833
4834	new_size = round_down(new_size, fs_info->sectorsize);
4835	start = new_size;
4836	diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839		return -EINVAL;
4840
4841	path = btrfs_alloc_path();
4842	if (!path)
4843		return -ENOMEM;
4844
4845	path->reada = READA_BACK;
4846
4847	trans = btrfs_start_transaction(root, 0);
4848	if (IS_ERR(trans)) {
4849		btrfs_free_path(path);
4850		return PTR_ERR(trans);
4851	}
4852
4853	mutex_lock(&fs_info->chunk_mutex);
4854
4855	btrfs_device_set_total_bytes(device, new_size);
4856	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857		device->fs_devices->total_rw_bytes -= diff;
4858		atomic64_sub(diff, &fs_info->free_chunk_space);
4859	}
4860
4861	/*
4862	 * Once the device's size has been set to the new size, ensure all
4863	 * in-memory chunks are synced to disk so that the loop below sees them
4864	 * and relocates them accordingly.
4865	 */
4866	if (contains_pending_extent(device, &start, diff)) {
4867		mutex_unlock(&fs_info->chunk_mutex);
4868		ret = btrfs_commit_transaction(trans);
4869		if (ret)
4870			goto done;
4871	} else {
4872		mutex_unlock(&fs_info->chunk_mutex);
4873		btrfs_end_transaction(trans);
4874	}
4875
4876again:
4877	key.objectid = device->devid;
4878	key.offset = (u64)-1;
4879	key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881	do {
4882		mutex_lock(&fs_info->reclaim_bgs_lock);
4883		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884		if (ret < 0) {
4885			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886			goto done;
4887		}
4888
4889		ret = btrfs_previous_item(root, path, 0, key.type);
4890		if (ret) {
4891			mutex_unlock(&fs_info->reclaim_bgs_lock);
4892			if (ret < 0)
4893				goto done;
4894			ret = 0;
4895			btrfs_release_path(path);
4896			break;
4897		}
4898
4899		l = path->nodes[0];
4900		slot = path->slots[0];
4901		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903		if (key.objectid != device->devid) {
4904			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905			btrfs_release_path(path);
4906			break;
4907		}
4908
4909		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910		length = btrfs_dev_extent_length(l, dev_extent);
4911
4912		if (key.offset + length <= new_size) {
4913			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914			btrfs_release_path(path);
4915			break;
4916		}
4917
4918		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919		btrfs_release_path(path);
4920
4921		/*
4922		 * We may be relocating the only data chunk we have,
4923		 * which could potentially end up with losing data's
4924		 * raid profile, so lets allocate an empty one in
4925		 * advance.
4926		 */
4927		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928		if (ret < 0) {
4929			mutex_unlock(&fs_info->reclaim_bgs_lock);
4930			goto done;
4931		}
4932
4933		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934		mutex_unlock(&fs_info->reclaim_bgs_lock);
4935		if (ret == -ENOSPC) {
4936			failed++;
4937		} else if (ret) {
4938			if (ret == -ETXTBSY) {
4939				btrfs_warn(fs_info,
4940		   "could not shrink block group %llu due to active swapfile",
4941					   chunk_offset);
4942			}
4943			goto done;
4944		}
4945	} while (key.offset-- > 0);
4946
4947	if (failed && !retried) {
4948		failed = 0;
4949		retried = true;
4950		goto again;
4951	} else if (failed && retried) {
4952		ret = -ENOSPC;
4953		goto done;
4954	}
4955
4956	/* Shrinking succeeded, else we would be at "done". */
4957	trans = btrfs_start_transaction(root, 0);
4958	if (IS_ERR(trans)) {
4959		ret = PTR_ERR(trans);
4960		goto done;
4961	}
4962
4963	mutex_lock(&fs_info->chunk_mutex);
4964	/* Clear all state bits beyond the shrunk device size */
4965	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966			  CHUNK_STATE_MASK);
4967
4968	btrfs_device_set_disk_total_bytes(device, new_size);
4969	if (list_empty(&device->post_commit_list))
4970		list_add_tail(&device->post_commit_list,
4971			      &trans->transaction->dev_update_list);
4972
4973	WARN_ON(diff > old_total);
4974	btrfs_set_super_total_bytes(super_copy,
4975			round_down(old_total - diff, fs_info->sectorsize));
4976	mutex_unlock(&fs_info->chunk_mutex);
4977
4978	btrfs_reserve_chunk_metadata(trans, false);
4979	/* Now btrfs_update_device() will change the on-disk size. */
4980	ret = btrfs_update_device(trans, device);
4981	btrfs_trans_release_chunk_metadata(trans);
4982	if (ret < 0) {
4983		btrfs_abort_transaction(trans, ret);
4984		btrfs_end_transaction(trans);
4985	} else {
4986		ret = btrfs_commit_transaction(trans);
4987	}
4988done:
4989	btrfs_free_path(path);
4990	if (ret) {
4991		mutex_lock(&fs_info->chunk_mutex);
4992		btrfs_device_set_total_bytes(device, old_size);
4993		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994			device->fs_devices->total_rw_bytes += diff;
4995		atomic64_add(diff, &fs_info->free_chunk_space);
4996		mutex_unlock(&fs_info->chunk_mutex);
4997	}
4998	return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002			   struct btrfs_key *key,
5003			   struct btrfs_chunk *chunk, int item_size)
5004{
5005	struct btrfs_super_block *super_copy = fs_info->super_copy;
5006	struct btrfs_disk_key disk_key;
5007	u32 array_size;
5008	u8 *ptr;
5009
5010	lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012	array_size = btrfs_super_sys_array_size(super_copy);
5013	if (array_size + item_size + sizeof(disk_key)
5014			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015		return -EFBIG;
5016
5017	ptr = super_copy->sys_chunk_array + array_size;
5018	btrfs_cpu_key_to_disk(&disk_key, key);
5019	memcpy(ptr, &disk_key, sizeof(disk_key));
5020	ptr += sizeof(disk_key);
5021	memcpy(ptr, chunk, item_size);
5022	item_size += sizeof(disk_key);
5023	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025	return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033	const struct btrfs_device_info *di_a = a;
5034	const struct btrfs_device_info *di_b = b;
5035
5036	if (di_a->max_avail > di_b->max_avail)
5037		return -1;
5038	if (di_a->max_avail < di_b->max_avail)
5039		return 1;
5040	if (di_a->total_avail > di_b->total_avail)
5041		return -1;
5042	if (di_a->total_avail < di_b->total_avail)
5043		return 1;
5044	return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050		return;
5051
5052	btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058		return;
5059
5060	btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068	u64 start;
5069	u64 type;
5070	/* Total number of stripes to allocate */
5071	int num_stripes;
5072	/* sub_stripes info for map */
5073	int sub_stripes;
5074	/* Stripes per device */
5075	int dev_stripes;
5076	/* Maximum number of devices to use */
5077	int devs_max;
5078	/* Minimum number of devices to use */
5079	int devs_min;
5080	/* ndevs has to be a multiple of this */
5081	int devs_increment;
5082	/* Number of copies */
5083	int ncopies;
5084	/* Number of stripes worth of bytes to store parity information */
5085	int nparity;
5086	u64 max_stripe_size;
5087	u64 max_chunk_size;
5088	u64 dev_extent_min;
5089	u64 stripe_size;
5090	u64 chunk_size;
5091	int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095				struct btrfs_fs_devices *fs_devices,
5096				struct alloc_chunk_ctl *ctl)
5097{
5098	struct btrfs_space_info *space_info;
5099
5100	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101	ASSERT(space_info);
5102
5103	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104	ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5108
5109	/* We don't want a chunk larger than 10% of writable space */
5110	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111				  ctl->max_chunk_size);
5112	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116				      struct btrfs_fs_devices *fs_devices,
5117				      struct alloc_chunk_ctl *ctl)
5118{
5119	u64 zone_size = fs_devices->fs_info->zone_size;
5120	u64 limit;
5121	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123	u64 min_chunk_size = min_data_stripes * zone_size;
5124	u64 type = ctl->type;
5125
5126	ctl->max_stripe_size = zone_size;
5127	if (type & BTRFS_BLOCK_GROUP_DATA) {
5128		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129						 zone_size);
5130	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131		ctl->max_chunk_size = ctl->max_stripe_size;
5132	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134		ctl->devs_max = min_t(int, ctl->devs_max,
5135				      BTRFS_MAX_DEVS_SYS_CHUNK);
5136	} else {
5137		BUG();
5138	}
5139
5140	/* We don't want a chunk larger than 10% of writable space */
5141	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142			       zone_size),
5143		    min_chunk_size);
5144	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149				 struct alloc_chunk_ctl *ctl)
5150{
5151	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155	ctl->devs_max = btrfs_raid_array[index].devs_max;
5156	if (!ctl->devs_max)
5157		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158	ctl->devs_min = btrfs_raid_array[index].devs_min;
5159	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160	ctl->ncopies = btrfs_raid_array[index].ncopies;
5161	ctl->nparity = btrfs_raid_array[index].nparity;
5162	ctl->ndevs = 0;
5163
5164	switch (fs_devices->chunk_alloc_policy) {
5165	case BTRFS_CHUNK_ALLOC_REGULAR:
5166		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167		break;
5168	case BTRFS_CHUNK_ALLOC_ZONED:
5169		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170		break;
5171	default:
5172		BUG();
5173	}
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177			      struct alloc_chunk_ctl *ctl,
5178			      struct btrfs_device_info *devices_info)
5179{
5180	struct btrfs_fs_info *info = fs_devices->fs_info;
5181	struct btrfs_device *device;
5182	u64 total_avail;
5183	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184	int ret;
5185	int ndevs = 0;
5186	u64 max_avail;
5187	u64 dev_offset;
5188
5189	/*
5190	 * in the first pass through the devices list, we gather information
5191	 * about the available holes on each device.
5192	 */
5193	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195			WARN(1, KERN_ERR
5196			       "BTRFS: read-only device in alloc_list\n");
5197			continue;
5198		}
5199
5200		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201					&device->dev_state) ||
5202		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203			continue;
5204
5205		if (device->total_bytes > device->bytes_used)
5206			total_avail = device->total_bytes - device->bytes_used;
5207		else
5208			total_avail = 0;
5209
5210		/* If there is no space on this device, skip it. */
5211		if (total_avail < ctl->dev_extent_min)
5212			continue;
5213
5214		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215					   &max_avail);
5216		if (ret && ret != -ENOSPC)
5217			return ret;
5218
5219		if (ret == 0)
5220			max_avail = dev_extent_want;
5221
5222		if (max_avail < ctl->dev_extent_min) {
5223			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224				btrfs_debug(info,
5225			"%s: devid %llu has no free space, have=%llu want=%llu",
5226					    __func__, device->devid, max_avail,
5227					    ctl->dev_extent_min);
5228			continue;
5229		}
5230
5231		if (ndevs == fs_devices->rw_devices) {
5232			WARN(1, "%s: found more than %llu devices\n",
5233			     __func__, fs_devices->rw_devices);
5234			break;
5235		}
5236		devices_info[ndevs].dev_offset = dev_offset;
5237		devices_info[ndevs].max_avail = max_avail;
5238		devices_info[ndevs].total_avail = total_avail;
5239		devices_info[ndevs].dev = device;
5240		++ndevs;
5241	}
5242	ctl->ndevs = ndevs;
5243
5244	/*
5245	 * now sort the devices by hole size / available space
5246	 */
5247	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248	     btrfs_cmp_device_info, NULL);
5249
5250	return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254				      struct btrfs_device_info *devices_info)
5255{
5256	/* Number of stripes that count for block group size */
5257	int data_stripes;
5258
5259	/*
5260	 * The primary goal is to maximize the number of stripes, so use as
5261	 * many devices as possible, even if the stripes are not maximum sized.
5262	 *
5263	 * The DUP profile stores more than one stripe per device, the
5264	 * max_avail is the total size so we have to adjust.
5265	 */
5266	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267				   ctl->dev_stripes);
5268	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5271	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273	/*
5274	 * Use the number of data stripes to figure out how big this chunk is
5275	 * really going to be in terms of logical address space, and compare
5276	 * that answer with the max chunk size. If it's higher, we try to
5277	 * reduce stripe_size.
5278	 */
5279	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280		/*
5281		 * Reduce stripe_size, round it up to a 16MB boundary again and
5282		 * then use it, unless it ends up being even bigger than the
5283		 * previous value we had already.
5284		 */
5285		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286							data_stripes), SZ_16M),
5287				       ctl->stripe_size);
5288	}
5289
5290	/* Stripe size should not go beyond 1G. */
5291	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293	/* Align to BTRFS_STRIPE_LEN */
5294	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295	ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297	return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301				    struct btrfs_device_info *devices_info)
5302{
5303	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304	/* Number of stripes that count for block group size */
5305	int data_stripes;
5306
5307	/*
5308	 * It should hold because:
5309	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310	 */
5311	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313	ctl->stripe_size = zone_size;
5314	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320					     ctl->stripe_size) + ctl->nparity,
5321				     ctl->dev_stripes);
5322		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325	}
5326
5327	ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329	return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333			      struct alloc_chunk_ctl *ctl,
5334			      struct btrfs_device_info *devices_info)
5335{
5336	struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338	/*
5339	 * Round down to number of usable stripes, devs_increment can be any
5340	 * number so we can't use round_down() that requires power of 2, while
5341	 * rounddown is safe.
5342	 */
5343	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345	if (ctl->ndevs < ctl->devs_min) {
5346		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347			btrfs_debug(info,
5348	"%s: not enough devices with free space: have=%d minimum required=%d",
5349				    __func__, ctl->ndevs, ctl->devs_min);
5350		}
5351		return -ENOSPC;
5352	}
5353
5354	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356	switch (fs_devices->chunk_alloc_policy) {
5357	case BTRFS_CHUNK_ALLOC_REGULAR:
5358		return decide_stripe_size_regular(ctl, devices_info);
5359	case BTRFS_CHUNK_ALLOC_ZONED:
5360		return decide_stripe_size_zoned(ctl, devices_info);
5361	default:
5362		BUG();
5363	}
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367			struct alloc_chunk_ctl *ctl,
5368			struct btrfs_device_info *devices_info)
5369{
5370	struct btrfs_fs_info *info = trans->fs_info;
5371	struct map_lookup *map = NULL;
5372	struct extent_map_tree *em_tree;
5373	struct btrfs_block_group *block_group;
5374	struct extent_map *em;
5375	u64 start = ctl->start;
5376	u64 type = ctl->type;
5377	int ret;
5378	int i;
5379	int j;
5380
5381	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382	if (!map)
5383		return ERR_PTR(-ENOMEM);
5384	map->num_stripes = ctl->num_stripes;
5385
5386	for (i = 0; i < ctl->ndevs; ++i) {
5387		for (j = 0; j < ctl->dev_stripes; ++j) {
5388			int s = i * ctl->dev_stripes + j;
5389			map->stripes[s].dev = devices_info[i].dev;
5390			map->stripes[s].physical = devices_info[i].dev_offset +
5391						   j * ctl->stripe_size;
5392		}
5393	}
5394	map->stripe_len = BTRFS_STRIPE_LEN;
5395	map->io_align = BTRFS_STRIPE_LEN;
5396	map->io_width = BTRFS_STRIPE_LEN;
5397	map->type = type;
5398	map->sub_stripes = ctl->sub_stripes;
5399
5400	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402	em = alloc_extent_map();
5403	if (!em) {
5404		kfree(map);
5405		return ERR_PTR(-ENOMEM);
5406	}
5407	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408	em->map_lookup = map;
5409	em->start = start;
5410	em->len = ctl->chunk_size;
5411	em->block_start = 0;
5412	em->block_len = em->len;
5413	em->orig_block_len = ctl->stripe_size;
5414
5415	em_tree = &info->mapping_tree;
5416	write_lock(&em_tree->lock);
5417	ret = add_extent_mapping(em_tree, em, 0);
5418	if (ret) {
5419		write_unlock(&em_tree->lock);
5420		free_extent_map(em);
5421		return ERR_PTR(ret);
5422	}
5423	write_unlock(&em_tree->lock);
5424
5425	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426	if (IS_ERR(block_group))
5427		goto error_del_extent;
5428
5429	for (i = 0; i < map->num_stripes; i++) {
5430		struct btrfs_device *dev = map->stripes[i].dev;
5431
5432		btrfs_device_set_bytes_used(dev,
5433					    dev->bytes_used + ctl->stripe_size);
5434		if (list_empty(&dev->post_commit_list))
5435			list_add_tail(&dev->post_commit_list,
5436				      &trans->transaction->dev_update_list);
5437	}
5438
5439	atomic64_sub(ctl->stripe_size * map->num_stripes,
5440		     &info->free_chunk_space);
5441
5442	free_extent_map(em);
5443	check_raid56_incompat_flag(info, type);
5444	check_raid1c34_incompat_flag(info, type);
5445
5446	return block_group;
5447
5448error_del_extent:
5449	write_lock(&em_tree->lock);
5450	remove_extent_mapping(em_tree, em);
5451	write_unlock(&em_tree->lock);
5452
5453	/* One for our allocation */
5454	free_extent_map(em);
5455	/* One for the tree reference */
5456	free_extent_map(em);
5457
5458	return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462					    u64 type)
5463{
5464	struct btrfs_fs_info *info = trans->fs_info;
5465	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466	struct btrfs_device_info *devices_info = NULL;
5467	struct alloc_chunk_ctl ctl;
5468	struct btrfs_block_group *block_group;
5469	int ret;
5470
5471	lockdep_assert_held(&info->chunk_mutex);
5472
5473	if (!alloc_profile_is_valid(type, 0)) {
5474		ASSERT(0);
5475		return ERR_PTR(-EINVAL);
5476	}
5477
5478	if (list_empty(&fs_devices->alloc_list)) {
5479		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480			btrfs_debug(info, "%s: no writable device", __func__);
5481		return ERR_PTR(-ENOSPC);
5482	}
5483
5484	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486		ASSERT(0);
5487		return ERR_PTR(-EINVAL);
5488	}
5489
5490	ctl.start = find_next_chunk(info);
5491	ctl.type = type;
5492	init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495			       GFP_NOFS);
5496	if (!devices_info)
5497		return ERR_PTR(-ENOMEM);
5498
5499	ret = gather_device_info(fs_devices, &ctl, devices_info);
5500	if (ret < 0) {
5501		block_group = ERR_PTR(ret);
5502		goto out;
5503	}
5504
5505	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506	if (ret < 0) {
5507		block_group = ERR_PTR(ret);
5508		goto out;
5509	}
5510
5511	block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514	kfree(devices_info);
5515	return block_group;
5516}
5517
5518/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527				     struct btrfs_block_group *bg)
5528{
5529	struct btrfs_fs_info *fs_info = trans->fs_info;
 
5530	struct btrfs_root *chunk_root = fs_info->chunk_root;
5531	struct btrfs_key key;
5532	struct btrfs_chunk *chunk;
5533	struct btrfs_stripe *stripe;
5534	struct extent_map *em;
5535	struct map_lookup *map;
5536	size_t item_size;
5537	int i;
5538	int ret;
5539
5540	/*
5541	 * We take the chunk_mutex for 2 reasons:
5542	 *
5543	 * 1) Updates and insertions in the chunk btree must be done while holding
5544	 *    the chunk_mutex, as well as updating the system chunk array in the
5545	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5546	 *    details;
5547	 *
5548	 * 2) To prevent races with the final phase of a device replace operation
5549	 *    that replaces the device object associated with the map's stripes,
5550	 *    because the device object's id can change at any time during that
5551	 *    final phase of the device replace operation
5552	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554	 *    which would cause a failure when updating the device item, which does
5555	 *    not exists, or persisting a stripe of the chunk item with such ID.
5556	 *    Here we can't use the device_list_mutex because our caller already
5557	 *    has locked the chunk_mutex, and the final phase of device replace
5558	 *    acquires both mutexes - first the device_list_mutex and then the
5559	 *    chunk_mutex. Using any of those two mutexes protects us from a
5560	 *    concurrent device replace.
5561	 */
5562	lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565	if (IS_ERR(em)) {
5566		ret = PTR_ERR(em);
5567		btrfs_abort_transaction(trans, ret);
5568		return ret;
5569	}
5570
5571	map = em->map_lookup;
5572	item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574	chunk = kzalloc(item_size, GFP_NOFS);
5575	if (!chunk) {
5576		ret = -ENOMEM;
5577		btrfs_abort_transaction(trans, ret);
5578		goto out;
5579	}
5580
5581	for (i = 0; i < map->num_stripes; i++) {
5582		struct btrfs_device *device = map->stripes[i].dev;
5583
5584		ret = btrfs_update_device(trans, device);
5585		if (ret)
5586			goto out;
5587	}
5588
5589	stripe = &chunk->stripe;
5590	for (i = 0; i < map->num_stripes; i++) {
5591		struct btrfs_device *device = map->stripes[i].dev;
5592		const u64 dev_offset = map->stripes[i].physical;
5593
5594		btrfs_set_stack_stripe_devid(stripe, device->devid);
5595		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597		stripe++;
5598	}
5599
5600	btrfs_set_stack_chunk_length(chunk, bg->length);
5601	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603	btrfs_set_stack_chunk_type(chunk, map->type);
5604	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611	key.type = BTRFS_CHUNK_ITEM_KEY;
5612	key.offset = bg->start;
5613
5614	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615	if (ret)
5616		goto out;
5617
5618	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622		if (ret)
5623			goto out;
5624	}
5625
5626out:
5627	kfree(chunk);
5628	free_extent_map(em);
5629	return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634	struct btrfs_fs_info *fs_info = trans->fs_info;
5635	u64 alloc_profile;
5636	struct btrfs_block_group *meta_bg;
5637	struct btrfs_block_group *sys_bg;
5638
5639	/*
5640	 * When adding a new device for sprouting, the seed device is read-only
5641	 * so we must first allocate a metadata and a system chunk. But before
5642	 * adding the block group items to the extent, device and chunk btrees,
5643	 * we must first:
5644	 *
5645	 * 1) Create both chunks without doing any changes to the btrees, as
5646	 *    otherwise we would get -ENOSPC since the block groups from the
5647	 *    seed device are read-only;
5648	 *
5649	 * 2) Add the device item for the new sprout device - finishing the setup
5650	 *    of a new block group requires updating the device item in the chunk
5651	 *    btree, so it must exist when we attempt to do it. The previous step
5652	 *    ensures this does not fail with -ENOSPC.
5653	 *
5654	 * After that we can add the block group items to their btrees:
5655	 * update existing device item in the chunk btree, add a new block group
5656	 * item to the extent btree, add a new chunk item to the chunk btree and
5657	 * finally add the new device extent items to the devices btree.
5658	 */
5659
5660	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662	if (IS_ERR(meta_bg))
5663		return PTR_ERR(meta_bg);
5664
5665	alloc_profile = btrfs_system_alloc_profile(fs_info);
5666	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667	if (IS_ERR(sys_bg))
5668		return PTR_ERR(sys_bg);
5669
5670	return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675	const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677	return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682	struct extent_map *em;
5683	struct map_lookup *map;
 
5684	int miss_ndevs = 0;
5685	int i;
5686	bool ret = true;
5687
5688	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689	if (IS_ERR(em))
5690		return false;
5691
5692	map = em->map_lookup;
5693	for (i = 0; i < map->num_stripes; i++) {
5694		if (test_bit(BTRFS_DEV_STATE_MISSING,
5695					&map->stripes[i].dev->dev_state)) {
5696			miss_ndevs++;
5697			continue;
5698		}
5699		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700					&map->stripes[i].dev->dev_state)) {
5701			ret = false;
5702			goto end;
5703		}
5704	}
5705
5706	/*
5707	 * If the number of missing devices is larger than max errors, we can
5708	 * not write the data into that chunk successfully.
 
5709	 */
5710	if (miss_ndevs > btrfs_chunk_max_errors(map))
5711		ret = false;
5712end:
5713	free_extent_map(em);
5714	return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719	struct extent_map *em;
5720
5721	while (1) {
5722		write_lock(&tree->lock);
5723		em = lookup_extent_mapping(tree, 0, (u64)-1);
5724		if (em)
5725			remove_extent_mapping(tree, em);
5726		write_unlock(&tree->lock);
5727		if (!em)
5728			break;
5729		/* once for us */
5730		free_extent_map(em);
5731		/* once for the tree */
5732		free_extent_map(em);
5733	}
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738	struct extent_map *em;
5739	struct map_lookup *map;
5740	enum btrfs_raid_types index;
5741	int ret = 1;
5742
5743	em = btrfs_get_chunk_map(fs_info, logical, len);
5744	if (IS_ERR(em))
5745		/*
5746		 * We could return errors for these cases, but that could get
5747		 * ugly and we'd probably do the same thing which is just not do
5748		 * anything else and exit, so return 1 so the callers don't try
5749		 * to use other copies.
5750		 */
5751		return 1;
5752
5753	map = em->map_lookup;
5754	index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758		ret = btrfs_raid_array[index].ncopies;
5759	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760		ret = 2;
5761	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762		/*
5763		 * There could be two corrupted data stripes, we need
5764		 * to loop retry in order to rebuild the correct data.
5765		 *
5766		 * Fail a stripe at a time on every retry except the
5767		 * stripe under reconstruction.
5768		 */
5769		ret = map->num_stripes;
 
 
5770	free_extent_map(em);
5771
5772	down_read(&fs_info->dev_replace.rwsem);
5773	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774	    fs_info->dev_replace.tgtdev)
5775		ret++;
5776	up_read(&fs_info->dev_replace.rwsem);
5777
5778	return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782				    u64 logical)
5783{
5784	struct extent_map *em;
5785	struct map_lookup *map;
5786	unsigned long len = fs_info->sectorsize;
5787
5788	if (!btrfs_fs_incompat(fs_info, RAID56))
5789		return len;
5790
5791	em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793	if (!WARN_ON(IS_ERR(em))) {
5794		map = em->map_lookup;
5795		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796			len = map->stripe_len * nr_data_stripes(map);
5797		free_extent_map(em);
5798	}
5799	return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804	struct extent_map *em;
5805	struct map_lookup *map;
5806	int ret = 0;
5807
5808	if (!btrfs_fs_incompat(fs_info, RAID56))
5809		return 0;
5810
5811	em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813	if(!WARN_ON(IS_ERR(em))) {
5814		map = em->map_lookup;
5815		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816			ret = 1;
5817		free_extent_map(em);
5818	}
5819	return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823			    struct map_lookup *map, int first,
5824			    int dev_replace_is_ongoing)
5825{
5826	int i;
5827	int num_stripes;
5828	int preferred_mirror;
5829	int tolerance;
5830	struct btrfs_device *srcdev;
5831
5832	ASSERT((map->type &
5833		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836		num_stripes = map->sub_stripes;
5837	else
5838		num_stripes = map->num_stripes;
5839
5840	switch (fs_info->fs_devices->read_policy) {
5841	default:
5842		/* Shouldn't happen, just warn and use pid instead of failing */
5843		btrfs_warn_rl(fs_info,
5844			      "unknown read_policy type %u, reset to pid",
5845			      fs_info->fs_devices->read_policy);
5846		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847		fallthrough;
5848	case BTRFS_READ_POLICY_PID:
5849		preferred_mirror = first + (current->pid % num_stripes);
5850		break;
5851	}
5852
5853	if (dev_replace_is_ongoing &&
5854	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856		srcdev = fs_info->dev_replace.srcdev;
5857	else
5858		srcdev = NULL;
5859
5860	/*
5861	 * try to avoid the drive that is the source drive for a
5862	 * dev-replace procedure, only choose it if no other non-missing
5863	 * mirror is available
5864	 */
5865	for (tolerance = 0; tolerance < 2; tolerance++) {
5866		if (map->stripes[preferred_mirror].dev->bdev &&
5867		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868			return preferred_mirror;
5869		for (i = first; i < first + num_stripes; i++) {
5870			if (map->stripes[i].dev->bdev &&
5871			    (tolerance || map->stripes[i].dev != srcdev))
5872				return i;
5873		}
5874	}
5875
5876	/* we couldn't find one that doesn't fail.  Just return something
5877	 * and the io error handling code will clean up eventually
5878	 */
5879	return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885	int i;
5886	int again = 1;
5887
5888	while (again) {
5889		again = 0;
5890		for (i = 0; i < num_stripes - 1; i++) {
5891			/* Swap if parity is on a smaller index */
5892			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895				again = 1;
5896			}
5897		}
5898	}
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902						       int total_stripes,
5903						       int real_stripes)
5904{
5905	struct btrfs_io_context *bioc = kzalloc(
5906		 /* The size of btrfs_io_context */
5907		sizeof(struct btrfs_io_context) +
5908		/* Plus the variable array for the stripes */
5909		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910		/* Plus the variable array for the tgt dev */
5911		sizeof(int) * (real_stripes) +
5912		/*
5913		 * Plus the raid_map, which includes both the tgt dev
5914		 * and the stripes.
5915		 */
5916		sizeof(u64) * (total_stripes),
5917		GFP_NOFS);
5918
5919	if (!bioc)
5920		return NULL;
5921
5922	refcount_set(&bioc->refs, 1);
 
5923
5924	bioc->fs_info = fs_info;
5925	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928	return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933	WARN_ON(!refcount_read(&bioc->refs));
5934	refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939	if (!bioc)
5940		return;
5941	if (refcount_dec_and_test(&bioc->refs))
5942		kfree(bioc);
5943}
5944
 
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950					       u64 logical, u64 *length_ret,
5951					       u32 *num_stripes)
5952{
5953	struct extent_map *em;
5954	struct map_lookup *map;
5955	struct btrfs_discard_stripe *stripes;
5956	u64 length = *length_ret;
5957	u64 offset;
5958	u64 stripe_nr;
5959	u64 stripe_nr_end;
5960	u64 stripe_end_offset;
5961	u64 stripe_cnt;
5962	u64 stripe_len;
5963	u64 stripe_offset;
 
5964	u32 stripe_index;
5965	u32 factor = 0;
5966	u32 sub_stripes = 0;
5967	u64 stripes_per_dev = 0;
5968	u32 remaining_stripes = 0;
5969	u32 last_stripe = 0;
5970	int ret;
5971	int i;
5972
 
 
 
5973	em = btrfs_get_chunk_map(fs_info, logical, length);
5974	if (IS_ERR(em))
5975		return ERR_CAST(em);
5976
5977	map = em->map_lookup;
5978
5979	/* we don't discard raid56 yet */
5980	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981		ret = -EOPNOTSUPP;
5982		goto out_free_map;
5983}
5984
5985	offset = logical - em->start;
5986	length = min_t(u64, em->start + em->len - logical, length);
5987	*length_ret = length;
5988
5989	stripe_len = map->stripe_len;
5990	/*
5991	 * stripe_nr counts the total number of stripes we have to stride
5992	 * to get to this block
5993	 */
5994	stripe_nr = div64_u64(offset, stripe_len);
5995
5996	/* stripe_offset is the offset of this block in its stripe */
5997	stripe_offset = offset - stripe_nr * stripe_len;
5998
5999	stripe_nr_end = round_up(offset + length, map->stripe_len);
6000	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001	stripe_cnt = stripe_nr_end - stripe_nr;
6002	stripe_end_offset = stripe_nr_end * map->stripe_len -
6003			    (offset + length);
6004	/*
6005	 * after this, stripe_nr is the number of stripes on this
6006	 * device we have to walk to find the data, and stripe_index is
6007	 * the number of our device in the stripe array
6008	 */
6009	*num_stripes = 1;
6010	stripe_index = 0;
6011	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012			 BTRFS_BLOCK_GROUP_RAID10)) {
6013		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014			sub_stripes = 1;
6015		else
6016			sub_stripes = map->sub_stripes;
6017
6018		factor = map->num_stripes / sub_stripes;
6019		*num_stripes = min_t(u64, map->num_stripes,
6020				    sub_stripes * stripe_cnt);
6021		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022		stripe_index *= sub_stripes;
6023		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024					      &remaining_stripes);
6025		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026		last_stripe *= sub_stripes;
6027	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028				BTRFS_BLOCK_GROUP_DUP)) {
6029		*num_stripes = map->num_stripes;
6030	} else {
6031		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032					&stripe_index);
6033	}
6034
6035	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036	if (!stripes) {
6037		ret = -ENOMEM;
6038		goto out_free_map;
6039	}
6040
6041	for (i = 0; i < *num_stripes; i++) {
6042		stripes[i].physical =
6043			map->stripes[stripe_index].physical +
6044			stripe_offset + stripe_nr * map->stripe_len;
6045		stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048				 BTRFS_BLOCK_GROUP_RAID10)) {
6049			stripes[i].length = stripes_per_dev * map->stripe_len;
 
6050
6051			if (i / sub_stripes < remaining_stripes)
6052				stripes[i].length += map->stripe_len;
 
6053
6054			/*
6055			 * Special for the first stripe and
6056			 * the last stripe:
6057			 *
6058			 * |-------|...|-------|
6059			 *     |----------|
6060			 *    off     end_off
6061			 */
6062			if (i < sub_stripes)
6063				stripes[i].length -= stripe_offset;
 
6064
6065			if (stripe_index >= last_stripe &&
6066			    stripe_index <= (last_stripe +
6067					     sub_stripes - 1))
6068				stripes[i].length -= stripe_end_offset;
 
6069
6070			if (i == sub_stripes - 1)
6071				stripe_offset = 0;
6072		} else {
6073			stripes[i].length = length;
6074		}
6075
6076		stripe_index++;
6077		if (stripe_index == map->num_stripes) {
6078			stripe_index = 0;
6079			stripe_nr++;
6080		}
6081	}
6082
 
 
 
 
6083	free_extent_map(em);
6084	return stripes;
6085out_free_map:
6086	free_extent_map(em);
6087	return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104					 u64 logical, u64 length,
6105					 u64 srcdev_devid, int *mirror_num,
6106					 u64 *physical)
6107{
6108	struct btrfs_io_context *bioc = NULL;
6109	int num_stripes;
6110	int index_srcdev = 0;
6111	int found = 0;
6112	u64 physical_of_found = 0;
6113	int i;
6114	int ret = 0;
6115
6116	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117				logical, &length, &bioc, NULL, NULL, 0);
6118	if (ret) {
6119		ASSERT(bioc == NULL);
6120		return ret;
6121	}
6122
6123	num_stripes = bioc->num_stripes;
6124	if (*mirror_num > num_stripes) {
6125		/*
6126		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127		 * that means that the requested area is not left of the left
6128		 * cursor
6129		 */
6130		btrfs_put_bioc(bioc);
6131		return -EIO;
6132	}
6133
6134	/*
6135	 * process the rest of the function using the mirror_num of the source
6136	 * drive. Therefore look it up first.  At the end, patch the device
6137	 * pointer to the one of the target drive.
6138	 */
6139	for (i = 0; i < num_stripes; i++) {
6140		if (bioc->stripes[i].dev->devid != srcdev_devid)
6141			continue;
6142
6143		/*
6144		 * In case of DUP, in order to keep it simple, only add the
6145		 * mirror with the lowest physical address
6146		 */
6147		if (found &&
6148		    physical_of_found <= bioc->stripes[i].physical)
6149			continue;
6150
6151		index_srcdev = i;
6152		found = 1;
6153		physical_of_found = bioc->stripes[i].physical;
6154	}
6155
6156	btrfs_put_bioc(bioc);
6157
6158	ASSERT(found);
6159	if (!found)
6160		return -EIO;
6161
6162	*mirror_num = index_srcdev + 1;
6163	*physical = physical_of_found;
6164	return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169	struct btrfs_block_group *cache;
6170	bool ret;
6171
6172	/* Non zoned filesystem does not use "to_copy" flag */
6173	if (!btrfs_is_zoned(fs_info))
6174		return false;
6175
6176	cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
 
 
6179
6180	btrfs_put_block_group(cache);
6181	return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185				      struct btrfs_io_context **bioc_ret,
6186				      struct btrfs_dev_replace *dev_replace,
6187				      u64 logical,
6188				      int *num_stripes_ret, int *max_errors_ret)
6189{
6190	struct btrfs_io_context *bioc = *bioc_ret;
6191	u64 srcdev_devid = dev_replace->srcdev->devid;
6192	int tgtdev_indexes = 0;
6193	int num_stripes = *num_stripes_ret;
6194	int max_errors = *max_errors_ret;
6195	int i;
6196
6197	if (op == BTRFS_MAP_WRITE) {
6198		int index_where_to_add;
6199
6200		/*
6201		 * A block group which have "to_copy" set will eventually
6202		 * copied by dev-replace process. We can avoid cloning IO here.
6203		 */
6204		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205			return;
6206
6207		/*
6208		 * duplicate the write operations while the dev replace
6209		 * procedure is running. Since the copying of the old disk to
6210		 * the new disk takes place at run time while the filesystem is
6211		 * mounted writable, the regular write operations to the old
6212		 * disk have to be duplicated to go to the new disk as well.
6213		 *
6214		 * Note that device->missing is handled by the caller, and that
6215		 * the write to the old disk is already set up in the stripes
6216		 * array.
6217		 */
6218		index_where_to_add = num_stripes;
6219		for (i = 0; i < num_stripes; i++) {
6220			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221				/* write to new disk, too */
6222				struct btrfs_io_stripe *new =
6223					bioc->stripes + index_where_to_add;
6224				struct btrfs_io_stripe *old =
6225					bioc->stripes + i;
6226
6227				new->physical = old->physical;
 
6228				new->dev = dev_replace->tgtdev;
6229				bioc->tgtdev_map[i] = index_where_to_add;
6230				index_where_to_add++;
6231				max_errors++;
6232				tgtdev_indexes++;
6233			}
6234		}
6235		num_stripes = index_where_to_add;
6236	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237		int index_srcdev = 0;
6238		int found = 0;
6239		u64 physical_of_found = 0;
6240
6241		/*
6242		 * During the dev-replace procedure, the target drive can also
6243		 * be used to read data in case it is needed to repair a corrupt
6244		 * block elsewhere. This is possible if the requested area is
6245		 * left of the left cursor. In this area, the target drive is a
6246		 * full copy of the source drive.
6247		 */
6248		for (i = 0; i < num_stripes; i++) {
6249			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250				/*
6251				 * In case of DUP, in order to keep it simple,
6252				 * only add the mirror with the lowest physical
6253				 * address
6254				 */
6255				if (found &&
6256				    physical_of_found <= bioc->stripes[i].physical)
 
6257					continue;
6258				index_srcdev = i;
6259				found = 1;
6260				physical_of_found = bioc->stripes[i].physical;
6261			}
6262		}
6263		if (found) {
6264			struct btrfs_io_stripe *tgtdev_stripe =
6265				bioc->stripes + num_stripes;
6266
6267			tgtdev_stripe->physical = physical_of_found;
 
 
6268			tgtdev_stripe->dev = dev_replace->tgtdev;
6269			bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271			tgtdev_indexes++;
6272			num_stripes++;
6273		}
6274	}
6275
6276	*num_stripes_ret = num_stripes;
6277	*max_errors_ret = max_errors;
6278	bioc->num_tgtdevs = tgtdev_indexes;
6279	*bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em:      mapping containing the logical extent
6294 * @op:      type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302			  enum btrfs_map_op op, u64 logical,
6303			  struct btrfs_io_geometry *io_geom)
6304{
6305	struct map_lookup *map;
6306	u64 len;
6307	u64 offset;
6308	u64 stripe_offset;
6309	u64 stripe_nr;
6310	u32 stripe_len;
6311	u64 raid56_full_stripe_start = (u64)-1;
6312	int data_stripes;
6313
6314	ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316	map = em->map_lookup;
6317	/* Offset of this logical address in the chunk */
6318	offset = logical - em->start;
6319	/* Len of a stripe in a chunk */
6320	stripe_len = map->stripe_len;
6321	/*
6322	 * Stripe_nr is where this block falls in
6323	 * stripe_offset is the offset of this block in its stripe.
6324	 */
6325	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326	ASSERT(stripe_offset < U32_MAX);
 
 
 
 
6327
 
 
6328	data_stripes = nr_data_stripes(map);
6329
6330	/* Only stripe based profiles needs to check against stripe length. */
6331	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332		u64 max_len = stripe_len - stripe_offset;
6333
6334		/*
6335		 * In case of raid56, we need to know the stripe aligned start
6336		 */
6337		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338			unsigned long full_stripe_len = stripe_len * data_stripes;
6339			raid56_full_stripe_start = offset;
6340
6341			/*
6342			 * Allow a write of a full stripe, but make sure we
6343			 * don't allow straddling of stripes
6344			 */
6345			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346					full_stripe_len);
6347			raid56_full_stripe_start *= full_stripe_len;
6348
6349			/*
6350			 * For writes to RAID[56], allow a full stripeset across
6351			 * all disks. For other RAID types and for RAID[56]
6352			 * reads, just allow a single stripe (on a single disk).
6353			 */
6354			if (op == BTRFS_MAP_WRITE) {
6355				max_len = stripe_len * data_stripes -
6356					  (offset - raid56_full_stripe_start);
6357			}
6358		}
6359		len = min_t(u64, em->len - offset, max_len);
6360	} else {
6361		len = em->len - offset;
6362	}
6363
6364	io_geom->len = len;
6365	io_geom->offset = offset;
6366	io_geom->stripe_len = stripe_len;
6367	io_geom->stripe_nr = stripe_nr;
6368	io_geom->stripe_offset = stripe_offset;
6369	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371	return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377	dst->dev = map->stripes[stripe_index].dev;
6378	dst->physical = map->stripes[stripe_index].physical +
6379			stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383		      u64 logical, u64 *length,
6384		      struct btrfs_io_context **bioc_ret,
6385		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386		      int need_raid_map)
6387{
6388	struct extent_map *em;
6389	struct map_lookup *map;
6390	u64 stripe_offset;
6391	u64 stripe_nr;
6392	u64 stripe_len;
6393	u32 stripe_index;
6394	int data_stripes;
6395	int i;
6396	int ret = 0;
6397	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398	int num_stripes;
6399	int max_errors = 0;
6400	int tgtdev_indexes = 0;
6401	struct btrfs_io_context *bioc = NULL;
6402	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403	int dev_replace_is_ongoing = 0;
6404	int num_alloc_stripes;
6405	int patch_the_first_stripe_for_dev_replace = 0;
6406	u64 physical_to_patch_in_first_stripe = 0;
6407	u64 raid56_full_stripe_start = (u64)-1;
6408	struct btrfs_io_geometry geom;
6409
6410	ASSERT(bioc_ret);
6411	ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413	em = btrfs_get_chunk_map(fs_info, logical, *length);
6414	ASSERT(!IS_ERR(em));
6415
6416	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417	if (ret < 0)
6418		return ret;
6419
6420	map = em->map_lookup;
6421
6422	*length = geom.len;
6423	stripe_len = geom.stripe_len;
6424	stripe_nr = geom.stripe_nr;
6425	stripe_offset = geom.stripe_offset;
6426	raid56_full_stripe_start = geom.raid56_stripe_offset;
6427	data_stripes = nr_data_stripes(map);
6428
6429	down_read(&dev_replace->rwsem);
6430	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431	/*
6432	 * Hold the semaphore for read during the whole operation, write is
6433	 * requested at commit time but must wait.
6434	 */
6435	if (!dev_replace_is_ongoing)
6436		up_read(&dev_replace->rwsem);
6437
6438	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441						    dev_replace->srcdev->devid,
6442						    &mirror_num,
6443					    &physical_to_patch_in_first_stripe);
6444		if (ret)
6445			goto out;
6446		else
6447			patch_the_first_stripe_for_dev_replace = 1;
6448	} else if (mirror_num > map->num_stripes) {
6449		mirror_num = 0;
6450	}
6451
6452	num_stripes = 1;
6453	stripe_index = 0;
6454	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456				&stripe_index);
6457		if (!need_full_stripe(op))
6458			mirror_num = 1;
6459	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460		if (need_full_stripe(op))
6461			num_stripes = map->num_stripes;
6462		else if (mirror_num)
6463			stripe_index = mirror_num - 1;
6464		else {
6465			stripe_index = find_live_mirror(fs_info, map, 0,
6466					    dev_replace_is_ongoing);
6467			mirror_num = stripe_index + 1;
6468		}
6469
6470	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471		if (need_full_stripe(op)) {
6472			num_stripes = map->num_stripes;
6473		} else if (mirror_num) {
6474			stripe_index = mirror_num - 1;
6475		} else {
6476			mirror_num = 1;
6477		}
6478
6479	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480		u32 factor = map->num_stripes / map->sub_stripes;
6481
6482		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483		stripe_index *= map->sub_stripes;
6484
6485		if (need_full_stripe(op))
6486			num_stripes = map->sub_stripes;
6487		else if (mirror_num)
6488			stripe_index += mirror_num - 1;
6489		else {
6490			int old_stripe_index = stripe_index;
6491			stripe_index = find_live_mirror(fs_info, map,
6492					      stripe_index,
6493					      dev_replace_is_ongoing);
6494			mirror_num = stripe_index - old_stripe_index + 1;
6495		}
6496
6497	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500			/* push stripe_nr back to the start of the full stripe */
6501			stripe_nr = div64_u64(raid56_full_stripe_start,
6502					stripe_len * data_stripes);
6503
6504			/* RAID[56] write or recovery. Return all stripes */
6505			num_stripes = map->num_stripes;
6506			max_errors = btrfs_chunk_max_errors(map);
6507
6508			/* Return the length to the full stripe end */
6509			*length = min(logical + *length,
6510				      raid56_full_stripe_start + em->start +
6511				      data_stripes * stripe_len) - logical;
6512			stripe_index = 0;
6513			stripe_offset = 0;
6514		} else {
6515			/*
6516			 * Mirror #0 or #1 means the original data block.
6517			 * Mirror #2 is RAID5 parity block.
6518			 * Mirror #3 is RAID6 Q block.
6519			 */
6520			stripe_nr = div_u64_rem(stripe_nr,
6521					data_stripes, &stripe_index);
6522			if (mirror_num > 1)
6523				stripe_index = data_stripes + mirror_num - 2;
6524
6525			/* We distribute the parity blocks across stripes */
6526			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527					&stripe_index);
6528			if (!need_full_stripe(op) && mirror_num <= 1)
6529				mirror_num = 1;
6530		}
6531	} else {
6532		/*
6533		 * after this, stripe_nr is the number of stripes on this
6534		 * device we have to walk to find the data, and stripe_index is
6535		 * the number of our device in the stripe array
6536		 */
6537		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538				&stripe_index);
6539		mirror_num = stripe_index + 1;
6540	}
6541	if (stripe_index >= map->num_stripes) {
6542		btrfs_crit(fs_info,
6543			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544			   stripe_index, map->num_stripes);
6545		ret = -EINVAL;
6546		goto out;
6547	}
6548
6549	num_alloc_stripes = num_stripes;
6550	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551		if (op == BTRFS_MAP_WRITE)
6552			num_alloc_stripes <<= 1;
6553		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554			num_alloc_stripes++;
6555		tgtdev_indexes = num_stripes;
6556	}
6557
6558	/*
6559	 * If this I/O maps to a single device, try to return the device and
6560	 * physical block information on the stack instead of allocating an
6561	 * I/O context structure.
6562	 */
6563	if (smap && num_alloc_stripes == 1 &&
6564	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566	     !dev_replace->tgtdev)) {
6567		if (patch_the_first_stripe_for_dev_replace) {
6568			smap->dev = dev_replace->tgtdev;
6569			smap->physical = physical_to_patch_in_first_stripe;
6570			*mirror_num_ret = map->num_stripes + 1;
6571		} else {
6572			set_io_stripe(smap, map, stripe_index, stripe_offset,
6573				      stripe_nr);
6574			*mirror_num_ret = mirror_num;
6575		}
6576		*bioc_ret = NULL;
6577		ret = 0;
6578		goto out;
6579	}
6580
6581	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582	if (!bioc) {
6583		ret = -ENOMEM;
6584		goto out;
6585	}
6586
6587	for (i = 0; i < num_stripes; i++) {
6588		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589			      stripe_nr);
 
6590		stripe_index++;
6591	}
6592
6593	/* Build raid_map */
6594	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595	    (need_full_stripe(op) || mirror_num > 1)) {
6596		u64 tmp;
6597		unsigned rot;
6598
6599		/* Work out the disk rotation on this stripe-set */
6600		div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602		/* Fill in the logical address of each stripe */
6603		tmp = stripe_nr * data_stripes;
6604		for (i = 0; i < data_stripes; i++)
6605			bioc->raid_map[(i + rot) % num_stripes] =
6606				em->start + (tmp + i) * map->stripe_len;
6607
6608		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610			bioc->raid_map[(i + rot + 1) % num_stripes] =
6611				RAID6_Q_STRIPE;
6612
6613		sort_parity_stripes(bioc, num_stripes);
6614	}
6615
6616	if (need_full_stripe(op))
6617		max_errors = btrfs_chunk_max_errors(map);
6618
6619	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620	    need_full_stripe(op)) {
6621		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622					  &num_stripes, &max_errors);
6623	}
6624
6625	*bioc_ret = bioc;
6626	bioc->map_type = map->type;
6627	bioc->num_stripes = num_stripes;
6628	bioc->max_errors = max_errors;
6629	bioc->mirror_num = mirror_num;
6630
6631	/*
6632	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634	 * available as a mirror
6635	 */
6636	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637		WARN_ON(num_stripes > 1);
6638		bioc->stripes[0].dev = dev_replace->tgtdev;
6639		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640		bioc->mirror_num = map->num_stripes + 1;
6641	}
6642out:
6643	if (dev_replace_is_ongoing) {
6644		lockdep_assert_held(&dev_replace->rwsem);
6645		/* Unlock and let waiting writers proceed */
6646		up_read(&dev_replace->rwsem);
6647	}
6648	free_extent_map(em);
6649	return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653		      u64 logical, u64 *length,
6654		      struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657				 NULL, &mirror_num, 0);
 
 
 
 
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662		     u64 logical, u64 *length,
6663		     struct btrfs_io_context **bioc_ret)
6664{
6665	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666				 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670				      const struct btrfs_fs_devices *fs_devices)
6671{
6672	if (args->fsid == NULL)
6673		return true;
6674	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675		return true;
6676	return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680				  const struct btrfs_device *device)
6681{
6682	if (args->missing) {
6683		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684		    !device->bdev)
6685			return true;
6686		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6687	}
6688
6689	if (device->devid != args->devid)
6690		return false;
6691	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692		return false;
6693	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704				       const struct btrfs_dev_lookup_args *args)
6705{
6706	struct btrfs_device *device;
6707	struct btrfs_fs_devices *seed_devs;
6708
6709	if (dev_args_match_fs_devices(args, fs_devices)) {
6710		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711			if (dev_args_match_device(args, device))
 
 
6712				return device;
6713		}
6714	}
6715
6716	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717		if (!dev_args_match_fs_devices(args, seed_devs))
6718			continue;
6719		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720			if (dev_args_match_device(args, device))
6721				return device;
 
 
 
 
6722		}
6723	}
6724
6725	return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729					    u64 devid, u8 *dev_uuid)
6730{
6731	struct btrfs_device *device;
6732	unsigned int nofs_flag;
6733
6734	/*
6735	 * We call this under the chunk_mutex, so we want to use NOFS for this
6736	 * allocation, however we don't want to change btrfs_alloc_device() to
6737	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738	 * places.
6739	 */
6740
6741	nofs_flag = memalloc_nofs_save();
6742	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743	memalloc_nofs_restore(nofs_flag);
6744	if (IS_ERR(device))
6745		return device;
6746
6747	list_add(&device->dev_list, &fs_devices->devices);
6748	device->fs_devices = fs_devices;
6749	fs_devices->num_devices++;
6750
6751	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752	fs_devices->missing_devices++;
6753
6754	return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info:	used only for generating a new devid, can be NULL if
6761 *		devid is provided (i.e. @devid != NULL).
6762 * @devid:	a pointer to devid for this device.  If NULL a new devid
6763 *		is generated.
6764 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6765 *		is generated.
6766 * @path:	a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error.  Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773					const u64 *devid, const u8 *uuid,
6774					const char *path)
6775{
6776	struct btrfs_device *dev;
6777	u64 tmp;
6778
6779	if (WARN_ON(!devid && !fs_info))
6780		return ERR_PTR(-EINVAL);
6781
6782	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783	if (!dev)
6784		return ERR_PTR(-ENOMEM);
6785
6786	INIT_LIST_HEAD(&dev->dev_list);
6787	INIT_LIST_HEAD(&dev->dev_alloc_list);
6788	INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790	atomic_set(&dev->dev_stats_ccnt, 0);
6791	btrfs_device_data_ordered_init(dev);
6792	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794	if (devid)
6795		tmp = *devid;
6796	else {
6797		int ret;
6798
6799		ret = find_next_devid(fs_info, &tmp);
6800		if (ret) {
6801			btrfs_free_device(dev);
6802			return ERR_PTR(ret);
6803		}
6804	}
6805	dev->devid = tmp;
6806
6807	if (uuid)
6808		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809	else
6810		generate_random_uuid(dev->uuid);
6811
6812	if (path) {
6813		struct rcu_string *name;
6814
6815		name = rcu_string_strdup(path, GFP_KERNEL);
6816		if (!name) {
6817			btrfs_free_device(dev);
6818			return ERR_PTR(-ENOMEM);
6819		}
6820		rcu_assign_pointer(dev->name, name);
6821	}
6822
6823	return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827					u64 devid, u8 *uuid, bool error)
6828{
6829	if (error)
6830		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831			      devid, uuid);
6832	else
6833		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834			      devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839	const struct map_lookup *map = em->map_lookup;
6840	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
 
 
 
 
 
 
 
6841
6842	return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854				  u64 logical, u64 length, u64 type)
6855{
6856	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857		return 0;
6858
6859	if (logical + length < MAX_LFS_FILESIZE)
6860		return 0;
6861
6862	btrfs_err_32bit_limit(fs_info);
6863	return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873				  u64 logical, u64 length, u64 type)
6874{
6875	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876		return;
6877
6878	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879		return;
6880
6881	btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886						  u64 devid, u8 *uuid)
6887{
6888	struct btrfs_device *dev;
6889
6890	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891		btrfs_report_missing_device(fs_info, devid, uuid, true);
6892		return ERR_PTR(-ENOENT);
6893	}
6894
6895	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896	if (IS_ERR(dev)) {
6897		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898			  devid, PTR_ERR(dev));
6899		return dev;
6900	}
6901	btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903	return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907			  struct btrfs_chunk *chunk)
6908{
6909	BTRFS_DEV_LOOKUP_ARGS(args);
6910	struct btrfs_fs_info *fs_info = leaf->fs_info;
6911	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912	struct map_lookup *map;
6913	struct extent_map *em;
6914	u64 logical;
6915	u64 length;
6916	u64 devid;
6917	u64 type;
6918	u8 uuid[BTRFS_UUID_SIZE];
6919	int index;
6920	int num_stripes;
6921	int ret;
6922	int i;
6923
6924	logical = key->offset;
6925	length = btrfs_chunk_length(leaf, chunk);
6926	type = btrfs_chunk_type(leaf, chunk);
6927	index = btrfs_bg_flags_to_raid_index(type);
6928	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932	if (ret < 0)
6933		return ret;
6934	warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937	/*
6938	 * Only need to verify chunk item if we're reading from sys chunk array,
6939	 * as chunk item in tree block is already verified by tree-checker.
6940	 */
6941	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943		if (ret)
6944			return ret;
6945	}
6946
6947	read_lock(&map_tree->lock);
6948	em = lookup_extent_mapping(map_tree, logical, 1);
6949	read_unlock(&map_tree->lock);
6950
6951	/* already mapped? */
6952	if (em && em->start <= logical && em->start + em->len > logical) {
6953		free_extent_map(em);
6954		return 0;
6955	} else if (em) {
6956		free_extent_map(em);
6957	}
6958
6959	em = alloc_extent_map();
6960	if (!em)
6961		return -ENOMEM;
6962	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963	if (!map) {
6964		free_extent_map(em);
6965		return -ENOMEM;
6966	}
6967
6968	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969	em->map_lookup = map;
6970	em->start = logical;
6971	em->len = length;
6972	em->orig_start = 0;
6973	em->block_start = 0;
6974	em->block_len = em->len;
6975
6976	map->num_stripes = num_stripes;
6977	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980	map->type = type;
6981	/*
6982	 * We can't use the sub_stripes value, as for profiles other than
6983	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984	 * older mkfs (<v5.4).
6985	 * In that case, it can cause divide-by-zero errors later.
6986	 * Since currently sub_stripes is fixed for each profile, let's
6987	 * use the trusted value instead.
6988	 */
6989	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990	map->verified_stripes = 0;
6991	em->orig_block_len = btrfs_calc_stripe_length(em);
 
6992	for (i = 0; i < num_stripes; i++) {
6993		map->stripes[i].physical =
6994			btrfs_stripe_offset_nr(leaf, chunk, i);
6995		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996		args.devid = devid;
6997		read_extent_buffer(leaf, uuid, (unsigned long)
6998				   btrfs_stripe_dev_uuid_nr(chunk, i),
6999				   BTRFS_UUID_SIZE);
7000		args.uuid = uuid;
7001		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
 
 
 
 
7002		if (!map->stripes[i].dev) {
7003			map->stripes[i].dev = handle_missing_device(fs_info,
7004								    devid, uuid);
 
7005			if (IS_ERR(map->stripes[i].dev)) {
7006				ret = PTR_ERR(map->stripes[i].dev);
7007				free_extent_map(em);
7008				return ret;
 
 
 
7009			}
 
7010		}
7011
7012		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013				&(map->stripes[i].dev->dev_state));
 
7014	}
7015
7016	write_lock(&map_tree->lock);
7017	ret = add_extent_mapping(map_tree, em, 0);
7018	write_unlock(&map_tree->lock);
7019	if (ret < 0) {
7020		btrfs_err(fs_info,
7021			  "failed to add chunk map, start=%llu len=%llu: %d",
7022			  em->start, em->len, ret);
7023	}
7024	free_extent_map(em);
7025
7026	return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030				 struct btrfs_dev_item *dev_item,
7031				 struct btrfs_device *device)
7032{
7033	unsigned long ptr;
7034
7035	device->devid = btrfs_device_id(leaf, dev_item);
7036	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037	device->total_bytes = device->disk_total_bytes;
7038	device->commit_total_bytes = device->disk_total_bytes;
7039	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040	device->commit_bytes_used = device->bytes_used;
7041	device->type = btrfs_device_type(leaf, dev_item);
7042	device->io_align = btrfs_device_io_align(leaf, dev_item);
7043	device->io_width = btrfs_device_io_width(leaf, dev_item);
7044	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048	ptr = btrfs_device_uuid(dev_item);
7049	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053						  u8 *fsid)
7054{
7055	struct btrfs_fs_devices *fs_devices;
7056	int ret;
7057
7058	lockdep_assert_held(&uuid_mutex);
7059	ASSERT(fsid);
7060
7061	/* This will match only for multi-device seed fs */
7062	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064			return fs_devices;
7065
7066
7067	fs_devices = find_fsid(fsid, NULL);
7068	if (!fs_devices) {
7069		if (!btrfs_test_opt(fs_info, DEGRADED))
7070			return ERR_PTR(-ENOENT);
7071
7072		fs_devices = alloc_fs_devices(fsid, NULL);
7073		if (IS_ERR(fs_devices))
7074			return fs_devices;
7075
7076		fs_devices->seeding = true;
7077		fs_devices->opened = 1;
7078		return fs_devices;
7079	}
7080
7081	/*
7082	 * Upon first call for a seed fs fsid, just create a private copy of the
7083	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084	 */
7085	fs_devices = clone_fs_devices(fs_devices);
7086	if (IS_ERR(fs_devices))
7087		return fs_devices;
7088
7089	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090	if (ret) {
7091		free_fs_devices(fs_devices);
7092		return ERR_PTR(ret);
7093	}
7094
7095	if (!fs_devices->seeding) {
7096		close_fs_devices(fs_devices);
7097		free_fs_devices(fs_devices);
7098		return ERR_PTR(-EINVAL);
7099	}
7100
7101	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103	return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107			struct btrfs_dev_item *dev_item)
7108{
7109	BTRFS_DEV_LOOKUP_ARGS(args);
7110	struct btrfs_fs_info *fs_info = leaf->fs_info;
7111	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112	struct btrfs_device *device;
7113	u64 devid;
7114	int ret;
7115	u8 fs_uuid[BTRFS_FSID_SIZE];
7116	u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118	devid = btrfs_device_id(leaf, dev_item);
7119	args.devid = devid;
7120	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121			   BTRFS_UUID_SIZE);
7122	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123			   BTRFS_FSID_SIZE);
7124	args.uuid = dev_uuid;
7125	args.fsid = fs_uuid;
7126
7127	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128		fs_devices = open_seed_devices(fs_info, fs_uuid);
7129		if (IS_ERR(fs_devices))
7130			return PTR_ERR(fs_devices);
7131	}
7132
7133	device = btrfs_find_device(fs_info->fs_devices, &args);
 
7134	if (!device) {
7135		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136			btrfs_report_missing_device(fs_info, devid,
7137							dev_uuid, true);
7138			return -ENOENT;
7139		}
7140
7141		device = add_missing_dev(fs_devices, devid, dev_uuid);
7142		if (IS_ERR(device)) {
7143			btrfs_err(fs_info,
7144				"failed to add missing dev %llu: %ld",
7145				devid, PTR_ERR(device));
7146			return PTR_ERR(device);
7147		}
7148		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149	} else {
7150		if (!device->bdev) {
7151			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152				btrfs_report_missing_device(fs_info,
7153						devid, dev_uuid, true);
7154				return -ENOENT;
7155			}
7156			btrfs_report_missing_device(fs_info, devid,
7157							dev_uuid, false);
7158		}
7159
7160		if (!device->bdev &&
7161		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162			/*
7163			 * this happens when a device that was properly setup
7164			 * in the device info lists suddenly goes bad.
7165			 * device->bdev is NULL, and so we have to set
7166			 * device->missing to one here
7167			 */
7168			device->fs_devices->missing_devices++;
7169			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170		}
7171
7172		/* Move the device to its own fs_devices */
7173		if (device->fs_devices != fs_devices) {
7174			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175							&device->dev_state));
7176
7177			list_move(&device->dev_list, &fs_devices->devices);
7178			device->fs_devices->num_devices--;
7179			fs_devices->num_devices++;
7180
7181			device->fs_devices->missing_devices--;
7182			fs_devices->missing_devices++;
7183
7184			device->fs_devices = fs_devices;
7185		}
7186	}
7187
7188	if (device->fs_devices != fs_info->fs_devices) {
7189		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190		if (device->generation !=
7191		    btrfs_device_generation(leaf, dev_item))
7192			return -EINVAL;
7193	}
7194
7195	fill_device_from_item(leaf, dev_item, device);
7196	if (device->bdev) {
7197		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199		if (device->total_bytes > max_total_bytes) {
7200			btrfs_err(fs_info,
7201			"device total_bytes should be at most %llu but found %llu",
7202				  max_total_bytes, device->total_bytes);
7203			return -EINVAL;
7204		}
7205	}
7206	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209		device->fs_devices->total_rw_bytes += device->total_bytes;
7210		atomic64_add(device->total_bytes - device->bytes_used,
7211				&fs_info->free_chunk_space);
7212	}
7213	ret = 0;
7214	return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
 
7219	struct btrfs_super_block *super_copy = fs_info->super_copy;
7220	struct extent_buffer *sb;
7221	struct btrfs_disk_key *disk_key;
7222	struct btrfs_chunk *chunk;
7223	u8 *array_ptr;
7224	unsigned long sb_array_offset;
7225	int ret = 0;
7226	u32 num_stripes;
7227	u32 array_size;
7228	u32 len = 0;
7229	u32 cur_offset;
7230	u64 type;
7231	struct btrfs_key key;
7232
7233	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235	/*
7236	 * We allocated a dummy extent, just to use extent buffer accessors.
7237	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238	 * that's fine, we will not go beyond system chunk array anyway.
7239	 */
7240	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241	if (!sb)
7242		return -ENOMEM;
 
7243	set_extent_buffer_uptodate(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7244
7245	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246	array_size = btrfs_super_sys_array_size(super_copy);
7247
7248	array_ptr = super_copy->sys_chunk_array;
7249	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250	cur_offset = 0;
7251
7252	while (cur_offset < array_size) {
7253		disk_key = (struct btrfs_disk_key *)array_ptr;
7254		len = sizeof(*disk_key);
7255		if (cur_offset + len > array_size)
7256			goto out_short_read;
7257
7258		btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260		array_ptr += len;
7261		sb_array_offset += len;
7262		cur_offset += len;
7263
7264		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265			btrfs_err(fs_info,
7266			    "unexpected item type %u in sys_array at offset %u",
7267				  (u32)key.type, cur_offset);
7268			ret = -EIO;
7269			break;
7270		}
7271
7272		chunk = (struct btrfs_chunk *)sb_array_offset;
7273		/*
7274		 * At least one btrfs_chunk with one stripe must be present,
7275		 * exact stripe count check comes afterwards
7276		 */
7277		len = btrfs_chunk_item_size(1);
7278		if (cur_offset + len > array_size)
7279			goto out_short_read;
7280
7281		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282		if (!num_stripes) {
7283			btrfs_err(fs_info,
7284			"invalid number of stripes %u in sys_array at offset %u",
7285				  num_stripes, cur_offset);
7286			ret = -EIO;
7287			break;
7288		}
7289
7290		type = btrfs_chunk_type(sb, chunk);
7291		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292			btrfs_err(fs_info,
7293			"invalid chunk type %llu in sys_array at offset %u",
7294				  type, cur_offset);
7295			ret = -EIO;
7296			break;
7297		}
7298
7299		len = btrfs_chunk_item_size(num_stripes);
7300		if (cur_offset + len > array_size)
7301			goto out_short_read;
7302
7303		ret = read_one_chunk(&key, sb, chunk);
7304		if (ret)
7305			break;
7306
7307		array_ptr += len;
7308		sb_array_offset += len;
7309		cur_offset += len;
7310	}
7311	clear_extent_buffer_uptodate(sb);
7312	free_extent_buffer_stale(sb);
7313	return ret;
7314
7315out_short_read:
7316	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317			len, cur_offset);
7318	clear_extent_buffer_uptodate(sb);
7319	free_extent_buffer_stale(sb);
7320	return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332					struct btrfs_device *failing_dev)
7333{
7334	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335	struct extent_map *em;
7336	u64 next_start = 0;
7337	bool ret = true;
7338
7339	read_lock(&map_tree->lock);
7340	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341	read_unlock(&map_tree->lock);
7342	/* No chunk at all? Return false anyway */
7343	if (!em) {
7344		ret = false;
7345		goto out;
7346	}
7347	while (em) {
7348		struct map_lookup *map;
7349		int missing = 0;
7350		int max_tolerated;
7351		int i;
7352
7353		map = em->map_lookup;
7354		max_tolerated =
7355			btrfs_get_num_tolerated_disk_barrier_failures(
7356					map->type);
7357		for (i = 0; i < map->num_stripes; i++) {
7358			struct btrfs_device *dev = map->stripes[i].dev;
7359
7360			if (!dev || !dev->bdev ||
7361			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362			    dev->last_flush_error)
7363				missing++;
7364			else if (failing_dev && failing_dev == dev)
7365				missing++;
7366		}
7367		if (missing > max_tolerated) {
7368			if (!failing_dev)
7369				btrfs_warn(fs_info,
7370	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371				   em->start, missing, max_tolerated);
7372			free_extent_map(em);
7373			ret = false;
7374			goto out;
7375		}
7376		next_start = extent_map_end(em);
7377		free_extent_map(em);
7378
7379		read_lock(&map_tree->lock);
7380		em = lookup_extent_mapping(map_tree, next_start,
7381					   (u64)(-1) - next_start);
7382		read_unlock(&map_tree->lock);
7383	}
7384out:
7385	return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390	int i;
7391	const int nr_items = btrfs_header_nritems(node);
7392
7393	for (i = 0; i < nr_items; i++)
7394		btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399	struct btrfs_root *root = fs_info->chunk_root;
7400	struct btrfs_path *path;
7401	struct extent_buffer *leaf;
7402	struct btrfs_key key;
7403	struct btrfs_key found_key;
7404	int ret;
7405	int slot;
7406	int iter_ret = 0;
7407	u64 total_dev = 0;
7408	u64 last_ra_node = 0;
7409
7410	path = btrfs_alloc_path();
7411	if (!path)
7412		return -ENOMEM;
7413
7414	/*
7415	 * uuid_mutex is needed only if we are mounting a sprout FS
7416	 * otherwise we don't need it.
7417	 */
7418	mutex_lock(&uuid_mutex);
7419
7420	/*
7421	 * It is possible for mount and umount to race in such a way that
7422	 * we execute this code path, but open_fs_devices failed to clear
7423	 * total_rw_bytes. We certainly want it cleared before reading the
7424	 * device items, so clear it here.
7425	 */
7426	fs_info->fs_devices->total_rw_bytes = 0;
7427
7428	/*
7429	 * Lockdep complains about possible circular locking dependency between
7430	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431	 * used for freeze procection of a fs (struct super_block.s_writers),
7432	 * which we take when starting a transaction, and extent buffers of the
7433	 * chunk tree if we call read_one_dev() while holding a lock on an
7434	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435	 * and at this point there can't be any concurrent task modifying the
7436	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437	 */
7438	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439	path->skip_locking = 1;
7440
7441	/*
7442	 * Read all device items, and then all the chunk items. All
7443	 * device items are found before any chunk item (their object id
7444	 * is smaller than the lowest possible object id for a chunk
7445	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446	 */
7447	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448	key.offset = 0;
7449	key.type = 0;
7450	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451		struct extent_buffer *node = path->nodes[1];
 
 
 
7452
7453		leaf = path->nodes[0];
7454		slot = path->slots[0];
7455
 
 
 
 
 
 
 
 
 
 
 
 
7456		if (node) {
7457			if (last_ra_node != node->start) {
7458				readahead_tree_node_children(node);
7459				last_ra_node = node->start;
7460			}
7461		}
 
7462		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463			struct btrfs_dev_item *dev_item;
7464			dev_item = btrfs_item_ptr(leaf, slot,
7465						  struct btrfs_dev_item);
7466			ret = read_one_dev(leaf, dev_item);
7467			if (ret)
7468				goto error;
7469			total_dev++;
7470		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471			struct btrfs_chunk *chunk;
7472
7473			/*
7474			 * We are only called at mount time, so no need to take
7475			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476			 * we always lock first fs_info->chunk_mutex before
7477			 * acquiring any locks on the chunk tree. This is a
7478			 * requirement for chunk allocation, see the comment on
7479			 * top of btrfs_chunk_alloc() for details.
7480			 */
 
7481			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482			ret = read_one_chunk(&found_key, leaf, chunk);
7483			if (ret)
7484				goto error;
7485		}
7486	}
7487	/* Catch error found during iteration */
7488	if (iter_ret < 0) {
7489		ret = iter_ret;
7490		goto error;
7491	}
7492
7493	/*
7494	 * After loading chunk tree, we've got all device information,
7495	 * do another round of validation checks.
7496	 */
7497	if (total_dev != fs_info->fs_devices->total_devices) {
7498		btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500			  btrfs_super_num_devices(fs_info->super_copy),
7501			  total_dev);
7502		fs_info->fs_devices->total_devices = total_dev;
7503		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504	}
7505	if (btrfs_super_total_bytes(fs_info->super_copy) <
7506	    fs_info->fs_devices->total_rw_bytes) {
7507		btrfs_err(fs_info,
7508	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509			  btrfs_super_total_bytes(fs_info->super_copy),
7510			  fs_info->fs_devices->total_rw_bytes);
7511		ret = -EINVAL;
7512		goto error;
7513	}
7514	ret = 0;
7515error:
7516	mutex_unlock(&uuid_mutex);
7517
7518	btrfs_free_path(path);
7519	return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525	struct btrfs_device *device;
7526	int ret = 0;
7527
7528	fs_devices->fs_info = fs_info;
7529
7530	mutex_lock(&fs_devices->device_list_mutex);
7531	list_for_each_entry(device, &fs_devices->devices, dev_list)
7532		device->fs_info = fs_info;
7533
7534	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536			device->fs_info = fs_info;
7537			ret = btrfs_get_dev_zone_info(device, false);
7538			if (ret)
7539				break;
7540		}
7541
7542		seed_devs->fs_info = fs_info;
7543	}
7544	mutex_unlock(&fs_devices->device_list_mutex);
7545
7546	return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550				 const struct btrfs_dev_stats_item *ptr,
7551				 int index)
7552{
7553	u64 val;
7554
7555	read_extent_buffer(eb, &val,
7556			   offsetof(struct btrfs_dev_stats_item, values) +
7557			    ((unsigned long)ptr) + (index * sizeof(u64)),
7558			   sizeof(val));
7559	return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563				      struct btrfs_dev_stats_item *ptr,
7564				      int index, u64 val)
7565{
7566	write_extent_buffer(eb, &val,
7567			    offsetof(struct btrfs_dev_stats_item, values) +
7568			     ((unsigned long)ptr) + (index * sizeof(u64)),
7569			    sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573				       struct btrfs_path *path)
7574{
7575	struct btrfs_dev_stats_item *ptr;
7576	struct extent_buffer *eb;
7577	struct btrfs_key key;
7578	int item_size;
7579	int i, ret, slot;
7580
7581	if (!device->fs_info->dev_root)
7582		return 0;
7583
7584	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586	key.offset = device->devid;
7587	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588	if (ret) {
7589		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590			btrfs_dev_stat_set(device, i, 0);
7591		device->dev_stats_valid = 1;
7592		btrfs_release_path(path);
7593		return ret < 0 ? ret : 0;
7594	}
7595	slot = path->slots[0];
7596	eb = path->nodes[0];
7597	item_size = btrfs_item_size(eb, slot);
7598
7599	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602		if (item_size >= (1 + i) * sizeof(__le64))
7603			btrfs_dev_stat_set(device, i,
7604					   btrfs_dev_stats_value(eb, ptr, i));
7605		else
7606			btrfs_dev_stat_set(device, i, 0);
7607	}
7608
7609	device->dev_stats_valid = 1;
7610	btrfs_dev_stat_print_on_load(device);
7611	btrfs_release_path(path);
7612
7613	return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619	struct btrfs_device *device;
7620	struct btrfs_path *path = NULL;
7621	int ret = 0;
7622
7623	path = btrfs_alloc_path();
7624	if (!path)
7625		return -ENOMEM;
7626
7627	mutex_lock(&fs_devices->device_list_mutex);
7628	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629		ret = btrfs_device_init_dev_stats(device, path);
7630		if (ret)
7631			goto out;
7632	}
7633	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635			ret = btrfs_device_init_dev_stats(device, path);
7636			if (ret)
7637				goto out;
7638		}
7639	}
7640out:
7641	mutex_unlock(&fs_devices->device_list_mutex);
7642
7643	btrfs_free_path(path);
7644	return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648				struct btrfs_device *device)
7649{
7650	struct btrfs_fs_info *fs_info = trans->fs_info;
7651	struct btrfs_root *dev_root = fs_info->dev_root;
7652	struct btrfs_path *path;
7653	struct btrfs_key key;
7654	struct extent_buffer *eb;
7655	struct btrfs_dev_stats_item *ptr;
7656	int ret;
7657	int i;
7658
7659	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661	key.offset = device->devid;
7662
7663	path = btrfs_alloc_path();
7664	if (!path)
7665		return -ENOMEM;
7666	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667	if (ret < 0) {
7668		btrfs_warn_in_rcu(fs_info,
7669			"error %d while searching for dev_stats item for device %s",
7670				  ret, btrfs_dev_name(device));
7671		goto out;
7672	}
7673
7674	if (ret == 0 &&
7675	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676		/* need to delete old one and insert a new one */
7677		ret = btrfs_del_item(trans, dev_root, path);
7678		if (ret != 0) {
7679			btrfs_warn_in_rcu(fs_info,
7680				"delete too small dev_stats item for device %s failed %d",
7681					  btrfs_dev_name(device), ret);
7682			goto out;
7683		}
7684		ret = 1;
7685	}
7686
7687	if (ret == 1) {
7688		/* need to insert a new item */
7689		btrfs_release_path(path);
7690		ret = btrfs_insert_empty_item(trans, dev_root, path,
7691					      &key, sizeof(*ptr));
7692		if (ret < 0) {
7693			btrfs_warn_in_rcu(fs_info,
7694				"insert dev_stats item for device %s failed %d",
7695				btrfs_dev_name(device), ret);
7696			goto out;
7697		}
7698	}
7699
7700	eb = path->nodes[0];
7701	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703		btrfs_set_dev_stats_value(eb, ptr, i,
7704					  btrfs_dev_stat_read(device, i));
7705	btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708	btrfs_free_path(path);
7709	return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717	struct btrfs_fs_info *fs_info = trans->fs_info;
7718	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719	struct btrfs_device *device;
7720	int stats_cnt;
7721	int ret = 0;
7722
7723	mutex_lock(&fs_devices->device_list_mutex);
7724	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726		if (!device->dev_stats_valid || stats_cnt == 0)
7727			continue;
7728
7729
7730		/*
7731		 * There is a LOAD-LOAD control dependency between the value of
7732		 * dev_stats_ccnt and updating the on-disk values which requires
7733		 * reading the in-memory counters. Such control dependencies
7734		 * require explicit read memory barriers.
7735		 *
7736		 * This memory barriers pairs with smp_mb__before_atomic in
7737		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738		 * barrier implied by atomic_xchg in
7739		 * btrfs_dev_stats_read_and_reset
7740		 */
7741		smp_rmb();
7742
7743		ret = update_dev_stat_item(trans, device);
7744		if (!ret)
7745			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746	}
7747	mutex_unlock(&fs_devices->device_list_mutex);
7748
7749	return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754	btrfs_dev_stat_inc(dev, index);
 
 
7755
 
 
7756	if (!dev->dev_stats_valid)
7757		return;
7758	btrfs_err_rl_in_rcu(dev->fs_info,
7759		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760			   btrfs_dev_name(dev),
7761			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770	int i;
7771
7772	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773		if (btrfs_dev_stat_read(dev, i) != 0)
7774			break;
7775	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776		return; /* all values == 0, suppress message */
7777
7778	btrfs_info_in_rcu(dev->fs_info,
7779		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780	       btrfs_dev_name(dev),
7781	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789			struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791	BTRFS_DEV_LOOKUP_ARGS(args);
7792	struct btrfs_device *dev;
7793	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794	int i;
7795
7796	mutex_lock(&fs_devices->device_list_mutex);
7797	args.devid = stats->devid;
7798	dev = btrfs_find_device(fs_info->fs_devices, &args);
7799	mutex_unlock(&fs_devices->device_list_mutex);
7800
7801	if (!dev) {
7802		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803		return -ENODEV;
7804	} else if (!dev->dev_stats_valid) {
7805		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806		return -ENODEV;
7807	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809			if (stats->nr_items > i)
7810				stats->values[i] =
7811					btrfs_dev_stat_read_and_reset(dev, i);
7812			else
7813				btrfs_dev_stat_set(dev, i, 0);
7814		}
7815		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816			   current->comm, task_pid_nr(current));
7817	} else {
7818		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819			if (stats->nr_items > i)
7820				stats->values[i] = btrfs_dev_stat_read(dev, i);
7821	}
7822	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824	return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed.  This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836	struct btrfs_device *curr, *next;
7837
7838	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840	if (list_empty(&trans->dev_update_list))
7841		return;
7842
7843	/*
7844	 * We don't need the device_list_mutex here.  This list is owned by the
7845	 * transaction and the transaction must complete before the device is
7846	 * released.
7847	 */
7848	mutex_lock(&trans->fs_info->chunk_mutex);
7849	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850				 post_commit_list) {
7851		list_del_init(&curr->post_commit_list);
7852		curr->commit_total_bytes = curr->disk_total_bytes;
7853		curr->commit_bytes_used = curr->bytes_used;
7854	}
7855	mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863	const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865	return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871				 u64 chunk_offset, u64 devid,
7872				 u64 physical_offset, u64 physical_len)
7873{
7874	struct btrfs_dev_lookup_args args = { .devid = devid };
7875	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876	struct extent_map *em;
7877	struct map_lookup *map;
7878	struct btrfs_device *dev;
7879	u64 stripe_len;
7880	bool found = false;
7881	int ret = 0;
7882	int i;
7883
7884	read_lock(&em_tree->lock);
7885	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886	read_unlock(&em_tree->lock);
7887
7888	if (!em) {
7889		btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891			  physical_offset, devid);
7892		ret = -EUCLEAN;
7893		goto out;
7894	}
7895
7896	map = em->map_lookup;
7897	stripe_len = btrfs_calc_stripe_length(em);
7898	if (physical_len != stripe_len) {
7899		btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901			  physical_offset, devid, em->start, physical_len,
7902			  stripe_len);
7903		ret = -EUCLEAN;
7904		goto out;
7905	}
7906
7907	/*
7908	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909	 * space. Although kernel can handle it without problem, better to warn
7910	 * the users.
7911	 */
7912	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913		btrfs_warn(fs_info,
7914		"devid %llu physical %llu len %llu inside the reserved space",
7915			   devid, physical_offset, physical_len);
7916
7917	for (i = 0; i < map->num_stripes; i++) {
7918		if (map->stripes[i].dev->devid == devid &&
7919		    map->stripes[i].physical == physical_offset) {
7920			found = true;
7921			if (map->verified_stripes >= map->num_stripes) {
7922				btrfs_err(fs_info,
7923				"too many dev extents for chunk %llu found",
7924					  em->start);
7925				ret = -EUCLEAN;
7926				goto out;
7927			}
7928			map->verified_stripes++;
7929			break;
7930		}
7931	}
7932	if (!found) {
7933		btrfs_err(fs_info,
7934	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7935			physical_offset, devid);
7936		ret = -EUCLEAN;
7937	}
7938
7939	/* Make sure no dev extent is beyond device boundary */
7940	dev = btrfs_find_device(fs_info->fs_devices, &args);
7941	if (!dev) {
7942		btrfs_err(fs_info, "failed to find devid %llu", devid);
7943		ret = -EUCLEAN;
7944		goto out;
7945	}
7946
7947	if (physical_offset + physical_len > dev->disk_total_bytes) {
7948		btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950			  devid, physical_offset, physical_len,
7951			  dev->disk_total_bytes);
7952		ret = -EUCLEAN;
7953		goto out;
7954	}
7955
7956	if (dev->zone_info) {
7957		u64 zone_size = dev->zone_info->zone_size;
7958
7959		if (!IS_ALIGNED(physical_offset, zone_size) ||
7960		    !IS_ALIGNED(physical_len, zone_size)) {
7961			btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963				  devid, physical_offset, physical_len);
7964			ret = -EUCLEAN;
7965			goto out;
7966		}
7967	}
7968
7969out:
7970	free_extent_map(em);
7971	return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977	struct extent_map *em;
7978	struct rb_node *node;
7979	int ret = 0;
7980
7981	read_lock(&em_tree->lock);
7982	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983		em = rb_entry(node, struct extent_map, rb_node);
7984		if (em->map_lookup->num_stripes !=
7985		    em->map_lookup->verified_stripes) {
7986			btrfs_err(fs_info,
7987			"chunk %llu has missing dev extent, have %d expect %d",
7988				  em->start, em->map_lookup->verified_stripes,
7989				  em->map_lookup->num_stripes);
7990			ret = -EUCLEAN;
7991			goto out;
7992		}
7993	}
7994out:
7995	read_unlock(&em_tree->lock);
7996	return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree.  This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008	struct btrfs_path *path;
8009	struct btrfs_root *root = fs_info->dev_root;
8010	struct btrfs_key key;
8011	u64 prev_devid = 0;
8012	u64 prev_dev_ext_end = 0;
8013	int ret = 0;
8014
8015	/*
8016	 * We don't have a dev_root because we mounted with ignorebadroots and
8017	 * failed to load the root, so we want to skip the verification in this
8018	 * case for sure.
8019	 *
8020	 * However if the dev root is fine, but the tree itself is corrupted
8021	 * we'd still fail to mount.  This verification is only to make sure
8022	 * writes can happen safely, so instead just bypass this check
8023	 * completely in the case of IGNOREBADROOTS.
8024	 */
8025	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026		return 0;
8027
8028	key.objectid = 1;
8029	key.type = BTRFS_DEV_EXTENT_KEY;
8030	key.offset = 0;
8031
8032	path = btrfs_alloc_path();
8033	if (!path)
8034		return -ENOMEM;
8035
8036	path->reada = READA_FORWARD;
8037	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038	if (ret < 0)
8039		goto out;
8040
8041	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042		ret = btrfs_next_leaf(root, path);
8043		if (ret < 0)
8044			goto out;
8045		/* No dev extents at all? Not good */
8046		if (ret > 0) {
8047			ret = -EUCLEAN;
8048			goto out;
8049		}
8050	}
8051	while (1) {
8052		struct extent_buffer *leaf = path->nodes[0];
8053		struct btrfs_dev_extent *dext;
8054		int slot = path->slots[0];
8055		u64 chunk_offset;
8056		u64 physical_offset;
8057		u64 physical_len;
8058		u64 devid;
8059
8060		btrfs_item_key_to_cpu(leaf, &key, slot);
8061		if (key.type != BTRFS_DEV_EXTENT_KEY)
8062			break;
8063		devid = key.objectid;
8064		physical_offset = key.offset;
8065
8066		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068		physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070		/* Check if this dev extent overlaps with the previous one */
8071		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072			btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074				  devid, physical_offset, prev_dev_ext_end);
8075			ret = -EUCLEAN;
8076			goto out;
8077		}
8078
8079		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080					    physical_offset, physical_len);
8081		if (ret < 0)
8082			goto out;
8083		prev_devid = devid;
8084		prev_dev_ext_end = physical_offset + physical_len;
8085
8086		ret = btrfs_next_item(root, path);
8087		if (ret < 0)
8088			goto out;
8089		if (ret > 0) {
8090			ret = 0;
8091			break;
8092		}
8093	}
8094
8095	/* Ensure all chunks have corresponding dev extents */
8096	ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098	btrfs_free_path(path);
8099	return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108	struct btrfs_swapfile_pin *sp;
8109	struct rb_node *node;
8110
8111	spin_lock(&fs_info->swapfile_pins_lock);
8112	node = fs_info->swapfile_pins.rb_node;
8113	while (node) {
8114		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115		if (ptr < sp->ptr)
8116			node = node->rb_left;
8117		else if (ptr > sp->ptr)
8118			node = node->rb_right;
8119		else
8120			break;
8121	}
8122	spin_unlock(&fs_info->swapfile_pins_lock);
8123	return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128	struct btrfs_block_group *cache = data;
8129	struct btrfs_fs_info *fs_info = cache->fs_info;
8130	u64 target;
8131	int ret = 0;
8132
8133	target = cache->start;
8134	btrfs_put_block_group(cache);
8135
8136	sb_start_write(fs_info->sb);
8137	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138		btrfs_info(fs_info,
8139			   "zoned: skip relocating block group %llu to repair: EBUSY",
8140			   target);
8141		sb_end_write(fs_info->sb);
8142		return -EBUSY;
8143	}
8144
8145	mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147	/* Ensure block group still exists */
8148	cache = btrfs_lookup_block_group(fs_info, target);
8149	if (!cache)
8150		goto out;
8151
8152	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153		goto out;
8154
8155	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156	if (ret < 0)
8157		goto out;
8158
8159	btrfs_info(fs_info,
8160		   "zoned: relocating block group %llu to repair IO failure",
8161		   target);
8162	ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165	if (cache)
8166		btrfs_put_block_group(cache);
8167	mutex_unlock(&fs_info->reclaim_bgs_lock);
8168	btrfs_exclop_finish(fs_info);
8169	sb_end_write(fs_info->sb);
8170
8171	return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176	struct btrfs_block_group *cache;
8177
8178	if (!btrfs_is_zoned(fs_info))
8179		return false;
8180
8181	/* Do not attempt to repair in degraded state */
8182	if (btrfs_test_opt(fs_info, DEGRADED))
8183		return true;
8184
8185	cache = btrfs_lookup_block_group(fs_info, logical);
8186	if (!cache)
8187		return true;
8188
8189	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
 
 
8190		btrfs_put_block_group(cache);
8191		return true;
8192	}
 
 
8193
8194	kthread_run(relocating_repair_kthread, cache,
8195		    "btrfs-relocating-repair");
8196
8197	return true;
8198}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/ratelimit.h>
  12#include <linux/kthread.h>
  13#include <linux/raid/pq.h>
  14#include <linux/semaphore.h>
  15#include <linux/uuid.h>
  16#include <linux/list_sort.h>
 
  17#include "misc.h"
  18#include "ctree.h"
  19#include "extent_map.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "async-thread.h"
  26#include "check-integrity.h"
  27#include "rcu-string.h"
  28#include "dev-replace.h"
  29#include "sysfs.h"
  30#include "tree-checker.h"
  31#include "space-info.h"
  32#include "block-group.h"
  33#include "discard.h"
  34#include "zoned.h"
 
 
 
 
 
 
 
 
 
 
 
  35
  36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  37	[BTRFS_RAID_RAID10] = {
  38		.sub_stripes	= 2,
  39		.dev_stripes	= 1,
  40		.devs_max	= 0,	/* 0 == as many as possible */
  41		.devs_min	= 4,
  42		.tolerated_failures = 1,
  43		.devs_increment	= 2,
  44		.ncopies	= 2,
  45		.nparity        = 0,
  46		.raid_name	= "raid10",
  47		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  48		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  49	},
  50	[BTRFS_RAID_RAID1] = {
  51		.sub_stripes	= 1,
  52		.dev_stripes	= 1,
  53		.devs_max	= 2,
  54		.devs_min	= 2,
  55		.tolerated_failures = 1,
  56		.devs_increment	= 2,
  57		.ncopies	= 2,
  58		.nparity        = 0,
  59		.raid_name	= "raid1",
  60		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  61		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  62	},
  63	[BTRFS_RAID_RAID1C3] = {
  64		.sub_stripes	= 1,
  65		.dev_stripes	= 1,
  66		.devs_max	= 3,
  67		.devs_min	= 3,
  68		.tolerated_failures = 2,
  69		.devs_increment	= 3,
  70		.ncopies	= 3,
  71		.nparity        = 0,
  72		.raid_name	= "raid1c3",
  73		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  74		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  75	},
  76	[BTRFS_RAID_RAID1C4] = {
  77		.sub_stripes	= 1,
  78		.dev_stripes	= 1,
  79		.devs_max	= 4,
  80		.devs_min	= 4,
  81		.tolerated_failures = 3,
  82		.devs_increment	= 4,
  83		.ncopies	= 4,
  84		.nparity        = 0,
  85		.raid_name	= "raid1c4",
  86		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
  87		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  88	},
  89	[BTRFS_RAID_DUP] = {
  90		.sub_stripes	= 1,
  91		.dev_stripes	= 2,
  92		.devs_max	= 1,
  93		.devs_min	= 1,
  94		.tolerated_failures = 0,
  95		.devs_increment	= 1,
  96		.ncopies	= 2,
  97		.nparity        = 0,
  98		.raid_name	= "dup",
  99		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 100		.mindev_error	= 0,
 101	},
 102	[BTRFS_RAID_RAID0] = {
 103		.sub_stripes	= 1,
 104		.dev_stripes	= 1,
 105		.devs_max	= 0,
 106		.devs_min	= 2,
 107		.tolerated_failures = 0,
 108		.devs_increment	= 1,
 109		.ncopies	= 1,
 110		.nparity        = 0,
 111		.raid_name	= "raid0",
 112		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 113		.mindev_error	= 0,
 114	},
 115	[BTRFS_RAID_SINGLE] = {
 116		.sub_stripes	= 1,
 117		.dev_stripes	= 1,
 118		.devs_max	= 1,
 119		.devs_min	= 1,
 120		.tolerated_failures = 0,
 121		.devs_increment	= 1,
 122		.ncopies	= 1,
 123		.nparity        = 0,
 124		.raid_name	= "single",
 125		.bg_flag	= 0,
 126		.mindev_error	= 0,
 127	},
 128	[BTRFS_RAID_RAID5] = {
 129		.sub_stripes	= 1,
 130		.dev_stripes	= 1,
 131		.devs_max	= 0,
 132		.devs_min	= 2,
 133		.tolerated_failures = 1,
 134		.devs_increment	= 1,
 135		.ncopies	= 1,
 136		.nparity        = 1,
 137		.raid_name	= "raid5",
 138		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 139		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 140	},
 141	[BTRFS_RAID_RAID6] = {
 142		.sub_stripes	= 1,
 143		.dev_stripes	= 1,
 144		.devs_max	= 0,
 145		.devs_min	= 3,
 146		.tolerated_failures = 2,
 147		.devs_increment	= 1,
 148		.ncopies	= 1,
 149		.nparity        = 2,
 150		.raid_name	= "raid6",
 151		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 152		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 153	},
 154};
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156const char *btrfs_bg_type_to_raid_name(u64 flags)
 157{
 158	const int index = btrfs_bg_flags_to_raid_index(flags);
 159
 160	if (index >= BTRFS_NR_RAID_TYPES)
 161		return NULL;
 162
 163	return btrfs_raid_array[index].raid_name;
 164}
 165
 
 
 
 
 
 
 
 166/*
 167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 168 * bytes including terminating null byte.
 169 */
 170void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 171{
 172	int i;
 173	int ret;
 174	char *bp = buf;
 175	u64 flags = bg_flags;
 176	u32 size_bp = size_buf;
 177
 178	if (!flags) {
 179		strcpy(bp, "NONE");
 180		return;
 181	}
 182
 183#define DESCRIBE_FLAG(flag, desc)						\
 184	do {								\
 185		if (flags & (flag)) {					\
 186			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 187			if (ret < 0 || ret >= size_bp)			\
 188				goto out_overflow;			\
 189			size_bp -= ret;					\
 190			bp += ret;					\
 191			flags &= ~(flag);				\
 192		}							\
 193	} while (0)
 194
 195	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 196	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 197	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 198
 199	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 200	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 201		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 202			      btrfs_raid_array[i].raid_name);
 203#undef DESCRIBE_FLAG
 204
 205	if (flags) {
 206		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 207		size_bp -= ret;
 208	}
 209
 210	if (size_bp < size_buf)
 211		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 212
 213	/*
 214	 * The text is trimmed, it's up to the caller to provide sufficiently
 215	 * large buffer
 216	 */
 217out_overflow:;
 218}
 219
 220static int init_first_rw_device(struct btrfs_trans_handle *trans);
 221static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 222static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 223static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 224static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 225			     enum btrfs_map_op op,
 226			     u64 logical, u64 *length,
 227			     struct btrfs_bio **bbio_ret,
 228			     int mirror_num, int need_raid_map);
 229
 230/*
 231 * Device locking
 232 * ==============
 233 *
 234 * There are several mutexes that protect manipulation of devices and low-level
 235 * structures like chunks but not block groups, extents or files
 236 *
 237 * uuid_mutex (global lock)
 238 * ------------------------
 239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 241 * device) or requested by the device= mount option
 242 *
 243 * the mutex can be very coarse and can cover long-running operations
 244 *
 245 * protects: updates to fs_devices counters like missing devices, rw devices,
 246 * seeding, structure cloning, opening/closing devices at mount/umount time
 247 *
 248 * global::fs_devs - add, remove, updates to the global list
 249 *
 250 * does not protect: manipulation of the fs_devices::devices list in general
 251 * but in mount context it could be used to exclude list modifications by eg.
 252 * scan ioctl
 253 *
 254 * btrfs_device::name - renames (write side), read is RCU
 255 *
 256 * fs_devices::device_list_mutex (per-fs, with RCU)
 257 * ------------------------------------------------
 258 * protects updates to fs_devices::devices, ie. adding and deleting
 259 *
 260 * simple list traversal with read-only actions can be done with RCU protection
 261 *
 262 * may be used to exclude some operations from running concurrently without any
 263 * modifications to the list (see write_all_supers)
 264 *
 265 * Is not required at mount and close times, because our device list is
 266 * protected by the uuid_mutex at that point.
 267 *
 268 * balance_mutex
 269 * -------------
 270 * protects balance structures (status, state) and context accessed from
 271 * several places (internally, ioctl)
 272 *
 273 * chunk_mutex
 274 * -----------
 275 * protects chunks, adding or removing during allocation, trim or when a new
 276 * device is added/removed. Additionally it also protects post_commit_list of
 277 * individual devices, since they can be added to the transaction's
 278 * post_commit_list only with chunk_mutex held.
 279 *
 280 * cleaner_mutex
 281 * -------------
 282 * a big lock that is held by the cleaner thread and prevents running subvolume
 283 * cleaning together with relocation or delayed iputs
 284 *
 285 *
 286 * Lock nesting
 287 * ============
 288 *
 289 * uuid_mutex
 290 *   device_list_mutex
 291 *     chunk_mutex
 292 *   balance_mutex
 293 *
 294 *
 295 * Exclusive operations
 296 * ====================
 297 *
 298 * Maintains the exclusivity of the following operations that apply to the
 299 * whole filesystem and cannot run in parallel.
 300 *
 301 * - Balance (*)
 302 * - Device add
 303 * - Device remove
 304 * - Device replace (*)
 305 * - Resize
 306 *
 307 * The device operations (as above) can be in one of the following states:
 308 *
 309 * - Running state
 310 * - Paused state
 311 * - Completed state
 312 *
 313 * Only device operations marked with (*) can go into the Paused state for the
 314 * following reasons:
 315 *
 316 * - ioctl (only Balance can be Paused through ioctl)
 317 * - filesystem remounted as read-only
 318 * - filesystem unmounted and mounted as read-only
 319 * - system power-cycle and filesystem mounted as read-only
 320 * - filesystem or device errors leading to forced read-only
 321 *
 322 * The status of exclusive operation is set and cleared atomically.
 323 * During the course of Paused state, fs_info::exclusive_operation remains set.
 324 * A device operation in Paused or Running state can be canceled or resumed
 325 * either by ioctl (Balance only) or when remounted as read-write.
 326 * The exclusive status is cleared when the device operation is canceled or
 327 * completed.
 328 */
 329
 330DEFINE_MUTEX(uuid_mutex);
 331static LIST_HEAD(fs_uuids);
 332struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 333{
 334	return &fs_uuids;
 335}
 336
 337/*
 338 * alloc_fs_devices - allocate struct btrfs_fs_devices
 339 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 340 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 341 *
 342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 343 * The returned struct is not linked onto any lists and can be destroyed with
 344 * kfree() right away.
 345 */
 346static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 347						 const u8 *metadata_fsid)
 348{
 349	struct btrfs_fs_devices *fs_devs;
 350
 351	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 352	if (!fs_devs)
 353		return ERR_PTR(-ENOMEM);
 354
 355	mutex_init(&fs_devs->device_list_mutex);
 356
 357	INIT_LIST_HEAD(&fs_devs->devices);
 358	INIT_LIST_HEAD(&fs_devs->alloc_list);
 359	INIT_LIST_HEAD(&fs_devs->fs_list);
 360	INIT_LIST_HEAD(&fs_devs->seed_list);
 361	if (fsid)
 362		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 363
 364	if (metadata_fsid)
 365		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 366	else if (fsid)
 367		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 368
 369	return fs_devs;
 370}
 371
 372void btrfs_free_device(struct btrfs_device *device)
 373{
 374	WARN_ON(!list_empty(&device->post_commit_list));
 375	rcu_string_free(device->name);
 376	extent_io_tree_release(&device->alloc_state);
 377	bio_put(device->flush_bio);
 378	btrfs_destroy_dev_zone_info(device);
 379	kfree(device);
 380}
 381
 382static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 383{
 384	struct btrfs_device *device;
 
 385	WARN_ON(fs_devices->opened);
 386	while (!list_empty(&fs_devices->devices)) {
 387		device = list_entry(fs_devices->devices.next,
 388				    struct btrfs_device, dev_list);
 389		list_del(&device->dev_list);
 390		btrfs_free_device(device);
 391	}
 392	kfree(fs_devices);
 393}
 394
 395void __exit btrfs_cleanup_fs_uuids(void)
 396{
 397	struct btrfs_fs_devices *fs_devices;
 398
 399	while (!list_empty(&fs_uuids)) {
 400		fs_devices = list_entry(fs_uuids.next,
 401					struct btrfs_fs_devices, fs_list);
 402		list_del(&fs_devices->fs_list);
 403		free_fs_devices(fs_devices);
 404	}
 405}
 406
 407/*
 408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 409 * Returned struct is not linked onto any lists and must be destroyed using
 410 * btrfs_free_device.
 411 */
 412static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
 413{
 414	struct btrfs_device *dev;
 415
 416	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 417	if (!dev)
 418		return ERR_PTR(-ENOMEM);
 419
 420	/*
 421	 * Preallocate a bio that's always going to be used for flushing device
 422	 * barriers and matches the device lifespan
 423	 */
 424	dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
 425	if (!dev->flush_bio) {
 426		kfree(dev);
 427		return ERR_PTR(-ENOMEM);
 428	}
 429
 430	INIT_LIST_HEAD(&dev->dev_list);
 431	INIT_LIST_HEAD(&dev->dev_alloc_list);
 432	INIT_LIST_HEAD(&dev->post_commit_list);
 433
 434	atomic_set(&dev->reada_in_flight, 0);
 435	atomic_set(&dev->dev_stats_ccnt, 0);
 436	btrfs_device_data_ordered_init(dev);
 437	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 438	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 439	extent_io_tree_init(fs_info, &dev->alloc_state,
 440			    IO_TREE_DEVICE_ALLOC_STATE, NULL);
 441
 442	return dev;
 443}
 444
 445static noinline struct btrfs_fs_devices *find_fsid(
 446		const u8 *fsid, const u8 *metadata_fsid)
 447{
 448	struct btrfs_fs_devices *fs_devices;
 449
 450	ASSERT(fsid);
 451
 452	/* Handle non-split brain cases */
 453	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 454		if (metadata_fsid) {
 455			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 456			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 457				      BTRFS_FSID_SIZE) == 0)
 458				return fs_devices;
 459		} else {
 460			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 461				return fs_devices;
 462		}
 463	}
 464	return NULL;
 465}
 466
 467static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 468				struct btrfs_super_block *disk_super)
 469{
 470
 471	struct btrfs_fs_devices *fs_devices;
 472
 473	/*
 474	 * Handle scanned device having completed its fsid change but
 475	 * belonging to a fs_devices that was created by first scanning
 476	 * a device which didn't have its fsid/metadata_uuid changed
 477	 * at all and the CHANGING_FSID_V2 flag set.
 478	 */
 479	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 480		if (fs_devices->fsid_change &&
 481		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 482			   BTRFS_FSID_SIZE) == 0 &&
 483		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 484			   BTRFS_FSID_SIZE) == 0) {
 485			return fs_devices;
 486		}
 487	}
 488	/*
 489	 * Handle scanned device having completed its fsid change but
 490	 * belonging to a fs_devices that was created by a device that
 491	 * has an outdated pair of fsid/metadata_uuid and
 492	 * CHANGING_FSID_V2 flag set.
 493	 */
 494	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 495		if (fs_devices->fsid_change &&
 496		    memcmp(fs_devices->metadata_uuid,
 497			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 498		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 499			   BTRFS_FSID_SIZE) == 0) {
 500			return fs_devices;
 501		}
 502	}
 503
 504	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 505}
 506
 507
 508static int
 509btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 510		      int flush, struct block_device **bdev,
 511		      struct btrfs_super_block **disk_super)
 512{
 513	int ret;
 514
 515	*bdev = blkdev_get_by_path(device_path, flags, holder);
 516
 517	if (IS_ERR(*bdev)) {
 518		ret = PTR_ERR(*bdev);
 519		goto error;
 520	}
 521
 522	if (flush)
 523		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 524	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 525	if (ret) {
 526		blkdev_put(*bdev, flags);
 527		goto error;
 528	}
 529	invalidate_bdev(*bdev);
 530	*disk_super = btrfs_read_dev_super(*bdev);
 531	if (IS_ERR(*disk_super)) {
 532		ret = PTR_ERR(*disk_super);
 533		blkdev_put(*bdev, flags);
 534		goto error;
 535	}
 536
 537	return 0;
 538
 539error:
 540	*bdev = NULL;
 541	return ret;
 542}
 543
 544static bool device_path_matched(const char *path, struct btrfs_device *device)
 545{
 546	int found;
 547
 548	rcu_read_lock();
 549	found = strcmp(rcu_str_deref(device->name), path);
 550	rcu_read_unlock();
 551
 552	return found == 0;
 553}
 554
 555/*
 556 *  Search and remove all stale (devices which are not mounted) devices.
 557 *  When both inputs are NULL, it will search and release all stale devices.
 558 *  path:	Optional. When provided will it release all unmounted devices
 559 *		matching this path only.
 560 *  skip_dev:	Optional. Will skip this device when searching for the stale
 561 *		devices.
 562 *  Return:	0 for success or if @path is NULL.
 563 * 		-EBUSY if @path is a mounted device.
 564 * 		-ENOENT if @path does not match any device in the list.
 
 
 565 */
 566static int btrfs_free_stale_devices(const char *path,
 567				     struct btrfs_device *skip_device)
 568{
 569	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 570	struct btrfs_device *device, *tmp_device;
 571	int ret = 0;
 572
 573	lockdep_assert_held(&uuid_mutex);
 574
 575	if (path)
 576		ret = -ENOENT;
 577
 578	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 579
 580		mutex_lock(&fs_devices->device_list_mutex);
 581		list_for_each_entry_safe(device, tmp_device,
 582					 &fs_devices->devices, dev_list) {
 583			if (skip_device && skip_device == device)
 584				continue;
 585			if (path && !device->name)
 586				continue;
 587			if (path && !device_path_matched(path, device))
 588				continue;
 589			if (fs_devices->opened) {
 590				/* for an already deleted device return 0 */
 591				if (path && ret != 0)
 592					ret = -EBUSY;
 593				break;
 594			}
 595
 596			/* delete the stale device */
 597			fs_devices->num_devices--;
 598			list_del(&device->dev_list);
 599			btrfs_free_device(device);
 600
 601			ret = 0;
 602		}
 603		mutex_unlock(&fs_devices->device_list_mutex);
 604
 605		if (fs_devices->num_devices == 0) {
 606			btrfs_sysfs_remove_fsid(fs_devices);
 607			list_del(&fs_devices->fs_list);
 608			free_fs_devices(fs_devices);
 609		}
 610	}
 611
 612	return ret;
 613}
 614
 615/*
 616 * This is only used on mount, and we are protected from competing things
 617 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 618 * fs_devices->device_list_mutex here.
 619 */
 620static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 621			struct btrfs_device *device, fmode_t flags,
 622			void *holder)
 623{
 624	struct request_queue *q;
 625	struct block_device *bdev;
 626	struct btrfs_super_block *disk_super;
 627	u64 devid;
 628	int ret;
 629
 630	if (device->bdev)
 631		return -EINVAL;
 632	if (!device->name)
 633		return -EINVAL;
 634
 635	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 636				    &bdev, &disk_super);
 637	if (ret)
 638		return ret;
 639
 640	devid = btrfs_stack_device_id(&disk_super->dev_item);
 641	if (devid != device->devid)
 642		goto error_free_page;
 643
 644	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 645		goto error_free_page;
 646
 647	device->generation = btrfs_super_generation(disk_super);
 648
 649	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 650		if (btrfs_super_incompat_flags(disk_super) &
 651		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 652			pr_err(
 653		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 654			goto error_free_page;
 655		}
 656
 657		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 658		fs_devices->seeding = true;
 659	} else {
 660		if (bdev_read_only(bdev))
 661			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 662		else
 663			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 664	}
 665
 666	q = bdev_get_queue(bdev);
 667	if (!blk_queue_nonrot(q))
 668		fs_devices->rotating = true;
 669
 
 
 
 670	device->bdev = bdev;
 671	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 672	device->mode = flags;
 673
 674	fs_devices->open_devices++;
 675	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 676	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 677		fs_devices->rw_devices++;
 678		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 679	}
 680	btrfs_release_disk_super(disk_super);
 681
 682	return 0;
 683
 684error_free_page:
 685	btrfs_release_disk_super(disk_super);
 686	blkdev_put(bdev, flags);
 687
 688	return -EINVAL;
 689}
 690
 691/*
 692 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 693 * being created with a disk that has already completed its fsid change. Such
 694 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 695 * Handle both cases here.
 696 */
 697static struct btrfs_fs_devices *find_fsid_inprogress(
 698					struct btrfs_super_block *disk_super)
 699{
 700	struct btrfs_fs_devices *fs_devices;
 701
 702	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 703		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 704			   BTRFS_FSID_SIZE) != 0 &&
 705		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 706			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 707			return fs_devices;
 708		}
 709	}
 710
 711	return find_fsid(disk_super->fsid, NULL);
 712}
 713
 714
 715static struct btrfs_fs_devices *find_fsid_changed(
 716					struct btrfs_super_block *disk_super)
 717{
 718	struct btrfs_fs_devices *fs_devices;
 719
 720	/*
 721	 * Handles the case where scanned device is part of an fs that had
 722	 * multiple successful changes of FSID but currently device didn't
 723	 * observe it. Meaning our fsid will be different than theirs. We need
 724	 * to handle two subcases :
 725	 *  1 - The fs still continues to have different METADATA/FSID uuids.
 726	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
 727	 *  are equal).
 728	 */
 729	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 730		/* Changed UUIDs */
 731		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 732			   BTRFS_FSID_SIZE) != 0 &&
 733		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 734			   BTRFS_FSID_SIZE) == 0 &&
 735		    memcmp(fs_devices->fsid, disk_super->fsid,
 736			   BTRFS_FSID_SIZE) != 0)
 737			return fs_devices;
 738
 739		/* Unchanged UUIDs */
 740		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 741			   BTRFS_FSID_SIZE) == 0 &&
 742		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 743			   BTRFS_FSID_SIZE) == 0)
 744			return fs_devices;
 745	}
 746
 747	return NULL;
 748}
 749
 750static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 751				struct btrfs_super_block *disk_super)
 752{
 753	struct btrfs_fs_devices *fs_devices;
 754
 755	/*
 756	 * Handle the case where the scanned device is part of an fs whose last
 757	 * metadata UUID change reverted it to the original FSID. At the same
 758	 * time * fs_devices was first created by another constitutent device
 759	 * which didn't fully observe the operation. This results in an
 760	 * btrfs_fs_devices created with metadata/fsid different AND
 761	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 762	 * fs_devices equal to the FSID of the disk.
 763	 */
 764	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 765		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 766			   BTRFS_FSID_SIZE) != 0 &&
 767		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 768			   BTRFS_FSID_SIZE) == 0 &&
 769		    fs_devices->fsid_change)
 770			return fs_devices;
 771	}
 772
 773	return NULL;
 774}
 775/*
 776 * Add new device to list of registered devices
 777 *
 778 * Returns:
 779 * device pointer which was just added or updated when successful
 780 * error pointer when failed
 781 */
 782static noinline struct btrfs_device *device_list_add(const char *path,
 783			   struct btrfs_super_block *disk_super,
 784			   bool *new_device_added)
 785{
 786	struct btrfs_device *device;
 787	struct btrfs_fs_devices *fs_devices = NULL;
 788	struct rcu_string *name;
 789	u64 found_transid = btrfs_super_generation(disk_super);
 790	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 
 
 791	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 792		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 793	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 794					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 795
 
 
 
 
 
 
 
 796	if (fsid_change_in_progress) {
 797		if (!has_metadata_uuid)
 798			fs_devices = find_fsid_inprogress(disk_super);
 799		else
 800			fs_devices = find_fsid_changed(disk_super);
 801	} else if (has_metadata_uuid) {
 802		fs_devices = find_fsid_with_metadata_uuid(disk_super);
 803	} else {
 804		fs_devices = find_fsid_reverted_metadata(disk_super);
 805		if (!fs_devices)
 806			fs_devices = find_fsid(disk_super->fsid, NULL);
 807	}
 808
 809
 810	if (!fs_devices) {
 811		if (has_metadata_uuid)
 812			fs_devices = alloc_fs_devices(disk_super->fsid,
 813						      disk_super->metadata_uuid);
 814		else
 815			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 816
 817		if (IS_ERR(fs_devices))
 818			return ERR_CAST(fs_devices);
 819
 820		fs_devices->fsid_change = fsid_change_in_progress;
 821
 822		mutex_lock(&fs_devices->device_list_mutex);
 823		list_add(&fs_devices->fs_list, &fs_uuids);
 824
 825		device = NULL;
 826	} else {
 
 
 
 
 
 827		mutex_lock(&fs_devices->device_list_mutex);
 828		device = btrfs_find_device(fs_devices, devid,
 829				disk_super->dev_item.uuid, NULL);
 830
 831		/*
 832		 * If this disk has been pulled into an fs devices created by
 833		 * a device which had the CHANGING_FSID_V2 flag then replace the
 834		 * metadata_uuid/fsid values of the fs_devices.
 835		 */
 836		if (fs_devices->fsid_change &&
 837		    found_transid > fs_devices->latest_generation) {
 838			memcpy(fs_devices->fsid, disk_super->fsid,
 839					BTRFS_FSID_SIZE);
 840
 841			if (has_metadata_uuid)
 842				memcpy(fs_devices->metadata_uuid,
 843				       disk_super->metadata_uuid,
 844				       BTRFS_FSID_SIZE);
 845			else
 846				memcpy(fs_devices->metadata_uuid,
 847				       disk_super->fsid, BTRFS_FSID_SIZE);
 848
 849			fs_devices->fsid_change = false;
 850		}
 851	}
 852
 853	if (!device) {
 
 
 854		if (fs_devices->opened) {
 
 
 
 855			mutex_unlock(&fs_devices->device_list_mutex);
 856			return ERR_PTR(-EBUSY);
 857		}
 858
 
 859		device = btrfs_alloc_device(NULL, &devid,
 860					    disk_super->dev_item.uuid);
 
 861		if (IS_ERR(device)) {
 862			mutex_unlock(&fs_devices->device_list_mutex);
 863			/* we can safely leave the fs_devices entry around */
 864			return device;
 865		}
 866
 867		name = rcu_string_strdup(path, GFP_NOFS);
 868		if (!name) {
 869			btrfs_free_device(device);
 870			mutex_unlock(&fs_devices->device_list_mutex);
 871			return ERR_PTR(-ENOMEM);
 872		}
 873		rcu_assign_pointer(device->name, name);
 874
 875		list_add_rcu(&device->dev_list, &fs_devices->devices);
 876		fs_devices->num_devices++;
 877
 878		device->fs_devices = fs_devices;
 879		*new_device_added = true;
 880
 881		if (disk_super->label[0])
 882			pr_info(
 883	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 884				disk_super->label, devid, found_transid, path,
 885				current->comm, task_pid_nr(current));
 886		else
 887			pr_info(
 888	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 889				disk_super->fsid, devid, found_transid, path,
 890				current->comm, task_pid_nr(current));
 891
 892	} else if (!device->name || strcmp(device->name->str, path)) {
 893		/*
 894		 * When FS is already mounted.
 895		 * 1. If you are here and if the device->name is NULL that
 896		 *    means this device was missing at time of FS mount.
 897		 * 2. If you are here and if the device->name is different
 898		 *    from 'path' that means either
 899		 *      a. The same device disappeared and reappeared with
 900		 *         different name. or
 901		 *      b. The missing-disk-which-was-replaced, has
 902		 *         reappeared now.
 903		 *
 904		 * We must allow 1 and 2a above. But 2b would be a spurious
 905		 * and unintentional.
 906		 *
 907		 * Further in case of 1 and 2a above, the disk at 'path'
 908		 * would have missed some transaction when it was away and
 909		 * in case of 2a the stale bdev has to be updated as well.
 910		 * 2b must not be allowed at all time.
 911		 */
 912
 913		/*
 914		 * For now, we do allow update to btrfs_fs_device through the
 915		 * btrfs dev scan cli after FS has been mounted.  We're still
 916		 * tracking a problem where systems fail mount by subvolume id
 917		 * when we reject replacement on a mounted FS.
 918		 */
 919		if (!fs_devices->opened && found_transid < device->generation) {
 920			/*
 921			 * That is if the FS is _not_ mounted and if you
 922			 * are here, that means there is more than one
 923			 * disk with same uuid and devid.We keep the one
 924			 * with larger generation number or the last-in if
 925			 * generation are equal.
 926			 */
 927			mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
 928			return ERR_PTR(-EEXIST);
 929		}
 930
 931		/*
 932		 * We are going to replace the device path for a given devid,
 933		 * make sure it's the same device if the device is mounted
 
 
 
 
 
 934		 */
 935		if (device->bdev) {
 936			int error;
 937			dev_t path_dev;
 938
 939			error = lookup_bdev(path, &path_dev);
 940			if (error) {
 941				mutex_unlock(&fs_devices->device_list_mutex);
 942				return ERR_PTR(error);
 943			}
 944
 945			if (device->bdev->bd_dev != path_dev) {
 946				mutex_unlock(&fs_devices->device_list_mutex);
 947				/*
 948				 * device->fs_info may not be reliable here, so
 949				 * pass in a NULL instead. This avoids a
 950				 * possible use-after-free when the fs_info and
 951				 * fs_info->sb are already torn down.
 952				 */
 953				btrfs_warn_in_rcu(NULL,
 954	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 955						  path, devid, found_transid,
 956						  current->comm,
 957						  task_pid_nr(current));
 958				return ERR_PTR(-EEXIST);
 959			}
 960			btrfs_info_in_rcu(device->fs_info,
 961	"devid %llu device path %s changed to %s scanned by %s (%d)",
 962					  devid, rcu_str_deref(device->name),
 963					  path, current->comm,
 964					  task_pid_nr(current));
 965		}
 966
 967		name = rcu_string_strdup(path, GFP_NOFS);
 968		if (!name) {
 969			mutex_unlock(&fs_devices->device_list_mutex);
 970			return ERR_PTR(-ENOMEM);
 971		}
 972		rcu_string_free(device->name);
 973		rcu_assign_pointer(device->name, name);
 974		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 975			fs_devices->missing_devices--;
 976			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 977		}
 
 978	}
 979
 980	/*
 981	 * Unmount does not free the btrfs_device struct but would zero
 982	 * generation along with most of the other members. So just update
 983	 * it back. We need it to pick the disk with largest generation
 984	 * (as above).
 985	 */
 986	if (!fs_devices->opened) {
 987		device->generation = found_transid;
 988		fs_devices->latest_generation = max_t(u64, found_transid,
 989						fs_devices->latest_generation);
 990	}
 991
 992	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 993
 994	mutex_unlock(&fs_devices->device_list_mutex);
 995	return device;
 996}
 997
 998static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 999{
1000	struct btrfs_fs_devices *fs_devices;
1001	struct btrfs_device *device;
1002	struct btrfs_device *orig_dev;
1003	int ret = 0;
1004
1005	lockdep_assert_held(&uuid_mutex);
1006
1007	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1008	if (IS_ERR(fs_devices))
1009		return fs_devices;
1010
1011	fs_devices->total_devices = orig->total_devices;
1012
1013	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1014		struct rcu_string *name;
 
 
 
 
 
 
 
1015
1016		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017					    orig_dev->uuid);
1018		if (IS_ERR(device)) {
1019			ret = PTR_ERR(device);
1020			goto error;
1021		}
1022
1023		/*
1024		 * This is ok to do without rcu read locked because we hold the
1025		 * uuid mutex so nothing we touch in here is going to disappear.
1026		 */
1027		if (orig_dev->name) {
1028			name = rcu_string_strdup(orig_dev->name->str,
1029					GFP_KERNEL);
1030			if (!name) {
1031				btrfs_free_device(device);
1032				ret = -ENOMEM;
1033				goto error;
1034			}
1035			rcu_assign_pointer(device->name, name);
1036		}
1037
1038		list_add(&device->dev_list, &fs_devices->devices);
1039		device->fs_devices = fs_devices;
1040		fs_devices->num_devices++;
1041	}
1042	return fs_devices;
1043error:
1044	free_fs_devices(fs_devices);
1045	return ERR_PTR(ret);
1046}
1047
1048static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1049				      struct btrfs_device **latest_dev)
1050{
1051	struct btrfs_device *device, *next;
1052
1053	/* This is the initialized path, it is safe to release the devices. */
1054	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1055		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1056			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1057				      &device->dev_state) &&
1058			    !test_bit(BTRFS_DEV_STATE_MISSING,
1059				      &device->dev_state) &&
1060			    (!*latest_dev ||
1061			     device->generation > (*latest_dev)->generation)) {
1062				*latest_dev = device;
1063			}
1064			continue;
1065		}
1066
1067		/*
1068		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1069		 * in btrfs_init_dev_replace() so just continue.
1070		 */
1071		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1072			continue;
1073
1074		if (device->bdev) {
1075			blkdev_put(device->bdev, device->mode);
1076			device->bdev = NULL;
1077			fs_devices->open_devices--;
1078		}
1079		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1080			list_del_init(&device->dev_alloc_list);
1081			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1082			fs_devices->rw_devices--;
1083		}
1084		list_del_init(&device->dev_list);
1085		fs_devices->num_devices--;
1086		btrfs_free_device(device);
1087	}
1088
1089}
1090
1091/*
1092 * After we have read the system tree and know devids belonging to this
1093 * filesystem, remove the device which does not belong there.
1094 */
1095void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1096{
1097	struct btrfs_device *latest_dev = NULL;
1098	struct btrfs_fs_devices *seed_dev;
1099
1100	mutex_lock(&uuid_mutex);
1101	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1102
1103	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1104		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1105
1106	fs_devices->latest_bdev = latest_dev->bdev;
1107
1108	mutex_unlock(&uuid_mutex);
1109}
1110
1111static void btrfs_close_bdev(struct btrfs_device *device)
1112{
1113	if (!device->bdev)
1114		return;
1115
1116	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1117		sync_blockdev(device->bdev);
1118		invalidate_bdev(device->bdev);
1119	}
1120
1121	blkdev_put(device->bdev, device->mode);
1122}
1123
1124static void btrfs_close_one_device(struct btrfs_device *device)
1125{
1126	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1127
1128	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1129	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1130		list_del_init(&device->dev_alloc_list);
1131		fs_devices->rw_devices--;
1132	}
1133
1134	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1135		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1136
1137	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
 
1138		fs_devices->missing_devices--;
 
1139
1140	btrfs_close_bdev(device);
1141	if (device->bdev) {
1142		fs_devices->open_devices--;
1143		device->bdev = NULL;
1144	}
1145	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146	btrfs_destroy_dev_zone_info(device);
1147
1148	device->fs_info = NULL;
1149	atomic_set(&device->dev_stats_ccnt, 0);
1150	extent_io_tree_release(&device->alloc_state);
1151
1152	/*
1153	 * Reset the flush error record. We might have a transient flush error
1154	 * in this mount, and if so we aborted the current transaction and set
1155	 * the fs to an error state, guaranteeing no super blocks can be further
1156	 * committed. However that error might be transient and if we unmount the
1157	 * filesystem and mount it again, we should allow the mount to succeed
1158	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1159	 * filesystem again we still get flush errors, then we will again abort
1160	 * any transaction and set the error state, guaranteeing no commits of
1161	 * unsafe super blocks.
1162	 */
1163	device->last_flush_error = 0;
1164
1165	/* Verify the device is back in a pristine state  */
1166	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1167	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1168	ASSERT(list_empty(&device->dev_alloc_list));
1169	ASSERT(list_empty(&device->post_commit_list));
1170	ASSERT(atomic_read(&device->reada_in_flight) == 0);
1171}
1172
1173static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1174{
1175	struct btrfs_device *device, *tmp;
1176
1177	lockdep_assert_held(&uuid_mutex);
1178
1179	if (--fs_devices->opened > 0)
1180		return;
1181
1182	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1183		btrfs_close_one_device(device);
1184
1185	WARN_ON(fs_devices->open_devices);
1186	WARN_ON(fs_devices->rw_devices);
1187	fs_devices->opened = 0;
1188	fs_devices->seeding = false;
1189	fs_devices->fs_info = NULL;
1190}
1191
1192void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1193{
1194	LIST_HEAD(list);
1195	struct btrfs_fs_devices *tmp;
1196
1197	mutex_lock(&uuid_mutex);
1198	close_fs_devices(fs_devices);
1199	if (!fs_devices->opened)
1200		list_splice_init(&fs_devices->seed_list, &list);
1201
 
 
 
 
 
 
 
 
 
 
 
 
 
1202	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1203		close_fs_devices(fs_devices);
1204		list_del(&fs_devices->seed_list);
1205		free_fs_devices(fs_devices);
1206	}
1207	mutex_unlock(&uuid_mutex);
1208}
1209
1210static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1211				fmode_t flags, void *holder)
1212{
1213	struct btrfs_device *device;
1214	struct btrfs_device *latest_dev = NULL;
1215	struct btrfs_device *tmp_device;
1216
1217	flags |= FMODE_EXCL;
1218
1219	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1220				 dev_list) {
1221		int ret;
1222
1223		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1224		if (ret == 0 &&
1225		    (!latest_dev || device->generation > latest_dev->generation)) {
1226			latest_dev = device;
1227		} else if (ret == -ENODATA) {
1228			fs_devices->num_devices--;
1229			list_del(&device->dev_list);
1230			btrfs_free_device(device);
1231		}
1232	}
1233	if (fs_devices->open_devices == 0)
1234		return -EINVAL;
1235
1236	fs_devices->opened = 1;
1237	fs_devices->latest_bdev = latest_dev->bdev;
1238	fs_devices->total_rw_bytes = 0;
1239	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1240	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1241
1242	return 0;
1243}
1244
1245static int devid_cmp(void *priv, const struct list_head *a,
1246		     const struct list_head *b)
1247{
1248	struct btrfs_device *dev1, *dev2;
1249
1250	dev1 = list_entry(a, struct btrfs_device, dev_list);
1251	dev2 = list_entry(b, struct btrfs_device, dev_list);
1252
1253	if (dev1->devid < dev2->devid)
1254		return -1;
1255	else if (dev1->devid > dev2->devid)
1256		return 1;
1257	return 0;
1258}
1259
1260int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1261		       fmode_t flags, void *holder)
1262{
1263	int ret;
1264
1265	lockdep_assert_held(&uuid_mutex);
1266	/*
1267	 * The device_list_mutex cannot be taken here in case opening the
1268	 * underlying device takes further locks like open_mutex.
1269	 *
1270	 * We also don't need the lock here as this is called during mount and
1271	 * exclusion is provided by uuid_mutex
1272	 */
1273
1274	if (fs_devices->opened) {
1275		fs_devices->opened++;
1276		ret = 0;
1277	} else {
1278		list_sort(NULL, &fs_devices->devices, devid_cmp);
1279		ret = open_fs_devices(fs_devices, flags, holder);
1280	}
1281
1282	return ret;
1283}
1284
1285void btrfs_release_disk_super(struct btrfs_super_block *super)
1286{
1287	struct page *page = virt_to_page(super);
1288
1289	put_page(page);
1290}
1291
1292static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1293						       u64 bytenr, u64 bytenr_orig)
1294{
1295	struct btrfs_super_block *disk_super;
1296	struct page *page;
1297	void *p;
1298	pgoff_t index;
1299
1300	/* make sure our super fits in the device */
1301	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1302		return ERR_PTR(-EINVAL);
1303
1304	/* make sure our super fits in the page */
1305	if (sizeof(*disk_super) > PAGE_SIZE)
1306		return ERR_PTR(-EINVAL);
1307
1308	/* make sure our super doesn't straddle pages on disk */
1309	index = bytenr >> PAGE_SHIFT;
1310	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1311		return ERR_PTR(-EINVAL);
1312
1313	/* pull in the page with our super */
1314	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1315
1316	if (IS_ERR(page))
1317		return ERR_CAST(page);
1318
1319	p = page_address(page);
1320
1321	/* align our pointer to the offset of the super block */
1322	disk_super = p + offset_in_page(bytenr);
1323
1324	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1325	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1326		btrfs_release_disk_super(p);
1327		return ERR_PTR(-EINVAL);
1328	}
1329
1330	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1331		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1332
1333	return disk_super;
1334}
1335
1336int btrfs_forget_devices(const char *path)
1337{
1338	int ret;
1339
1340	mutex_lock(&uuid_mutex);
1341	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1342	mutex_unlock(&uuid_mutex);
1343
1344	return ret;
1345}
1346
1347/*
1348 * Look for a btrfs signature on a device. This may be called out of the mount path
1349 * and we are not allowed to call set_blocksize during the scan. The superblock
1350 * is read via pagecache
1351 */
1352struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1353					   void *holder)
1354{
1355	struct btrfs_super_block *disk_super;
1356	bool new_device_added = false;
1357	struct btrfs_device *device = NULL;
1358	struct block_device *bdev;
1359	u64 bytenr, bytenr_orig;
1360	int ret;
1361
1362	lockdep_assert_held(&uuid_mutex);
1363
1364	/*
1365	 * we would like to check all the supers, but that would make
1366	 * a btrfs mount succeed after a mkfs from a different FS.
1367	 * So, we need to add a special mount option to scan for
1368	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1369	 */
1370	flags |= FMODE_EXCL;
1371
1372	bdev = blkdev_get_by_path(path, flags, holder);
1373	if (IS_ERR(bdev))
1374		return ERR_CAST(bdev);
1375
1376	bytenr_orig = btrfs_sb_offset(0);
1377	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1378	if (ret)
1379		return ERR_PTR(ret);
 
 
1380
1381	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1382	if (IS_ERR(disk_super)) {
1383		device = ERR_CAST(disk_super);
1384		goto error_bdev_put;
1385	}
1386
1387	device = device_list_add(path, disk_super, &new_device_added);
1388	if (!IS_ERR(device)) {
1389		if (new_device_added)
1390			btrfs_free_stale_devices(path, device);
1391	}
1392
1393	btrfs_release_disk_super(disk_super);
1394
1395error_bdev_put:
1396	blkdev_put(bdev, flags);
1397
1398	return device;
1399}
1400
1401/*
1402 * Try to find a chunk that intersects [start, start + len] range and when one
1403 * such is found, record the end of it in *start
1404 */
1405static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1406				    u64 len)
1407{
1408	u64 physical_start, physical_end;
1409
1410	lockdep_assert_held(&device->fs_info->chunk_mutex);
1411
1412	if (!find_first_extent_bit(&device->alloc_state, *start,
1413				   &physical_start, &physical_end,
1414				   CHUNK_ALLOCATED, NULL)) {
1415
1416		if (in_range(physical_start, *start, len) ||
1417		    in_range(*start, physical_start,
1418			     physical_end - physical_start)) {
1419			*start = physical_end + 1;
1420			return true;
1421		}
1422	}
1423	return false;
1424}
1425
1426static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1427{
1428	switch (device->fs_devices->chunk_alloc_policy) {
1429	case BTRFS_CHUNK_ALLOC_REGULAR:
1430		/*
1431		 * We don't want to overwrite the superblock on the drive nor
1432		 * any area used by the boot loader (grub for example), so we
1433		 * make sure to start at an offset of at least 1MB.
1434		 */
1435		return max_t(u64, start, SZ_1M);
1436	case BTRFS_CHUNK_ALLOC_ZONED:
1437		/*
1438		 * We don't care about the starting region like regular
1439		 * allocator, because we anyway use/reserve the first two zones
1440		 * for superblock logging.
1441		 */
1442		return ALIGN(start, device->zone_info->zone_size);
1443	default:
1444		BUG();
1445	}
1446}
1447
1448static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1449					u64 *hole_start, u64 *hole_size,
1450					u64 num_bytes)
1451{
1452	u64 zone_size = device->zone_info->zone_size;
1453	u64 pos;
1454	int ret;
1455	bool changed = false;
1456
1457	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1458
1459	while (*hole_size > 0) {
1460		pos = btrfs_find_allocatable_zones(device, *hole_start,
1461						   *hole_start + *hole_size,
1462						   num_bytes);
1463		if (pos != *hole_start) {
1464			*hole_size = *hole_start + *hole_size - pos;
1465			*hole_start = pos;
1466			changed = true;
1467			if (*hole_size < num_bytes)
1468				break;
1469		}
1470
1471		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1472
1473		/* Range is ensured to be empty */
1474		if (!ret)
1475			return changed;
1476
1477		/* Given hole range was invalid (outside of device) */
1478		if (ret == -ERANGE) {
1479			*hole_start += *hole_size;
1480			*hole_size = 0;
1481			return true;
1482		}
1483
1484		*hole_start += zone_size;
1485		*hole_size -= zone_size;
1486		changed = true;
1487	}
1488
1489	return changed;
1490}
1491
1492/**
1493 * dev_extent_hole_check - check if specified hole is suitable for allocation
 
1494 * @device:	the device which we have the hole
1495 * @hole_start: starting position of the hole
1496 * @hole_size:	the size of the hole
1497 * @num_bytes:	the size of the free space that we need
1498 *
1499 * This function may modify @hole_start and @hole_size to reflect the suitable
1500 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1501 */
1502static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1503				  u64 *hole_size, u64 num_bytes)
1504{
1505	bool changed = false;
1506	u64 hole_end = *hole_start + *hole_size;
1507
1508	for (;;) {
1509		/*
1510		 * Check before we set max_hole_start, otherwise we could end up
1511		 * sending back this offset anyway.
1512		 */
1513		if (contains_pending_extent(device, hole_start, *hole_size)) {
1514			if (hole_end >= *hole_start)
1515				*hole_size = hole_end - *hole_start;
1516			else
1517				*hole_size = 0;
1518			changed = true;
1519		}
1520
1521		switch (device->fs_devices->chunk_alloc_policy) {
1522		case BTRFS_CHUNK_ALLOC_REGULAR:
1523			/* No extra check */
1524			break;
1525		case BTRFS_CHUNK_ALLOC_ZONED:
1526			if (dev_extent_hole_check_zoned(device, hole_start,
1527							hole_size, num_bytes)) {
1528				changed = true;
1529				/*
1530				 * The changed hole can contain pending extent.
1531				 * Loop again to check that.
1532				 */
1533				continue;
1534			}
1535			break;
1536		default:
1537			BUG();
1538		}
1539
1540		break;
1541	}
1542
1543	return changed;
1544}
1545
1546/*
1547 * find_free_dev_extent_start - find free space in the specified device
 
1548 * @device:	  the device which we search the free space in
1549 * @num_bytes:	  the size of the free space that we need
1550 * @search_start: the position from which to begin the search
1551 * @start:	  store the start of the free space.
1552 * @len:	  the size of the free space. that we find, or the size
1553 *		  of the max free space if we don't find suitable free space
1554 *
1555 * this uses a pretty simple search, the expectation is that it is
1556 * called very infrequently and that a given device has a small number
1557 * of extents
1558 *
1559 * @start is used to store the start of the free space if we find. But if we
1560 * don't find suitable free space, it will be used to store the start position
1561 * of the max free space.
1562 *
1563 * @len is used to store the size of the free space that we find.
1564 * But if we don't find suitable free space, it is used to store the size of
1565 * the max free space.
1566 *
1567 * NOTE: This function will search *commit* root of device tree, and does extra
1568 * check to ensure dev extents are not double allocated.
1569 * This makes the function safe to allocate dev extents but may not report
1570 * correct usable device space, as device extent freed in current transaction
1571 * is not reported as available.
1572 */
1573static int find_free_dev_extent_start(struct btrfs_device *device,
1574				u64 num_bytes, u64 search_start, u64 *start,
1575				u64 *len)
1576{
1577	struct btrfs_fs_info *fs_info = device->fs_info;
1578	struct btrfs_root *root = fs_info->dev_root;
1579	struct btrfs_key key;
1580	struct btrfs_dev_extent *dev_extent;
1581	struct btrfs_path *path;
1582	u64 hole_size;
1583	u64 max_hole_start;
1584	u64 max_hole_size;
1585	u64 extent_end;
1586	u64 search_end = device->total_bytes;
1587	int ret;
1588	int slot;
1589	struct extent_buffer *l;
1590
1591	search_start = dev_extent_search_start(device, search_start);
1592
1593	WARN_ON(device->zone_info &&
1594		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1595
1596	path = btrfs_alloc_path();
1597	if (!path)
1598		return -ENOMEM;
1599
1600	max_hole_start = search_start;
1601	max_hole_size = 0;
1602
1603again:
1604	if (search_start >= search_end ||
1605		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1606		ret = -ENOSPC;
1607		goto out;
1608	}
1609
1610	path->reada = READA_FORWARD;
1611	path->search_commit_root = 1;
1612	path->skip_locking = 1;
1613
1614	key.objectid = device->devid;
1615	key.offset = search_start;
1616	key.type = BTRFS_DEV_EXTENT_KEY;
1617
1618	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1619	if (ret < 0)
1620		goto out;
1621	if (ret > 0) {
1622		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1623		if (ret < 0)
1624			goto out;
1625	}
1626
1627	while (1) {
1628		l = path->nodes[0];
1629		slot = path->slots[0];
1630		if (slot >= btrfs_header_nritems(l)) {
1631			ret = btrfs_next_leaf(root, path);
1632			if (ret == 0)
1633				continue;
1634			if (ret < 0)
1635				goto out;
1636
1637			break;
1638		}
1639		btrfs_item_key_to_cpu(l, &key, slot);
1640
1641		if (key.objectid < device->devid)
1642			goto next;
1643
1644		if (key.objectid > device->devid)
1645			break;
1646
1647		if (key.type != BTRFS_DEV_EXTENT_KEY)
1648			goto next;
1649
 
 
 
1650		if (key.offset > search_start) {
1651			hole_size = key.offset - search_start;
1652			dev_extent_hole_check(device, &search_start, &hole_size,
1653					      num_bytes);
1654
1655			if (hole_size > max_hole_size) {
1656				max_hole_start = search_start;
1657				max_hole_size = hole_size;
1658			}
1659
1660			/*
1661			 * If this free space is greater than which we need,
1662			 * it must be the max free space that we have found
1663			 * until now, so max_hole_start must point to the start
1664			 * of this free space and the length of this free space
1665			 * is stored in max_hole_size. Thus, we return
1666			 * max_hole_start and max_hole_size and go back to the
1667			 * caller.
1668			 */
1669			if (hole_size >= num_bytes) {
1670				ret = 0;
1671				goto out;
1672			}
1673		}
1674
1675		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1676		extent_end = key.offset + btrfs_dev_extent_length(l,
1677								  dev_extent);
1678		if (extent_end > search_start)
1679			search_start = extent_end;
1680next:
1681		path->slots[0]++;
1682		cond_resched();
1683	}
1684
1685	/*
1686	 * At this point, search_start should be the end of
1687	 * allocated dev extents, and when shrinking the device,
1688	 * search_end may be smaller than search_start.
1689	 */
1690	if (search_end > search_start) {
1691		hole_size = search_end - search_start;
1692		if (dev_extent_hole_check(device, &search_start, &hole_size,
1693					  num_bytes)) {
1694			btrfs_release_path(path);
1695			goto again;
1696		}
1697
1698		if (hole_size > max_hole_size) {
1699			max_hole_start = search_start;
1700			max_hole_size = hole_size;
1701		}
1702	}
1703
1704	/* See above. */
1705	if (max_hole_size < num_bytes)
1706		ret = -ENOSPC;
1707	else
1708		ret = 0;
1709
 
1710out:
1711	btrfs_free_path(path);
1712	*start = max_hole_start;
1713	if (len)
1714		*len = max_hole_size;
1715	return ret;
1716}
1717
1718int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1719			 u64 *start, u64 *len)
1720{
1721	/* FIXME use last free of some kind */
1722	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1723}
1724
1725static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1726			  struct btrfs_device *device,
1727			  u64 start, u64 *dev_extent_len)
1728{
1729	struct btrfs_fs_info *fs_info = device->fs_info;
1730	struct btrfs_root *root = fs_info->dev_root;
1731	int ret;
1732	struct btrfs_path *path;
1733	struct btrfs_key key;
1734	struct btrfs_key found_key;
1735	struct extent_buffer *leaf = NULL;
1736	struct btrfs_dev_extent *extent = NULL;
1737
1738	path = btrfs_alloc_path();
1739	if (!path)
1740		return -ENOMEM;
1741
1742	key.objectid = device->devid;
1743	key.offset = start;
1744	key.type = BTRFS_DEV_EXTENT_KEY;
1745again:
1746	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1747	if (ret > 0) {
1748		ret = btrfs_previous_item(root, path, key.objectid,
1749					  BTRFS_DEV_EXTENT_KEY);
1750		if (ret)
1751			goto out;
1752		leaf = path->nodes[0];
1753		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1754		extent = btrfs_item_ptr(leaf, path->slots[0],
1755					struct btrfs_dev_extent);
1756		BUG_ON(found_key.offset > start || found_key.offset +
1757		       btrfs_dev_extent_length(leaf, extent) < start);
1758		key = found_key;
1759		btrfs_release_path(path);
1760		goto again;
1761	} else if (ret == 0) {
1762		leaf = path->nodes[0];
1763		extent = btrfs_item_ptr(leaf, path->slots[0],
1764					struct btrfs_dev_extent);
1765	} else {
1766		goto out;
1767	}
1768
1769	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1770
1771	ret = btrfs_del_item(trans, root, path);
1772	if (ret == 0)
1773		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1774out:
1775	btrfs_free_path(path);
1776	return ret;
1777}
1778
1779static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1780				  struct btrfs_device *device,
1781				  u64 chunk_offset, u64 start, u64 num_bytes)
1782{
1783	int ret;
1784	struct btrfs_path *path;
1785	struct btrfs_fs_info *fs_info = device->fs_info;
1786	struct btrfs_root *root = fs_info->dev_root;
1787	struct btrfs_dev_extent *extent;
1788	struct extent_buffer *leaf;
1789	struct btrfs_key key;
1790
1791	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1792	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1793	path = btrfs_alloc_path();
1794	if (!path)
1795		return -ENOMEM;
1796
1797	key.objectid = device->devid;
1798	key.offset = start;
1799	key.type = BTRFS_DEV_EXTENT_KEY;
1800	ret = btrfs_insert_empty_item(trans, root, path, &key,
1801				      sizeof(*extent));
1802	if (ret)
1803		goto out;
1804
1805	leaf = path->nodes[0];
1806	extent = btrfs_item_ptr(leaf, path->slots[0],
1807				struct btrfs_dev_extent);
1808	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1809					BTRFS_CHUNK_TREE_OBJECTID);
1810	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1811					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1812	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1813
1814	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1815	btrfs_mark_buffer_dirty(leaf);
1816out:
1817	btrfs_free_path(path);
1818	return ret;
1819}
1820
1821static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1822{
1823	struct extent_map_tree *em_tree;
1824	struct extent_map *em;
1825	struct rb_node *n;
1826	u64 ret = 0;
1827
1828	em_tree = &fs_info->mapping_tree;
1829	read_lock(&em_tree->lock);
1830	n = rb_last(&em_tree->map.rb_root);
1831	if (n) {
1832		em = rb_entry(n, struct extent_map, rb_node);
1833		ret = em->start + em->len;
1834	}
1835	read_unlock(&em_tree->lock);
1836
1837	return ret;
1838}
1839
1840static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1841				    u64 *devid_ret)
1842{
1843	int ret;
1844	struct btrfs_key key;
1845	struct btrfs_key found_key;
1846	struct btrfs_path *path;
1847
1848	path = btrfs_alloc_path();
1849	if (!path)
1850		return -ENOMEM;
1851
1852	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1853	key.type = BTRFS_DEV_ITEM_KEY;
1854	key.offset = (u64)-1;
1855
1856	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1857	if (ret < 0)
1858		goto error;
1859
1860	if (ret == 0) {
1861		/* Corruption */
1862		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1863		ret = -EUCLEAN;
1864		goto error;
1865	}
1866
1867	ret = btrfs_previous_item(fs_info->chunk_root, path,
1868				  BTRFS_DEV_ITEMS_OBJECTID,
1869				  BTRFS_DEV_ITEM_KEY);
1870	if (ret) {
1871		*devid_ret = 1;
1872	} else {
1873		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1874				      path->slots[0]);
1875		*devid_ret = found_key.offset + 1;
1876	}
1877	ret = 0;
1878error:
1879	btrfs_free_path(path);
1880	return ret;
1881}
1882
1883/*
1884 * the device information is stored in the chunk root
1885 * the btrfs_device struct should be fully filled in
1886 */
1887static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1888			    struct btrfs_device *device)
1889{
1890	int ret;
1891	struct btrfs_path *path;
1892	struct btrfs_dev_item *dev_item;
1893	struct extent_buffer *leaf;
1894	struct btrfs_key key;
1895	unsigned long ptr;
1896
1897	path = btrfs_alloc_path();
1898	if (!path)
1899		return -ENOMEM;
1900
1901	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1902	key.type = BTRFS_DEV_ITEM_KEY;
1903	key.offset = device->devid;
1904
 
1905	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1906				      &key, sizeof(*dev_item));
 
1907	if (ret)
1908		goto out;
1909
1910	leaf = path->nodes[0];
1911	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1912
1913	btrfs_set_device_id(leaf, dev_item, device->devid);
1914	btrfs_set_device_generation(leaf, dev_item, 0);
1915	btrfs_set_device_type(leaf, dev_item, device->type);
1916	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1917	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1918	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1919	btrfs_set_device_total_bytes(leaf, dev_item,
1920				     btrfs_device_get_disk_total_bytes(device));
1921	btrfs_set_device_bytes_used(leaf, dev_item,
1922				    btrfs_device_get_bytes_used(device));
1923	btrfs_set_device_group(leaf, dev_item, 0);
1924	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1925	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1926	btrfs_set_device_start_offset(leaf, dev_item, 0);
1927
1928	ptr = btrfs_device_uuid(dev_item);
1929	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1930	ptr = btrfs_device_fsid(dev_item);
1931	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1932			    ptr, BTRFS_FSID_SIZE);
1933	btrfs_mark_buffer_dirty(leaf);
1934
1935	ret = 0;
1936out:
1937	btrfs_free_path(path);
1938	return ret;
1939}
1940
1941/*
1942 * Function to update ctime/mtime for a given device path.
1943 * Mainly used for ctime/mtime based probe like libblkid.
 
 
1944 */
1945static void update_dev_time(struct block_device *bdev)
1946{
1947	struct inode *inode = bdev->bd_inode;
1948	struct timespec64 now;
 
1949
1950	/* Shouldn't happen but just in case. */
1951	if (!inode)
1952		return;
1953
1954	now = current_time(inode);
1955	generic_update_time(inode, &now, S_MTIME | S_CTIME);
 
1956}
1957
1958static int btrfs_rm_dev_item(struct btrfs_device *device)
 
1959{
1960	struct btrfs_root *root = device->fs_info->chunk_root;
1961	int ret;
1962	struct btrfs_path *path;
1963	struct btrfs_key key;
1964	struct btrfs_trans_handle *trans;
1965
1966	path = btrfs_alloc_path();
1967	if (!path)
1968		return -ENOMEM;
1969
1970	trans = btrfs_start_transaction(root, 0);
1971	if (IS_ERR(trans)) {
1972		btrfs_free_path(path);
1973		return PTR_ERR(trans);
1974	}
1975	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1976	key.type = BTRFS_DEV_ITEM_KEY;
1977	key.offset = device->devid;
1978
 
1979	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 
1980	if (ret) {
1981		if (ret > 0)
1982			ret = -ENOENT;
1983		btrfs_abort_transaction(trans, ret);
1984		btrfs_end_transaction(trans);
1985		goto out;
1986	}
1987
1988	ret = btrfs_del_item(trans, root, path);
1989	if (ret) {
1990		btrfs_abort_transaction(trans, ret);
1991		btrfs_end_transaction(trans);
1992	}
1993
1994out:
1995	btrfs_free_path(path);
1996	if (!ret)
1997		ret = btrfs_commit_transaction(trans);
1998	return ret;
1999}
2000
2001/*
2002 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2003 * filesystem. It's up to the caller to adjust that number regarding eg. device
2004 * replace.
2005 */
2006static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2007		u64 num_devices)
2008{
2009	u64 all_avail;
2010	unsigned seq;
2011	int i;
2012
2013	do {
2014		seq = read_seqbegin(&fs_info->profiles_lock);
2015
2016		all_avail = fs_info->avail_data_alloc_bits |
2017			    fs_info->avail_system_alloc_bits |
2018			    fs_info->avail_metadata_alloc_bits;
2019	} while (read_seqretry(&fs_info->profiles_lock, seq));
2020
2021	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2022		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2023			continue;
2024
2025		if (num_devices < btrfs_raid_array[i].devs_min) {
2026			int ret = btrfs_raid_array[i].mindev_error;
2027
2028			if (ret)
2029				return ret;
2030		}
2031	}
2032
2033	return 0;
2034}
2035
2036static struct btrfs_device * btrfs_find_next_active_device(
2037		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2038{
2039	struct btrfs_device *next_device;
2040
2041	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2042		if (next_device != device &&
2043		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2044		    && next_device->bdev)
2045			return next_device;
2046	}
2047
2048	return NULL;
2049}
2050
2051/*
2052 * Helper function to check if the given device is part of s_bdev / latest_bdev
2053 * and replace it with the provided or the next active device, in the context
2054 * where this function called, there should be always be another device (or
2055 * this_dev) which is active.
2056 */
2057void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2058					    struct btrfs_device *next_device)
2059{
2060	struct btrfs_fs_info *fs_info = device->fs_info;
2061
2062	if (!next_device)
2063		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2064							    device);
2065	ASSERT(next_device);
2066
2067	if (fs_info->sb->s_bdev &&
2068			(fs_info->sb->s_bdev == device->bdev))
2069		fs_info->sb->s_bdev = next_device->bdev;
2070
2071	if (fs_info->fs_devices->latest_bdev == device->bdev)
2072		fs_info->fs_devices->latest_bdev = next_device->bdev;
2073}
2074
2075/*
2076 * Return btrfs_fs_devices::num_devices excluding the device that's being
2077 * currently replaced.
2078 */
2079static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2080{
2081	u64 num_devices = fs_info->fs_devices->num_devices;
2082
2083	down_read(&fs_info->dev_replace.rwsem);
2084	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2085		ASSERT(num_devices > 1);
2086		num_devices--;
2087	}
2088	up_read(&fs_info->dev_replace.rwsem);
2089
2090	return num_devices;
2091}
2092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2094			       struct block_device *bdev,
2095			       const char *device_path)
2096{
2097	struct btrfs_super_block *disk_super;
2098	int copy_num;
2099
2100	if (!bdev)
2101		return;
2102
2103	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2104		struct page *page;
2105		int ret;
2106
2107		disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2108		if (IS_ERR(disk_super))
2109			continue;
2110
2111		if (bdev_is_zoned(bdev)) {
2112			btrfs_reset_sb_log_zones(bdev, copy_num);
2113			continue;
2114		}
2115
2116		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2117
2118		page = virt_to_page(disk_super);
2119		set_page_dirty(page);
2120		lock_page(page);
2121		/* write_on_page() unlocks the page */
2122		ret = write_one_page(page);
2123		if (ret)
2124			btrfs_warn(fs_info,
2125				"error clearing superblock number %d (%d)",
2126				copy_num, ret);
2127		btrfs_release_disk_super(disk_super);
2128
2129	}
2130
2131	/* Notify udev that device has changed */
2132	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2133
2134	/* Update ctime/mtime for device path for libblkid */
2135	update_dev_time(bdev);
2136}
2137
2138int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2139		    u64 devid, struct block_device **bdev, fmode_t *mode)
 
2140{
 
2141	struct btrfs_device *device;
2142	struct btrfs_fs_devices *cur_devices;
2143	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2144	u64 num_devices;
2145	int ret = 0;
2146
2147	mutex_lock(&uuid_mutex);
 
 
 
2148
 
 
 
 
 
2149	num_devices = btrfs_num_devices(fs_info);
2150
2151	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2152	if (ret)
2153		goto out;
2154
2155	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2156
2157	if (IS_ERR(device)) {
2158		if (PTR_ERR(device) == -ENOENT &&
2159		    device_path && strcmp(device_path, "missing") == 0)
2160			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2161		else
2162			ret = PTR_ERR(device);
2163		goto out;
2164	}
2165
2166	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2167		btrfs_warn_in_rcu(fs_info,
2168		  "cannot remove device %s (devid %llu) due to active swapfile",
2169				  rcu_str_deref(device->name), device->devid);
2170		ret = -ETXTBSY;
2171		goto out;
2172	}
2173
2174	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2175		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2176		goto out;
2177	}
2178
2179	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2180	    fs_info->fs_devices->rw_devices == 1) {
2181		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2182		goto out;
2183	}
2184
2185	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186		mutex_lock(&fs_info->chunk_mutex);
2187		list_del_init(&device->dev_alloc_list);
2188		device->fs_devices->rw_devices--;
2189		mutex_unlock(&fs_info->chunk_mutex);
2190	}
2191
2192	mutex_unlock(&uuid_mutex);
2193	ret = btrfs_shrink_device(device, 0);
2194	if (!ret)
2195		btrfs_reada_remove_dev(device);
2196	mutex_lock(&uuid_mutex);
2197	if (ret)
2198		goto error_undo;
2199
2200	/*
2201	 * TODO: the superblock still includes this device in its num_devices
2202	 * counter although write_all_supers() is not locked out. This
2203	 * could give a filesystem state which requires a degraded mount.
2204	 */
2205	ret = btrfs_rm_dev_item(device);
2206	if (ret)
2207		goto error_undo;
 
 
 
 
 
 
 
 
 
 
 
 
2208
2209	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2210	btrfs_scrub_cancel_dev(device);
2211
2212	/*
2213	 * the device list mutex makes sure that we don't change
2214	 * the device list while someone else is writing out all
2215	 * the device supers. Whoever is writing all supers, should
2216	 * lock the device list mutex before getting the number of
2217	 * devices in the super block (super_copy). Conversely,
2218	 * whoever updates the number of devices in the super block
2219	 * (super_copy) should hold the device list mutex.
2220	 */
2221
2222	/*
2223	 * In normal cases the cur_devices == fs_devices. But in case
2224	 * of deleting a seed device, the cur_devices should point to
2225	 * its own fs_devices listed under the fs_devices->seed.
2226	 */
2227	cur_devices = device->fs_devices;
2228	mutex_lock(&fs_devices->device_list_mutex);
2229	list_del_rcu(&device->dev_list);
2230
2231	cur_devices->num_devices--;
2232	cur_devices->total_devices--;
2233	/* Update total_devices of the parent fs_devices if it's seed */
2234	if (cur_devices != fs_devices)
2235		fs_devices->total_devices--;
2236
2237	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2238		cur_devices->missing_devices--;
2239
2240	btrfs_assign_next_active_device(device, NULL);
2241
2242	if (device->bdev) {
2243		cur_devices->open_devices--;
2244		/* remove sysfs entry */
2245		btrfs_sysfs_remove_device(device);
2246	}
2247
2248	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2249	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2250	mutex_unlock(&fs_devices->device_list_mutex);
2251
2252	/*
2253	 * At this point, the device is zero sized and detached from the
2254	 * devices list.  All that's left is to zero out the old supers and
2255	 * free the device.
2256	 *
2257	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2258	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2259	 * block device and it's dependencies.  Instead just flush the device
2260	 * and let the caller do the final blkdev_put.
2261	 */
2262	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2263		btrfs_scratch_superblocks(fs_info, device->bdev,
2264					  device->name->str);
2265		if (device->bdev) {
2266			sync_blockdev(device->bdev);
2267			invalidate_bdev(device->bdev);
2268		}
2269	}
2270
2271	*bdev = device->bdev;
2272	*mode = device->mode;
2273	synchronize_rcu();
2274	btrfs_free_device(device);
2275
2276	if (cur_devices->open_devices == 0) {
 
 
 
 
 
 
 
2277		list_del_init(&cur_devices->seed_list);
2278		close_fs_devices(cur_devices);
 
2279		free_fs_devices(cur_devices);
2280	}
2281
2282out:
2283	mutex_unlock(&uuid_mutex);
2284	return ret;
2285
2286error_undo:
2287	btrfs_reada_undo_remove_dev(device);
2288	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2289		mutex_lock(&fs_info->chunk_mutex);
2290		list_add(&device->dev_alloc_list,
2291			 &fs_devices->alloc_list);
2292		device->fs_devices->rw_devices++;
2293		mutex_unlock(&fs_info->chunk_mutex);
2294	}
2295	goto out;
2296}
2297
2298void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2299{
2300	struct btrfs_fs_devices *fs_devices;
2301
2302	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2303
2304	/*
2305	 * in case of fs with no seed, srcdev->fs_devices will point
2306	 * to fs_devices of fs_info. However when the dev being replaced is
2307	 * a seed dev it will point to the seed's local fs_devices. In short
2308	 * srcdev will have its correct fs_devices in both the cases.
2309	 */
2310	fs_devices = srcdev->fs_devices;
2311
2312	list_del_rcu(&srcdev->dev_list);
2313	list_del(&srcdev->dev_alloc_list);
2314	fs_devices->num_devices--;
2315	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2316		fs_devices->missing_devices--;
2317
2318	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2319		fs_devices->rw_devices--;
2320
2321	if (srcdev->bdev)
2322		fs_devices->open_devices--;
2323}
2324
2325void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2326{
2327	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2328
2329	mutex_lock(&uuid_mutex);
2330
2331	btrfs_close_bdev(srcdev);
2332	synchronize_rcu();
2333	btrfs_free_device(srcdev);
2334
2335	/* if this is no devs we rather delete the fs_devices */
2336	if (!fs_devices->num_devices) {
2337		/*
2338		 * On a mounted FS, num_devices can't be zero unless it's a
2339		 * seed. In case of a seed device being replaced, the replace
2340		 * target added to the sprout FS, so there will be no more
2341		 * device left under the seed FS.
2342		 */
2343		ASSERT(fs_devices->seeding);
2344
2345		list_del_init(&fs_devices->seed_list);
2346		close_fs_devices(fs_devices);
2347		free_fs_devices(fs_devices);
2348	}
2349	mutex_unlock(&uuid_mutex);
2350}
2351
2352void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2353{
2354	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2355
2356	mutex_lock(&fs_devices->device_list_mutex);
2357
2358	btrfs_sysfs_remove_device(tgtdev);
2359
2360	if (tgtdev->bdev)
2361		fs_devices->open_devices--;
2362
2363	fs_devices->num_devices--;
2364
2365	btrfs_assign_next_active_device(tgtdev, NULL);
2366
2367	list_del_rcu(&tgtdev->dev_list);
2368
2369	mutex_unlock(&fs_devices->device_list_mutex);
2370
2371	/*
2372	 * The update_dev_time() with in btrfs_scratch_superblocks()
2373	 * may lead to a call to btrfs_show_devname() which will try
2374	 * to hold device_list_mutex. And here this device
2375	 * is already out of device list, so we don't have to hold
2376	 * the device_list_mutex lock.
2377	 */
2378	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2379				  tgtdev->name->str);
2380
2381	btrfs_close_bdev(tgtdev);
2382	synchronize_rcu();
2383	btrfs_free_device(tgtdev);
2384}
2385
2386static struct btrfs_device *btrfs_find_device_by_path(
2387		struct btrfs_fs_info *fs_info, const char *device_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388{
2389	int ret = 0;
2390	struct btrfs_super_block *disk_super;
2391	u64 devid;
2392	u8 *dev_uuid;
2393	struct block_device *bdev;
2394	struct btrfs_device *device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395
2396	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2397				    fs_info->bdev_holder, 0, &bdev, &disk_super);
2398	if (ret)
2399		return ERR_PTR(ret);
 
 
2400
2401	devid = btrfs_stack_device_id(&disk_super->dev_item);
2402	dev_uuid = disk_super->dev_item.uuid;
2403	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2404		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2405					   disk_super->metadata_uuid);
2406	else
2407		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2408					   disk_super->fsid);
2409
2410	btrfs_release_disk_super(disk_super);
2411	if (!device)
2412		device = ERR_PTR(-ENOENT);
2413	blkdev_put(bdev, FMODE_READ);
2414	return device;
2415}
2416
2417/*
2418 * Lookup a device given by device id, or the path if the id is 0.
2419 */
 
 
 
 
 
 
 
 
 
 
2420struct btrfs_device *btrfs_find_device_by_devspec(
2421		struct btrfs_fs_info *fs_info, u64 devid,
2422		const char *device_path)
2423{
 
2424	struct btrfs_device *device;
 
2425
2426	if (devid) {
2427		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2428					   NULL);
2429		if (!device)
2430			return ERR_PTR(-ENOENT);
2431		return device;
2432	}
2433
2434	if (!device_path || !device_path[0])
2435		return ERR_PTR(-EINVAL);
2436
2437	if (strcmp(device_path, "missing") == 0) {
2438		/* Find first missing device */
2439		list_for_each_entry(device, &fs_info->fs_devices->devices,
2440				    dev_list) {
2441			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2442				     &device->dev_state) && !device->bdev)
2443				return device;
2444		}
2445		return ERR_PTR(-ENOENT);
2446	}
2447
2448	return btrfs_find_device_by_path(fs_info, device_path);
2449}
2450
2451/*
2452 * does all the dirty work required for changing file system's UUID.
2453 */
2454static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2455{
2456	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2457	struct btrfs_fs_devices *old_devices;
2458	struct btrfs_fs_devices *seed_devices;
2459	struct btrfs_super_block *disk_super = fs_info->super_copy;
2460	struct btrfs_device *device;
2461	u64 super_flags;
2462
2463	lockdep_assert_held(&uuid_mutex);
2464	if (!fs_devices->seeding)
2465		return -EINVAL;
2466
2467	/*
2468	 * Private copy of the seed devices, anchored at
2469	 * fs_info->fs_devices->seed_list
2470	 */
2471	seed_devices = alloc_fs_devices(NULL, NULL);
2472	if (IS_ERR(seed_devices))
2473		return PTR_ERR(seed_devices);
2474
2475	/*
2476	 * It's necessary to retain a copy of the original seed fs_devices in
2477	 * fs_uuids so that filesystems which have been seeded can successfully
2478	 * reference the seed device from open_seed_devices. This also supports
2479	 * multiple fs seed.
2480	 */
2481	old_devices = clone_fs_devices(fs_devices);
2482	if (IS_ERR(old_devices)) {
2483		kfree(seed_devices);
2484		return PTR_ERR(old_devices);
2485	}
2486
2487	list_add(&old_devices->fs_list, &fs_uuids);
2488
2489	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2490	seed_devices->opened = 1;
2491	INIT_LIST_HEAD(&seed_devices->devices);
2492	INIT_LIST_HEAD(&seed_devices->alloc_list);
2493	mutex_init(&seed_devices->device_list_mutex);
2494
2495	mutex_lock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2496	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2497			      synchronize_rcu);
2498	list_for_each_entry(device, &seed_devices->devices, dev_list)
2499		device->fs_devices = seed_devices;
2500
2501	fs_devices->seeding = false;
2502	fs_devices->num_devices = 0;
2503	fs_devices->open_devices = 0;
2504	fs_devices->missing_devices = 0;
2505	fs_devices->rotating = false;
2506	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2507
2508	generate_random_uuid(fs_devices->fsid);
2509	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2510	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2511	mutex_unlock(&fs_devices->device_list_mutex);
2512
2513	super_flags = btrfs_super_flags(disk_super) &
2514		      ~BTRFS_SUPER_FLAG_SEEDING;
2515	btrfs_set_super_flags(disk_super, super_flags);
2516
2517	return 0;
2518}
2519
2520/*
2521 * Store the expected generation for seed devices in device items.
2522 */
2523static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2524{
 
2525	struct btrfs_fs_info *fs_info = trans->fs_info;
2526	struct btrfs_root *root = fs_info->chunk_root;
2527	struct btrfs_path *path;
2528	struct extent_buffer *leaf;
2529	struct btrfs_dev_item *dev_item;
2530	struct btrfs_device *device;
2531	struct btrfs_key key;
2532	u8 fs_uuid[BTRFS_FSID_SIZE];
2533	u8 dev_uuid[BTRFS_UUID_SIZE];
2534	u64 devid;
2535	int ret;
2536
2537	path = btrfs_alloc_path();
2538	if (!path)
2539		return -ENOMEM;
2540
2541	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2542	key.offset = 0;
2543	key.type = BTRFS_DEV_ITEM_KEY;
2544
2545	while (1) {
 
2546		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
2547		if (ret < 0)
2548			goto error;
2549
2550		leaf = path->nodes[0];
2551next_slot:
2552		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2553			ret = btrfs_next_leaf(root, path);
2554			if (ret > 0)
2555				break;
2556			if (ret < 0)
2557				goto error;
2558			leaf = path->nodes[0];
2559			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2560			btrfs_release_path(path);
2561			continue;
2562		}
2563
2564		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2565		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2566		    key.type != BTRFS_DEV_ITEM_KEY)
2567			break;
2568
2569		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2570					  struct btrfs_dev_item);
2571		devid = btrfs_device_id(leaf, dev_item);
2572		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2573				   BTRFS_UUID_SIZE);
2574		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2575				   BTRFS_FSID_SIZE);
2576		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2577					   fs_uuid);
 
2578		BUG_ON(!device); /* Logic error */
2579
2580		if (device->fs_devices->seeding) {
2581			btrfs_set_device_generation(leaf, dev_item,
2582						    device->generation);
2583			btrfs_mark_buffer_dirty(leaf);
2584		}
2585
2586		path->slots[0]++;
2587		goto next_slot;
2588	}
2589	ret = 0;
2590error:
2591	btrfs_free_path(path);
2592	return ret;
2593}
2594
2595int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2596{
2597	struct btrfs_root *root = fs_info->dev_root;
2598	struct request_queue *q;
2599	struct btrfs_trans_handle *trans;
2600	struct btrfs_device *device;
2601	struct block_device *bdev;
2602	struct super_block *sb = fs_info->sb;
2603	struct rcu_string *name;
2604	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 
2605	u64 orig_super_total_bytes;
2606	u64 orig_super_num_devices;
2607	int seeding_dev = 0;
2608	int ret = 0;
 
2609	bool locked = false;
2610
2611	if (sb_rdonly(sb) && !fs_devices->seeding)
2612		return -EROFS;
2613
2614	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2615				  fs_info->bdev_holder);
2616	if (IS_ERR(bdev))
2617		return PTR_ERR(bdev);
2618
2619	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2620		ret = -EINVAL;
2621		goto error;
2622	}
2623
2624	if (fs_devices->seeding) {
2625		seeding_dev = 1;
2626		down_write(&sb->s_umount);
2627		mutex_lock(&uuid_mutex);
2628		locked = true;
2629	}
2630
2631	sync_blockdev(bdev);
2632
2633	rcu_read_lock();
2634	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2635		if (device->bdev == bdev) {
2636			ret = -EEXIST;
2637			rcu_read_unlock();
2638			goto error;
2639		}
2640	}
2641	rcu_read_unlock();
2642
2643	device = btrfs_alloc_device(fs_info, NULL, NULL);
2644	if (IS_ERR(device)) {
2645		/* we can safely leave the fs_devices entry around */
2646		ret = PTR_ERR(device);
2647		goto error;
2648	}
2649
2650	name = rcu_string_strdup(device_path, GFP_KERNEL);
2651	if (!name) {
2652		ret = -ENOMEM;
2653		goto error_free_device;
2654	}
2655	rcu_assign_pointer(device->name, name);
2656
2657	device->fs_info = fs_info;
2658	device->bdev = bdev;
 
 
 
2659
2660	ret = btrfs_get_dev_zone_info(device);
2661	if (ret)
2662		goto error_free_device;
2663
2664	trans = btrfs_start_transaction(root, 0);
2665	if (IS_ERR(trans)) {
2666		ret = PTR_ERR(trans);
2667		goto error_free_zone;
2668	}
2669
2670	q = bdev_get_queue(bdev);
2671	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2672	device->generation = trans->transid;
2673	device->io_width = fs_info->sectorsize;
2674	device->io_align = fs_info->sectorsize;
2675	device->sector_size = fs_info->sectorsize;
2676	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2677					 fs_info->sectorsize);
2678	device->disk_total_bytes = device->total_bytes;
2679	device->commit_total_bytes = device->total_bytes;
2680	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2681	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2682	device->mode = FMODE_EXCL;
2683	device->dev_stats_valid = 1;
2684	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2685
2686	if (seeding_dev) {
2687		btrfs_clear_sb_rdonly(sb);
2688		ret = btrfs_prepare_sprout(fs_info);
2689		if (ret) {
 
 
 
2690			btrfs_abort_transaction(trans, ret);
2691			goto error_trans;
2692		}
2693	}
2694
 
 
 
 
 
 
 
2695	device->fs_devices = fs_devices;
2696
2697	mutex_lock(&fs_devices->device_list_mutex);
2698	mutex_lock(&fs_info->chunk_mutex);
2699	list_add_rcu(&device->dev_list, &fs_devices->devices);
2700	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2701	fs_devices->num_devices++;
2702	fs_devices->open_devices++;
2703	fs_devices->rw_devices++;
2704	fs_devices->total_devices++;
2705	fs_devices->total_rw_bytes += device->total_bytes;
2706
2707	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2708
2709	if (!blk_queue_nonrot(q))
2710		fs_devices->rotating = true;
2711
2712	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2713	btrfs_set_super_total_bytes(fs_info->super_copy,
2714		round_down(orig_super_total_bytes + device->total_bytes,
2715			   fs_info->sectorsize));
2716
2717	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2718	btrfs_set_super_num_devices(fs_info->super_copy,
2719				    orig_super_num_devices + 1);
2720
2721	/*
2722	 * we've got more storage, clear any full flags on the space
2723	 * infos
2724	 */
2725	btrfs_clear_space_info_full(fs_info);
2726
2727	mutex_unlock(&fs_info->chunk_mutex);
2728
2729	/* Add sysfs device entry */
2730	btrfs_sysfs_add_device(device);
2731
2732	mutex_unlock(&fs_devices->device_list_mutex);
2733
2734	if (seeding_dev) {
2735		mutex_lock(&fs_info->chunk_mutex);
2736		ret = init_first_rw_device(trans);
2737		mutex_unlock(&fs_info->chunk_mutex);
2738		if (ret) {
2739			btrfs_abort_transaction(trans, ret);
2740			goto error_sysfs;
2741		}
2742	}
2743
2744	ret = btrfs_add_dev_item(trans, device);
2745	if (ret) {
2746		btrfs_abort_transaction(trans, ret);
2747		goto error_sysfs;
2748	}
2749
2750	if (seeding_dev) {
2751		ret = btrfs_finish_sprout(trans);
2752		if (ret) {
2753			btrfs_abort_transaction(trans, ret);
2754			goto error_sysfs;
2755		}
2756
2757		/*
2758		 * fs_devices now represents the newly sprouted filesystem and
2759		 * its fsid has been changed by btrfs_prepare_sprout
2760		 */
2761		btrfs_sysfs_update_sprout_fsid(fs_devices);
2762	}
2763
2764	ret = btrfs_commit_transaction(trans);
2765
2766	if (seeding_dev) {
2767		mutex_unlock(&uuid_mutex);
2768		up_write(&sb->s_umount);
2769		locked = false;
2770
2771		if (ret) /* transaction commit */
2772			return ret;
2773
2774		ret = btrfs_relocate_sys_chunks(fs_info);
2775		if (ret < 0)
2776			btrfs_handle_fs_error(fs_info, ret,
2777				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2778		trans = btrfs_attach_transaction(root);
2779		if (IS_ERR(trans)) {
2780			if (PTR_ERR(trans) == -ENOENT)
2781				return 0;
2782			ret = PTR_ERR(trans);
2783			trans = NULL;
2784			goto error_sysfs;
2785		}
2786		ret = btrfs_commit_transaction(trans);
2787	}
2788
2789	/*
2790	 * Now that we have written a new super block to this device, check all
2791	 * other fs_devices list if device_path alienates any other scanned
2792	 * device.
2793	 * We can ignore the return value as it typically returns -EINVAL and
2794	 * only succeeds if the device was an alien.
2795	 */
2796	btrfs_forget_devices(device_path);
2797
2798	/* Update ctime/mtime for blkid or udev */
2799	update_dev_time(bdev);
2800
2801	return ret;
2802
2803error_sysfs:
2804	btrfs_sysfs_remove_device(device);
2805	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2806	mutex_lock(&fs_info->chunk_mutex);
2807	list_del_rcu(&device->dev_list);
2808	list_del(&device->dev_alloc_list);
2809	fs_info->fs_devices->num_devices--;
2810	fs_info->fs_devices->open_devices--;
2811	fs_info->fs_devices->rw_devices--;
2812	fs_info->fs_devices->total_devices--;
2813	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2814	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2815	btrfs_set_super_total_bytes(fs_info->super_copy,
2816				    orig_super_total_bytes);
2817	btrfs_set_super_num_devices(fs_info->super_copy,
2818				    orig_super_num_devices);
2819	mutex_unlock(&fs_info->chunk_mutex);
2820	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2821error_trans:
2822	if (seeding_dev)
2823		btrfs_set_sb_rdonly(sb);
2824	if (trans)
2825		btrfs_end_transaction(trans);
2826error_free_zone:
2827	btrfs_destroy_dev_zone_info(device);
2828error_free_device:
2829	btrfs_free_device(device);
2830error:
2831	blkdev_put(bdev, FMODE_EXCL);
2832	if (locked) {
2833		mutex_unlock(&uuid_mutex);
2834		up_write(&sb->s_umount);
2835	}
2836	return ret;
2837}
2838
2839static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2840					struct btrfs_device *device)
2841{
2842	int ret;
2843	struct btrfs_path *path;
2844	struct btrfs_root *root = device->fs_info->chunk_root;
2845	struct btrfs_dev_item *dev_item;
2846	struct extent_buffer *leaf;
2847	struct btrfs_key key;
2848
2849	path = btrfs_alloc_path();
2850	if (!path)
2851		return -ENOMEM;
2852
2853	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2854	key.type = BTRFS_DEV_ITEM_KEY;
2855	key.offset = device->devid;
2856
2857	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2858	if (ret < 0)
2859		goto out;
2860
2861	if (ret > 0) {
2862		ret = -ENOENT;
2863		goto out;
2864	}
2865
2866	leaf = path->nodes[0];
2867	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2868
2869	btrfs_set_device_id(leaf, dev_item, device->devid);
2870	btrfs_set_device_type(leaf, dev_item, device->type);
2871	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2872	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2873	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2874	btrfs_set_device_total_bytes(leaf, dev_item,
2875				     btrfs_device_get_disk_total_bytes(device));
2876	btrfs_set_device_bytes_used(leaf, dev_item,
2877				    btrfs_device_get_bytes_used(device));
2878	btrfs_mark_buffer_dirty(leaf);
2879
2880out:
2881	btrfs_free_path(path);
2882	return ret;
2883}
2884
2885int btrfs_grow_device(struct btrfs_trans_handle *trans,
2886		      struct btrfs_device *device, u64 new_size)
2887{
2888	struct btrfs_fs_info *fs_info = device->fs_info;
2889	struct btrfs_super_block *super_copy = fs_info->super_copy;
2890	u64 old_total;
2891	u64 diff;
 
2892
2893	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2894		return -EACCES;
2895
2896	new_size = round_down(new_size, fs_info->sectorsize);
2897
2898	mutex_lock(&fs_info->chunk_mutex);
2899	old_total = btrfs_super_total_bytes(super_copy);
2900	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2901
2902	if (new_size <= device->total_bytes ||
2903	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2904		mutex_unlock(&fs_info->chunk_mutex);
2905		return -EINVAL;
2906	}
2907
2908	btrfs_set_super_total_bytes(super_copy,
2909			round_down(old_total + diff, fs_info->sectorsize));
2910	device->fs_devices->total_rw_bytes += diff;
2911
2912	btrfs_device_set_total_bytes(device, new_size);
2913	btrfs_device_set_disk_total_bytes(device, new_size);
2914	btrfs_clear_space_info_full(device->fs_info);
2915	if (list_empty(&device->post_commit_list))
2916		list_add_tail(&device->post_commit_list,
2917			      &trans->transaction->dev_update_list);
2918	mutex_unlock(&fs_info->chunk_mutex);
2919
2920	return btrfs_update_device(trans, device);
 
 
 
 
2921}
2922
2923static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2924{
2925	struct btrfs_fs_info *fs_info = trans->fs_info;
2926	struct btrfs_root *root = fs_info->chunk_root;
2927	int ret;
2928	struct btrfs_path *path;
2929	struct btrfs_key key;
2930
2931	path = btrfs_alloc_path();
2932	if (!path)
2933		return -ENOMEM;
2934
2935	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2936	key.offset = chunk_offset;
2937	key.type = BTRFS_CHUNK_ITEM_KEY;
2938
2939	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2940	if (ret < 0)
2941		goto out;
2942	else if (ret > 0) { /* Logic error or corruption */
2943		btrfs_handle_fs_error(fs_info, -ENOENT,
2944				      "Failed lookup while freeing chunk.");
2945		ret = -ENOENT;
2946		goto out;
2947	}
2948
2949	ret = btrfs_del_item(trans, root, path);
2950	if (ret < 0)
2951		btrfs_handle_fs_error(fs_info, ret,
2952				      "Failed to delete chunk item.");
2953out:
2954	btrfs_free_path(path);
2955	return ret;
2956}
2957
2958static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2959{
2960	struct btrfs_super_block *super_copy = fs_info->super_copy;
2961	struct btrfs_disk_key *disk_key;
2962	struct btrfs_chunk *chunk;
2963	u8 *ptr;
2964	int ret = 0;
2965	u32 num_stripes;
2966	u32 array_size;
2967	u32 len = 0;
2968	u32 cur;
2969	struct btrfs_key key;
2970
2971	lockdep_assert_held(&fs_info->chunk_mutex);
2972	array_size = btrfs_super_sys_array_size(super_copy);
2973
2974	ptr = super_copy->sys_chunk_array;
2975	cur = 0;
2976
2977	while (cur < array_size) {
2978		disk_key = (struct btrfs_disk_key *)ptr;
2979		btrfs_disk_key_to_cpu(&key, disk_key);
2980
2981		len = sizeof(*disk_key);
2982
2983		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2984			chunk = (struct btrfs_chunk *)(ptr + len);
2985			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2986			len += btrfs_chunk_item_size(num_stripes);
2987		} else {
2988			ret = -EIO;
2989			break;
2990		}
2991		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2992		    key.offset == chunk_offset) {
2993			memmove(ptr, ptr + len, array_size - (cur + len));
2994			array_size -= len;
2995			btrfs_set_super_sys_array_size(super_copy, array_size);
2996		} else {
2997			ptr += len;
2998			cur += len;
2999		}
3000	}
3001	return ret;
3002}
3003
3004/*
3005 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3006 * @logical: Logical block offset in bytes.
3007 * @length: Length of extent in bytes.
3008 *
3009 * Return: Chunk mapping or ERR_PTR.
3010 */
3011struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3012				       u64 logical, u64 length)
3013{
3014	struct extent_map_tree *em_tree;
3015	struct extent_map *em;
3016
3017	em_tree = &fs_info->mapping_tree;
3018	read_lock(&em_tree->lock);
3019	em = lookup_extent_mapping(em_tree, logical, length);
3020	read_unlock(&em_tree->lock);
3021
3022	if (!em) {
3023		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3024			   logical, length);
3025		return ERR_PTR(-EINVAL);
3026	}
3027
3028	if (em->start > logical || em->start + em->len < logical) {
3029		btrfs_crit(fs_info,
3030			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3031			   logical, length, em->start, em->start + em->len);
3032		free_extent_map(em);
3033		return ERR_PTR(-EINVAL);
3034	}
3035
3036	/* callers are responsible for dropping em's ref. */
3037	return em;
3038}
3039
3040static int remove_chunk_item(struct btrfs_trans_handle *trans,
3041			     struct map_lookup *map, u64 chunk_offset)
3042{
3043	int i;
3044
3045	/*
3046	 * Removing chunk items and updating the device items in the chunks btree
3047	 * requires holding the chunk_mutex.
3048	 * See the comment at btrfs_chunk_alloc() for the details.
3049	 */
3050	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3051
3052	for (i = 0; i < map->num_stripes; i++) {
3053		int ret;
3054
3055		ret = btrfs_update_device(trans, map->stripes[i].dev);
3056		if (ret)
3057			return ret;
3058	}
3059
3060	return btrfs_free_chunk(trans, chunk_offset);
3061}
3062
3063int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3064{
3065	struct btrfs_fs_info *fs_info = trans->fs_info;
3066	struct extent_map *em;
3067	struct map_lookup *map;
3068	u64 dev_extent_len = 0;
3069	int i, ret = 0;
3070	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3071
3072	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3073	if (IS_ERR(em)) {
3074		/*
3075		 * This is a logic error, but we don't want to just rely on the
3076		 * user having built with ASSERT enabled, so if ASSERT doesn't
3077		 * do anything we still error out.
3078		 */
3079		ASSERT(0);
3080		return PTR_ERR(em);
3081	}
3082	map = em->map_lookup;
3083
3084	/*
3085	 * First delete the device extent items from the devices btree.
3086	 * We take the device_list_mutex to avoid racing with the finishing phase
3087	 * of a device replace operation. See the comment below before acquiring
3088	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3089	 * because that can result in a deadlock when deleting the device extent
3090	 * items from the devices btree - COWing an extent buffer from the btree
3091	 * may result in allocating a new metadata chunk, which would attempt to
3092	 * lock again fs_info->chunk_mutex.
3093	 */
3094	mutex_lock(&fs_devices->device_list_mutex);
3095	for (i = 0; i < map->num_stripes; i++) {
3096		struct btrfs_device *device = map->stripes[i].dev;
3097		ret = btrfs_free_dev_extent(trans, device,
3098					    map->stripes[i].physical,
3099					    &dev_extent_len);
3100		if (ret) {
3101			mutex_unlock(&fs_devices->device_list_mutex);
3102			btrfs_abort_transaction(trans, ret);
3103			goto out;
3104		}
3105
3106		if (device->bytes_used > 0) {
3107			mutex_lock(&fs_info->chunk_mutex);
3108			btrfs_device_set_bytes_used(device,
3109					device->bytes_used - dev_extent_len);
3110			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3111			btrfs_clear_space_info_full(fs_info);
3112			mutex_unlock(&fs_info->chunk_mutex);
3113		}
3114	}
3115	mutex_unlock(&fs_devices->device_list_mutex);
3116
3117	/*
3118	 * We acquire fs_info->chunk_mutex for 2 reasons:
3119	 *
3120	 * 1) Just like with the first phase of the chunk allocation, we must
3121	 *    reserve system space, do all chunk btree updates and deletions, and
3122	 *    update the system chunk array in the superblock while holding this
3123	 *    mutex. This is for similar reasons as explained on the comment at
3124	 *    the top of btrfs_chunk_alloc();
3125	 *
3126	 * 2) Prevent races with the final phase of a device replace operation
3127	 *    that replaces the device object associated with the map's stripes,
3128	 *    because the device object's id can change at any time during that
3129	 *    final phase of the device replace operation
3130	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3131	 *    replaced device and then see it with an ID of
3132	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3133	 *    the device item, which does not exists on the chunk btree.
3134	 *    The finishing phase of device replace acquires both the
3135	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3136	 *    safe by just acquiring the chunk_mutex.
3137	 */
3138	trans->removing_chunk = true;
3139	mutex_lock(&fs_info->chunk_mutex);
3140
3141	check_system_chunk(trans, map->type);
3142
3143	ret = remove_chunk_item(trans, map, chunk_offset);
3144	/*
3145	 * Normally we should not get -ENOSPC since we reserved space before
3146	 * through the call to check_system_chunk().
3147	 *
3148	 * Despite our system space_info having enough free space, we may not
3149	 * be able to allocate extents from its block groups, because all have
3150	 * an incompatible profile, which will force us to allocate a new system
3151	 * block group with the right profile, or right after we called
3152	 * check_system_space() above, a scrub turned the only system block group
3153	 * with enough free space into RO mode.
3154	 * This is explained with more detail at do_chunk_alloc().
3155	 *
3156	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3157	 */
3158	if (ret == -ENOSPC) {
3159		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3160		struct btrfs_block_group *sys_bg;
3161
3162		sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3163		if (IS_ERR(sys_bg)) {
3164			ret = PTR_ERR(sys_bg);
3165			btrfs_abort_transaction(trans, ret);
3166			goto out;
3167		}
3168
3169		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3170		if (ret) {
3171			btrfs_abort_transaction(trans, ret);
3172			goto out;
3173		}
3174
3175		ret = remove_chunk_item(trans, map, chunk_offset);
3176		if (ret) {
3177			btrfs_abort_transaction(trans, ret);
3178			goto out;
3179		}
3180	} else if (ret) {
3181		btrfs_abort_transaction(trans, ret);
3182		goto out;
3183	}
3184
3185	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3186
3187	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3188		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3189		if (ret) {
3190			btrfs_abort_transaction(trans, ret);
3191			goto out;
3192		}
3193	}
3194
3195	mutex_unlock(&fs_info->chunk_mutex);
3196	trans->removing_chunk = false;
3197
3198	/*
3199	 * We are done with chunk btree updates and deletions, so release the
3200	 * system space we previously reserved (with check_system_chunk()).
3201	 */
3202	btrfs_trans_release_chunk_metadata(trans);
3203
3204	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3205	if (ret) {
3206		btrfs_abort_transaction(trans, ret);
3207		goto out;
3208	}
3209
3210out:
3211	if (trans->removing_chunk) {
3212		mutex_unlock(&fs_info->chunk_mutex);
3213		trans->removing_chunk = false;
3214	}
3215	/* once for us */
3216	free_extent_map(em);
3217	return ret;
3218}
3219
3220int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3221{
3222	struct btrfs_root *root = fs_info->chunk_root;
3223	struct btrfs_trans_handle *trans;
3224	struct btrfs_block_group *block_group;
3225	u64 length;
3226	int ret;
3227
 
 
 
 
 
 
3228	/*
3229	 * Prevent races with automatic removal of unused block groups.
3230	 * After we relocate and before we remove the chunk with offset
3231	 * chunk_offset, automatic removal of the block group can kick in,
3232	 * resulting in a failure when calling btrfs_remove_chunk() below.
3233	 *
3234	 * Make sure to acquire this mutex before doing a tree search (dev
3235	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3236	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3237	 * we release the path used to search the chunk/dev tree and before
3238	 * the current task acquires this mutex and calls us.
3239	 */
3240	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3241
3242	/* step one, relocate all the extents inside this chunk */
3243	btrfs_scrub_pause(fs_info);
3244	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3245	btrfs_scrub_continue(fs_info);
3246	if (ret)
3247		return ret;
3248
3249	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3250	if (!block_group)
3251		return -ENOENT;
3252	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3253	length = block_group->length;
3254	btrfs_put_block_group(block_group);
3255
3256	/*
3257	 * On a zoned file system, discard the whole block group, this will
3258	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3259	 * resetting the zone fails, don't treat it as a fatal problem from the
3260	 * filesystem's point of view.
3261	 */
3262	if (btrfs_is_zoned(fs_info)) {
3263		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3264		if (ret)
3265			btrfs_info(fs_info,
3266				"failed to reset zone %llu after relocation",
3267				chunk_offset);
3268	}
3269
3270	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3271						     chunk_offset);
3272	if (IS_ERR(trans)) {
3273		ret = PTR_ERR(trans);
3274		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3275		return ret;
3276	}
3277
3278	/*
3279	 * step two, delete the device extents and the
3280	 * chunk tree entries
3281	 */
3282	ret = btrfs_remove_chunk(trans, chunk_offset);
3283	btrfs_end_transaction(trans);
3284	return ret;
3285}
3286
3287static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3288{
3289	struct btrfs_root *chunk_root = fs_info->chunk_root;
3290	struct btrfs_path *path;
3291	struct extent_buffer *leaf;
3292	struct btrfs_chunk *chunk;
3293	struct btrfs_key key;
3294	struct btrfs_key found_key;
3295	u64 chunk_type;
3296	bool retried = false;
3297	int failed = 0;
3298	int ret;
3299
3300	path = btrfs_alloc_path();
3301	if (!path)
3302		return -ENOMEM;
3303
3304again:
3305	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3306	key.offset = (u64)-1;
3307	key.type = BTRFS_CHUNK_ITEM_KEY;
3308
3309	while (1) {
3310		mutex_lock(&fs_info->reclaim_bgs_lock);
3311		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3312		if (ret < 0) {
3313			mutex_unlock(&fs_info->reclaim_bgs_lock);
3314			goto error;
3315		}
3316		BUG_ON(ret == 0); /* Corruption */
3317
3318		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3319					  key.type);
3320		if (ret)
3321			mutex_unlock(&fs_info->reclaim_bgs_lock);
3322		if (ret < 0)
3323			goto error;
3324		if (ret > 0)
3325			break;
3326
3327		leaf = path->nodes[0];
3328		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3329
3330		chunk = btrfs_item_ptr(leaf, path->slots[0],
3331				       struct btrfs_chunk);
3332		chunk_type = btrfs_chunk_type(leaf, chunk);
3333		btrfs_release_path(path);
3334
3335		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3336			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3337			if (ret == -ENOSPC)
3338				failed++;
3339			else
3340				BUG_ON(ret);
3341		}
3342		mutex_unlock(&fs_info->reclaim_bgs_lock);
3343
3344		if (found_key.offset == 0)
3345			break;
3346		key.offset = found_key.offset - 1;
3347	}
3348	ret = 0;
3349	if (failed && !retried) {
3350		failed = 0;
3351		retried = true;
3352		goto again;
3353	} else if (WARN_ON(failed && retried)) {
3354		ret = -ENOSPC;
3355	}
3356error:
3357	btrfs_free_path(path);
3358	return ret;
3359}
3360
3361/*
3362 * return 1 : allocate a data chunk successfully,
3363 * return <0: errors during allocating a data chunk,
3364 * return 0 : no need to allocate a data chunk.
3365 */
3366static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3367				      u64 chunk_offset)
3368{
3369	struct btrfs_block_group *cache;
3370	u64 bytes_used;
3371	u64 chunk_type;
3372
3373	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3374	ASSERT(cache);
3375	chunk_type = cache->flags;
3376	btrfs_put_block_group(cache);
3377
3378	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3379		return 0;
3380
3381	spin_lock(&fs_info->data_sinfo->lock);
3382	bytes_used = fs_info->data_sinfo->bytes_used;
3383	spin_unlock(&fs_info->data_sinfo->lock);
3384
3385	if (!bytes_used) {
3386		struct btrfs_trans_handle *trans;
3387		int ret;
3388
3389		trans =	btrfs_join_transaction(fs_info->tree_root);
3390		if (IS_ERR(trans))
3391			return PTR_ERR(trans);
3392
3393		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3394		btrfs_end_transaction(trans);
3395		if (ret < 0)
3396			return ret;
3397		return 1;
3398	}
3399
3400	return 0;
3401}
3402
3403static int insert_balance_item(struct btrfs_fs_info *fs_info,
3404			       struct btrfs_balance_control *bctl)
3405{
3406	struct btrfs_root *root = fs_info->tree_root;
3407	struct btrfs_trans_handle *trans;
3408	struct btrfs_balance_item *item;
3409	struct btrfs_disk_balance_args disk_bargs;
3410	struct btrfs_path *path;
3411	struct extent_buffer *leaf;
3412	struct btrfs_key key;
3413	int ret, err;
3414
3415	path = btrfs_alloc_path();
3416	if (!path)
3417		return -ENOMEM;
3418
3419	trans = btrfs_start_transaction(root, 0);
3420	if (IS_ERR(trans)) {
3421		btrfs_free_path(path);
3422		return PTR_ERR(trans);
3423	}
3424
3425	key.objectid = BTRFS_BALANCE_OBJECTID;
3426	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3427	key.offset = 0;
3428
3429	ret = btrfs_insert_empty_item(trans, root, path, &key,
3430				      sizeof(*item));
3431	if (ret)
3432		goto out;
3433
3434	leaf = path->nodes[0];
3435	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3436
3437	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3438
3439	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3440	btrfs_set_balance_data(leaf, item, &disk_bargs);
3441	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3442	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3443	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3444	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3445
3446	btrfs_set_balance_flags(leaf, item, bctl->flags);
3447
3448	btrfs_mark_buffer_dirty(leaf);
3449out:
3450	btrfs_free_path(path);
3451	err = btrfs_commit_transaction(trans);
3452	if (err && !ret)
3453		ret = err;
3454	return ret;
3455}
3456
3457static int del_balance_item(struct btrfs_fs_info *fs_info)
3458{
3459	struct btrfs_root *root = fs_info->tree_root;
3460	struct btrfs_trans_handle *trans;
3461	struct btrfs_path *path;
3462	struct btrfs_key key;
3463	int ret, err;
3464
3465	path = btrfs_alloc_path();
3466	if (!path)
3467		return -ENOMEM;
3468
3469	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3470	if (IS_ERR(trans)) {
3471		btrfs_free_path(path);
3472		return PTR_ERR(trans);
3473	}
3474
3475	key.objectid = BTRFS_BALANCE_OBJECTID;
3476	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3477	key.offset = 0;
3478
3479	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3480	if (ret < 0)
3481		goto out;
3482	if (ret > 0) {
3483		ret = -ENOENT;
3484		goto out;
3485	}
3486
3487	ret = btrfs_del_item(trans, root, path);
3488out:
3489	btrfs_free_path(path);
3490	err = btrfs_commit_transaction(trans);
3491	if (err && !ret)
3492		ret = err;
3493	return ret;
3494}
3495
3496/*
3497 * This is a heuristic used to reduce the number of chunks balanced on
3498 * resume after balance was interrupted.
3499 */
3500static void update_balance_args(struct btrfs_balance_control *bctl)
3501{
3502	/*
3503	 * Turn on soft mode for chunk types that were being converted.
3504	 */
3505	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3506		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3507	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3508		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3509	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3510		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3511
3512	/*
3513	 * Turn on usage filter if is not already used.  The idea is
3514	 * that chunks that we have already balanced should be
3515	 * reasonably full.  Don't do it for chunks that are being
3516	 * converted - that will keep us from relocating unconverted
3517	 * (albeit full) chunks.
3518	 */
3519	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3520	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3521	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3522		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3523		bctl->data.usage = 90;
3524	}
3525	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3526	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3527	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3528		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3529		bctl->sys.usage = 90;
3530	}
3531	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3532	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3533	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3534		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3535		bctl->meta.usage = 90;
3536	}
3537}
3538
3539/*
3540 * Clear the balance status in fs_info and delete the balance item from disk.
3541 */
3542static void reset_balance_state(struct btrfs_fs_info *fs_info)
3543{
3544	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3545	int ret;
3546
3547	BUG_ON(!fs_info->balance_ctl);
3548
3549	spin_lock(&fs_info->balance_lock);
3550	fs_info->balance_ctl = NULL;
3551	spin_unlock(&fs_info->balance_lock);
3552
3553	kfree(bctl);
3554	ret = del_balance_item(fs_info);
3555	if (ret)
3556		btrfs_handle_fs_error(fs_info, ret, NULL);
3557}
3558
3559/*
3560 * Balance filters.  Return 1 if chunk should be filtered out
3561 * (should not be balanced).
3562 */
3563static int chunk_profiles_filter(u64 chunk_type,
3564				 struct btrfs_balance_args *bargs)
3565{
3566	chunk_type = chunk_to_extended(chunk_type) &
3567				BTRFS_EXTENDED_PROFILE_MASK;
3568
3569	if (bargs->profiles & chunk_type)
3570		return 0;
3571
3572	return 1;
3573}
3574
3575static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3576			      struct btrfs_balance_args *bargs)
3577{
3578	struct btrfs_block_group *cache;
3579	u64 chunk_used;
3580	u64 user_thresh_min;
3581	u64 user_thresh_max;
3582	int ret = 1;
3583
3584	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3585	chunk_used = cache->used;
3586
3587	if (bargs->usage_min == 0)
3588		user_thresh_min = 0;
3589	else
3590		user_thresh_min = div_factor_fine(cache->length,
3591						  bargs->usage_min);
3592
3593	if (bargs->usage_max == 0)
3594		user_thresh_max = 1;
3595	else if (bargs->usage_max > 100)
3596		user_thresh_max = cache->length;
3597	else
3598		user_thresh_max = div_factor_fine(cache->length,
3599						  bargs->usage_max);
3600
3601	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3602		ret = 0;
3603
3604	btrfs_put_block_group(cache);
3605	return ret;
3606}
3607
3608static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3609		u64 chunk_offset, struct btrfs_balance_args *bargs)
3610{
3611	struct btrfs_block_group *cache;
3612	u64 chunk_used, user_thresh;
3613	int ret = 1;
3614
3615	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3616	chunk_used = cache->used;
3617
3618	if (bargs->usage_min == 0)
3619		user_thresh = 1;
3620	else if (bargs->usage > 100)
3621		user_thresh = cache->length;
3622	else
3623		user_thresh = div_factor_fine(cache->length, bargs->usage);
3624
3625	if (chunk_used < user_thresh)
3626		ret = 0;
3627
3628	btrfs_put_block_group(cache);
3629	return ret;
3630}
3631
3632static int chunk_devid_filter(struct extent_buffer *leaf,
3633			      struct btrfs_chunk *chunk,
3634			      struct btrfs_balance_args *bargs)
3635{
3636	struct btrfs_stripe *stripe;
3637	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3638	int i;
3639
3640	for (i = 0; i < num_stripes; i++) {
3641		stripe = btrfs_stripe_nr(chunk, i);
3642		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3643			return 0;
3644	}
3645
3646	return 1;
3647}
3648
3649static u64 calc_data_stripes(u64 type, int num_stripes)
3650{
3651	const int index = btrfs_bg_flags_to_raid_index(type);
3652	const int ncopies = btrfs_raid_array[index].ncopies;
3653	const int nparity = btrfs_raid_array[index].nparity;
3654
3655	if (nparity)
3656		return num_stripes - nparity;
3657	else
3658		return num_stripes / ncopies;
3659}
3660
3661/* [pstart, pend) */
3662static int chunk_drange_filter(struct extent_buffer *leaf,
3663			       struct btrfs_chunk *chunk,
3664			       struct btrfs_balance_args *bargs)
3665{
3666	struct btrfs_stripe *stripe;
3667	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3668	u64 stripe_offset;
3669	u64 stripe_length;
3670	u64 type;
3671	int factor;
3672	int i;
3673
3674	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3675		return 0;
3676
3677	type = btrfs_chunk_type(leaf, chunk);
3678	factor = calc_data_stripes(type, num_stripes);
3679
3680	for (i = 0; i < num_stripes; i++) {
3681		stripe = btrfs_stripe_nr(chunk, i);
3682		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3683			continue;
3684
3685		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3686		stripe_length = btrfs_chunk_length(leaf, chunk);
3687		stripe_length = div_u64(stripe_length, factor);
3688
3689		if (stripe_offset < bargs->pend &&
3690		    stripe_offset + stripe_length > bargs->pstart)
3691			return 0;
3692	}
3693
3694	return 1;
3695}
3696
3697/* [vstart, vend) */
3698static int chunk_vrange_filter(struct extent_buffer *leaf,
3699			       struct btrfs_chunk *chunk,
3700			       u64 chunk_offset,
3701			       struct btrfs_balance_args *bargs)
3702{
3703	if (chunk_offset < bargs->vend &&
3704	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3705		/* at least part of the chunk is inside this vrange */
3706		return 0;
3707
3708	return 1;
3709}
3710
3711static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3712			       struct btrfs_chunk *chunk,
3713			       struct btrfs_balance_args *bargs)
3714{
3715	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716
3717	if (bargs->stripes_min <= num_stripes
3718			&& num_stripes <= bargs->stripes_max)
3719		return 0;
3720
3721	return 1;
3722}
3723
3724static int chunk_soft_convert_filter(u64 chunk_type,
3725				     struct btrfs_balance_args *bargs)
3726{
3727	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3728		return 0;
3729
3730	chunk_type = chunk_to_extended(chunk_type) &
3731				BTRFS_EXTENDED_PROFILE_MASK;
3732
3733	if (bargs->target == chunk_type)
3734		return 1;
3735
3736	return 0;
3737}
3738
3739static int should_balance_chunk(struct extent_buffer *leaf,
3740				struct btrfs_chunk *chunk, u64 chunk_offset)
3741{
3742	struct btrfs_fs_info *fs_info = leaf->fs_info;
3743	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3744	struct btrfs_balance_args *bargs = NULL;
3745	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3746
3747	/* type filter */
3748	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3749	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3750		return 0;
3751	}
3752
3753	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3754		bargs = &bctl->data;
3755	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3756		bargs = &bctl->sys;
3757	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3758		bargs = &bctl->meta;
3759
3760	/* profiles filter */
3761	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3762	    chunk_profiles_filter(chunk_type, bargs)) {
3763		return 0;
3764	}
3765
3766	/* usage filter */
3767	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3768	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3769		return 0;
3770	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3771	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3772		return 0;
3773	}
3774
3775	/* devid filter */
3776	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3777	    chunk_devid_filter(leaf, chunk, bargs)) {
3778		return 0;
3779	}
3780
3781	/* drange filter, makes sense only with devid filter */
3782	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3783	    chunk_drange_filter(leaf, chunk, bargs)) {
3784		return 0;
3785	}
3786
3787	/* vrange filter */
3788	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3789	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3790		return 0;
3791	}
3792
3793	/* stripes filter */
3794	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3795	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3796		return 0;
3797	}
3798
3799	/* soft profile changing mode */
3800	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3801	    chunk_soft_convert_filter(chunk_type, bargs)) {
3802		return 0;
3803	}
3804
3805	/*
3806	 * limited by count, must be the last filter
3807	 */
3808	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3809		if (bargs->limit == 0)
3810			return 0;
3811		else
3812			bargs->limit--;
3813	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3814		/*
3815		 * Same logic as the 'limit' filter; the minimum cannot be
3816		 * determined here because we do not have the global information
3817		 * about the count of all chunks that satisfy the filters.
3818		 */
3819		if (bargs->limit_max == 0)
3820			return 0;
3821		else
3822			bargs->limit_max--;
3823	}
3824
3825	return 1;
3826}
3827
3828static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3829{
3830	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3831	struct btrfs_root *chunk_root = fs_info->chunk_root;
3832	u64 chunk_type;
3833	struct btrfs_chunk *chunk;
3834	struct btrfs_path *path = NULL;
3835	struct btrfs_key key;
3836	struct btrfs_key found_key;
3837	struct extent_buffer *leaf;
3838	int slot;
3839	int ret;
3840	int enospc_errors = 0;
3841	bool counting = true;
3842	/* The single value limit and min/max limits use the same bytes in the */
3843	u64 limit_data = bctl->data.limit;
3844	u64 limit_meta = bctl->meta.limit;
3845	u64 limit_sys = bctl->sys.limit;
3846	u32 count_data = 0;
3847	u32 count_meta = 0;
3848	u32 count_sys = 0;
3849	int chunk_reserved = 0;
3850
3851	path = btrfs_alloc_path();
3852	if (!path) {
3853		ret = -ENOMEM;
3854		goto error;
3855	}
3856
3857	/* zero out stat counters */
3858	spin_lock(&fs_info->balance_lock);
3859	memset(&bctl->stat, 0, sizeof(bctl->stat));
3860	spin_unlock(&fs_info->balance_lock);
3861again:
3862	if (!counting) {
3863		/*
3864		 * The single value limit and min/max limits use the same bytes
3865		 * in the
3866		 */
3867		bctl->data.limit = limit_data;
3868		bctl->meta.limit = limit_meta;
3869		bctl->sys.limit = limit_sys;
3870	}
3871	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3872	key.offset = (u64)-1;
3873	key.type = BTRFS_CHUNK_ITEM_KEY;
3874
3875	while (1) {
3876		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3877		    atomic_read(&fs_info->balance_cancel_req)) {
3878			ret = -ECANCELED;
3879			goto error;
3880		}
3881
3882		mutex_lock(&fs_info->reclaim_bgs_lock);
3883		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3884		if (ret < 0) {
3885			mutex_unlock(&fs_info->reclaim_bgs_lock);
3886			goto error;
3887		}
3888
3889		/*
3890		 * this shouldn't happen, it means the last relocate
3891		 * failed
3892		 */
3893		if (ret == 0)
3894			BUG(); /* FIXME break ? */
3895
3896		ret = btrfs_previous_item(chunk_root, path, 0,
3897					  BTRFS_CHUNK_ITEM_KEY);
3898		if (ret) {
3899			mutex_unlock(&fs_info->reclaim_bgs_lock);
3900			ret = 0;
3901			break;
3902		}
3903
3904		leaf = path->nodes[0];
3905		slot = path->slots[0];
3906		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3907
3908		if (found_key.objectid != key.objectid) {
3909			mutex_unlock(&fs_info->reclaim_bgs_lock);
3910			break;
3911		}
3912
3913		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3914		chunk_type = btrfs_chunk_type(leaf, chunk);
3915
3916		if (!counting) {
3917			spin_lock(&fs_info->balance_lock);
3918			bctl->stat.considered++;
3919			spin_unlock(&fs_info->balance_lock);
3920		}
3921
3922		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3923
3924		btrfs_release_path(path);
3925		if (!ret) {
3926			mutex_unlock(&fs_info->reclaim_bgs_lock);
3927			goto loop;
3928		}
3929
3930		if (counting) {
3931			mutex_unlock(&fs_info->reclaim_bgs_lock);
3932			spin_lock(&fs_info->balance_lock);
3933			bctl->stat.expected++;
3934			spin_unlock(&fs_info->balance_lock);
3935
3936			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3937				count_data++;
3938			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3939				count_sys++;
3940			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3941				count_meta++;
3942
3943			goto loop;
3944		}
3945
3946		/*
3947		 * Apply limit_min filter, no need to check if the LIMITS
3948		 * filter is used, limit_min is 0 by default
3949		 */
3950		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3951					count_data < bctl->data.limit_min)
3952				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3953					count_meta < bctl->meta.limit_min)
3954				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3955					count_sys < bctl->sys.limit_min)) {
3956			mutex_unlock(&fs_info->reclaim_bgs_lock);
3957			goto loop;
3958		}
3959
3960		if (!chunk_reserved) {
3961			/*
3962			 * We may be relocating the only data chunk we have,
3963			 * which could potentially end up with losing data's
3964			 * raid profile, so lets allocate an empty one in
3965			 * advance.
3966			 */
3967			ret = btrfs_may_alloc_data_chunk(fs_info,
3968							 found_key.offset);
3969			if (ret < 0) {
3970				mutex_unlock(&fs_info->reclaim_bgs_lock);
3971				goto error;
3972			} else if (ret == 1) {
3973				chunk_reserved = 1;
3974			}
3975		}
3976
3977		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3978		mutex_unlock(&fs_info->reclaim_bgs_lock);
3979		if (ret == -ENOSPC) {
3980			enospc_errors++;
3981		} else if (ret == -ETXTBSY) {
3982			btrfs_info(fs_info,
3983	   "skipping relocation of block group %llu due to active swapfile",
3984				   found_key.offset);
3985			ret = 0;
3986		} else if (ret) {
3987			goto error;
3988		} else {
3989			spin_lock(&fs_info->balance_lock);
3990			bctl->stat.completed++;
3991			spin_unlock(&fs_info->balance_lock);
3992		}
3993loop:
3994		if (found_key.offset == 0)
3995			break;
3996		key.offset = found_key.offset - 1;
3997	}
3998
3999	if (counting) {
4000		btrfs_release_path(path);
4001		counting = false;
4002		goto again;
4003	}
4004error:
4005	btrfs_free_path(path);
4006	if (enospc_errors) {
4007		btrfs_info(fs_info, "%d enospc errors during balance",
4008			   enospc_errors);
4009		if (!ret)
4010			ret = -ENOSPC;
4011	}
4012
4013	return ret;
4014}
4015
4016/**
4017 * alloc_profile_is_valid - see if a given profile is valid and reduced
4018 * @flags: profile to validate
4019 * @extended: if true @flags is treated as an extended profile
 
4020 */
4021static int alloc_profile_is_valid(u64 flags, int extended)
4022{
4023	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4024			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4025
4026	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4027
4028	/* 1) check that all other bits are zeroed */
4029	if (flags & ~mask)
4030		return 0;
4031
4032	/* 2) see if profile is reduced */
4033	if (flags == 0)
4034		return !extended; /* "0" is valid for usual profiles */
4035
4036	return has_single_bit_set(flags);
4037}
4038
4039static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4040{
4041	/* cancel requested || normal exit path */
4042	return atomic_read(&fs_info->balance_cancel_req) ||
4043		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4044		 atomic_read(&fs_info->balance_cancel_req) == 0);
4045}
4046
4047/*
4048 * Validate target profile against allowed profiles and return true if it's OK.
4049 * Otherwise print the error message and return false.
4050 */
4051static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4052		const struct btrfs_balance_args *bargs,
4053		u64 allowed, const char *type)
4054{
4055	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4056		return true;
4057
4058	/* Profile is valid and does not have bits outside of the allowed set */
4059	if (alloc_profile_is_valid(bargs->target, 1) &&
4060	    (bargs->target & ~allowed) == 0)
4061		return true;
4062
4063	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4064			type, btrfs_bg_type_to_raid_name(bargs->target));
4065	return false;
4066}
4067
4068/*
4069 * Fill @buf with textual description of balance filter flags @bargs, up to
4070 * @size_buf including the terminating null. The output may be trimmed if it
4071 * does not fit into the provided buffer.
4072 */
4073static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4074				 u32 size_buf)
4075{
4076	int ret;
4077	u32 size_bp = size_buf;
4078	char *bp = buf;
4079	u64 flags = bargs->flags;
4080	char tmp_buf[128] = {'\0'};
4081
4082	if (!flags)
4083		return;
4084
4085#define CHECK_APPEND_NOARG(a)						\
4086	do {								\
4087		ret = snprintf(bp, size_bp, (a));			\
4088		if (ret < 0 || ret >= size_bp)				\
4089			goto out_overflow;				\
4090		size_bp -= ret;						\
4091		bp += ret;						\
4092	} while (0)
4093
4094#define CHECK_APPEND_1ARG(a, v1)					\
4095	do {								\
4096		ret = snprintf(bp, size_bp, (a), (v1));			\
4097		if (ret < 0 || ret >= size_bp)				\
4098			goto out_overflow;				\
4099		size_bp -= ret;						\
4100		bp += ret;						\
4101	} while (0)
4102
4103#define CHECK_APPEND_2ARG(a, v1, v2)					\
4104	do {								\
4105		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4106		if (ret < 0 || ret >= size_bp)				\
4107			goto out_overflow;				\
4108		size_bp -= ret;						\
4109		bp += ret;						\
4110	} while (0)
4111
4112	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4113		CHECK_APPEND_1ARG("convert=%s,",
4114				  btrfs_bg_type_to_raid_name(bargs->target));
4115
4116	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4117		CHECK_APPEND_NOARG("soft,");
4118
4119	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4120		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4121					    sizeof(tmp_buf));
4122		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4123	}
4124
4125	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4126		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4127
4128	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4129		CHECK_APPEND_2ARG("usage=%u..%u,",
4130				  bargs->usage_min, bargs->usage_max);
4131
4132	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4133		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4134
4135	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4136		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4137				  bargs->pstart, bargs->pend);
4138
4139	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4140		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4141				  bargs->vstart, bargs->vend);
4142
4143	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4144		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4145
4146	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4147		CHECK_APPEND_2ARG("limit=%u..%u,",
4148				bargs->limit_min, bargs->limit_max);
4149
4150	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4151		CHECK_APPEND_2ARG("stripes=%u..%u,",
4152				  bargs->stripes_min, bargs->stripes_max);
4153
4154#undef CHECK_APPEND_2ARG
4155#undef CHECK_APPEND_1ARG
4156#undef CHECK_APPEND_NOARG
4157
4158out_overflow:
4159
4160	if (size_bp < size_buf)
4161		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4162	else
4163		buf[0] = '\0';
4164}
4165
4166static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4167{
4168	u32 size_buf = 1024;
4169	char tmp_buf[192] = {'\0'};
4170	char *buf;
4171	char *bp;
4172	u32 size_bp = size_buf;
4173	int ret;
4174	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4175
4176	buf = kzalloc(size_buf, GFP_KERNEL);
4177	if (!buf)
4178		return;
4179
4180	bp = buf;
4181
4182#define CHECK_APPEND_1ARG(a, v1)					\
4183	do {								\
4184		ret = snprintf(bp, size_bp, (a), (v1));			\
4185		if (ret < 0 || ret >= size_bp)				\
4186			goto out_overflow;				\
4187		size_bp -= ret;						\
4188		bp += ret;						\
4189	} while (0)
4190
4191	if (bctl->flags & BTRFS_BALANCE_FORCE)
4192		CHECK_APPEND_1ARG("%s", "-f ");
4193
4194	if (bctl->flags & BTRFS_BALANCE_DATA) {
4195		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4196		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4197	}
4198
4199	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4200		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4201		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4202	}
4203
4204	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4205		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4206		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4207	}
4208
4209#undef CHECK_APPEND_1ARG
4210
4211out_overflow:
4212
4213	if (size_bp < size_buf)
4214		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4215	btrfs_info(fs_info, "balance: %s %s",
4216		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4217		   "resume" : "start", buf);
4218
4219	kfree(buf);
4220}
4221
4222/*
4223 * Should be called with balance mutexe held
4224 */
4225int btrfs_balance(struct btrfs_fs_info *fs_info,
4226		  struct btrfs_balance_control *bctl,
4227		  struct btrfs_ioctl_balance_args *bargs)
4228{
4229	u64 meta_target, data_target;
4230	u64 allowed;
4231	int mixed = 0;
4232	int ret;
4233	u64 num_devices;
4234	unsigned seq;
4235	bool reducing_redundancy;
4236	int i;
4237
4238	if (btrfs_fs_closing(fs_info) ||
4239	    atomic_read(&fs_info->balance_pause_req) ||
4240	    btrfs_should_cancel_balance(fs_info)) {
4241		ret = -EINVAL;
4242		goto out;
4243	}
4244
4245	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4246	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4247		mixed = 1;
4248
4249	/*
4250	 * In case of mixed groups both data and meta should be picked,
4251	 * and identical options should be given for both of them.
4252	 */
4253	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4254	if (mixed && (bctl->flags & allowed)) {
4255		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4256		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4257		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4258			btrfs_err(fs_info,
4259	  "balance: mixed groups data and metadata options must be the same");
4260			ret = -EINVAL;
4261			goto out;
4262		}
4263	}
4264
4265	/*
4266	 * rw_devices will not change at the moment, device add/delete/replace
4267	 * are exclusive
4268	 */
4269	num_devices = fs_info->fs_devices->rw_devices;
4270
4271	/*
4272	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4273	 * special bit for it, to make it easier to distinguish.  Thus we need
4274	 * to set it manually, or balance would refuse the profile.
4275	 */
4276	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4277	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4278		if (num_devices >= btrfs_raid_array[i].devs_min)
4279			allowed |= btrfs_raid_array[i].bg_flag;
4280
4281	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4282	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4283	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4284		ret = -EINVAL;
4285		goto out;
4286	}
4287
4288	/*
4289	 * Allow to reduce metadata or system integrity only if force set for
4290	 * profiles with redundancy (copies, parity)
4291	 */
4292	allowed = 0;
4293	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4294		if (btrfs_raid_array[i].ncopies >= 2 ||
4295		    btrfs_raid_array[i].tolerated_failures >= 1)
4296			allowed |= btrfs_raid_array[i].bg_flag;
4297	}
4298	do {
4299		seq = read_seqbegin(&fs_info->profiles_lock);
4300
4301		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4302		     (fs_info->avail_system_alloc_bits & allowed) &&
4303		     !(bctl->sys.target & allowed)) ||
4304		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4305		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4306		     !(bctl->meta.target & allowed)))
4307			reducing_redundancy = true;
4308		else
4309			reducing_redundancy = false;
4310
4311		/* if we're not converting, the target field is uninitialized */
4312		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4313			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4314		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4315			bctl->data.target : fs_info->avail_data_alloc_bits;
4316	} while (read_seqretry(&fs_info->profiles_lock, seq));
4317
4318	if (reducing_redundancy) {
4319		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4320			btrfs_info(fs_info,
4321			   "balance: force reducing metadata redundancy");
4322		} else {
4323			btrfs_err(fs_info,
4324	"balance: reduces metadata redundancy, use --force if you want this");
4325			ret = -EINVAL;
4326			goto out;
4327		}
4328	}
4329
4330	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4331		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4332		btrfs_warn(fs_info,
4333	"balance: metadata profile %s has lower redundancy than data profile %s",
4334				btrfs_bg_type_to_raid_name(meta_target),
4335				btrfs_bg_type_to_raid_name(data_target));
4336	}
4337
4338	ret = insert_balance_item(fs_info, bctl);
4339	if (ret && ret != -EEXIST)
4340		goto out;
4341
4342	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4343		BUG_ON(ret == -EEXIST);
4344		BUG_ON(fs_info->balance_ctl);
4345		spin_lock(&fs_info->balance_lock);
4346		fs_info->balance_ctl = bctl;
4347		spin_unlock(&fs_info->balance_lock);
4348	} else {
4349		BUG_ON(ret != -EEXIST);
4350		spin_lock(&fs_info->balance_lock);
4351		update_balance_args(bctl);
4352		spin_unlock(&fs_info->balance_lock);
4353	}
4354
4355	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4356	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4357	describe_balance_start_or_resume(fs_info);
4358	mutex_unlock(&fs_info->balance_mutex);
4359
4360	ret = __btrfs_balance(fs_info);
4361
4362	mutex_lock(&fs_info->balance_mutex);
4363	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4364		btrfs_info(fs_info, "balance: paused");
 
 
4365	/*
4366	 * Balance can be canceled by:
4367	 *
4368	 * - Regular cancel request
4369	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4370	 *
4371	 * - Fatal signal to "btrfs" process
4372	 *   Either the signal caught by wait_reserve_ticket() and callers
4373	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4374	 *   got -ECANCELED.
4375	 *   Either way, in this case balance_cancel_req = 0, and
4376	 *   ret == -EINTR or ret == -ECANCELED.
4377	 *
4378	 * So here we only check the return value to catch canceled balance.
4379	 */
4380	else if (ret == -ECANCELED || ret == -EINTR)
4381		btrfs_info(fs_info, "balance: canceled");
4382	else
4383		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4384
4385	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4386
4387	if (bargs) {
4388		memset(bargs, 0, sizeof(*bargs));
4389		btrfs_update_ioctl_balance_args(fs_info, bargs);
4390	}
4391
4392	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4393	    balance_need_close(fs_info)) {
4394		reset_balance_state(fs_info);
4395		btrfs_exclop_finish(fs_info);
4396	}
4397
4398	wake_up(&fs_info->balance_wait_q);
4399
4400	return ret;
4401out:
4402	if (bctl->flags & BTRFS_BALANCE_RESUME)
4403		reset_balance_state(fs_info);
4404	else
4405		kfree(bctl);
4406	btrfs_exclop_finish(fs_info);
4407
4408	return ret;
4409}
4410
4411static int balance_kthread(void *data)
4412{
4413	struct btrfs_fs_info *fs_info = data;
4414	int ret = 0;
4415
 
4416	mutex_lock(&fs_info->balance_mutex);
4417	if (fs_info->balance_ctl)
4418		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4419	mutex_unlock(&fs_info->balance_mutex);
 
4420
4421	return ret;
4422}
4423
4424int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4425{
4426	struct task_struct *tsk;
4427
4428	mutex_lock(&fs_info->balance_mutex);
4429	if (!fs_info->balance_ctl) {
4430		mutex_unlock(&fs_info->balance_mutex);
4431		return 0;
4432	}
4433	mutex_unlock(&fs_info->balance_mutex);
4434
4435	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4436		btrfs_info(fs_info, "balance: resume skipped");
4437		return 0;
4438	}
4439
 
 
 
 
4440	/*
4441	 * A ro->rw remount sequence should continue with the paused balance
4442	 * regardless of who pauses it, system or the user as of now, so set
4443	 * the resume flag.
4444	 */
4445	spin_lock(&fs_info->balance_lock);
4446	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4447	spin_unlock(&fs_info->balance_lock);
4448
4449	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4450	return PTR_ERR_OR_ZERO(tsk);
4451}
4452
4453int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4454{
4455	struct btrfs_balance_control *bctl;
4456	struct btrfs_balance_item *item;
4457	struct btrfs_disk_balance_args disk_bargs;
4458	struct btrfs_path *path;
4459	struct extent_buffer *leaf;
4460	struct btrfs_key key;
4461	int ret;
4462
4463	path = btrfs_alloc_path();
4464	if (!path)
4465		return -ENOMEM;
4466
4467	key.objectid = BTRFS_BALANCE_OBJECTID;
4468	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4469	key.offset = 0;
4470
4471	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4472	if (ret < 0)
4473		goto out;
4474	if (ret > 0) { /* ret = -ENOENT; */
4475		ret = 0;
4476		goto out;
4477	}
4478
4479	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4480	if (!bctl) {
4481		ret = -ENOMEM;
4482		goto out;
4483	}
4484
4485	leaf = path->nodes[0];
4486	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4487
4488	bctl->flags = btrfs_balance_flags(leaf, item);
4489	bctl->flags |= BTRFS_BALANCE_RESUME;
4490
4491	btrfs_balance_data(leaf, item, &disk_bargs);
4492	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4493	btrfs_balance_meta(leaf, item, &disk_bargs);
4494	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4495	btrfs_balance_sys(leaf, item, &disk_bargs);
4496	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4497
4498	/*
4499	 * This should never happen, as the paused balance state is recovered
4500	 * during mount without any chance of other exclusive ops to collide.
4501	 *
4502	 * This gives the exclusive op status to balance and keeps in paused
4503	 * state until user intervention (cancel or umount). If the ownership
4504	 * cannot be assigned, show a message but do not fail. The balance
4505	 * is in a paused state and must have fs_info::balance_ctl properly
4506	 * set up.
4507	 */
4508	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4509		btrfs_warn(fs_info,
4510	"balance: cannot set exclusive op status, resume manually");
4511
4512	btrfs_release_path(path);
4513
4514	mutex_lock(&fs_info->balance_mutex);
4515	BUG_ON(fs_info->balance_ctl);
4516	spin_lock(&fs_info->balance_lock);
4517	fs_info->balance_ctl = bctl;
4518	spin_unlock(&fs_info->balance_lock);
4519	mutex_unlock(&fs_info->balance_mutex);
4520out:
4521	btrfs_free_path(path);
4522	return ret;
4523}
4524
4525int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4526{
4527	int ret = 0;
4528
4529	mutex_lock(&fs_info->balance_mutex);
4530	if (!fs_info->balance_ctl) {
4531		mutex_unlock(&fs_info->balance_mutex);
4532		return -ENOTCONN;
4533	}
4534
4535	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4536		atomic_inc(&fs_info->balance_pause_req);
4537		mutex_unlock(&fs_info->balance_mutex);
4538
4539		wait_event(fs_info->balance_wait_q,
4540			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4541
4542		mutex_lock(&fs_info->balance_mutex);
4543		/* we are good with balance_ctl ripped off from under us */
4544		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4545		atomic_dec(&fs_info->balance_pause_req);
4546	} else {
4547		ret = -ENOTCONN;
4548	}
4549
4550	mutex_unlock(&fs_info->balance_mutex);
4551	return ret;
4552}
4553
4554int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4555{
4556	mutex_lock(&fs_info->balance_mutex);
4557	if (!fs_info->balance_ctl) {
4558		mutex_unlock(&fs_info->balance_mutex);
4559		return -ENOTCONN;
4560	}
4561
4562	/*
4563	 * A paused balance with the item stored on disk can be resumed at
4564	 * mount time if the mount is read-write. Otherwise it's still paused
4565	 * and we must not allow cancelling as it deletes the item.
4566	 */
4567	if (sb_rdonly(fs_info->sb)) {
4568		mutex_unlock(&fs_info->balance_mutex);
4569		return -EROFS;
4570	}
4571
4572	atomic_inc(&fs_info->balance_cancel_req);
4573	/*
4574	 * if we are running just wait and return, balance item is
4575	 * deleted in btrfs_balance in this case
4576	 */
4577	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4578		mutex_unlock(&fs_info->balance_mutex);
4579		wait_event(fs_info->balance_wait_q,
4580			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581		mutex_lock(&fs_info->balance_mutex);
4582	} else {
4583		mutex_unlock(&fs_info->balance_mutex);
4584		/*
4585		 * Lock released to allow other waiters to continue, we'll
4586		 * reexamine the status again.
4587		 */
4588		mutex_lock(&fs_info->balance_mutex);
4589
4590		if (fs_info->balance_ctl) {
4591			reset_balance_state(fs_info);
4592			btrfs_exclop_finish(fs_info);
4593			btrfs_info(fs_info, "balance: canceled");
4594		}
4595	}
4596
4597	BUG_ON(fs_info->balance_ctl ||
4598		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4599	atomic_dec(&fs_info->balance_cancel_req);
4600	mutex_unlock(&fs_info->balance_mutex);
4601	return 0;
4602}
4603
4604int btrfs_uuid_scan_kthread(void *data)
4605{
4606	struct btrfs_fs_info *fs_info = data;
4607	struct btrfs_root *root = fs_info->tree_root;
4608	struct btrfs_key key;
4609	struct btrfs_path *path = NULL;
4610	int ret = 0;
4611	struct extent_buffer *eb;
4612	int slot;
4613	struct btrfs_root_item root_item;
4614	u32 item_size;
4615	struct btrfs_trans_handle *trans = NULL;
4616	bool closing = false;
4617
4618	path = btrfs_alloc_path();
4619	if (!path) {
4620		ret = -ENOMEM;
4621		goto out;
4622	}
4623
4624	key.objectid = 0;
4625	key.type = BTRFS_ROOT_ITEM_KEY;
4626	key.offset = 0;
4627
4628	while (1) {
4629		if (btrfs_fs_closing(fs_info)) {
4630			closing = true;
4631			break;
4632		}
4633		ret = btrfs_search_forward(root, &key, path,
4634				BTRFS_OLDEST_GENERATION);
4635		if (ret) {
4636			if (ret > 0)
4637				ret = 0;
4638			break;
4639		}
4640
4641		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4642		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4643		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4644		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4645			goto skip;
4646
4647		eb = path->nodes[0];
4648		slot = path->slots[0];
4649		item_size = btrfs_item_size_nr(eb, slot);
4650		if (item_size < sizeof(root_item))
4651			goto skip;
4652
4653		read_extent_buffer(eb, &root_item,
4654				   btrfs_item_ptr_offset(eb, slot),
4655				   (int)sizeof(root_item));
4656		if (btrfs_root_refs(&root_item) == 0)
4657			goto skip;
4658
4659		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4660		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4661			if (trans)
4662				goto update_tree;
4663
4664			btrfs_release_path(path);
4665			/*
4666			 * 1 - subvol uuid item
4667			 * 1 - received_subvol uuid item
4668			 */
4669			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4670			if (IS_ERR(trans)) {
4671				ret = PTR_ERR(trans);
4672				break;
4673			}
4674			continue;
4675		} else {
4676			goto skip;
4677		}
4678update_tree:
4679		btrfs_release_path(path);
4680		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4681			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4682						  BTRFS_UUID_KEY_SUBVOL,
4683						  key.objectid);
4684			if (ret < 0) {
4685				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4686					ret);
4687				break;
4688			}
4689		}
4690
4691		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4692			ret = btrfs_uuid_tree_add(trans,
4693						  root_item.received_uuid,
4694						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4695						  key.objectid);
4696			if (ret < 0) {
4697				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4698					ret);
4699				break;
4700			}
4701		}
4702
4703skip:
4704		btrfs_release_path(path);
4705		if (trans) {
4706			ret = btrfs_end_transaction(trans);
4707			trans = NULL;
4708			if (ret)
4709				break;
4710		}
4711
4712		if (key.offset < (u64)-1) {
4713			key.offset++;
4714		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4715			key.offset = 0;
4716			key.type = BTRFS_ROOT_ITEM_KEY;
4717		} else if (key.objectid < (u64)-1) {
4718			key.offset = 0;
4719			key.type = BTRFS_ROOT_ITEM_KEY;
4720			key.objectid++;
4721		} else {
4722			break;
4723		}
4724		cond_resched();
4725	}
4726
4727out:
4728	btrfs_free_path(path);
4729	if (trans && !IS_ERR(trans))
4730		btrfs_end_transaction(trans);
4731	if (ret)
4732		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4733	else if (!closing)
4734		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4735	up(&fs_info->uuid_tree_rescan_sem);
4736	return 0;
4737}
4738
4739int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4740{
4741	struct btrfs_trans_handle *trans;
4742	struct btrfs_root *tree_root = fs_info->tree_root;
4743	struct btrfs_root *uuid_root;
4744	struct task_struct *task;
4745	int ret;
4746
4747	/*
4748	 * 1 - root node
4749	 * 1 - root item
4750	 */
4751	trans = btrfs_start_transaction(tree_root, 2);
4752	if (IS_ERR(trans))
4753		return PTR_ERR(trans);
4754
4755	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4756	if (IS_ERR(uuid_root)) {
4757		ret = PTR_ERR(uuid_root);
4758		btrfs_abort_transaction(trans, ret);
4759		btrfs_end_transaction(trans);
4760		return ret;
4761	}
4762
4763	fs_info->uuid_root = uuid_root;
4764
4765	ret = btrfs_commit_transaction(trans);
4766	if (ret)
4767		return ret;
4768
4769	down(&fs_info->uuid_tree_rescan_sem);
4770	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4771	if (IS_ERR(task)) {
4772		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4773		btrfs_warn(fs_info, "failed to start uuid_scan task");
4774		up(&fs_info->uuid_tree_rescan_sem);
4775		return PTR_ERR(task);
4776	}
4777
4778	return 0;
4779}
4780
4781/*
4782 * shrinking a device means finding all of the device extents past
4783 * the new size, and then following the back refs to the chunks.
4784 * The chunk relocation code actually frees the device extent
4785 */
4786int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4787{
4788	struct btrfs_fs_info *fs_info = device->fs_info;
4789	struct btrfs_root *root = fs_info->dev_root;
4790	struct btrfs_trans_handle *trans;
4791	struct btrfs_dev_extent *dev_extent = NULL;
4792	struct btrfs_path *path;
4793	u64 length;
4794	u64 chunk_offset;
4795	int ret;
4796	int slot;
4797	int failed = 0;
4798	bool retried = false;
4799	struct extent_buffer *l;
4800	struct btrfs_key key;
4801	struct btrfs_super_block *super_copy = fs_info->super_copy;
4802	u64 old_total = btrfs_super_total_bytes(super_copy);
4803	u64 old_size = btrfs_device_get_total_bytes(device);
4804	u64 diff;
4805	u64 start;
4806
4807	new_size = round_down(new_size, fs_info->sectorsize);
4808	start = new_size;
4809	diff = round_down(old_size - new_size, fs_info->sectorsize);
4810
4811	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4812		return -EINVAL;
4813
4814	path = btrfs_alloc_path();
4815	if (!path)
4816		return -ENOMEM;
4817
4818	path->reada = READA_BACK;
4819
4820	trans = btrfs_start_transaction(root, 0);
4821	if (IS_ERR(trans)) {
4822		btrfs_free_path(path);
4823		return PTR_ERR(trans);
4824	}
4825
4826	mutex_lock(&fs_info->chunk_mutex);
4827
4828	btrfs_device_set_total_bytes(device, new_size);
4829	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4830		device->fs_devices->total_rw_bytes -= diff;
4831		atomic64_sub(diff, &fs_info->free_chunk_space);
4832	}
4833
4834	/*
4835	 * Once the device's size has been set to the new size, ensure all
4836	 * in-memory chunks are synced to disk so that the loop below sees them
4837	 * and relocates them accordingly.
4838	 */
4839	if (contains_pending_extent(device, &start, diff)) {
4840		mutex_unlock(&fs_info->chunk_mutex);
4841		ret = btrfs_commit_transaction(trans);
4842		if (ret)
4843			goto done;
4844	} else {
4845		mutex_unlock(&fs_info->chunk_mutex);
4846		btrfs_end_transaction(trans);
4847	}
4848
4849again:
4850	key.objectid = device->devid;
4851	key.offset = (u64)-1;
4852	key.type = BTRFS_DEV_EXTENT_KEY;
4853
4854	do {
4855		mutex_lock(&fs_info->reclaim_bgs_lock);
4856		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4857		if (ret < 0) {
4858			mutex_unlock(&fs_info->reclaim_bgs_lock);
4859			goto done;
4860		}
4861
4862		ret = btrfs_previous_item(root, path, 0, key.type);
4863		if (ret) {
4864			mutex_unlock(&fs_info->reclaim_bgs_lock);
4865			if (ret < 0)
4866				goto done;
4867			ret = 0;
4868			btrfs_release_path(path);
4869			break;
4870		}
4871
4872		l = path->nodes[0];
4873		slot = path->slots[0];
4874		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4875
4876		if (key.objectid != device->devid) {
4877			mutex_unlock(&fs_info->reclaim_bgs_lock);
4878			btrfs_release_path(path);
4879			break;
4880		}
4881
4882		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4883		length = btrfs_dev_extent_length(l, dev_extent);
4884
4885		if (key.offset + length <= new_size) {
4886			mutex_unlock(&fs_info->reclaim_bgs_lock);
4887			btrfs_release_path(path);
4888			break;
4889		}
4890
4891		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4892		btrfs_release_path(path);
4893
4894		/*
4895		 * We may be relocating the only data chunk we have,
4896		 * which could potentially end up with losing data's
4897		 * raid profile, so lets allocate an empty one in
4898		 * advance.
4899		 */
4900		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4901		if (ret < 0) {
4902			mutex_unlock(&fs_info->reclaim_bgs_lock);
4903			goto done;
4904		}
4905
4906		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4907		mutex_unlock(&fs_info->reclaim_bgs_lock);
4908		if (ret == -ENOSPC) {
4909			failed++;
4910		} else if (ret) {
4911			if (ret == -ETXTBSY) {
4912				btrfs_warn(fs_info,
4913		   "could not shrink block group %llu due to active swapfile",
4914					   chunk_offset);
4915			}
4916			goto done;
4917		}
4918	} while (key.offset-- > 0);
4919
4920	if (failed && !retried) {
4921		failed = 0;
4922		retried = true;
4923		goto again;
4924	} else if (failed && retried) {
4925		ret = -ENOSPC;
4926		goto done;
4927	}
4928
4929	/* Shrinking succeeded, else we would be at "done". */
4930	trans = btrfs_start_transaction(root, 0);
4931	if (IS_ERR(trans)) {
4932		ret = PTR_ERR(trans);
4933		goto done;
4934	}
4935
4936	mutex_lock(&fs_info->chunk_mutex);
4937	/* Clear all state bits beyond the shrunk device size */
4938	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4939			  CHUNK_STATE_MASK);
4940
4941	btrfs_device_set_disk_total_bytes(device, new_size);
4942	if (list_empty(&device->post_commit_list))
4943		list_add_tail(&device->post_commit_list,
4944			      &trans->transaction->dev_update_list);
4945
4946	WARN_ON(diff > old_total);
4947	btrfs_set_super_total_bytes(super_copy,
4948			round_down(old_total - diff, fs_info->sectorsize));
4949	mutex_unlock(&fs_info->chunk_mutex);
4950
 
4951	/* Now btrfs_update_device() will change the on-disk size. */
4952	ret = btrfs_update_device(trans, device);
 
4953	if (ret < 0) {
4954		btrfs_abort_transaction(trans, ret);
4955		btrfs_end_transaction(trans);
4956	} else {
4957		ret = btrfs_commit_transaction(trans);
4958	}
4959done:
4960	btrfs_free_path(path);
4961	if (ret) {
4962		mutex_lock(&fs_info->chunk_mutex);
4963		btrfs_device_set_total_bytes(device, old_size);
4964		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4965			device->fs_devices->total_rw_bytes += diff;
4966		atomic64_add(diff, &fs_info->free_chunk_space);
4967		mutex_unlock(&fs_info->chunk_mutex);
4968	}
4969	return ret;
4970}
4971
4972static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4973			   struct btrfs_key *key,
4974			   struct btrfs_chunk *chunk, int item_size)
4975{
4976	struct btrfs_super_block *super_copy = fs_info->super_copy;
4977	struct btrfs_disk_key disk_key;
4978	u32 array_size;
4979	u8 *ptr;
4980
4981	lockdep_assert_held(&fs_info->chunk_mutex);
4982
4983	array_size = btrfs_super_sys_array_size(super_copy);
4984	if (array_size + item_size + sizeof(disk_key)
4985			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4986		return -EFBIG;
4987
4988	ptr = super_copy->sys_chunk_array + array_size;
4989	btrfs_cpu_key_to_disk(&disk_key, key);
4990	memcpy(ptr, &disk_key, sizeof(disk_key));
4991	ptr += sizeof(disk_key);
4992	memcpy(ptr, chunk, item_size);
4993	item_size += sizeof(disk_key);
4994	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4995
4996	return 0;
4997}
4998
4999/*
5000 * sort the devices in descending order by max_avail, total_avail
5001 */
5002static int btrfs_cmp_device_info(const void *a, const void *b)
5003{
5004	const struct btrfs_device_info *di_a = a;
5005	const struct btrfs_device_info *di_b = b;
5006
5007	if (di_a->max_avail > di_b->max_avail)
5008		return -1;
5009	if (di_a->max_avail < di_b->max_avail)
5010		return 1;
5011	if (di_a->total_avail > di_b->total_avail)
5012		return -1;
5013	if (di_a->total_avail < di_b->total_avail)
5014		return 1;
5015	return 0;
5016}
5017
5018static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5019{
5020	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5021		return;
5022
5023	btrfs_set_fs_incompat(info, RAID56);
5024}
5025
5026static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5027{
5028	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5029		return;
5030
5031	btrfs_set_fs_incompat(info, RAID1C34);
5032}
5033
5034/*
5035 * Structure used internally for __btrfs_alloc_chunk() function.
5036 * Wraps needed parameters.
5037 */
5038struct alloc_chunk_ctl {
5039	u64 start;
5040	u64 type;
5041	/* Total number of stripes to allocate */
5042	int num_stripes;
5043	/* sub_stripes info for map */
5044	int sub_stripes;
5045	/* Stripes per device */
5046	int dev_stripes;
5047	/* Maximum number of devices to use */
5048	int devs_max;
5049	/* Minimum number of devices to use */
5050	int devs_min;
5051	/* ndevs has to be a multiple of this */
5052	int devs_increment;
5053	/* Number of copies */
5054	int ncopies;
5055	/* Number of stripes worth of bytes to store parity information */
5056	int nparity;
5057	u64 max_stripe_size;
5058	u64 max_chunk_size;
5059	u64 dev_extent_min;
5060	u64 stripe_size;
5061	u64 chunk_size;
5062	int ndevs;
5063};
5064
5065static void init_alloc_chunk_ctl_policy_regular(
5066				struct btrfs_fs_devices *fs_devices,
5067				struct alloc_chunk_ctl *ctl)
5068{
5069	u64 type = ctl->type;
 
 
 
 
 
 
5070
5071	if (type & BTRFS_BLOCK_GROUP_DATA) {
5072		ctl->max_stripe_size = SZ_1G;
5073		ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5074	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5075		/* For larger filesystems, use larger metadata chunks */
5076		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5077			ctl->max_stripe_size = SZ_1G;
5078		else
5079			ctl->max_stripe_size = SZ_256M;
5080		ctl->max_chunk_size = ctl->max_stripe_size;
5081	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5082		ctl->max_stripe_size = SZ_32M;
5083		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5084		ctl->devs_max = min_t(int, ctl->devs_max,
5085				      BTRFS_MAX_DEVS_SYS_CHUNK);
5086	} else {
5087		BUG();
5088	}
5089
5090	/* We don't want a chunk larger than 10% of writable space */
5091	ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5092				  ctl->max_chunk_size);
5093	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5094}
5095
5096static void init_alloc_chunk_ctl_policy_zoned(
5097				      struct btrfs_fs_devices *fs_devices,
5098				      struct alloc_chunk_ctl *ctl)
5099{
5100	u64 zone_size = fs_devices->fs_info->zone_size;
5101	u64 limit;
5102	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5103	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5104	u64 min_chunk_size = min_data_stripes * zone_size;
5105	u64 type = ctl->type;
5106
5107	ctl->max_stripe_size = zone_size;
5108	if (type & BTRFS_BLOCK_GROUP_DATA) {
5109		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5110						 zone_size);
5111	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5112		ctl->max_chunk_size = ctl->max_stripe_size;
5113	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5114		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5115		ctl->devs_max = min_t(int, ctl->devs_max,
5116				      BTRFS_MAX_DEVS_SYS_CHUNK);
5117	} else {
5118		BUG();
5119	}
5120
5121	/* We don't want a chunk larger than 10% of writable space */
5122	limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5123			       zone_size),
5124		    min_chunk_size);
5125	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5126	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5127}
5128
5129static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5130				 struct alloc_chunk_ctl *ctl)
5131{
5132	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5133
5134	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5135	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5136	ctl->devs_max = btrfs_raid_array[index].devs_max;
5137	if (!ctl->devs_max)
5138		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5139	ctl->devs_min = btrfs_raid_array[index].devs_min;
5140	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5141	ctl->ncopies = btrfs_raid_array[index].ncopies;
5142	ctl->nparity = btrfs_raid_array[index].nparity;
5143	ctl->ndevs = 0;
5144
5145	switch (fs_devices->chunk_alloc_policy) {
5146	case BTRFS_CHUNK_ALLOC_REGULAR:
5147		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5148		break;
5149	case BTRFS_CHUNK_ALLOC_ZONED:
5150		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5151		break;
5152	default:
5153		BUG();
5154	}
5155}
5156
5157static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5158			      struct alloc_chunk_ctl *ctl,
5159			      struct btrfs_device_info *devices_info)
5160{
5161	struct btrfs_fs_info *info = fs_devices->fs_info;
5162	struct btrfs_device *device;
5163	u64 total_avail;
5164	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5165	int ret;
5166	int ndevs = 0;
5167	u64 max_avail;
5168	u64 dev_offset;
5169
5170	/*
5171	 * in the first pass through the devices list, we gather information
5172	 * about the available holes on each device.
5173	 */
5174	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5175		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5176			WARN(1, KERN_ERR
5177			       "BTRFS: read-only device in alloc_list\n");
5178			continue;
5179		}
5180
5181		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5182					&device->dev_state) ||
5183		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5184			continue;
5185
5186		if (device->total_bytes > device->bytes_used)
5187			total_avail = device->total_bytes - device->bytes_used;
5188		else
5189			total_avail = 0;
5190
5191		/* If there is no space on this device, skip it. */
5192		if (total_avail < ctl->dev_extent_min)
5193			continue;
5194
5195		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5196					   &max_avail);
5197		if (ret && ret != -ENOSPC)
5198			return ret;
5199
5200		if (ret == 0)
5201			max_avail = dev_extent_want;
5202
5203		if (max_avail < ctl->dev_extent_min) {
5204			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5205				btrfs_debug(info,
5206			"%s: devid %llu has no free space, have=%llu want=%llu",
5207					    __func__, device->devid, max_avail,
5208					    ctl->dev_extent_min);
5209			continue;
5210		}
5211
5212		if (ndevs == fs_devices->rw_devices) {
5213			WARN(1, "%s: found more than %llu devices\n",
5214			     __func__, fs_devices->rw_devices);
5215			break;
5216		}
5217		devices_info[ndevs].dev_offset = dev_offset;
5218		devices_info[ndevs].max_avail = max_avail;
5219		devices_info[ndevs].total_avail = total_avail;
5220		devices_info[ndevs].dev = device;
5221		++ndevs;
5222	}
5223	ctl->ndevs = ndevs;
5224
5225	/*
5226	 * now sort the devices by hole size / available space
5227	 */
5228	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5229	     btrfs_cmp_device_info, NULL);
5230
5231	return 0;
5232}
5233
5234static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5235				      struct btrfs_device_info *devices_info)
5236{
5237	/* Number of stripes that count for block group size */
5238	int data_stripes;
5239
5240	/*
5241	 * The primary goal is to maximize the number of stripes, so use as
5242	 * many devices as possible, even if the stripes are not maximum sized.
5243	 *
5244	 * The DUP profile stores more than one stripe per device, the
5245	 * max_avail is the total size so we have to adjust.
5246	 */
5247	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5248				   ctl->dev_stripes);
5249	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5250
5251	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5252	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5253
5254	/*
5255	 * Use the number of data stripes to figure out how big this chunk is
5256	 * really going to be in terms of logical address space, and compare
5257	 * that answer with the max chunk size. If it's higher, we try to
5258	 * reduce stripe_size.
5259	 */
5260	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5261		/*
5262		 * Reduce stripe_size, round it up to a 16MB boundary again and
5263		 * then use it, unless it ends up being even bigger than the
5264		 * previous value we had already.
5265		 */
5266		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5267							data_stripes), SZ_16M),
5268				       ctl->stripe_size);
5269	}
5270
 
 
 
5271	/* Align to BTRFS_STRIPE_LEN */
5272	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5273	ctl->chunk_size = ctl->stripe_size * data_stripes;
5274
5275	return 0;
5276}
5277
5278static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5279				    struct btrfs_device_info *devices_info)
5280{
5281	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5282	/* Number of stripes that count for block group size */
5283	int data_stripes;
5284
5285	/*
5286	 * It should hold because:
5287	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5288	 */
5289	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5290
5291	ctl->stripe_size = zone_size;
5292	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5293	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5294
5295	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5296	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5297		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5298					     ctl->stripe_size) + ctl->nparity,
5299				     ctl->dev_stripes);
5300		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5301		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5302		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5303	}
5304
5305	ctl->chunk_size = ctl->stripe_size * data_stripes;
5306
5307	return 0;
5308}
5309
5310static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5311			      struct alloc_chunk_ctl *ctl,
5312			      struct btrfs_device_info *devices_info)
5313{
5314	struct btrfs_fs_info *info = fs_devices->fs_info;
5315
5316	/*
5317	 * Round down to number of usable stripes, devs_increment can be any
5318	 * number so we can't use round_down() that requires power of 2, while
5319	 * rounddown is safe.
5320	 */
5321	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5322
5323	if (ctl->ndevs < ctl->devs_min) {
5324		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5325			btrfs_debug(info,
5326	"%s: not enough devices with free space: have=%d minimum required=%d",
5327				    __func__, ctl->ndevs, ctl->devs_min);
5328		}
5329		return -ENOSPC;
5330	}
5331
5332	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5333
5334	switch (fs_devices->chunk_alloc_policy) {
5335	case BTRFS_CHUNK_ALLOC_REGULAR:
5336		return decide_stripe_size_regular(ctl, devices_info);
5337	case BTRFS_CHUNK_ALLOC_ZONED:
5338		return decide_stripe_size_zoned(ctl, devices_info);
5339	default:
5340		BUG();
5341	}
5342}
5343
5344static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5345			struct alloc_chunk_ctl *ctl,
5346			struct btrfs_device_info *devices_info)
5347{
5348	struct btrfs_fs_info *info = trans->fs_info;
5349	struct map_lookup *map = NULL;
5350	struct extent_map_tree *em_tree;
5351	struct btrfs_block_group *block_group;
5352	struct extent_map *em;
5353	u64 start = ctl->start;
5354	u64 type = ctl->type;
5355	int ret;
5356	int i;
5357	int j;
5358
5359	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5360	if (!map)
5361		return ERR_PTR(-ENOMEM);
5362	map->num_stripes = ctl->num_stripes;
5363
5364	for (i = 0; i < ctl->ndevs; ++i) {
5365		for (j = 0; j < ctl->dev_stripes; ++j) {
5366			int s = i * ctl->dev_stripes + j;
5367			map->stripes[s].dev = devices_info[i].dev;
5368			map->stripes[s].physical = devices_info[i].dev_offset +
5369						   j * ctl->stripe_size;
5370		}
5371	}
5372	map->stripe_len = BTRFS_STRIPE_LEN;
5373	map->io_align = BTRFS_STRIPE_LEN;
5374	map->io_width = BTRFS_STRIPE_LEN;
5375	map->type = type;
5376	map->sub_stripes = ctl->sub_stripes;
5377
5378	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5379
5380	em = alloc_extent_map();
5381	if (!em) {
5382		kfree(map);
5383		return ERR_PTR(-ENOMEM);
5384	}
5385	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5386	em->map_lookup = map;
5387	em->start = start;
5388	em->len = ctl->chunk_size;
5389	em->block_start = 0;
5390	em->block_len = em->len;
5391	em->orig_block_len = ctl->stripe_size;
5392
5393	em_tree = &info->mapping_tree;
5394	write_lock(&em_tree->lock);
5395	ret = add_extent_mapping(em_tree, em, 0);
5396	if (ret) {
5397		write_unlock(&em_tree->lock);
5398		free_extent_map(em);
5399		return ERR_PTR(ret);
5400	}
5401	write_unlock(&em_tree->lock);
5402
5403	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5404	if (IS_ERR(block_group))
5405		goto error_del_extent;
5406
5407	for (i = 0; i < map->num_stripes; i++) {
5408		struct btrfs_device *dev = map->stripes[i].dev;
5409
5410		btrfs_device_set_bytes_used(dev,
5411					    dev->bytes_used + ctl->stripe_size);
5412		if (list_empty(&dev->post_commit_list))
5413			list_add_tail(&dev->post_commit_list,
5414				      &trans->transaction->dev_update_list);
5415	}
5416
5417	atomic64_sub(ctl->stripe_size * map->num_stripes,
5418		     &info->free_chunk_space);
5419
5420	free_extent_map(em);
5421	check_raid56_incompat_flag(info, type);
5422	check_raid1c34_incompat_flag(info, type);
5423
5424	return block_group;
5425
5426error_del_extent:
5427	write_lock(&em_tree->lock);
5428	remove_extent_mapping(em_tree, em);
5429	write_unlock(&em_tree->lock);
5430
5431	/* One for our allocation */
5432	free_extent_map(em);
5433	/* One for the tree reference */
5434	free_extent_map(em);
5435
5436	return block_group;
5437}
5438
5439struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5440					    u64 type)
5441{
5442	struct btrfs_fs_info *info = trans->fs_info;
5443	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5444	struct btrfs_device_info *devices_info = NULL;
5445	struct alloc_chunk_ctl ctl;
5446	struct btrfs_block_group *block_group;
5447	int ret;
5448
5449	lockdep_assert_held(&info->chunk_mutex);
5450
5451	if (!alloc_profile_is_valid(type, 0)) {
5452		ASSERT(0);
5453		return ERR_PTR(-EINVAL);
5454	}
5455
5456	if (list_empty(&fs_devices->alloc_list)) {
5457		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5458			btrfs_debug(info, "%s: no writable device", __func__);
5459		return ERR_PTR(-ENOSPC);
5460	}
5461
5462	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5463		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5464		ASSERT(0);
5465		return ERR_PTR(-EINVAL);
5466	}
5467
5468	ctl.start = find_next_chunk(info);
5469	ctl.type = type;
5470	init_alloc_chunk_ctl(fs_devices, &ctl);
5471
5472	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5473			       GFP_NOFS);
5474	if (!devices_info)
5475		return ERR_PTR(-ENOMEM);
5476
5477	ret = gather_device_info(fs_devices, &ctl, devices_info);
5478	if (ret < 0) {
5479		block_group = ERR_PTR(ret);
5480		goto out;
5481	}
5482
5483	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5484	if (ret < 0) {
5485		block_group = ERR_PTR(ret);
5486		goto out;
5487	}
5488
5489	block_group = create_chunk(trans, &ctl, devices_info);
5490
5491out:
5492	kfree(devices_info);
5493	return block_group;
5494}
5495
5496/*
5497 * This function, btrfs_finish_chunk_alloc(), belongs to phase 2.
5498 *
5499 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5500 * phases.
5501 */
5502int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5503			     u64 chunk_offset, u64 chunk_size)
5504{
5505	struct btrfs_fs_info *fs_info = trans->fs_info;
5506	struct btrfs_device *device;
5507	struct extent_map *em;
5508	struct map_lookup *map;
5509	u64 dev_offset;
5510	u64 stripe_size;
5511	int i;
5512	int ret = 0;
5513
5514	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5515	if (IS_ERR(em))
5516		return PTR_ERR(em);
5517
5518	map = em->map_lookup;
5519	stripe_size = em->orig_block_len;
5520
5521	/*
5522	 * Take the device list mutex to prevent races with the final phase of
5523	 * a device replace operation that replaces the device object associated
5524	 * with the map's stripes, because the device object's id can change
5525	 * at any time during that final phase of the device replace operation
5526	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5527	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5528	 * resulting in persisting a device extent item with such ID.
5529	 */
5530	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5531	for (i = 0; i < map->num_stripes; i++) {
5532		device = map->stripes[i].dev;
5533		dev_offset = map->stripes[i].physical;
5534
5535		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5536					     dev_offset, stripe_size);
5537		if (ret)
5538			break;
5539	}
5540	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5541
5542	free_extent_map(em);
5543	return ret;
5544}
5545
5546/*
5547 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5548 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5549 * chunks.
5550 *
5551 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5552 * phases.
5553 */
5554int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5555				     struct btrfs_block_group *bg)
5556{
5557	struct btrfs_fs_info *fs_info = trans->fs_info;
5558	struct btrfs_root *extent_root = fs_info->extent_root;
5559	struct btrfs_root *chunk_root = fs_info->chunk_root;
5560	struct btrfs_key key;
5561	struct btrfs_chunk *chunk;
5562	struct btrfs_stripe *stripe;
5563	struct extent_map *em;
5564	struct map_lookup *map;
5565	size_t item_size;
5566	int i;
5567	int ret;
5568
5569	/*
5570	 * We take the chunk_mutex for 2 reasons:
5571	 *
5572	 * 1) Updates and insertions in the chunk btree must be done while holding
5573	 *    the chunk_mutex, as well as updating the system chunk array in the
5574	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5575	 *    details;
5576	 *
5577	 * 2) To prevent races with the final phase of a device replace operation
5578	 *    that replaces the device object associated with the map's stripes,
5579	 *    because the device object's id can change at any time during that
5580	 *    final phase of the device replace operation
5581	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5582	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5583	 *    which would cause a failure when updating the device item, which does
5584	 *    not exists, or persisting a stripe of the chunk item with such ID.
5585	 *    Here we can't use the device_list_mutex because our caller already
5586	 *    has locked the chunk_mutex, and the final phase of device replace
5587	 *    acquires both mutexes - first the device_list_mutex and then the
5588	 *    chunk_mutex. Using any of those two mutexes protects us from a
5589	 *    concurrent device replace.
5590	 */
5591	lockdep_assert_held(&fs_info->chunk_mutex);
5592
5593	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5594	if (IS_ERR(em)) {
5595		ret = PTR_ERR(em);
5596		btrfs_abort_transaction(trans, ret);
5597		return ret;
5598	}
5599
5600	map = em->map_lookup;
5601	item_size = btrfs_chunk_item_size(map->num_stripes);
5602
5603	chunk = kzalloc(item_size, GFP_NOFS);
5604	if (!chunk) {
5605		ret = -ENOMEM;
5606		btrfs_abort_transaction(trans, ret);
5607		goto out;
5608	}
5609
5610	for (i = 0; i < map->num_stripes; i++) {
5611		struct btrfs_device *device = map->stripes[i].dev;
5612
5613		ret = btrfs_update_device(trans, device);
5614		if (ret)
5615			goto out;
5616	}
5617
5618	stripe = &chunk->stripe;
5619	for (i = 0; i < map->num_stripes; i++) {
5620		struct btrfs_device *device = map->stripes[i].dev;
5621		const u64 dev_offset = map->stripes[i].physical;
5622
5623		btrfs_set_stack_stripe_devid(stripe, device->devid);
5624		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5625		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5626		stripe++;
5627	}
5628
5629	btrfs_set_stack_chunk_length(chunk, bg->length);
5630	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5631	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5632	btrfs_set_stack_chunk_type(chunk, map->type);
5633	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5634	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5635	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5636	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5637	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5638
5639	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5640	key.type = BTRFS_CHUNK_ITEM_KEY;
5641	key.offset = bg->start;
5642
5643	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5644	if (ret)
5645		goto out;
5646
5647	bg->chunk_item_inserted = 1;
5648
5649	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5650		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5651		if (ret)
5652			goto out;
5653	}
5654
5655out:
5656	kfree(chunk);
5657	free_extent_map(em);
5658	return ret;
5659}
5660
5661static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5662{
5663	struct btrfs_fs_info *fs_info = trans->fs_info;
5664	u64 alloc_profile;
5665	struct btrfs_block_group *meta_bg;
5666	struct btrfs_block_group *sys_bg;
5667
5668	/*
5669	 * When adding a new device for sprouting, the seed device is read-only
5670	 * so we must first allocate a metadata and a system chunk. But before
5671	 * adding the block group items to the extent, device and chunk btrees,
5672	 * we must first:
5673	 *
5674	 * 1) Create both chunks without doing any changes to the btrees, as
5675	 *    otherwise we would get -ENOSPC since the block groups from the
5676	 *    seed device are read-only;
5677	 *
5678	 * 2) Add the device item for the new sprout device - finishing the setup
5679	 *    of a new block group requires updating the device item in the chunk
5680	 *    btree, so it must exist when we attempt to do it. The previous step
5681	 *    ensures this does not fail with -ENOSPC.
5682	 *
5683	 * After that we can add the block group items to their btrees:
5684	 * update existing device item in the chunk btree, add a new block group
5685	 * item to the extent btree, add a new chunk item to the chunk btree and
5686	 * finally add the new device extent items to the devices btree.
5687	 */
5688
5689	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5690	meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5691	if (IS_ERR(meta_bg))
5692		return PTR_ERR(meta_bg);
5693
5694	alloc_profile = btrfs_system_alloc_profile(fs_info);
5695	sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5696	if (IS_ERR(sys_bg))
5697		return PTR_ERR(sys_bg);
5698
5699	return 0;
5700}
5701
5702static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5703{
5704	const int index = btrfs_bg_flags_to_raid_index(map->type);
5705
5706	return btrfs_raid_array[index].tolerated_failures;
5707}
5708
5709int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5710{
5711	struct extent_map *em;
5712	struct map_lookup *map;
5713	int readonly = 0;
5714	int miss_ndevs = 0;
5715	int i;
 
5716
5717	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5718	if (IS_ERR(em))
5719		return 1;
5720
5721	map = em->map_lookup;
5722	for (i = 0; i < map->num_stripes; i++) {
5723		if (test_bit(BTRFS_DEV_STATE_MISSING,
5724					&map->stripes[i].dev->dev_state)) {
5725			miss_ndevs++;
5726			continue;
5727		}
5728		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5729					&map->stripes[i].dev->dev_state)) {
5730			readonly = 1;
5731			goto end;
5732		}
5733	}
5734
5735	/*
5736	 * If the number of missing devices is larger than max errors,
5737	 * we can not write the data into that chunk successfully, so
5738	 * set it readonly.
5739	 */
5740	if (miss_ndevs > btrfs_chunk_max_errors(map))
5741		readonly = 1;
5742end:
5743	free_extent_map(em);
5744	return readonly;
5745}
5746
5747void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5748{
5749	struct extent_map *em;
5750
5751	while (1) {
5752		write_lock(&tree->lock);
5753		em = lookup_extent_mapping(tree, 0, (u64)-1);
5754		if (em)
5755			remove_extent_mapping(tree, em);
5756		write_unlock(&tree->lock);
5757		if (!em)
5758			break;
5759		/* once for us */
5760		free_extent_map(em);
5761		/* once for the tree */
5762		free_extent_map(em);
5763	}
5764}
5765
5766int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5767{
5768	struct extent_map *em;
5769	struct map_lookup *map;
5770	int ret;
 
5771
5772	em = btrfs_get_chunk_map(fs_info, logical, len);
5773	if (IS_ERR(em))
5774		/*
5775		 * We could return errors for these cases, but that could get
5776		 * ugly and we'd probably do the same thing which is just not do
5777		 * anything else and exit, so return 1 so the callers don't try
5778		 * to use other copies.
5779		 */
5780		return 1;
5781
5782	map = em->map_lookup;
5783	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5784		ret = map->num_stripes;
5785	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5786		ret = map->sub_stripes;
 
5787	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5788		ret = 2;
5789	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5790		/*
5791		 * There could be two corrupted data stripes, we need
5792		 * to loop retry in order to rebuild the correct data.
5793		 *
5794		 * Fail a stripe at a time on every retry except the
5795		 * stripe under reconstruction.
5796		 */
5797		ret = map->num_stripes;
5798	else
5799		ret = 1;
5800	free_extent_map(em);
5801
5802	down_read(&fs_info->dev_replace.rwsem);
5803	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5804	    fs_info->dev_replace.tgtdev)
5805		ret++;
5806	up_read(&fs_info->dev_replace.rwsem);
5807
5808	return ret;
5809}
5810
5811unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5812				    u64 logical)
5813{
5814	struct extent_map *em;
5815	struct map_lookup *map;
5816	unsigned long len = fs_info->sectorsize;
5817
 
 
 
5818	em = btrfs_get_chunk_map(fs_info, logical, len);
5819
5820	if (!WARN_ON(IS_ERR(em))) {
5821		map = em->map_lookup;
5822		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5823			len = map->stripe_len * nr_data_stripes(map);
5824		free_extent_map(em);
5825	}
5826	return len;
5827}
5828
5829int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5830{
5831	struct extent_map *em;
5832	struct map_lookup *map;
5833	int ret = 0;
5834
 
 
 
5835	em = btrfs_get_chunk_map(fs_info, logical, len);
5836
5837	if(!WARN_ON(IS_ERR(em))) {
5838		map = em->map_lookup;
5839		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5840			ret = 1;
5841		free_extent_map(em);
5842	}
5843	return ret;
5844}
5845
5846static int find_live_mirror(struct btrfs_fs_info *fs_info,
5847			    struct map_lookup *map, int first,
5848			    int dev_replace_is_ongoing)
5849{
5850	int i;
5851	int num_stripes;
5852	int preferred_mirror;
5853	int tolerance;
5854	struct btrfs_device *srcdev;
5855
5856	ASSERT((map->type &
5857		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5858
5859	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5860		num_stripes = map->sub_stripes;
5861	else
5862		num_stripes = map->num_stripes;
5863
5864	switch (fs_info->fs_devices->read_policy) {
5865	default:
5866		/* Shouldn't happen, just warn and use pid instead of failing */
5867		btrfs_warn_rl(fs_info,
5868			      "unknown read_policy type %u, reset to pid",
5869			      fs_info->fs_devices->read_policy);
5870		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5871		fallthrough;
5872	case BTRFS_READ_POLICY_PID:
5873		preferred_mirror = first + (current->pid % num_stripes);
5874		break;
5875	}
5876
5877	if (dev_replace_is_ongoing &&
5878	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5879	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5880		srcdev = fs_info->dev_replace.srcdev;
5881	else
5882		srcdev = NULL;
5883
5884	/*
5885	 * try to avoid the drive that is the source drive for a
5886	 * dev-replace procedure, only choose it if no other non-missing
5887	 * mirror is available
5888	 */
5889	for (tolerance = 0; tolerance < 2; tolerance++) {
5890		if (map->stripes[preferred_mirror].dev->bdev &&
5891		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5892			return preferred_mirror;
5893		for (i = first; i < first + num_stripes; i++) {
5894			if (map->stripes[i].dev->bdev &&
5895			    (tolerance || map->stripes[i].dev != srcdev))
5896				return i;
5897		}
5898	}
5899
5900	/* we couldn't find one that doesn't fail.  Just return something
5901	 * and the io error handling code will clean up eventually
5902	 */
5903	return preferred_mirror;
5904}
5905
5906/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5907static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5908{
5909	int i;
5910	int again = 1;
5911
5912	while (again) {
5913		again = 0;
5914		for (i = 0; i < num_stripes - 1; i++) {
5915			/* Swap if parity is on a smaller index */
5916			if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5917				swap(bbio->stripes[i], bbio->stripes[i + 1]);
5918				swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5919				again = 1;
5920			}
5921		}
5922	}
5923}
5924
5925static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5926{
5927	struct btrfs_bio *bbio = kzalloc(
5928		 /* the size of the btrfs_bio */
5929		sizeof(struct btrfs_bio) +
5930		/* plus the variable array for the stripes */
5931		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5932		/* plus the variable array for the tgt dev */
 
 
5933		sizeof(int) * (real_stripes) +
5934		/*
5935		 * plus the raid_map, which includes both the tgt dev
5936		 * and the stripes
5937		 */
5938		sizeof(u64) * (total_stripes),
5939		GFP_NOFS|__GFP_NOFAIL);
 
 
 
5940
5941	atomic_set(&bbio->error, 0);
5942	refcount_set(&bbio->refs, 1);
5943
5944	bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5945	bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
 
5946
5947	return bbio;
5948}
5949
5950void btrfs_get_bbio(struct btrfs_bio *bbio)
5951{
5952	WARN_ON(!refcount_read(&bbio->refs));
5953	refcount_inc(&bbio->refs);
5954}
5955
5956void btrfs_put_bbio(struct btrfs_bio *bbio)
5957{
5958	if (!bbio)
5959		return;
5960	if (refcount_dec_and_test(&bbio->refs))
5961		kfree(bbio);
5962}
5963
5964/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5965/*
5966 * Please note that, discard won't be sent to target device of device
5967 * replace.
5968 */
5969static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5970					 u64 logical, u64 *length_ret,
5971					 struct btrfs_bio **bbio_ret)
5972{
5973	struct extent_map *em;
5974	struct map_lookup *map;
5975	struct btrfs_bio *bbio;
5976	u64 length = *length_ret;
5977	u64 offset;
5978	u64 stripe_nr;
5979	u64 stripe_nr_end;
5980	u64 stripe_end_offset;
5981	u64 stripe_cnt;
5982	u64 stripe_len;
5983	u64 stripe_offset;
5984	u64 num_stripes;
5985	u32 stripe_index;
5986	u32 factor = 0;
5987	u32 sub_stripes = 0;
5988	u64 stripes_per_dev = 0;
5989	u32 remaining_stripes = 0;
5990	u32 last_stripe = 0;
5991	int ret = 0;
5992	int i;
5993
5994	/* discard always return a bbio */
5995	ASSERT(bbio_ret);
5996
5997	em = btrfs_get_chunk_map(fs_info, logical, length);
5998	if (IS_ERR(em))
5999		return PTR_ERR(em);
6000
6001	map = em->map_lookup;
 
6002	/* we don't discard raid56 yet */
6003	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6004		ret = -EOPNOTSUPP;
6005		goto out;
6006	}
6007
6008	offset = logical - em->start;
6009	length = min_t(u64, em->start + em->len - logical, length);
6010	*length_ret = length;
6011
6012	stripe_len = map->stripe_len;
6013	/*
6014	 * stripe_nr counts the total number of stripes we have to stride
6015	 * to get to this block
6016	 */
6017	stripe_nr = div64_u64(offset, stripe_len);
6018
6019	/* stripe_offset is the offset of this block in its stripe */
6020	stripe_offset = offset - stripe_nr * stripe_len;
6021
6022	stripe_nr_end = round_up(offset + length, map->stripe_len);
6023	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6024	stripe_cnt = stripe_nr_end - stripe_nr;
6025	stripe_end_offset = stripe_nr_end * map->stripe_len -
6026			    (offset + length);
6027	/*
6028	 * after this, stripe_nr is the number of stripes on this
6029	 * device we have to walk to find the data, and stripe_index is
6030	 * the number of our device in the stripe array
6031	 */
6032	num_stripes = 1;
6033	stripe_index = 0;
6034	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6035			 BTRFS_BLOCK_GROUP_RAID10)) {
6036		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6037			sub_stripes = 1;
6038		else
6039			sub_stripes = map->sub_stripes;
6040
6041		factor = map->num_stripes / sub_stripes;
6042		num_stripes = min_t(u64, map->num_stripes,
6043				    sub_stripes * stripe_cnt);
6044		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6045		stripe_index *= sub_stripes;
6046		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6047					      &remaining_stripes);
6048		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6049		last_stripe *= sub_stripes;
6050	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6051				BTRFS_BLOCK_GROUP_DUP)) {
6052		num_stripes = map->num_stripes;
6053	} else {
6054		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6055					&stripe_index);
6056	}
6057
6058	bbio = alloc_btrfs_bio(num_stripes, 0);
6059	if (!bbio) {
6060		ret = -ENOMEM;
6061		goto out;
6062	}
6063
6064	for (i = 0; i < num_stripes; i++) {
6065		bbio->stripes[i].physical =
6066			map->stripes[stripe_index].physical +
6067			stripe_offset + stripe_nr * map->stripe_len;
6068		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6069
6070		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6071				 BTRFS_BLOCK_GROUP_RAID10)) {
6072			bbio->stripes[i].length = stripes_per_dev *
6073				map->stripe_len;
6074
6075			if (i / sub_stripes < remaining_stripes)
6076				bbio->stripes[i].length +=
6077					map->stripe_len;
6078
6079			/*
6080			 * Special for the first stripe and
6081			 * the last stripe:
6082			 *
6083			 * |-------|...|-------|
6084			 *     |----------|
6085			 *    off     end_off
6086			 */
6087			if (i < sub_stripes)
6088				bbio->stripes[i].length -=
6089					stripe_offset;
6090
6091			if (stripe_index >= last_stripe &&
6092			    stripe_index <= (last_stripe +
6093					     sub_stripes - 1))
6094				bbio->stripes[i].length -=
6095					stripe_end_offset;
6096
6097			if (i == sub_stripes - 1)
6098				stripe_offset = 0;
6099		} else {
6100			bbio->stripes[i].length = length;
6101		}
6102
6103		stripe_index++;
6104		if (stripe_index == map->num_stripes) {
6105			stripe_index = 0;
6106			stripe_nr++;
6107		}
6108	}
6109
6110	*bbio_ret = bbio;
6111	bbio->map_type = map->type;
6112	bbio->num_stripes = num_stripes;
6113out:
6114	free_extent_map(em);
6115	return ret;
 
 
 
6116}
6117
6118/*
6119 * In dev-replace case, for repair case (that's the only case where the mirror
6120 * is selected explicitly when calling btrfs_map_block), blocks left of the
6121 * left cursor can also be read from the target drive.
6122 *
6123 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6124 * array of stripes.
6125 * For READ, it also needs to be supported using the same mirror number.
6126 *
6127 * If the requested block is not left of the left cursor, EIO is returned. This
6128 * can happen because btrfs_num_copies() returns one more in the dev-replace
6129 * case.
6130 */
6131static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6132					 u64 logical, u64 length,
6133					 u64 srcdev_devid, int *mirror_num,
6134					 u64 *physical)
6135{
6136	struct btrfs_bio *bbio = NULL;
6137	int num_stripes;
6138	int index_srcdev = 0;
6139	int found = 0;
6140	u64 physical_of_found = 0;
6141	int i;
6142	int ret = 0;
6143
6144	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6145				logical, &length, &bbio, 0, 0);
6146	if (ret) {
6147		ASSERT(bbio == NULL);
6148		return ret;
6149	}
6150
6151	num_stripes = bbio->num_stripes;
6152	if (*mirror_num > num_stripes) {
6153		/*
6154		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6155		 * that means that the requested area is not left of the left
6156		 * cursor
6157		 */
6158		btrfs_put_bbio(bbio);
6159		return -EIO;
6160	}
6161
6162	/*
6163	 * process the rest of the function using the mirror_num of the source
6164	 * drive. Therefore look it up first.  At the end, patch the device
6165	 * pointer to the one of the target drive.
6166	 */
6167	for (i = 0; i < num_stripes; i++) {
6168		if (bbio->stripes[i].dev->devid != srcdev_devid)
6169			continue;
6170
6171		/*
6172		 * In case of DUP, in order to keep it simple, only add the
6173		 * mirror with the lowest physical address
6174		 */
6175		if (found &&
6176		    physical_of_found <= bbio->stripes[i].physical)
6177			continue;
6178
6179		index_srcdev = i;
6180		found = 1;
6181		physical_of_found = bbio->stripes[i].physical;
6182	}
6183
6184	btrfs_put_bbio(bbio);
6185
6186	ASSERT(found);
6187	if (!found)
6188		return -EIO;
6189
6190	*mirror_num = index_srcdev + 1;
6191	*physical = physical_of_found;
6192	return ret;
6193}
6194
6195static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6196{
6197	struct btrfs_block_group *cache;
6198	bool ret;
6199
6200	/* Non zoned filesystem does not use "to_copy" flag */
6201	if (!btrfs_is_zoned(fs_info))
6202		return false;
6203
6204	cache = btrfs_lookup_block_group(fs_info, logical);
6205
6206	spin_lock(&cache->lock);
6207	ret = cache->to_copy;
6208	spin_unlock(&cache->lock);
6209
6210	btrfs_put_block_group(cache);
6211	return ret;
6212}
6213
6214static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6215				      struct btrfs_bio **bbio_ret,
6216				      struct btrfs_dev_replace *dev_replace,
6217				      u64 logical,
6218				      int *num_stripes_ret, int *max_errors_ret)
6219{
6220	struct btrfs_bio *bbio = *bbio_ret;
6221	u64 srcdev_devid = dev_replace->srcdev->devid;
6222	int tgtdev_indexes = 0;
6223	int num_stripes = *num_stripes_ret;
6224	int max_errors = *max_errors_ret;
6225	int i;
6226
6227	if (op == BTRFS_MAP_WRITE) {
6228		int index_where_to_add;
6229
6230		/*
6231		 * A block group which have "to_copy" set will eventually
6232		 * copied by dev-replace process. We can avoid cloning IO here.
6233		 */
6234		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6235			return;
6236
6237		/*
6238		 * duplicate the write operations while the dev replace
6239		 * procedure is running. Since the copying of the old disk to
6240		 * the new disk takes place at run time while the filesystem is
6241		 * mounted writable, the regular write operations to the old
6242		 * disk have to be duplicated to go to the new disk as well.
6243		 *
6244		 * Note that device->missing is handled by the caller, and that
6245		 * the write to the old disk is already set up in the stripes
6246		 * array.
6247		 */
6248		index_where_to_add = num_stripes;
6249		for (i = 0; i < num_stripes; i++) {
6250			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6251				/* write to new disk, too */
6252				struct btrfs_bio_stripe *new =
6253					bbio->stripes + index_where_to_add;
6254				struct btrfs_bio_stripe *old =
6255					bbio->stripes + i;
6256
6257				new->physical = old->physical;
6258				new->length = old->length;
6259				new->dev = dev_replace->tgtdev;
6260				bbio->tgtdev_map[i] = index_where_to_add;
6261				index_where_to_add++;
6262				max_errors++;
6263				tgtdev_indexes++;
6264			}
6265		}
6266		num_stripes = index_where_to_add;
6267	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6268		int index_srcdev = 0;
6269		int found = 0;
6270		u64 physical_of_found = 0;
6271
6272		/*
6273		 * During the dev-replace procedure, the target drive can also
6274		 * be used to read data in case it is needed to repair a corrupt
6275		 * block elsewhere. This is possible if the requested area is
6276		 * left of the left cursor. In this area, the target drive is a
6277		 * full copy of the source drive.
6278		 */
6279		for (i = 0; i < num_stripes; i++) {
6280			if (bbio->stripes[i].dev->devid == srcdev_devid) {
6281				/*
6282				 * In case of DUP, in order to keep it simple,
6283				 * only add the mirror with the lowest physical
6284				 * address
6285				 */
6286				if (found &&
6287				    physical_of_found <=
6288				     bbio->stripes[i].physical)
6289					continue;
6290				index_srcdev = i;
6291				found = 1;
6292				physical_of_found = bbio->stripes[i].physical;
6293			}
6294		}
6295		if (found) {
6296			struct btrfs_bio_stripe *tgtdev_stripe =
6297				bbio->stripes + num_stripes;
6298
6299			tgtdev_stripe->physical = physical_of_found;
6300			tgtdev_stripe->length =
6301				bbio->stripes[index_srcdev].length;
6302			tgtdev_stripe->dev = dev_replace->tgtdev;
6303			bbio->tgtdev_map[index_srcdev] = num_stripes;
6304
6305			tgtdev_indexes++;
6306			num_stripes++;
6307		}
6308	}
6309
6310	*num_stripes_ret = num_stripes;
6311	*max_errors_ret = max_errors;
6312	bbio->num_tgtdevs = tgtdev_indexes;
6313	*bbio_ret = bbio;
6314}
6315
6316static bool need_full_stripe(enum btrfs_map_op op)
6317{
6318	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6319}
6320
6321/*
6322 * Calculate the geometry of a particular (address, len) tuple. This
6323 * information is used to calculate how big a particular bio can get before it
6324 * straddles a stripe.
6325 *
6326 * @fs_info: the filesystem
6327 * @em:      mapping containing the logical extent
6328 * @op:      type of operation - write or read
6329 * @logical: address that we want to figure out the geometry of
6330 * @io_geom: pointer used to return values
6331 *
6332 * Returns < 0 in case a chunk for the given logical address cannot be found,
6333 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6334 */
6335int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6336			  enum btrfs_map_op op, u64 logical,
6337			  struct btrfs_io_geometry *io_geom)
6338{
6339	struct map_lookup *map;
6340	u64 len;
6341	u64 offset;
6342	u64 stripe_offset;
6343	u64 stripe_nr;
6344	u64 stripe_len;
6345	u64 raid56_full_stripe_start = (u64)-1;
6346	int data_stripes;
6347
6348	ASSERT(op != BTRFS_MAP_DISCARD);
6349
6350	map = em->map_lookup;
6351	/* Offset of this logical address in the chunk */
6352	offset = logical - em->start;
6353	/* Len of a stripe in a chunk */
6354	stripe_len = map->stripe_len;
6355	/* Stripe where this block falls in */
6356	stripe_nr = div64_u64(offset, stripe_len);
6357	/* Offset of stripe in the chunk */
6358	stripe_offset = stripe_nr * stripe_len;
6359	if (offset < stripe_offset) {
6360		btrfs_crit(fs_info,
6361"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6362			stripe_offset, offset, em->start, logical, stripe_len);
6363		return -EINVAL;
6364	}
6365
6366	/* stripe_offset is the offset of this block in its stripe */
6367	stripe_offset = offset - stripe_offset;
6368	data_stripes = nr_data_stripes(map);
6369
6370	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
 
6371		u64 max_len = stripe_len - stripe_offset;
6372
6373		/*
6374		 * In case of raid56, we need to know the stripe aligned start
6375		 */
6376		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6377			unsigned long full_stripe_len = stripe_len * data_stripes;
6378			raid56_full_stripe_start = offset;
6379
6380			/*
6381			 * Allow a write of a full stripe, but make sure we
6382			 * don't allow straddling of stripes
6383			 */
6384			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6385					full_stripe_len);
6386			raid56_full_stripe_start *= full_stripe_len;
6387
6388			/*
6389			 * For writes to RAID[56], allow a full stripeset across
6390			 * all disks. For other RAID types and for RAID[56]
6391			 * reads, just allow a single stripe (on a single disk).
6392			 */
6393			if (op == BTRFS_MAP_WRITE) {
6394				max_len = stripe_len * data_stripes -
6395					  (offset - raid56_full_stripe_start);
6396			}
6397		}
6398		len = min_t(u64, em->len - offset, max_len);
6399	} else {
6400		len = em->len - offset;
6401	}
6402
6403	io_geom->len = len;
6404	io_geom->offset = offset;
6405	io_geom->stripe_len = stripe_len;
6406	io_geom->stripe_nr = stripe_nr;
6407	io_geom->stripe_offset = stripe_offset;
6408	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6409
6410	return 0;
6411}
6412
6413static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6414			     enum btrfs_map_op op,
6415			     u64 logical, u64 *length,
6416			     struct btrfs_bio **bbio_ret,
6417			     int mirror_num, int need_raid_map)
 
 
 
 
 
 
 
 
6418{
6419	struct extent_map *em;
6420	struct map_lookup *map;
6421	u64 stripe_offset;
6422	u64 stripe_nr;
6423	u64 stripe_len;
6424	u32 stripe_index;
6425	int data_stripes;
6426	int i;
6427	int ret = 0;
 
6428	int num_stripes;
6429	int max_errors = 0;
6430	int tgtdev_indexes = 0;
6431	struct btrfs_bio *bbio = NULL;
6432	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6433	int dev_replace_is_ongoing = 0;
6434	int num_alloc_stripes;
6435	int patch_the_first_stripe_for_dev_replace = 0;
6436	u64 physical_to_patch_in_first_stripe = 0;
6437	u64 raid56_full_stripe_start = (u64)-1;
6438	struct btrfs_io_geometry geom;
6439
6440	ASSERT(bbio_ret);
6441	ASSERT(op != BTRFS_MAP_DISCARD);
6442
6443	em = btrfs_get_chunk_map(fs_info, logical, *length);
6444	ASSERT(!IS_ERR(em));
6445
6446	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6447	if (ret < 0)
6448		return ret;
6449
6450	map = em->map_lookup;
6451
6452	*length = geom.len;
6453	stripe_len = geom.stripe_len;
6454	stripe_nr = geom.stripe_nr;
6455	stripe_offset = geom.stripe_offset;
6456	raid56_full_stripe_start = geom.raid56_stripe_offset;
6457	data_stripes = nr_data_stripes(map);
6458
6459	down_read(&dev_replace->rwsem);
6460	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6461	/*
6462	 * Hold the semaphore for read during the whole operation, write is
6463	 * requested at commit time but must wait.
6464	 */
6465	if (!dev_replace_is_ongoing)
6466		up_read(&dev_replace->rwsem);
6467
6468	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6469	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6470		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6471						    dev_replace->srcdev->devid,
6472						    &mirror_num,
6473					    &physical_to_patch_in_first_stripe);
6474		if (ret)
6475			goto out;
6476		else
6477			patch_the_first_stripe_for_dev_replace = 1;
6478	} else if (mirror_num > map->num_stripes) {
6479		mirror_num = 0;
6480	}
6481
6482	num_stripes = 1;
6483	stripe_index = 0;
6484	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6485		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6486				&stripe_index);
6487		if (!need_full_stripe(op))
6488			mirror_num = 1;
6489	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6490		if (need_full_stripe(op))
6491			num_stripes = map->num_stripes;
6492		else if (mirror_num)
6493			stripe_index = mirror_num - 1;
6494		else {
6495			stripe_index = find_live_mirror(fs_info, map, 0,
6496					    dev_replace_is_ongoing);
6497			mirror_num = stripe_index + 1;
6498		}
6499
6500	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6501		if (need_full_stripe(op)) {
6502			num_stripes = map->num_stripes;
6503		} else if (mirror_num) {
6504			stripe_index = mirror_num - 1;
6505		} else {
6506			mirror_num = 1;
6507		}
6508
6509	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6510		u32 factor = map->num_stripes / map->sub_stripes;
6511
6512		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6513		stripe_index *= map->sub_stripes;
6514
6515		if (need_full_stripe(op))
6516			num_stripes = map->sub_stripes;
6517		else if (mirror_num)
6518			stripe_index += mirror_num - 1;
6519		else {
6520			int old_stripe_index = stripe_index;
6521			stripe_index = find_live_mirror(fs_info, map,
6522					      stripe_index,
6523					      dev_replace_is_ongoing);
6524			mirror_num = stripe_index - old_stripe_index + 1;
6525		}
6526
6527	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
6528		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6529			/* push stripe_nr back to the start of the full stripe */
6530			stripe_nr = div64_u64(raid56_full_stripe_start,
6531					stripe_len * data_stripes);
6532
6533			/* RAID[56] write or recovery. Return all stripes */
6534			num_stripes = map->num_stripes;
6535			max_errors = nr_parity_stripes(map);
6536
6537			*length = map->stripe_len;
 
 
 
6538			stripe_index = 0;
6539			stripe_offset = 0;
6540		} else {
6541			/*
6542			 * Mirror #0 or #1 means the original data block.
6543			 * Mirror #2 is RAID5 parity block.
6544			 * Mirror #3 is RAID6 Q block.
6545			 */
6546			stripe_nr = div_u64_rem(stripe_nr,
6547					data_stripes, &stripe_index);
6548			if (mirror_num > 1)
6549				stripe_index = data_stripes + mirror_num - 2;
6550
6551			/* We distribute the parity blocks across stripes */
6552			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6553					&stripe_index);
6554			if (!need_full_stripe(op) && mirror_num <= 1)
6555				mirror_num = 1;
6556		}
6557	} else {
6558		/*
6559		 * after this, stripe_nr is the number of stripes on this
6560		 * device we have to walk to find the data, and stripe_index is
6561		 * the number of our device in the stripe array
6562		 */
6563		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6564				&stripe_index);
6565		mirror_num = stripe_index + 1;
6566	}
6567	if (stripe_index >= map->num_stripes) {
6568		btrfs_crit(fs_info,
6569			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6570			   stripe_index, map->num_stripes);
6571		ret = -EINVAL;
6572		goto out;
6573	}
6574
6575	num_alloc_stripes = num_stripes;
6576	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6577		if (op == BTRFS_MAP_WRITE)
6578			num_alloc_stripes <<= 1;
6579		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6580			num_alloc_stripes++;
6581		tgtdev_indexes = num_stripes;
6582	}
6583
6584	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6585	if (!bbio) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6586		ret = -ENOMEM;
6587		goto out;
6588	}
6589
6590	for (i = 0; i < num_stripes; i++) {
6591		bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6592			stripe_offset + stripe_nr * map->stripe_len;
6593		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6594		stripe_index++;
6595	}
6596
6597	/* build raid_map */
6598	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6599	    (need_full_stripe(op) || mirror_num > 1)) {
6600		u64 tmp;
6601		unsigned rot;
6602
6603		/* Work out the disk rotation on this stripe-set */
6604		div_u64_rem(stripe_nr, num_stripes, &rot);
6605
6606		/* Fill in the logical address of each stripe */
6607		tmp = stripe_nr * data_stripes;
6608		for (i = 0; i < data_stripes; i++)
6609			bbio->raid_map[(i+rot) % num_stripes] =
6610				em->start + (tmp + i) * map->stripe_len;
6611
6612		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6613		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6614			bbio->raid_map[(i+rot+1) % num_stripes] =
6615				RAID6_Q_STRIPE;
6616
6617		sort_parity_stripes(bbio, num_stripes);
6618	}
6619
6620	if (need_full_stripe(op))
6621		max_errors = btrfs_chunk_max_errors(map);
6622
6623	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6624	    need_full_stripe(op)) {
6625		handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6626					  &num_stripes, &max_errors);
6627	}
6628
6629	*bbio_ret = bbio;
6630	bbio->map_type = map->type;
6631	bbio->num_stripes = num_stripes;
6632	bbio->max_errors = max_errors;
6633	bbio->mirror_num = mirror_num;
6634
6635	/*
6636	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6637	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6638	 * available as a mirror
6639	 */
6640	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6641		WARN_ON(num_stripes > 1);
6642		bbio->stripes[0].dev = dev_replace->tgtdev;
6643		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6644		bbio->mirror_num = map->num_stripes + 1;
6645	}
6646out:
6647	if (dev_replace_is_ongoing) {
6648		lockdep_assert_held(&dev_replace->rwsem);
6649		/* Unlock and let waiting writers proceed */
6650		up_read(&dev_replace->rwsem);
6651	}
6652	free_extent_map(em);
6653	return ret;
6654}
6655
6656int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6657		      u64 logical, u64 *length,
6658		      struct btrfs_bio **bbio_ret, int mirror_num)
6659{
6660	if (op == BTRFS_MAP_DISCARD)
6661		return __btrfs_map_block_for_discard(fs_info, logical,
6662						     length, bbio_ret);
6663
6664	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6665				 mirror_num, 0);
6666}
6667
6668/* For Scrub/replace */
6669int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6670		     u64 logical, u64 *length,
6671		     struct btrfs_bio **bbio_ret)
6672{
6673	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
 
6674}
6675
6676static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
 
6677{
6678	bio->bi_private = bbio->private;
6679	bio->bi_end_io = bbio->end_io;
6680	bio_endio(bio);
6681
6682	btrfs_put_bbio(bbio);
6683}
6684
6685static void btrfs_end_bio(struct bio *bio)
 
6686{
6687	struct btrfs_bio *bbio = bio->bi_private;
6688	int is_orig_bio = 0;
6689
6690	if (bio->bi_status) {
6691		atomic_inc(&bbio->error);
6692		if (bio->bi_status == BLK_STS_IOERR ||
6693		    bio->bi_status == BLK_STS_TARGET) {
6694			struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6695
6696			ASSERT(dev->bdev);
6697			if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6698				btrfs_dev_stat_inc_and_print(dev,
6699						BTRFS_DEV_STAT_WRITE_ERRS);
6700			else if (!(bio->bi_opf & REQ_RAHEAD))
6701				btrfs_dev_stat_inc_and_print(dev,
6702						BTRFS_DEV_STAT_READ_ERRS);
6703			if (bio->bi_opf & REQ_PREFLUSH)
6704				btrfs_dev_stat_inc_and_print(dev,
6705						BTRFS_DEV_STAT_FLUSH_ERRS);
6706		}
6707	}
6708
6709	if (bio == bbio->orig_bio)
6710		is_orig_bio = 1;
6711
6712	btrfs_bio_counter_dec(bbio->fs_info);
6713
6714	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6715		if (!is_orig_bio) {
6716			bio_put(bio);
6717			bio = bbio->orig_bio;
6718		}
6719
6720		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6721		/* only send an error to the higher layers if it is
6722		 * beyond the tolerance of the btrfs bio
6723		 */
6724		if (atomic_read(&bbio->error) > bbio->max_errors) {
6725			bio->bi_status = BLK_STS_IOERR;
6726		} else {
6727			/*
6728			 * this bio is actually up to date, we didn't
6729			 * go over the max number of errors
6730			 */
6731			bio->bi_status = BLK_STS_OK;
6732		}
6733
6734		btrfs_end_bbio(bbio, bio);
6735	} else if (!is_orig_bio) {
6736		bio_put(bio);
6737	}
6738}
6739
6740static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6741			      u64 physical, struct btrfs_device *dev)
6742{
6743	struct btrfs_fs_info *fs_info = bbio->fs_info;
6744
6745	bio->bi_private = bbio;
6746	btrfs_io_bio(bio)->device = dev;
6747	bio->bi_end_io = btrfs_end_bio;
6748	bio->bi_iter.bi_sector = physical >> 9;
6749	/*
6750	 * For zone append writing, bi_sector must point the beginning of the
6751	 * zone
6752	 */
6753	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6754		if (btrfs_dev_is_sequential(dev, physical)) {
6755			u64 zone_start = round_down(physical, fs_info->zone_size);
6756
6757			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6758		} else {
6759			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6760			bio->bi_opf |= REQ_OP_WRITE;
6761		}
6762	}
6763	btrfs_debug_in_rcu(fs_info,
6764	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6765		bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6766		(unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6767		dev->devid, bio->bi_iter.bi_size);
6768	bio_set_dev(bio, dev->bdev);
6769
6770	btrfs_bio_counter_inc_noblocked(fs_info);
6771
6772	btrfsic_submit_bio(bio);
6773}
6774
6775static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6776{
6777	atomic_inc(&bbio->error);
6778	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6779		/* Should be the original bio. */
6780		WARN_ON(bio != bbio->orig_bio);
6781
6782		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6783		bio->bi_iter.bi_sector = logical >> 9;
6784		if (atomic_read(&bbio->error) > bbio->max_errors)
6785			bio->bi_status = BLK_STS_IOERR;
6786		else
6787			bio->bi_status = BLK_STS_OK;
6788		btrfs_end_bbio(bbio, bio);
6789	}
6790}
6791
6792blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6793			   int mirror_num)
6794{
6795	struct btrfs_device *dev;
6796	struct bio *first_bio = bio;
6797	u64 logical = bio->bi_iter.bi_sector << 9;
6798	u64 length = 0;
6799	u64 map_length;
6800	int ret;
6801	int dev_nr;
6802	int total_devs;
6803	struct btrfs_bio *bbio = NULL;
6804
6805	length = bio->bi_iter.bi_size;
6806	map_length = length;
6807
6808	btrfs_bio_counter_inc_blocked(fs_info);
6809	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6810				&map_length, &bbio, mirror_num, 1);
6811	if (ret) {
6812		btrfs_bio_counter_dec(fs_info);
6813		return errno_to_blk_status(ret);
6814	}
6815
6816	total_devs = bbio->num_stripes;
6817	bbio->orig_bio = first_bio;
6818	bbio->private = first_bio->bi_private;
6819	bbio->end_io = first_bio->bi_end_io;
6820	bbio->fs_info = fs_info;
6821	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6822
6823	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6824	    ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6825		/* In this case, map_length has been set to the length of
6826		   a single stripe; not the whole write */
6827		if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6828			ret = raid56_parity_write(fs_info, bio, bbio,
6829						  map_length);
6830		} else {
6831			ret = raid56_parity_recover(fs_info, bio, bbio,
6832						    map_length, mirror_num, 1);
6833		}
6834
6835		btrfs_bio_counter_dec(fs_info);
6836		return errno_to_blk_status(ret);
6837	}
6838
6839	if (map_length < length) {
6840		btrfs_crit(fs_info,
6841			   "mapping failed logical %llu bio len %llu len %llu",
6842			   logical, length, map_length);
6843		BUG();
6844	}
6845
6846	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6847		dev = bbio->stripes[dev_nr].dev;
6848		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6849						   &dev->dev_state) ||
6850		    (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6851		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6852			bbio_error(bbio, first_bio, logical);
6853			continue;
6854		}
6855
6856		if (dev_nr < total_devs - 1)
6857			bio = btrfs_bio_clone(first_bio);
6858		else
6859			bio = first_bio;
6860
6861		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6862	}
6863	btrfs_bio_counter_dec(fs_info);
6864	return BLK_STS_OK;
6865}
6866
6867/*
6868 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6869 * return NULL.
6870 *
6871 * If devid and uuid are both specified, the match must be exact, otherwise
6872 * only devid is used.
6873 */
6874struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6875				       u64 devid, u8 *uuid, u8 *fsid)
6876{
6877	struct btrfs_device *device;
6878	struct btrfs_fs_devices *seed_devs;
6879
6880	if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6881		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6882			if (device->devid == devid &&
6883			    (!uuid || memcmp(device->uuid, uuid,
6884					     BTRFS_UUID_SIZE) == 0))
6885				return device;
6886		}
6887	}
6888
6889	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6890		if (!fsid ||
6891		    !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6892			list_for_each_entry(device, &seed_devs->devices,
6893					    dev_list) {
6894				if (device->devid == devid &&
6895				    (!uuid || memcmp(device->uuid, uuid,
6896						     BTRFS_UUID_SIZE) == 0))
6897					return device;
6898			}
6899		}
6900	}
6901
6902	return NULL;
6903}
6904
6905static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6906					    u64 devid, u8 *dev_uuid)
6907{
6908	struct btrfs_device *device;
6909	unsigned int nofs_flag;
6910
6911	/*
6912	 * We call this under the chunk_mutex, so we want to use NOFS for this
6913	 * allocation, however we don't want to change btrfs_alloc_device() to
6914	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6915	 * places.
6916	 */
 
6917	nofs_flag = memalloc_nofs_save();
6918	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6919	memalloc_nofs_restore(nofs_flag);
6920	if (IS_ERR(device))
6921		return device;
6922
6923	list_add(&device->dev_list, &fs_devices->devices);
6924	device->fs_devices = fs_devices;
6925	fs_devices->num_devices++;
6926
6927	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6928	fs_devices->missing_devices++;
6929
6930	return device;
6931}
6932
6933/**
6934 * btrfs_alloc_device - allocate struct btrfs_device
 
6935 * @fs_info:	used only for generating a new devid, can be NULL if
6936 *		devid is provided (i.e. @devid != NULL).
6937 * @devid:	a pointer to devid for this device.  If NULL a new devid
6938 *		is generated.
6939 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6940 *		is generated.
 
6941 *
6942 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6943 * on error.  Returned struct is not linked onto any lists and must be
6944 * destroyed with btrfs_free_device.
6945 */
6946struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6947					const u64 *devid,
6948					const u8 *uuid)
6949{
6950	struct btrfs_device *dev;
6951	u64 tmp;
6952
6953	if (WARN_ON(!devid && !fs_info))
6954		return ERR_PTR(-EINVAL);
6955
6956	dev = __alloc_device(fs_info);
6957	if (IS_ERR(dev))
6958		return dev;
 
 
 
 
 
 
 
 
6959
6960	if (devid)
6961		tmp = *devid;
6962	else {
6963		int ret;
6964
6965		ret = find_next_devid(fs_info, &tmp);
6966		if (ret) {
6967			btrfs_free_device(dev);
6968			return ERR_PTR(ret);
6969		}
6970	}
6971	dev->devid = tmp;
6972
6973	if (uuid)
6974		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6975	else
6976		generate_random_uuid(dev->uuid);
6977
 
 
 
 
 
 
 
 
 
 
 
6978	return dev;
6979}
6980
6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982					u64 devid, u8 *uuid, bool error)
6983{
6984	if (error)
6985		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986			      devid, uuid);
6987	else
6988		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989			      devid, uuid);
6990}
6991
6992static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6993{
6994	int index = btrfs_bg_flags_to_raid_index(type);
6995	int ncopies = btrfs_raid_array[index].ncopies;
6996	const int nparity = btrfs_raid_array[index].nparity;
6997	int data_stripes;
6998
6999	if (nparity)
7000		data_stripes = num_stripes - nparity;
7001	else
7002		data_stripes = num_stripes / ncopies;
7003
7004	return div_u64(chunk_len, data_stripes);
7005}
7006
7007#if BITS_PER_LONG == 32
7008/*
7009 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7010 * can't be accessed on 32bit systems.
7011 *
7012 * This function do mount time check to reject the fs if it already has
7013 * metadata chunk beyond that limit.
7014 */
7015static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7016				  u64 logical, u64 length, u64 type)
7017{
7018	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7019		return 0;
7020
7021	if (logical + length < MAX_LFS_FILESIZE)
7022		return 0;
7023
7024	btrfs_err_32bit_limit(fs_info);
7025	return -EOVERFLOW;
7026}
7027
7028/*
7029 * This is to give early warning for any metadata chunk reaching
7030 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7031 * Although we can still access the metadata, it's not going to be possible
7032 * once the limit is reached.
7033 */
7034static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7035				  u64 logical, u64 length, u64 type)
7036{
7037	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7038		return;
7039
7040	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7041		return;
7042
7043	btrfs_warn_32bit_limit(fs_info);
7044}
7045#endif
7046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7047static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7048			  struct btrfs_chunk *chunk)
7049{
 
7050	struct btrfs_fs_info *fs_info = leaf->fs_info;
7051	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7052	struct map_lookup *map;
7053	struct extent_map *em;
7054	u64 logical;
7055	u64 length;
7056	u64 devid;
7057	u64 type;
7058	u8 uuid[BTRFS_UUID_SIZE];
 
7059	int num_stripes;
7060	int ret;
7061	int i;
7062
7063	logical = key->offset;
7064	length = btrfs_chunk_length(leaf, chunk);
7065	type = btrfs_chunk_type(leaf, chunk);
 
7066	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7067
7068#if BITS_PER_LONG == 32
7069	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7070	if (ret < 0)
7071		return ret;
7072	warn_32bit_meta_chunk(fs_info, logical, length, type);
7073#endif
7074
7075	/*
7076	 * Only need to verify chunk item if we're reading from sys chunk array,
7077	 * as chunk item in tree block is already verified by tree-checker.
7078	 */
7079	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7080		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7081		if (ret)
7082			return ret;
7083	}
7084
7085	read_lock(&map_tree->lock);
7086	em = lookup_extent_mapping(map_tree, logical, 1);
7087	read_unlock(&map_tree->lock);
7088
7089	/* already mapped? */
7090	if (em && em->start <= logical && em->start + em->len > logical) {
7091		free_extent_map(em);
7092		return 0;
7093	} else if (em) {
7094		free_extent_map(em);
7095	}
7096
7097	em = alloc_extent_map();
7098	if (!em)
7099		return -ENOMEM;
7100	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7101	if (!map) {
7102		free_extent_map(em);
7103		return -ENOMEM;
7104	}
7105
7106	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7107	em->map_lookup = map;
7108	em->start = logical;
7109	em->len = length;
7110	em->orig_start = 0;
7111	em->block_start = 0;
7112	em->block_len = em->len;
7113
7114	map->num_stripes = num_stripes;
7115	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7116	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7117	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7118	map->type = type;
7119	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 
 
 
 
 
 
 
 
7120	map->verified_stripes = 0;
7121	em->orig_block_len = calc_stripe_length(type, em->len,
7122						map->num_stripes);
7123	for (i = 0; i < num_stripes; i++) {
7124		map->stripes[i].physical =
7125			btrfs_stripe_offset_nr(leaf, chunk, i);
7126		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 
7127		read_extent_buffer(leaf, uuid, (unsigned long)
7128				   btrfs_stripe_dev_uuid_nr(chunk, i),
7129				   BTRFS_UUID_SIZE);
7130		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7131							devid, uuid, NULL);
7132		if (!map->stripes[i].dev &&
7133		    !btrfs_test_opt(fs_info, DEGRADED)) {
7134			free_extent_map(em);
7135			btrfs_report_missing_device(fs_info, devid, uuid, true);
7136			return -ENOENT;
7137		}
7138		if (!map->stripes[i].dev) {
7139			map->stripes[i].dev =
7140				add_missing_dev(fs_info->fs_devices, devid,
7141						uuid);
7142			if (IS_ERR(map->stripes[i].dev)) {
 
7143				free_extent_map(em);
7144				btrfs_err(fs_info,
7145					"failed to init missing dev %llu: %ld",
7146					devid, PTR_ERR(map->stripes[i].dev));
7147				return PTR_ERR(map->stripes[i].dev);
7148			}
7149			btrfs_report_missing_device(fs_info, devid, uuid, false);
7150		}
 
7151		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7152				&(map->stripes[i].dev->dev_state));
7153
7154	}
7155
7156	write_lock(&map_tree->lock);
7157	ret = add_extent_mapping(map_tree, em, 0);
7158	write_unlock(&map_tree->lock);
7159	if (ret < 0) {
7160		btrfs_err(fs_info,
7161			  "failed to add chunk map, start=%llu len=%llu: %d",
7162			  em->start, em->len, ret);
7163	}
7164	free_extent_map(em);
7165
7166	return ret;
7167}
7168
7169static void fill_device_from_item(struct extent_buffer *leaf,
7170				 struct btrfs_dev_item *dev_item,
7171				 struct btrfs_device *device)
7172{
7173	unsigned long ptr;
7174
7175	device->devid = btrfs_device_id(leaf, dev_item);
7176	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7177	device->total_bytes = device->disk_total_bytes;
7178	device->commit_total_bytes = device->disk_total_bytes;
7179	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7180	device->commit_bytes_used = device->bytes_used;
7181	device->type = btrfs_device_type(leaf, dev_item);
7182	device->io_align = btrfs_device_io_align(leaf, dev_item);
7183	device->io_width = btrfs_device_io_width(leaf, dev_item);
7184	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7185	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7186	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7187
7188	ptr = btrfs_device_uuid(dev_item);
7189	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7190}
7191
7192static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7193						  u8 *fsid)
7194{
7195	struct btrfs_fs_devices *fs_devices;
7196	int ret;
7197
7198	lockdep_assert_held(&uuid_mutex);
7199	ASSERT(fsid);
7200
7201	/* This will match only for multi-device seed fs */
7202	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7203		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7204			return fs_devices;
7205
7206
7207	fs_devices = find_fsid(fsid, NULL);
7208	if (!fs_devices) {
7209		if (!btrfs_test_opt(fs_info, DEGRADED))
7210			return ERR_PTR(-ENOENT);
7211
7212		fs_devices = alloc_fs_devices(fsid, NULL);
7213		if (IS_ERR(fs_devices))
7214			return fs_devices;
7215
7216		fs_devices->seeding = true;
7217		fs_devices->opened = 1;
7218		return fs_devices;
7219	}
7220
7221	/*
7222	 * Upon first call for a seed fs fsid, just create a private copy of the
7223	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7224	 */
7225	fs_devices = clone_fs_devices(fs_devices);
7226	if (IS_ERR(fs_devices))
7227		return fs_devices;
7228
7229	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7230	if (ret) {
7231		free_fs_devices(fs_devices);
7232		return ERR_PTR(ret);
7233	}
7234
7235	if (!fs_devices->seeding) {
7236		close_fs_devices(fs_devices);
7237		free_fs_devices(fs_devices);
7238		return ERR_PTR(-EINVAL);
7239	}
7240
7241	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7242
7243	return fs_devices;
7244}
7245
7246static int read_one_dev(struct extent_buffer *leaf,
7247			struct btrfs_dev_item *dev_item)
7248{
 
7249	struct btrfs_fs_info *fs_info = leaf->fs_info;
7250	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7251	struct btrfs_device *device;
7252	u64 devid;
7253	int ret;
7254	u8 fs_uuid[BTRFS_FSID_SIZE];
7255	u8 dev_uuid[BTRFS_UUID_SIZE];
7256
7257	devid = btrfs_device_id(leaf, dev_item);
 
7258	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7259			   BTRFS_UUID_SIZE);
7260	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7261			   BTRFS_FSID_SIZE);
 
 
7262
7263	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7264		fs_devices = open_seed_devices(fs_info, fs_uuid);
7265		if (IS_ERR(fs_devices))
7266			return PTR_ERR(fs_devices);
7267	}
7268
7269	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7270				   fs_uuid);
7271	if (!device) {
7272		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7273			btrfs_report_missing_device(fs_info, devid,
7274							dev_uuid, true);
7275			return -ENOENT;
7276		}
7277
7278		device = add_missing_dev(fs_devices, devid, dev_uuid);
7279		if (IS_ERR(device)) {
7280			btrfs_err(fs_info,
7281				"failed to add missing dev %llu: %ld",
7282				devid, PTR_ERR(device));
7283			return PTR_ERR(device);
7284		}
7285		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7286	} else {
7287		if (!device->bdev) {
7288			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7289				btrfs_report_missing_device(fs_info,
7290						devid, dev_uuid, true);
7291				return -ENOENT;
7292			}
7293			btrfs_report_missing_device(fs_info, devid,
7294							dev_uuid, false);
7295		}
7296
7297		if (!device->bdev &&
7298		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7299			/*
7300			 * this happens when a device that was properly setup
7301			 * in the device info lists suddenly goes bad.
7302			 * device->bdev is NULL, and so we have to set
7303			 * device->missing to one here
7304			 */
7305			device->fs_devices->missing_devices++;
7306			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7307		}
7308
7309		/* Move the device to its own fs_devices */
7310		if (device->fs_devices != fs_devices) {
7311			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7312							&device->dev_state));
7313
7314			list_move(&device->dev_list, &fs_devices->devices);
7315			device->fs_devices->num_devices--;
7316			fs_devices->num_devices++;
7317
7318			device->fs_devices->missing_devices--;
7319			fs_devices->missing_devices++;
7320
7321			device->fs_devices = fs_devices;
7322		}
7323	}
7324
7325	if (device->fs_devices != fs_info->fs_devices) {
7326		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7327		if (device->generation !=
7328		    btrfs_device_generation(leaf, dev_item))
7329			return -EINVAL;
7330	}
7331
7332	fill_device_from_item(leaf, dev_item, device);
7333	if (device->bdev) {
7334		u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7335
7336		if (device->total_bytes > max_total_bytes) {
7337			btrfs_err(fs_info,
7338			"device total_bytes should be at most %llu but found %llu",
7339				  max_total_bytes, device->total_bytes);
7340			return -EINVAL;
7341		}
7342	}
7343	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7344	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7345	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7346		device->fs_devices->total_rw_bytes += device->total_bytes;
7347		atomic64_add(device->total_bytes - device->bytes_used,
7348				&fs_info->free_chunk_space);
7349	}
7350	ret = 0;
7351	return ret;
7352}
7353
7354int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7355{
7356	struct btrfs_root *root = fs_info->tree_root;
7357	struct btrfs_super_block *super_copy = fs_info->super_copy;
7358	struct extent_buffer *sb;
7359	struct btrfs_disk_key *disk_key;
7360	struct btrfs_chunk *chunk;
7361	u8 *array_ptr;
7362	unsigned long sb_array_offset;
7363	int ret = 0;
7364	u32 num_stripes;
7365	u32 array_size;
7366	u32 len = 0;
7367	u32 cur_offset;
7368	u64 type;
7369	struct btrfs_key key;
7370
7371	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
 
7372	/*
7373	 * This will create extent buffer of nodesize, superblock size is
7374	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7375	 * overallocate but we can keep it as-is, only the first page is used.
7376	 */
7377	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7378					  root->root_key.objectid, 0);
7379	if (IS_ERR(sb))
7380		return PTR_ERR(sb);
7381	set_extent_buffer_uptodate(sb);
7382	/*
7383	 * The sb extent buffer is artificial and just used to read the system array.
7384	 * set_extent_buffer_uptodate() call does not properly mark all it's
7385	 * pages up-to-date when the page is larger: extent does not cover the
7386	 * whole page and consequently check_page_uptodate does not find all
7387	 * the page's extents up-to-date (the hole beyond sb),
7388	 * write_extent_buffer then triggers a WARN_ON.
7389	 *
7390	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7391	 * but sb spans only this function. Add an explicit SetPageUptodate call
7392	 * to silence the warning eg. on PowerPC 64.
7393	 */
7394	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7395		SetPageUptodate(sb->pages[0]);
7396
7397	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7398	array_size = btrfs_super_sys_array_size(super_copy);
7399
7400	array_ptr = super_copy->sys_chunk_array;
7401	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7402	cur_offset = 0;
7403
7404	while (cur_offset < array_size) {
7405		disk_key = (struct btrfs_disk_key *)array_ptr;
7406		len = sizeof(*disk_key);
7407		if (cur_offset + len > array_size)
7408			goto out_short_read;
7409
7410		btrfs_disk_key_to_cpu(&key, disk_key);
7411
7412		array_ptr += len;
7413		sb_array_offset += len;
7414		cur_offset += len;
7415
7416		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7417			btrfs_err(fs_info,
7418			    "unexpected item type %u in sys_array at offset %u",
7419				  (u32)key.type, cur_offset);
7420			ret = -EIO;
7421			break;
7422		}
7423
7424		chunk = (struct btrfs_chunk *)sb_array_offset;
7425		/*
7426		 * At least one btrfs_chunk with one stripe must be present,
7427		 * exact stripe count check comes afterwards
7428		 */
7429		len = btrfs_chunk_item_size(1);
7430		if (cur_offset + len > array_size)
7431			goto out_short_read;
7432
7433		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7434		if (!num_stripes) {
7435			btrfs_err(fs_info,
7436			"invalid number of stripes %u in sys_array at offset %u",
7437				  num_stripes, cur_offset);
7438			ret = -EIO;
7439			break;
7440		}
7441
7442		type = btrfs_chunk_type(sb, chunk);
7443		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7444			btrfs_err(fs_info,
7445			"invalid chunk type %llu in sys_array at offset %u",
7446				  type, cur_offset);
7447			ret = -EIO;
7448			break;
7449		}
7450
7451		len = btrfs_chunk_item_size(num_stripes);
7452		if (cur_offset + len > array_size)
7453			goto out_short_read;
7454
7455		ret = read_one_chunk(&key, sb, chunk);
7456		if (ret)
7457			break;
7458
7459		array_ptr += len;
7460		sb_array_offset += len;
7461		cur_offset += len;
7462	}
7463	clear_extent_buffer_uptodate(sb);
7464	free_extent_buffer_stale(sb);
7465	return ret;
7466
7467out_short_read:
7468	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7469			len, cur_offset);
7470	clear_extent_buffer_uptodate(sb);
7471	free_extent_buffer_stale(sb);
7472	return -EIO;
7473}
7474
7475/*
7476 * Check if all chunks in the fs are OK for read-write degraded mount
7477 *
7478 * If the @failing_dev is specified, it's accounted as missing.
7479 *
7480 * Return true if all chunks meet the minimal RW mount requirements.
7481 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7482 */
7483bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7484					struct btrfs_device *failing_dev)
7485{
7486	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7487	struct extent_map *em;
7488	u64 next_start = 0;
7489	bool ret = true;
7490
7491	read_lock(&map_tree->lock);
7492	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7493	read_unlock(&map_tree->lock);
7494	/* No chunk at all? Return false anyway */
7495	if (!em) {
7496		ret = false;
7497		goto out;
7498	}
7499	while (em) {
7500		struct map_lookup *map;
7501		int missing = 0;
7502		int max_tolerated;
7503		int i;
7504
7505		map = em->map_lookup;
7506		max_tolerated =
7507			btrfs_get_num_tolerated_disk_barrier_failures(
7508					map->type);
7509		for (i = 0; i < map->num_stripes; i++) {
7510			struct btrfs_device *dev = map->stripes[i].dev;
7511
7512			if (!dev || !dev->bdev ||
7513			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7514			    dev->last_flush_error)
7515				missing++;
7516			else if (failing_dev && failing_dev == dev)
7517				missing++;
7518		}
7519		if (missing > max_tolerated) {
7520			if (!failing_dev)
7521				btrfs_warn(fs_info,
7522	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7523				   em->start, missing, max_tolerated);
7524			free_extent_map(em);
7525			ret = false;
7526			goto out;
7527		}
7528		next_start = extent_map_end(em);
7529		free_extent_map(em);
7530
7531		read_lock(&map_tree->lock);
7532		em = lookup_extent_mapping(map_tree, next_start,
7533					   (u64)(-1) - next_start);
7534		read_unlock(&map_tree->lock);
7535	}
7536out:
7537	return ret;
7538}
7539
7540static void readahead_tree_node_children(struct extent_buffer *node)
7541{
7542	int i;
7543	const int nr_items = btrfs_header_nritems(node);
7544
7545	for (i = 0; i < nr_items; i++)
7546		btrfs_readahead_node_child(node, i);
7547}
7548
7549int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7550{
7551	struct btrfs_root *root = fs_info->chunk_root;
7552	struct btrfs_path *path;
7553	struct extent_buffer *leaf;
7554	struct btrfs_key key;
7555	struct btrfs_key found_key;
7556	int ret;
7557	int slot;
 
7558	u64 total_dev = 0;
7559	u64 last_ra_node = 0;
7560
7561	path = btrfs_alloc_path();
7562	if (!path)
7563		return -ENOMEM;
7564
7565	/*
7566	 * uuid_mutex is needed only if we are mounting a sprout FS
7567	 * otherwise we don't need it.
7568	 */
7569	mutex_lock(&uuid_mutex);
7570
7571	/*
7572	 * It is possible for mount and umount to race in such a way that
7573	 * we execute this code path, but open_fs_devices failed to clear
7574	 * total_rw_bytes. We certainly want it cleared before reading the
7575	 * device items, so clear it here.
7576	 */
7577	fs_info->fs_devices->total_rw_bytes = 0;
7578
7579	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
7580	 * Read all device items, and then all the chunk items. All
7581	 * device items are found before any chunk item (their object id
7582	 * is smaller than the lowest possible object id for a chunk
7583	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7584	 */
7585	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7586	key.offset = 0;
7587	key.type = 0;
7588	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7589	if (ret < 0)
7590		goto error;
7591	while (1) {
7592		struct extent_buffer *node;
7593
7594		leaf = path->nodes[0];
7595		slot = path->slots[0];
7596		if (slot >= btrfs_header_nritems(leaf)) {
7597			ret = btrfs_next_leaf(root, path);
7598			if (ret == 0)
7599				continue;
7600			if (ret < 0)
7601				goto error;
7602			break;
7603		}
7604		/*
7605		 * The nodes on level 1 are not locked but we don't need to do
7606		 * that during mount time as nothing else can access the tree
7607		 */
7608		node = path->nodes[1];
7609		if (node) {
7610			if (last_ra_node != node->start) {
7611				readahead_tree_node_children(node);
7612				last_ra_node = node->start;
7613			}
7614		}
7615		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7616		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7617			struct btrfs_dev_item *dev_item;
7618			dev_item = btrfs_item_ptr(leaf, slot,
7619						  struct btrfs_dev_item);
7620			ret = read_one_dev(leaf, dev_item);
7621			if (ret)
7622				goto error;
7623			total_dev++;
7624		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7625			struct btrfs_chunk *chunk;
7626
7627			/*
7628			 * We are only called at mount time, so no need to take
7629			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7630			 * we always lock first fs_info->chunk_mutex before
7631			 * acquiring any locks on the chunk tree. This is a
7632			 * requirement for chunk allocation, see the comment on
7633			 * top of btrfs_chunk_alloc() for details.
7634			 */
7635			ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7636			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7637			ret = read_one_chunk(&found_key, leaf, chunk);
7638			if (ret)
7639				goto error;
7640		}
7641		path->slots[0]++;
 
 
 
 
7642	}
7643
7644	/*
7645	 * After loading chunk tree, we've got all device information,
7646	 * do another round of validation checks.
7647	 */
7648	if (total_dev != fs_info->fs_devices->total_devices) {
7649		btrfs_err(fs_info,
7650	   "super_num_devices %llu mismatch with num_devices %llu found here",
7651			  btrfs_super_num_devices(fs_info->super_copy),
7652			  total_dev);
7653		ret = -EINVAL;
7654		goto error;
7655	}
7656	if (btrfs_super_total_bytes(fs_info->super_copy) <
7657	    fs_info->fs_devices->total_rw_bytes) {
7658		btrfs_err(fs_info,
7659	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7660			  btrfs_super_total_bytes(fs_info->super_copy),
7661			  fs_info->fs_devices->total_rw_bytes);
7662		ret = -EINVAL;
7663		goto error;
7664	}
7665	ret = 0;
7666error:
7667	mutex_unlock(&uuid_mutex);
7668
7669	btrfs_free_path(path);
7670	return ret;
7671}
7672
7673void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7674{
7675	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7676	struct btrfs_device *device;
 
7677
7678	fs_devices->fs_info = fs_info;
7679
7680	mutex_lock(&fs_devices->device_list_mutex);
7681	list_for_each_entry(device, &fs_devices->devices, dev_list)
7682		device->fs_info = fs_info;
7683
7684	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7685		list_for_each_entry(device, &seed_devs->devices, dev_list)
7686			device->fs_info = fs_info;
 
 
 
 
7687
7688		seed_devs->fs_info = fs_info;
7689	}
7690	mutex_unlock(&fs_devices->device_list_mutex);
 
 
7691}
7692
7693static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7694				 const struct btrfs_dev_stats_item *ptr,
7695				 int index)
7696{
7697	u64 val;
7698
7699	read_extent_buffer(eb, &val,
7700			   offsetof(struct btrfs_dev_stats_item, values) +
7701			    ((unsigned long)ptr) + (index * sizeof(u64)),
7702			   sizeof(val));
7703	return val;
7704}
7705
7706static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7707				      struct btrfs_dev_stats_item *ptr,
7708				      int index, u64 val)
7709{
7710	write_extent_buffer(eb, &val,
7711			    offsetof(struct btrfs_dev_stats_item, values) +
7712			     ((unsigned long)ptr) + (index * sizeof(u64)),
7713			    sizeof(val));
7714}
7715
7716static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7717				       struct btrfs_path *path)
7718{
7719	struct btrfs_dev_stats_item *ptr;
7720	struct extent_buffer *eb;
7721	struct btrfs_key key;
7722	int item_size;
7723	int i, ret, slot;
7724
7725	if (!device->fs_info->dev_root)
7726		return 0;
7727
7728	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7729	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7730	key.offset = device->devid;
7731	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7732	if (ret) {
7733		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7734			btrfs_dev_stat_set(device, i, 0);
7735		device->dev_stats_valid = 1;
7736		btrfs_release_path(path);
7737		return ret < 0 ? ret : 0;
7738	}
7739	slot = path->slots[0];
7740	eb = path->nodes[0];
7741	item_size = btrfs_item_size_nr(eb, slot);
7742
7743	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7744
7745	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7746		if (item_size >= (1 + i) * sizeof(__le64))
7747			btrfs_dev_stat_set(device, i,
7748					   btrfs_dev_stats_value(eb, ptr, i));
7749		else
7750			btrfs_dev_stat_set(device, i, 0);
7751	}
7752
7753	device->dev_stats_valid = 1;
7754	btrfs_dev_stat_print_on_load(device);
7755	btrfs_release_path(path);
7756
7757	return 0;
7758}
7759
7760int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7761{
7762	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7763	struct btrfs_device *device;
7764	struct btrfs_path *path = NULL;
7765	int ret = 0;
7766
7767	path = btrfs_alloc_path();
7768	if (!path)
7769		return -ENOMEM;
7770
7771	mutex_lock(&fs_devices->device_list_mutex);
7772	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7773		ret = btrfs_device_init_dev_stats(device, path);
7774		if (ret)
7775			goto out;
7776	}
7777	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7778		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7779			ret = btrfs_device_init_dev_stats(device, path);
7780			if (ret)
7781				goto out;
7782		}
7783	}
7784out:
7785	mutex_unlock(&fs_devices->device_list_mutex);
7786
7787	btrfs_free_path(path);
7788	return ret;
7789}
7790
7791static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7792				struct btrfs_device *device)
7793{
7794	struct btrfs_fs_info *fs_info = trans->fs_info;
7795	struct btrfs_root *dev_root = fs_info->dev_root;
7796	struct btrfs_path *path;
7797	struct btrfs_key key;
7798	struct extent_buffer *eb;
7799	struct btrfs_dev_stats_item *ptr;
7800	int ret;
7801	int i;
7802
7803	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7804	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7805	key.offset = device->devid;
7806
7807	path = btrfs_alloc_path();
7808	if (!path)
7809		return -ENOMEM;
7810	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7811	if (ret < 0) {
7812		btrfs_warn_in_rcu(fs_info,
7813			"error %d while searching for dev_stats item for device %s",
7814			      ret, rcu_str_deref(device->name));
7815		goto out;
7816	}
7817
7818	if (ret == 0 &&
7819	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7820		/* need to delete old one and insert a new one */
7821		ret = btrfs_del_item(trans, dev_root, path);
7822		if (ret != 0) {
7823			btrfs_warn_in_rcu(fs_info,
7824				"delete too small dev_stats item for device %s failed %d",
7825				      rcu_str_deref(device->name), ret);
7826			goto out;
7827		}
7828		ret = 1;
7829	}
7830
7831	if (ret == 1) {
7832		/* need to insert a new item */
7833		btrfs_release_path(path);
7834		ret = btrfs_insert_empty_item(trans, dev_root, path,
7835					      &key, sizeof(*ptr));
7836		if (ret < 0) {
7837			btrfs_warn_in_rcu(fs_info,
7838				"insert dev_stats item for device %s failed %d",
7839				rcu_str_deref(device->name), ret);
7840			goto out;
7841		}
7842	}
7843
7844	eb = path->nodes[0];
7845	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7846	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7847		btrfs_set_dev_stats_value(eb, ptr, i,
7848					  btrfs_dev_stat_read(device, i));
7849	btrfs_mark_buffer_dirty(eb);
7850
7851out:
7852	btrfs_free_path(path);
7853	return ret;
7854}
7855
7856/*
7857 * called from commit_transaction. Writes all changed device stats to disk.
7858 */
7859int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7860{
7861	struct btrfs_fs_info *fs_info = trans->fs_info;
7862	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7863	struct btrfs_device *device;
7864	int stats_cnt;
7865	int ret = 0;
7866
7867	mutex_lock(&fs_devices->device_list_mutex);
7868	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7869		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7870		if (!device->dev_stats_valid || stats_cnt == 0)
7871			continue;
7872
7873
7874		/*
7875		 * There is a LOAD-LOAD control dependency between the value of
7876		 * dev_stats_ccnt and updating the on-disk values which requires
7877		 * reading the in-memory counters. Such control dependencies
7878		 * require explicit read memory barriers.
7879		 *
7880		 * This memory barriers pairs with smp_mb__before_atomic in
7881		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7882		 * barrier implied by atomic_xchg in
7883		 * btrfs_dev_stats_read_and_reset
7884		 */
7885		smp_rmb();
7886
7887		ret = update_dev_stat_item(trans, device);
7888		if (!ret)
7889			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7890	}
7891	mutex_unlock(&fs_devices->device_list_mutex);
7892
7893	return ret;
7894}
7895
7896void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7897{
7898	btrfs_dev_stat_inc(dev, index);
7899	btrfs_dev_stat_print_on_error(dev);
7900}
7901
7902static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7903{
7904	if (!dev->dev_stats_valid)
7905		return;
7906	btrfs_err_rl_in_rcu(dev->fs_info,
7907		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7908			   rcu_str_deref(dev->name),
7909			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7910			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7911			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7912			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7913			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7914}
7915
7916static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7917{
7918	int i;
7919
7920	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7921		if (btrfs_dev_stat_read(dev, i) != 0)
7922			break;
7923	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7924		return; /* all values == 0, suppress message */
7925
7926	btrfs_info_in_rcu(dev->fs_info,
7927		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7928	       rcu_str_deref(dev->name),
7929	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7930	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7931	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7932	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7933	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7934}
7935
7936int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7937			struct btrfs_ioctl_get_dev_stats *stats)
7938{
 
7939	struct btrfs_device *dev;
7940	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7941	int i;
7942
7943	mutex_lock(&fs_devices->device_list_mutex);
7944	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
 
7945	mutex_unlock(&fs_devices->device_list_mutex);
7946
7947	if (!dev) {
7948		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7949		return -ENODEV;
7950	} else if (!dev->dev_stats_valid) {
7951		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7952		return -ENODEV;
7953	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7954		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7955			if (stats->nr_items > i)
7956				stats->values[i] =
7957					btrfs_dev_stat_read_and_reset(dev, i);
7958			else
7959				btrfs_dev_stat_set(dev, i, 0);
7960		}
7961		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7962			   current->comm, task_pid_nr(current));
7963	} else {
7964		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7965			if (stats->nr_items > i)
7966				stats->values[i] = btrfs_dev_stat_read(dev, i);
7967	}
7968	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7969		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7970	return 0;
7971}
7972
7973/*
7974 * Update the size and bytes used for each device where it changed.  This is
7975 * delayed since we would otherwise get errors while writing out the
7976 * superblocks.
7977 *
7978 * Must be invoked during transaction commit.
7979 */
7980void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7981{
7982	struct btrfs_device *curr, *next;
7983
7984	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7985
7986	if (list_empty(&trans->dev_update_list))
7987		return;
7988
7989	/*
7990	 * We don't need the device_list_mutex here.  This list is owned by the
7991	 * transaction and the transaction must complete before the device is
7992	 * released.
7993	 */
7994	mutex_lock(&trans->fs_info->chunk_mutex);
7995	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7996				 post_commit_list) {
7997		list_del_init(&curr->post_commit_list);
7998		curr->commit_total_bytes = curr->disk_total_bytes;
7999		curr->commit_bytes_used = curr->bytes_used;
8000	}
8001	mutex_unlock(&trans->fs_info->chunk_mutex);
8002}
8003
8004/*
8005 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8006 */
8007int btrfs_bg_type_to_factor(u64 flags)
8008{
8009	const int index = btrfs_bg_flags_to_raid_index(flags);
8010
8011	return btrfs_raid_array[index].ncopies;
8012}
8013
8014
8015
8016static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8017				 u64 chunk_offset, u64 devid,
8018				 u64 physical_offset, u64 physical_len)
8019{
 
8020	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8021	struct extent_map *em;
8022	struct map_lookup *map;
8023	struct btrfs_device *dev;
8024	u64 stripe_len;
8025	bool found = false;
8026	int ret = 0;
8027	int i;
8028
8029	read_lock(&em_tree->lock);
8030	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8031	read_unlock(&em_tree->lock);
8032
8033	if (!em) {
8034		btrfs_err(fs_info,
8035"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8036			  physical_offset, devid);
8037		ret = -EUCLEAN;
8038		goto out;
8039	}
8040
8041	map = em->map_lookup;
8042	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8043	if (physical_len != stripe_len) {
8044		btrfs_err(fs_info,
8045"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8046			  physical_offset, devid, em->start, physical_len,
8047			  stripe_len);
8048		ret = -EUCLEAN;
8049		goto out;
8050	}
8051
 
 
 
 
 
 
 
 
 
 
8052	for (i = 0; i < map->num_stripes; i++) {
8053		if (map->stripes[i].dev->devid == devid &&
8054		    map->stripes[i].physical == physical_offset) {
8055			found = true;
8056			if (map->verified_stripes >= map->num_stripes) {
8057				btrfs_err(fs_info,
8058				"too many dev extents for chunk %llu found",
8059					  em->start);
8060				ret = -EUCLEAN;
8061				goto out;
8062			}
8063			map->verified_stripes++;
8064			break;
8065		}
8066	}
8067	if (!found) {
8068		btrfs_err(fs_info,
8069	"dev extent physical offset %llu devid %llu has no corresponding chunk",
8070			physical_offset, devid);
8071		ret = -EUCLEAN;
8072	}
8073
8074	/* Make sure no dev extent is beyond device boundary */
8075	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
8076	if (!dev) {
8077		btrfs_err(fs_info, "failed to find devid %llu", devid);
8078		ret = -EUCLEAN;
8079		goto out;
8080	}
8081
8082	if (physical_offset + physical_len > dev->disk_total_bytes) {
8083		btrfs_err(fs_info,
8084"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8085			  devid, physical_offset, physical_len,
8086			  dev->disk_total_bytes);
8087		ret = -EUCLEAN;
8088		goto out;
8089	}
8090
8091	if (dev->zone_info) {
8092		u64 zone_size = dev->zone_info->zone_size;
8093
8094		if (!IS_ALIGNED(physical_offset, zone_size) ||
8095		    !IS_ALIGNED(physical_len, zone_size)) {
8096			btrfs_err(fs_info,
8097"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8098				  devid, physical_offset, physical_len);
8099			ret = -EUCLEAN;
8100			goto out;
8101		}
8102	}
8103
8104out:
8105	free_extent_map(em);
8106	return ret;
8107}
8108
8109static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8110{
8111	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8112	struct extent_map *em;
8113	struct rb_node *node;
8114	int ret = 0;
8115
8116	read_lock(&em_tree->lock);
8117	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8118		em = rb_entry(node, struct extent_map, rb_node);
8119		if (em->map_lookup->num_stripes !=
8120		    em->map_lookup->verified_stripes) {
8121			btrfs_err(fs_info,
8122			"chunk %llu has missing dev extent, have %d expect %d",
8123				  em->start, em->map_lookup->verified_stripes,
8124				  em->map_lookup->num_stripes);
8125			ret = -EUCLEAN;
8126			goto out;
8127		}
8128	}
8129out:
8130	read_unlock(&em_tree->lock);
8131	return ret;
8132}
8133
8134/*
8135 * Ensure that all dev extents are mapped to correct chunk, otherwise
8136 * later chunk allocation/free would cause unexpected behavior.
8137 *
8138 * NOTE: This will iterate through the whole device tree, which should be of
8139 * the same size level as the chunk tree.  This slightly increases mount time.
8140 */
8141int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8142{
8143	struct btrfs_path *path;
8144	struct btrfs_root *root = fs_info->dev_root;
8145	struct btrfs_key key;
8146	u64 prev_devid = 0;
8147	u64 prev_dev_ext_end = 0;
8148	int ret = 0;
8149
8150	/*
8151	 * We don't have a dev_root because we mounted with ignorebadroots and
8152	 * failed to load the root, so we want to skip the verification in this
8153	 * case for sure.
8154	 *
8155	 * However if the dev root is fine, but the tree itself is corrupted
8156	 * we'd still fail to mount.  This verification is only to make sure
8157	 * writes can happen safely, so instead just bypass this check
8158	 * completely in the case of IGNOREBADROOTS.
8159	 */
8160	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8161		return 0;
8162
8163	key.objectid = 1;
8164	key.type = BTRFS_DEV_EXTENT_KEY;
8165	key.offset = 0;
8166
8167	path = btrfs_alloc_path();
8168	if (!path)
8169		return -ENOMEM;
8170
8171	path->reada = READA_FORWARD;
8172	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8173	if (ret < 0)
8174		goto out;
8175
8176	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8177		ret = btrfs_next_item(root, path);
8178		if (ret < 0)
8179			goto out;
8180		/* No dev extents at all? Not good */
8181		if (ret > 0) {
8182			ret = -EUCLEAN;
8183			goto out;
8184		}
8185	}
8186	while (1) {
8187		struct extent_buffer *leaf = path->nodes[0];
8188		struct btrfs_dev_extent *dext;
8189		int slot = path->slots[0];
8190		u64 chunk_offset;
8191		u64 physical_offset;
8192		u64 physical_len;
8193		u64 devid;
8194
8195		btrfs_item_key_to_cpu(leaf, &key, slot);
8196		if (key.type != BTRFS_DEV_EXTENT_KEY)
8197			break;
8198		devid = key.objectid;
8199		physical_offset = key.offset;
8200
8201		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8202		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8203		physical_len = btrfs_dev_extent_length(leaf, dext);
8204
8205		/* Check if this dev extent overlaps with the previous one */
8206		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8207			btrfs_err(fs_info,
8208"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8209				  devid, physical_offset, prev_dev_ext_end);
8210			ret = -EUCLEAN;
8211			goto out;
8212		}
8213
8214		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8215					    physical_offset, physical_len);
8216		if (ret < 0)
8217			goto out;
8218		prev_devid = devid;
8219		prev_dev_ext_end = physical_offset + physical_len;
8220
8221		ret = btrfs_next_item(root, path);
8222		if (ret < 0)
8223			goto out;
8224		if (ret > 0) {
8225			ret = 0;
8226			break;
8227		}
8228	}
8229
8230	/* Ensure all chunks have corresponding dev extents */
8231	ret = verify_chunk_dev_extent_mapping(fs_info);
8232out:
8233	btrfs_free_path(path);
8234	return ret;
8235}
8236
8237/*
8238 * Check whether the given block group or device is pinned by any inode being
8239 * used as a swapfile.
8240 */
8241bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8242{
8243	struct btrfs_swapfile_pin *sp;
8244	struct rb_node *node;
8245
8246	spin_lock(&fs_info->swapfile_pins_lock);
8247	node = fs_info->swapfile_pins.rb_node;
8248	while (node) {
8249		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8250		if (ptr < sp->ptr)
8251			node = node->rb_left;
8252		else if (ptr > sp->ptr)
8253			node = node->rb_right;
8254		else
8255			break;
8256	}
8257	spin_unlock(&fs_info->swapfile_pins_lock);
8258	return node != NULL;
8259}
8260
8261static int relocating_repair_kthread(void *data)
8262{
8263	struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8264	struct btrfs_fs_info *fs_info = cache->fs_info;
8265	u64 target;
8266	int ret = 0;
8267
8268	target = cache->start;
8269	btrfs_put_block_group(cache);
8270
 
8271	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8272		btrfs_info(fs_info,
8273			   "zoned: skip relocating block group %llu to repair: EBUSY",
8274			   target);
 
8275		return -EBUSY;
8276	}
8277
8278	mutex_lock(&fs_info->reclaim_bgs_lock);
8279
8280	/* Ensure block group still exists */
8281	cache = btrfs_lookup_block_group(fs_info, target);
8282	if (!cache)
8283		goto out;
8284
8285	if (!cache->relocating_repair)
8286		goto out;
8287
8288	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8289	if (ret < 0)
8290		goto out;
8291
8292	btrfs_info(fs_info,
8293		   "zoned: relocating block group %llu to repair IO failure",
8294		   target);
8295	ret = btrfs_relocate_chunk(fs_info, target);
8296
8297out:
8298	if (cache)
8299		btrfs_put_block_group(cache);
8300	mutex_unlock(&fs_info->reclaim_bgs_lock);
8301	btrfs_exclop_finish(fs_info);
 
8302
8303	return ret;
8304}
8305
8306int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8307{
8308	struct btrfs_block_group *cache;
8309
 
 
 
8310	/* Do not attempt to repair in degraded state */
8311	if (btrfs_test_opt(fs_info, DEGRADED))
8312		return 0;
8313
8314	cache = btrfs_lookup_block_group(fs_info, logical);
8315	if (!cache)
8316		return 0;
8317
8318	spin_lock(&cache->lock);
8319	if (cache->relocating_repair) {
8320		spin_unlock(&cache->lock);
8321		btrfs_put_block_group(cache);
8322		return 0;
8323	}
8324	cache->relocating_repair = 1;
8325	spin_unlock(&cache->lock);
8326
8327	kthread_run(relocating_repair_kthread, cache,
8328		    "btrfs-relocating-repair");
8329
8330	return 0;
8331}