Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161};
162
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175}
176
177const char *btrfs_bg_type_to_raid_name(u64 flags)
178{
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185}
186
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
248static int init_first_rw_device(struct btrfs_trans_handle *trans);
249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352DEFINE_MUTEX(uuid_mutex);
353static LIST_HEAD(fs_uuids);
354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355{
356 return &fs_uuids;
357}
358
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370{
371 struct btrfs_fs_devices *fs_devs;
372
373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
381 INIT_LIST_HEAD(&fs_devs->fs_list);
382 INIT_LIST_HEAD(&fs_devs->seed_list);
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
391 return fs_devs;
392}
393
394void btrfs_free_device(struct btrfs_device *device)
395{
396 WARN_ON(!list_empty(&device->post_commit_list));
397 rcu_string_free(device->name);
398 extent_io_tree_release(&device->alloc_state);
399 btrfs_destroy_dev_zone_info(device);
400 kfree(device);
401}
402
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
406
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
412 btrfs_free_device(device);
413 }
414 kfree(fs_devices);
415}
416
417void __exit btrfs_cleanup_fs_uuids(void)
418{
419 struct btrfs_fs_devices *fs_devices;
420
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
425 free_fs_devices(fs_devices);
426 }
427}
428
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
431{
432 struct btrfs_fs_devices *fs_devices;
433
434 ASSERT(fsid);
435
436 /* Handle non-split brain cases */
437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
447 }
448 return NULL;
449}
450
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
495 struct btrfs_super_block **disk_super)
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
503 goto error;
504 }
505
506 if (flush)
507 sync_blockdev(*bdev);
508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
525 return ret;
526}
527
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
531 *
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
534 * @skip_device: Optional. Will skip this device when searching for the stale
535 * devices.
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
540 */
541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
542{
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
545 int ret = 0;
546
547 lockdep_assert_held(&uuid_mutex);
548
549 if (devt)
550 ret = -ENOENT;
551
552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
553
554 mutex_lock(&fs_devices->device_list_mutex);
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
557 if (skip_device && skip_device == device)
558 continue;
559 if (devt && devt != device->devt)
560 continue;
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
563 if (devt && ret != 0)
564 ret = -EBUSY;
565 break;
566 }
567
568 /* delete the stale device */
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
573 ret = 0;
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
576
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
581 }
582 }
583
584 return ret;
585}
586
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
596 struct block_device *bdev;
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
607 &bdev, &disk_super);
608 if (ret)
609 return ret;
610
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
613 goto error_free_page;
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
616 goto error_free_page;
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
625 goto error_free_page;
626 }
627
628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
629 fs_devices->seeding = true;
630 } else {
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 }
636
637 if (!bdev_nonrot(bdev))
638 fs_devices->rotating = true;
639
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
643 device->bdev = bdev;
644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
645 device->mode = flags;
646
647 fs_devices->open_devices++;
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
650 fs_devices->rw_devices++;
651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
652 }
653 btrfs_release_disk_super(disk_super);
654
655 return 0;
656
657error_free_page:
658 btrfs_release_disk_super(disk_super);
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
684 return find_fsid(disk_super->fsid, NULL);
685}
686
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
695 * multiple successful changes of FSID but currently device didn't
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 /* Changed UUIDs */
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
717 return fs_devices;
718 }
719
720 return NULL;
721}
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
731 * time * fs_devices was first created by another constitutent device
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
754 */
755static noinline struct btrfs_device *device_list_add(const char *path,
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
758{
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = NULL;
761 struct rcu_string *name;
762 u64 found_transid = btrfs_super_generation(disk_super);
763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
764 dev_t path_devt;
765 int error;
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
770
771 error = lookup_bdev(path, &path_devt);
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
775 return ERR_PTR(error);
776 }
777
778 if (fsid_change_in_progress) {
779 if (!has_metadata_uuid)
780 fs_devices = find_fsid_inprogress(disk_super);
781 else
782 fs_devices = find_fsid_changed(disk_super);
783 } else if (has_metadata_uuid) {
784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
785 } else {
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
789 }
790
791
792 if (!fs_devices) {
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
799 if (IS_ERR(fs_devices))
800 return ERR_CAST(fs_devices);
801
802 fs_devices->fsid_change = fsid_change_in_progress;
803
804 mutex_lock(&fs_devices->device_list_mutex);
805 list_add(&fs_devices->fs_list, &fs_uuids);
806
807 device = NULL;
808 } else {
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
814 mutex_lock(&fs_devices->device_list_mutex);
815 device = btrfs_find_device(fs_devices, &args);
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
822 if (fs_devices->fsid_change &&
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
834
835 fs_devices->fsid_change = false;
836 }
837 }
838
839 if (!device) {
840 unsigned int nofs_flag;
841
842 if (fs_devices->opened) {
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
846 mutex_unlock(&fs_devices->device_list_mutex);
847 return ERR_PTR(-EBUSY);
848 }
849
850 nofs_flag = memalloc_nofs_save();
851 device = btrfs_alloc_device(NULL, &devid,
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
857 return device;
858 }
859
860 device->devt = path_devt;
861
862 list_add_rcu(&device->dev_list, &fs_devices->devices);
863 fs_devices->num_devices++;
864
865 device->fs_devices = fs_devices;
866 *new_device_added = true;
867
868 if (disk_super->label[0])
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
873 else
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
878
879 } else if (!device->name || strcmp(device->name->str, path)) {
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
905 */
906 if (!fs_devices->opened && found_transid < device->generation) {
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
914 mutex_unlock(&fs_devices->device_list_mutex);
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
918 return ERR_PTR(-EEXIST);
919 }
920
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
929 */
930 if (device->bdev) {
931 if (device->devt != path_devt) {
932 mutex_unlock(&fs_devices->device_list_mutex);
933 btrfs_warn_in_rcu(NULL,
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
938 return ERR_PTR(-EEXIST);
939 }
940 btrfs_info_in_rcu(NULL,
941 "devid %llu device path %s changed to %s scanned by %s (%d)",
942 devid, btrfs_dev_name(device),
943 path, current->comm,
944 task_pid_nr(current));
945 }
946
947 name = rcu_string_strdup(path, GFP_NOFS);
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 return ERR_PTR(-ENOMEM);
951 }
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 fs_devices->missing_devices--;
956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 }
958 device->devt = path_devt;
959 }
960
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
967 if (!fs_devices->opened) {
968 device->generation = found_transid;
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
972
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
975 mutex_unlock(&fs_devices->device_list_mutex);
976 return device;
977}
978
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
984 int ret = 0;
985
986 lockdep_assert_held(&uuid_mutex);
987
988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 if (IS_ERR(fs_devices))
990 return fs_devices;
991
992 fs_devices->total_devices = orig->total_devices;
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
1003
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid, dev_path);
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1008 goto error;
1009 }
1010
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
1030 return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034 struct btrfs_device **latest_dev)
1035{
1036 struct btrfs_device *device, *next;
1037
1038 /* This is the initialized path, it is safe to release the devices. */
1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042 &device->dev_state) &&
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
1048 }
1049 continue;
1050 }
1051
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
1059 if (device->bdev) {
1060 blkdev_put(device->bdev, device->mode);
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065 list_del_init(&device->dev_alloc_list);
1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067 fs_devices->rw_devices--;
1068 }
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
1071 btrfs_free_device(device);
1072 }
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082 struct btrfs_device *latest_dev = NULL;
1083 struct btrfs_fs_devices *seed_dev;
1084
1085 mutex_lock(&uuid_mutex);
1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091 fs_devices->latest_dev = latest_dev;
1092
1093 mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098 if (!device->bdev)
1099 return;
1100
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
1106 blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124 fs_devices->missing_devices--;
1125 }
1126
1127 btrfs_close_bdev(device);
1128 if (device->bdev) {
1129 fs_devices->open_devices--;
1130 device->bdev = NULL;
1131 }
1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 btrfs_destroy_dev_zone_info(device);
1134
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
1138
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
1152 /* Verify the device is back in a pristine state */
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 ASSERT(list_empty(&device->dev_alloc_list));
1156 ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened) {
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 close_fs_devices(fs_devices);
1203 list_del(&fs_devices->seed_list);
1204 free_fs_devices(fs_devices);
1205 }
1206 mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 fmode_t flags, void *holder)
1211{
1212 struct btrfs_device *device;
1213 struct btrfs_device *latest_dev = NULL;
1214 struct btrfs_device *tmp_device;
1215
1216 flags |= FMODE_EXCL;
1217
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
1221
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
1225 latest_dev = device;
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
1231 }
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
1235 fs_devices->opened = 1;
1236 fs_devices->latest_dev = latest_dev;
1237 fs_devices->total_rw_bytes = 0;
1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241 return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
1246{
1247 const struct btrfs_device *dev1, *dev2;
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 fmode_t flags, void *holder)
1261{
1262 int ret;
1263
1264 lockdep_assert_held(&uuid_mutex);
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
1267 * underlying device takes further locks like open_mutex.
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
1272
1273 if (fs_devices->opened) {
1274 fs_devices->opened++;
1275 ret = 0;
1276 } else {
1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 ret = open_fs_devices(fs_devices, flags, holder);
1279 }
1280
1281 return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286 struct page *page = virt_to_page(super);
1287
1288 put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 u64 bytenr, u64 bytenr_orig)
1293{
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 return ERR_PTR(-EINVAL);
1302
1303 /* make sure our super fits in the page */
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
1311
1312 /* pull in the page with our super */
1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
1317
1318 p = page_address(page);
1319
1320 /* align our pointer to the offset of the super block */
1321 disk_super = p + offset_in_page(bytenr);
1322
1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 btrfs_release_disk_super(p);
1326 return ERR_PTR(-EINVAL);
1327 }
1328
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332 return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
1340 ret = btrfs_free_stale_devices(devt, NULL);
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
1353{
1354 struct btrfs_super_block *disk_super;
1355 bool new_device_added = false;
1356 struct btrfs_device *device = NULL;
1357 struct block_device *bdev;
1358 u64 bytenr, bytenr_orig;
1359 int ret;
1360
1361 lockdep_assert_held(&uuid_mutex);
1362
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
1369 flags |= FMODE_EXCL;
1370
1371 bdev = blkdev_get_by_path(path, flags, holder);
1372 if (IS_ERR(bdev))
1373 return ERR_CAST(bdev);
1374
1375 bytenr_orig = btrfs_sb_offset(0);
1376 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 if (ret) {
1378 device = ERR_PTR(ret);
1379 goto error_bdev_put;
1380 }
1381
1382 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 if (IS_ERR(disk_super)) {
1384 device = ERR_CAST(disk_super);
1385 goto error_bdev_put;
1386 }
1387
1388 device = device_list_add(path, disk_super, &new_device_added);
1389 if (!IS_ERR(device) && new_device_added)
1390 btrfs_free_stale_devices(device->devt, device);
1391
1392 btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395 blkdev_put(bdev, flags);
1396
1397 return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 u64 len)
1406{
1407 u64 physical_start, physical_end;
1408
1409 lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411 if (!find_first_extent_bit(&device->alloc_state, *start,
1412 &physical_start, &physical_end,
1413 CHUNK_ALLOCATED, NULL)) {
1414
1415 if (in_range(physical_start, *start, len) ||
1416 in_range(*start, physical_start,
1417 physical_end - physical_start)) {
1418 *start = physical_end + 1;
1419 return true;
1420 }
1421 }
1422 return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
1429 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430 case BTRFS_CHUNK_ALLOC_ZONED:
1431 /*
1432 * We don't care about the starting region like regular
1433 * allocator, because we anyway use/reserve the first two zones
1434 * for superblock logging.
1435 */
1436 return ALIGN(start, device->zone_info->zone_size);
1437 default:
1438 BUG();
1439 }
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 u64 *hole_start, u64 *hole_size,
1444 u64 num_bytes)
1445{
1446 u64 zone_size = device->zone_info->zone_size;
1447 u64 pos;
1448 int ret;
1449 bool changed = false;
1450
1451 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453 while (*hole_size > 0) {
1454 pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 *hole_start + *hole_size,
1456 num_bytes);
1457 if (pos != *hole_start) {
1458 *hole_size = *hole_start + *hole_size - pos;
1459 *hole_start = pos;
1460 changed = true;
1461 if (*hole_size < num_bytes)
1462 break;
1463 }
1464
1465 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467 /* Range is ensured to be empty */
1468 if (!ret)
1469 return changed;
1470
1471 /* Given hole range was invalid (outside of device) */
1472 if (ret == -ERANGE) {
1473 *hole_start += *hole_size;
1474 *hole_size = 0;
1475 return true;
1476 }
1477
1478 *hole_start += zone_size;
1479 *hole_size -= zone_size;
1480 changed = true;
1481 }
1482
1483 return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1499{
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1502
1503 for (;;) {
1504 /*
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1507 */
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1511 else
1512 *hole_size = 0;
1513 changed = true;
1514 }
1515
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1519 break;
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1523 changed = true;
1524 /*
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1527 */
1528 continue;
1529 }
1530 break;
1531 default:
1532 BUG();
1533 }
1534
1535 break;
1536 }
1537
1538 return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device: the device which we search the free space in
1545 * @num_bytes: the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start: store the start of the free space.
1548 * @len: the size of the free space. that we find, or the size
1549 * of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1570 u64 *len)
1571{
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_key key;
1575 struct btrfs_dev_extent *dev_extent;
1576 struct btrfs_path *path;
1577 u64 hole_size;
1578 u64 max_hole_start;
1579 u64 max_hole_size;
1580 u64 extent_end;
1581 u64 search_end = device->total_bytes;
1582 int ret;
1583 int slot;
1584 struct extent_buffer *l;
1585
1586 search_start = dev_extent_search_start(device, search_start);
1587
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 max_hole_start = search_start;
1596 max_hole_size = 0;
1597
1598again:
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 ret = -ENOSPC;
1602 goto out;
1603 }
1604
1605 path->reada = READA_FORWARD;
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
1608
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613 ret = btrfs_search_backwards(root, &key, path);
1614 if (ret < 0)
1615 goto out;
1616
1617 while (search_start < search_end) {
1618 l = path->nodes[0];
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1622 if (ret == 0)
1623 continue;
1624 if (ret < 0)
1625 goto out;
1626
1627 break;
1628 }
1629 btrfs_item_key_to_cpu(l, &key, slot);
1630
1631 if (key.objectid < device->devid)
1632 goto next;
1633
1634 if (key.objectid > device->devid)
1635 break;
1636
1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 goto next;
1639
1640 if (key.offset > search_end)
1641 break;
1642
1643 if (key.offset > search_start) {
1644 hole_size = key.offset - search_start;
1645 dev_extent_hole_check(device, &search_start, &hole_size,
1646 num_bytes);
1647
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
1652
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
1665 }
1666 }
1667
1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
1673next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
1677
1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
1683 if (search_end > search_start) {
1684 hole_size = search_end - search_start;
1685 if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 num_bytes)) {
1687 btrfs_release_path(path);
1688 goto again;
1689 }
1690
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
1695 }
1696
1697 /* See above. */
1698 if (max_hole_size < num_bytes)
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
1703 ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705 btrfs_free_path(path);
1706 *start = max_hole_start;
1707 if (len)
1708 *len = max_hole_size;
1709 return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713 u64 *start, u64 *len)
1714{
1715 /* FIXME use last free of some kind */
1716 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720 struct btrfs_device *device,
1721 u64 start, u64 *dev_extent_len)
1722{
1723 struct btrfs_fs_info *fs_info = device->fs_info;
1724 struct btrfs_root *root = fs_info->dev_root;
1725 int ret;
1726 struct btrfs_path *path;
1727 struct btrfs_key key;
1728 struct btrfs_key found_key;
1729 struct extent_buffer *leaf = NULL;
1730 struct btrfs_dev_extent *extent = NULL;
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
1736 key.objectid = device->devid;
1737 key.offset = start;
1738 key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741 if (ret > 0) {
1742 ret = btrfs_previous_item(root, path, key.objectid,
1743 BTRFS_DEV_EXTENT_KEY);
1744 if (ret)
1745 goto out;
1746 leaf = path->nodes[0];
1747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 extent = btrfs_item_ptr(leaf, path->slots[0],
1749 struct btrfs_dev_extent);
1750 BUG_ON(found_key.offset > start || found_key.offset +
1751 btrfs_dev_extent_length(leaf, extent) < start);
1752 key = found_key;
1753 btrfs_release_path(path);
1754 goto again;
1755 } else if (ret == 0) {
1756 leaf = path->nodes[0];
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
1759 } else {
1760 goto out;
1761 }
1762
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret == 0)
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775 struct extent_map_tree *em_tree;
1776 struct extent_map *em;
1777 struct rb_node *n;
1778 u64 ret = 0;
1779
1780 em_tree = &fs_info->mapping_tree;
1781 read_lock(&em_tree->lock);
1782 n = rb_last(&em_tree->map.rb_root);
1783 if (n) {
1784 em = rb_entry(n, struct extent_map, rb_node);
1785 ret = em->start + em->len;
1786 }
1787 read_unlock(&em_tree->lock);
1788
1789 return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 u64 *devid_ret)
1794{
1795 int ret;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
1798 struct btrfs_path *path;
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = (u64)-1;
1807
1808 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809 if (ret < 0)
1810 goto error;
1811
1812 if (ret == 0) {
1813 /* Corruption */
1814 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = -EUCLEAN;
1816 goto error;
1817 }
1818
1819 ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 BTRFS_DEV_ITEMS_OBJECTID,
1821 BTRFS_DEV_ITEM_KEY);
1822 if (ret) {
1823 *devid_ret = 1;
1824 } else {
1825 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 path->slots[0]);
1827 *devid_ret = found_key.offset + 1;
1828 }
1829 ret = 0;
1830error:
1831 btrfs_free_path(path);
1832 return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840 struct btrfs_device *device)
1841{
1842 int ret;
1843 struct btrfs_path *path;
1844 struct btrfs_dev_item *dev_item;
1845 struct extent_buffer *leaf;
1846 struct btrfs_key key;
1847 unsigned long ptr;
1848
1849 path = btrfs_alloc_path();
1850 if (!path)
1851 return -ENOMEM;
1852
1853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 key.type = BTRFS_DEV_ITEM_KEY;
1855 key.offset = device->devid;
1856
1857 btrfs_reserve_chunk_metadata(trans, true);
1858 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 &key, sizeof(*dev_item));
1860 btrfs_trans_release_chunk_metadata(trans);
1861 if (ret)
1862 goto out;
1863
1864 leaf = path->nodes[0];
1865 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867 btrfs_set_device_id(leaf, dev_item, device->devid);
1868 btrfs_set_device_generation(leaf, dev_item, 0);
1869 btrfs_set_device_type(leaf, dev_item, device->type);
1870 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873 btrfs_set_device_total_bytes(leaf, dev_item,
1874 btrfs_device_get_disk_total_bytes(device));
1875 btrfs_set_device_bytes_used(leaf, dev_item,
1876 btrfs_device_get_bytes_used(device));
1877 btrfs_set_device_group(leaf, dev_item, 0);
1878 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880 btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882 ptr = btrfs_device_uuid(dev_item);
1883 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884 ptr = btrfs_device_fsid(dev_item);
1885 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 ptr, BTRFS_FSID_SIZE);
1887 btrfs_mark_buffer_dirty(leaf);
1888
1889 ret = 0;
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903 struct path path;
1904 struct timespec64 now;
1905 int ret;
1906
1907 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 if (ret)
1909 return;
1910
1911 now = current_time(d_inode(path.dentry));
1912 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 struct btrfs_device *device)
1918{
1919 struct btrfs_root *root = device->fs_info->chunk_root;
1920 int ret;
1921 struct btrfs_path *path;
1922 struct btrfs_key key;
1923
1924 path = btrfs_alloc_path();
1925 if (!path)
1926 return -ENOMEM;
1927
1928 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 key.type = BTRFS_DEV_ITEM_KEY;
1930 key.offset = device->devid;
1931
1932 btrfs_reserve_chunk_metadata(trans, false);
1933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934 btrfs_trans_release_chunk_metadata(trans);
1935 if (ret) {
1936 if (ret > 0)
1937 ret = -ENOENT;
1938 goto out;
1939 }
1940
1941 ret = btrfs_del_item(trans, root, path);
1942out:
1943 btrfs_free_path(path);
1944 return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 u64 num_devices)
1954{
1955 u64 all_avail;
1956 unsigned seq;
1957 int i;
1958
1959 do {
1960 seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962 all_avail = fs_info->avail_data_alloc_bits |
1963 fs_info->avail_system_alloc_bits |
1964 fs_info->avail_metadata_alloc_bits;
1965 } while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969 continue;
1970
1971 if (num_devices < btrfs_raid_array[i].devs_min)
1972 return btrfs_raid_array[i].mindev_error;
1973 }
1974
1975 return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981 struct btrfs_device *next_device;
1982
1983 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 if (next_device != device &&
1985 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 && next_device->bdev)
1987 return next_device;
1988 }
1989
1990 return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000 struct btrfs_device *next_device)
2001{
2002 struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004 if (!next_device)
2005 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006 device);
2007 ASSERT(next_device);
2008
2009 if (fs_info->sb->s_bdev &&
2010 (fs_info->sb->s_bdev == device->bdev))
2011 fs_info->sb->s_bdev = next_device->bdev;
2012
2013 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023 u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025 down_read(&fs_info->dev_replace.rwsem);
2026 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 ASSERT(num_devices > 1);
2028 num_devices--;
2029 }
2030 up_read(&fs_info->dev_replace.rwsem);
2031
2032 return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev, int copy_num)
2037{
2038 struct btrfs_super_block *disk_super;
2039 const size_t len = sizeof(disk_super->magic);
2040 const u64 bytenr = btrfs_sb_offset(copy_num);
2041 int ret;
2042
2043 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044 if (IS_ERR(disk_super))
2045 return;
2046
2047 memset(&disk_super->magic, 0, len);
2048 folio_mark_dirty(virt_to_folio(disk_super));
2049 btrfs_release_disk_super(disk_super);
2050
2051 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052 if (ret)
2053 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
2060{
2061 int copy_num;
2062
2063 if (!bdev)
2064 return;
2065
2066 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067 if (bdev_is_zoned(bdev))
2068 btrfs_reset_sb_log_zones(bdev, copy_num);
2069 else
2070 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071 }
2072
2073 /* Notify udev that device has changed */
2074 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076 /* Update ctime/mtime for device path for libblkid */
2077 update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 struct btrfs_dev_lookup_args *args,
2082 struct block_device **bdev, fmode_t *mode)
2083{
2084 struct btrfs_trans_handle *trans;
2085 struct btrfs_device *device;
2086 struct btrfs_fs_devices *cur_devices;
2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 u64 num_devices;
2089 int ret = 0;
2090
2091 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 return -EINVAL;
2094 }
2095
2096 /*
2097 * The device list in fs_devices is accessed without locks (neither
2098 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 * filesystem and another device rm cannot run.
2100 */
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 return ret;
2106
2107 device = btrfs_find_device(fs_info->fs_devices, args);
2108 if (!device) {
2109 if (args->missing)
2110 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 else
2112 ret = -ENOENT;
2113 return ret;
2114 }
2115
2116 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 btrfs_warn_in_rcu(fs_info,
2118 "cannot remove device %s (devid %llu) due to active swapfile",
2119 btrfs_dev_name(device), device->devid);
2120 return -ETXTBSY;
2121 }
2122
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127 fs_info->fs_devices->rw_devices == 1)
2128 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131 mutex_lock(&fs_info->chunk_mutex);
2132 list_del_init(&device->dev_alloc_list);
2133 device->fs_devices->rw_devices--;
2134 mutex_unlock(&fs_info->chunk_mutex);
2135 }
2136
2137 ret = btrfs_shrink_device(device, 0);
2138 if (ret)
2139 goto error_undo;
2140
2141 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 if (IS_ERR(trans)) {
2143 ret = PTR_ERR(trans);
2144 goto error_undo;
2145 }
2146
2147 ret = btrfs_rm_dev_item(trans, device);
2148 if (ret) {
2149 /* Any error in dev item removal is critical */
2150 btrfs_crit(fs_info,
2151 "failed to remove device item for devid %llu: %d",
2152 device->devid, ret);
2153 btrfs_abort_transaction(trans, ret);
2154 btrfs_end_transaction(trans);
2155 return ret;
2156 }
2157
2158 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159 btrfs_scrub_cancel_dev(device);
2160
2161 /*
2162 * the device list mutex makes sure that we don't change
2163 * the device list while someone else is writing out all
2164 * the device supers. Whoever is writing all supers, should
2165 * lock the device list mutex before getting the number of
2166 * devices in the super block (super_copy). Conversely,
2167 * whoever updates the number of devices in the super block
2168 * (super_copy) should hold the device list mutex.
2169 */
2170
2171 /*
2172 * In normal cases the cur_devices == fs_devices. But in case
2173 * of deleting a seed device, the cur_devices should point to
2174 * its own fs_devices listed under the fs_devices->seed_list.
2175 */
2176 cur_devices = device->fs_devices;
2177 mutex_lock(&fs_devices->device_list_mutex);
2178 list_del_rcu(&device->dev_list);
2179
2180 cur_devices->num_devices--;
2181 cur_devices->total_devices--;
2182 /* Update total_devices of the parent fs_devices if it's seed */
2183 if (cur_devices != fs_devices)
2184 fs_devices->total_devices--;
2185
2186 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187 cur_devices->missing_devices--;
2188
2189 btrfs_assign_next_active_device(device, NULL);
2190
2191 if (device->bdev) {
2192 cur_devices->open_devices--;
2193 /* remove sysfs entry */
2194 btrfs_sysfs_remove_device(device);
2195 }
2196
2197 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199 mutex_unlock(&fs_devices->device_list_mutex);
2200
2201 /*
2202 * At this point, the device is zero sized and detached from the
2203 * devices list. All that's left is to zero out the old supers and
2204 * free the device.
2205 *
2206 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 * block device and it's dependencies. Instead just flush the device
2209 * and let the caller do the final blkdev_put.
2210 */
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 btrfs_scratch_superblocks(fs_info, device->bdev,
2213 device->name->str);
2214 if (device->bdev) {
2215 sync_blockdev(device->bdev);
2216 invalidate_bdev(device->bdev);
2217 }
2218 }
2219
2220 *bdev = device->bdev;
2221 *mode = device->mode;
2222 synchronize_rcu();
2223 btrfs_free_device(device);
2224
2225 /*
2226 * This can happen if cur_devices is the private seed devices list. We
2227 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 * to be held, but in fact we don't need that for the private
2229 * seed_devices, we can simply decrement cur_devices->opened and then
2230 * remove it from our list and free the fs_devices.
2231 */
2232 if (cur_devices->num_devices == 0) {
2233 list_del_init(&cur_devices->seed_list);
2234 ASSERT(cur_devices->opened == 1);
2235 cur_devices->opened--;
2236 free_fs_devices(cur_devices);
2237 }
2238
2239 ret = btrfs_commit_transaction(trans);
2240
2241 return ret;
2242
2243error_undo:
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 mutex_lock(&fs_info->chunk_mutex);
2246 list_add(&device->dev_alloc_list,
2247 &fs_devices->alloc_list);
2248 device->fs_devices->rw_devices++;
2249 mutex_unlock(&fs_info->chunk_mutex);
2250 }
2251 return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256 struct btrfs_fs_devices *fs_devices;
2257
2258 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260 /*
2261 * in case of fs with no seed, srcdev->fs_devices will point
2262 * to fs_devices of fs_info. However when the dev being replaced is
2263 * a seed dev it will point to the seed's local fs_devices. In short
2264 * srcdev will have its correct fs_devices in both the cases.
2265 */
2266 fs_devices = srcdev->fs_devices;
2267
2268 list_del_rcu(&srcdev->dev_list);
2269 list_del(&srcdev->dev_alloc_list);
2270 fs_devices->num_devices--;
2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272 fs_devices->missing_devices--;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275 fs_devices->rw_devices--;
2276
2277 if (srcdev->bdev)
2278 fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285 mutex_lock(&uuid_mutex);
2286
2287 btrfs_close_bdev(srcdev);
2288 synchronize_rcu();
2289 btrfs_free_device(srcdev);
2290
2291 /* if this is no devs we rather delete the fs_devices */
2292 if (!fs_devices->num_devices) {
2293 /*
2294 * On a mounted FS, num_devices can't be zero unless it's a
2295 * seed. In case of a seed device being replaced, the replace
2296 * target added to the sprout FS, so there will be no more
2297 * device left under the seed FS.
2298 */
2299 ASSERT(fs_devices->seeding);
2300
2301 list_del_init(&fs_devices->seed_list);
2302 close_fs_devices(fs_devices);
2303 free_fs_devices(fs_devices);
2304 }
2305 mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312 mutex_lock(&fs_devices->device_list_mutex);
2313
2314 btrfs_sysfs_remove_device(tgtdev);
2315
2316 if (tgtdev->bdev)
2317 fs_devices->open_devices--;
2318
2319 fs_devices->num_devices--;
2320
2321 btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323 list_del_rcu(&tgtdev->dev_list);
2324
2325 mutex_unlock(&fs_devices->device_list_mutex);
2326
2327 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 tgtdev->name->str);
2329
2330 btrfs_close_bdev(tgtdev);
2331 synchronize_rcu();
2332 btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info: the filesystem
2339 * @args: the args to populate
2340 * @path: the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks. The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 struct btrfs_dev_lookup_args *args,
2355 const char *path)
2356{
2357 struct btrfs_super_block *disk_super;
2358 struct block_device *bdev;
2359 int ret;
2360
2361 if (!path || !path[0])
2362 return -EINVAL;
2363 if (!strcmp(path, "missing")) {
2364 args->missing = true;
2365 return 0;
2366 }
2367
2368 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 if (!args->uuid || !args->fsid) {
2371 btrfs_put_dev_args_from_path(args);
2372 return -ENOMEM;
2373 }
2374
2375 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 &bdev, &disk_super);
2377 if (ret) {
2378 btrfs_put_dev_args_from_path(args);
2379 return ret;
2380 }
2381
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 else
2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 btrfs_release_disk_super(disk_super);
2389 blkdev_put(bdev, FMODE_READ);
2390 return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400 kfree(args->uuid);
2401 kfree(args->fsid);
2402 args->uuid = NULL;
2403 args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
2409{
2410 BTRFS_DEV_LOOKUP_ARGS(args);
2411 struct btrfs_device *device;
2412 int ret;
2413
2414 if (devid) {
2415 args.devid = devid;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
2417 if (!device)
2418 return ERR_PTR(-ENOENT);
2419 return device;
2420 }
2421
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 if (ret)
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2427 if (!device)
2428 return ERR_PTR(-ENOENT);
2429 return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 struct btrfs_fs_devices *old_devices;
2436 struct btrfs_fs_devices *seed_devices;
2437
2438 lockdep_assert_held(&uuid_mutex);
2439 if (!fs_devices->seeding)
2440 return ERR_PTR(-EINVAL);
2441
2442 /*
2443 * Private copy of the seed devices, anchored at
2444 * fs_info->fs_devices->seed_list
2445 */
2446 seed_devices = alloc_fs_devices(NULL, NULL);
2447 if (IS_ERR(seed_devices))
2448 return seed_devices;
2449
2450 /*
2451 * It's necessary to retain a copy of the original seed fs_devices in
2452 * fs_uuids so that filesystems which have been seeded can successfully
2453 * reference the seed device from open_seed_devices. This also supports
2454 * multiple fs seed.
2455 */
2456 old_devices = clone_fs_devices(fs_devices);
2457 if (IS_ERR(old_devices)) {
2458 kfree(seed_devices);
2459 return old_devices;
2460 }
2461
2462 list_add(&old_devices->fs_list, &fs_uuids);
2463
2464 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 seed_devices->opened = 1;
2466 INIT_LIST_HEAD(&seed_devices->devices);
2467 INIT_LIST_HEAD(&seed_devices->alloc_list);
2468 mutex_init(&seed_devices->device_list_mutex);
2469
2470 return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 struct btrfs_fs_devices *seed_devices)
2479{
2480 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 struct btrfs_device *device;
2483 u64 super_flags;
2484
2485 /*
2486 * We are updating the fsid, the thread leading to device_list_add()
2487 * could race, so uuid_mutex is needed.
2488 */
2489 lockdep_assert_held(&uuid_mutex);
2490
2491 /*
2492 * The threads listed below may traverse dev_list but can do that without
2493 * device_list_mutex:
2494 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 * - Various dev_list readers - are using RCU.
2496 * - btrfs_ioctl_fitrim() - is using RCU.
2497 *
2498 * For-read threads as below are using device_list_mutex:
2499 * - Readonly scrub btrfs_scrub_dev()
2500 * - Readonly scrub btrfs_scrub_progress()
2501 * - btrfs_get_dev_stats()
2502 */
2503 lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 synchronize_rcu);
2507 list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 device->fs_devices = seed_devices;
2509
2510 fs_devices->seeding = false;
2511 fs_devices->num_devices = 0;
2512 fs_devices->open_devices = 0;
2513 fs_devices->missing_devices = 0;
2514 fs_devices->rotating = false;
2515 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517 generate_random_uuid(fs_devices->fsid);
2518 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521 super_flags = btrfs_super_flags(disk_super) &
2522 ~BTRFS_SUPER_FLAG_SEEDING;
2523 btrfs_set_super_flags(disk_super, super_flags);
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531 BTRFS_DEV_LOOKUP_ARGS(args);
2532 struct btrfs_fs_info *fs_info = trans->fs_info;
2533 struct btrfs_root *root = fs_info->chunk_root;
2534 struct btrfs_path *path;
2535 struct extent_buffer *leaf;
2536 struct btrfs_dev_item *dev_item;
2537 struct btrfs_device *device;
2538 struct btrfs_key key;
2539 u8 fs_uuid[BTRFS_FSID_SIZE];
2540 u8 dev_uuid[BTRFS_UUID_SIZE];
2541 int ret;
2542
2543 path = btrfs_alloc_path();
2544 if (!path)
2545 return -ENOMEM;
2546
2547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 key.offset = 0;
2549 key.type = BTRFS_DEV_ITEM_KEY;
2550
2551 while (1) {
2552 btrfs_reserve_chunk_metadata(trans, false);
2553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554 btrfs_trans_release_chunk_metadata(trans);
2555 if (ret < 0)
2556 goto error;
2557
2558 leaf = path->nodes[0];
2559next_slot:
2560 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 ret = btrfs_next_leaf(root, path);
2562 if (ret > 0)
2563 break;
2564 if (ret < 0)
2565 goto error;
2566 leaf = path->nodes[0];
2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568 btrfs_release_path(path);
2569 continue;
2570 }
2571
2572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 key.type != BTRFS_DEV_ITEM_KEY)
2575 break;
2576
2577 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 struct btrfs_dev_item);
2579 args.devid = btrfs_device_id(leaf, dev_item);
2580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581 BTRFS_UUID_SIZE);
2582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583 BTRFS_FSID_SIZE);
2584 args.uuid = dev_uuid;
2585 args.fsid = fs_uuid;
2586 device = btrfs_find_device(fs_info->fs_devices, &args);
2587 BUG_ON(!device); /* Logic error */
2588
2589 if (device->fs_devices->seeding) {
2590 btrfs_set_device_generation(leaf, dev_item,
2591 device->generation);
2592 btrfs_mark_buffer_dirty(leaf);
2593 }
2594
2595 path->slots[0]++;
2596 goto next_slot;
2597 }
2598 ret = 0;
2599error:
2600 btrfs_free_path(path);
2601 return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606 struct btrfs_root *root = fs_info->dev_root;
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_device *device;
2609 struct block_device *bdev;
2610 struct super_block *sb = fs_info->sb;
2611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612 struct btrfs_fs_devices *seed_devices;
2613 u64 orig_super_total_bytes;
2614 u64 orig_super_num_devices;
2615 int ret = 0;
2616 bool seeding_dev = false;
2617 bool locked = false;
2618
2619 if (sb_rdonly(sb) && !fs_devices->seeding)
2620 return -EROFS;
2621
2622 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623 fs_info->bdev_holder);
2624 if (IS_ERR(bdev))
2625 return PTR_ERR(bdev);
2626
2627 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 ret = -EINVAL;
2629 goto error;
2630 }
2631
2632 if (fs_devices->seeding) {
2633 seeding_dev = true;
2634 down_write(&sb->s_umount);
2635 mutex_lock(&uuid_mutex);
2636 locked = true;
2637 }
2638
2639 sync_blockdev(bdev);
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643 if (device->bdev == bdev) {
2644 ret = -EEXIST;
2645 rcu_read_unlock();
2646 goto error;
2647 }
2648 }
2649 rcu_read_unlock();
2650
2651 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652 if (IS_ERR(device)) {
2653 /* we can safely leave the fs_devices entry around */
2654 ret = PTR_ERR(device);
2655 goto error;
2656 }
2657
2658 device->fs_info = fs_info;
2659 device->bdev = bdev;
2660 ret = lookup_bdev(device_path, &device->devt);
2661 if (ret)
2662 goto error_free_device;
2663
2664 ret = btrfs_get_dev_zone_info(device, false);
2665 if (ret)
2666 goto error_free_device;
2667
2668 trans = btrfs_start_transaction(root, 0);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 goto error_free_zone;
2672 }
2673
2674 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675 device->generation = trans->transid;
2676 device->io_width = fs_info->sectorsize;
2677 device->io_align = fs_info->sectorsize;
2678 device->sector_size = fs_info->sectorsize;
2679 device->total_bytes =
2680 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681 device->disk_total_bytes = device->total_bytes;
2682 device->commit_total_bytes = device->total_bytes;
2683 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685 device->mode = FMODE_EXCL;
2686 device->dev_stats_valid = 1;
2687 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689 if (seeding_dev) {
2690 btrfs_clear_sb_rdonly(sb);
2691
2692 /* GFP_KERNEL allocation must not be under device_list_mutex */
2693 seed_devices = btrfs_init_sprout(fs_info);
2694 if (IS_ERR(seed_devices)) {
2695 ret = PTR_ERR(seed_devices);
2696 btrfs_abort_transaction(trans, ret);
2697 goto error_trans;
2698 }
2699 }
2700
2701 mutex_lock(&fs_devices->device_list_mutex);
2702 if (seeding_dev) {
2703 btrfs_setup_sprout(fs_info, seed_devices);
2704 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 device);
2706 }
2707
2708 device->fs_devices = fs_devices;
2709
2710 mutex_lock(&fs_info->chunk_mutex);
2711 list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 fs_devices->num_devices++;
2714 fs_devices->open_devices++;
2715 fs_devices->rw_devices++;
2716 fs_devices->total_devices++;
2717 fs_devices->total_rw_bytes += device->total_bytes;
2718
2719 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721 if (!bdev_nonrot(bdev))
2722 fs_devices->rotating = true;
2723
2724 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725 btrfs_set_super_total_bytes(fs_info->super_copy,
2726 round_down(orig_super_total_bytes + device->total_bytes,
2727 fs_info->sectorsize));
2728
2729 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 btrfs_set_super_num_devices(fs_info->super_copy,
2731 orig_super_num_devices + 1);
2732
2733 /*
2734 * we've got more storage, clear any full flags on the space
2735 * infos
2736 */
2737 btrfs_clear_space_info_full(fs_info);
2738
2739 mutex_unlock(&fs_info->chunk_mutex);
2740
2741 /* Add sysfs device entry */
2742 btrfs_sysfs_add_device(device);
2743
2744 mutex_unlock(&fs_devices->device_list_mutex);
2745
2746 if (seeding_dev) {
2747 mutex_lock(&fs_info->chunk_mutex);
2748 ret = init_first_rw_device(trans);
2749 mutex_unlock(&fs_info->chunk_mutex);
2750 if (ret) {
2751 btrfs_abort_transaction(trans, ret);
2752 goto error_sysfs;
2753 }
2754 }
2755
2756 ret = btrfs_add_dev_item(trans, device);
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto error_sysfs;
2760 }
2761
2762 if (seeding_dev) {
2763 ret = btrfs_finish_sprout(trans);
2764 if (ret) {
2765 btrfs_abort_transaction(trans, ret);
2766 goto error_sysfs;
2767 }
2768
2769 /*
2770 * fs_devices now represents the newly sprouted filesystem and
2771 * its fsid has been changed by btrfs_sprout_splice().
2772 */
2773 btrfs_sysfs_update_sprout_fsid(fs_devices);
2774 }
2775
2776 ret = btrfs_commit_transaction(trans);
2777
2778 if (seeding_dev) {
2779 mutex_unlock(&uuid_mutex);
2780 up_write(&sb->s_umount);
2781 locked = false;
2782
2783 if (ret) /* transaction commit */
2784 return ret;
2785
2786 ret = btrfs_relocate_sys_chunks(fs_info);
2787 if (ret < 0)
2788 btrfs_handle_fs_error(fs_info, ret,
2789 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790 trans = btrfs_attach_transaction(root);
2791 if (IS_ERR(trans)) {
2792 if (PTR_ERR(trans) == -ENOENT)
2793 return 0;
2794 ret = PTR_ERR(trans);
2795 trans = NULL;
2796 goto error_sysfs;
2797 }
2798 ret = btrfs_commit_transaction(trans);
2799 }
2800
2801 /*
2802 * Now that we have written a new super block to this device, check all
2803 * other fs_devices list if device_path alienates any other scanned
2804 * device.
2805 * We can ignore the return value as it typically returns -EINVAL and
2806 * only succeeds if the device was an alien.
2807 */
2808 btrfs_forget_devices(device->devt);
2809
2810 /* Update ctime/mtime for blkid or udev */
2811 update_dev_time(device_path);
2812
2813 return ret;
2814
2815error_sysfs:
2816 btrfs_sysfs_remove_device(device);
2817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 mutex_lock(&fs_info->chunk_mutex);
2819 list_del_rcu(&device->dev_list);
2820 list_del(&device->dev_alloc_list);
2821 fs_info->fs_devices->num_devices--;
2822 fs_info->fs_devices->open_devices--;
2823 fs_info->fs_devices->rw_devices--;
2824 fs_info->fs_devices->total_devices--;
2825 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 btrfs_set_super_total_bytes(fs_info->super_copy,
2828 orig_super_total_bytes);
2829 btrfs_set_super_num_devices(fs_info->super_copy,
2830 orig_super_num_devices);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834 if (seeding_dev)
2835 btrfs_set_sb_rdonly(sb);
2836 if (trans)
2837 btrfs_end_transaction(trans);
2838error_free_zone:
2839 btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841 btrfs_free_device(device);
2842error:
2843 blkdev_put(bdev, FMODE_EXCL);
2844 if (locked) {
2845 mutex_unlock(&uuid_mutex);
2846 up_write(&sb->s_umount);
2847 }
2848 return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 struct btrfs_device *device)
2853{
2854 int ret;
2855 struct btrfs_path *path;
2856 struct btrfs_root *root = device->fs_info->chunk_root;
2857 struct btrfs_dev_item *dev_item;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860
2861 path = btrfs_alloc_path();
2862 if (!path)
2863 return -ENOMEM;
2864
2865 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 key.type = BTRFS_DEV_ITEM_KEY;
2867 key.offset = device->devid;
2868
2869 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 if (ret < 0)
2871 goto out;
2872
2873 if (ret > 0) {
2874 ret = -ENOENT;
2875 goto out;
2876 }
2877
2878 leaf = path->nodes[0];
2879 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881 btrfs_set_device_id(leaf, dev_item, device->devid);
2882 btrfs_set_device_type(leaf, dev_item, device->type);
2883 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886 btrfs_set_device_total_bytes(leaf, dev_item,
2887 btrfs_device_get_disk_total_bytes(device));
2888 btrfs_set_device_bytes_used(leaf, dev_item,
2889 btrfs_device_get_bytes_used(device));
2890 btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893 btrfs_free_path(path);
2894 return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898 struct btrfs_device *device, u64 new_size)
2899{
2900 struct btrfs_fs_info *fs_info = device->fs_info;
2901 struct btrfs_super_block *super_copy = fs_info->super_copy;
2902 u64 old_total;
2903 u64 diff;
2904 int ret;
2905
2906 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907 return -EACCES;
2908
2909 new_size = round_down(new_size, fs_info->sectorsize);
2910
2911 mutex_lock(&fs_info->chunk_mutex);
2912 old_total = btrfs_super_total_bytes(super_copy);
2913 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915 if (new_size <= device->total_bytes ||
2916 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917 mutex_unlock(&fs_info->chunk_mutex);
2918 return -EINVAL;
2919 }
2920
2921 btrfs_set_super_total_bytes(super_copy,
2922 round_down(old_total + diff, fs_info->sectorsize));
2923 device->fs_devices->total_rw_bytes += diff;
2924
2925 btrfs_device_set_total_bytes(device, new_size);
2926 btrfs_device_set_disk_total_bytes(device, new_size);
2927 btrfs_clear_space_info_full(device->fs_info);
2928 if (list_empty(&device->post_commit_list))
2929 list_add_tail(&device->post_commit_list,
2930 &trans->transaction->dev_update_list);
2931 mutex_unlock(&fs_info->chunk_mutex);
2932
2933 btrfs_reserve_chunk_metadata(trans, false);
2934 ret = btrfs_update_device(trans, device);
2935 btrfs_trans_release_chunk_metadata(trans);
2936
2937 return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942 struct btrfs_fs_info *fs_info = trans->fs_info;
2943 struct btrfs_root *root = fs_info->chunk_root;
2944 int ret;
2945 struct btrfs_path *path;
2946 struct btrfs_key key;
2947
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
2952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953 key.offset = chunk_offset;
2954 key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957 if (ret < 0)
2958 goto out;
2959 else if (ret > 0) { /* Logic error or corruption */
2960 btrfs_handle_fs_error(fs_info, -ENOENT,
2961 "Failed lookup while freeing chunk.");
2962 ret = -ENOENT;
2963 goto out;
2964 }
2965
2966 ret = btrfs_del_item(trans, root, path);
2967 if (ret < 0)
2968 btrfs_handle_fs_error(fs_info, ret,
2969 "Failed to delete chunk item.");
2970out:
2971 btrfs_free_path(path);
2972 return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977 struct btrfs_super_block *super_copy = fs_info->super_copy;
2978 struct btrfs_disk_key *disk_key;
2979 struct btrfs_chunk *chunk;
2980 u8 *ptr;
2981 int ret = 0;
2982 u32 num_stripes;
2983 u32 array_size;
2984 u32 len = 0;
2985 u32 cur;
2986 struct btrfs_key key;
2987
2988 lockdep_assert_held(&fs_info->chunk_mutex);
2989 array_size = btrfs_super_sys_array_size(super_copy);
2990
2991 ptr = super_copy->sys_chunk_array;
2992 cur = 0;
2993
2994 while (cur < array_size) {
2995 disk_key = (struct btrfs_disk_key *)ptr;
2996 btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998 len = sizeof(*disk_key);
2999
3000 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 chunk = (struct btrfs_chunk *)(ptr + len);
3002 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 len += btrfs_chunk_item_size(num_stripes);
3004 } else {
3005 ret = -EIO;
3006 break;
3007 }
3008 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009 key.offset == chunk_offset) {
3010 memmove(ptr, ptr + len, array_size - (cur + len));
3011 array_size -= len;
3012 btrfs_set_super_sys_array_size(super_copy, array_size);
3013 } else {
3014 ptr += len;
3015 cur += len;
3016 }
3017 }
3018 return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 u64 logical, u64 length)
3030{
3031 struct extent_map_tree *em_tree;
3032 struct extent_map *em;
3033
3034 em_tree = &fs_info->mapping_tree;
3035 read_lock(&em_tree->lock);
3036 em = lookup_extent_mapping(em_tree, logical, length);
3037 read_unlock(&em_tree->lock);
3038
3039 if (!em) {
3040 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 logical, length);
3042 return ERR_PTR(-EINVAL);
3043 }
3044
3045 if (em->start > logical || em->start + em->len < logical) {
3046 btrfs_crit(fs_info,
3047 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 logical, length, em->start, em->start + em->len);
3049 free_extent_map(em);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 /* callers are responsible for dropping em's ref. */
3054 return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 struct map_lookup *map, u64 chunk_offset)
3059{
3060 int i;
3061
3062 /*
3063 * Removing chunk items and updating the device items in the chunks btree
3064 * requires holding the chunk_mutex.
3065 * See the comment at btrfs_chunk_alloc() for the details.
3066 */
3067 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069 for (i = 0; i < map->num_stripes; i++) {
3070 int ret;
3071
3072 ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082 struct btrfs_fs_info *fs_info = trans->fs_info;
3083 struct extent_map *em;
3084 struct map_lookup *map;
3085 u64 dev_extent_len = 0;
3086 int i, ret = 0;
3087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090 if (IS_ERR(em)) {
3091 /*
3092 * This is a logic error, but we don't want to just rely on the
3093 * user having built with ASSERT enabled, so if ASSERT doesn't
3094 * do anything we still error out.
3095 */
3096 ASSERT(0);
3097 return PTR_ERR(em);
3098 }
3099 map = em->map_lookup;
3100
3101 /*
3102 * First delete the device extent items from the devices btree.
3103 * We take the device_list_mutex to avoid racing with the finishing phase
3104 * of a device replace operation. See the comment below before acquiring
3105 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 * because that can result in a deadlock when deleting the device extent
3107 * items from the devices btree - COWing an extent buffer from the btree
3108 * may result in allocating a new metadata chunk, which would attempt to
3109 * lock again fs_info->chunk_mutex.
3110 */
3111 mutex_lock(&fs_devices->device_list_mutex);
3112 for (i = 0; i < map->num_stripes; i++) {
3113 struct btrfs_device *device = map->stripes[i].dev;
3114 ret = btrfs_free_dev_extent(trans, device,
3115 map->stripes[i].physical,
3116 &dev_extent_len);
3117 if (ret) {
3118 mutex_unlock(&fs_devices->device_list_mutex);
3119 btrfs_abort_transaction(trans, ret);
3120 goto out;
3121 }
3122
3123 if (device->bytes_used > 0) {
3124 mutex_lock(&fs_info->chunk_mutex);
3125 btrfs_device_set_bytes_used(device,
3126 device->bytes_used - dev_extent_len);
3127 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128 btrfs_clear_space_info_full(fs_info);
3129 mutex_unlock(&fs_info->chunk_mutex);
3130 }
3131 }
3132 mutex_unlock(&fs_devices->device_list_mutex);
3133
3134 /*
3135 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 *
3137 * 1) Just like with the first phase of the chunk allocation, we must
3138 * reserve system space, do all chunk btree updates and deletions, and
3139 * update the system chunk array in the superblock while holding this
3140 * mutex. This is for similar reasons as explained on the comment at
3141 * the top of btrfs_chunk_alloc();
3142 *
3143 * 2) Prevent races with the final phase of a device replace operation
3144 * that replaces the device object associated with the map's stripes,
3145 * because the device object's id can change at any time during that
3146 * final phase of the device replace operation
3147 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 * replaced device and then see it with an ID of
3149 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 * the device item, which does not exists on the chunk btree.
3151 * The finishing phase of device replace acquires both the
3152 * device_list_mutex and the chunk_mutex, in that order, so we are
3153 * safe by just acquiring the chunk_mutex.
3154 */
3155 trans->removing_chunk = true;
3156 mutex_lock(&fs_info->chunk_mutex);
3157
3158 check_system_chunk(trans, map->type);
3159
3160 ret = remove_chunk_item(trans, map, chunk_offset);
3161 /*
3162 * Normally we should not get -ENOSPC since we reserved space before
3163 * through the call to check_system_chunk().
3164 *
3165 * Despite our system space_info having enough free space, we may not
3166 * be able to allocate extents from its block groups, because all have
3167 * an incompatible profile, which will force us to allocate a new system
3168 * block group with the right profile, or right after we called
3169 * check_system_space() above, a scrub turned the only system block group
3170 * with enough free space into RO mode.
3171 * This is explained with more detail at do_chunk_alloc().
3172 *
3173 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 */
3175 if (ret == -ENOSPC) {
3176 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 struct btrfs_block_group *sys_bg;
3178
3179 sys_bg = btrfs_create_chunk(trans, sys_flags);
3180 if (IS_ERR(sys_bg)) {
3181 ret = PTR_ERR(sys_bg);
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187 if (ret) {
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
3190 }
3191
3192 ret = remove_chunk_item(trans, map, chunk_offset);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197 } else if (ret) {
3198 btrfs_abort_transaction(trans, ret);
3199 goto out;
3200 }
3201
3202 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210 }
3211
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214
3215 /*
3216 * We are done with chunk btree updates and deletions, so release the
3217 * system space we previously reserved (with check_system_chunk()).
3218 */
3219 btrfs_trans_release_chunk_metadata(trans);
3220
3221 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222 if (ret) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226
3227out:
3228 if (trans->removing_chunk) {
3229 mutex_unlock(&fs_info->chunk_mutex);
3230 trans->removing_chunk = false;
3231 }
3232 /* once for us */
3233 free_extent_map(em);
3234 return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239 struct btrfs_root *root = fs_info->chunk_root;
3240 struct btrfs_trans_handle *trans;
3241 struct btrfs_block_group *block_group;
3242 u64 length;
3243 int ret;
3244
3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 btrfs_err(fs_info,
3247 "relocate: not supported on extent tree v2 yet");
3248 return -EINVAL;
3249 }
3250
3251 /*
3252 * Prevent races with automatic removal of unused block groups.
3253 * After we relocate and before we remove the chunk with offset
3254 * chunk_offset, automatic removal of the block group can kick in,
3255 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 *
3257 * Make sure to acquire this mutex before doing a tree search (dev
3258 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 * we release the path used to search the chunk/dev tree and before
3261 * the current task acquires this mutex and calls us.
3262 */
3263 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265 /* step one, relocate all the extents inside this chunk */
3266 btrfs_scrub_pause(fs_info);
3267 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268 btrfs_scrub_continue(fs_info);
3269 if (ret)
3270 return ret;
3271
3272 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 if (!block_group)
3274 return -ENOENT;
3275 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276 length = block_group->length;
3277 btrfs_put_block_group(block_group);
3278
3279 /*
3280 * On a zoned file system, discard the whole block group, this will
3281 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 * resetting the zone fails, don't treat it as a fatal problem from the
3283 * filesystem's point of view.
3284 */
3285 if (btrfs_is_zoned(fs_info)) {
3286 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 if (ret)
3288 btrfs_info(fs_info,
3289 "failed to reset zone %llu after relocation",
3290 chunk_offset);
3291 }
3292
3293 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 chunk_offset);
3295 if (IS_ERR(trans)) {
3296 ret = PTR_ERR(trans);
3297 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 return ret;
3299 }
3300
3301 /*
3302 * step two, delete the device extents and the
3303 * chunk tree entries
3304 */
3305 ret = btrfs_remove_chunk(trans, chunk_offset);
3306 btrfs_end_transaction(trans);
3307 return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312 struct btrfs_root *chunk_root = fs_info->chunk_root;
3313 struct btrfs_path *path;
3314 struct extent_buffer *leaf;
3315 struct btrfs_chunk *chunk;
3316 struct btrfs_key key;
3317 struct btrfs_key found_key;
3318 u64 chunk_type;
3319 bool retried = false;
3320 int failed = 0;
3321 int ret;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
3327again:
3328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 key.offset = (u64)-1;
3330 key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332 while (1) {
3333 mutex_lock(&fs_info->reclaim_bgs_lock);
3334 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335 if (ret < 0) {
3336 mutex_unlock(&fs_info->reclaim_bgs_lock);
3337 goto error;
3338 }
3339 BUG_ON(ret == 0); /* Corruption */
3340
3341 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 key.type);
3343 if (ret)
3344 mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 if (ret < 0)
3346 goto error;
3347 if (ret > 0)
3348 break;
3349
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 struct btrfs_chunk);
3355 chunk_type = btrfs_chunk_type(leaf, chunk);
3356 btrfs_release_path(path);
3357
3358 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360 if (ret == -ENOSPC)
3361 failed++;
3362 else
3363 BUG_ON(ret);
3364 }
3365 mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367 if (found_key.offset == 0)
3368 break;
3369 key.offset = found_key.offset - 1;
3370 }
3371 ret = 0;
3372 if (failed && !retried) {
3373 failed = 0;
3374 retried = true;
3375 goto again;
3376 } else if (WARN_ON(failed && retried)) {
3377 ret = -ENOSPC;
3378 }
3379error:
3380 btrfs_free_path(path);
3381 return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 u64 chunk_offset)
3391{
3392 struct btrfs_block_group *cache;
3393 u64 bytes_used;
3394 u64 chunk_type;
3395
3396 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 ASSERT(cache);
3398 chunk_type = cache->flags;
3399 btrfs_put_block_group(cache);
3400
3401 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 return 0;
3403
3404 spin_lock(&fs_info->data_sinfo->lock);
3405 bytes_used = fs_info->data_sinfo->bytes_used;
3406 spin_unlock(&fs_info->data_sinfo->lock);
3407
3408 if (!bytes_used) {
3409 struct btrfs_trans_handle *trans;
3410 int ret;
3411
3412 trans = btrfs_join_transaction(fs_info->tree_root);
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
3415
3416 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 btrfs_end_transaction(trans);
3418 if (ret < 0)
3419 return ret;
3420 return 1;
3421 }
3422
3423 return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427 struct btrfs_balance_control *bctl)
3428{
3429 struct btrfs_root *root = fs_info->tree_root;
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_balance_item *item;
3432 struct btrfs_disk_balance_args disk_bargs;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key;
3436 int ret, err;
3437
3438 path = btrfs_alloc_path();
3439 if (!path)
3440 return -ENOMEM;
3441
3442 trans = btrfs_start_transaction(root, 0);
3443 if (IS_ERR(trans)) {
3444 btrfs_free_path(path);
3445 return PTR_ERR(trans);
3446 }
3447
3448 key.objectid = BTRFS_BALANCE_OBJECTID;
3449 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450 key.offset = 0;
3451
3452 ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 sizeof(*item));
3454 if (ret)
3455 goto out;
3456
3457 leaf = path->nodes[0];
3458 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469 btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471 btrfs_mark_buffer_dirty(leaf);
3472out:
3473 btrfs_free_path(path);
3474 err = btrfs_commit_transaction(trans);
3475 if (err && !ret)
3476 ret = err;
3477 return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482 struct btrfs_root *root = fs_info->tree_root;
3483 struct btrfs_trans_handle *trans;
3484 struct btrfs_path *path;
3485 struct btrfs_key key;
3486 int ret, err;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493 if (IS_ERR(trans)) {
3494 btrfs_free_path(path);
3495 return PTR_ERR(trans);
3496 }
3497
3498 key.objectid = BTRFS_BALANCE_OBJECTID;
3499 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500 key.offset = 0;
3501
3502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 if (ret < 0)
3504 goto out;
3505 if (ret > 0) {
3506 ret = -ENOENT;
3507 goto out;
3508 }
3509
3510 ret = btrfs_del_item(trans, root, path);
3511out:
3512 btrfs_free_path(path);
3513 err = btrfs_commit_transaction(trans);
3514 if (err && !ret)
3515 ret = err;
3516 return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525 /*
3526 * Turn on soft mode for chunk types that were being converted.
3527 */
3528 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535 /*
3536 * Turn on usage filter if is not already used. The idea is
3537 * that chunks that we have already balanced should be
3538 * reasonably full. Don't do it for chunks that are being
3539 * converted - that will keep us from relocating unconverted
3540 * (albeit full) chunks.
3541 */
3542 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->data.usage = 90;
3547 }
3548 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 bctl->sys.usage = 90;
3553 }
3554 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 bctl->meta.usage = 90;
3559 }
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568 int ret;
3569
3570 BUG_ON(!fs_info->balance_ctl);
3571
3572 spin_lock(&fs_info->balance_lock);
3573 fs_info->balance_ctl = NULL;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 kfree(bctl);
3577 ret = del_balance_item(fs_info);
3578 if (ret)
3579 btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters. Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587 struct btrfs_balance_args *bargs)
3588{
3589 chunk_type = chunk_to_extended(chunk_type) &
3590 BTRFS_EXTENDED_PROFILE_MASK;
3591
3592 if (bargs->profiles & chunk_type)
3593 return 0;
3594
3595 return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599 struct btrfs_balance_args *bargs)
3600{
3601 struct btrfs_block_group *cache;
3602 u64 chunk_used;
3603 u64 user_thresh_min;
3604 u64 user_thresh_max;
3605 int ret = 1;
3606
3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608 chunk_used = cache->used;
3609
3610 if (bargs->usage_min == 0)
3611 user_thresh_min = 0;
3612 else
3613 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615 if (bargs->usage_max == 0)
3616 user_thresh_max = 1;
3617 else if (bargs->usage_max > 100)
3618 user_thresh_max = cache->length;
3619 else
3620 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630 u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632 struct btrfs_block_group *cache;
3633 u64 chunk_used, user_thresh;
3634 int ret = 1;
3635
3636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637 chunk_used = cache->used;
3638
3639 if (bargs->usage_min == 0)
3640 user_thresh = 1;
3641 else if (bargs->usage > 100)
3642 user_thresh = cache->length;
3643 else
3644 user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646 if (chunk_used < user_thresh)
3647 ret = 0;
3648
3649 btrfs_put_block_group(cache);
3650 return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654 struct btrfs_chunk *chunk,
3655 struct btrfs_balance_args *bargs)
3656{
3657 struct btrfs_stripe *stripe;
3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 int i;
3660
3661 for (i = 0; i < num_stripes; i++) {
3662 stripe = btrfs_stripe_nr(chunk, i);
3663 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 return 0;
3665 }
3666
3667 return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672 const int index = btrfs_bg_flags_to_raid_index(type);
3673 const int ncopies = btrfs_raid_array[index].ncopies;
3674 const int nparity = btrfs_raid_array[index].nparity;
3675
3676 return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681 struct btrfs_chunk *chunk,
3682 struct btrfs_balance_args *bargs)
3683{
3684 struct btrfs_stripe *stripe;
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 u64 stripe_offset;
3687 u64 stripe_length;
3688 u64 type;
3689 int factor;
3690 int i;
3691
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 return 0;
3694
3695 type = btrfs_chunk_type(leaf, chunk);
3696 factor = calc_data_stripes(type, num_stripes);
3697
3698 for (i = 0; i < num_stripes; i++) {
3699 stripe = btrfs_stripe_nr(chunk, i);
3700 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 continue;
3702
3703 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 stripe_length = btrfs_chunk_length(leaf, chunk);
3705 stripe_length = div_u64(stripe_length, factor);
3706
3707 if (stripe_offset < bargs->pend &&
3708 stripe_offset + stripe_length > bargs->pstart)
3709 return 0;
3710 }
3711
3712 return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 struct btrfs_chunk *chunk,
3718 u64 chunk_offset,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (chunk_offset < bargs->vend &&
3722 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 /* at least part of the chunk is inside this vrange */
3724 return 0;
3725
3726 return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk,
3731 struct btrfs_balance_args *bargs)
3732{
3733 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735 if (bargs->stripes_min <= num_stripes
3736 && num_stripes <= bargs->stripes_max)
3737 return 0;
3738
3739 return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743 struct btrfs_balance_args *bargs)
3744{
3745 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 return 0;
3747
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->target == chunk_type)
3752 return 1;
3753
3754 return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758 struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760 struct btrfs_fs_info *fs_info = leaf->fs_info;
3761 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762 struct btrfs_balance_args *bargs = NULL;
3763 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765 /* type filter */
3766 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 return 0;
3769 }
3770
3771 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 bargs = &bctl->data;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 bargs = &bctl->sys;
3775 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 bargs = &bctl->meta;
3777
3778 /* profiles filter */
3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 chunk_profiles_filter(chunk_type, bargs)) {
3781 return 0;
3782 }
3783
3784 /* usage filter */
3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787 return 0;
3788 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790 return 0;
3791 }
3792
3793 /* devid filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 chunk_devid_filter(leaf, chunk, bargs)) {
3796 return 0;
3797 }
3798
3799 /* drange filter, makes sense only with devid filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801 chunk_drange_filter(leaf, chunk, bargs)) {
3802 return 0;
3803 }
3804
3805 /* vrange filter */
3806 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 return 0;
3809 }
3810
3811 /* stripes filter */
3812 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 return 0;
3815 }
3816
3817 /* soft profile changing mode */
3818 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 chunk_soft_convert_filter(chunk_type, bargs)) {
3820 return 0;
3821 }
3822
3823 /*
3824 * limited by count, must be the last filter
3825 */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 if (bargs->limit == 0)
3828 return 0;
3829 else
3830 bargs->limit--;
3831 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 /*
3833 * Same logic as the 'limit' filter; the minimum cannot be
3834 * determined here because we do not have the global information
3835 * about the count of all chunks that satisfy the filters.
3836 */
3837 if (bargs->limit_max == 0)
3838 return 0;
3839 else
3840 bargs->limit_max--;
3841 }
3842
3843 return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849 struct btrfs_root *chunk_root = fs_info->chunk_root;
3850 u64 chunk_type;
3851 struct btrfs_chunk *chunk;
3852 struct btrfs_path *path = NULL;
3853 struct btrfs_key key;
3854 struct btrfs_key found_key;
3855 struct extent_buffer *leaf;
3856 int slot;
3857 int ret;
3858 int enospc_errors = 0;
3859 bool counting = true;
3860 /* The single value limit and min/max limits use the same bytes in the */
3861 u64 limit_data = bctl->data.limit;
3862 u64 limit_meta = bctl->meta.limit;
3863 u64 limit_sys = bctl->sys.limit;
3864 u32 count_data = 0;
3865 u32 count_meta = 0;
3866 u32 count_sys = 0;
3867 int chunk_reserved = 0;
3868
3869 path = btrfs_alloc_path();
3870 if (!path) {
3871 ret = -ENOMEM;
3872 goto error;
3873 }
3874
3875 /* zero out stat counters */
3876 spin_lock(&fs_info->balance_lock);
3877 memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 spin_unlock(&fs_info->balance_lock);
3879again:
3880 if (!counting) {
3881 /*
3882 * The single value limit and min/max limits use the same bytes
3883 * in the
3884 */
3885 bctl->data.limit = limit_data;
3886 bctl->meta.limit = limit_meta;
3887 bctl->sys.limit = limit_sys;
3888 }
3889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 key.offset = (u64)-1;
3891 key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893 while (1) {
3894 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895 atomic_read(&fs_info->balance_cancel_req)) {
3896 ret = -ECANCELED;
3897 goto error;
3898 }
3899
3900 mutex_lock(&fs_info->reclaim_bgs_lock);
3901 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902 if (ret < 0) {
3903 mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 goto error;
3905 }
3906
3907 /*
3908 * this shouldn't happen, it means the last relocate
3909 * failed
3910 */
3911 if (ret == 0)
3912 BUG(); /* FIXME break ? */
3913
3914 ret = btrfs_previous_item(chunk_root, path, 0,
3915 BTRFS_CHUNK_ITEM_KEY);
3916 if (ret) {
3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 ret = 0;
3919 break;
3920 }
3921
3922 leaf = path->nodes[0];
3923 slot = path->slots[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926 if (found_key.objectid != key.objectid) {
3927 mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 break;
3929 }
3930
3931 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932 chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934 if (!counting) {
3935 spin_lock(&fs_info->balance_lock);
3936 bctl->stat.considered++;
3937 spin_unlock(&fs_info->balance_lock);
3938 }
3939
3940 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942 btrfs_release_path(path);
3943 if (!ret) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 goto loop;
3946 }
3947
3948 if (counting) {
3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.expected++;
3952 spin_unlock(&fs_info->balance_lock);
3953
3954 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 count_data++;
3956 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 count_sys++;
3958 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 count_meta++;
3960
3961 goto loop;
3962 }
3963
3964 /*
3965 * Apply limit_min filter, no need to check if the LIMITS
3966 * filter is used, limit_min is 0 by default
3967 */
3968 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 count_data < bctl->data.limit_min)
3970 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 count_meta < bctl->meta.limit_min)
3972 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 count_sys < bctl->sys.limit_min)) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 goto loop;
3976 }
3977
3978 if (!chunk_reserved) {
3979 /*
3980 * We may be relocating the only data chunk we have,
3981 * which could potentially end up with losing data's
3982 * raid profile, so lets allocate an empty one in
3983 * advance.
3984 */
3985 ret = btrfs_may_alloc_data_chunk(fs_info,
3986 found_key.offset);
3987 if (ret < 0) {
3988 mutex_unlock(&fs_info->reclaim_bgs_lock);
3989 goto error;
3990 } else if (ret == 1) {
3991 chunk_reserved = 1;
3992 }
3993 }
3994
3995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996 mutex_unlock(&fs_info->reclaim_bgs_lock);
3997 if (ret == -ENOSPC) {
3998 enospc_errors++;
3999 } else if (ret == -ETXTBSY) {
4000 btrfs_info(fs_info,
4001 "skipping relocation of block group %llu due to active swapfile",
4002 found_key.offset);
4003 ret = 0;
4004 } else if (ret) {
4005 goto error;
4006 } else {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.completed++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
4011loop:
4012 if (found_key.offset == 0)
4013 break;
4014 key.offset = found_key.offset - 1;
4015 }
4016
4017 if (counting) {
4018 btrfs_release_path(path);
4019 counting = false;
4020 goto again;
4021 }
4022error:
4023 btrfs_free_path(path);
4024 if (enospc_errors) {
4025 btrfs_info(fs_info, "%d enospc errors during balance",
4026 enospc_errors);
4027 if (!ret)
4028 ret = -ENOSPC;
4029 }
4030
4031 return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags: profile to validate
4038 * @extended: if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047 /* 1) check that all other bits are zeroed */
4048 if (flags & ~mask)
4049 return 0;
4050
4051 /* 2) see if profile is reduced */
4052 if (flags == 0)
4053 return !extended; /* "0" is valid for usual profiles */
4054
4055 return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060 /* cancel requested || normal exit path */
4061 return atomic_read(&fs_info->balance_cancel_req) ||
4062 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 const struct btrfs_balance_args *bargs,
4072 u64 allowed, const char *type)
4073{
4074 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 return true;
4076
4077 /* Profile is valid and does not have bits outside of the allowed set */
4078 if (alloc_profile_is_valid(bargs->target, 1) &&
4079 (bargs->target & ~allowed) == 0)
4080 return true;
4081
4082 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 type, btrfs_bg_type_to_raid_name(bargs->target));
4084 return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 u32 size_buf)
4094{
4095 int ret;
4096 u32 size_bp = size_buf;
4097 char *bp = buf;
4098 u64 flags = bargs->flags;
4099 char tmp_buf[128] = {'\0'};
4100
4101 if (!flags)
4102 return;
4103
4104#define CHECK_APPEND_NOARG(a) \
4105 do { \
4106 ret = snprintf(bp, size_bp, (a)); \
4107 if (ret < 0 || ret >= size_bp) \
4108 goto out_overflow; \
4109 size_bp -= ret; \
4110 bp += ret; \
4111 } while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1) \
4114 do { \
4115 ret = snprintf(bp, size_bp, (a), (v1)); \
4116 if (ret < 0 || ret >= size_bp) \
4117 goto out_overflow; \
4118 size_bp -= ret; \
4119 bp += ret; \
4120 } while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2) \
4123 do { \
4124 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4125 if (ret < 0 || ret >= size_bp) \
4126 goto out_overflow; \
4127 size_bp -= ret; \
4128 bp += ret; \
4129 } while (0)
4130
4131 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 CHECK_APPEND_1ARG("convert=%s,",
4133 btrfs_bg_type_to_raid_name(bargs->target));
4134
4135 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 CHECK_APPEND_NOARG("soft,");
4137
4138 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 sizeof(tmp_buf));
4141 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 }
4143
4144 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 CHECK_APPEND_2ARG("usage=%u..%u,",
4149 bargs->usage_min, bargs->usage_max);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 bargs->pstart, bargs->pend);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 bargs->vstart, bargs->vend);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 CHECK_APPEND_2ARG("limit=%u..%u,",
4167 bargs->limit_min, bargs->limit_max);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179 if (size_bp < size_buf)
4180 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 else
4182 buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187 u32 size_buf = 1024;
4188 char tmp_buf[192] = {'\0'};
4189 char *buf;
4190 char *bp;
4191 u32 size_bp = size_buf;
4192 int ret;
4193 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195 buf = kzalloc(size_buf, GFP_KERNEL);
4196 if (!buf)
4197 return;
4198
4199 bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1) \
4202 do { \
4203 ret = snprintf(bp, size_bp, (a), (v1)); \
4204 if (ret < 0 || ret >= size_bp) \
4205 goto out_overflow; \
4206 size_bp -= ret; \
4207 bp += ret; \
4208 } while (0)
4209
4210 if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 CHECK_APPEND_1ARG("%s", "-f ");
4212
4213 if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 }
4217
4218 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 }
4222
4223 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 }
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232 if (size_bp < size_buf)
4233 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 btrfs_info(fs_info, "balance: %s %s",
4235 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 "resume" : "start", buf);
4237
4238 kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 struct btrfs_balance_control *bctl,
4246 struct btrfs_ioctl_balance_args *bargs)
4247{
4248 u64 meta_target, data_target;
4249 u64 allowed;
4250 int mixed = 0;
4251 int ret;
4252 u64 num_devices;
4253 unsigned seq;
4254 bool reducing_redundancy;
4255 int i;
4256
4257 if (btrfs_fs_closing(fs_info) ||
4258 atomic_read(&fs_info->balance_pause_req) ||
4259 btrfs_should_cancel_balance(fs_info)) {
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
4264 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 mixed = 1;
4267
4268 /*
4269 * In case of mixed groups both data and meta should be picked,
4270 * and identical options should be given for both of them.
4271 */
4272 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 if (mixed && (bctl->flags & allowed)) {
4274 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277 btrfs_err(fs_info,
4278 "balance: mixed groups data and metadata options must be the same");
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282 }
4283
4284 /*
4285 * rw_devices will not change at the moment, device add/delete/replace
4286 * are exclusive
4287 */
4288 num_devices = fs_info->fs_devices->rw_devices;
4289
4290 /*
4291 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 * special bit for it, to make it easier to distinguish. Thus we need
4293 * to set it manually, or balance would refuse the profile.
4294 */
4295 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 if (num_devices >= btrfs_raid_array[i].devs_min)
4298 allowed |= btrfs_raid_array[i].bg_flag;
4299
4300 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
4307 /*
4308 * Allow to reduce metadata or system integrity only if force set for
4309 * profiles with redundancy (copies, parity)
4310 */
4311 allowed = 0;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 if (btrfs_raid_array[i].ncopies >= 2 ||
4314 btrfs_raid_array[i].tolerated_failures >= 1)
4315 allowed |= btrfs_raid_array[i].bg_flag;
4316 }
4317 do {
4318 seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 (fs_info->avail_system_alloc_bits & allowed) &&
4322 !(bctl->sys.target & allowed)) ||
4323 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_metadata_alloc_bits & allowed) &&
4325 !(bctl->meta.target & allowed)))
4326 reducing_redundancy = true;
4327 else
4328 reducing_redundancy = false;
4329
4330 /* if we're not converting, the target field is uninitialized */
4331 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 bctl->data.target : fs_info->avail_data_alloc_bits;
4335 } while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337 if (reducing_redundancy) {
4338 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 btrfs_info(fs_info,
4340 "balance: force reducing metadata redundancy");
4341 } else {
4342 btrfs_err(fs_info,
4343 "balance: reduces metadata redundancy, use --force if you want this");
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351 btrfs_warn(fs_info,
4352 "balance: metadata profile %s has lower redundancy than data profile %s",
4353 btrfs_bg_type_to_raid_name(meta_target),
4354 btrfs_bg_type_to_raid_name(data_target));
4355 }
4356
4357 ret = insert_balance_item(fs_info, bctl);
4358 if (ret && ret != -EEXIST)
4359 goto out;
4360
4361 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 BUG_ON(ret == -EEXIST);
4363 BUG_ON(fs_info->balance_ctl);
4364 spin_lock(&fs_info->balance_lock);
4365 fs_info->balance_ctl = bctl;
4366 spin_unlock(&fs_info->balance_lock);
4367 } else {
4368 BUG_ON(ret != -EEXIST);
4369 spin_lock(&fs_info->balance_lock);
4370 update_balance_args(bctl);
4371 spin_unlock(&fs_info->balance_lock);
4372 }
4373
4374 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376 describe_balance_start_or_resume(fs_info);
4377 mutex_unlock(&fs_info->balance_mutex);
4378
4379 ret = __btrfs_balance(fs_info);
4380
4381 mutex_lock(&fs_info->balance_mutex);
4382 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383 btrfs_info(fs_info, "balance: paused");
4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 }
4386 /*
4387 * Balance can be canceled by:
4388 *
4389 * - Regular cancel request
4390 * Then ret == -ECANCELED and balance_cancel_req > 0
4391 *
4392 * - Fatal signal to "btrfs" process
4393 * Either the signal caught by wait_reserve_ticket() and callers
4394 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 * got -ECANCELED.
4396 * Either way, in this case balance_cancel_req = 0, and
4397 * ret == -EINTR or ret == -ECANCELED.
4398 *
4399 * So here we only check the return value to catch canceled balance.
4400 */
4401 else if (ret == -ECANCELED || ret == -EINTR)
4402 btrfs_info(fs_info, "balance: canceled");
4403 else
4404 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408 if (bargs) {
4409 memset(bargs, 0, sizeof(*bargs));
4410 btrfs_update_ioctl_balance_args(fs_info, bargs);
4411 }
4412
4413 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 balance_need_close(fs_info)) {
4415 reset_balance_state(fs_info);
4416 btrfs_exclop_finish(fs_info);
4417 }
4418
4419 wake_up(&fs_info->balance_wait_q);
4420
4421 return ret;
4422out:
4423 if (bctl->flags & BTRFS_BALANCE_RESUME)
4424 reset_balance_state(fs_info);
4425 else
4426 kfree(bctl);
4427 btrfs_exclop_finish(fs_info);
4428
4429 return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434 struct btrfs_fs_info *fs_info = data;
4435 int ret = 0;
4436
4437 sb_start_write(fs_info->sb);
4438 mutex_lock(&fs_info->balance_mutex);
4439 if (fs_info->balance_ctl)
4440 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441 mutex_unlock(&fs_info->balance_mutex);
4442 sb_end_write(fs_info->sb);
4443
4444 return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449 struct task_struct *tsk;
4450
4451 mutex_lock(&fs_info->balance_mutex);
4452 if (!fs_info->balance_ctl) {
4453 mutex_unlock(&fs_info->balance_mutex);
4454 return 0;
4455 }
4456 mutex_unlock(&fs_info->balance_mutex);
4457
4458 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459 btrfs_info(fs_info, "balance: resume skipped");
4460 return 0;
4461 }
4462
4463 spin_lock(&fs_info->super_lock);
4464 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 spin_unlock(&fs_info->super_lock);
4467 /*
4468 * A ro->rw remount sequence should continue with the paused balance
4469 * regardless of who pauses it, system or the user as of now, so set
4470 * the resume flag.
4471 */
4472 spin_lock(&fs_info->balance_lock);
4473 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 spin_unlock(&fs_info->balance_lock);
4475
4476 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477 return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482 struct btrfs_balance_control *bctl;
4483 struct btrfs_balance_item *item;
4484 struct btrfs_disk_balance_args disk_bargs;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_key key;
4488 int ret;
4489
4490 path = btrfs_alloc_path();
4491 if (!path)
4492 return -ENOMEM;
4493
4494 key.objectid = BTRFS_BALANCE_OBJECTID;
4495 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496 key.offset = 0;
4497
4498 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499 if (ret < 0)
4500 goto out;
4501 if (ret > 0) { /* ret = -ENOENT; */
4502 ret = 0;
4503 goto out;
4504 }
4505
4506 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 if (!bctl) {
4508 ret = -ENOMEM;
4509 goto out;
4510 }
4511
4512 leaf = path->nodes[0];
4513 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515 bctl->flags = btrfs_balance_flags(leaf, item);
4516 bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518 btrfs_balance_data(leaf, item, &disk_bargs);
4519 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 btrfs_balance_meta(leaf, item, &disk_bargs);
4521 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 btrfs_balance_sys(leaf, item, &disk_bargs);
4523 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525 /*
4526 * This should never happen, as the paused balance state is recovered
4527 * during mount without any chance of other exclusive ops to collide.
4528 *
4529 * This gives the exclusive op status to balance and keeps in paused
4530 * state until user intervention (cancel or umount). If the ownership
4531 * cannot be assigned, show a message but do not fail. The balance
4532 * is in a paused state and must have fs_info::balance_ctl properly
4533 * set up.
4534 */
4535 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536 btrfs_warn(fs_info,
4537 "balance: cannot set exclusive op status, resume manually");
4538
4539 btrfs_release_path(path);
4540
4541 mutex_lock(&fs_info->balance_mutex);
4542 BUG_ON(fs_info->balance_ctl);
4543 spin_lock(&fs_info->balance_lock);
4544 fs_info->balance_ctl = bctl;
4545 spin_unlock(&fs_info->balance_lock);
4546 mutex_unlock(&fs_info->balance_mutex);
4547out:
4548 btrfs_free_path(path);
4549 return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554 int ret = 0;
4555
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
4562 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563 atomic_inc(&fs_info->balance_pause_req);
4564 mutex_unlock(&fs_info->balance_mutex);
4565
4566 wait_event(fs_info->balance_wait_q,
4567 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 /* we are good with balance_ctl ripped off from under us */
4571 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572 atomic_dec(&fs_info->balance_pause_req);
4573 } else {
4574 ret = -ENOTCONN;
4575 }
4576
4577 mutex_unlock(&fs_info->balance_mutex);
4578 return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (!fs_info->balance_ctl) {
4585 mutex_unlock(&fs_info->balance_mutex);
4586 return -ENOTCONN;
4587 }
4588
4589 /*
4590 * A paused balance with the item stored on disk can be resumed at
4591 * mount time if the mount is read-write. Otherwise it's still paused
4592 * and we must not allow cancelling as it deletes the item.
4593 */
4594 if (sb_rdonly(fs_info->sb)) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -EROFS;
4597 }
4598
4599 atomic_inc(&fs_info->balance_cancel_req);
4600 /*
4601 * if we are running just wait and return, balance item is
4602 * deleted in btrfs_balance in this case
4603 */
4604 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605 mutex_unlock(&fs_info->balance_mutex);
4606 wait_event(fs_info->balance_wait_q,
4607 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 mutex_lock(&fs_info->balance_mutex);
4609 } else {
4610 mutex_unlock(&fs_info->balance_mutex);
4611 /*
4612 * Lock released to allow other waiters to continue, we'll
4613 * reexamine the status again.
4614 */
4615 mutex_lock(&fs_info->balance_mutex);
4616
4617 if (fs_info->balance_ctl) {
4618 reset_balance_state(fs_info);
4619 btrfs_exclop_finish(fs_info);
4620 btrfs_info(fs_info, "balance: canceled");
4621 }
4622 }
4623
4624 BUG_ON(fs_info->balance_ctl ||
4625 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626 atomic_dec(&fs_info->balance_cancel_req);
4627 mutex_unlock(&fs_info->balance_mutex);
4628 return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633 struct btrfs_fs_info *fs_info = data;
4634 struct btrfs_root *root = fs_info->tree_root;
4635 struct btrfs_key key;
4636 struct btrfs_path *path = NULL;
4637 int ret = 0;
4638 struct extent_buffer *eb;
4639 int slot;
4640 struct btrfs_root_item root_item;
4641 u32 item_size;
4642 struct btrfs_trans_handle *trans = NULL;
4643 bool closing = false;
4644
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 ret = -ENOMEM;
4648 goto out;
4649 }
4650
4651 key.objectid = 0;
4652 key.type = BTRFS_ROOT_ITEM_KEY;
4653 key.offset = 0;
4654
4655 while (1) {
4656 if (btrfs_fs_closing(fs_info)) {
4657 closing = true;
4658 break;
4659 }
4660 ret = btrfs_search_forward(root, &key, path,
4661 BTRFS_OLDEST_GENERATION);
4662 if (ret) {
4663 if (ret > 0)
4664 ret = 0;
4665 break;
4666 }
4667
4668 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 goto skip;
4673
4674 eb = path->nodes[0];
4675 slot = path->slots[0];
4676 item_size = btrfs_item_size(eb, slot);
4677 if (item_size < sizeof(root_item))
4678 goto skip;
4679
4680 read_extent_buffer(eb, &root_item,
4681 btrfs_item_ptr_offset(eb, slot),
4682 (int)sizeof(root_item));
4683 if (btrfs_root_refs(&root_item) == 0)
4684 goto skip;
4685
4686 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 if (trans)
4689 goto update_tree;
4690
4691 btrfs_release_path(path);
4692 /*
4693 * 1 - subvol uuid item
4694 * 1 - received_subvol uuid item
4695 */
4696 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 if (IS_ERR(trans)) {
4698 ret = PTR_ERR(trans);
4699 break;
4700 }
4701 continue;
4702 } else {
4703 goto skip;
4704 }
4705update_tree:
4706 btrfs_release_path(path);
4707 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709 BTRFS_UUID_KEY_SUBVOL,
4710 key.objectid);
4711 if (ret < 0) {
4712 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713 ret);
4714 break;
4715 }
4716 }
4717
4718 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719 ret = btrfs_uuid_tree_add(trans,
4720 root_item.received_uuid,
4721 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 key.objectid);
4723 if (ret < 0) {
4724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725 ret);
4726 break;
4727 }
4728 }
4729
4730skip:
4731 btrfs_release_path(path);
4732 if (trans) {
4733 ret = btrfs_end_transaction(trans);
4734 trans = NULL;
4735 if (ret)
4736 break;
4737 }
4738
4739 if (key.offset < (u64)-1) {
4740 key.offset++;
4741 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 key.offset = 0;
4743 key.type = BTRFS_ROOT_ITEM_KEY;
4744 } else if (key.objectid < (u64)-1) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 key.objectid++;
4748 } else {
4749 break;
4750 }
4751 cond_resched();
4752 }
4753
4754out:
4755 btrfs_free_path(path);
4756 if (trans && !IS_ERR(trans))
4757 btrfs_end_transaction(trans);
4758 if (ret)
4759 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760 else if (!closing)
4761 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762 up(&fs_info->uuid_tree_rescan_sem);
4763 return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *tree_root = fs_info->tree_root;
4770 struct btrfs_root *uuid_root;
4771 struct task_struct *task;
4772 int ret;
4773
4774 /*
4775 * 1 - root node
4776 * 1 - root item
4777 */
4778 trans = btrfs_start_transaction(tree_root, 2);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
4782 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783 if (IS_ERR(uuid_root)) {
4784 ret = PTR_ERR(uuid_root);
4785 btrfs_abort_transaction(trans, ret);
4786 btrfs_end_transaction(trans);
4787 return ret;
4788 }
4789
4790 fs_info->uuid_root = uuid_root;
4791
4792 ret = btrfs_commit_transaction(trans);
4793 if (ret)
4794 return ret;
4795
4796 down(&fs_info->uuid_tree_rescan_sem);
4797 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 if (IS_ERR(task)) {
4799 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800 btrfs_warn(fs_info, "failed to start uuid_scan task");
4801 up(&fs_info->uuid_tree_rescan_sem);
4802 return PTR_ERR(task);
4803 }
4804
4805 return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815 struct btrfs_fs_info *fs_info = device->fs_info;
4816 struct btrfs_root *root = fs_info->dev_root;
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_dev_extent *dev_extent = NULL;
4819 struct btrfs_path *path;
4820 u64 length;
4821 u64 chunk_offset;
4822 int ret;
4823 int slot;
4824 int failed = 0;
4825 bool retried = false;
4826 struct extent_buffer *l;
4827 struct btrfs_key key;
4828 struct btrfs_super_block *super_copy = fs_info->super_copy;
4829 u64 old_total = btrfs_super_total_bytes(super_copy);
4830 u64 old_size = btrfs_device_get_total_bytes(device);
4831 u64 diff;
4832 u64 start;
4833
4834 new_size = round_down(new_size, fs_info->sectorsize);
4835 start = new_size;
4836 diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839 return -EINVAL;
4840
4841 path = btrfs_alloc_path();
4842 if (!path)
4843 return -ENOMEM;
4844
4845 path->reada = READA_BACK;
4846
4847 trans = btrfs_start_transaction(root, 0);
4848 if (IS_ERR(trans)) {
4849 btrfs_free_path(path);
4850 return PTR_ERR(trans);
4851 }
4852
4853 mutex_lock(&fs_info->chunk_mutex);
4854
4855 btrfs_device_set_total_bytes(device, new_size);
4856 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857 device->fs_devices->total_rw_bytes -= diff;
4858 atomic64_sub(diff, &fs_info->free_chunk_space);
4859 }
4860
4861 /*
4862 * Once the device's size has been set to the new size, ensure all
4863 * in-memory chunks are synced to disk so that the loop below sees them
4864 * and relocates them accordingly.
4865 */
4866 if (contains_pending_extent(device, &start, diff)) {
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 ret = btrfs_commit_transaction(trans);
4869 if (ret)
4870 goto done;
4871 } else {
4872 mutex_unlock(&fs_info->chunk_mutex);
4873 btrfs_end_transaction(trans);
4874 }
4875
4876again:
4877 key.objectid = device->devid;
4878 key.offset = (u64)-1;
4879 key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881 do {
4882 mutex_lock(&fs_info->reclaim_bgs_lock);
4883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884 if (ret < 0) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 goto done;
4887 }
4888
4889 ret = btrfs_previous_item(root, path, 0, key.type);
4890 if (ret) {
4891 mutex_unlock(&fs_info->reclaim_bgs_lock);
4892 if (ret < 0)
4893 goto done;
4894 ret = 0;
4895 btrfs_release_path(path);
4896 break;
4897 }
4898
4899 l = path->nodes[0];
4900 slot = path->slots[0];
4901 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903 if (key.objectid != device->devid) {
4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 btrfs_release_path(path);
4906 break;
4907 }
4908
4909 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 length = btrfs_dev_extent_length(l, dev_extent);
4911
4912 if (key.offset + length <= new_size) {
4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 btrfs_release_path(path);
4915 break;
4916 }
4917
4918 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919 btrfs_release_path(path);
4920
4921 /*
4922 * We may be relocating the only data chunk we have,
4923 * which could potentially end up with losing data's
4924 * raid profile, so lets allocate an empty one in
4925 * advance.
4926 */
4927 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 if (ret < 0) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 goto done;
4931 }
4932
4933 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934 mutex_unlock(&fs_info->reclaim_bgs_lock);
4935 if (ret == -ENOSPC) {
4936 failed++;
4937 } else if (ret) {
4938 if (ret == -ETXTBSY) {
4939 btrfs_warn(fs_info,
4940 "could not shrink block group %llu due to active swapfile",
4941 chunk_offset);
4942 }
4943 goto done;
4944 }
4945 } while (key.offset-- > 0);
4946
4947 if (failed && !retried) {
4948 failed = 0;
4949 retried = true;
4950 goto again;
4951 } else if (failed && retried) {
4952 ret = -ENOSPC;
4953 goto done;
4954 }
4955
4956 /* Shrinking succeeded, else we would be at "done". */
4957 trans = btrfs_start_transaction(root, 0);
4958 if (IS_ERR(trans)) {
4959 ret = PTR_ERR(trans);
4960 goto done;
4961 }
4962
4963 mutex_lock(&fs_info->chunk_mutex);
4964 /* Clear all state bits beyond the shrunk device size */
4965 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 CHUNK_STATE_MASK);
4967
4968 btrfs_device_set_disk_total_bytes(device, new_size);
4969 if (list_empty(&device->post_commit_list))
4970 list_add_tail(&device->post_commit_list,
4971 &trans->transaction->dev_update_list);
4972
4973 WARN_ON(diff > old_total);
4974 btrfs_set_super_total_bytes(super_copy,
4975 round_down(old_total - diff, fs_info->sectorsize));
4976 mutex_unlock(&fs_info->chunk_mutex);
4977
4978 btrfs_reserve_chunk_metadata(trans, false);
4979 /* Now btrfs_update_device() will change the on-disk size. */
4980 ret = btrfs_update_device(trans, device);
4981 btrfs_trans_release_chunk_metadata(trans);
4982 if (ret < 0) {
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4985 } else {
4986 ret = btrfs_commit_transaction(trans);
4987 }
4988done:
4989 btrfs_free_path(path);
4990 if (ret) {
4991 mutex_lock(&fs_info->chunk_mutex);
4992 btrfs_device_set_total_bytes(device, old_size);
4993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994 device->fs_devices->total_rw_bytes += diff;
4995 atomic64_add(diff, &fs_info->free_chunk_space);
4996 mutex_unlock(&fs_info->chunk_mutex);
4997 }
4998 return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002 struct btrfs_key *key,
5003 struct btrfs_chunk *chunk, int item_size)
5004{
5005 struct btrfs_super_block *super_copy = fs_info->super_copy;
5006 struct btrfs_disk_key disk_key;
5007 u32 array_size;
5008 u8 *ptr;
5009
5010 lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012 array_size = btrfs_super_sys_array_size(super_copy);
5013 if (array_size + item_size + sizeof(disk_key)
5014 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015 return -EFBIG;
5016
5017 ptr = super_copy->sys_chunk_array + array_size;
5018 btrfs_cpu_key_to_disk(&disk_key, key);
5019 memcpy(ptr, &disk_key, sizeof(disk_key));
5020 ptr += sizeof(disk_key);
5021 memcpy(ptr, chunk, item_size);
5022 item_size += sizeof(disk_key);
5023 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025 return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033 const struct btrfs_device_info *di_a = a;
5034 const struct btrfs_device_info *di_b = b;
5035
5036 if (di_a->max_avail > di_b->max_avail)
5037 return -1;
5038 if (di_a->max_avail < di_b->max_avail)
5039 return 1;
5040 if (di_a->total_avail > di_b->total_avail)
5041 return -1;
5042 if (di_a->total_avail < di_b->total_avail)
5043 return 1;
5044 return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050 return;
5051
5052 btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068 u64 start;
5069 u64 type;
5070 /* Total number of stripes to allocate */
5071 int num_stripes;
5072 /* sub_stripes info for map */
5073 int sub_stripes;
5074 /* Stripes per device */
5075 int dev_stripes;
5076 /* Maximum number of devices to use */
5077 int devs_max;
5078 /* Minimum number of devices to use */
5079 int devs_min;
5080 /* ndevs has to be a multiple of this */
5081 int devs_increment;
5082 /* Number of copies */
5083 int ncopies;
5084 /* Number of stripes worth of bytes to store parity information */
5085 int nparity;
5086 u64 max_stripe_size;
5087 u64 max_chunk_size;
5088 u64 dev_extent_min;
5089 u64 stripe_size;
5090 u64 chunk_size;
5091 int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095 struct btrfs_fs_devices *fs_devices,
5096 struct alloc_chunk_ctl *ctl)
5097{
5098 struct btrfs_space_info *space_info;
5099
5100 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 ASSERT(space_info);
5102
5103 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109 /* We don't want a chunk larger than 10% of writable space */
5110 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111 ctl->max_chunk_size);
5112 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116 struct btrfs_fs_devices *fs_devices,
5117 struct alloc_chunk_ctl *ctl)
5118{
5119 u64 zone_size = fs_devices->fs_info->zone_size;
5120 u64 limit;
5121 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 u64 min_chunk_size = min_data_stripes * zone_size;
5124 u64 type = ctl->type;
5125
5126 ctl->max_stripe_size = zone_size;
5127 if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 zone_size);
5130 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 ctl->max_chunk_size = ctl->max_stripe_size;
5132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 ctl->devs_max = min_t(int, ctl->devs_max,
5135 BTRFS_MAX_DEVS_SYS_CHUNK);
5136 } else {
5137 BUG();
5138 }
5139
5140 /* We don't want a chunk larger than 10% of writable space */
5141 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142 zone_size),
5143 min_chunk_size);
5144 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 struct alloc_chunk_ctl *ctl)
5150{
5151 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 if (!ctl->devs_max)
5157 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 ctl->nparity = btrfs_raid_array[index].nparity;
5162 ctl->ndevs = 0;
5163
5164 switch (fs_devices->chunk_alloc_policy) {
5165 case BTRFS_CHUNK_ALLOC_REGULAR:
5166 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 break;
5168 case BTRFS_CHUNK_ALLOC_ZONED:
5169 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 break;
5171 default:
5172 BUG();
5173 }
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl,
5178 struct btrfs_device_info *devices_info)
5179{
5180 struct btrfs_fs_info *info = fs_devices->fs_info;
5181 struct btrfs_device *device;
5182 u64 total_avail;
5183 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184 int ret;
5185 int ndevs = 0;
5186 u64 max_avail;
5187 u64 dev_offset;
5188
5189 /*
5190 * in the first pass through the devices list, we gather information
5191 * about the available holes on each device.
5192 */
5193 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195 WARN(1, KERN_ERR
5196 "BTRFS: read-only device in alloc_list\n");
5197 continue;
5198 }
5199
5200 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 &device->dev_state) ||
5202 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203 continue;
5204
5205 if (device->total_bytes > device->bytes_used)
5206 total_avail = device->total_bytes - device->bytes_used;
5207 else
5208 total_avail = 0;
5209
5210 /* If there is no space on this device, skip it. */
5211 if (total_avail < ctl->dev_extent_min)
5212 continue;
5213
5214 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 &max_avail);
5216 if (ret && ret != -ENOSPC)
5217 return ret;
5218
5219 if (ret == 0)
5220 max_avail = dev_extent_want;
5221
5222 if (max_avail < ctl->dev_extent_min) {
5223 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 btrfs_debug(info,
5225 "%s: devid %llu has no free space, have=%llu want=%llu",
5226 __func__, device->devid, max_avail,
5227 ctl->dev_extent_min);
5228 continue;
5229 }
5230
5231 if (ndevs == fs_devices->rw_devices) {
5232 WARN(1, "%s: found more than %llu devices\n",
5233 __func__, fs_devices->rw_devices);
5234 break;
5235 }
5236 devices_info[ndevs].dev_offset = dev_offset;
5237 devices_info[ndevs].max_avail = max_avail;
5238 devices_info[ndevs].total_avail = total_avail;
5239 devices_info[ndevs].dev = device;
5240 ++ndevs;
5241 }
5242 ctl->ndevs = ndevs;
5243
5244 /*
5245 * now sort the devices by hole size / available space
5246 */
5247 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248 btrfs_cmp_device_info, NULL);
5249
5250 return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 struct btrfs_device_info *devices_info)
5255{
5256 /* Number of stripes that count for block group size */
5257 int data_stripes;
5258
5259 /*
5260 * The primary goal is to maximize the number of stripes, so use as
5261 * many devices as possible, even if the stripes are not maximum sized.
5262 *
5263 * The DUP profile stores more than one stripe per device, the
5264 * max_avail is the total size so we have to adjust.
5265 */
5266 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 ctl->dev_stripes);
5268 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273 /*
5274 * Use the number of data stripes to figure out how big this chunk is
5275 * really going to be in terms of logical address space, and compare
5276 * that answer with the max chunk size. If it's higher, we try to
5277 * reduce stripe_size.
5278 */
5279 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 /*
5281 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 * then use it, unless it ends up being even bigger than the
5283 * previous value we had already.
5284 */
5285 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 data_stripes), SZ_16M),
5287 ctl->stripe_size);
5288 }
5289
5290 /* Stripe size should not go beyond 1G. */
5291 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293 /* Align to BTRFS_STRIPE_LEN */
5294 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297 return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 struct btrfs_device_info *devices_info)
5302{
5303 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 /* Number of stripes that count for block group size */
5305 int data_stripes;
5306
5307 /*
5308 * It should hold because:
5309 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 */
5311 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313 ctl->stripe_size = zone_size;
5314 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 ctl->stripe_size) + ctl->nparity,
5321 ctl->dev_stripes);
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 }
5326
5327 ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329 return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 struct alloc_chunk_ctl *ctl,
5334 struct btrfs_device_info *devices_info)
5335{
5336 struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338 /*
5339 * Round down to number of usable stripes, devs_increment can be any
5340 * number so we can't use round_down() that requires power of 2, while
5341 * rounddown is safe.
5342 */
5343 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345 if (ctl->ndevs < ctl->devs_min) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 btrfs_debug(info,
5348 "%s: not enough devices with free space: have=%d minimum required=%d",
5349 __func__, ctl->ndevs, ctl->devs_min);
5350 }
5351 return -ENOSPC;
5352 }
5353
5354 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356 switch (fs_devices->chunk_alloc_policy) {
5357 case BTRFS_CHUNK_ALLOC_REGULAR:
5358 return decide_stripe_size_regular(ctl, devices_info);
5359 case BTRFS_CHUNK_ALLOC_ZONED:
5360 return decide_stripe_size_zoned(ctl, devices_info);
5361 default:
5362 BUG();
5363 }
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369{
5370 struct btrfs_fs_info *info = trans->fs_info;
5371 struct map_lookup *map = NULL;
5372 struct extent_map_tree *em_tree;
5373 struct btrfs_block_group *block_group;
5374 struct extent_map *em;
5375 u64 start = ctl->start;
5376 u64 type = ctl->type;
5377 int ret;
5378 int i;
5379 int j;
5380
5381 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 if (!map)
5383 return ERR_PTR(-ENOMEM);
5384 map->num_stripes = ctl->num_stripes;
5385
5386 for (i = 0; i < ctl->ndevs; ++i) {
5387 for (j = 0; j < ctl->dev_stripes; ++j) {
5388 int s = i * ctl->dev_stripes + j;
5389 map->stripes[s].dev = devices_info[i].dev;
5390 map->stripes[s].physical = devices_info[i].dev_offset +
5391 j * ctl->stripe_size;
5392 }
5393 }
5394 map->stripe_len = BTRFS_STRIPE_LEN;
5395 map->io_align = BTRFS_STRIPE_LEN;
5396 map->io_width = BTRFS_STRIPE_LEN;
5397 map->type = type;
5398 map->sub_stripes = ctl->sub_stripes;
5399
5400 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402 em = alloc_extent_map();
5403 if (!em) {
5404 kfree(map);
5405 return ERR_PTR(-ENOMEM);
5406 }
5407 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408 em->map_lookup = map;
5409 em->start = start;
5410 em->len = ctl->chunk_size;
5411 em->block_start = 0;
5412 em->block_len = em->len;
5413 em->orig_block_len = ctl->stripe_size;
5414
5415 em_tree = &info->mapping_tree;
5416 write_lock(&em_tree->lock);
5417 ret = add_extent_mapping(em_tree, em, 0);
5418 if (ret) {
5419 write_unlock(&em_tree->lock);
5420 free_extent_map(em);
5421 return ERR_PTR(ret);
5422 }
5423 write_unlock(&em_tree->lock);
5424
5425 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 if (IS_ERR(block_group))
5427 goto error_del_extent;
5428
5429 for (i = 0; i < map->num_stripes; i++) {
5430 struct btrfs_device *dev = map->stripes[i].dev;
5431
5432 btrfs_device_set_bytes_used(dev,
5433 dev->bytes_used + ctl->stripe_size);
5434 if (list_empty(&dev->post_commit_list))
5435 list_add_tail(&dev->post_commit_list,
5436 &trans->transaction->dev_update_list);
5437 }
5438
5439 atomic64_sub(ctl->stripe_size * map->num_stripes,
5440 &info->free_chunk_space);
5441
5442 free_extent_map(em);
5443 check_raid56_incompat_flag(info, type);
5444 check_raid1c34_incompat_flag(info, type);
5445
5446 return block_group;
5447
5448error_del_extent:
5449 write_lock(&em_tree->lock);
5450 remove_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452
5453 /* One for our allocation */
5454 free_extent_map(em);
5455 /* One for the tree reference */
5456 free_extent_map(em);
5457
5458 return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462 u64 type)
5463{
5464 struct btrfs_fs_info *info = trans->fs_info;
5465 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 struct btrfs_device_info *devices_info = NULL;
5467 struct alloc_chunk_ctl ctl;
5468 struct btrfs_block_group *block_group;
5469 int ret;
5470
5471 lockdep_assert_held(&info->chunk_mutex);
5472
5473 if (!alloc_profile_is_valid(type, 0)) {
5474 ASSERT(0);
5475 return ERR_PTR(-EINVAL);
5476 }
5477
5478 if (list_empty(&fs_devices->alloc_list)) {
5479 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 btrfs_debug(info, "%s: no writable device", __func__);
5481 return ERR_PTR(-ENOSPC);
5482 }
5483
5484 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 ASSERT(0);
5487 return ERR_PTR(-EINVAL);
5488 }
5489
5490 ctl.start = find_next_chunk(info);
5491 ctl.type = type;
5492 init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 GFP_NOFS);
5496 if (!devices_info)
5497 return ERR_PTR(-ENOMEM);
5498
5499 ret = gather_device_info(fs_devices, &ctl, devices_info);
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
5502 goto out;
5503 }
5504
5505 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506 if (ret < 0) {
5507 block_group = ERR_PTR(ret);
5508 goto out;
5509 }
5510
5511 block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514 kfree(devices_info);
5515 return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 struct btrfs_block_group *bg)
5528{
5529 struct btrfs_fs_info *fs_info = trans->fs_info;
5530 struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 struct btrfs_key key;
5532 struct btrfs_chunk *chunk;
5533 struct btrfs_stripe *stripe;
5534 struct extent_map *em;
5535 struct map_lookup *map;
5536 size_t item_size;
5537 int i;
5538 int ret;
5539
5540 /*
5541 * We take the chunk_mutex for 2 reasons:
5542 *
5543 * 1) Updates and insertions in the chunk btree must be done while holding
5544 * the chunk_mutex, as well as updating the system chunk array in the
5545 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 * details;
5547 *
5548 * 2) To prevent races with the final phase of a device replace operation
5549 * that replaces the device object associated with the map's stripes,
5550 * because the device object's id can change at any time during that
5551 * final phase of the device replace operation
5552 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 * which would cause a failure when updating the device item, which does
5555 * not exists, or persisting a stripe of the chunk item with such ID.
5556 * Here we can't use the device_list_mutex because our caller already
5557 * has locked the chunk_mutex, and the final phase of device replace
5558 * acquires both mutexes - first the device_list_mutex and then the
5559 * chunk_mutex. Using any of those two mutexes protects us from a
5560 * concurrent device replace.
5561 */
5562 lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 if (IS_ERR(em)) {
5566 ret = PTR_ERR(em);
5567 btrfs_abort_transaction(trans, ret);
5568 return ret;
5569 }
5570
5571 map = em->map_lookup;
5572 item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574 chunk = kzalloc(item_size, GFP_NOFS);
5575 if (!chunk) {
5576 ret = -ENOMEM;
5577 btrfs_abort_transaction(trans, ret);
5578 goto out;
5579 }
5580
5581 for (i = 0; i < map->num_stripes; i++) {
5582 struct btrfs_device *device = map->stripes[i].dev;
5583
5584 ret = btrfs_update_device(trans, device);
5585 if (ret)
5586 goto out;
5587 }
5588
5589 stripe = &chunk->stripe;
5590 for (i = 0; i < map->num_stripes; i++) {
5591 struct btrfs_device *device = map->stripes[i].dev;
5592 const u64 dev_offset = map->stripes[i].physical;
5593
5594 btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597 stripe++;
5598 }
5599
5600 btrfs_set_stack_chunk_length(chunk, bg->length);
5601 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 btrfs_set_stack_chunk_type(chunk, map->type);
5604 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 key.type = BTRFS_CHUNK_ITEM_KEY;
5612 key.offset = bg->start;
5613
5614 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615 if (ret)
5616 goto out;
5617
5618 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622 if (ret)
5623 goto out;
5624 }
5625
5626out:
5627 kfree(chunk);
5628 free_extent_map(em);
5629 return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634 struct btrfs_fs_info *fs_info = trans->fs_info;
5635 u64 alloc_profile;
5636 struct btrfs_block_group *meta_bg;
5637 struct btrfs_block_group *sys_bg;
5638
5639 /*
5640 * When adding a new device for sprouting, the seed device is read-only
5641 * so we must first allocate a metadata and a system chunk. But before
5642 * adding the block group items to the extent, device and chunk btrees,
5643 * we must first:
5644 *
5645 * 1) Create both chunks without doing any changes to the btrees, as
5646 * otherwise we would get -ENOSPC since the block groups from the
5647 * seed device are read-only;
5648 *
5649 * 2) Add the device item for the new sprout device - finishing the setup
5650 * of a new block group requires updating the device item in the chunk
5651 * btree, so it must exist when we attempt to do it. The previous step
5652 * ensures this does not fail with -ENOSPC.
5653 *
5654 * After that we can add the block group items to their btrees:
5655 * update existing device item in the chunk btree, add a new block group
5656 * item to the extent btree, add a new chunk item to the chunk btree and
5657 * finally add the new device extent items to the devices btree.
5658 */
5659
5660 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662 if (IS_ERR(meta_bg))
5663 return PTR_ERR(meta_bg);
5664
5665 alloc_profile = btrfs_system_alloc_profile(fs_info);
5666 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667 if (IS_ERR(sys_bg))
5668 return PTR_ERR(sys_bg);
5669
5670 return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675 const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677 return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682 struct extent_map *em;
5683 struct map_lookup *map;
5684 int miss_ndevs = 0;
5685 int i;
5686 bool ret = true;
5687
5688 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689 if (IS_ERR(em))
5690 return false;
5691
5692 map = em->map_lookup;
5693 for (i = 0; i < map->num_stripes; i++) {
5694 if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 &map->stripes[i].dev->dev_state)) {
5696 miss_ndevs++;
5697 continue;
5698 }
5699 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 &map->stripes[i].dev->dev_state)) {
5701 ret = false;
5702 goto end;
5703 }
5704 }
5705
5706 /*
5707 * If the number of missing devices is larger than max errors, we can
5708 * not write the data into that chunk successfully.
5709 */
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
5711 ret = false;
5712end:
5713 free_extent_map(em);
5714 return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719 struct extent_map *em;
5720
5721 while (1) {
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
5724 if (em)
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
5727 if (!em)
5728 break;
5729 /* once for us */
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5733 }
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738 struct extent_map *em;
5739 struct map_lookup *map;
5740 enum btrfs_raid_types index;
5741 int ret = 1;
5742
5743 em = btrfs_get_chunk_map(fs_info, logical, len);
5744 if (IS_ERR(em))
5745 /*
5746 * We could return errors for these cases, but that could get
5747 * ugly and we'd probably do the same thing which is just not do
5748 * anything else and exit, so return 1 so the callers don't try
5749 * to use other copies.
5750 */
5751 return 1;
5752
5753 map = em->map_lookup;
5754 index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 ret = btrfs_raid_array[index].ncopies;
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 ret = 2;
5761 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762 /*
5763 * There could be two corrupted data stripes, we need
5764 * to loop retry in order to rebuild the correct data.
5765 *
5766 * Fail a stripe at a time on every retry except the
5767 * stripe under reconstruction.
5768 */
5769 ret = map->num_stripes;
5770 free_extent_map(em);
5771
5772 down_read(&fs_info->dev_replace.rwsem);
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
5775 ret++;
5776 up_read(&fs_info->dev_replace.rwsem);
5777
5778 return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 u64 logical)
5783{
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5787
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
5791 em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = map->stripe_len * nr_data_stripes(map);
5797 free_extent_map(em);
5798 }
5799 return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804 struct extent_map *em;
5805 struct map_lookup *map;
5806 int ret = 0;
5807
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
5811 em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
5819 return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 struct map_lookup *map, int first,
5824 int dev_replace_is_ongoing)
5825{
5826 int i;
5827 int num_stripes;
5828 int preferred_mirror;
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
5832 ASSERT((map->type &
5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
5852
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
5869 for (i = first; i < first + num_stripes; i++) {
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
5874 }
5875
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
5879 return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885 int i;
5886 int again = 1;
5887
5888 while (again) {
5889 again = 0;
5890 for (i = 0; i < num_stripes - 1; i++) {
5891 /* Swap if parity is on a smaller index */
5892 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895 again = 1;
5896 }
5897 }
5898 }
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 int total_stripes,
5903 int real_stripes)
5904{
5905 struct btrfs_io_context *bioc = kzalloc(
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
5909 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 /* Plus the variable array for the tgt dev */
5911 sizeof(int) * (real_stripes) +
5912 /*
5913 * Plus the raid_map, which includes both the tgt dev
5914 * and the stripes.
5915 */
5916 sizeof(u64) * (total_stripes),
5917 GFP_NOFS);
5918
5919 if (!bioc)
5920 return NULL;
5921
5922 refcount_set(&bioc->refs, 1);
5923
5924 bioc->fs_info = fs_info;
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928 return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939 if (!bioc)
5940 return;
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
5952{
5953 struct extent_map *em;
5954 struct map_lookup *map;
5955 struct btrfs_discard_stripe *stripes;
5956 u64 length = *length_ret;
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
5970 int ret;
5971 int i;
5972
5973 em = btrfs_get_chunk_map(fs_info, logical, length);
5974 if (IS_ERR(em))
5975 return ERR_CAST(em);
5976
5977 map = em->map_lookup;
5978
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
5982 goto out_free_map;
5983}
5984
5985 offset = logical - em->start;
5986 length = min_t(u64, em->start + em->len - logical, length);
5987 *length_ret = length;
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
6009 *num_stripes = 1;
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
6019 *num_stripes = min_t(u64, map->num_stripes,
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 BTRFS_BLOCK_GROUP_DUP)) {
6029 *num_stripes = map->num_stripes;
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
6037 ret = -ENOMEM;
6038 goto out_free_map;
6039 }
6040
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
6045 stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
6049 stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051 if (i / sub_stripes < remaining_stripes)
6052 stripes[i].length += map->stripe_len;
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
6063 stripes[i].length -= stripe_offset;
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
6068 stripes[i].length -= stripe_end_offset;
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
6073 stripes[i].length = length;
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
6083 free_extent_map(em);
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107{
6108 struct btrfs_io_context *bioc = NULL;
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 logical, &length, &bioc, NULL, NULL, 0);
6118 if (ret) {
6119 ASSERT(bioc == NULL);
6120 return ret;
6121 }
6122
6123 num_stripes = bioc->num_stripes;
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
6130 btrfs_put_bioc(bioc);
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
6148 physical_of_found <= bioc->stripes[i].physical)
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bioc->stripes[i].physical;
6154 }
6155
6156 btrfs_put_bioc(bioc);
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
6172 /* Non zoned filesystem does not use "to_copy" flag */
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_io_context **bioc_ret,
6186 struct btrfs_dev_replace *dev_replace,
6187 u64 logical,
6188 int *num_stripes_ret, int *max_errors_ret)
6189{
6190 struct btrfs_io_context *bioc = *bioc_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
6226
6227 new->physical = old->physical;
6228 new->dev = dev_replace->tgtdev;
6229 bioc->tgtdev_map[i] = index_where_to_add;
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
6256 physical_of_found <= bioc->stripes[i].physical)
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
6260 physical_of_found = bioc->stripes[i].physical;
6261 }
6262 }
6263 if (found) {
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
6266
6267 tgtdev_stripe->physical = physical_of_found;
6268 tgtdev_stripe->dev = dev_replace->tgtdev;
6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302 enum btrfs_map_op op, u64 logical,
6303 struct btrfs_io_geometry *io_geom)
6304{
6305 struct map_lookup *map;
6306 u64 len;
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
6310 u32 stripe_len;
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
6327
6328 data_stripes = nr_data_stripes(map);
6329
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371 return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383 u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386 int need_raid_map)
6387{
6388 struct extent_map *em;
6389 struct map_lookup *map;
6390 u64 stripe_offset;
6391 u64 stripe_nr;
6392 u64 stripe_len;
6393 u32 stripe_index;
6394 int data_stripes;
6395 int i;
6396 int ret = 0;
6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398 int num_stripes;
6399 int max_errors = 0;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_io_context *bioc = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6409
6410 ASSERT(bioc_ret);
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417 if (ret < 0)
6418 return ret;
6419
6420 map = em->map_lookup;
6421
6422 *length = geom.len;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6428
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6437
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
6445 goto out;
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
6452 num_stripes = 1;
6453 stripe_index = 0;
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
6457 if (!need_full_stripe(op))
6458 mirror_num = 1;
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6464 else {
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6475 } else {
6476 mirror_num = 1;
6477 }
6478
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6484
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6489 else {
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6495 }
6496
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 /* push stripe_nr back to the start of the full stripe */
6501 stripe_nr = div64_u64(raid56_full_stripe_start,
6502 stripe_len * data_stripes);
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6506 max_errors = btrfs_chunk_max_errors(map);
6507
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
6520 stripe_nr = div_u64_rem(stripe_nr,
6521 data_stripes, &stripe_index);
6522 if (mirror_num > 1)
6523 stripe_index = data_stripes + mirror_num - 2;
6524
6525 /* We distribute the parity blocks across stripes */
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
6528 if (!need_full_stripe(op) && mirror_num <= 1)
6529 mirror_num = 1;
6530 }
6531 } else {
6532 /*
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
6536 */
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
6539 mirror_num = stripe_index + 1;
6540 }
6541 if (stripe_index >= map->num_stripes) {
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
6548
6549 num_alloc_stripes = num_stripes;
6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551 if (op == BTRFS_MAP_WRITE)
6552 num_alloc_stripes <<= 1;
6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554 num_alloc_stripes++;
6555 tgtdev_indexes = num_stripes;
6556 }
6557
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582 if (!bioc) {
6583 ret = -ENOMEM;
6584 goto out;
6585 }
6586
6587 for (i = 0; i < num_stripes; i++) {
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
6590 stripe_index++;
6591 }
6592
6593 /* Build raid_map */
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
6596 u64 tmp;
6597 unsigned rot;
6598
6599 /* Work out the disk rotation on this stripe-set */
6600 div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602 /* Fill in the logical address of each stripe */
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
6605 bioc->raid_map[(i + rot) % num_stripes] =
6606 em->start + (tmp + i) * map->stripe_len;
6607
6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
6611 RAID6_Q_STRIPE;
6612
6613 sort_parity_stripes(bioc, num_stripes);
6614 }
6615
6616 if (need_full_stripe(op))
6617 max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 need_full_stripe(op)) {
6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622 &num_stripes, &max_errors);
6623 }
6624
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
6641 }
6642out:
6643 if (dev_replace_is_ongoing) {
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
6646 up_read(&dev_replace->rwsem);
6647 }
6648 free_extent_map(em);
6649 return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662 u64 logical, u64 *length,
6663 struct btrfs_io_context **bioc_ret)
6664{
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670 const struct btrfs_fs_devices *fs_devices)
6671{
6672 if (args->fsid == NULL)
6673 return true;
6674 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675 return true;
6676 return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680 const struct btrfs_device *device)
6681{
6682 if (args->missing) {
6683 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684 !device->bdev)
6685 return true;
6686 return false;
6687 }
6688
6689 if (device->devid != args->devid)
6690 return false;
6691 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692 return false;
6693 return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704 const struct btrfs_dev_lookup_args *args)
6705{
6706 struct btrfs_device *device;
6707 struct btrfs_fs_devices *seed_devs;
6708
6709 if (dev_args_match_fs_devices(args, fs_devices)) {
6710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711 if (dev_args_match_device(args, device))
6712 return device;
6713 }
6714 }
6715
6716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717 if (!dev_args_match_fs_devices(args, seed_devs))
6718 continue;
6719 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720 if (dev_args_match_device(args, device))
6721 return device;
6722 }
6723 }
6724
6725 return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729 u64 devid, u8 *dev_uuid)
6730{
6731 struct btrfs_device *device;
6732 unsigned int nofs_flag;
6733
6734 /*
6735 * We call this under the chunk_mutex, so we want to use NOFS for this
6736 * allocation, however we don't want to change btrfs_alloc_device() to
6737 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738 * places.
6739 */
6740
6741 nofs_flag = memalloc_nofs_save();
6742 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743 memalloc_nofs_restore(nofs_flag);
6744 if (IS_ERR(device))
6745 return device;
6746
6747 list_add(&device->dev_list, &fs_devices->devices);
6748 device->fs_devices = fs_devices;
6749 fs_devices->num_devices++;
6750
6751 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752 fs_devices->missing_devices++;
6753
6754 return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info: used only for generating a new devid, can be NULL if
6761 * devid is provided (i.e. @devid != NULL).
6762 * @devid: a pointer to devid for this device. If NULL a new devid
6763 * is generated.
6764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6765 * is generated.
6766 * @path: a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error. Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773 const u64 *devid, const u8 *uuid,
6774 const char *path)
6775{
6776 struct btrfs_device *dev;
6777 u64 tmp;
6778
6779 if (WARN_ON(!devid && !fs_info))
6780 return ERR_PTR(-EINVAL);
6781
6782 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783 if (!dev)
6784 return ERR_PTR(-ENOMEM);
6785
6786 INIT_LIST_HEAD(&dev->dev_list);
6787 INIT_LIST_HEAD(&dev->dev_alloc_list);
6788 INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790 atomic_set(&dev->dev_stats_ccnt, 0);
6791 btrfs_device_data_ordered_init(dev);
6792 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794 if (devid)
6795 tmp = *devid;
6796 else {
6797 int ret;
6798
6799 ret = find_next_devid(fs_info, &tmp);
6800 if (ret) {
6801 btrfs_free_device(dev);
6802 return ERR_PTR(ret);
6803 }
6804 }
6805 dev->devid = tmp;
6806
6807 if (uuid)
6808 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809 else
6810 generate_random_uuid(dev->uuid);
6811
6812 if (path) {
6813 struct rcu_string *name;
6814
6815 name = rcu_string_strdup(path, GFP_KERNEL);
6816 if (!name) {
6817 btrfs_free_device(dev);
6818 return ERR_PTR(-ENOMEM);
6819 }
6820 rcu_assign_pointer(dev->name, name);
6821 }
6822
6823 return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827 u64 devid, u8 *uuid, bool error)
6828{
6829 if (error)
6830 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831 devid, uuid);
6832 else
6833 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834 devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839 const struct map_lookup *map = em->map_lookup;
6840 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842 return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854 u64 logical, u64 length, u64 type)
6855{
6856 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857 return 0;
6858
6859 if (logical + length < MAX_LFS_FILESIZE)
6860 return 0;
6861
6862 btrfs_err_32bit_limit(fs_info);
6863 return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873 u64 logical, u64 length, u64 type)
6874{
6875 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876 return;
6877
6878 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879 return;
6880
6881 btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886 u64 devid, u8 *uuid)
6887{
6888 struct btrfs_device *dev;
6889
6890 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891 btrfs_report_missing_device(fs_info, devid, uuid, true);
6892 return ERR_PTR(-ENOENT);
6893 }
6894
6895 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896 if (IS_ERR(dev)) {
6897 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898 devid, PTR_ERR(dev));
6899 return dev;
6900 }
6901 btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903 return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907 struct btrfs_chunk *chunk)
6908{
6909 BTRFS_DEV_LOOKUP_ARGS(args);
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
6916 u64 devid;
6917 u64 type;
6918 u8 uuid[BTRFS_UUID_SIZE];
6919 int index;
6920 int num_stripes;
6921 int ret;
6922 int i;
6923
6924 logical = key->offset;
6925 length = btrfs_chunk_length(leaf, chunk);
6926 type = btrfs_chunk_type(leaf, chunk);
6927 index = btrfs_bg_flags_to_raid_index(type);
6928 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932 if (ret < 0)
6933 return ret;
6934 warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937 /*
6938 * Only need to verify chunk item if we're reading from sys chunk array,
6939 * as chunk item in tree block is already verified by tree-checker.
6940 */
6941 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943 if (ret)
6944 return ret;
6945 }
6946
6947 read_lock(&map_tree->lock);
6948 em = lookup_extent_mapping(map_tree, logical, 1);
6949 read_unlock(&map_tree->lock);
6950
6951 /* already mapped? */
6952 if (em && em->start <= logical && em->start + em->len > logical) {
6953 free_extent_map(em);
6954 return 0;
6955 } else if (em) {
6956 free_extent_map(em);
6957 }
6958
6959 em = alloc_extent_map();
6960 if (!em)
6961 return -ENOMEM;
6962 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963 if (!map) {
6964 free_extent_map(em);
6965 return -ENOMEM;
6966 }
6967
6968 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969 em->map_lookup = map;
6970 em->start = logical;
6971 em->len = length;
6972 em->orig_start = 0;
6973 em->block_start = 0;
6974 em->block_len = em->len;
6975
6976 map->num_stripes = num_stripes;
6977 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980 map->type = type;
6981 /*
6982 * We can't use the sub_stripes value, as for profiles other than
6983 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984 * older mkfs (<v5.4).
6985 * In that case, it can cause divide-by-zero errors later.
6986 * Since currently sub_stripes is fixed for each profile, let's
6987 * use the trusted value instead.
6988 */
6989 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990 map->verified_stripes = 0;
6991 em->orig_block_len = btrfs_calc_stripe_length(em);
6992 for (i = 0; i < num_stripes; i++) {
6993 map->stripes[i].physical =
6994 btrfs_stripe_offset_nr(leaf, chunk, i);
6995 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996 args.devid = devid;
6997 read_extent_buffer(leaf, uuid, (unsigned long)
6998 btrfs_stripe_dev_uuid_nr(chunk, i),
6999 BTRFS_UUID_SIZE);
7000 args.uuid = uuid;
7001 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7002 if (!map->stripes[i].dev) {
7003 map->stripes[i].dev = handle_missing_device(fs_info,
7004 devid, uuid);
7005 if (IS_ERR(map->stripes[i].dev)) {
7006 ret = PTR_ERR(map->stripes[i].dev);
7007 free_extent_map(em);
7008 return ret;
7009 }
7010 }
7011
7012 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013 &(map->stripes[i].dev->dev_state));
7014 }
7015
7016 write_lock(&map_tree->lock);
7017 ret = add_extent_mapping(map_tree, em, 0);
7018 write_unlock(&map_tree->lock);
7019 if (ret < 0) {
7020 btrfs_err(fs_info,
7021 "failed to add chunk map, start=%llu len=%llu: %d",
7022 em->start, em->len, ret);
7023 }
7024 free_extent_map(em);
7025
7026 return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030 struct btrfs_dev_item *dev_item,
7031 struct btrfs_device *device)
7032{
7033 unsigned long ptr;
7034
7035 device->devid = btrfs_device_id(leaf, dev_item);
7036 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037 device->total_bytes = device->disk_total_bytes;
7038 device->commit_total_bytes = device->disk_total_bytes;
7039 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040 device->commit_bytes_used = device->bytes_used;
7041 device->type = btrfs_device_type(leaf, dev_item);
7042 device->io_align = btrfs_device_io_align(leaf, dev_item);
7043 device->io_width = btrfs_device_io_width(leaf, dev_item);
7044 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048 ptr = btrfs_device_uuid(dev_item);
7049 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053 u8 *fsid)
7054{
7055 struct btrfs_fs_devices *fs_devices;
7056 int ret;
7057
7058 lockdep_assert_held(&uuid_mutex);
7059 ASSERT(fsid);
7060
7061 /* This will match only for multi-device seed fs */
7062 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064 return fs_devices;
7065
7066
7067 fs_devices = find_fsid(fsid, NULL);
7068 if (!fs_devices) {
7069 if (!btrfs_test_opt(fs_info, DEGRADED))
7070 return ERR_PTR(-ENOENT);
7071
7072 fs_devices = alloc_fs_devices(fsid, NULL);
7073 if (IS_ERR(fs_devices))
7074 return fs_devices;
7075
7076 fs_devices->seeding = true;
7077 fs_devices->opened = 1;
7078 return fs_devices;
7079 }
7080
7081 /*
7082 * Upon first call for a seed fs fsid, just create a private copy of the
7083 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084 */
7085 fs_devices = clone_fs_devices(fs_devices);
7086 if (IS_ERR(fs_devices))
7087 return fs_devices;
7088
7089 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090 if (ret) {
7091 free_fs_devices(fs_devices);
7092 return ERR_PTR(ret);
7093 }
7094
7095 if (!fs_devices->seeding) {
7096 close_fs_devices(fs_devices);
7097 free_fs_devices(fs_devices);
7098 return ERR_PTR(-EINVAL);
7099 }
7100
7101 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103 return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107 struct btrfs_dev_item *dev_item)
7108{
7109 BTRFS_DEV_LOOKUP_ARGS(args);
7110 struct btrfs_fs_info *fs_info = leaf->fs_info;
7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 struct btrfs_device *device;
7113 u64 devid;
7114 int ret;
7115 u8 fs_uuid[BTRFS_FSID_SIZE];
7116 u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118 devid = btrfs_device_id(leaf, dev_item);
7119 args.devid = devid;
7120 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121 BTRFS_UUID_SIZE);
7122 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123 BTRFS_FSID_SIZE);
7124 args.uuid = dev_uuid;
7125 args.fsid = fs_uuid;
7126
7127 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128 fs_devices = open_seed_devices(fs_info, fs_uuid);
7129 if (IS_ERR(fs_devices))
7130 return PTR_ERR(fs_devices);
7131 }
7132
7133 device = btrfs_find_device(fs_info->fs_devices, &args);
7134 if (!device) {
7135 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136 btrfs_report_missing_device(fs_info, devid,
7137 dev_uuid, true);
7138 return -ENOENT;
7139 }
7140
7141 device = add_missing_dev(fs_devices, devid, dev_uuid);
7142 if (IS_ERR(device)) {
7143 btrfs_err(fs_info,
7144 "failed to add missing dev %llu: %ld",
7145 devid, PTR_ERR(device));
7146 return PTR_ERR(device);
7147 }
7148 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149 } else {
7150 if (!device->bdev) {
7151 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152 btrfs_report_missing_device(fs_info,
7153 devid, dev_uuid, true);
7154 return -ENOENT;
7155 }
7156 btrfs_report_missing_device(fs_info, devid,
7157 dev_uuid, false);
7158 }
7159
7160 if (!device->bdev &&
7161 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162 /*
7163 * this happens when a device that was properly setup
7164 * in the device info lists suddenly goes bad.
7165 * device->bdev is NULL, and so we have to set
7166 * device->missing to one here
7167 */
7168 device->fs_devices->missing_devices++;
7169 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170 }
7171
7172 /* Move the device to its own fs_devices */
7173 if (device->fs_devices != fs_devices) {
7174 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175 &device->dev_state));
7176
7177 list_move(&device->dev_list, &fs_devices->devices);
7178 device->fs_devices->num_devices--;
7179 fs_devices->num_devices++;
7180
7181 device->fs_devices->missing_devices--;
7182 fs_devices->missing_devices++;
7183
7184 device->fs_devices = fs_devices;
7185 }
7186 }
7187
7188 if (device->fs_devices != fs_info->fs_devices) {
7189 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190 if (device->generation !=
7191 btrfs_device_generation(leaf, dev_item))
7192 return -EINVAL;
7193 }
7194
7195 fill_device_from_item(leaf, dev_item, device);
7196 if (device->bdev) {
7197 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199 if (device->total_bytes > max_total_bytes) {
7200 btrfs_err(fs_info,
7201 "device total_bytes should be at most %llu but found %llu",
7202 max_total_bytes, device->total_bytes);
7203 return -EINVAL;
7204 }
7205 }
7206 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209 device->fs_devices->total_rw_bytes += device->total_bytes;
7210 atomic64_add(device->total_bytes - device->bytes_used,
7211 &fs_info->free_chunk_space);
7212 }
7213 ret = 0;
7214 return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219 struct btrfs_super_block *super_copy = fs_info->super_copy;
7220 struct extent_buffer *sb;
7221 struct btrfs_disk_key *disk_key;
7222 struct btrfs_chunk *chunk;
7223 u8 *array_ptr;
7224 unsigned long sb_array_offset;
7225 int ret = 0;
7226 u32 num_stripes;
7227 u32 array_size;
7228 u32 len = 0;
7229 u32 cur_offset;
7230 u64 type;
7231 struct btrfs_key key;
7232
7233 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235 /*
7236 * We allocated a dummy extent, just to use extent buffer accessors.
7237 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238 * that's fine, we will not go beyond system chunk array anyway.
7239 */
7240 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241 if (!sb)
7242 return -ENOMEM;
7243 set_extent_buffer_uptodate(sb);
7244
7245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246 array_size = btrfs_super_sys_array_size(super_copy);
7247
7248 array_ptr = super_copy->sys_chunk_array;
7249 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250 cur_offset = 0;
7251
7252 while (cur_offset < array_size) {
7253 disk_key = (struct btrfs_disk_key *)array_ptr;
7254 len = sizeof(*disk_key);
7255 if (cur_offset + len > array_size)
7256 goto out_short_read;
7257
7258 btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260 array_ptr += len;
7261 sb_array_offset += len;
7262 cur_offset += len;
7263
7264 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265 btrfs_err(fs_info,
7266 "unexpected item type %u in sys_array at offset %u",
7267 (u32)key.type, cur_offset);
7268 ret = -EIO;
7269 break;
7270 }
7271
7272 chunk = (struct btrfs_chunk *)sb_array_offset;
7273 /*
7274 * At least one btrfs_chunk with one stripe must be present,
7275 * exact stripe count check comes afterwards
7276 */
7277 len = btrfs_chunk_item_size(1);
7278 if (cur_offset + len > array_size)
7279 goto out_short_read;
7280
7281 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282 if (!num_stripes) {
7283 btrfs_err(fs_info,
7284 "invalid number of stripes %u in sys_array at offset %u",
7285 num_stripes, cur_offset);
7286 ret = -EIO;
7287 break;
7288 }
7289
7290 type = btrfs_chunk_type(sb, chunk);
7291 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292 btrfs_err(fs_info,
7293 "invalid chunk type %llu in sys_array at offset %u",
7294 type, cur_offset);
7295 ret = -EIO;
7296 break;
7297 }
7298
7299 len = btrfs_chunk_item_size(num_stripes);
7300 if (cur_offset + len > array_size)
7301 goto out_short_read;
7302
7303 ret = read_one_chunk(&key, sb, chunk);
7304 if (ret)
7305 break;
7306
7307 array_ptr += len;
7308 sb_array_offset += len;
7309 cur_offset += len;
7310 }
7311 clear_extent_buffer_uptodate(sb);
7312 free_extent_buffer_stale(sb);
7313 return ret;
7314
7315out_short_read:
7316 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317 len, cur_offset);
7318 clear_extent_buffer_uptodate(sb);
7319 free_extent_buffer_stale(sb);
7320 return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332 struct btrfs_device *failing_dev)
7333{
7334 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335 struct extent_map *em;
7336 u64 next_start = 0;
7337 bool ret = true;
7338
7339 read_lock(&map_tree->lock);
7340 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341 read_unlock(&map_tree->lock);
7342 /* No chunk at all? Return false anyway */
7343 if (!em) {
7344 ret = false;
7345 goto out;
7346 }
7347 while (em) {
7348 struct map_lookup *map;
7349 int missing = 0;
7350 int max_tolerated;
7351 int i;
7352
7353 map = em->map_lookup;
7354 max_tolerated =
7355 btrfs_get_num_tolerated_disk_barrier_failures(
7356 map->type);
7357 for (i = 0; i < map->num_stripes; i++) {
7358 struct btrfs_device *dev = map->stripes[i].dev;
7359
7360 if (!dev || !dev->bdev ||
7361 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362 dev->last_flush_error)
7363 missing++;
7364 else if (failing_dev && failing_dev == dev)
7365 missing++;
7366 }
7367 if (missing > max_tolerated) {
7368 if (!failing_dev)
7369 btrfs_warn(fs_info,
7370 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371 em->start, missing, max_tolerated);
7372 free_extent_map(em);
7373 ret = false;
7374 goto out;
7375 }
7376 next_start = extent_map_end(em);
7377 free_extent_map(em);
7378
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, next_start,
7381 (u64)(-1) - next_start);
7382 read_unlock(&map_tree->lock);
7383 }
7384out:
7385 return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390 int i;
7391 const int nr_items = btrfs_header_nritems(node);
7392
7393 for (i = 0; i < nr_items; i++)
7394 btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399 struct btrfs_root *root = fs_info->chunk_root;
7400 struct btrfs_path *path;
7401 struct extent_buffer *leaf;
7402 struct btrfs_key key;
7403 struct btrfs_key found_key;
7404 int ret;
7405 int slot;
7406 int iter_ret = 0;
7407 u64 total_dev = 0;
7408 u64 last_ra_node = 0;
7409
7410 path = btrfs_alloc_path();
7411 if (!path)
7412 return -ENOMEM;
7413
7414 /*
7415 * uuid_mutex is needed only if we are mounting a sprout FS
7416 * otherwise we don't need it.
7417 */
7418 mutex_lock(&uuid_mutex);
7419
7420 /*
7421 * It is possible for mount and umount to race in such a way that
7422 * we execute this code path, but open_fs_devices failed to clear
7423 * total_rw_bytes. We certainly want it cleared before reading the
7424 * device items, so clear it here.
7425 */
7426 fs_info->fs_devices->total_rw_bytes = 0;
7427
7428 /*
7429 * Lockdep complains about possible circular locking dependency between
7430 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431 * used for freeze procection of a fs (struct super_block.s_writers),
7432 * which we take when starting a transaction, and extent buffers of the
7433 * chunk tree if we call read_one_dev() while holding a lock on an
7434 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435 * and at this point there can't be any concurrent task modifying the
7436 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437 */
7438 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439 path->skip_locking = 1;
7440
7441 /*
7442 * Read all device items, and then all the chunk items. All
7443 * device items are found before any chunk item (their object id
7444 * is smaller than the lowest possible object id for a chunk
7445 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446 */
7447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448 key.offset = 0;
7449 key.type = 0;
7450 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451 struct extent_buffer *node = path->nodes[1];
7452
7453 leaf = path->nodes[0];
7454 slot = path->slots[0];
7455
7456 if (node) {
7457 if (last_ra_node != node->start) {
7458 readahead_tree_node_children(node);
7459 last_ra_node = node->start;
7460 }
7461 }
7462 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463 struct btrfs_dev_item *dev_item;
7464 dev_item = btrfs_item_ptr(leaf, slot,
7465 struct btrfs_dev_item);
7466 ret = read_one_dev(leaf, dev_item);
7467 if (ret)
7468 goto error;
7469 total_dev++;
7470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471 struct btrfs_chunk *chunk;
7472
7473 /*
7474 * We are only called at mount time, so no need to take
7475 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476 * we always lock first fs_info->chunk_mutex before
7477 * acquiring any locks on the chunk tree. This is a
7478 * requirement for chunk allocation, see the comment on
7479 * top of btrfs_chunk_alloc() for details.
7480 */
7481 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482 ret = read_one_chunk(&found_key, leaf, chunk);
7483 if (ret)
7484 goto error;
7485 }
7486 }
7487 /* Catch error found during iteration */
7488 if (iter_ret < 0) {
7489 ret = iter_ret;
7490 goto error;
7491 }
7492
7493 /*
7494 * After loading chunk tree, we've got all device information,
7495 * do another round of validation checks.
7496 */
7497 if (total_dev != fs_info->fs_devices->total_devices) {
7498 btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500 btrfs_super_num_devices(fs_info->super_copy),
7501 total_dev);
7502 fs_info->fs_devices->total_devices = total_dev;
7503 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504 }
7505 if (btrfs_super_total_bytes(fs_info->super_copy) <
7506 fs_info->fs_devices->total_rw_bytes) {
7507 btrfs_err(fs_info,
7508 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509 btrfs_super_total_bytes(fs_info->super_copy),
7510 fs_info->fs_devices->total_rw_bytes);
7511 ret = -EINVAL;
7512 goto error;
7513 }
7514 ret = 0;
7515error:
7516 mutex_unlock(&uuid_mutex);
7517
7518 btrfs_free_path(path);
7519 return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525 struct btrfs_device *device;
7526 int ret = 0;
7527
7528 fs_devices->fs_info = fs_info;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
7531 list_for_each_entry(device, &fs_devices->devices, dev_list)
7532 device->fs_info = fs_info;
7533
7534 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536 device->fs_info = fs_info;
7537 ret = btrfs_get_dev_zone_info(device, false);
7538 if (ret)
7539 break;
7540 }
7541
7542 seed_devs->fs_info = fs_info;
7543 }
7544 mutex_unlock(&fs_devices->device_list_mutex);
7545
7546 return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550 const struct btrfs_dev_stats_item *ptr,
7551 int index)
7552{
7553 u64 val;
7554
7555 read_extent_buffer(eb, &val,
7556 offsetof(struct btrfs_dev_stats_item, values) +
7557 ((unsigned long)ptr) + (index * sizeof(u64)),
7558 sizeof(val));
7559 return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563 struct btrfs_dev_stats_item *ptr,
7564 int index, u64 val)
7565{
7566 write_extent_buffer(eb, &val,
7567 offsetof(struct btrfs_dev_stats_item, values) +
7568 ((unsigned long)ptr) + (index * sizeof(u64)),
7569 sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573 struct btrfs_path *path)
7574{
7575 struct btrfs_dev_stats_item *ptr;
7576 struct extent_buffer *eb;
7577 struct btrfs_key key;
7578 int item_size;
7579 int i, ret, slot;
7580
7581 if (!device->fs_info->dev_root)
7582 return 0;
7583
7584 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586 key.offset = device->devid;
7587 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588 if (ret) {
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590 btrfs_dev_stat_set(device, i, 0);
7591 device->dev_stats_valid = 1;
7592 btrfs_release_path(path);
7593 return ret < 0 ? ret : 0;
7594 }
7595 slot = path->slots[0];
7596 eb = path->nodes[0];
7597 item_size = btrfs_item_size(eb, slot);
7598
7599 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602 if (item_size >= (1 + i) * sizeof(__le64))
7603 btrfs_dev_stat_set(device, i,
7604 btrfs_dev_stats_value(eb, ptr, i));
7605 else
7606 btrfs_dev_stat_set(device, i, 0);
7607 }
7608
7609 device->dev_stats_valid = 1;
7610 btrfs_dev_stat_print_on_load(device);
7611 btrfs_release_path(path);
7612
7613 return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619 struct btrfs_device *device;
7620 struct btrfs_path *path = NULL;
7621 int ret = 0;
7622
7623 path = btrfs_alloc_path();
7624 if (!path)
7625 return -ENOMEM;
7626
7627 mutex_lock(&fs_devices->device_list_mutex);
7628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629 ret = btrfs_device_init_dev_stats(device, path);
7630 if (ret)
7631 goto out;
7632 }
7633 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635 ret = btrfs_device_init_dev_stats(device, path);
7636 if (ret)
7637 goto out;
7638 }
7639 }
7640out:
7641 mutex_unlock(&fs_devices->device_list_mutex);
7642
7643 btrfs_free_path(path);
7644 return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648 struct btrfs_device *device)
7649{
7650 struct btrfs_fs_info *fs_info = trans->fs_info;
7651 struct btrfs_root *dev_root = fs_info->dev_root;
7652 struct btrfs_path *path;
7653 struct btrfs_key key;
7654 struct extent_buffer *eb;
7655 struct btrfs_dev_stats_item *ptr;
7656 int ret;
7657 int i;
7658
7659 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661 key.offset = device->devid;
7662
7663 path = btrfs_alloc_path();
7664 if (!path)
7665 return -ENOMEM;
7666 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667 if (ret < 0) {
7668 btrfs_warn_in_rcu(fs_info,
7669 "error %d while searching for dev_stats item for device %s",
7670 ret, btrfs_dev_name(device));
7671 goto out;
7672 }
7673
7674 if (ret == 0 &&
7675 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676 /* need to delete old one and insert a new one */
7677 ret = btrfs_del_item(trans, dev_root, path);
7678 if (ret != 0) {
7679 btrfs_warn_in_rcu(fs_info,
7680 "delete too small dev_stats item for device %s failed %d",
7681 btrfs_dev_name(device), ret);
7682 goto out;
7683 }
7684 ret = 1;
7685 }
7686
7687 if (ret == 1) {
7688 /* need to insert a new item */
7689 btrfs_release_path(path);
7690 ret = btrfs_insert_empty_item(trans, dev_root, path,
7691 &key, sizeof(*ptr));
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "insert dev_stats item for device %s failed %d",
7695 btrfs_dev_name(device), ret);
7696 goto out;
7697 }
7698 }
7699
7700 eb = path->nodes[0];
7701 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703 btrfs_set_dev_stats_value(eb, ptr, i,
7704 btrfs_dev_stat_read(device, i));
7705 btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708 btrfs_free_path(path);
7709 return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717 struct btrfs_fs_info *fs_info = trans->fs_info;
7718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719 struct btrfs_device *device;
7720 int stats_cnt;
7721 int ret = 0;
7722
7723 mutex_lock(&fs_devices->device_list_mutex);
7724 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726 if (!device->dev_stats_valid || stats_cnt == 0)
7727 continue;
7728
7729
7730 /*
7731 * There is a LOAD-LOAD control dependency between the value of
7732 * dev_stats_ccnt and updating the on-disk values which requires
7733 * reading the in-memory counters. Such control dependencies
7734 * require explicit read memory barriers.
7735 *
7736 * This memory barriers pairs with smp_mb__before_atomic in
7737 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738 * barrier implied by atomic_xchg in
7739 * btrfs_dev_stats_read_and_reset
7740 */
7741 smp_rmb();
7742
7743 ret = update_dev_stat_item(trans, device);
7744 if (!ret)
7745 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746 }
7747 mutex_unlock(&fs_devices->device_list_mutex);
7748
7749 return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754 btrfs_dev_stat_inc(dev, index);
7755
7756 if (!dev->dev_stats_valid)
7757 return;
7758 btrfs_err_rl_in_rcu(dev->fs_info,
7759 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760 btrfs_dev_name(dev),
7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770 int i;
7771
7772 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773 if (btrfs_dev_stat_read(dev, i) != 0)
7774 break;
7775 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776 return; /* all values == 0, suppress message */
7777
7778 btrfs_info_in_rcu(dev->fs_info,
7779 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780 btrfs_dev_name(dev),
7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789 struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791 BTRFS_DEV_LOOKUP_ARGS(args);
7792 struct btrfs_device *dev;
7793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794 int i;
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
7797 args.devid = stats->devid;
7798 dev = btrfs_find_device(fs_info->fs_devices, &args);
7799 mutex_unlock(&fs_devices->device_list_mutex);
7800
7801 if (!dev) {
7802 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803 return -ENODEV;
7804 } else if (!dev->dev_stats_valid) {
7805 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806 return -ENODEV;
7807 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809 if (stats->nr_items > i)
7810 stats->values[i] =
7811 btrfs_dev_stat_read_and_reset(dev, i);
7812 else
7813 btrfs_dev_stat_set(dev, i, 0);
7814 }
7815 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816 current->comm, task_pid_nr(current));
7817 } else {
7818 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819 if (stats->nr_items > i)
7820 stats->values[i] = btrfs_dev_stat_read(dev, i);
7821 }
7822 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824 return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed. This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836 struct btrfs_device *curr, *next;
7837
7838 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840 if (list_empty(&trans->dev_update_list))
7841 return;
7842
7843 /*
7844 * We don't need the device_list_mutex here. This list is owned by the
7845 * transaction and the transaction must complete before the device is
7846 * released.
7847 */
7848 mutex_lock(&trans->fs_info->chunk_mutex);
7849 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850 post_commit_list) {
7851 list_del_init(&curr->post_commit_list);
7852 curr->commit_total_bytes = curr->disk_total_bytes;
7853 curr->commit_bytes_used = curr->bytes_used;
7854 }
7855 mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863 const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865 return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873{
7874 struct btrfs_dev_lookup_args args = { .devid = devid };
7875 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876 struct extent_map *em;
7877 struct map_lookup *map;
7878 struct btrfs_device *dev;
7879 u64 stripe_len;
7880 bool found = false;
7881 int ret = 0;
7882 int i;
7883
7884 read_lock(&em_tree->lock);
7885 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886 read_unlock(&em_tree->lock);
7887
7888 if (!em) {
7889 btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891 physical_offset, devid);
7892 ret = -EUCLEAN;
7893 goto out;
7894 }
7895
7896 map = em->map_lookup;
7897 stripe_len = btrfs_calc_stripe_length(em);
7898 if (physical_len != stripe_len) {
7899 btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901 physical_offset, devid, em->start, physical_len,
7902 stripe_len);
7903 ret = -EUCLEAN;
7904 goto out;
7905 }
7906
7907 /*
7908 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909 * space. Although kernel can handle it without problem, better to warn
7910 * the users.
7911 */
7912 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913 btrfs_warn(fs_info,
7914 "devid %llu physical %llu len %llu inside the reserved space",
7915 devid, physical_offset, physical_len);
7916
7917 for (i = 0; i < map->num_stripes; i++) {
7918 if (map->stripes[i].dev->devid == devid &&
7919 map->stripes[i].physical == physical_offset) {
7920 found = true;
7921 if (map->verified_stripes >= map->num_stripes) {
7922 btrfs_err(fs_info,
7923 "too many dev extents for chunk %llu found",
7924 em->start);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 map->verified_stripes++;
7929 break;
7930 }
7931 }
7932 if (!found) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 }
7938
7939 /* Make sure no dev extent is beyond device boundary */
7940 dev = btrfs_find_device(fs_info->fs_devices, &args);
7941 if (!dev) {
7942 btrfs_err(fs_info, "failed to find devid %llu", devid);
7943 ret = -EUCLEAN;
7944 goto out;
7945 }
7946
7947 if (physical_offset + physical_len > dev->disk_total_bytes) {
7948 btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950 devid, physical_offset, physical_len,
7951 dev->disk_total_bytes);
7952 ret = -EUCLEAN;
7953 goto out;
7954 }
7955
7956 if (dev->zone_info) {
7957 u64 zone_size = dev->zone_info->zone_size;
7958
7959 if (!IS_ALIGNED(physical_offset, zone_size) ||
7960 !IS_ALIGNED(physical_len, zone_size)) {
7961 btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963 devid, physical_offset, physical_len);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
7967 }
7968
7969out:
7970 free_extent_map(em);
7971 return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977 struct extent_map *em;
7978 struct rb_node *node;
7979 int ret = 0;
7980
7981 read_lock(&em_tree->lock);
7982 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983 em = rb_entry(node, struct extent_map, rb_node);
7984 if (em->map_lookup->num_stripes !=
7985 em->map_lookup->verified_stripes) {
7986 btrfs_err(fs_info,
7987 "chunk %llu has missing dev extent, have %d expect %d",
7988 em->start, em->map_lookup->verified_stripes,
7989 em->map_lookup->num_stripes);
7990 ret = -EUCLEAN;
7991 goto out;
7992 }
7993 }
7994out:
7995 read_unlock(&em_tree->lock);
7996 return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree. This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008 struct btrfs_path *path;
8009 struct btrfs_root *root = fs_info->dev_root;
8010 struct btrfs_key key;
8011 u64 prev_devid = 0;
8012 u64 prev_dev_ext_end = 0;
8013 int ret = 0;
8014
8015 /*
8016 * We don't have a dev_root because we mounted with ignorebadroots and
8017 * failed to load the root, so we want to skip the verification in this
8018 * case for sure.
8019 *
8020 * However if the dev root is fine, but the tree itself is corrupted
8021 * we'd still fail to mount. This verification is only to make sure
8022 * writes can happen safely, so instead just bypass this check
8023 * completely in the case of IGNOREBADROOTS.
8024 */
8025 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026 return 0;
8027
8028 key.objectid = 1;
8029 key.type = BTRFS_DEV_EXTENT_KEY;
8030 key.offset = 0;
8031
8032 path = btrfs_alloc_path();
8033 if (!path)
8034 return -ENOMEM;
8035
8036 path->reada = READA_FORWARD;
8037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038 if (ret < 0)
8039 goto out;
8040
8041 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042 ret = btrfs_next_leaf(root, path);
8043 if (ret < 0)
8044 goto out;
8045 /* No dev extents at all? Not good */
8046 if (ret > 0) {
8047 ret = -EUCLEAN;
8048 goto out;
8049 }
8050 }
8051 while (1) {
8052 struct extent_buffer *leaf = path->nodes[0];
8053 struct btrfs_dev_extent *dext;
8054 int slot = path->slots[0];
8055 u64 chunk_offset;
8056 u64 physical_offset;
8057 u64 physical_len;
8058 u64 devid;
8059
8060 btrfs_item_key_to_cpu(leaf, &key, slot);
8061 if (key.type != BTRFS_DEV_EXTENT_KEY)
8062 break;
8063 devid = key.objectid;
8064 physical_offset = key.offset;
8065
8066 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068 physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070 /* Check if this dev extent overlaps with the previous one */
8071 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072 btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074 devid, physical_offset, prev_dev_ext_end);
8075 ret = -EUCLEAN;
8076 goto out;
8077 }
8078
8079 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080 physical_offset, physical_len);
8081 if (ret < 0)
8082 goto out;
8083 prev_devid = devid;
8084 prev_dev_ext_end = physical_offset + physical_len;
8085
8086 ret = btrfs_next_item(root, path);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0) {
8090 ret = 0;
8091 break;
8092 }
8093 }
8094
8095 /* Ensure all chunks have corresponding dev extents */
8096 ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098 btrfs_free_path(path);
8099 return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108 struct btrfs_swapfile_pin *sp;
8109 struct rb_node *node;
8110
8111 spin_lock(&fs_info->swapfile_pins_lock);
8112 node = fs_info->swapfile_pins.rb_node;
8113 while (node) {
8114 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115 if (ptr < sp->ptr)
8116 node = node->rb_left;
8117 else if (ptr > sp->ptr)
8118 node = node->rb_right;
8119 else
8120 break;
8121 }
8122 spin_unlock(&fs_info->swapfile_pins_lock);
8123 return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128 struct btrfs_block_group *cache = data;
8129 struct btrfs_fs_info *fs_info = cache->fs_info;
8130 u64 target;
8131 int ret = 0;
8132
8133 target = cache->start;
8134 btrfs_put_block_group(cache);
8135
8136 sb_start_write(fs_info->sb);
8137 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138 btrfs_info(fs_info,
8139 "zoned: skip relocating block group %llu to repair: EBUSY",
8140 target);
8141 sb_end_write(fs_info->sb);
8142 return -EBUSY;
8143 }
8144
8145 mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147 /* Ensure block group still exists */
8148 cache = btrfs_lookup_block_group(fs_info, target);
8149 if (!cache)
8150 goto out;
8151
8152 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153 goto out;
8154
8155 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156 if (ret < 0)
8157 goto out;
8158
8159 btrfs_info(fs_info,
8160 "zoned: relocating block group %llu to repair IO failure",
8161 target);
8162 ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165 if (cache)
8166 btrfs_put_block_group(cache);
8167 mutex_unlock(&fs_info->reclaim_bgs_lock);
8168 btrfs_exclop_finish(fs_info);
8169 sb_end_write(fs_info->sb);
8170
8171 return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176 struct btrfs_block_group *cache;
8177
8178 if (!btrfs_is_zoned(fs_info))
8179 return false;
8180
8181 /* Do not attempt to repair in degraded state */
8182 if (btrfs_test_opt(fs_info, DEGRADED))
8183 return true;
8184
8185 cache = btrfs_lookup_block_group(fs_info, logical);
8186 if (!cache)
8187 return true;
8188
8189 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190 btrfs_put_block_group(cache);
8191 return true;
8192 }
8193
8194 kthread_run(relocating_repair_kthread, cache,
8195 "btrfs-relocating-repair");
8196
8197 return true;
8198}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "rcu-string.h"
22#include "dev-replace.h"
23#include "sysfs.h"
24#include "tree-checker.h"
25#include "space-info.h"
26#include "block-group.h"
27#include "discard.h"
28#include "zoned.h"
29#include "fs.h"
30#include "accessors.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35#include "super.h"
36#include "raid-stripe-tree.h"
37
38#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51};
52
53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171};
172
173/*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178{
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185}
186
187const char *btrfs_bg_type_to_raid_name(u64 flags)
188{
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195}
196
197int btrfs_nr_parity_stripes(u64 type)
198{
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202}
203
204/*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209{
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221#define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241#undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255out_overflow:;
256}
257
258static int init_first_rw_device(struct btrfs_trans_handle *trans);
259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262/*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362DEFINE_MUTEX(uuid_mutex);
363static LIST_HEAD(fs_uuids);
364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365{
366 return &fs_uuids;
367}
368
369/*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380{
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400}
401
402static void btrfs_free_device(struct btrfs_device *device)
403{
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409}
410
411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412{
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423}
424
425void __exit btrfs_cleanup_fs_uuids(void)
426{
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435}
436
437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439{
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450}
451
452static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454{
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471{
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 device_path, flags, ret);
481 goto error;
482 }
483 bdev = file_bdev(*bdev_file);
484
485 if (flush)
486 sync_blockdev(bdev);
487 if (holder) {
488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 if (ret) {
490 fput(*bdev_file);
491 goto error;
492 }
493 }
494 invalidate_bdev(bdev);
495 *disk_super = btrfs_read_dev_super(bdev);
496 if (IS_ERR(*disk_super)) {
497 ret = PTR_ERR(*disk_super);
498 fput(*bdev_file);
499 goto error;
500 }
501
502 return 0;
503
504error:
505 *disk_super = NULL;
506 *bdev_file = NULL;
507 return ret;
508}
509
510/*
511 * Search and remove all stale devices (which are not mounted). When both
512 * inputs are NULL, it will search and release all stale devices.
513 *
514 * @devt: Optional. When provided will it release all unmounted devices
515 * matching this devt only.
516 * @skip_device: Optional. Will skip this device when searching for the stale
517 * devices.
518 *
519 * Return: 0 for success or if @devt is 0.
520 * -EBUSY if @devt is a mounted device.
521 * -ENOENT if @devt does not match any device in the list.
522 */
523static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524{
525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 struct btrfs_device *device, *tmp_device;
527 int ret;
528 bool freed = false;
529
530 lockdep_assert_held(&uuid_mutex);
531
532 /* Return good status if there is no instance of devt. */
533 ret = 0;
534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535
536 mutex_lock(&fs_devices->device_list_mutex);
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
539 if (skip_device && skip_device == device)
540 continue;
541 if (devt && devt != device->devt)
542 continue;
543 if (fs_devices->opened) {
544 if (devt)
545 ret = -EBUSY;
546 break;
547 }
548
549 /* delete the stale device */
550 fs_devices->num_devices--;
551 list_del(&device->dev_list);
552 btrfs_free_device(device);
553
554 freed = true;
555 }
556 mutex_unlock(&fs_devices->device_list_mutex);
557
558 if (fs_devices->num_devices == 0) {
559 btrfs_sysfs_remove_fsid(fs_devices);
560 list_del(&fs_devices->fs_list);
561 free_fs_devices(fs_devices);
562 }
563 }
564
565 /* If there is at least one freed device return 0. */
566 if (freed)
567 return 0;
568
569 return ret;
570}
571
572static struct btrfs_fs_devices *find_fsid_by_device(
573 struct btrfs_super_block *disk_super,
574 dev_t devt, bool *same_fsid_diff_dev)
575{
576 struct btrfs_fs_devices *fsid_fs_devices;
577 struct btrfs_fs_devices *devt_fs_devices;
578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 bool found_by_devt = false;
581
582 /* Find the fs_device by the usual method, if found use it. */
583 fsid_fs_devices = find_fsid(disk_super->fsid,
584 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585
586 /* The temp_fsid feature is supported only with single device filesystem. */
587 if (btrfs_super_num_devices(disk_super) != 1)
588 return fsid_fs_devices;
589
590 /*
591 * A seed device is an integral component of the sprout device, which
592 * functions as a multi-device filesystem. So, temp-fsid feature is
593 * not supported.
594 */
595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 return fsid_fs_devices;
597
598 /* Try to find a fs_devices by matching devt. */
599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 struct btrfs_device *device;
601
602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 if (device->devt == devt) {
604 found_by_devt = true;
605 break;
606 }
607 }
608 if (found_by_devt)
609 break;
610 }
611
612 if (found_by_devt) {
613 /* Existing device. */
614 if (fsid_fs_devices == NULL) {
615 if (devt_fs_devices->opened == 0) {
616 /* Stale device. */
617 return NULL;
618 } else {
619 /* temp_fsid is mounting a subvol. */
620 return devt_fs_devices;
621 }
622 } else {
623 /* Regular or temp_fsid device mounting a subvol. */
624 return devt_fs_devices;
625 }
626 } else {
627 /* New device. */
628 if (fsid_fs_devices == NULL) {
629 return NULL;
630 } else {
631 /* sb::fsid is already used create a new temp_fsid. */
632 *same_fsid_diff_dev = true;
633 return NULL;
634 }
635 }
636
637 /* Not reached. */
638}
639
640/*
641 * This is only used on mount, and we are protected from competing things
642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
643 * fs_devices->device_list_mutex here.
644 */
645static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 struct btrfs_device *device, blk_mode_t flags,
647 void *holder)
648{
649 struct file *bdev_file;
650 struct btrfs_super_block *disk_super;
651 u64 devid;
652 int ret;
653
654 if (device->bdev)
655 return -EINVAL;
656 if (!device->name)
657 return -EINVAL;
658
659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 &bdev_file, &disk_super);
661 if (ret)
662 return ret;
663
664 devid = btrfs_stack_device_id(&disk_super->dev_item);
665 if (devid != device->devid)
666 goto error_free_page;
667
668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 goto error_free_page;
670
671 device->generation = btrfs_super_generation(disk_super);
672
673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 if (btrfs_super_incompat_flags(disk_super) &
675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 pr_err(
677 "BTRFS: Invalid seeding and uuid-changed device detected\n");
678 goto error_free_page;
679 }
680
681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 fs_devices->seeding = true;
683 } else {
684 if (bdev_read_only(file_bdev(bdev_file)))
685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 else
687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 }
689
690 if (!bdev_nonrot(file_bdev(bdev_file)))
691 fs_devices->rotating = true;
692
693 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 fs_devices->discardable = true;
695
696 device->bdev_file = bdev_file;
697 device->bdev = file_bdev(bdev_file);
698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699
700 if (device->devt != device->bdev->bd_dev) {
701 btrfs_warn(NULL,
702 "device %s maj:min changed from %d:%d to %d:%d",
703 device->name->str, MAJOR(device->devt),
704 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 MINOR(device->bdev->bd_dev));
706
707 device->devt = device->bdev->bd_dev;
708 }
709
710 fs_devices->open_devices++;
711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 fs_devices->rw_devices++;
714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 }
716 btrfs_release_disk_super(disk_super);
717
718 return 0;
719
720error_free_page:
721 btrfs_release_disk_super(disk_super);
722 fput(bdev_file);
723
724 return -EINVAL;
725}
726
727const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728{
729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731
732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733}
734
735/*
736 * We can have very weird soft links passed in.
737 * One example is "/proc/self/fd/<fd>", which can be a soft link to
738 * a block device.
739 *
740 * But it's never a good idea to use those weird names.
741 * Here we check if the path (not following symlinks) is a good one inside
742 * "/dev/".
743 */
744static bool is_good_dev_path(const char *dev_path)
745{
746 struct path path = { .mnt = NULL, .dentry = NULL };
747 char *path_buf = NULL;
748 char *resolved_path;
749 bool is_good = false;
750 int ret;
751
752 if (!dev_path)
753 goto out;
754
755 path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
756 if (!path_buf)
757 goto out;
758
759 /*
760 * Do not follow soft link, just check if the original path is inside
761 * "/dev/".
762 */
763 ret = kern_path(dev_path, 0, &path);
764 if (ret)
765 goto out;
766 resolved_path = d_path(&path, path_buf, PATH_MAX);
767 if (IS_ERR(resolved_path))
768 goto out;
769 if (strncmp(resolved_path, "/dev/", strlen("/dev/")))
770 goto out;
771 is_good = true;
772out:
773 kfree(path_buf);
774 path_put(&path);
775 return is_good;
776}
777
778static int get_canonical_dev_path(const char *dev_path, char *canonical)
779{
780 struct path path = { .mnt = NULL, .dentry = NULL };
781 char *path_buf = NULL;
782 char *resolved_path;
783 int ret;
784
785 if (!dev_path) {
786 ret = -EINVAL;
787 goto out;
788 }
789
790 path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
791 if (!path_buf) {
792 ret = -ENOMEM;
793 goto out;
794 }
795
796 ret = kern_path(dev_path, LOOKUP_FOLLOW, &path);
797 if (ret)
798 goto out;
799 resolved_path = d_path(&path, path_buf, PATH_MAX);
800 if (IS_ERR(resolved_path)) {
801 ret = PTR_ERR(resolved_path);
802 goto out;
803 }
804 ret = strscpy(canonical, resolved_path, PATH_MAX);
805out:
806 kfree(path_buf);
807 path_put(&path);
808 return ret;
809}
810
811static bool is_same_device(struct btrfs_device *device, const char *new_path)
812{
813 struct path old = { .mnt = NULL, .dentry = NULL };
814 struct path new = { .mnt = NULL, .dentry = NULL };
815 char *old_path = NULL;
816 bool is_same = false;
817 int ret;
818
819 if (!device->name)
820 goto out;
821
822 old_path = kzalloc(PATH_MAX, GFP_NOFS);
823 if (!old_path)
824 goto out;
825
826 rcu_read_lock();
827 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
828 rcu_read_unlock();
829 if (ret < 0)
830 goto out;
831
832 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
833 if (ret)
834 goto out;
835 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
836 if (ret)
837 goto out;
838 if (path_equal(&old, &new))
839 is_same = true;
840out:
841 kfree(old_path);
842 path_put(&old);
843 path_put(&new);
844 return is_same;
845}
846
847/*
848 * Add new device to list of registered devices
849 *
850 * Returns:
851 * device pointer which was just added or updated when successful
852 * error pointer when failed
853 */
854static noinline struct btrfs_device *device_list_add(const char *path,
855 struct btrfs_super_block *disk_super,
856 bool *new_device_added)
857{
858 struct btrfs_device *device;
859 struct btrfs_fs_devices *fs_devices = NULL;
860 struct rcu_string *name;
861 u64 found_transid = btrfs_super_generation(disk_super);
862 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
863 dev_t path_devt;
864 int error;
865 bool same_fsid_diff_dev = false;
866 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
867 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
868
869 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
870 btrfs_err(NULL,
871"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
872 path);
873 return ERR_PTR(-EAGAIN);
874 }
875
876 error = lookup_bdev(path, &path_devt);
877 if (error) {
878 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
879 path, error);
880 return ERR_PTR(error);
881 }
882
883 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
884
885 if (!fs_devices) {
886 fs_devices = alloc_fs_devices(disk_super->fsid);
887 if (IS_ERR(fs_devices))
888 return ERR_CAST(fs_devices);
889
890 if (has_metadata_uuid)
891 memcpy(fs_devices->metadata_uuid,
892 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
893
894 if (same_fsid_diff_dev) {
895 generate_random_uuid(fs_devices->fsid);
896 fs_devices->temp_fsid = true;
897 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
898 path, MAJOR(path_devt), MINOR(path_devt),
899 fs_devices->fsid);
900 }
901
902 mutex_lock(&fs_devices->device_list_mutex);
903 list_add(&fs_devices->fs_list, &fs_uuids);
904
905 device = NULL;
906 } else {
907 struct btrfs_dev_lookup_args args = {
908 .devid = devid,
909 .uuid = disk_super->dev_item.uuid,
910 };
911
912 mutex_lock(&fs_devices->device_list_mutex);
913 device = btrfs_find_device(fs_devices, &args);
914
915 if (found_transid > fs_devices->latest_generation) {
916 memcpy(fs_devices->fsid, disk_super->fsid,
917 BTRFS_FSID_SIZE);
918 memcpy(fs_devices->metadata_uuid,
919 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
920 }
921 }
922
923 if (!device) {
924 unsigned int nofs_flag;
925
926 if (fs_devices->opened) {
927 btrfs_err(NULL,
928"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
929 path, MAJOR(path_devt), MINOR(path_devt),
930 fs_devices->fsid, current->comm,
931 task_pid_nr(current));
932 mutex_unlock(&fs_devices->device_list_mutex);
933 return ERR_PTR(-EBUSY);
934 }
935
936 nofs_flag = memalloc_nofs_save();
937 device = btrfs_alloc_device(NULL, &devid,
938 disk_super->dev_item.uuid, path);
939 memalloc_nofs_restore(nofs_flag);
940 if (IS_ERR(device)) {
941 mutex_unlock(&fs_devices->device_list_mutex);
942 /* we can safely leave the fs_devices entry around */
943 return device;
944 }
945
946 device->devt = path_devt;
947
948 list_add_rcu(&device->dev_list, &fs_devices->devices);
949 fs_devices->num_devices++;
950
951 device->fs_devices = fs_devices;
952 *new_device_added = true;
953
954 if (disk_super->label[0])
955 pr_info(
956"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
957 disk_super->label, devid, found_transid, path,
958 MAJOR(path_devt), MINOR(path_devt),
959 current->comm, task_pid_nr(current));
960 else
961 pr_info(
962"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
963 disk_super->fsid, devid, found_transid, path,
964 MAJOR(path_devt), MINOR(path_devt),
965 current->comm, task_pid_nr(current));
966
967 } else if (!device->name || !is_same_device(device, path)) {
968 /*
969 * When FS is already mounted.
970 * 1. If you are here and if the device->name is NULL that
971 * means this device was missing at time of FS mount.
972 * 2. If you are here and if the device->name is different
973 * from 'path' that means either
974 * a. The same device disappeared and reappeared with
975 * different name. or
976 * b. The missing-disk-which-was-replaced, has
977 * reappeared now.
978 *
979 * We must allow 1 and 2a above. But 2b would be a spurious
980 * and unintentional.
981 *
982 * Further in case of 1 and 2a above, the disk at 'path'
983 * would have missed some transaction when it was away and
984 * in case of 2a the stale bdev has to be updated as well.
985 * 2b must not be allowed at all time.
986 */
987
988 /*
989 * For now, we do allow update to btrfs_fs_device through the
990 * btrfs dev scan cli after FS has been mounted. We're still
991 * tracking a problem where systems fail mount by subvolume id
992 * when we reject replacement on a mounted FS.
993 */
994 if (!fs_devices->opened && found_transid < device->generation) {
995 /*
996 * That is if the FS is _not_ mounted and if you
997 * are here, that means there is more than one
998 * disk with same uuid and devid.We keep the one
999 * with larger generation number or the last-in if
1000 * generation are equal.
1001 */
1002 mutex_unlock(&fs_devices->device_list_mutex);
1003 btrfs_err(NULL,
1004"device %s already registered with a higher generation, found %llu expect %llu",
1005 path, found_transid, device->generation);
1006 return ERR_PTR(-EEXIST);
1007 }
1008
1009 /*
1010 * We are going to replace the device path for a given devid,
1011 * make sure it's the same device if the device is mounted
1012 *
1013 * NOTE: the device->fs_info may not be reliable here so pass
1014 * in a NULL to message helpers instead. This avoids a possible
1015 * use-after-free when the fs_info and fs_info->sb are already
1016 * torn down.
1017 */
1018 if (device->bdev) {
1019 if (device->devt != path_devt) {
1020 mutex_unlock(&fs_devices->device_list_mutex);
1021 btrfs_warn_in_rcu(NULL,
1022 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
1023 path, devid, found_transid,
1024 current->comm,
1025 task_pid_nr(current));
1026 return ERR_PTR(-EEXIST);
1027 }
1028 btrfs_info_in_rcu(NULL,
1029 "devid %llu device path %s changed to %s scanned by %s (%d)",
1030 devid, btrfs_dev_name(device),
1031 path, current->comm,
1032 task_pid_nr(current));
1033 }
1034
1035 name = rcu_string_strdup(path, GFP_NOFS);
1036 if (!name) {
1037 mutex_unlock(&fs_devices->device_list_mutex);
1038 return ERR_PTR(-ENOMEM);
1039 }
1040 rcu_string_free(device->name);
1041 rcu_assign_pointer(device->name, name);
1042 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1043 fs_devices->missing_devices--;
1044 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1045 }
1046 device->devt = path_devt;
1047 }
1048
1049 /*
1050 * Unmount does not free the btrfs_device struct but would zero
1051 * generation along with most of the other members. So just update
1052 * it back. We need it to pick the disk with largest generation
1053 * (as above).
1054 */
1055 if (!fs_devices->opened) {
1056 device->generation = found_transid;
1057 fs_devices->latest_generation = max_t(u64, found_transid,
1058 fs_devices->latest_generation);
1059 }
1060
1061 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1062
1063 mutex_unlock(&fs_devices->device_list_mutex);
1064 return device;
1065}
1066
1067static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1068{
1069 struct btrfs_fs_devices *fs_devices;
1070 struct btrfs_device *device;
1071 struct btrfs_device *orig_dev;
1072 int ret = 0;
1073
1074 lockdep_assert_held(&uuid_mutex);
1075
1076 fs_devices = alloc_fs_devices(orig->fsid);
1077 if (IS_ERR(fs_devices))
1078 return fs_devices;
1079
1080 fs_devices->total_devices = orig->total_devices;
1081
1082 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1083 const char *dev_path = NULL;
1084
1085 /*
1086 * This is ok to do without RCU read locked because we hold the
1087 * uuid mutex so nothing we touch in here is going to disappear.
1088 */
1089 if (orig_dev->name)
1090 dev_path = orig_dev->name->str;
1091
1092 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1093 orig_dev->uuid, dev_path);
1094 if (IS_ERR(device)) {
1095 ret = PTR_ERR(device);
1096 goto error;
1097 }
1098
1099 if (orig_dev->zone_info) {
1100 struct btrfs_zoned_device_info *zone_info;
1101
1102 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1103 if (!zone_info) {
1104 btrfs_free_device(device);
1105 ret = -ENOMEM;
1106 goto error;
1107 }
1108 device->zone_info = zone_info;
1109 }
1110
1111 list_add(&device->dev_list, &fs_devices->devices);
1112 device->fs_devices = fs_devices;
1113 fs_devices->num_devices++;
1114 }
1115 return fs_devices;
1116error:
1117 free_fs_devices(fs_devices);
1118 return ERR_PTR(ret);
1119}
1120
1121static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1122 struct btrfs_device **latest_dev)
1123{
1124 struct btrfs_device *device, *next;
1125
1126 /* This is the initialized path, it is safe to release the devices. */
1127 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1128 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1129 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1130 &device->dev_state) &&
1131 !test_bit(BTRFS_DEV_STATE_MISSING,
1132 &device->dev_state) &&
1133 (!*latest_dev ||
1134 device->generation > (*latest_dev)->generation)) {
1135 *latest_dev = device;
1136 }
1137 continue;
1138 }
1139
1140 /*
1141 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1142 * in btrfs_init_dev_replace() so just continue.
1143 */
1144 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1145 continue;
1146
1147 if (device->bdev_file) {
1148 fput(device->bdev_file);
1149 device->bdev = NULL;
1150 device->bdev_file = NULL;
1151 fs_devices->open_devices--;
1152 }
1153 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1154 list_del_init(&device->dev_alloc_list);
1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1156 fs_devices->rw_devices--;
1157 }
1158 list_del_init(&device->dev_list);
1159 fs_devices->num_devices--;
1160 btrfs_free_device(device);
1161 }
1162
1163}
1164
1165/*
1166 * After we have read the system tree and know devids belonging to this
1167 * filesystem, remove the device which does not belong there.
1168 */
1169void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1170{
1171 struct btrfs_device *latest_dev = NULL;
1172 struct btrfs_fs_devices *seed_dev;
1173
1174 mutex_lock(&uuid_mutex);
1175 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1176
1177 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1178 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1179
1180 fs_devices->latest_dev = latest_dev;
1181
1182 mutex_unlock(&uuid_mutex);
1183}
1184
1185static void btrfs_close_bdev(struct btrfs_device *device)
1186{
1187 if (!device->bdev)
1188 return;
1189
1190 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1191 sync_blockdev(device->bdev);
1192 invalidate_bdev(device->bdev);
1193 }
1194
1195 fput(device->bdev_file);
1196}
1197
1198static void btrfs_close_one_device(struct btrfs_device *device)
1199{
1200 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1201
1202 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1203 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1204 list_del_init(&device->dev_alloc_list);
1205 fs_devices->rw_devices--;
1206 }
1207
1208 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1209 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1210
1211 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1212 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1213 fs_devices->missing_devices--;
1214 }
1215
1216 btrfs_close_bdev(device);
1217 if (device->bdev) {
1218 fs_devices->open_devices--;
1219 device->bdev = NULL;
1220 device->bdev_file = NULL;
1221 }
1222 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1223 btrfs_destroy_dev_zone_info(device);
1224
1225 device->fs_info = NULL;
1226 atomic_set(&device->dev_stats_ccnt, 0);
1227 extent_io_tree_release(&device->alloc_state);
1228
1229 /*
1230 * Reset the flush error record. We might have a transient flush error
1231 * in this mount, and if so we aborted the current transaction and set
1232 * the fs to an error state, guaranteeing no super blocks can be further
1233 * committed. However that error might be transient and if we unmount the
1234 * filesystem and mount it again, we should allow the mount to succeed
1235 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1236 * filesystem again we still get flush errors, then we will again abort
1237 * any transaction and set the error state, guaranteeing no commits of
1238 * unsafe super blocks.
1239 */
1240 device->last_flush_error = 0;
1241
1242 /* Verify the device is back in a pristine state */
1243 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1244 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1245 WARN_ON(!list_empty(&device->dev_alloc_list));
1246 WARN_ON(!list_empty(&device->post_commit_list));
1247}
1248
1249static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1250{
1251 struct btrfs_device *device, *tmp;
1252
1253 lockdep_assert_held(&uuid_mutex);
1254
1255 if (--fs_devices->opened > 0)
1256 return;
1257
1258 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1259 btrfs_close_one_device(device);
1260
1261 WARN_ON(fs_devices->open_devices);
1262 WARN_ON(fs_devices->rw_devices);
1263 fs_devices->opened = 0;
1264 fs_devices->seeding = false;
1265 fs_devices->fs_info = NULL;
1266}
1267
1268void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1269{
1270 LIST_HEAD(list);
1271 struct btrfs_fs_devices *tmp;
1272
1273 mutex_lock(&uuid_mutex);
1274 close_fs_devices(fs_devices);
1275 if (!fs_devices->opened) {
1276 list_splice_init(&fs_devices->seed_list, &list);
1277
1278 /*
1279 * If the struct btrfs_fs_devices is not assembled with any
1280 * other device, it can be re-initialized during the next mount
1281 * without the needing device-scan step. Therefore, it can be
1282 * fully freed.
1283 */
1284 if (fs_devices->num_devices == 1) {
1285 list_del(&fs_devices->fs_list);
1286 free_fs_devices(fs_devices);
1287 }
1288 }
1289
1290
1291 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1292 close_fs_devices(fs_devices);
1293 list_del(&fs_devices->seed_list);
1294 free_fs_devices(fs_devices);
1295 }
1296 mutex_unlock(&uuid_mutex);
1297}
1298
1299static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1300 blk_mode_t flags, void *holder)
1301{
1302 struct btrfs_device *device;
1303 struct btrfs_device *latest_dev = NULL;
1304 struct btrfs_device *tmp_device;
1305 int ret = 0;
1306
1307 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1308 dev_list) {
1309 int ret2;
1310
1311 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1312 if (ret2 == 0 &&
1313 (!latest_dev || device->generation > latest_dev->generation)) {
1314 latest_dev = device;
1315 } else if (ret2 == -ENODATA) {
1316 fs_devices->num_devices--;
1317 list_del(&device->dev_list);
1318 btrfs_free_device(device);
1319 }
1320 if (ret == 0 && ret2 != 0)
1321 ret = ret2;
1322 }
1323
1324 if (fs_devices->open_devices == 0) {
1325 if (ret)
1326 return ret;
1327 return -EINVAL;
1328 }
1329
1330 fs_devices->opened = 1;
1331 fs_devices->latest_dev = latest_dev;
1332 fs_devices->total_rw_bytes = 0;
1333 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1334 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1335
1336 return 0;
1337}
1338
1339static int devid_cmp(void *priv, const struct list_head *a,
1340 const struct list_head *b)
1341{
1342 const struct btrfs_device *dev1, *dev2;
1343
1344 dev1 = list_entry(a, struct btrfs_device, dev_list);
1345 dev2 = list_entry(b, struct btrfs_device, dev_list);
1346
1347 if (dev1->devid < dev2->devid)
1348 return -1;
1349 else if (dev1->devid > dev2->devid)
1350 return 1;
1351 return 0;
1352}
1353
1354int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1355 blk_mode_t flags, void *holder)
1356{
1357 int ret;
1358
1359 lockdep_assert_held(&uuid_mutex);
1360 /*
1361 * The device_list_mutex cannot be taken here in case opening the
1362 * underlying device takes further locks like open_mutex.
1363 *
1364 * We also don't need the lock here as this is called during mount and
1365 * exclusion is provided by uuid_mutex
1366 */
1367
1368 if (fs_devices->opened) {
1369 fs_devices->opened++;
1370 ret = 0;
1371 } else {
1372 list_sort(NULL, &fs_devices->devices, devid_cmp);
1373 ret = open_fs_devices(fs_devices, flags, holder);
1374 }
1375
1376 return ret;
1377}
1378
1379void btrfs_release_disk_super(struct btrfs_super_block *super)
1380{
1381 struct page *page = virt_to_page(super);
1382
1383 put_page(page);
1384}
1385
1386static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1387 u64 bytenr, u64 bytenr_orig)
1388{
1389 struct btrfs_super_block *disk_super;
1390 struct page *page;
1391 void *p;
1392 pgoff_t index;
1393
1394 /* make sure our super fits in the device */
1395 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1396 return ERR_PTR(-EINVAL);
1397
1398 /* make sure our super fits in the page */
1399 if (sizeof(*disk_super) > PAGE_SIZE)
1400 return ERR_PTR(-EINVAL);
1401
1402 /* make sure our super doesn't straddle pages on disk */
1403 index = bytenr >> PAGE_SHIFT;
1404 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1405 return ERR_PTR(-EINVAL);
1406
1407 /* pull in the page with our super */
1408 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1409
1410 if (IS_ERR(page))
1411 return ERR_CAST(page);
1412
1413 p = page_address(page);
1414
1415 /* align our pointer to the offset of the super block */
1416 disk_super = p + offset_in_page(bytenr);
1417
1418 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1419 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1420 btrfs_release_disk_super(p);
1421 return ERR_PTR(-EINVAL);
1422 }
1423
1424 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1425 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1426
1427 return disk_super;
1428}
1429
1430int btrfs_forget_devices(dev_t devt)
1431{
1432 int ret;
1433
1434 mutex_lock(&uuid_mutex);
1435 ret = btrfs_free_stale_devices(devt, NULL);
1436 mutex_unlock(&uuid_mutex);
1437
1438 return ret;
1439}
1440
1441static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1442 const char *path, dev_t devt,
1443 bool mount_arg_dev)
1444{
1445 struct btrfs_fs_devices *fs_devices;
1446
1447 /*
1448 * Do not skip device registration for mounted devices with matching
1449 * maj:min but different paths. Booting without initrd relies on
1450 * /dev/root initially, later replaced with the actual root device.
1451 * A successful scan ensures grub2-probe selects the correct device.
1452 */
1453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1454 struct btrfs_device *device;
1455
1456 mutex_lock(&fs_devices->device_list_mutex);
1457
1458 if (!fs_devices->opened) {
1459 mutex_unlock(&fs_devices->device_list_mutex);
1460 continue;
1461 }
1462
1463 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1464 if (device->bdev && (device->bdev->bd_dev == devt) &&
1465 strcmp(device->name->str, path) != 0) {
1466 mutex_unlock(&fs_devices->device_list_mutex);
1467
1468 /* Do not skip registration. */
1469 return false;
1470 }
1471 }
1472 mutex_unlock(&fs_devices->device_list_mutex);
1473 }
1474
1475 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1476 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1477 return true;
1478
1479 return false;
1480}
1481
1482/*
1483 * Look for a btrfs signature on a device. This may be called out of the mount path
1484 * and we are not allowed to call set_blocksize during the scan. The superblock
1485 * is read via pagecache.
1486 *
1487 * With @mount_arg_dev it's a scan during mount time that will always register
1488 * the device or return an error. Multi-device and seeding devices are registered
1489 * in both cases.
1490 */
1491struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1492 bool mount_arg_dev)
1493{
1494 struct btrfs_super_block *disk_super;
1495 bool new_device_added = false;
1496 struct btrfs_device *device = NULL;
1497 struct file *bdev_file;
1498 char *canonical_path = NULL;
1499 u64 bytenr;
1500 dev_t devt;
1501 int ret;
1502
1503 lockdep_assert_held(&uuid_mutex);
1504
1505 if (!is_good_dev_path(path)) {
1506 canonical_path = kmalloc(PATH_MAX, GFP_KERNEL);
1507 if (canonical_path) {
1508 ret = get_canonical_dev_path(path, canonical_path);
1509 if (ret < 0) {
1510 kfree(canonical_path);
1511 canonical_path = NULL;
1512 }
1513 }
1514 }
1515 /*
1516 * Avoid an exclusive open here, as the systemd-udev may initiate the
1517 * device scan which may race with the user's mount or mkfs command,
1518 * resulting in failure.
1519 * Since the device scan is solely for reading purposes, there is no
1520 * need for an exclusive open. Additionally, the devices are read again
1521 * during the mount process. It is ok to get some inconsistent
1522 * values temporarily, as the device paths of the fsid are the only
1523 * required information for assembling the volume.
1524 */
1525 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1526 if (IS_ERR(bdev_file))
1527 return ERR_CAST(bdev_file);
1528
1529 /*
1530 * We would like to check all the super blocks, but doing so would
1531 * allow a mount to succeed after a mkfs from a different filesystem.
1532 * Currently, recovery from a bad primary btrfs superblock is done
1533 * using the userspace command 'btrfs check --super'.
1534 */
1535 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1536 if (ret) {
1537 device = ERR_PTR(ret);
1538 goto error_bdev_put;
1539 }
1540
1541 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1542 btrfs_sb_offset(0));
1543 if (IS_ERR(disk_super)) {
1544 device = ERR_CAST(disk_super);
1545 goto error_bdev_put;
1546 }
1547
1548 devt = file_bdev(bdev_file)->bd_dev;
1549 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1550 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1551 path, MAJOR(devt), MINOR(devt));
1552
1553 btrfs_free_stale_devices(devt, NULL);
1554
1555 device = NULL;
1556 goto free_disk_super;
1557 }
1558
1559 device = device_list_add(canonical_path ? : path, disk_super,
1560 &new_device_added);
1561 if (!IS_ERR(device) && new_device_added)
1562 btrfs_free_stale_devices(device->devt, device);
1563
1564free_disk_super:
1565 btrfs_release_disk_super(disk_super);
1566
1567error_bdev_put:
1568 fput(bdev_file);
1569 kfree(canonical_path);
1570
1571 return device;
1572}
1573
1574/*
1575 * Try to find a chunk that intersects [start, start + len] range and when one
1576 * such is found, record the end of it in *start
1577 */
1578static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1579 u64 len)
1580{
1581 u64 physical_start, physical_end;
1582
1583 lockdep_assert_held(&device->fs_info->chunk_mutex);
1584
1585 if (find_first_extent_bit(&device->alloc_state, *start,
1586 &physical_start, &physical_end,
1587 CHUNK_ALLOCATED, NULL)) {
1588
1589 if (in_range(physical_start, *start, len) ||
1590 in_range(*start, physical_start,
1591 physical_end + 1 - physical_start)) {
1592 *start = physical_end + 1;
1593 return true;
1594 }
1595 }
1596 return false;
1597}
1598
1599static u64 dev_extent_search_start(struct btrfs_device *device)
1600{
1601 switch (device->fs_devices->chunk_alloc_policy) {
1602 case BTRFS_CHUNK_ALLOC_REGULAR:
1603 return BTRFS_DEVICE_RANGE_RESERVED;
1604 case BTRFS_CHUNK_ALLOC_ZONED:
1605 /*
1606 * We don't care about the starting region like regular
1607 * allocator, because we anyway use/reserve the first two zones
1608 * for superblock logging.
1609 */
1610 return 0;
1611 default:
1612 BUG();
1613 }
1614}
1615
1616static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1617 u64 *hole_start, u64 *hole_size,
1618 u64 num_bytes)
1619{
1620 u64 zone_size = device->zone_info->zone_size;
1621 u64 pos;
1622 int ret;
1623 bool changed = false;
1624
1625 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1626
1627 while (*hole_size > 0) {
1628 pos = btrfs_find_allocatable_zones(device, *hole_start,
1629 *hole_start + *hole_size,
1630 num_bytes);
1631 if (pos != *hole_start) {
1632 *hole_size = *hole_start + *hole_size - pos;
1633 *hole_start = pos;
1634 changed = true;
1635 if (*hole_size < num_bytes)
1636 break;
1637 }
1638
1639 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1640
1641 /* Range is ensured to be empty */
1642 if (!ret)
1643 return changed;
1644
1645 /* Given hole range was invalid (outside of device) */
1646 if (ret == -ERANGE) {
1647 *hole_start += *hole_size;
1648 *hole_size = 0;
1649 return true;
1650 }
1651
1652 *hole_start += zone_size;
1653 *hole_size -= zone_size;
1654 changed = true;
1655 }
1656
1657 return changed;
1658}
1659
1660/*
1661 * Check if specified hole is suitable for allocation.
1662 *
1663 * @device: the device which we have the hole
1664 * @hole_start: starting position of the hole
1665 * @hole_size: the size of the hole
1666 * @num_bytes: the size of the free space that we need
1667 *
1668 * This function may modify @hole_start and @hole_size to reflect the suitable
1669 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1670 */
1671static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1672 u64 *hole_size, u64 num_bytes)
1673{
1674 bool changed = false;
1675 u64 hole_end = *hole_start + *hole_size;
1676
1677 for (;;) {
1678 /*
1679 * Check before we set max_hole_start, otherwise we could end up
1680 * sending back this offset anyway.
1681 */
1682 if (contains_pending_extent(device, hole_start, *hole_size)) {
1683 if (hole_end >= *hole_start)
1684 *hole_size = hole_end - *hole_start;
1685 else
1686 *hole_size = 0;
1687 changed = true;
1688 }
1689
1690 switch (device->fs_devices->chunk_alloc_policy) {
1691 case BTRFS_CHUNK_ALLOC_REGULAR:
1692 /* No extra check */
1693 break;
1694 case BTRFS_CHUNK_ALLOC_ZONED:
1695 if (dev_extent_hole_check_zoned(device, hole_start,
1696 hole_size, num_bytes)) {
1697 changed = true;
1698 /*
1699 * The changed hole can contain pending extent.
1700 * Loop again to check that.
1701 */
1702 continue;
1703 }
1704 break;
1705 default:
1706 BUG();
1707 }
1708
1709 break;
1710 }
1711
1712 return changed;
1713}
1714
1715/*
1716 * Find free space in the specified device.
1717 *
1718 * @device: the device which we search the free space in
1719 * @num_bytes: the size of the free space that we need
1720 * @search_start: the position from which to begin the search
1721 * @start: store the start of the free space.
1722 * @len: the size of the free space. that we find, or the size
1723 * of the max free space if we don't find suitable free space
1724 *
1725 * This does a pretty simple search, the expectation is that it is called very
1726 * infrequently and that a given device has a small number of extents.
1727 *
1728 * @start is used to store the start of the free space if we find. But if we
1729 * don't find suitable free space, it will be used to store the start position
1730 * of the max free space.
1731 *
1732 * @len is used to store the size of the free space that we find.
1733 * But if we don't find suitable free space, it is used to store the size of
1734 * the max free space.
1735 *
1736 * NOTE: This function will search *commit* root of device tree, and does extra
1737 * check to ensure dev extents are not double allocated.
1738 * This makes the function safe to allocate dev extents but may not report
1739 * correct usable device space, as device extent freed in current transaction
1740 * is not reported as available.
1741 */
1742static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1743 u64 *start, u64 *len)
1744{
1745 struct btrfs_fs_info *fs_info = device->fs_info;
1746 struct btrfs_root *root = fs_info->dev_root;
1747 struct btrfs_key key;
1748 struct btrfs_dev_extent *dev_extent;
1749 struct btrfs_path *path;
1750 u64 search_start;
1751 u64 hole_size;
1752 u64 max_hole_start;
1753 u64 max_hole_size = 0;
1754 u64 extent_end;
1755 u64 search_end = device->total_bytes;
1756 int ret;
1757 int slot;
1758 struct extent_buffer *l;
1759
1760 search_start = dev_extent_search_start(device);
1761 max_hole_start = search_start;
1762
1763 WARN_ON(device->zone_info &&
1764 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1765
1766 path = btrfs_alloc_path();
1767 if (!path) {
1768 ret = -ENOMEM;
1769 goto out;
1770 }
1771again:
1772 if (search_start >= search_end ||
1773 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1774 ret = -ENOSPC;
1775 goto out;
1776 }
1777
1778 path->reada = READA_FORWARD;
1779 path->search_commit_root = 1;
1780 path->skip_locking = 1;
1781
1782 key.objectid = device->devid;
1783 key.offset = search_start;
1784 key.type = BTRFS_DEV_EXTENT_KEY;
1785
1786 ret = btrfs_search_backwards(root, &key, path);
1787 if (ret < 0)
1788 goto out;
1789
1790 while (search_start < search_end) {
1791 l = path->nodes[0];
1792 slot = path->slots[0];
1793 if (slot >= btrfs_header_nritems(l)) {
1794 ret = btrfs_next_leaf(root, path);
1795 if (ret == 0)
1796 continue;
1797 if (ret < 0)
1798 goto out;
1799
1800 break;
1801 }
1802 btrfs_item_key_to_cpu(l, &key, slot);
1803
1804 if (key.objectid < device->devid)
1805 goto next;
1806
1807 if (key.objectid > device->devid)
1808 break;
1809
1810 if (key.type != BTRFS_DEV_EXTENT_KEY)
1811 goto next;
1812
1813 if (key.offset > search_end)
1814 break;
1815
1816 if (key.offset > search_start) {
1817 hole_size = key.offset - search_start;
1818 dev_extent_hole_check(device, &search_start, &hole_size,
1819 num_bytes);
1820
1821 if (hole_size > max_hole_size) {
1822 max_hole_start = search_start;
1823 max_hole_size = hole_size;
1824 }
1825
1826 /*
1827 * If this free space is greater than which we need,
1828 * it must be the max free space that we have found
1829 * until now, so max_hole_start must point to the start
1830 * of this free space and the length of this free space
1831 * is stored in max_hole_size. Thus, we return
1832 * max_hole_start and max_hole_size and go back to the
1833 * caller.
1834 */
1835 if (hole_size >= num_bytes) {
1836 ret = 0;
1837 goto out;
1838 }
1839 }
1840
1841 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1842 extent_end = key.offset + btrfs_dev_extent_length(l,
1843 dev_extent);
1844 if (extent_end > search_start)
1845 search_start = extent_end;
1846next:
1847 path->slots[0]++;
1848 cond_resched();
1849 }
1850
1851 /*
1852 * At this point, search_start should be the end of
1853 * allocated dev extents, and when shrinking the device,
1854 * search_end may be smaller than search_start.
1855 */
1856 if (search_end > search_start) {
1857 hole_size = search_end - search_start;
1858 if (dev_extent_hole_check(device, &search_start, &hole_size,
1859 num_bytes)) {
1860 btrfs_release_path(path);
1861 goto again;
1862 }
1863
1864 if (hole_size > max_hole_size) {
1865 max_hole_start = search_start;
1866 max_hole_size = hole_size;
1867 }
1868 }
1869
1870 /* See above. */
1871 if (max_hole_size < num_bytes)
1872 ret = -ENOSPC;
1873 else
1874 ret = 0;
1875
1876 ASSERT(max_hole_start + max_hole_size <= search_end);
1877out:
1878 btrfs_free_path(path);
1879 *start = max_hole_start;
1880 if (len)
1881 *len = max_hole_size;
1882 return ret;
1883}
1884
1885static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1886 struct btrfs_device *device,
1887 u64 start, u64 *dev_extent_len)
1888{
1889 struct btrfs_fs_info *fs_info = device->fs_info;
1890 struct btrfs_root *root = fs_info->dev_root;
1891 int ret;
1892 struct btrfs_path *path;
1893 struct btrfs_key key;
1894 struct btrfs_key found_key;
1895 struct extent_buffer *leaf = NULL;
1896 struct btrfs_dev_extent *extent = NULL;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 key.objectid = device->devid;
1903 key.offset = start;
1904 key.type = BTRFS_DEV_EXTENT_KEY;
1905again:
1906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1907 if (ret > 0) {
1908 ret = btrfs_previous_item(root, path, key.objectid,
1909 BTRFS_DEV_EXTENT_KEY);
1910 if (ret)
1911 goto out;
1912 leaf = path->nodes[0];
1913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1914 extent = btrfs_item_ptr(leaf, path->slots[0],
1915 struct btrfs_dev_extent);
1916 BUG_ON(found_key.offset > start || found_key.offset +
1917 btrfs_dev_extent_length(leaf, extent) < start);
1918 key = found_key;
1919 btrfs_release_path(path);
1920 goto again;
1921 } else if (ret == 0) {
1922 leaf = path->nodes[0];
1923 extent = btrfs_item_ptr(leaf, path->slots[0],
1924 struct btrfs_dev_extent);
1925 } else {
1926 goto out;
1927 }
1928
1929 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1930
1931 ret = btrfs_del_item(trans, root, path);
1932 if (ret == 0)
1933 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1934out:
1935 btrfs_free_path(path);
1936 return ret;
1937}
1938
1939static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1940{
1941 struct rb_node *n;
1942 u64 ret = 0;
1943
1944 read_lock(&fs_info->mapping_tree_lock);
1945 n = rb_last(&fs_info->mapping_tree.rb_root);
1946 if (n) {
1947 struct btrfs_chunk_map *map;
1948
1949 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1950 ret = map->start + map->chunk_len;
1951 }
1952 read_unlock(&fs_info->mapping_tree_lock);
1953
1954 return ret;
1955}
1956
1957static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1958 u64 *devid_ret)
1959{
1960 int ret;
1961 struct btrfs_key key;
1962 struct btrfs_key found_key;
1963 struct btrfs_path *path;
1964
1965 path = btrfs_alloc_path();
1966 if (!path)
1967 return -ENOMEM;
1968
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = (u64)-1;
1972
1973 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1974 if (ret < 0)
1975 goto error;
1976
1977 if (ret == 0) {
1978 /* Corruption */
1979 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1980 ret = -EUCLEAN;
1981 goto error;
1982 }
1983
1984 ret = btrfs_previous_item(fs_info->chunk_root, path,
1985 BTRFS_DEV_ITEMS_OBJECTID,
1986 BTRFS_DEV_ITEM_KEY);
1987 if (ret) {
1988 *devid_ret = 1;
1989 } else {
1990 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1991 path->slots[0]);
1992 *devid_ret = found_key.offset + 1;
1993 }
1994 ret = 0;
1995error:
1996 btrfs_free_path(path);
1997 return ret;
1998}
1999
2000/*
2001 * the device information is stored in the chunk root
2002 * the btrfs_device struct should be fully filled in
2003 */
2004static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
2005 struct btrfs_device *device)
2006{
2007 int ret;
2008 struct btrfs_path *path;
2009 struct btrfs_dev_item *dev_item;
2010 struct extent_buffer *leaf;
2011 struct btrfs_key key;
2012 unsigned long ptr;
2013
2014 path = btrfs_alloc_path();
2015 if (!path)
2016 return -ENOMEM;
2017
2018 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2019 key.type = BTRFS_DEV_ITEM_KEY;
2020 key.offset = device->devid;
2021
2022 btrfs_reserve_chunk_metadata(trans, true);
2023 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
2024 &key, sizeof(*dev_item));
2025 btrfs_trans_release_chunk_metadata(trans);
2026 if (ret)
2027 goto out;
2028
2029 leaf = path->nodes[0];
2030 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2031
2032 btrfs_set_device_id(leaf, dev_item, device->devid);
2033 btrfs_set_device_generation(leaf, dev_item, 0);
2034 btrfs_set_device_type(leaf, dev_item, device->type);
2035 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2036 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2037 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2038 btrfs_set_device_total_bytes(leaf, dev_item,
2039 btrfs_device_get_disk_total_bytes(device));
2040 btrfs_set_device_bytes_used(leaf, dev_item,
2041 btrfs_device_get_bytes_used(device));
2042 btrfs_set_device_group(leaf, dev_item, 0);
2043 btrfs_set_device_seek_speed(leaf, dev_item, 0);
2044 btrfs_set_device_bandwidth(leaf, dev_item, 0);
2045 btrfs_set_device_start_offset(leaf, dev_item, 0);
2046
2047 ptr = btrfs_device_uuid(dev_item);
2048 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2049 ptr = btrfs_device_fsid(dev_item);
2050 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
2051 ptr, BTRFS_FSID_SIZE);
2052 btrfs_mark_buffer_dirty(trans, leaf);
2053
2054 ret = 0;
2055out:
2056 btrfs_free_path(path);
2057 return ret;
2058}
2059
2060/*
2061 * Function to update ctime/mtime for a given device path.
2062 * Mainly used for ctime/mtime based probe like libblkid.
2063 *
2064 * We don't care about errors here, this is just to be kind to userspace.
2065 */
2066static void update_dev_time(const char *device_path)
2067{
2068 struct path path;
2069 int ret;
2070
2071 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2072 if (ret)
2073 return;
2074
2075 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2076 path_put(&path);
2077}
2078
2079static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2080 struct btrfs_device *device)
2081{
2082 struct btrfs_root *root = device->fs_info->chunk_root;
2083 int ret;
2084 struct btrfs_path *path;
2085 struct btrfs_key key;
2086
2087 path = btrfs_alloc_path();
2088 if (!path)
2089 return -ENOMEM;
2090
2091 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2092 key.type = BTRFS_DEV_ITEM_KEY;
2093 key.offset = device->devid;
2094
2095 btrfs_reserve_chunk_metadata(trans, false);
2096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2097 btrfs_trans_release_chunk_metadata(trans);
2098 if (ret) {
2099 if (ret > 0)
2100 ret = -ENOENT;
2101 goto out;
2102 }
2103
2104 ret = btrfs_del_item(trans, root, path);
2105out:
2106 btrfs_free_path(path);
2107 return ret;
2108}
2109
2110/*
2111 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2112 * filesystem. It's up to the caller to adjust that number regarding eg. device
2113 * replace.
2114 */
2115static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2116 u64 num_devices)
2117{
2118 u64 all_avail;
2119 unsigned seq;
2120 int i;
2121
2122 do {
2123 seq = read_seqbegin(&fs_info->profiles_lock);
2124
2125 all_avail = fs_info->avail_data_alloc_bits |
2126 fs_info->avail_system_alloc_bits |
2127 fs_info->avail_metadata_alloc_bits;
2128 } while (read_seqretry(&fs_info->profiles_lock, seq));
2129
2130 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2131 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2132 continue;
2133
2134 if (num_devices < btrfs_raid_array[i].devs_min)
2135 return btrfs_raid_array[i].mindev_error;
2136 }
2137
2138 return 0;
2139}
2140
2141static struct btrfs_device * btrfs_find_next_active_device(
2142 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2143{
2144 struct btrfs_device *next_device;
2145
2146 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2147 if (next_device != device &&
2148 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2149 && next_device->bdev)
2150 return next_device;
2151 }
2152
2153 return NULL;
2154}
2155
2156/*
2157 * Helper function to check if the given device is part of s_bdev / latest_dev
2158 * and replace it with the provided or the next active device, in the context
2159 * where this function called, there should be always be another device (or
2160 * this_dev) which is active.
2161 */
2162void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2163 struct btrfs_device *next_device)
2164{
2165 struct btrfs_fs_info *fs_info = device->fs_info;
2166
2167 if (!next_device)
2168 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2169 device);
2170 ASSERT(next_device);
2171
2172 if (fs_info->sb->s_bdev &&
2173 (fs_info->sb->s_bdev == device->bdev))
2174 fs_info->sb->s_bdev = next_device->bdev;
2175
2176 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2177 fs_info->fs_devices->latest_dev = next_device;
2178}
2179
2180/*
2181 * Return btrfs_fs_devices::num_devices excluding the device that's being
2182 * currently replaced.
2183 */
2184static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2185{
2186 u64 num_devices = fs_info->fs_devices->num_devices;
2187
2188 down_read(&fs_info->dev_replace.rwsem);
2189 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2190 ASSERT(num_devices > 1);
2191 num_devices--;
2192 }
2193 up_read(&fs_info->dev_replace.rwsem);
2194
2195 return num_devices;
2196}
2197
2198static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2199 struct block_device *bdev, int copy_num)
2200{
2201 struct btrfs_super_block *disk_super;
2202 const size_t len = sizeof(disk_super->magic);
2203 const u64 bytenr = btrfs_sb_offset(copy_num);
2204 int ret;
2205
2206 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2207 if (IS_ERR(disk_super))
2208 return;
2209
2210 memset(&disk_super->magic, 0, len);
2211 folio_mark_dirty(virt_to_folio(disk_super));
2212 btrfs_release_disk_super(disk_super);
2213
2214 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2215 if (ret)
2216 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2217 copy_num, ret);
2218}
2219
2220void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2221{
2222 int copy_num;
2223 struct block_device *bdev = device->bdev;
2224
2225 if (!bdev)
2226 return;
2227
2228 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2229 if (bdev_is_zoned(bdev))
2230 btrfs_reset_sb_log_zones(bdev, copy_num);
2231 else
2232 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2233 }
2234
2235 /* Notify udev that device has changed */
2236 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2237
2238 /* Update ctime/mtime for device path for libblkid */
2239 update_dev_time(device->name->str);
2240}
2241
2242int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2243 struct btrfs_dev_lookup_args *args,
2244 struct file **bdev_file)
2245{
2246 struct btrfs_trans_handle *trans;
2247 struct btrfs_device *device;
2248 struct btrfs_fs_devices *cur_devices;
2249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2250 u64 num_devices;
2251 int ret = 0;
2252
2253 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2254 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2255 return -EINVAL;
2256 }
2257
2258 /*
2259 * The device list in fs_devices is accessed without locks (neither
2260 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2261 * filesystem and another device rm cannot run.
2262 */
2263 num_devices = btrfs_num_devices(fs_info);
2264
2265 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2266 if (ret)
2267 return ret;
2268
2269 device = btrfs_find_device(fs_info->fs_devices, args);
2270 if (!device) {
2271 if (args->missing)
2272 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2273 else
2274 ret = -ENOENT;
2275 return ret;
2276 }
2277
2278 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2279 btrfs_warn_in_rcu(fs_info,
2280 "cannot remove device %s (devid %llu) due to active swapfile",
2281 btrfs_dev_name(device), device->devid);
2282 return -ETXTBSY;
2283 }
2284
2285 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2286 return BTRFS_ERROR_DEV_TGT_REPLACE;
2287
2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2289 fs_info->fs_devices->rw_devices == 1)
2290 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2291
2292 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2293 mutex_lock(&fs_info->chunk_mutex);
2294 list_del_init(&device->dev_alloc_list);
2295 device->fs_devices->rw_devices--;
2296 mutex_unlock(&fs_info->chunk_mutex);
2297 }
2298
2299 ret = btrfs_shrink_device(device, 0);
2300 if (ret)
2301 goto error_undo;
2302
2303 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2304 if (IS_ERR(trans)) {
2305 ret = PTR_ERR(trans);
2306 goto error_undo;
2307 }
2308
2309 ret = btrfs_rm_dev_item(trans, device);
2310 if (ret) {
2311 /* Any error in dev item removal is critical */
2312 btrfs_crit(fs_info,
2313 "failed to remove device item for devid %llu: %d",
2314 device->devid, ret);
2315 btrfs_abort_transaction(trans, ret);
2316 btrfs_end_transaction(trans);
2317 return ret;
2318 }
2319
2320 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2321 btrfs_scrub_cancel_dev(device);
2322
2323 /*
2324 * the device list mutex makes sure that we don't change
2325 * the device list while someone else is writing out all
2326 * the device supers. Whoever is writing all supers, should
2327 * lock the device list mutex before getting the number of
2328 * devices in the super block (super_copy). Conversely,
2329 * whoever updates the number of devices in the super block
2330 * (super_copy) should hold the device list mutex.
2331 */
2332
2333 /*
2334 * In normal cases the cur_devices == fs_devices. But in case
2335 * of deleting a seed device, the cur_devices should point to
2336 * its own fs_devices listed under the fs_devices->seed_list.
2337 */
2338 cur_devices = device->fs_devices;
2339 mutex_lock(&fs_devices->device_list_mutex);
2340 list_del_rcu(&device->dev_list);
2341
2342 cur_devices->num_devices--;
2343 cur_devices->total_devices--;
2344 /* Update total_devices of the parent fs_devices if it's seed */
2345 if (cur_devices != fs_devices)
2346 fs_devices->total_devices--;
2347
2348 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2349 cur_devices->missing_devices--;
2350
2351 btrfs_assign_next_active_device(device, NULL);
2352
2353 if (device->bdev_file) {
2354 cur_devices->open_devices--;
2355 /* remove sysfs entry */
2356 btrfs_sysfs_remove_device(device);
2357 }
2358
2359 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2360 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2361 mutex_unlock(&fs_devices->device_list_mutex);
2362
2363 /*
2364 * At this point, the device is zero sized and detached from the
2365 * devices list. All that's left is to zero out the old supers and
2366 * free the device.
2367 *
2368 * We cannot call btrfs_close_bdev() here because we're holding the sb
2369 * write lock, and fput() on the block device will pull in the
2370 * ->open_mutex on the block device and it's dependencies. Instead
2371 * just flush the device and let the caller do the final bdev_release.
2372 */
2373 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2374 btrfs_scratch_superblocks(fs_info, device);
2375 if (device->bdev) {
2376 sync_blockdev(device->bdev);
2377 invalidate_bdev(device->bdev);
2378 }
2379 }
2380
2381 *bdev_file = device->bdev_file;
2382 synchronize_rcu();
2383 btrfs_free_device(device);
2384
2385 /*
2386 * This can happen if cur_devices is the private seed devices list. We
2387 * cannot call close_fs_devices() here because it expects the uuid_mutex
2388 * to be held, but in fact we don't need that for the private
2389 * seed_devices, we can simply decrement cur_devices->opened and then
2390 * remove it from our list and free the fs_devices.
2391 */
2392 if (cur_devices->num_devices == 0) {
2393 list_del_init(&cur_devices->seed_list);
2394 ASSERT(cur_devices->opened == 1);
2395 cur_devices->opened--;
2396 free_fs_devices(cur_devices);
2397 }
2398
2399 ret = btrfs_commit_transaction(trans);
2400
2401 return ret;
2402
2403error_undo:
2404 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2405 mutex_lock(&fs_info->chunk_mutex);
2406 list_add(&device->dev_alloc_list,
2407 &fs_devices->alloc_list);
2408 device->fs_devices->rw_devices++;
2409 mutex_unlock(&fs_info->chunk_mutex);
2410 }
2411 return ret;
2412}
2413
2414void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2415{
2416 struct btrfs_fs_devices *fs_devices;
2417
2418 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2419
2420 /*
2421 * in case of fs with no seed, srcdev->fs_devices will point
2422 * to fs_devices of fs_info. However when the dev being replaced is
2423 * a seed dev it will point to the seed's local fs_devices. In short
2424 * srcdev will have its correct fs_devices in both the cases.
2425 */
2426 fs_devices = srcdev->fs_devices;
2427
2428 list_del_rcu(&srcdev->dev_list);
2429 list_del(&srcdev->dev_alloc_list);
2430 fs_devices->num_devices--;
2431 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2432 fs_devices->missing_devices--;
2433
2434 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2435 fs_devices->rw_devices--;
2436
2437 if (srcdev->bdev)
2438 fs_devices->open_devices--;
2439}
2440
2441void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2442{
2443 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2444
2445 mutex_lock(&uuid_mutex);
2446
2447 btrfs_close_bdev(srcdev);
2448 synchronize_rcu();
2449 btrfs_free_device(srcdev);
2450
2451 /* if this is no devs we rather delete the fs_devices */
2452 if (!fs_devices->num_devices) {
2453 /*
2454 * On a mounted FS, num_devices can't be zero unless it's a
2455 * seed. In case of a seed device being replaced, the replace
2456 * target added to the sprout FS, so there will be no more
2457 * device left under the seed FS.
2458 */
2459 ASSERT(fs_devices->seeding);
2460
2461 list_del_init(&fs_devices->seed_list);
2462 close_fs_devices(fs_devices);
2463 free_fs_devices(fs_devices);
2464 }
2465 mutex_unlock(&uuid_mutex);
2466}
2467
2468void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2469{
2470 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2471
2472 mutex_lock(&fs_devices->device_list_mutex);
2473
2474 btrfs_sysfs_remove_device(tgtdev);
2475
2476 if (tgtdev->bdev)
2477 fs_devices->open_devices--;
2478
2479 fs_devices->num_devices--;
2480
2481 btrfs_assign_next_active_device(tgtdev, NULL);
2482
2483 list_del_rcu(&tgtdev->dev_list);
2484
2485 mutex_unlock(&fs_devices->device_list_mutex);
2486
2487 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2488
2489 btrfs_close_bdev(tgtdev);
2490 synchronize_rcu();
2491 btrfs_free_device(tgtdev);
2492}
2493
2494/*
2495 * Populate args from device at path.
2496 *
2497 * @fs_info: the filesystem
2498 * @args: the args to populate
2499 * @path: the path to the device
2500 *
2501 * This will read the super block of the device at @path and populate @args with
2502 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2503 * lookup a device to operate on, but need to do it before we take any locks.
2504 * This properly handles the special case of "missing" that a user may pass in,
2505 * and does some basic sanity checks. The caller must make sure that @path is
2506 * properly NUL terminated before calling in, and must call
2507 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2508 * uuid buffers.
2509 *
2510 * Return: 0 for success, -errno for failure
2511 */
2512int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2513 struct btrfs_dev_lookup_args *args,
2514 const char *path)
2515{
2516 struct btrfs_super_block *disk_super;
2517 struct file *bdev_file;
2518 int ret;
2519
2520 if (!path || !path[0])
2521 return -EINVAL;
2522 if (!strcmp(path, "missing")) {
2523 args->missing = true;
2524 return 0;
2525 }
2526
2527 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2528 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2529 if (!args->uuid || !args->fsid) {
2530 btrfs_put_dev_args_from_path(args);
2531 return -ENOMEM;
2532 }
2533
2534 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2535 &bdev_file, &disk_super);
2536 if (ret) {
2537 btrfs_put_dev_args_from_path(args);
2538 return ret;
2539 }
2540
2541 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2542 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2543 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2544 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2545 else
2546 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2547 btrfs_release_disk_super(disk_super);
2548 fput(bdev_file);
2549 return 0;
2550}
2551
2552/*
2553 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2554 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2555 * that don't need to be freed.
2556 */
2557void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2558{
2559 kfree(args->uuid);
2560 kfree(args->fsid);
2561 args->uuid = NULL;
2562 args->fsid = NULL;
2563}
2564
2565struct btrfs_device *btrfs_find_device_by_devspec(
2566 struct btrfs_fs_info *fs_info, u64 devid,
2567 const char *device_path)
2568{
2569 BTRFS_DEV_LOOKUP_ARGS(args);
2570 struct btrfs_device *device;
2571 int ret;
2572
2573 if (devid) {
2574 args.devid = devid;
2575 device = btrfs_find_device(fs_info->fs_devices, &args);
2576 if (!device)
2577 return ERR_PTR(-ENOENT);
2578 return device;
2579 }
2580
2581 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2582 if (ret)
2583 return ERR_PTR(ret);
2584 device = btrfs_find_device(fs_info->fs_devices, &args);
2585 btrfs_put_dev_args_from_path(&args);
2586 if (!device)
2587 return ERR_PTR(-ENOENT);
2588 return device;
2589}
2590
2591static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2592{
2593 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594 struct btrfs_fs_devices *old_devices;
2595 struct btrfs_fs_devices *seed_devices;
2596
2597 lockdep_assert_held(&uuid_mutex);
2598 if (!fs_devices->seeding)
2599 return ERR_PTR(-EINVAL);
2600
2601 /*
2602 * Private copy of the seed devices, anchored at
2603 * fs_info->fs_devices->seed_list
2604 */
2605 seed_devices = alloc_fs_devices(NULL);
2606 if (IS_ERR(seed_devices))
2607 return seed_devices;
2608
2609 /*
2610 * It's necessary to retain a copy of the original seed fs_devices in
2611 * fs_uuids so that filesystems which have been seeded can successfully
2612 * reference the seed device from open_seed_devices. This also supports
2613 * multiple fs seed.
2614 */
2615 old_devices = clone_fs_devices(fs_devices);
2616 if (IS_ERR(old_devices)) {
2617 kfree(seed_devices);
2618 return old_devices;
2619 }
2620
2621 list_add(&old_devices->fs_list, &fs_uuids);
2622
2623 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2624 seed_devices->opened = 1;
2625 INIT_LIST_HEAD(&seed_devices->devices);
2626 INIT_LIST_HEAD(&seed_devices->alloc_list);
2627 mutex_init(&seed_devices->device_list_mutex);
2628
2629 return seed_devices;
2630}
2631
2632/*
2633 * Splice seed devices into the sprout fs_devices.
2634 * Generate a new fsid for the sprouted read-write filesystem.
2635 */
2636static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2637 struct btrfs_fs_devices *seed_devices)
2638{
2639 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2640 struct btrfs_super_block *disk_super = fs_info->super_copy;
2641 struct btrfs_device *device;
2642 u64 super_flags;
2643
2644 /*
2645 * We are updating the fsid, the thread leading to device_list_add()
2646 * could race, so uuid_mutex is needed.
2647 */
2648 lockdep_assert_held(&uuid_mutex);
2649
2650 /*
2651 * The threads listed below may traverse dev_list but can do that without
2652 * device_list_mutex:
2653 * - All device ops and balance - as we are in btrfs_exclop_start.
2654 * - Various dev_list readers - are using RCU.
2655 * - btrfs_ioctl_fitrim() - is using RCU.
2656 *
2657 * For-read threads as below are using device_list_mutex:
2658 * - Readonly scrub btrfs_scrub_dev()
2659 * - Readonly scrub btrfs_scrub_progress()
2660 * - btrfs_get_dev_stats()
2661 */
2662 lockdep_assert_held(&fs_devices->device_list_mutex);
2663
2664 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2665 synchronize_rcu);
2666 list_for_each_entry(device, &seed_devices->devices, dev_list)
2667 device->fs_devices = seed_devices;
2668
2669 fs_devices->seeding = false;
2670 fs_devices->num_devices = 0;
2671 fs_devices->open_devices = 0;
2672 fs_devices->missing_devices = 0;
2673 fs_devices->rotating = false;
2674 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2675
2676 generate_random_uuid(fs_devices->fsid);
2677 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2678 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2679
2680 super_flags = btrfs_super_flags(disk_super) &
2681 ~BTRFS_SUPER_FLAG_SEEDING;
2682 btrfs_set_super_flags(disk_super, super_flags);
2683}
2684
2685/*
2686 * Store the expected generation for seed devices in device items.
2687 */
2688static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2689{
2690 BTRFS_DEV_LOOKUP_ARGS(args);
2691 struct btrfs_fs_info *fs_info = trans->fs_info;
2692 struct btrfs_root *root = fs_info->chunk_root;
2693 struct btrfs_path *path;
2694 struct extent_buffer *leaf;
2695 struct btrfs_dev_item *dev_item;
2696 struct btrfs_device *device;
2697 struct btrfs_key key;
2698 u8 fs_uuid[BTRFS_FSID_SIZE];
2699 u8 dev_uuid[BTRFS_UUID_SIZE];
2700 int ret;
2701
2702 path = btrfs_alloc_path();
2703 if (!path)
2704 return -ENOMEM;
2705
2706 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2707 key.offset = 0;
2708 key.type = BTRFS_DEV_ITEM_KEY;
2709
2710 while (1) {
2711 btrfs_reserve_chunk_metadata(trans, false);
2712 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2713 btrfs_trans_release_chunk_metadata(trans);
2714 if (ret < 0)
2715 goto error;
2716
2717 leaf = path->nodes[0];
2718next_slot:
2719 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2720 ret = btrfs_next_leaf(root, path);
2721 if (ret > 0)
2722 break;
2723 if (ret < 0)
2724 goto error;
2725 leaf = path->nodes[0];
2726 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2727 btrfs_release_path(path);
2728 continue;
2729 }
2730
2731 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2732 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2733 key.type != BTRFS_DEV_ITEM_KEY)
2734 break;
2735
2736 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2737 struct btrfs_dev_item);
2738 args.devid = btrfs_device_id(leaf, dev_item);
2739 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2740 BTRFS_UUID_SIZE);
2741 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2742 BTRFS_FSID_SIZE);
2743 args.uuid = dev_uuid;
2744 args.fsid = fs_uuid;
2745 device = btrfs_find_device(fs_info->fs_devices, &args);
2746 BUG_ON(!device); /* Logic error */
2747
2748 if (device->fs_devices->seeding) {
2749 btrfs_set_device_generation(leaf, dev_item,
2750 device->generation);
2751 btrfs_mark_buffer_dirty(trans, leaf);
2752 }
2753
2754 path->slots[0]++;
2755 goto next_slot;
2756 }
2757 ret = 0;
2758error:
2759 btrfs_free_path(path);
2760 return ret;
2761}
2762
2763int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2764{
2765 struct btrfs_root *root = fs_info->dev_root;
2766 struct btrfs_trans_handle *trans;
2767 struct btrfs_device *device;
2768 struct file *bdev_file;
2769 struct super_block *sb = fs_info->sb;
2770 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2771 struct btrfs_fs_devices *seed_devices = NULL;
2772 u64 orig_super_total_bytes;
2773 u64 orig_super_num_devices;
2774 int ret = 0;
2775 bool seeding_dev = false;
2776 bool locked = false;
2777
2778 if (sb_rdonly(sb) && !fs_devices->seeding)
2779 return -EROFS;
2780
2781 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2782 fs_info->bdev_holder, NULL);
2783 if (IS_ERR(bdev_file))
2784 return PTR_ERR(bdev_file);
2785
2786 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2787 ret = -EINVAL;
2788 goto error;
2789 }
2790
2791 if (fs_devices->seeding) {
2792 seeding_dev = true;
2793 down_write(&sb->s_umount);
2794 mutex_lock(&uuid_mutex);
2795 locked = true;
2796 }
2797
2798 sync_blockdev(file_bdev(bdev_file));
2799
2800 rcu_read_lock();
2801 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2802 if (device->bdev == file_bdev(bdev_file)) {
2803 ret = -EEXIST;
2804 rcu_read_unlock();
2805 goto error;
2806 }
2807 }
2808 rcu_read_unlock();
2809
2810 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2811 if (IS_ERR(device)) {
2812 /* we can safely leave the fs_devices entry around */
2813 ret = PTR_ERR(device);
2814 goto error;
2815 }
2816
2817 device->fs_info = fs_info;
2818 device->bdev_file = bdev_file;
2819 device->bdev = file_bdev(bdev_file);
2820 ret = lookup_bdev(device_path, &device->devt);
2821 if (ret)
2822 goto error_free_device;
2823
2824 ret = btrfs_get_dev_zone_info(device, false);
2825 if (ret)
2826 goto error_free_device;
2827
2828 trans = btrfs_start_transaction(root, 0);
2829 if (IS_ERR(trans)) {
2830 ret = PTR_ERR(trans);
2831 goto error_free_zone;
2832 }
2833
2834 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2835 device->generation = trans->transid;
2836 device->io_width = fs_info->sectorsize;
2837 device->io_align = fs_info->sectorsize;
2838 device->sector_size = fs_info->sectorsize;
2839 device->total_bytes =
2840 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2841 device->disk_total_bytes = device->total_bytes;
2842 device->commit_total_bytes = device->total_bytes;
2843 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2844 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2845 device->dev_stats_valid = 1;
2846 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2847
2848 if (seeding_dev) {
2849 /* GFP_KERNEL allocation must not be under device_list_mutex */
2850 seed_devices = btrfs_init_sprout(fs_info);
2851 if (IS_ERR(seed_devices)) {
2852 ret = PTR_ERR(seed_devices);
2853 btrfs_abort_transaction(trans, ret);
2854 goto error_trans;
2855 }
2856 }
2857
2858 mutex_lock(&fs_devices->device_list_mutex);
2859 if (seeding_dev) {
2860 btrfs_setup_sprout(fs_info, seed_devices);
2861 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2862 device);
2863 }
2864
2865 device->fs_devices = fs_devices;
2866
2867 mutex_lock(&fs_info->chunk_mutex);
2868 list_add_rcu(&device->dev_list, &fs_devices->devices);
2869 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2870 fs_devices->num_devices++;
2871 fs_devices->open_devices++;
2872 fs_devices->rw_devices++;
2873 fs_devices->total_devices++;
2874 fs_devices->total_rw_bytes += device->total_bytes;
2875
2876 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2877
2878 if (!bdev_nonrot(device->bdev))
2879 fs_devices->rotating = true;
2880
2881 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2882 btrfs_set_super_total_bytes(fs_info->super_copy,
2883 round_down(orig_super_total_bytes + device->total_bytes,
2884 fs_info->sectorsize));
2885
2886 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2887 btrfs_set_super_num_devices(fs_info->super_copy,
2888 orig_super_num_devices + 1);
2889
2890 /*
2891 * we've got more storage, clear any full flags on the space
2892 * infos
2893 */
2894 btrfs_clear_space_info_full(fs_info);
2895
2896 mutex_unlock(&fs_info->chunk_mutex);
2897
2898 /* Add sysfs device entry */
2899 btrfs_sysfs_add_device(device);
2900
2901 mutex_unlock(&fs_devices->device_list_mutex);
2902
2903 if (seeding_dev) {
2904 mutex_lock(&fs_info->chunk_mutex);
2905 ret = init_first_rw_device(trans);
2906 mutex_unlock(&fs_info->chunk_mutex);
2907 if (ret) {
2908 btrfs_abort_transaction(trans, ret);
2909 goto error_sysfs;
2910 }
2911 }
2912
2913 ret = btrfs_add_dev_item(trans, device);
2914 if (ret) {
2915 btrfs_abort_transaction(trans, ret);
2916 goto error_sysfs;
2917 }
2918
2919 if (seeding_dev) {
2920 ret = btrfs_finish_sprout(trans);
2921 if (ret) {
2922 btrfs_abort_transaction(trans, ret);
2923 goto error_sysfs;
2924 }
2925
2926 /*
2927 * fs_devices now represents the newly sprouted filesystem and
2928 * its fsid has been changed by btrfs_sprout_splice().
2929 */
2930 btrfs_sysfs_update_sprout_fsid(fs_devices);
2931 }
2932
2933 ret = btrfs_commit_transaction(trans);
2934
2935 if (seeding_dev) {
2936 mutex_unlock(&uuid_mutex);
2937 up_write(&sb->s_umount);
2938 locked = false;
2939
2940 if (ret) /* transaction commit */
2941 return ret;
2942
2943 ret = btrfs_relocate_sys_chunks(fs_info);
2944 if (ret < 0)
2945 btrfs_handle_fs_error(fs_info, ret,
2946 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2947 trans = btrfs_attach_transaction(root);
2948 if (IS_ERR(trans)) {
2949 if (PTR_ERR(trans) == -ENOENT)
2950 return 0;
2951 ret = PTR_ERR(trans);
2952 trans = NULL;
2953 goto error_sysfs;
2954 }
2955 ret = btrfs_commit_transaction(trans);
2956 }
2957
2958 /*
2959 * Now that we have written a new super block to this device, check all
2960 * other fs_devices list if device_path alienates any other scanned
2961 * device.
2962 * We can ignore the return value as it typically returns -EINVAL and
2963 * only succeeds if the device was an alien.
2964 */
2965 btrfs_forget_devices(device->devt);
2966
2967 /* Update ctime/mtime for blkid or udev */
2968 update_dev_time(device_path);
2969
2970 return ret;
2971
2972error_sysfs:
2973 btrfs_sysfs_remove_device(device);
2974 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2975 mutex_lock(&fs_info->chunk_mutex);
2976 list_del_rcu(&device->dev_list);
2977 list_del(&device->dev_alloc_list);
2978 fs_info->fs_devices->num_devices--;
2979 fs_info->fs_devices->open_devices--;
2980 fs_info->fs_devices->rw_devices--;
2981 fs_info->fs_devices->total_devices--;
2982 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2983 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2984 btrfs_set_super_total_bytes(fs_info->super_copy,
2985 orig_super_total_bytes);
2986 btrfs_set_super_num_devices(fs_info->super_copy,
2987 orig_super_num_devices);
2988 mutex_unlock(&fs_info->chunk_mutex);
2989 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990error_trans:
2991 if (trans)
2992 btrfs_end_transaction(trans);
2993error_free_zone:
2994 btrfs_destroy_dev_zone_info(device);
2995error_free_device:
2996 btrfs_free_device(device);
2997error:
2998 fput(bdev_file);
2999 if (locked) {
3000 mutex_unlock(&uuid_mutex);
3001 up_write(&sb->s_umount);
3002 }
3003 return ret;
3004}
3005
3006static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
3007 struct btrfs_device *device)
3008{
3009 int ret;
3010 struct btrfs_path *path;
3011 struct btrfs_root *root = device->fs_info->chunk_root;
3012 struct btrfs_dev_item *dev_item;
3013 struct extent_buffer *leaf;
3014 struct btrfs_key key;
3015
3016 path = btrfs_alloc_path();
3017 if (!path)
3018 return -ENOMEM;
3019
3020 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3021 key.type = BTRFS_DEV_ITEM_KEY;
3022 key.offset = device->devid;
3023
3024 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3025 if (ret < 0)
3026 goto out;
3027
3028 if (ret > 0) {
3029 ret = -ENOENT;
3030 goto out;
3031 }
3032
3033 leaf = path->nodes[0];
3034 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
3035
3036 btrfs_set_device_id(leaf, dev_item, device->devid);
3037 btrfs_set_device_type(leaf, dev_item, device->type);
3038 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
3039 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
3040 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
3041 btrfs_set_device_total_bytes(leaf, dev_item,
3042 btrfs_device_get_disk_total_bytes(device));
3043 btrfs_set_device_bytes_used(leaf, dev_item,
3044 btrfs_device_get_bytes_used(device));
3045 btrfs_mark_buffer_dirty(trans, leaf);
3046
3047out:
3048 btrfs_free_path(path);
3049 return ret;
3050}
3051
3052int btrfs_grow_device(struct btrfs_trans_handle *trans,
3053 struct btrfs_device *device, u64 new_size)
3054{
3055 struct btrfs_fs_info *fs_info = device->fs_info;
3056 struct btrfs_super_block *super_copy = fs_info->super_copy;
3057 u64 old_total;
3058 u64 diff;
3059 int ret;
3060
3061 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
3062 return -EACCES;
3063
3064 new_size = round_down(new_size, fs_info->sectorsize);
3065
3066 mutex_lock(&fs_info->chunk_mutex);
3067 old_total = btrfs_super_total_bytes(super_copy);
3068 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3069
3070 if (new_size <= device->total_bytes ||
3071 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3072 mutex_unlock(&fs_info->chunk_mutex);
3073 return -EINVAL;
3074 }
3075
3076 btrfs_set_super_total_bytes(super_copy,
3077 round_down(old_total + diff, fs_info->sectorsize));
3078 device->fs_devices->total_rw_bytes += diff;
3079 atomic64_add(diff, &fs_info->free_chunk_space);
3080
3081 btrfs_device_set_total_bytes(device, new_size);
3082 btrfs_device_set_disk_total_bytes(device, new_size);
3083 btrfs_clear_space_info_full(device->fs_info);
3084 if (list_empty(&device->post_commit_list))
3085 list_add_tail(&device->post_commit_list,
3086 &trans->transaction->dev_update_list);
3087 mutex_unlock(&fs_info->chunk_mutex);
3088
3089 btrfs_reserve_chunk_metadata(trans, false);
3090 ret = btrfs_update_device(trans, device);
3091 btrfs_trans_release_chunk_metadata(trans);
3092
3093 return ret;
3094}
3095
3096static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3097{
3098 struct btrfs_fs_info *fs_info = trans->fs_info;
3099 struct btrfs_root *root = fs_info->chunk_root;
3100 int ret;
3101 struct btrfs_path *path;
3102 struct btrfs_key key;
3103
3104 path = btrfs_alloc_path();
3105 if (!path)
3106 return -ENOMEM;
3107
3108 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3109 key.offset = chunk_offset;
3110 key.type = BTRFS_CHUNK_ITEM_KEY;
3111
3112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3113 if (ret < 0)
3114 goto out;
3115 else if (ret > 0) { /* Logic error or corruption */
3116 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3117 chunk_offset);
3118 btrfs_abort_transaction(trans, -ENOENT);
3119 ret = -EUCLEAN;
3120 goto out;
3121 }
3122
3123 ret = btrfs_del_item(trans, root, path);
3124 if (ret < 0) {
3125 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3126 btrfs_abort_transaction(trans, ret);
3127 goto out;
3128 }
3129out:
3130 btrfs_free_path(path);
3131 return ret;
3132}
3133
3134static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3135{
3136 struct btrfs_super_block *super_copy = fs_info->super_copy;
3137 struct btrfs_disk_key *disk_key;
3138 struct btrfs_chunk *chunk;
3139 u8 *ptr;
3140 int ret = 0;
3141 u32 num_stripes;
3142 u32 array_size;
3143 u32 len = 0;
3144 u32 cur;
3145 struct btrfs_key key;
3146
3147 lockdep_assert_held(&fs_info->chunk_mutex);
3148 array_size = btrfs_super_sys_array_size(super_copy);
3149
3150 ptr = super_copy->sys_chunk_array;
3151 cur = 0;
3152
3153 while (cur < array_size) {
3154 disk_key = (struct btrfs_disk_key *)ptr;
3155 btrfs_disk_key_to_cpu(&key, disk_key);
3156
3157 len = sizeof(*disk_key);
3158
3159 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3160 chunk = (struct btrfs_chunk *)(ptr + len);
3161 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3162 len += btrfs_chunk_item_size(num_stripes);
3163 } else {
3164 ret = -EIO;
3165 break;
3166 }
3167 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3168 key.offset == chunk_offset) {
3169 memmove(ptr, ptr + len, array_size - (cur + len));
3170 array_size -= len;
3171 btrfs_set_super_sys_array_size(super_copy, array_size);
3172 } else {
3173 ptr += len;
3174 cur += len;
3175 }
3176 }
3177 return ret;
3178}
3179
3180struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3181 u64 logical, u64 length)
3182{
3183 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3184 struct rb_node *prev = NULL;
3185 struct rb_node *orig_prev;
3186 struct btrfs_chunk_map *map;
3187 struct btrfs_chunk_map *prev_map = NULL;
3188
3189 while (node) {
3190 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3191 prev = node;
3192 prev_map = map;
3193
3194 if (logical < map->start) {
3195 node = node->rb_left;
3196 } else if (logical >= map->start + map->chunk_len) {
3197 node = node->rb_right;
3198 } else {
3199 refcount_inc(&map->refs);
3200 return map;
3201 }
3202 }
3203
3204 if (!prev)
3205 return NULL;
3206
3207 orig_prev = prev;
3208 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3209 prev = rb_next(prev);
3210 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3211 }
3212
3213 if (!prev) {
3214 prev = orig_prev;
3215 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3216 while (prev && logical < prev_map->start) {
3217 prev = rb_prev(prev);
3218 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3219 }
3220 }
3221
3222 if (prev) {
3223 u64 end = logical + length;
3224
3225 /*
3226 * Caller can pass a U64_MAX length when it wants to get any
3227 * chunk starting at an offset of 'logical' or higher, so deal
3228 * with underflow by resetting the end offset to U64_MAX.
3229 */
3230 if (end < logical)
3231 end = U64_MAX;
3232
3233 if (end > prev_map->start &&
3234 logical < prev_map->start + prev_map->chunk_len) {
3235 refcount_inc(&prev_map->refs);
3236 return prev_map;
3237 }
3238 }
3239
3240 return NULL;
3241}
3242
3243struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3244 u64 logical, u64 length)
3245{
3246 struct btrfs_chunk_map *map;
3247
3248 read_lock(&fs_info->mapping_tree_lock);
3249 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3250 read_unlock(&fs_info->mapping_tree_lock);
3251
3252 return map;
3253}
3254
3255/*
3256 * Find the mapping containing the given logical extent.
3257 *
3258 * @logical: Logical block offset in bytes.
3259 * @length: Length of extent in bytes.
3260 *
3261 * Return: Chunk mapping or ERR_PTR.
3262 */
3263struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3264 u64 logical, u64 length)
3265{
3266 struct btrfs_chunk_map *map;
3267
3268 map = btrfs_find_chunk_map(fs_info, logical, length);
3269
3270 if (unlikely(!map)) {
3271 btrfs_crit(fs_info,
3272 "unable to find chunk map for logical %llu length %llu",
3273 logical, length);
3274 return ERR_PTR(-EINVAL);
3275 }
3276
3277 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3278 btrfs_crit(fs_info,
3279 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3280 logical, logical + length, map->start,
3281 map->start + map->chunk_len);
3282 btrfs_free_chunk_map(map);
3283 return ERR_PTR(-EINVAL);
3284 }
3285
3286 /* Callers are responsible for dropping the reference. */
3287 return map;
3288}
3289
3290static int remove_chunk_item(struct btrfs_trans_handle *trans,
3291 struct btrfs_chunk_map *map, u64 chunk_offset)
3292{
3293 int i;
3294
3295 /*
3296 * Removing chunk items and updating the device items in the chunks btree
3297 * requires holding the chunk_mutex.
3298 * See the comment at btrfs_chunk_alloc() for the details.
3299 */
3300 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3301
3302 for (i = 0; i < map->num_stripes; i++) {
3303 int ret;
3304
3305 ret = btrfs_update_device(trans, map->stripes[i].dev);
3306 if (ret)
3307 return ret;
3308 }
3309
3310 return btrfs_free_chunk(trans, chunk_offset);
3311}
3312
3313int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3314{
3315 struct btrfs_fs_info *fs_info = trans->fs_info;
3316 struct btrfs_chunk_map *map;
3317 u64 dev_extent_len = 0;
3318 int i, ret = 0;
3319 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3320
3321 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3322 if (IS_ERR(map)) {
3323 /*
3324 * This is a logic error, but we don't want to just rely on the
3325 * user having built with ASSERT enabled, so if ASSERT doesn't
3326 * do anything we still error out.
3327 */
3328 ASSERT(0);
3329 return PTR_ERR(map);
3330 }
3331
3332 /*
3333 * First delete the device extent items from the devices btree.
3334 * We take the device_list_mutex to avoid racing with the finishing phase
3335 * of a device replace operation. See the comment below before acquiring
3336 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3337 * because that can result in a deadlock when deleting the device extent
3338 * items from the devices btree - COWing an extent buffer from the btree
3339 * may result in allocating a new metadata chunk, which would attempt to
3340 * lock again fs_info->chunk_mutex.
3341 */
3342 mutex_lock(&fs_devices->device_list_mutex);
3343 for (i = 0; i < map->num_stripes; i++) {
3344 struct btrfs_device *device = map->stripes[i].dev;
3345 ret = btrfs_free_dev_extent(trans, device,
3346 map->stripes[i].physical,
3347 &dev_extent_len);
3348 if (ret) {
3349 mutex_unlock(&fs_devices->device_list_mutex);
3350 btrfs_abort_transaction(trans, ret);
3351 goto out;
3352 }
3353
3354 if (device->bytes_used > 0) {
3355 mutex_lock(&fs_info->chunk_mutex);
3356 btrfs_device_set_bytes_used(device,
3357 device->bytes_used - dev_extent_len);
3358 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3359 btrfs_clear_space_info_full(fs_info);
3360 mutex_unlock(&fs_info->chunk_mutex);
3361 }
3362 }
3363 mutex_unlock(&fs_devices->device_list_mutex);
3364
3365 /*
3366 * We acquire fs_info->chunk_mutex for 2 reasons:
3367 *
3368 * 1) Just like with the first phase of the chunk allocation, we must
3369 * reserve system space, do all chunk btree updates and deletions, and
3370 * update the system chunk array in the superblock while holding this
3371 * mutex. This is for similar reasons as explained on the comment at
3372 * the top of btrfs_chunk_alloc();
3373 *
3374 * 2) Prevent races with the final phase of a device replace operation
3375 * that replaces the device object associated with the map's stripes,
3376 * because the device object's id can change at any time during that
3377 * final phase of the device replace operation
3378 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3379 * replaced device and then see it with an ID of
3380 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3381 * the device item, which does not exists on the chunk btree.
3382 * The finishing phase of device replace acquires both the
3383 * device_list_mutex and the chunk_mutex, in that order, so we are
3384 * safe by just acquiring the chunk_mutex.
3385 */
3386 trans->removing_chunk = true;
3387 mutex_lock(&fs_info->chunk_mutex);
3388
3389 check_system_chunk(trans, map->type);
3390
3391 ret = remove_chunk_item(trans, map, chunk_offset);
3392 /*
3393 * Normally we should not get -ENOSPC since we reserved space before
3394 * through the call to check_system_chunk().
3395 *
3396 * Despite our system space_info having enough free space, we may not
3397 * be able to allocate extents from its block groups, because all have
3398 * an incompatible profile, which will force us to allocate a new system
3399 * block group with the right profile, or right after we called
3400 * check_system_space() above, a scrub turned the only system block group
3401 * with enough free space into RO mode.
3402 * This is explained with more detail at do_chunk_alloc().
3403 *
3404 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3405 */
3406 if (ret == -ENOSPC) {
3407 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3408 struct btrfs_block_group *sys_bg;
3409
3410 sys_bg = btrfs_create_chunk(trans, sys_flags);
3411 if (IS_ERR(sys_bg)) {
3412 ret = PTR_ERR(sys_bg);
3413 btrfs_abort_transaction(trans, ret);
3414 goto out;
3415 }
3416
3417 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3418 if (ret) {
3419 btrfs_abort_transaction(trans, ret);
3420 goto out;
3421 }
3422
3423 ret = remove_chunk_item(trans, map, chunk_offset);
3424 if (ret) {
3425 btrfs_abort_transaction(trans, ret);
3426 goto out;
3427 }
3428 } else if (ret) {
3429 btrfs_abort_transaction(trans, ret);
3430 goto out;
3431 }
3432
3433 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3434
3435 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3436 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3437 if (ret) {
3438 btrfs_abort_transaction(trans, ret);
3439 goto out;
3440 }
3441 }
3442
3443 mutex_unlock(&fs_info->chunk_mutex);
3444 trans->removing_chunk = false;
3445
3446 /*
3447 * We are done with chunk btree updates and deletions, so release the
3448 * system space we previously reserved (with check_system_chunk()).
3449 */
3450 btrfs_trans_release_chunk_metadata(trans);
3451
3452 ret = btrfs_remove_block_group(trans, map);
3453 if (ret) {
3454 btrfs_abort_transaction(trans, ret);
3455 goto out;
3456 }
3457
3458out:
3459 if (trans->removing_chunk) {
3460 mutex_unlock(&fs_info->chunk_mutex);
3461 trans->removing_chunk = false;
3462 }
3463 /* once for us */
3464 btrfs_free_chunk_map(map);
3465 return ret;
3466}
3467
3468int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3469{
3470 struct btrfs_root *root = fs_info->chunk_root;
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_block_group *block_group;
3473 u64 length;
3474 int ret;
3475
3476 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3477 btrfs_err(fs_info,
3478 "relocate: not supported on extent tree v2 yet");
3479 return -EINVAL;
3480 }
3481
3482 /*
3483 * Prevent races with automatic removal of unused block groups.
3484 * After we relocate and before we remove the chunk with offset
3485 * chunk_offset, automatic removal of the block group can kick in,
3486 * resulting in a failure when calling btrfs_remove_chunk() below.
3487 *
3488 * Make sure to acquire this mutex before doing a tree search (dev
3489 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3490 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3491 * we release the path used to search the chunk/dev tree and before
3492 * the current task acquires this mutex and calls us.
3493 */
3494 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3495
3496 /* step one, relocate all the extents inside this chunk */
3497 btrfs_scrub_pause(fs_info);
3498 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3499 btrfs_scrub_continue(fs_info);
3500 if (ret) {
3501 /*
3502 * If we had a transaction abort, stop all running scrubs.
3503 * See transaction.c:cleanup_transaction() why we do it here.
3504 */
3505 if (BTRFS_FS_ERROR(fs_info))
3506 btrfs_scrub_cancel(fs_info);
3507 return ret;
3508 }
3509
3510 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3511 if (!block_group)
3512 return -ENOENT;
3513 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3514 length = block_group->length;
3515 btrfs_put_block_group(block_group);
3516
3517 /*
3518 * On a zoned file system, discard the whole block group, this will
3519 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3520 * resetting the zone fails, don't treat it as a fatal problem from the
3521 * filesystem's point of view.
3522 */
3523 if (btrfs_is_zoned(fs_info)) {
3524 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3525 if (ret)
3526 btrfs_info(fs_info,
3527 "failed to reset zone %llu after relocation",
3528 chunk_offset);
3529 }
3530
3531 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3532 chunk_offset);
3533 if (IS_ERR(trans)) {
3534 ret = PTR_ERR(trans);
3535 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3536 return ret;
3537 }
3538
3539 /*
3540 * step two, delete the device extents and the
3541 * chunk tree entries
3542 */
3543 ret = btrfs_remove_chunk(trans, chunk_offset);
3544 btrfs_end_transaction(trans);
3545 return ret;
3546}
3547
3548static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3549{
3550 struct btrfs_root *chunk_root = fs_info->chunk_root;
3551 struct btrfs_path *path;
3552 struct extent_buffer *leaf;
3553 struct btrfs_chunk *chunk;
3554 struct btrfs_key key;
3555 struct btrfs_key found_key;
3556 u64 chunk_type;
3557 bool retried = false;
3558 int failed = 0;
3559 int ret;
3560
3561 path = btrfs_alloc_path();
3562 if (!path)
3563 return -ENOMEM;
3564
3565again:
3566 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3567 key.offset = (u64)-1;
3568 key.type = BTRFS_CHUNK_ITEM_KEY;
3569
3570 while (1) {
3571 mutex_lock(&fs_info->reclaim_bgs_lock);
3572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3573 if (ret < 0) {
3574 mutex_unlock(&fs_info->reclaim_bgs_lock);
3575 goto error;
3576 }
3577 if (ret == 0) {
3578 /*
3579 * On the first search we would find chunk tree with
3580 * offset -1, which is not possible. On subsequent
3581 * loops this would find an existing item on an invalid
3582 * offset (one less than the previous one, wrong
3583 * alignment and size).
3584 */
3585 ret = -EUCLEAN;
3586 mutex_unlock(&fs_info->reclaim_bgs_lock);
3587 goto error;
3588 }
3589
3590 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3591 key.type);
3592 if (ret)
3593 mutex_unlock(&fs_info->reclaim_bgs_lock);
3594 if (ret < 0)
3595 goto error;
3596 if (ret > 0)
3597 break;
3598
3599 leaf = path->nodes[0];
3600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3601
3602 chunk = btrfs_item_ptr(leaf, path->slots[0],
3603 struct btrfs_chunk);
3604 chunk_type = btrfs_chunk_type(leaf, chunk);
3605 btrfs_release_path(path);
3606
3607 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3608 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3609 if (ret == -ENOSPC)
3610 failed++;
3611 else
3612 BUG_ON(ret);
3613 }
3614 mutex_unlock(&fs_info->reclaim_bgs_lock);
3615
3616 if (found_key.offset == 0)
3617 break;
3618 key.offset = found_key.offset - 1;
3619 }
3620 ret = 0;
3621 if (failed && !retried) {
3622 failed = 0;
3623 retried = true;
3624 goto again;
3625 } else if (WARN_ON(failed && retried)) {
3626 ret = -ENOSPC;
3627 }
3628error:
3629 btrfs_free_path(path);
3630 return ret;
3631}
3632
3633/*
3634 * return 1 : allocate a data chunk successfully,
3635 * return <0: errors during allocating a data chunk,
3636 * return 0 : no need to allocate a data chunk.
3637 */
3638static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3639 u64 chunk_offset)
3640{
3641 struct btrfs_block_group *cache;
3642 u64 bytes_used;
3643 u64 chunk_type;
3644
3645 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3646 ASSERT(cache);
3647 chunk_type = cache->flags;
3648 btrfs_put_block_group(cache);
3649
3650 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3651 return 0;
3652
3653 spin_lock(&fs_info->data_sinfo->lock);
3654 bytes_used = fs_info->data_sinfo->bytes_used;
3655 spin_unlock(&fs_info->data_sinfo->lock);
3656
3657 if (!bytes_used) {
3658 struct btrfs_trans_handle *trans;
3659 int ret;
3660
3661 trans = btrfs_join_transaction(fs_info->tree_root);
3662 if (IS_ERR(trans))
3663 return PTR_ERR(trans);
3664
3665 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3666 btrfs_end_transaction(trans);
3667 if (ret < 0)
3668 return ret;
3669 return 1;
3670 }
3671
3672 return 0;
3673}
3674
3675static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3676 const struct btrfs_disk_balance_args *disk)
3677{
3678 memset(cpu, 0, sizeof(*cpu));
3679
3680 cpu->profiles = le64_to_cpu(disk->profiles);
3681 cpu->usage = le64_to_cpu(disk->usage);
3682 cpu->devid = le64_to_cpu(disk->devid);
3683 cpu->pstart = le64_to_cpu(disk->pstart);
3684 cpu->pend = le64_to_cpu(disk->pend);
3685 cpu->vstart = le64_to_cpu(disk->vstart);
3686 cpu->vend = le64_to_cpu(disk->vend);
3687 cpu->target = le64_to_cpu(disk->target);
3688 cpu->flags = le64_to_cpu(disk->flags);
3689 cpu->limit = le64_to_cpu(disk->limit);
3690 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3691 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3692}
3693
3694static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3695 const struct btrfs_balance_args *cpu)
3696{
3697 memset(disk, 0, sizeof(*disk));
3698
3699 disk->profiles = cpu_to_le64(cpu->profiles);
3700 disk->usage = cpu_to_le64(cpu->usage);
3701 disk->devid = cpu_to_le64(cpu->devid);
3702 disk->pstart = cpu_to_le64(cpu->pstart);
3703 disk->pend = cpu_to_le64(cpu->pend);
3704 disk->vstart = cpu_to_le64(cpu->vstart);
3705 disk->vend = cpu_to_le64(cpu->vend);
3706 disk->target = cpu_to_le64(cpu->target);
3707 disk->flags = cpu_to_le64(cpu->flags);
3708 disk->limit = cpu_to_le64(cpu->limit);
3709 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3710 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3711}
3712
3713static int insert_balance_item(struct btrfs_fs_info *fs_info,
3714 struct btrfs_balance_control *bctl)
3715{
3716 struct btrfs_root *root = fs_info->tree_root;
3717 struct btrfs_trans_handle *trans;
3718 struct btrfs_balance_item *item;
3719 struct btrfs_disk_balance_args disk_bargs;
3720 struct btrfs_path *path;
3721 struct extent_buffer *leaf;
3722 struct btrfs_key key;
3723 int ret, err;
3724
3725 path = btrfs_alloc_path();
3726 if (!path)
3727 return -ENOMEM;
3728
3729 trans = btrfs_start_transaction(root, 0);
3730 if (IS_ERR(trans)) {
3731 btrfs_free_path(path);
3732 return PTR_ERR(trans);
3733 }
3734
3735 key.objectid = BTRFS_BALANCE_OBJECTID;
3736 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3737 key.offset = 0;
3738
3739 ret = btrfs_insert_empty_item(trans, root, path, &key,
3740 sizeof(*item));
3741 if (ret)
3742 goto out;
3743
3744 leaf = path->nodes[0];
3745 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3746
3747 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3748
3749 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3750 btrfs_set_balance_data(leaf, item, &disk_bargs);
3751 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3752 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3753 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3754 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3755
3756 btrfs_set_balance_flags(leaf, item, bctl->flags);
3757
3758 btrfs_mark_buffer_dirty(trans, leaf);
3759out:
3760 btrfs_free_path(path);
3761 err = btrfs_commit_transaction(trans);
3762 if (err && !ret)
3763 ret = err;
3764 return ret;
3765}
3766
3767static int del_balance_item(struct btrfs_fs_info *fs_info)
3768{
3769 struct btrfs_root *root = fs_info->tree_root;
3770 struct btrfs_trans_handle *trans;
3771 struct btrfs_path *path;
3772 struct btrfs_key key;
3773 int ret, err;
3774
3775 path = btrfs_alloc_path();
3776 if (!path)
3777 return -ENOMEM;
3778
3779 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3780 if (IS_ERR(trans)) {
3781 btrfs_free_path(path);
3782 return PTR_ERR(trans);
3783 }
3784
3785 key.objectid = BTRFS_BALANCE_OBJECTID;
3786 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3787 key.offset = 0;
3788
3789 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3790 if (ret < 0)
3791 goto out;
3792 if (ret > 0) {
3793 ret = -ENOENT;
3794 goto out;
3795 }
3796
3797 ret = btrfs_del_item(trans, root, path);
3798out:
3799 btrfs_free_path(path);
3800 err = btrfs_commit_transaction(trans);
3801 if (err && !ret)
3802 ret = err;
3803 return ret;
3804}
3805
3806/*
3807 * This is a heuristic used to reduce the number of chunks balanced on
3808 * resume after balance was interrupted.
3809 */
3810static void update_balance_args(struct btrfs_balance_control *bctl)
3811{
3812 /*
3813 * Turn on soft mode for chunk types that were being converted.
3814 */
3815 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3816 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3817 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3818 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3819 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3820 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3821
3822 /*
3823 * Turn on usage filter if is not already used. The idea is
3824 * that chunks that we have already balanced should be
3825 * reasonably full. Don't do it for chunks that are being
3826 * converted - that will keep us from relocating unconverted
3827 * (albeit full) chunks.
3828 */
3829 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3830 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3831 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3832 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3833 bctl->data.usage = 90;
3834 }
3835 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3836 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3837 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3838 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3839 bctl->sys.usage = 90;
3840 }
3841 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3842 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3843 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3844 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3845 bctl->meta.usage = 90;
3846 }
3847}
3848
3849/*
3850 * Clear the balance status in fs_info and delete the balance item from disk.
3851 */
3852static void reset_balance_state(struct btrfs_fs_info *fs_info)
3853{
3854 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3855 int ret;
3856
3857 ASSERT(fs_info->balance_ctl);
3858
3859 spin_lock(&fs_info->balance_lock);
3860 fs_info->balance_ctl = NULL;
3861 spin_unlock(&fs_info->balance_lock);
3862
3863 kfree(bctl);
3864 ret = del_balance_item(fs_info);
3865 if (ret)
3866 btrfs_handle_fs_error(fs_info, ret, NULL);
3867}
3868
3869/*
3870 * Balance filters. Return 1 if chunk should be filtered out
3871 * (should not be balanced).
3872 */
3873static int chunk_profiles_filter(u64 chunk_type,
3874 struct btrfs_balance_args *bargs)
3875{
3876 chunk_type = chunk_to_extended(chunk_type) &
3877 BTRFS_EXTENDED_PROFILE_MASK;
3878
3879 if (bargs->profiles & chunk_type)
3880 return 0;
3881
3882 return 1;
3883}
3884
3885static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3886 struct btrfs_balance_args *bargs)
3887{
3888 struct btrfs_block_group *cache;
3889 u64 chunk_used;
3890 u64 user_thresh_min;
3891 u64 user_thresh_max;
3892 int ret = 1;
3893
3894 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3895 chunk_used = cache->used;
3896
3897 if (bargs->usage_min == 0)
3898 user_thresh_min = 0;
3899 else
3900 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3901
3902 if (bargs->usage_max == 0)
3903 user_thresh_max = 1;
3904 else if (bargs->usage_max > 100)
3905 user_thresh_max = cache->length;
3906 else
3907 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3908
3909 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3910 ret = 0;
3911
3912 btrfs_put_block_group(cache);
3913 return ret;
3914}
3915
3916static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3917 u64 chunk_offset, struct btrfs_balance_args *bargs)
3918{
3919 struct btrfs_block_group *cache;
3920 u64 chunk_used, user_thresh;
3921 int ret = 1;
3922
3923 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3924 chunk_used = cache->used;
3925
3926 if (bargs->usage_min == 0)
3927 user_thresh = 1;
3928 else if (bargs->usage > 100)
3929 user_thresh = cache->length;
3930 else
3931 user_thresh = mult_perc(cache->length, bargs->usage);
3932
3933 if (chunk_used < user_thresh)
3934 ret = 0;
3935
3936 btrfs_put_block_group(cache);
3937 return ret;
3938}
3939
3940static int chunk_devid_filter(struct extent_buffer *leaf,
3941 struct btrfs_chunk *chunk,
3942 struct btrfs_balance_args *bargs)
3943{
3944 struct btrfs_stripe *stripe;
3945 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3946 int i;
3947
3948 for (i = 0; i < num_stripes; i++) {
3949 stripe = btrfs_stripe_nr(chunk, i);
3950 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3951 return 0;
3952 }
3953
3954 return 1;
3955}
3956
3957static u64 calc_data_stripes(u64 type, int num_stripes)
3958{
3959 const int index = btrfs_bg_flags_to_raid_index(type);
3960 const int ncopies = btrfs_raid_array[index].ncopies;
3961 const int nparity = btrfs_raid_array[index].nparity;
3962
3963 return (num_stripes - nparity) / ncopies;
3964}
3965
3966/* [pstart, pend) */
3967static int chunk_drange_filter(struct extent_buffer *leaf,
3968 struct btrfs_chunk *chunk,
3969 struct btrfs_balance_args *bargs)
3970{
3971 struct btrfs_stripe *stripe;
3972 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3973 u64 stripe_offset;
3974 u64 stripe_length;
3975 u64 type;
3976 int factor;
3977 int i;
3978
3979 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3980 return 0;
3981
3982 type = btrfs_chunk_type(leaf, chunk);
3983 factor = calc_data_stripes(type, num_stripes);
3984
3985 for (i = 0; i < num_stripes; i++) {
3986 stripe = btrfs_stripe_nr(chunk, i);
3987 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3988 continue;
3989
3990 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3991 stripe_length = btrfs_chunk_length(leaf, chunk);
3992 stripe_length = div_u64(stripe_length, factor);
3993
3994 if (stripe_offset < bargs->pend &&
3995 stripe_offset + stripe_length > bargs->pstart)
3996 return 0;
3997 }
3998
3999 return 1;
4000}
4001
4002/* [vstart, vend) */
4003static int chunk_vrange_filter(struct extent_buffer *leaf,
4004 struct btrfs_chunk *chunk,
4005 u64 chunk_offset,
4006 struct btrfs_balance_args *bargs)
4007{
4008 if (chunk_offset < bargs->vend &&
4009 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
4010 /* at least part of the chunk is inside this vrange */
4011 return 0;
4012
4013 return 1;
4014}
4015
4016static int chunk_stripes_range_filter(struct extent_buffer *leaf,
4017 struct btrfs_chunk *chunk,
4018 struct btrfs_balance_args *bargs)
4019{
4020 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4021
4022 if (bargs->stripes_min <= num_stripes
4023 && num_stripes <= bargs->stripes_max)
4024 return 0;
4025
4026 return 1;
4027}
4028
4029static int chunk_soft_convert_filter(u64 chunk_type,
4030 struct btrfs_balance_args *bargs)
4031{
4032 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4033 return 0;
4034
4035 chunk_type = chunk_to_extended(chunk_type) &
4036 BTRFS_EXTENDED_PROFILE_MASK;
4037
4038 if (bargs->target == chunk_type)
4039 return 1;
4040
4041 return 0;
4042}
4043
4044static int should_balance_chunk(struct extent_buffer *leaf,
4045 struct btrfs_chunk *chunk, u64 chunk_offset)
4046{
4047 struct btrfs_fs_info *fs_info = leaf->fs_info;
4048 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4049 struct btrfs_balance_args *bargs = NULL;
4050 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
4051
4052 /* type filter */
4053 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
4054 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
4055 return 0;
4056 }
4057
4058 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4059 bargs = &bctl->data;
4060 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4061 bargs = &bctl->sys;
4062 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4063 bargs = &bctl->meta;
4064
4065 /* profiles filter */
4066 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4067 chunk_profiles_filter(chunk_type, bargs)) {
4068 return 0;
4069 }
4070
4071 /* usage filter */
4072 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4073 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4074 return 0;
4075 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4076 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4077 return 0;
4078 }
4079
4080 /* devid filter */
4081 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4082 chunk_devid_filter(leaf, chunk, bargs)) {
4083 return 0;
4084 }
4085
4086 /* drange filter, makes sense only with devid filter */
4087 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4088 chunk_drange_filter(leaf, chunk, bargs)) {
4089 return 0;
4090 }
4091
4092 /* vrange filter */
4093 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4094 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4095 return 0;
4096 }
4097
4098 /* stripes filter */
4099 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4100 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4101 return 0;
4102 }
4103
4104 /* soft profile changing mode */
4105 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4106 chunk_soft_convert_filter(chunk_type, bargs)) {
4107 return 0;
4108 }
4109
4110 /*
4111 * limited by count, must be the last filter
4112 */
4113 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4114 if (bargs->limit == 0)
4115 return 0;
4116 else
4117 bargs->limit--;
4118 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4119 /*
4120 * Same logic as the 'limit' filter; the minimum cannot be
4121 * determined here because we do not have the global information
4122 * about the count of all chunks that satisfy the filters.
4123 */
4124 if (bargs->limit_max == 0)
4125 return 0;
4126 else
4127 bargs->limit_max--;
4128 }
4129
4130 return 1;
4131}
4132
4133static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4134{
4135 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4136 struct btrfs_root *chunk_root = fs_info->chunk_root;
4137 u64 chunk_type;
4138 struct btrfs_chunk *chunk;
4139 struct btrfs_path *path = NULL;
4140 struct btrfs_key key;
4141 struct btrfs_key found_key;
4142 struct extent_buffer *leaf;
4143 int slot;
4144 int ret;
4145 int enospc_errors = 0;
4146 bool counting = true;
4147 /* The single value limit and min/max limits use the same bytes in the */
4148 u64 limit_data = bctl->data.limit;
4149 u64 limit_meta = bctl->meta.limit;
4150 u64 limit_sys = bctl->sys.limit;
4151 u32 count_data = 0;
4152 u32 count_meta = 0;
4153 u32 count_sys = 0;
4154 int chunk_reserved = 0;
4155
4156 path = btrfs_alloc_path();
4157 if (!path) {
4158 ret = -ENOMEM;
4159 goto error;
4160 }
4161
4162 /* zero out stat counters */
4163 spin_lock(&fs_info->balance_lock);
4164 memset(&bctl->stat, 0, sizeof(bctl->stat));
4165 spin_unlock(&fs_info->balance_lock);
4166again:
4167 if (!counting) {
4168 /*
4169 * The single value limit and min/max limits use the same bytes
4170 * in the
4171 */
4172 bctl->data.limit = limit_data;
4173 bctl->meta.limit = limit_meta;
4174 bctl->sys.limit = limit_sys;
4175 }
4176 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4177 key.offset = (u64)-1;
4178 key.type = BTRFS_CHUNK_ITEM_KEY;
4179
4180 while (1) {
4181 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4182 atomic_read(&fs_info->balance_cancel_req)) {
4183 ret = -ECANCELED;
4184 goto error;
4185 }
4186
4187 mutex_lock(&fs_info->reclaim_bgs_lock);
4188 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4189 if (ret < 0) {
4190 mutex_unlock(&fs_info->reclaim_bgs_lock);
4191 goto error;
4192 }
4193
4194 /*
4195 * this shouldn't happen, it means the last relocate
4196 * failed
4197 */
4198 if (ret == 0)
4199 BUG(); /* FIXME break ? */
4200
4201 ret = btrfs_previous_item(chunk_root, path, 0,
4202 BTRFS_CHUNK_ITEM_KEY);
4203 if (ret) {
4204 mutex_unlock(&fs_info->reclaim_bgs_lock);
4205 ret = 0;
4206 break;
4207 }
4208
4209 leaf = path->nodes[0];
4210 slot = path->slots[0];
4211 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4212
4213 if (found_key.objectid != key.objectid) {
4214 mutex_unlock(&fs_info->reclaim_bgs_lock);
4215 break;
4216 }
4217
4218 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4219 chunk_type = btrfs_chunk_type(leaf, chunk);
4220
4221 if (!counting) {
4222 spin_lock(&fs_info->balance_lock);
4223 bctl->stat.considered++;
4224 spin_unlock(&fs_info->balance_lock);
4225 }
4226
4227 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4228
4229 btrfs_release_path(path);
4230 if (!ret) {
4231 mutex_unlock(&fs_info->reclaim_bgs_lock);
4232 goto loop;
4233 }
4234
4235 if (counting) {
4236 mutex_unlock(&fs_info->reclaim_bgs_lock);
4237 spin_lock(&fs_info->balance_lock);
4238 bctl->stat.expected++;
4239 spin_unlock(&fs_info->balance_lock);
4240
4241 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4242 count_data++;
4243 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4244 count_sys++;
4245 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4246 count_meta++;
4247
4248 goto loop;
4249 }
4250
4251 /*
4252 * Apply limit_min filter, no need to check if the LIMITS
4253 * filter is used, limit_min is 0 by default
4254 */
4255 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4256 count_data < bctl->data.limit_min)
4257 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4258 count_meta < bctl->meta.limit_min)
4259 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4260 count_sys < bctl->sys.limit_min)) {
4261 mutex_unlock(&fs_info->reclaim_bgs_lock);
4262 goto loop;
4263 }
4264
4265 if (!chunk_reserved) {
4266 /*
4267 * We may be relocating the only data chunk we have,
4268 * which could potentially end up with losing data's
4269 * raid profile, so lets allocate an empty one in
4270 * advance.
4271 */
4272 ret = btrfs_may_alloc_data_chunk(fs_info,
4273 found_key.offset);
4274 if (ret < 0) {
4275 mutex_unlock(&fs_info->reclaim_bgs_lock);
4276 goto error;
4277 } else if (ret == 1) {
4278 chunk_reserved = 1;
4279 }
4280 }
4281
4282 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4283 mutex_unlock(&fs_info->reclaim_bgs_lock);
4284 if (ret == -ENOSPC) {
4285 enospc_errors++;
4286 } else if (ret == -ETXTBSY) {
4287 btrfs_info(fs_info,
4288 "skipping relocation of block group %llu due to active swapfile",
4289 found_key.offset);
4290 ret = 0;
4291 } else if (ret) {
4292 goto error;
4293 } else {
4294 spin_lock(&fs_info->balance_lock);
4295 bctl->stat.completed++;
4296 spin_unlock(&fs_info->balance_lock);
4297 }
4298loop:
4299 if (found_key.offset == 0)
4300 break;
4301 key.offset = found_key.offset - 1;
4302 }
4303
4304 if (counting) {
4305 btrfs_release_path(path);
4306 counting = false;
4307 goto again;
4308 }
4309error:
4310 btrfs_free_path(path);
4311 if (enospc_errors) {
4312 btrfs_info(fs_info, "%d enospc errors during balance",
4313 enospc_errors);
4314 if (!ret)
4315 ret = -ENOSPC;
4316 }
4317
4318 return ret;
4319}
4320
4321/*
4322 * See if a given profile is valid and reduced.
4323 *
4324 * @flags: profile to validate
4325 * @extended: if true @flags is treated as an extended profile
4326 */
4327static int alloc_profile_is_valid(u64 flags, int extended)
4328{
4329 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4330 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4331
4332 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4333
4334 /* 1) check that all other bits are zeroed */
4335 if (flags & ~mask)
4336 return 0;
4337
4338 /* 2) see if profile is reduced */
4339 if (flags == 0)
4340 return !extended; /* "0" is valid for usual profiles */
4341
4342 return has_single_bit_set(flags);
4343}
4344
4345/*
4346 * Validate target profile against allowed profiles and return true if it's OK.
4347 * Otherwise print the error message and return false.
4348 */
4349static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4350 const struct btrfs_balance_args *bargs,
4351 u64 allowed, const char *type)
4352{
4353 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4354 return true;
4355
4356 /* Profile is valid and does not have bits outside of the allowed set */
4357 if (alloc_profile_is_valid(bargs->target, 1) &&
4358 (bargs->target & ~allowed) == 0)
4359 return true;
4360
4361 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4362 type, btrfs_bg_type_to_raid_name(bargs->target));
4363 return false;
4364}
4365
4366/*
4367 * Fill @buf with textual description of balance filter flags @bargs, up to
4368 * @size_buf including the terminating null. The output may be trimmed if it
4369 * does not fit into the provided buffer.
4370 */
4371static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4372 u32 size_buf)
4373{
4374 int ret;
4375 u32 size_bp = size_buf;
4376 char *bp = buf;
4377 u64 flags = bargs->flags;
4378 char tmp_buf[128] = {'\0'};
4379
4380 if (!flags)
4381 return;
4382
4383#define CHECK_APPEND_NOARG(a) \
4384 do { \
4385 ret = snprintf(bp, size_bp, (a)); \
4386 if (ret < 0 || ret >= size_bp) \
4387 goto out_overflow; \
4388 size_bp -= ret; \
4389 bp += ret; \
4390 } while (0)
4391
4392#define CHECK_APPEND_1ARG(a, v1) \
4393 do { \
4394 ret = snprintf(bp, size_bp, (a), (v1)); \
4395 if (ret < 0 || ret >= size_bp) \
4396 goto out_overflow; \
4397 size_bp -= ret; \
4398 bp += ret; \
4399 } while (0)
4400
4401#define CHECK_APPEND_2ARG(a, v1, v2) \
4402 do { \
4403 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4404 if (ret < 0 || ret >= size_bp) \
4405 goto out_overflow; \
4406 size_bp -= ret; \
4407 bp += ret; \
4408 } while (0)
4409
4410 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4411 CHECK_APPEND_1ARG("convert=%s,",
4412 btrfs_bg_type_to_raid_name(bargs->target));
4413
4414 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4415 CHECK_APPEND_NOARG("soft,");
4416
4417 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4418 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4419 sizeof(tmp_buf));
4420 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4421 }
4422
4423 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4424 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4425
4426 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4427 CHECK_APPEND_2ARG("usage=%u..%u,",
4428 bargs->usage_min, bargs->usage_max);
4429
4430 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4431 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4432
4433 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4434 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4435 bargs->pstart, bargs->pend);
4436
4437 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4438 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4439 bargs->vstart, bargs->vend);
4440
4441 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4442 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4443
4444 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4445 CHECK_APPEND_2ARG("limit=%u..%u,",
4446 bargs->limit_min, bargs->limit_max);
4447
4448 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4449 CHECK_APPEND_2ARG("stripes=%u..%u,",
4450 bargs->stripes_min, bargs->stripes_max);
4451
4452#undef CHECK_APPEND_2ARG
4453#undef CHECK_APPEND_1ARG
4454#undef CHECK_APPEND_NOARG
4455
4456out_overflow:
4457
4458 if (size_bp < size_buf)
4459 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4460 else
4461 buf[0] = '\0';
4462}
4463
4464static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4465{
4466 u32 size_buf = 1024;
4467 char tmp_buf[192] = {'\0'};
4468 char *buf;
4469 char *bp;
4470 u32 size_bp = size_buf;
4471 int ret;
4472 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4473
4474 buf = kzalloc(size_buf, GFP_KERNEL);
4475 if (!buf)
4476 return;
4477
4478 bp = buf;
4479
4480#define CHECK_APPEND_1ARG(a, v1) \
4481 do { \
4482 ret = snprintf(bp, size_bp, (a), (v1)); \
4483 if (ret < 0 || ret >= size_bp) \
4484 goto out_overflow; \
4485 size_bp -= ret; \
4486 bp += ret; \
4487 } while (0)
4488
4489 if (bctl->flags & BTRFS_BALANCE_FORCE)
4490 CHECK_APPEND_1ARG("%s", "-f ");
4491
4492 if (bctl->flags & BTRFS_BALANCE_DATA) {
4493 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4494 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4495 }
4496
4497 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4498 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4499 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4500 }
4501
4502 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4503 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4504 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4505 }
4506
4507#undef CHECK_APPEND_1ARG
4508
4509out_overflow:
4510
4511 if (size_bp < size_buf)
4512 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4513 btrfs_info(fs_info, "balance: %s %s",
4514 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4515 "resume" : "start", buf);
4516
4517 kfree(buf);
4518}
4519
4520/*
4521 * Should be called with balance mutexe held
4522 */
4523int btrfs_balance(struct btrfs_fs_info *fs_info,
4524 struct btrfs_balance_control *bctl,
4525 struct btrfs_ioctl_balance_args *bargs)
4526{
4527 u64 meta_target, data_target;
4528 u64 allowed;
4529 int mixed = 0;
4530 int ret;
4531 u64 num_devices;
4532 unsigned seq;
4533 bool reducing_redundancy;
4534 bool paused = false;
4535 int i;
4536
4537 if (btrfs_fs_closing(fs_info) ||
4538 atomic_read(&fs_info->balance_pause_req) ||
4539 btrfs_should_cancel_balance(fs_info)) {
4540 ret = -EINVAL;
4541 goto out;
4542 }
4543
4544 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4545 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4546 mixed = 1;
4547
4548 /*
4549 * In case of mixed groups both data and meta should be picked,
4550 * and identical options should be given for both of them.
4551 */
4552 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4553 if (mixed && (bctl->flags & allowed)) {
4554 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4555 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4556 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4557 btrfs_err(fs_info,
4558 "balance: mixed groups data and metadata options must be the same");
4559 ret = -EINVAL;
4560 goto out;
4561 }
4562 }
4563
4564 /*
4565 * rw_devices will not change at the moment, device add/delete/replace
4566 * are exclusive
4567 */
4568 num_devices = fs_info->fs_devices->rw_devices;
4569
4570 /*
4571 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4572 * special bit for it, to make it easier to distinguish. Thus we need
4573 * to set it manually, or balance would refuse the profile.
4574 */
4575 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4576 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4577 if (num_devices >= btrfs_raid_array[i].devs_min)
4578 allowed |= btrfs_raid_array[i].bg_flag;
4579
4580 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4581 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4582 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4583 ret = -EINVAL;
4584 goto out;
4585 }
4586
4587 /*
4588 * Allow to reduce metadata or system integrity only if force set for
4589 * profiles with redundancy (copies, parity)
4590 */
4591 allowed = 0;
4592 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4593 if (btrfs_raid_array[i].ncopies >= 2 ||
4594 btrfs_raid_array[i].tolerated_failures >= 1)
4595 allowed |= btrfs_raid_array[i].bg_flag;
4596 }
4597 do {
4598 seq = read_seqbegin(&fs_info->profiles_lock);
4599
4600 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4601 (fs_info->avail_system_alloc_bits & allowed) &&
4602 !(bctl->sys.target & allowed)) ||
4603 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4604 (fs_info->avail_metadata_alloc_bits & allowed) &&
4605 !(bctl->meta.target & allowed)))
4606 reducing_redundancy = true;
4607 else
4608 reducing_redundancy = false;
4609
4610 /* if we're not converting, the target field is uninitialized */
4611 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4612 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4613 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4614 bctl->data.target : fs_info->avail_data_alloc_bits;
4615 } while (read_seqretry(&fs_info->profiles_lock, seq));
4616
4617 if (reducing_redundancy) {
4618 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4619 btrfs_info(fs_info,
4620 "balance: force reducing metadata redundancy");
4621 } else {
4622 btrfs_err(fs_info,
4623 "balance: reduces metadata redundancy, use --force if you want this");
4624 ret = -EINVAL;
4625 goto out;
4626 }
4627 }
4628
4629 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4630 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4631 btrfs_warn(fs_info,
4632 "balance: metadata profile %s has lower redundancy than data profile %s",
4633 btrfs_bg_type_to_raid_name(meta_target),
4634 btrfs_bg_type_to_raid_name(data_target));
4635 }
4636
4637 ret = insert_balance_item(fs_info, bctl);
4638 if (ret && ret != -EEXIST)
4639 goto out;
4640
4641 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4642 BUG_ON(ret == -EEXIST);
4643 BUG_ON(fs_info->balance_ctl);
4644 spin_lock(&fs_info->balance_lock);
4645 fs_info->balance_ctl = bctl;
4646 spin_unlock(&fs_info->balance_lock);
4647 } else {
4648 BUG_ON(ret != -EEXIST);
4649 spin_lock(&fs_info->balance_lock);
4650 update_balance_args(bctl);
4651 spin_unlock(&fs_info->balance_lock);
4652 }
4653
4654 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4655 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4656 describe_balance_start_or_resume(fs_info);
4657 mutex_unlock(&fs_info->balance_mutex);
4658
4659 ret = __btrfs_balance(fs_info);
4660
4661 mutex_lock(&fs_info->balance_mutex);
4662 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4663 btrfs_info(fs_info, "balance: paused");
4664 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4665 paused = true;
4666 }
4667 /*
4668 * Balance can be canceled by:
4669 *
4670 * - Regular cancel request
4671 * Then ret == -ECANCELED and balance_cancel_req > 0
4672 *
4673 * - Fatal signal to "btrfs" process
4674 * Either the signal caught by wait_reserve_ticket() and callers
4675 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4676 * got -ECANCELED.
4677 * Either way, in this case balance_cancel_req = 0, and
4678 * ret == -EINTR or ret == -ECANCELED.
4679 *
4680 * So here we only check the return value to catch canceled balance.
4681 */
4682 else if (ret == -ECANCELED || ret == -EINTR)
4683 btrfs_info(fs_info, "balance: canceled");
4684 else
4685 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4686
4687 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4688
4689 if (bargs) {
4690 memset(bargs, 0, sizeof(*bargs));
4691 btrfs_update_ioctl_balance_args(fs_info, bargs);
4692 }
4693
4694 /* We didn't pause, we can clean everything up. */
4695 if (!paused) {
4696 reset_balance_state(fs_info);
4697 btrfs_exclop_finish(fs_info);
4698 }
4699
4700 wake_up(&fs_info->balance_wait_q);
4701
4702 return ret;
4703out:
4704 if (bctl->flags & BTRFS_BALANCE_RESUME)
4705 reset_balance_state(fs_info);
4706 else
4707 kfree(bctl);
4708 btrfs_exclop_finish(fs_info);
4709
4710 return ret;
4711}
4712
4713static int balance_kthread(void *data)
4714{
4715 struct btrfs_fs_info *fs_info = data;
4716 int ret = 0;
4717
4718 sb_start_write(fs_info->sb);
4719 mutex_lock(&fs_info->balance_mutex);
4720 if (fs_info->balance_ctl)
4721 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4722 mutex_unlock(&fs_info->balance_mutex);
4723 sb_end_write(fs_info->sb);
4724
4725 return ret;
4726}
4727
4728int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4729{
4730 struct task_struct *tsk;
4731
4732 mutex_lock(&fs_info->balance_mutex);
4733 if (!fs_info->balance_ctl) {
4734 mutex_unlock(&fs_info->balance_mutex);
4735 return 0;
4736 }
4737 mutex_unlock(&fs_info->balance_mutex);
4738
4739 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4740 btrfs_info(fs_info, "balance: resume skipped");
4741 return 0;
4742 }
4743
4744 spin_lock(&fs_info->super_lock);
4745 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4746 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4747 spin_unlock(&fs_info->super_lock);
4748 /*
4749 * A ro->rw remount sequence should continue with the paused balance
4750 * regardless of who pauses it, system or the user as of now, so set
4751 * the resume flag.
4752 */
4753 spin_lock(&fs_info->balance_lock);
4754 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4755 spin_unlock(&fs_info->balance_lock);
4756
4757 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4758 return PTR_ERR_OR_ZERO(tsk);
4759}
4760
4761int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4762{
4763 struct btrfs_balance_control *bctl;
4764 struct btrfs_balance_item *item;
4765 struct btrfs_disk_balance_args disk_bargs;
4766 struct btrfs_path *path;
4767 struct extent_buffer *leaf;
4768 struct btrfs_key key;
4769 int ret;
4770
4771 path = btrfs_alloc_path();
4772 if (!path)
4773 return -ENOMEM;
4774
4775 key.objectid = BTRFS_BALANCE_OBJECTID;
4776 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4777 key.offset = 0;
4778
4779 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4780 if (ret < 0)
4781 goto out;
4782 if (ret > 0) { /* ret = -ENOENT; */
4783 ret = 0;
4784 goto out;
4785 }
4786
4787 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4788 if (!bctl) {
4789 ret = -ENOMEM;
4790 goto out;
4791 }
4792
4793 leaf = path->nodes[0];
4794 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4795
4796 bctl->flags = btrfs_balance_flags(leaf, item);
4797 bctl->flags |= BTRFS_BALANCE_RESUME;
4798
4799 btrfs_balance_data(leaf, item, &disk_bargs);
4800 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4801 btrfs_balance_meta(leaf, item, &disk_bargs);
4802 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4803 btrfs_balance_sys(leaf, item, &disk_bargs);
4804 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4805
4806 /*
4807 * This should never happen, as the paused balance state is recovered
4808 * during mount without any chance of other exclusive ops to collide.
4809 *
4810 * This gives the exclusive op status to balance and keeps in paused
4811 * state until user intervention (cancel or umount). If the ownership
4812 * cannot be assigned, show a message but do not fail. The balance
4813 * is in a paused state and must have fs_info::balance_ctl properly
4814 * set up.
4815 */
4816 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4817 btrfs_warn(fs_info,
4818 "balance: cannot set exclusive op status, resume manually");
4819
4820 btrfs_release_path(path);
4821
4822 mutex_lock(&fs_info->balance_mutex);
4823 BUG_ON(fs_info->balance_ctl);
4824 spin_lock(&fs_info->balance_lock);
4825 fs_info->balance_ctl = bctl;
4826 spin_unlock(&fs_info->balance_lock);
4827 mutex_unlock(&fs_info->balance_mutex);
4828out:
4829 btrfs_free_path(path);
4830 return ret;
4831}
4832
4833int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4834{
4835 int ret = 0;
4836
4837 mutex_lock(&fs_info->balance_mutex);
4838 if (!fs_info->balance_ctl) {
4839 mutex_unlock(&fs_info->balance_mutex);
4840 return -ENOTCONN;
4841 }
4842
4843 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4844 atomic_inc(&fs_info->balance_pause_req);
4845 mutex_unlock(&fs_info->balance_mutex);
4846
4847 wait_event(fs_info->balance_wait_q,
4848 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4849
4850 mutex_lock(&fs_info->balance_mutex);
4851 /* we are good with balance_ctl ripped off from under us */
4852 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4853 atomic_dec(&fs_info->balance_pause_req);
4854 } else {
4855 ret = -ENOTCONN;
4856 }
4857
4858 mutex_unlock(&fs_info->balance_mutex);
4859 return ret;
4860}
4861
4862int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4863{
4864 mutex_lock(&fs_info->balance_mutex);
4865 if (!fs_info->balance_ctl) {
4866 mutex_unlock(&fs_info->balance_mutex);
4867 return -ENOTCONN;
4868 }
4869
4870 /*
4871 * A paused balance with the item stored on disk can be resumed at
4872 * mount time if the mount is read-write. Otherwise it's still paused
4873 * and we must not allow cancelling as it deletes the item.
4874 */
4875 if (sb_rdonly(fs_info->sb)) {
4876 mutex_unlock(&fs_info->balance_mutex);
4877 return -EROFS;
4878 }
4879
4880 atomic_inc(&fs_info->balance_cancel_req);
4881 /*
4882 * if we are running just wait and return, balance item is
4883 * deleted in btrfs_balance in this case
4884 */
4885 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4886 mutex_unlock(&fs_info->balance_mutex);
4887 wait_event(fs_info->balance_wait_q,
4888 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4889 mutex_lock(&fs_info->balance_mutex);
4890 } else {
4891 mutex_unlock(&fs_info->balance_mutex);
4892 /*
4893 * Lock released to allow other waiters to continue, we'll
4894 * reexamine the status again.
4895 */
4896 mutex_lock(&fs_info->balance_mutex);
4897
4898 if (fs_info->balance_ctl) {
4899 reset_balance_state(fs_info);
4900 btrfs_exclop_finish(fs_info);
4901 btrfs_info(fs_info, "balance: canceled");
4902 }
4903 }
4904
4905 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4906 atomic_dec(&fs_info->balance_cancel_req);
4907 mutex_unlock(&fs_info->balance_mutex);
4908 return 0;
4909}
4910
4911/*
4912 * shrinking a device means finding all of the device extents past
4913 * the new size, and then following the back refs to the chunks.
4914 * The chunk relocation code actually frees the device extent
4915 */
4916int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4917{
4918 struct btrfs_fs_info *fs_info = device->fs_info;
4919 struct btrfs_root *root = fs_info->dev_root;
4920 struct btrfs_trans_handle *trans;
4921 struct btrfs_dev_extent *dev_extent = NULL;
4922 struct btrfs_path *path;
4923 u64 length;
4924 u64 chunk_offset;
4925 int ret;
4926 int slot;
4927 int failed = 0;
4928 bool retried = false;
4929 struct extent_buffer *l;
4930 struct btrfs_key key;
4931 struct btrfs_super_block *super_copy = fs_info->super_copy;
4932 u64 old_total = btrfs_super_total_bytes(super_copy);
4933 u64 old_size = btrfs_device_get_total_bytes(device);
4934 u64 diff;
4935 u64 start;
4936 u64 free_diff = 0;
4937
4938 new_size = round_down(new_size, fs_info->sectorsize);
4939 start = new_size;
4940 diff = round_down(old_size - new_size, fs_info->sectorsize);
4941
4942 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4943 return -EINVAL;
4944
4945 path = btrfs_alloc_path();
4946 if (!path)
4947 return -ENOMEM;
4948
4949 path->reada = READA_BACK;
4950
4951 trans = btrfs_start_transaction(root, 0);
4952 if (IS_ERR(trans)) {
4953 btrfs_free_path(path);
4954 return PTR_ERR(trans);
4955 }
4956
4957 mutex_lock(&fs_info->chunk_mutex);
4958
4959 btrfs_device_set_total_bytes(device, new_size);
4960 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4961 device->fs_devices->total_rw_bytes -= diff;
4962
4963 /*
4964 * The new free_chunk_space is new_size - used, so we have to
4965 * subtract the delta of the old free_chunk_space which included
4966 * old_size - used. If used > new_size then just subtract this
4967 * entire device's free space.
4968 */
4969 if (device->bytes_used < new_size)
4970 free_diff = (old_size - device->bytes_used) -
4971 (new_size - device->bytes_used);
4972 else
4973 free_diff = old_size - device->bytes_used;
4974 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4975 }
4976
4977 /*
4978 * Once the device's size has been set to the new size, ensure all
4979 * in-memory chunks are synced to disk so that the loop below sees them
4980 * and relocates them accordingly.
4981 */
4982 if (contains_pending_extent(device, &start, diff)) {
4983 mutex_unlock(&fs_info->chunk_mutex);
4984 ret = btrfs_commit_transaction(trans);
4985 if (ret)
4986 goto done;
4987 } else {
4988 mutex_unlock(&fs_info->chunk_mutex);
4989 btrfs_end_transaction(trans);
4990 }
4991
4992again:
4993 key.objectid = device->devid;
4994 key.offset = (u64)-1;
4995 key.type = BTRFS_DEV_EXTENT_KEY;
4996
4997 do {
4998 mutex_lock(&fs_info->reclaim_bgs_lock);
4999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5000 if (ret < 0) {
5001 mutex_unlock(&fs_info->reclaim_bgs_lock);
5002 goto done;
5003 }
5004
5005 ret = btrfs_previous_item(root, path, 0, key.type);
5006 if (ret) {
5007 mutex_unlock(&fs_info->reclaim_bgs_lock);
5008 if (ret < 0)
5009 goto done;
5010 ret = 0;
5011 btrfs_release_path(path);
5012 break;
5013 }
5014
5015 l = path->nodes[0];
5016 slot = path->slots[0];
5017 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5018
5019 if (key.objectid != device->devid) {
5020 mutex_unlock(&fs_info->reclaim_bgs_lock);
5021 btrfs_release_path(path);
5022 break;
5023 }
5024
5025 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5026 length = btrfs_dev_extent_length(l, dev_extent);
5027
5028 if (key.offset + length <= new_size) {
5029 mutex_unlock(&fs_info->reclaim_bgs_lock);
5030 btrfs_release_path(path);
5031 break;
5032 }
5033
5034 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5035 btrfs_release_path(path);
5036
5037 /*
5038 * We may be relocating the only data chunk we have,
5039 * which could potentially end up with losing data's
5040 * raid profile, so lets allocate an empty one in
5041 * advance.
5042 */
5043 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5044 if (ret < 0) {
5045 mutex_unlock(&fs_info->reclaim_bgs_lock);
5046 goto done;
5047 }
5048
5049 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5050 mutex_unlock(&fs_info->reclaim_bgs_lock);
5051 if (ret == -ENOSPC) {
5052 failed++;
5053 } else if (ret) {
5054 if (ret == -ETXTBSY) {
5055 btrfs_warn(fs_info,
5056 "could not shrink block group %llu due to active swapfile",
5057 chunk_offset);
5058 }
5059 goto done;
5060 }
5061 } while (key.offset-- > 0);
5062
5063 if (failed && !retried) {
5064 failed = 0;
5065 retried = true;
5066 goto again;
5067 } else if (failed && retried) {
5068 ret = -ENOSPC;
5069 goto done;
5070 }
5071
5072 /* Shrinking succeeded, else we would be at "done". */
5073 trans = btrfs_start_transaction(root, 0);
5074 if (IS_ERR(trans)) {
5075 ret = PTR_ERR(trans);
5076 goto done;
5077 }
5078
5079 mutex_lock(&fs_info->chunk_mutex);
5080 /* Clear all state bits beyond the shrunk device size */
5081 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5082 CHUNK_STATE_MASK);
5083
5084 btrfs_device_set_disk_total_bytes(device, new_size);
5085 if (list_empty(&device->post_commit_list))
5086 list_add_tail(&device->post_commit_list,
5087 &trans->transaction->dev_update_list);
5088
5089 WARN_ON(diff > old_total);
5090 btrfs_set_super_total_bytes(super_copy,
5091 round_down(old_total - diff, fs_info->sectorsize));
5092 mutex_unlock(&fs_info->chunk_mutex);
5093
5094 btrfs_reserve_chunk_metadata(trans, false);
5095 /* Now btrfs_update_device() will change the on-disk size. */
5096 ret = btrfs_update_device(trans, device);
5097 btrfs_trans_release_chunk_metadata(trans);
5098 if (ret < 0) {
5099 btrfs_abort_transaction(trans, ret);
5100 btrfs_end_transaction(trans);
5101 } else {
5102 ret = btrfs_commit_transaction(trans);
5103 }
5104done:
5105 btrfs_free_path(path);
5106 if (ret) {
5107 mutex_lock(&fs_info->chunk_mutex);
5108 btrfs_device_set_total_bytes(device, old_size);
5109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5110 device->fs_devices->total_rw_bytes += diff;
5111 atomic64_add(free_diff, &fs_info->free_chunk_space);
5112 }
5113 mutex_unlock(&fs_info->chunk_mutex);
5114 }
5115 return ret;
5116}
5117
5118static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5119 struct btrfs_key *key,
5120 struct btrfs_chunk *chunk, int item_size)
5121{
5122 struct btrfs_super_block *super_copy = fs_info->super_copy;
5123 struct btrfs_disk_key disk_key;
5124 u32 array_size;
5125 u8 *ptr;
5126
5127 lockdep_assert_held(&fs_info->chunk_mutex);
5128
5129 array_size = btrfs_super_sys_array_size(super_copy);
5130 if (array_size + item_size + sizeof(disk_key)
5131 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5132 return -EFBIG;
5133
5134 ptr = super_copy->sys_chunk_array + array_size;
5135 btrfs_cpu_key_to_disk(&disk_key, key);
5136 memcpy(ptr, &disk_key, sizeof(disk_key));
5137 ptr += sizeof(disk_key);
5138 memcpy(ptr, chunk, item_size);
5139 item_size += sizeof(disk_key);
5140 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5141
5142 return 0;
5143}
5144
5145/*
5146 * sort the devices in descending order by max_avail, total_avail
5147 */
5148static int btrfs_cmp_device_info(const void *a, const void *b)
5149{
5150 const struct btrfs_device_info *di_a = a;
5151 const struct btrfs_device_info *di_b = b;
5152
5153 if (di_a->max_avail > di_b->max_avail)
5154 return -1;
5155 if (di_a->max_avail < di_b->max_avail)
5156 return 1;
5157 if (di_a->total_avail > di_b->total_avail)
5158 return -1;
5159 if (di_a->total_avail < di_b->total_avail)
5160 return 1;
5161 return 0;
5162}
5163
5164static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5165{
5166 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5167 return;
5168
5169 btrfs_set_fs_incompat(info, RAID56);
5170}
5171
5172static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5173{
5174 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5175 return;
5176
5177 btrfs_set_fs_incompat(info, RAID1C34);
5178}
5179
5180/*
5181 * Structure used internally for btrfs_create_chunk() function.
5182 * Wraps needed parameters.
5183 */
5184struct alloc_chunk_ctl {
5185 u64 start;
5186 u64 type;
5187 /* Total number of stripes to allocate */
5188 int num_stripes;
5189 /* sub_stripes info for map */
5190 int sub_stripes;
5191 /* Stripes per device */
5192 int dev_stripes;
5193 /* Maximum number of devices to use */
5194 int devs_max;
5195 /* Minimum number of devices to use */
5196 int devs_min;
5197 /* ndevs has to be a multiple of this */
5198 int devs_increment;
5199 /* Number of copies */
5200 int ncopies;
5201 /* Number of stripes worth of bytes to store parity information */
5202 int nparity;
5203 u64 max_stripe_size;
5204 u64 max_chunk_size;
5205 u64 dev_extent_min;
5206 u64 stripe_size;
5207 u64 chunk_size;
5208 int ndevs;
5209};
5210
5211static void init_alloc_chunk_ctl_policy_regular(
5212 struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5214{
5215 struct btrfs_space_info *space_info;
5216
5217 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5218 ASSERT(space_info);
5219
5220 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5221 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5222
5223 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5224 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5225
5226 /* We don't want a chunk larger than 10% of writable space */
5227 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5228 ctl->max_chunk_size);
5229 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5230}
5231
5232static void init_alloc_chunk_ctl_policy_zoned(
5233 struct btrfs_fs_devices *fs_devices,
5234 struct alloc_chunk_ctl *ctl)
5235{
5236 u64 zone_size = fs_devices->fs_info->zone_size;
5237 u64 limit;
5238 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5239 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5240 u64 min_chunk_size = min_data_stripes * zone_size;
5241 u64 type = ctl->type;
5242
5243 ctl->max_stripe_size = zone_size;
5244 if (type & BTRFS_BLOCK_GROUP_DATA) {
5245 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5246 zone_size);
5247 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5248 ctl->max_chunk_size = ctl->max_stripe_size;
5249 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5250 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5251 ctl->devs_max = min_t(int, ctl->devs_max,
5252 BTRFS_MAX_DEVS_SYS_CHUNK);
5253 } else {
5254 BUG();
5255 }
5256
5257 /* We don't want a chunk larger than 10% of writable space */
5258 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5259 zone_size),
5260 min_chunk_size);
5261 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5262 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5263}
5264
5265static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5266 struct alloc_chunk_ctl *ctl)
5267{
5268 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5269
5270 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5271 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5272 ctl->devs_max = btrfs_raid_array[index].devs_max;
5273 if (!ctl->devs_max)
5274 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5275 ctl->devs_min = btrfs_raid_array[index].devs_min;
5276 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5277 ctl->ncopies = btrfs_raid_array[index].ncopies;
5278 ctl->nparity = btrfs_raid_array[index].nparity;
5279 ctl->ndevs = 0;
5280
5281 switch (fs_devices->chunk_alloc_policy) {
5282 case BTRFS_CHUNK_ALLOC_REGULAR:
5283 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5284 break;
5285 case BTRFS_CHUNK_ALLOC_ZONED:
5286 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5287 break;
5288 default:
5289 BUG();
5290 }
5291}
5292
5293static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5294 struct alloc_chunk_ctl *ctl,
5295 struct btrfs_device_info *devices_info)
5296{
5297 struct btrfs_fs_info *info = fs_devices->fs_info;
5298 struct btrfs_device *device;
5299 u64 total_avail;
5300 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5301 int ret;
5302 int ndevs = 0;
5303 u64 max_avail;
5304 u64 dev_offset;
5305
5306 /*
5307 * in the first pass through the devices list, we gather information
5308 * about the available holes on each device.
5309 */
5310 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5311 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5312 WARN(1, KERN_ERR
5313 "BTRFS: read-only device in alloc_list\n");
5314 continue;
5315 }
5316
5317 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5318 &device->dev_state) ||
5319 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5320 continue;
5321
5322 if (device->total_bytes > device->bytes_used)
5323 total_avail = device->total_bytes - device->bytes_used;
5324 else
5325 total_avail = 0;
5326
5327 /* If there is no space on this device, skip it. */
5328 if (total_avail < ctl->dev_extent_min)
5329 continue;
5330
5331 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5332 &max_avail);
5333 if (ret && ret != -ENOSPC)
5334 return ret;
5335
5336 if (ret == 0)
5337 max_avail = dev_extent_want;
5338
5339 if (max_avail < ctl->dev_extent_min) {
5340 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5341 btrfs_debug(info,
5342 "%s: devid %llu has no free space, have=%llu want=%llu",
5343 __func__, device->devid, max_avail,
5344 ctl->dev_extent_min);
5345 continue;
5346 }
5347
5348 if (ndevs == fs_devices->rw_devices) {
5349 WARN(1, "%s: found more than %llu devices\n",
5350 __func__, fs_devices->rw_devices);
5351 break;
5352 }
5353 devices_info[ndevs].dev_offset = dev_offset;
5354 devices_info[ndevs].max_avail = max_avail;
5355 devices_info[ndevs].total_avail = total_avail;
5356 devices_info[ndevs].dev = device;
5357 ++ndevs;
5358 }
5359 ctl->ndevs = ndevs;
5360
5361 /*
5362 * now sort the devices by hole size / available space
5363 */
5364 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5365 btrfs_cmp_device_info, NULL);
5366
5367 return 0;
5368}
5369
5370static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5371 struct btrfs_device_info *devices_info)
5372{
5373 /* Number of stripes that count for block group size */
5374 int data_stripes;
5375
5376 /*
5377 * The primary goal is to maximize the number of stripes, so use as
5378 * many devices as possible, even if the stripes are not maximum sized.
5379 *
5380 * The DUP profile stores more than one stripe per device, the
5381 * max_avail is the total size so we have to adjust.
5382 */
5383 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5384 ctl->dev_stripes);
5385 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5386
5387 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5388 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5389
5390 /*
5391 * Use the number of data stripes to figure out how big this chunk is
5392 * really going to be in terms of logical address space, and compare
5393 * that answer with the max chunk size. If it's higher, we try to
5394 * reduce stripe_size.
5395 */
5396 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5397 /*
5398 * Reduce stripe_size, round it up to a 16MB boundary again and
5399 * then use it, unless it ends up being even bigger than the
5400 * previous value we had already.
5401 */
5402 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5403 data_stripes), SZ_16M),
5404 ctl->stripe_size);
5405 }
5406
5407 /* Stripe size should not go beyond 1G. */
5408 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5409
5410 /* Align to BTRFS_STRIPE_LEN */
5411 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5412 ctl->chunk_size = ctl->stripe_size * data_stripes;
5413
5414 return 0;
5415}
5416
5417static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5418 struct btrfs_device_info *devices_info)
5419{
5420 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5421 /* Number of stripes that count for block group size */
5422 int data_stripes;
5423
5424 /*
5425 * It should hold because:
5426 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5427 */
5428 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5429
5430 ctl->stripe_size = zone_size;
5431 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5432 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5433
5434 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5435 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5436 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5437 ctl->stripe_size) + ctl->nparity,
5438 ctl->dev_stripes);
5439 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5440 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5441 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5442 }
5443
5444 ctl->chunk_size = ctl->stripe_size * data_stripes;
5445
5446 return 0;
5447}
5448
5449static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5450 struct alloc_chunk_ctl *ctl,
5451 struct btrfs_device_info *devices_info)
5452{
5453 struct btrfs_fs_info *info = fs_devices->fs_info;
5454
5455 /*
5456 * Round down to number of usable stripes, devs_increment can be any
5457 * number so we can't use round_down() that requires power of 2, while
5458 * rounddown is safe.
5459 */
5460 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5461
5462 if (ctl->ndevs < ctl->devs_min) {
5463 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5464 btrfs_debug(info,
5465 "%s: not enough devices with free space: have=%d minimum required=%d",
5466 __func__, ctl->ndevs, ctl->devs_min);
5467 }
5468 return -ENOSPC;
5469 }
5470
5471 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5472
5473 switch (fs_devices->chunk_alloc_policy) {
5474 case BTRFS_CHUNK_ALLOC_REGULAR:
5475 return decide_stripe_size_regular(ctl, devices_info);
5476 case BTRFS_CHUNK_ALLOC_ZONED:
5477 return decide_stripe_size_zoned(ctl, devices_info);
5478 default:
5479 BUG();
5480 }
5481}
5482
5483static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5484{
5485 for (int i = 0; i < map->num_stripes; i++) {
5486 struct btrfs_io_stripe *stripe = &map->stripes[i];
5487 struct btrfs_device *device = stripe->dev;
5488
5489 set_extent_bit(&device->alloc_state, stripe->physical,
5490 stripe->physical + map->stripe_size - 1,
5491 bits | EXTENT_NOWAIT, NULL);
5492 }
5493}
5494
5495static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5496{
5497 for (int i = 0; i < map->num_stripes; i++) {
5498 struct btrfs_io_stripe *stripe = &map->stripes[i];
5499 struct btrfs_device *device = stripe->dev;
5500
5501 __clear_extent_bit(&device->alloc_state, stripe->physical,
5502 stripe->physical + map->stripe_size - 1,
5503 bits | EXTENT_NOWAIT,
5504 NULL, NULL);
5505 }
5506}
5507
5508void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5509{
5510 write_lock(&fs_info->mapping_tree_lock);
5511 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5512 RB_CLEAR_NODE(&map->rb_node);
5513 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5514 write_unlock(&fs_info->mapping_tree_lock);
5515
5516 /* Once for the tree reference. */
5517 btrfs_free_chunk_map(map);
5518}
5519
5520EXPORT_FOR_TESTS
5521int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5522{
5523 struct rb_node **p;
5524 struct rb_node *parent = NULL;
5525 bool leftmost = true;
5526
5527 write_lock(&fs_info->mapping_tree_lock);
5528 p = &fs_info->mapping_tree.rb_root.rb_node;
5529 while (*p) {
5530 struct btrfs_chunk_map *entry;
5531
5532 parent = *p;
5533 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5534
5535 if (map->start < entry->start) {
5536 p = &(*p)->rb_left;
5537 } else if (map->start > entry->start) {
5538 p = &(*p)->rb_right;
5539 leftmost = false;
5540 } else {
5541 write_unlock(&fs_info->mapping_tree_lock);
5542 return -EEXIST;
5543 }
5544 }
5545 rb_link_node(&map->rb_node, parent, p);
5546 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5547 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5548 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5549 write_unlock(&fs_info->mapping_tree_lock);
5550
5551 return 0;
5552}
5553
5554EXPORT_FOR_TESTS
5555struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5556{
5557 struct btrfs_chunk_map *map;
5558
5559 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5560 if (!map)
5561 return NULL;
5562
5563 refcount_set(&map->refs, 1);
5564 RB_CLEAR_NODE(&map->rb_node);
5565
5566 return map;
5567}
5568
5569static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5570 struct alloc_chunk_ctl *ctl,
5571 struct btrfs_device_info *devices_info)
5572{
5573 struct btrfs_fs_info *info = trans->fs_info;
5574 struct btrfs_chunk_map *map;
5575 struct btrfs_block_group *block_group;
5576 u64 start = ctl->start;
5577 u64 type = ctl->type;
5578 int ret;
5579
5580 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5581 if (!map)
5582 return ERR_PTR(-ENOMEM);
5583
5584 map->start = start;
5585 map->chunk_len = ctl->chunk_size;
5586 map->stripe_size = ctl->stripe_size;
5587 map->type = type;
5588 map->io_align = BTRFS_STRIPE_LEN;
5589 map->io_width = BTRFS_STRIPE_LEN;
5590 map->sub_stripes = ctl->sub_stripes;
5591 map->num_stripes = ctl->num_stripes;
5592
5593 for (int i = 0; i < ctl->ndevs; i++) {
5594 for (int j = 0; j < ctl->dev_stripes; j++) {
5595 int s = i * ctl->dev_stripes + j;
5596 map->stripes[s].dev = devices_info[i].dev;
5597 map->stripes[s].physical = devices_info[i].dev_offset +
5598 j * ctl->stripe_size;
5599 }
5600 }
5601
5602 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5603
5604 ret = btrfs_add_chunk_map(info, map);
5605 if (ret) {
5606 btrfs_free_chunk_map(map);
5607 return ERR_PTR(ret);
5608 }
5609
5610 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5611 if (IS_ERR(block_group)) {
5612 btrfs_remove_chunk_map(info, map);
5613 return block_group;
5614 }
5615
5616 for (int i = 0; i < map->num_stripes; i++) {
5617 struct btrfs_device *dev = map->stripes[i].dev;
5618
5619 btrfs_device_set_bytes_used(dev,
5620 dev->bytes_used + ctl->stripe_size);
5621 if (list_empty(&dev->post_commit_list))
5622 list_add_tail(&dev->post_commit_list,
5623 &trans->transaction->dev_update_list);
5624 }
5625
5626 atomic64_sub(ctl->stripe_size * map->num_stripes,
5627 &info->free_chunk_space);
5628
5629 check_raid56_incompat_flag(info, type);
5630 check_raid1c34_incompat_flag(info, type);
5631
5632 return block_group;
5633}
5634
5635struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5636 u64 type)
5637{
5638 struct btrfs_fs_info *info = trans->fs_info;
5639 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5640 struct btrfs_device_info *devices_info = NULL;
5641 struct alloc_chunk_ctl ctl;
5642 struct btrfs_block_group *block_group;
5643 int ret;
5644
5645 lockdep_assert_held(&info->chunk_mutex);
5646
5647 if (!alloc_profile_is_valid(type, 0)) {
5648 ASSERT(0);
5649 return ERR_PTR(-EINVAL);
5650 }
5651
5652 if (list_empty(&fs_devices->alloc_list)) {
5653 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5654 btrfs_debug(info, "%s: no writable device", __func__);
5655 return ERR_PTR(-ENOSPC);
5656 }
5657
5658 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5659 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5660 ASSERT(0);
5661 return ERR_PTR(-EINVAL);
5662 }
5663
5664 ctl.start = find_next_chunk(info);
5665 ctl.type = type;
5666 init_alloc_chunk_ctl(fs_devices, &ctl);
5667
5668 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5669 GFP_NOFS);
5670 if (!devices_info)
5671 return ERR_PTR(-ENOMEM);
5672
5673 ret = gather_device_info(fs_devices, &ctl, devices_info);
5674 if (ret < 0) {
5675 block_group = ERR_PTR(ret);
5676 goto out;
5677 }
5678
5679 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5680 if (ret < 0) {
5681 block_group = ERR_PTR(ret);
5682 goto out;
5683 }
5684
5685 block_group = create_chunk(trans, &ctl, devices_info);
5686
5687out:
5688 kfree(devices_info);
5689 return block_group;
5690}
5691
5692/*
5693 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5694 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5695 * chunks.
5696 *
5697 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5698 * phases.
5699 */
5700int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5701 struct btrfs_block_group *bg)
5702{
5703 struct btrfs_fs_info *fs_info = trans->fs_info;
5704 struct btrfs_root *chunk_root = fs_info->chunk_root;
5705 struct btrfs_key key;
5706 struct btrfs_chunk *chunk;
5707 struct btrfs_stripe *stripe;
5708 struct btrfs_chunk_map *map;
5709 size_t item_size;
5710 int i;
5711 int ret;
5712
5713 /*
5714 * We take the chunk_mutex for 2 reasons:
5715 *
5716 * 1) Updates and insertions in the chunk btree must be done while holding
5717 * the chunk_mutex, as well as updating the system chunk array in the
5718 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5719 * details;
5720 *
5721 * 2) To prevent races with the final phase of a device replace operation
5722 * that replaces the device object associated with the map's stripes,
5723 * because the device object's id can change at any time during that
5724 * final phase of the device replace operation
5725 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5726 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5727 * which would cause a failure when updating the device item, which does
5728 * not exists, or persisting a stripe of the chunk item with such ID.
5729 * Here we can't use the device_list_mutex because our caller already
5730 * has locked the chunk_mutex, and the final phase of device replace
5731 * acquires both mutexes - first the device_list_mutex and then the
5732 * chunk_mutex. Using any of those two mutexes protects us from a
5733 * concurrent device replace.
5734 */
5735 lockdep_assert_held(&fs_info->chunk_mutex);
5736
5737 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5738 if (IS_ERR(map)) {
5739 ret = PTR_ERR(map);
5740 btrfs_abort_transaction(trans, ret);
5741 return ret;
5742 }
5743
5744 item_size = btrfs_chunk_item_size(map->num_stripes);
5745
5746 chunk = kzalloc(item_size, GFP_NOFS);
5747 if (!chunk) {
5748 ret = -ENOMEM;
5749 btrfs_abort_transaction(trans, ret);
5750 goto out;
5751 }
5752
5753 for (i = 0; i < map->num_stripes; i++) {
5754 struct btrfs_device *device = map->stripes[i].dev;
5755
5756 ret = btrfs_update_device(trans, device);
5757 if (ret)
5758 goto out;
5759 }
5760
5761 stripe = &chunk->stripe;
5762 for (i = 0; i < map->num_stripes; i++) {
5763 struct btrfs_device *device = map->stripes[i].dev;
5764 const u64 dev_offset = map->stripes[i].physical;
5765
5766 btrfs_set_stack_stripe_devid(stripe, device->devid);
5767 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5768 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5769 stripe++;
5770 }
5771
5772 btrfs_set_stack_chunk_length(chunk, bg->length);
5773 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5774 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5775 btrfs_set_stack_chunk_type(chunk, map->type);
5776 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5777 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5778 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5779 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5780 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5781
5782 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5783 key.type = BTRFS_CHUNK_ITEM_KEY;
5784 key.offset = bg->start;
5785
5786 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5787 if (ret)
5788 goto out;
5789
5790 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5791
5792 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5793 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5794 if (ret)
5795 goto out;
5796 }
5797
5798out:
5799 kfree(chunk);
5800 btrfs_free_chunk_map(map);
5801 return ret;
5802}
5803
5804static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5805{
5806 struct btrfs_fs_info *fs_info = trans->fs_info;
5807 u64 alloc_profile;
5808 struct btrfs_block_group *meta_bg;
5809 struct btrfs_block_group *sys_bg;
5810
5811 /*
5812 * When adding a new device for sprouting, the seed device is read-only
5813 * so we must first allocate a metadata and a system chunk. But before
5814 * adding the block group items to the extent, device and chunk btrees,
5815 * we must first:
5816 *
5817 * 1) Create both chunks without doing any changes to the btrees, as
5818 * otherwise we would get -ENOSPC since the block groups from the
5819 * seed device are read-only;
5820 *
5821 * 2) Add the device item for the new sprout device - finishing the setup
5822 * of a new block group requires updating the device item in the chunk
5823 * btree, so it must exist when we attempt to do it. The previous step
5824 * ensures this does not fail with -ENOSPC.
5825 *
5826 * After that we can add the block group items to their btrees:
5827 * update existing device item in the chunk btree, add a new block group
5828 * item to the extent btree, add a new chunk item to the chunk btree and
5829 * finally add the new device extent items to the devices btree.
5830 */
5831
5832 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5833 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5834 if (IS_ERR(meta_bg))
5835 return PTR_ERR(meta_bg);
5836
5837 alloc_profile = btrfs_system_alloc_profile(fs_info);
5838 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5839 if (IS_ERR(sys_bg))
5840 return PTR_ERR(sys_bg);
5841
5842 return 0;
5843}
5844
5845static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5846{
5847 const int index = btrfs_bg_flags_to_raid_index(map->type);
5848
5849 return btrfs_raid_array[index].tolerated_failures;
5850}
5851
5852bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5853{
5854 struct btrfs_chunk_map *map;
5855 int miss_ndevs = 0;
5856 int i;
5857 bool ret = true;
5858
5859 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5860 if (IS_ERR(map))
5861 return false;
5862
5863 for (i = 0; i < map->num_stripes; i++) {
5864 if (test_bit(BTRFS_DEV_STATE_MISSING,
5865 &map->stripes[i].dev->dev_state)) {
5866 miss_ndevs++;
5867 continue;
5868 }
5869 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5870 &map->stripes[i].dev->dev_state)) {
5871 ret = false;
5872 goto end;
5873 }
5874 }
5875
5876 /*
5877 * If the number of missing devices is larger than max errors, we can
5878 * not write the data into that chunk successfully.
5879 */
5880 if (miss_ndevs > btrfs_chunk_max_errors(map))
5881 ret = false;
5882end:
5883 btrfs_free_chunk_map(map);
5884 return ret;
5885}
5886
5887void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5888{
5889 write_lock(&fs_info->mapping_tree_lock);
5890 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5891 struct btrfs_chunk_map *map;
5892 struct rb_node *node;
5893
5894 node = rb_first_cached(&fs_info->mapping_tree);
5895 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5896 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5897 RB_CLEAR_NODE(&map->rb_node);
5898 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5899 /* Once for the tree ref. */
5900 btrfs_free_chunk_map(map);
5901 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5902 }
5903 write_unlock(&fs_info->mapping_tree_lock);
5904}
5905
5906static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5907{
5908 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5909
5910 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5911 return 2;
5912
5913 /*
5914 * There could be two corrupted data stripes, we need to loop retry in
5915 * order to rebuild the correct data.
5916 *
5917 * Fail a stripe at a time on every retry except the stripe under
5918 * reconstruction.
5919 */
5920 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5921 return map->num_stripes;
5922
5923 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5924 return btrfs_raid_array[index].ncopies;
5925}
5926
5927int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5928{
5929 struct btrfs_chunk_map *map;
5930 int ret;
5931
5932 map = btrfs_get_chunk_map(fs_info, logical, len);
5933 if (IS_ERR(map))
5934 /*
5935 * We could return errors for these cases, but that could get
5936 * ugly and we'd probably do the same thing which is just not do
5937 * anything else and exit, so return 1 so the callers don't try
5938 * to use other copies.
5939 */
5940 return 1;
5941
5942 ret = btrfs_chunk_map_num_copies(map);
5943 btrfs_free_chunk_map(map);
5944 return ret;
5945}
5946
5947unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5948 u64 logical)
5949{
5950 struct btrfs_chunk_map *map;
5951 unsigned long len = fs_info->sectorsize;
5952
5953 if (!btrfs_fs_incompat(fs_info, RAID56))
5954 return len;
5955
5956 map = btrfs_get_chunk_map(fs_info, logical, len);
5957
5958 if (!WARN_ON(IS_ERR(map))) {
5959 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5960 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5961 btrfs_free_chunk_map(map);
5962 }
5963 return len;
5964}
5965
5966static int find_live_mirror(struct btrfs_fs_info *fs_info,
5967 struct btrfs_chunk_map *map, int first,
5968 int dev_replace_is_ongoing)
5969{
5970 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5971 int i;
5972 int num_stripes;
5973 int preferred_mirror;
5974 int tolerance;
5975 struct btrfs_device *srcdev;
5976
5977 ASSERT((map->type &
5978 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5979
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5981 num_stripes = map->sub_stripes;
5982 else
5983 num_stripes = map->num_stripes;
5984
5985 switch (policy) {
5986 default:
5987 /* Shouldn't happen, just warn and use pid instead of failing */
5988 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5989 policy);
5990 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5991 fallthrough;
5992 case BTRFS_READ_POLICY_PID:
5993 preferred_mirror = first + (current->pid % num_stripes);
5994 break;
5995 }
5996
5997 if (dev_replace_is_ongoing &&
5998 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5999 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6000 srcdev = fs_info->dev_replace.srcdev;
6001 else
6002 srcdev = NULL;
6003
6004 /*
6005 * try to avoid the drive that is the source drive for a
6006 * dev-replace procedure, only choose it if no other non-missing
6007 * mirror is available
6008 */
6009 for (tolerance = 0; tolerance < 2; tolerance++) {
6010 if (map->stripes[preferred_mirror].dev->bdev &&
6011 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6012 return preferred_mirror;
6013 for (i = first; i < first + num_stripes; i++) {
6014 if (map->stripes[i].dev->bdev &&
6015 (tolerance || map->stripes[i].dev != srcdev))
6016 return i;
6017 }
6018 }
6019
6020 /* we couldn't find one that doesn't fail. Just return something
6021 * and the io error handling code will clean up eventually
6022 */
6023 return preferred_mirror;
6024}
6025
6026EXPORT_FOR_TESTS
6027struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6028 u64 logical, u16 total_stripes)
6029{
6030 struct btrfs_io_context *bioc;
6031
6032 bioc = kzalloc(
6033 /* The size of btrfs_io_context */
6034 sizeof(struct btrfs_io_context) +
6035 /* Plus the variable array for the stripes */
6036 sizeof(struct btrfs_io_stripe) * (total_stripes),
6037 GFP_NOFS);
6038
6039 if (!bioc)
6040 return NULL;
6041
6042 refcount_set(&bioc->refs, 1);
6043
6044 bioc->fs_info = fs_info;
6045 bioc->replace_stripe_src = -1;
6046 bioc->full_stripe_logical = (u64)-1;
6047 bioc->logical = logical;
6048
6049 return bioc;
6050}
6051
6052void btrfs_get_bioc(struct btrfs_io_context *bioc)
6053{
6054 WARN_ON(!refcount_read(&bioc->refs));
6055 refcount_inc(&bioc->refs);
6056}
6057
6058void btrfs_put_bioc(struct btrfs_io_context *bioc)
6059{
6060 if (!bioc)
6061 return;
6062 if (refcount_dec_and_test(&bioc->refs))
6063 kfree(bioc);
6064}
6065
6066/*
6067 * Please note that, discard won't be sent to target device of device
6068 * replace.
6069 */
6070struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6071 u64 logical, u64 *length_ret,
6072 u32 *num_stripes)
6073{
6074 struct btrfs_chunk_map *map;
6075 struct btrfs_discard_stripe *stripes;
6076 u64 length = *length_ret;
6077 u64 offset;
6078 u32 stripe_nr;
6079 u32 stripe_nr_end;
6080 u32 stripe_cnt;
6081 u64 stripe_end_offset;
6082 u64 stripe_offset;
6083 u32 stripe_index;
6084 u32 factor = 0;
6085 u32 sub_stripes = 0;
6086 u32 stripes_per_dev = 0;
6087 u32 remaining_stripes = 0;
6088 u32 last_stripe = 0;
6089 int ret;
6090 int i;
6091
6092 map = btrfs_get_chunk_map(fs_info, logical, length);
6093 if (IS_ERR(map))
6094 return ERR_CAST(map);
6095
6096 /* we don't discard raid56 yet */
6097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6098 ret = -EOPNOTSUPP;
6099 goto out_free_map;
6100 }
6101
6102 offset = logical - map->start;
6103 length = min_t(u64, map->start + map->chunk_len - logical, length);
6104 *length_ret = length;
6105
6106 /*
6107 * stripe_nr counts the total number of stripes we have to stride
6108 * to get to this block
6109 */
6110 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6111
6112 /* stripe_offset is the offset of this block in its stripe */
6113 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6114
6115 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6116 BTRFS_STRIPE_LEN_SHIFT;
6117 stripe_cnt = stripe_nr_end - stripe_nr;
6118 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6119 (offset + length);
6120 /*
6121 * after this, stripe_nr is the number of stripes on this
6122 * device we have to walk to find the data, and stripe_index is
6123 * the number of our device in the stripe array
6124 */
6125 *num_stripes = 1;
6126 stripe_index = 0;
6127 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6128 BTRFS_BLOCK_GROUP_RAID10)) {
6129 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6130 sub_stripes = 1;
6131 else
6132 sub_stripes = map->sub_stripes;
6133
6134 factor = map->num_stripes / sub_stripes;
6135 *num_stripes = min_t(u64, map->num_stripes,
6136 sub_stripes * stripe_cnt);
6137 stripe_index = stripe_nr % factor;
6138 stripe_nr /= factor;
6139 stripe_index *= sub_stripes;
6140
6141 remaining_stripes = stripe_cnt % factor;
6142 stripes_per_dev = stripe_cnt / factor;
6143 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6144 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6145 BTRFS_BLOCK_GROUP_DUP)) {
6146 *num_stripes = map->num_stripes;
6147 } else {
6148 stripe_index = stripe_nr % map->num_stripes;
6149 stripe_nr /= map->num_stripes;
6150 }
6151
6152 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6153 if (!stripes) {
6154 ret = -ENOMEM;
6155 goto out_free_map;
6156 }
6157
6158 for (i = 0; i < *num_stripes; i++) {
6159 stripes[i].physical =
6160 map->stripes[stripe_index].physical +
6161 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6162 stripes[i].dev = map->stripes[stripe_index].dev;
6163
6164 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6165 BTRFS_BLOCK_GROUP_RAID10)) {
6166 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6167
6168 if (i / sub_stripes < remaining_stripes)
6169 stripes[i].length += BTRFS_STRIPE_LEN;
6170
6171 /*
6172 * Special for the first stripe and
6173 * the last stripe:
6174 *
6175 * |-------|...|-------|
6176 * |----------|
6177 * off end_off
6178 */
6179 if (i < sub_stripes)
6180 stripes[i].length -= stripe_offset;
6181
6182 if (stripe_index >= last_stripe &&
6183 stripe_index <= (last_stripe +
6184 sub_stripes - 1))
6185 stripes[i].length -= stripe_end_offset;
6186
6187 if (i == sub_stripes - 1)
6188 stripe_offset = 0;
6189 } else {
6190 stripes[i].length = length;
6191 }
6192
6193 stripe_index++;
6194 if (stripe_index == map->num_stripes) {
6195 stripe_index = 0;
6196 stripe_nr++;
6197 }
6198 }
6199
6200 btrfs_free_chunk_map(map);
6201 return stripes;
6202out_free_map:
6203 btrfs_free_chunk_map(map);
6204 return ERR_PTR(ret);
6205}
6206
6207static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6208{
6209 struct btrfs_block_group *cache;
6210 bool ret;
6211
6212 /* Non zoned filesystem does not use "to_copy" flag */
6213 if (!btrfs_is_zoned(fs_info))
6214 return false;
6215
6216 cache = btrfs_lookup_block_group(fs_info, logical);
6217
6218 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6219
6220 btrfs_put_block_group(cache);
6221 return ret;
6222}
6223
6224static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6225 struct btrfs_dev_replace *dev_replace,
6226 u64 logical,
6227 struct btrfs_io_geometry *io_geom)
6228{
6229 u64 srcdev_devid = dev_replace->srcdev->devid;
6230 /*
6231 * At this stage, num_stripes is still the real number of stripes,
6232 * excluding the duplicated stripes.
6233 */
6234 int num_stripes = io_geom->num_stripes;
6235 int max_errors = io_geom->max_errors;
6236 int nr_extra_stripes = 0;
6237 int i;
6238
6239 /*
6240 * A block group which has "to_copy" set will eventually be copied by
6241 * the dev-replace process. We can avoid cloning IO here.
6242 */
6243 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6244 return;
6245
6246 /*
6247 * Duplicate the write operations while the dev-replace procedure is
6248 * running. Since the copying of the old disk to the new disk takes
6249 * place at run time while the filesystem is mounted writable, the
6250 * regular write operations to the old disk have to be duplicated to go
6251 * to the new disk as well.
6252 *
6253 * Note that device->missing is handled by the caller, and that the
6254 * write to the old disk is already set up in the stripes array.
6255 */
6256 for (i = 0; i < num_stripes; i++) {
6257 struct btrfs_io_stripe *old = &bioc->stripes[i];
6258 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6259
6260 if (old->dev->devid != srcdev_devid)
6261 continue;
6262
6263 new->physical = old->physical;
6264 new->dev = dev_replace->tgtdev;
6265 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6266 bioc->replace_stripe_src = i;
6267 nr_extra_stripes++;
6268 }
6269
6270 /* We can only have at most 2 extra nr_stripes (for DUP). */
6271 ASSERT(nr_extra_stripes <= 2);
6272 /*
6273 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6274 * replace.
6275 * If we have 2 extra stripes, only choose the one with smaller physical.
6276 */
6277 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6278 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6279 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6280
6281 /* Only DUP can have two extra stripes. */
6282 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6283
6284 /*
6285 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6286 * The extra stripe would still be there, but won't be accessed.
6287 */
6288 if (first->physical > second->physical) {
6289 swap(second->physical, first->physical);
6290 swap(second->dev, first->dev);
6291 nr_extra_stripes--;
6292 }
6293 }
6294
6295 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6296 io_geom->max_errors = max_errors + nr_extra_stripes;
6297 bioc->replace_nr_stripes = nr_extra_stripes;
6298}
6299
6300static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6301 struct btrfs_io_geometry *io_geom)
6302{
6303 /*
6304 * Stripe_nr is the stripe where this block falls. stripe_offset is
6305 * the offset of this block in its stripe.
6306 */
6307 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6308 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6309 ASSERT(io_geom->stripe_offset < U32_MAX);
6310
6311 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6312 unsigned long full_stripe_len =
6313 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6314
6315 /*
6316 * For full stripe start, we use previously calculated
6317 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6318 * STRIPE_LEN.
6319 *
6320 * By this we can avoid u64 division completely. And we have
6321 * to go rounddown(), not round_down(), as nr_data_stripes is
6322 * not ensured to be power of 2.
6323 */
6324 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6325 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6326
6327 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6328 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6329 /*
6330 * For writes to RAID56, allow to write a full stripe set, but
6331 * no straddling of stripe sets.
6332 */
6333 if (io_geom->op == BTRFS_MAP_WRITE)
6334 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6335 }
6336
6337 /*
6338 * For other RAID types and for RAID56 reads, allow a single stripe (on
6339 * a single disk).
6340 */
6341 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6342 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6343 return U64_MAX;
6344}
6345
6346static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6347 u64 *length, struct btrfs_io_stripe *dst,
6348 struct btrfs_chunk_map *map,
6349 struct btrfs_io_geometry *io_geom)
6350{
6351 dst->dev = map->stripes[io_geom->stripe_index].dev;
6352
6353 if (io_geom->op == BTRFS_MAP_READ &&
6354 btrfs_need_stripe_tree_update(fs_info, map->type))
6355 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6356 map->type,
6357 io_geom->stripe_index, dst);
6358
6359 dst->physical = map->stripes[io_geom->stripe_index].physical +
6360 io_geom->stripe_offset +
6361 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6362 return 0;
6363}
6364
6365static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6366 const struct btrfs_io_stripe *smap,
6367 const struct btrfs_chunk_map *map,
6368 int num_alloc_stripes,
6369 enum btrfs_map_op op, int mirror_num)
6370{
6371 if (!smap)
6372 return false;
6373
6374 if (num_alloc_stripes != 1)
6375 return false;
6376
6377 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6378 return false;
6379
6380 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6381 return false;
6382
6383 return true;
6384}
6385
6386static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6387 struct btrfs_io_geometry *io_geom)
6388{
6389 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6390 io_geom->stripe_nr /= map->num_stripes;
6391 if (io_geom->op == BTRFS_MAP_READ)
6392 io_geom->mirror_num = 1;
6393}
6394
6395static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6396 struct btrfs_chunk_map *map,
6397 struct btrfs_io_geometry *io_geom,
6398 bool dev_replace_is_ongoing)
6399{
6400 if (io_geom->op != BTRFS_MAP_READ) {
6401 io_geom->num_stripes = map->num_stripes;
6402 return;
6403 }
6404
6405 if (io_geom->mirror_num) {
6406 io_geom->stripe_index = io_geom->mirror_num - 1;
6407 return;
6408 }
6409
6410 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6411 dev_replace_is_ongoing);
6412 io_geom->mirror_num = io_geom->stripe_index + 1;
6413}
6414
6415static void map_blocks_dup(const struct btrfs_chunk_map *map,
6416 struct btrfs_io_geometry *io_geom)
6417{
6418 if (io_geom->op != BTRFS_MAP_READ) {
6419 io_geom->num_stripes = map->num_stripes;
6420 return;
6421 }
6422
6423 if (io_geom->mirror_num) {
6424 io_geom->stripe_index = io_geom->mirror_num - 1;
6425 return;
6426 }
6427
6428 io_geom->mirror_num = 1;
6429}
6430
6431static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6432 struct btrfs_chunk_map *map,
6433 struct btrfs_io_geometry *io_geom,
6434 bool dev_replace_is_ongoing)
6435{
6436 u32 factor = map->num_stripes / map->sub_stripes;
6437 int old_stripe_index;
6438
6439 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6440 io_geom->stripe_nr /= factor;
6441
6442 if (io_geom->op != BTRFS_MAP_READ) {
6443 io_geom->num_stripes = map->sub_stripes;
6444 return;
6445 }
6446
6447 if (io_geom->mirror_num) {
6448 io_geom->stripe_index += io_geom->mirror_num - 1;
6449 return;
6450 }
6451
6452 old_stripe_index = io_geom->stripe_index;
6453 io_geom->stripe_index = find_live_mirror(fs_info, map,
6454 io_geom->stripe_index,
6455 dev_replace_is_ongoing);
6456 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6457}
6458
6459static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6460 struct btrfs_io_geometry *io_geom,
6461 u64 logical, u64 *length)
6462{
6463 int data_stripes = nr_data_stripes(map);
6464
6465 /*
6466 * Needs full stripe mapping.
6467 *
6468 * Push stripe_nr back to the start of the full stripe For those cases
6469 * needing a full stripe, @stripe_nr is the full stripe number.
6470 *
6471 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6472 * that can be expensive. Here we just divide @stripe_nr with
6473 * @data_stripes.
6474 */
6475 io_geom->stripe_nr /= data_stripes;
6476
6477 /* RAID[56] write or recovery. Return all stripes */
6478 io_geom->num_stripes = map->num_stripes;
6479 io_geom->max_errors = btrfs_chunk_max_errors(map);
6480
6481 /* Return the length to the full stripe end. */
6482 *length = min(logical + *length,
6483 io_geom->raid56_full_stripe_start + map->start +
6484 btrfs_stripe_nr_to_offset(data_stripes)) -
6485 logical;
6486 io_geom->stripe_index = 0;
6487 io_geom->stripe_offset = 0;
6488}
6489
6490static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6491 struct btrfs_io_geometry *io_geom)
6492{
6493 int data_stripes = nr_data_stripes(map);
6494
6495 ASSERT(io_geom->mirror_num <= 1);
6496 /* Just grab the data stripe directly. */
6497 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6498 io_geom->stripe_nr /= data_stripes;
6499
6500 /* We distribute the parity blocks across stripes. */
6501 io_geom->stripe_index =
6502 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6503
6504 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6505 io_geom->mirror_num = 1;
6506}
6507
6508static void map_blocks_single(const struct btrfs_chunk_map *map,
6509 struct btrfs_io_geometry *io_geom)
6510{
6511 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6512 io_geom->stripe_nr /= map->num_stripes;
6513 io_geom->mirror_num = io_geom->stripe_index + 1;
6514}
6515
6516/*
6517 * Map one logical range to one or more physical ranges.
6518 *
6519 * @length: (Mandatory) mapped length of this run.
6520 * One logical range can be split into different segments
6521 * due to factors like zones and RAID0/5/6/10 stripe
6522 * boundaries.
6523 *
6524 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6525 * which has one or more physical ranges (btrfs_io_stripe)
6526 * recorded inside.
6527 * Caller should call btrfs_put_bioc() to free it after use.
6528 *
6529 * @smap: (Optional) single physical range optimization.
6530 * If the map request can be fulfilled by one single
6531 * physical range, and this is parameter is not NULL,
6532 * then @bioc_ret would be NULL, and @smap would be
6533 * updated.
6534 *
6535 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6536 * value is 0.
6537 *
6538 * Mirror number 0 means to choose any live mirrors.
6539 *
6540 * For non-RAID56 profiles, non-zero mirror_num means
6541 * the Nth mirror. (e.g. mirror_num 1 means the first
6542 * copy).
6543 *
6544 * For RAID56 profile, mirror 1 means rebuild from P and
6545 * the remaining data stripes.
6546 *
6547 * For RAID6 profile, mirror > 2 means mark another
6548 * data/P stripe error and rebuild from the remaining
6549 * stripes..
6550 */
6551int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6552 u64 logical, u64 *length,
6553 struct btrfs_io_context **bioc_ret,
6554 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6555{
6556 struct btrfs_chunk_map *map;
6557 struct btrfs_io_geometry io_geom = { 0 };
6558 u64 map_offset;
6559 int ret = 0;
6560 int num_copies;
6561 struct btrfs_io_context *bioc = NULL;
6562 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6563 int dev_replace_is_ongoing = 0;
6564 u16 num_alloc_stripes;
6565 u64 max_len;
6566
6567 ASSERT(bioc_ret);
6568
6569 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6570 io_geom.num_stripes = 1;
6571 io_geom.stripe_index = 0;
6572 io_geom.op = op;
6573
6574 map = btrfs_get_chunk_map(fs_info, logical, *length);
6575 if (IS_ERR(map))
6576 return PTR_ERR(map);
6577
6578 num_copies = btrfs_chunk_map_num_copies(map);
6579 if (io_geom.mirror_num > num_copies)
6580 return -EINVAL;
6581
6582 map_offset = logical - map->start;
6583 io_geom.raid56_full_stripe_start = (u64)-1;
6584 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6585 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6586
6587 if (dev_replace->replace_task != current)
6588 down_read(&dev_replace->rwsem);
6589
6590 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6591 /*
6592 * Hold the semaphore for read during the whole operation, write is
6593 * requested at commit time but must wait.
6594 */
6595 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6596 up_read(&dev_replace->rwsem);
6597
6598 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6599 case BTRFS_BLOCK_GROUP_RAID0:
6600 map_blocks_raid0(map, &io_geom);
6601 break;
6602 case BTRFS_BLOCK_GROUP_RAID1:
6603 case BTRFS_BLOCK_GROUP_RAID1C3:
6604 case BTRFS_BLOCK_GROUP_RAID1C4:
6605 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6606 break;
6607 case BTRFS_BLOCK_GROUP_DUP:
6608 map_blocks_dup(map, &io_geom);
6609 break;
6610 case BTRFS_BLOCK_GROUP_RAID10:
6611 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6612 break;
6613 case BTRFS_BLOCK_GROUP_RAID5:
6614 case BTRFS_BLOCK_GROUP_RAID6:
6615 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6616 map_blocks_raid56_write(map, &io_geom, logical, length);
6617 else
6618 map_blocks_raid56_read(map, &io_geom);
6619 break;
6620 default:
6621 /*
6622 * After this, stripe_nr is the number of stripes on this
6623 * device we have to walk to find the data, and stripe_index is
6624 * the number of our device in the stripe array
6625 */
6626 map_blocks_single(map, &io_geom);
6627 break;
6628 }
6629 if (io_geom.stripe_index >= map->num_stripes) {
6630 btrfs_crit(fs_info,
6631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6632 io_geom.stripe_index, map->num_stripes);
6633 ret = -EINVAL;
6634 goto out;
6635 }
6636
6637 num_alloc_stripes = io_geom.num_stripes;
6638 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6639 op != BTRFS_MAP_READ)
6640 /*
6641 * For replace case, we need to add extra stripes for extra
6642 * duplicated stripes.
6643 *
6644 * For both WRITE and GET_READ_MIRRORS, we may have at most
6645 * 2 more stripes (DUP types, otherwise 1).
6646 */
6647 num_alloc_stripes += 2;
6648
6649 /*
6650 * If this I/O maps to a single device, try to return the device and
6651 * physical block information on the stack instead of allocating an
6652 * I/O context structure.
6653 */
6654 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6655 io_geom.mirror_num)) {
6656 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6657 if (mirror_num_ret)
6658 *mirror_num_ret = io_geom.mirror_num;
6659 *bioc_ret = NULL;
6660 goto out;
6661 }
6662
6663 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6664 if (!bioc) {
6665 ret = -ENOMEM;
6666 goto out;
6667 }
6668 bioc->map_type = map->type;
6669
6670 /*
6671 * For RAID56 full map, we need to make sure the stripes[] follows the
6672 * rule that data stripes are all ordered, then followed with P and Q
6673 * (if we have).
6674 *
6675 * It's still mostly the same as other profiles, just with extra rotation.
6676 */
6677 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6678 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6679 /*
6680 * For RAID56 @stripe_nr is already the number of full stripes
6681 * before us, which is also the rotation value (needs to modulo
6682 * with num_stripes).
6683 *
6684 * In this case, we just add @stripe_nr with @i, then do the
6685 * modulo, to reduce one modulo call.
6686 */
6687 bioc->full_stripe_logical = map->start +
6688 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6689 nr_data_stripes(map));
6690 for (int i = 0; i < io_geom.num_stripes; i++) {
6691 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6692 u32 stripe_index;
6693
6694 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6695 dst->dev = map->stripes[stripe_index].dev;
6696 dst->physical =
6697 map->stripes[stripe_index].physical +
6698 io_geom.stripe_offset +
6699 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6700 }
6701 } else {
6702 /*
6703 * For all other non-RAID56 profiles, just copy the target
6704 * stripe into the bioc.
6705 */
6706 for (int i = 0; i < io_geom.num_stripes; i++) {
6707 ret = set_io_stripe(fs_info, logical, length,
6708 &bioc->stripes[i], map, &io_geom);
6709 if (ret < 0)
6710 break;
6711 io_geom.stripe_index++;
6712 }
6713 }
6714
6715 if (ret) {
6716 *bioc_ret = NULL;
6717 btrfs_put_bioc(bioc);
6718 goto out;
6719 }
6720
6721 if (op != BTRFS_MAP_READ)
6722 io_geom.max_errors = btrfs_chunk_max_errors(map);
6723
6724 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6725 op != BTRFS_MAP_READ) {
6726 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6727 }
6728
6729 *bioc_ret = bioc;
6730 bioc->num_stripes = io_geom.num_stripes;
6731 bioc->max_errors = io_geom.max_errors;
6732 bioc->mirror_num = io_geom.mirror_num;
6733
6734out:
6735 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6736 lockdep_assert_held(&dev_replace->rwsem);
6737 /* Unlock and let waiting writers proceed */
6738 up_read(&dev_replace->rwsem);
6739 }
6740 btrfs_free_chunk_map(map);
6741 return ret;
6742}
6743
6744static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6745 const struct btrfs_fs_devices *fs_devices)
6746{
6747 if (args->fsid == NULL)
6748 return true;
6749 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6750 return true;
6751 return false;
6752}
6753
6754static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6755 const struct btrfs_device *device)
6756{
6757 if (args->missing) {
6758 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6759 !device->bdev)
6760 return true;
6761 return false;
6762 }
6763
6764 if (device->devid != args->devid)
6765 return false;
6766 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6767 return false;
6768 return true;
6769}
6770
6771/*
6772 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6773 * return NULL.
6774 *
6775 * If devid and uuid are both specified, the match must be exact, otherwise
6776 * only devid is used.
6777 */
6778struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6779 const struct btrfs_dev_lookup_args *args)
6780{
6781 struct btrfs_device *device;
6782 struct btrfs_fs_devices *seed_devs;
6783
6784 if (dev_args_match_fs_devices(args, fs_devices)) {
6785 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6786 if (dev_args_match_device(args, device))
6787 return device;
6788 }
6789 }
6790
6791 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6792 if (!dev_args_match_fs_devices(args, seed_devs))
6793 continue;
6794 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6795 if (dev_args_match_device(args, device))
6796 return device;
6797 }
6798 }
6799
6800 return NULL;
6801}
6802
6803static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6804 u64 devid, u8 *dev_uuid)
6805{
6806 struct btrfs_device *device;
6807 unsigned int nofs_flag;
6808
6809 /*
6810 * We call this under the chunk_mutex, so we want to use NOFS for this
6811 * allocation, however we don't want to change btrfs_alloc_device() to
6812 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6813 * places.
6814 */
6815
6816 nofs_flag = memalloc_nofs_save();
6817 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6818 memalloc_nofs_restore(nofs_flag);
6819 if (IS_ERR(device))
6820 return device;
6821
6822 list_add(&device->dev_list, &fs_devices->devices);
6823 device->fs_devices = fs_devices;
6824 fs_devices->num_devices++;
6825
6826 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6827 fs_devices->missing_devices++;
6828
6829 return device;
6830}
6831
6832/*
6833 * Allocate new device struct, set up devid and UUID.
6834 *
6835 * @fs_info: used only for generating a new devid, can be NULL if
6836 * devid is provided (i.e. @devid != NULL).
6837 * @devid: a pointer to devid for this device. If NULL a new devid
6838 * is generated.
6839 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6840 * is generated.
6841 * @path: a pointer to device path if available, NULL otherwise.
6842 *
6843 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6844 * on error. Returned struct is not linked onto any lists and must be
6845 * destroyed with btrfs_free_device.
6846 */
6847struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6848 const u64 *devid, const u8 *uuid,
6849 const char *path)
6850{
6851 struct btrfs_device *dev;
6852 u64 tmp;
6853
6854 if (WARN_ON(!devid && !fs_info))
6855 return ERR_PTR(-EINVAL);
6856
6857 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6858 if (!dev)
6859 return ERR_PTR(-ENOMEM);
6860
6861 INIT_LIST_HEAD(&dev->dev_list);
6862 INIT_LIST_HEAD(&dev->dev_alloc_list);
6863 INIT_LIST_HEAD(&dev->post_commit_list);
6864
6865 atomic_set(&dev->dev_stats_ccnt, 0);
6866 btrfs_device_data_ordered_init(dev);
6867 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6868
6869 if (devid)
6870 tmp = *devid;
6871 else {
6872 int ret;
6873
6874 ret = find_next_devid(fs_info, &tmp);
6875 if (ret) {
6876 btrfs_free_device(dev);
6877 return ERR_PTR(ret);
6878 }
6879 }
6880 dev->devid = tmp;
6881
6882 if (uuid)
6883 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6884 else
6885 generate_random_uuid(dev->uuid);
6886
6887 if (path) {
6888 struct rcu_string *name;
6889
6890 name = rcu_string_strdup(path, GFP_KERNEL);
6891 if (!name) {
6892 btrfs_free_device(dev);
6893 return ERR_PTR(-ENOMEM);
6894 }
6895 rcu_assign_pointer(dev->name, name);
6896 }
6897
6898 return dev;
6899}
6900
6901static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6902 u64 devid, u8 *uuid, bool error)
6903{
6904 if (error)
6905 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6906 devid, uuid);
6907 else
6908 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6909 devid, uuid);
6910}
6911
6912u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6913{
6914 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6915
6916 return div_u64(map->chunk_len, data_stripes);
6917}
6918
6919#if BITS_PER_LONG == 32
6920/*
6921 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6922 * can't be accessed on 32bit systems.
6923 *
6924 * This function do mount time check to reject the fs if it already has
6925 * metadata chunk beyond that limit.
6926 */
6927static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6928 u64 logical, u64 length, u64 type)
6929{
6930 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6931 return 0;
6932
6933 if (logical + length < MAX_LFS_FILESIZE)
6934 return 0;
6935
6936 btrfs_err_32bit_limit(fs_info);
6937 return -EOVERFLOW;
6938}
6939
6940/*
6941 * This is to give early warning for any metadata chunk reaching
6942 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6943 * Although we can still access the metadata, it's not going to be possible
6944 * once the limit is reached.
6945 */
6946static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6947 u64 logical, u64 length, u64 type)
6948{
6949 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6950 return;
6951
6952 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6953 return;
6954
6955 btrfs_warn_32bit_limit(fs_info);
6956}
6957#endif
6958
6959static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6960 u64 devid, u8 *uuid)
6961{
6962 struct btrfs_device *dev;
6963
6964 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6965 btrfs_report_missing_device(fs_info, devid, uuid, true);
6966 return ERR_PTR(-ENOENT);
6967 }
6968
6969 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6970 if (IS_ERR(dev)) {
6971 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6972 devid, PTR_ERR(dev));
6973 return dev;
6974 }
6975 btrfs_report_missing_device(fs_info, devid, uuid, false);
6976
6977 return dev;
6978}
6979
6980static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6981 struct btrfs_chunk *chunk)
6982{
6983 BTRFS_DEV_LOOKUP_ARGS(args);
6984 struct btrfs_fs_info *fs_info = leaf->fs_info;
6985 struct btrfs_chunk_map *map;
6986 u64 logical;
6987 u64 length;
6988 u64 devid;
6989 u64 type;
6990 u8 uuid[BTRFS_UUID_SIZE];
6991 int index;
6992 int num_stripes;
6993 int ret;
6994 int i;
6995
6996 logical = key->offset;
6997 length = btrfs_chunk_length(leaf, chunk);
6998 type = btrfs_chunk_type(leaf, chunk);
6999 index = btrfs_bg_flags_to_raid_index(type);
7000 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7001
7002#if BITS_PER_LONG == 32
7003 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7004 if (ret < 0)
7005 return ret;
7006 warn_32bit_meta_chunk(fs_info, logical, length, type);
7007#endif
7008
7009 /*
7010 * Only need to verify chunk item if we're reading from sys chunk array,
7011 * as chunk item in tree block is already verified by tree-checker.
7012 */
7013 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7014 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7015 if (ret)
7016 return ret;
7017 }
7018
7019 map = btrfs_find_chunk_map(fs_info, logical, 1);
7020
7021 /* already mapped? */
7022 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7023 btrfs_free_chunk_map(map);
7024 return 0;
7025 } else if (map) {
7026 btrfs_free_chunk_map(map);
7027 }
7028
7029 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7030 if (!map)
7031 return -ENOMEM;
7032
7033 map->start = logical;
7034 map->chunk_len = length;
7035 map->num_stripes = num_stripes;
7036 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7037 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7038 map->type = type;
7039 /*
7040 * We can't use the sub_stripes value, as for profiles other than
7041 * RAID10, they may have 0 as sub_stripes for filesystems created by
7042 * older mkfs (<v5.4).
7043 * In that case, it can cause divide-by-zero errors later.
7044 * Since currently sub_stripes is fixed for each profile, let's
7045 * use the trusted value instead.
7046 */
7047 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7048 map->verified_stripes = 0;
7049 map->stripe_size = btrfs_calc_stripe_length(map);
7050 for (i = 0; i < num_stripes; i++) {
7051 map->stripes[i].physical =
7052 btrfs_stripe_offset_nr(leaf, chunk, i);
7053 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7054 args.devid = devid;
7055 read_extent_buffer(leaf, uuid, (unsigned long)
7056 btrfs_stripe_dev_uuid_nr(chunk, i),
7057 BTRFS_UUID_SIZE);
7058 args.uuid = uuid;
7059 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7060 if (!map->stripes[i].dev) {
7061 map->stripes[i].dev = handle_missing_device(fs_info,
7062 devid, uuid);
7063 if (IS_ERR(map->stripes[i].dev)) {
7064 ret = PTR_ERR(map->stripes[i].dev);
7065 btrfs_free_chunk_map(map);
7066 return ret;
7067 }
7068 }
7069
7070 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7071 &(map->stripes[i].dev->dev_state));
7072 }
7073
7074 ret = btrfs_add_chunk_map(fs_info, map);
7075 if (ret < 0) {
7076 btrfs_err(fs_info,
7077 "failed to add chunk map, start=%llu len=%llu: %d",
7078 map->start, map->chunk_len, ret);
7079 btrfs_free_chunk_map(map);
7080 }
7081
7082 return ret;
7083}
7084
7085static void fill_device_from_item(struct extent_buffer *leaf,
7086 struct btrfs_dev_item *dev_item,
7087 struct btrfs_device *device)
7088{
7089 unsigned long ptr;
7090
7091 device->devid = btrfs_device_id(leaf, dev_item);
7092 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7093 device->total_bytes = device->disk_total_bytes;
7094 device->commit_total_bytes = device->disk_total_bytes;
7095 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7096 device->commit_bytes_used = device->bytes_used;
7097 device->type = btrfs_device_type(leaf, dev_item);
7098 device->io_align = btrfs_device_io_align(leaf, dev_item);
7099 device->io_width = btrfs_device_io_width(leaf, dev_item);
7100 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7101 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7102 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7103
7104 ptr = btrfs_device_uuid(dev_item);
7105 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7106}
7107
7108static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7109 u8 *fsid)
7110{
7111 struct btrfs_fs_devices *fs_devices;
7112 int ret;
7113
7114 lockdep_assert_held(&uuid_mutex);
7115 ASSERT(fsid);
7116
7117 /* This will match only for multi-device seed fs */
7118 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7119 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7120 return fs_devices;
7121
7122
7123 fs_devices = find_fsid(fsid, NULL);
7124 if (!fs_devices) {
7125 if (!btrfs_test_opt(fs_info, DEGRADED))
7126 return ERR_PTR(-ENOENT);
7127
7128 fs_devices = alloc_fs_devices(fsid);
7129 if (IS_ERR(fs_devices))
7130 return fs_devices;
7131
7132 fs_devices->seeding = true;
7133 fs_devices->opened = 1;
7134 return fs_devices;
7135 }
7136
7137 /*
7138 * Upon first call for a seed fs fsid, just create a private copy of the
7139 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7140 */
7141 fs_devices = clone_fs_devices(fs_devices);
7142 if (IS_ERR(fs_devices))
7143 return fs_devices;
7144
7145 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7146 if (ret) {
7147 free_fs_devices(fs_devices);
7148 return ERR_PTR(ret);
7149 }
7150
7151 if (!fs_devices->seeding) {
7152 close_fs_devices(fs_devices);
7153 free_fs_devices(fs_devices);
7154 return ERR_PTR(-EINVAL);
7155 }
7156
7157 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7158
7159 return fs_devices;
7160}
7161
7162static int read_one_dev(struct extent_buffer *leaf,
7163 struct btrfs_dev_item *dev_item)
7164{
7165 BTRFS_DEV_LOOKUP_ARGS(args);
7166 struct btrfs_fs_info *fs_info = leaf->fs_info;
7167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7168 struct btrfs_device *device;
7169 u64 devid;
7170 int ret;
7171 u8 fs_uuid[BTRFS_FSID_SIZE];
7172 u8 dev_uuid[BTRFS_UUID_SIZE];
7173
7174 devid = btrfs_device_id(leaf, dev_item);
7175 args.devid = devid;
7176 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7177 BTRFS_UUID_SIZE);
7178 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7179 BTRFS_FSID_SIZE);
7180 args.uuid = dev_uuid;
7181 args.fsid = fs_uuid;
7182
7183 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7184 fs_devices = open_seed_devices(fs_info, fs_uuid);
7185 if (IS_ERR(fs_devices))
7186 return PTR_ERR(fs_devices);
7187 }
7188
7189 device = btrfs_find_device(fs_info->fs_devices, &args);
7190 if (!device) {
7191 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7192 btrfs_report_missing_device(fs_info, devid,
7193 dev_uuid, true);
7194 return -ENOENT;
7195 }
7196
7197 device = add_missing_dev(fs_devices, devid, dev_uuid);
7198 if (IS_ERR(device)) {
7199 btrfs_err(fs_info,
7200 "failed to add missing dev %llu: %ld",
7201 devid, PTR_ERR(device));
7202 return PTR_ERR(device);
7203 }
7204 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7205 } else {
7206 if (!device->bdev) {
7207 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7208 btrfs_report_missing_device(fs_info,
7209 devid, dev_uuid, true);
7210 return -ENOENT;
7211 }
7212 btrfs_report_missing_device(fs_info, devid,
7213 dev_uuid, false);
7214 }
7215
7216 if (!device->bdev &&
7217 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7218 /*
7219 * this happens when a device that was properly setup
7220 * in the device info lists suddenly goes bad.
7221 * device->bdev is NULL, and so we have to set
7222 * device->missing to one here
7223 */
7224 device->fs_devices->missing_devices++;
7225 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7226 }
7227
7228 /* Move the device to its own fs_devices */
7229 if (device->fs_devices != fs_devices) {
7230 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7231 &device->dev_state));
7232
7233 list_move(&device->dev_list, &fs_devices->devices);
7234 device->fs_devices->num_devices--;
7235 fs_devices->num_devices++;
7236
7237 device->fs_devices->missing_devices--;
7238 fs_devices->missing_devices++;
7239
7240 device->fs_devices = fs_devices;
7241 }
7242 }
7243
7244 if (device->fs_devices != fs_info->fs_devices) {
7245 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7246 if (device->generation !=
7247 btrfs_device_generation(leaf, dev_item))
7248 return -EINVAL;
7249 }
7250
7251 fill_device_from_item(leaf, dev_item, device);
7252 if (device->bdev) {
7253 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7254
7255 if (device->total_bytes > max_total_bytes) {
7256 btrfs_err(fs_info,
7257 "device total_bytes should be at most %llu but found %llu",
7258 max_total_bytes, device->total_bytes);
7259 return -EINVAL;
7260 }
7261 }
7262 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7263 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7264 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7265 device->fs_devices->total_rw_bytes += device->total_bytes;
7266 atomic64_add(device->total_bytes - device->bytes_used,
7267 &fs_info->free_chunk_space);
7268 }
7269 ret = 0;
7270 return ret;
7271}
7272
7273int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7274{
7275 struct btrfs_super_block *super_copy = fs_info->super_copy;
7276 struct extent_buffer *sb;
7277 struct btrfs_disk_key *disk_key;
7278 struct btrfs_chunk *chunk;
7279 u8 *array_ptr;
7280 unsigned long sb_array_offset;
7281 int ret = 0;
7282 u32 num_stripes;
7283 u32 array_size;
7284 u32 len = 0;
7285 u32 cur_offset;
7286 u64 type;
7287 struct btrfs_key key;
7288
7289 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7290
7291 /*
7292 * We allocated a dummy extent, just to use extent buffer accessors.
7293 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7294 * that's fine, we will not go beyond system chunk array anyway.
7295 */
7296 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7297 if (!sb)
7298 return -ENOMEM;
7299 set_extent_buffer_uptodate(sb);
7300
7301 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7302 array_size = btrfs_super_sys_array_size(super_copy);
7303
7304 array_ptr = super_copy->sys_chunk_array;
7305 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7306 cur_offset = 0;
7307
7308 while (cur_offset < array_size) {
7309 disk_key = (struct btrfs_disk_key *)array_ptr;
7310 len = sizeof(*disk_key);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7313
7314 btrfs_disk_key_to_cpu(&key, disk_key);
7315
7316 array_ptr += len;
7317 sb_array_offset += len;
7318 cur_offset += len;
7319
7320 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7321 btrfs_err(fs_info,
7322 "unexpected item type %u in sys_array at offset %u",
7323 (u32)key.type, cur_offset);
7324 ret = -EIO;
7325 break;
7326 }
7327
7328 chunk = (struct btrfs_chunk *)sb_array_offset;
7329 /*
7330 * At least one btrfs_chunk with one stripe must be present,
7331 * exact stripe count check comes afterwards
7332 */
7333 len = btrfs_chunk_item_size(1);
7334 if (cur_offset + len > array_size)
7335 goto out_short_read;
7336
7337 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7338 if (!num_stripes) {
7339 btrfs_err(fs_info,
7340 "invalid number of stripes %u in sys_array at offset %u",
7341 num_stripes, cur_offset);
7342 ret = -EIO;
7343 break;
7344 }
7345
7346 type = btrfs_chunk_type(sb, chunk);
7347 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7348 btrfs_err(fs_info,
7349 "invalid chunk type %llu in sys_array at offset %u",
7350 type, cur_offset);
7351 ret = -EIO;
7352 break;
7353 }
7354
7355 len = btrfs_chunk_item_size(num_stripes);
7356 if (cur_offset + len > array_size)
7357 goto out_short_read;
7358
7359 ret = read_one_chunk(&key, sb, chunk);
7360 if (ret)
7361 break;
7362
7363 array_ptr += len;
7364 sb_array_offset += len;
7365 cur_offset += len;
7366 }
7367 clear_extent_buffer_uptodate(sb);
7368 free_extent_buffer_stale(sb);
7369 return ret;
7370
7371out_short_read:
7372 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7373 len, cur_offset);
7374 clear_extent_buffer_uptodate(sb);
7375 free_extent_buffer_stale(sb);
7376 return -EIO;
7377}
7378
7379/*
7380 * Check if all chunks in the fs are OK for read-write degraded mount
7381 *
7382 * If the @failing_dev is specified, it's accounted as missing.
7383 *
7384 * Return true if all chunks meet the minimal RW mount requirements.
7385 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7386 */
7387bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7388 struct btrfs_device *failing_dev)
7389{
7390 struct btrfs_chunk_map *map;
7391 u64 next_start;
7392 bool ret = true;
7393
7394 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7395 /* No chunk at all? Return false anyway */
7396 if (!map) {
7397 ret = false;
7398 goto out;
7399 }
7400 while (map) {
7401 int missing = 0;
7402 int max_tolerated;
7403 int i;
7404
7405 max_tolerated =
7406 btrfs_get_num_tolerated_disk_barrier_failures(
7407 map->type);
7408 for (i = 0; i < map->num_stripes; i++) {
7409 struct btrfs_device *dev = map->stripes[i].dev;
7410
7411 if (!dev || !dev->bdev ||
7412 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7413 dev->last_flush_error)
7414 missing++;
7415 else if (failing_dev && failing_dev == dev)
7416 missing++;
7417 }
7418 if (missing > max_tolerated) {
7419 if (!failing_dev)
7420 btrfs_warn(fs_info,
7421 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7422 map->start, missing, max_tolerated);
7423 btrfs_free_chunk_map(map);
7424 ret = false;
7425 goto out;
7426 }
7427 next_start = map->start + map->chunk_len;
7428 btrfs_free_chunk_map(map);
7429
7430 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7431 }
7432out:
7433 return ret;
7434}
7435
7436static void readahead_tree_node_children(struct extent_buffer *node)
7437{
7438 int i;
7439 const int nr_items = btrfs_header_nritems(node);
7440
7441 for (i = 0; i < nr_items; i++)
7442 btrfs_readahead_node_child(node, i);
7443}
7444
7445int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7446{
7447 struct btrfs_root *root = fs_info->chunk_root;
7448 struct btrfs_path *path;
7449 struct extent_buffer *leaf;
7450 struct btrfs_key key;
7451 struct btrfs_key found_key;
7452 int ret;
7453 int slot;
7454 int iter_ret = 0;
7455 u64 total_dev = 0;
7456 u64 last_ra_node = 0;
7457
7458 path = btrfs_alloc_path();
7459 if (!path)
7460 return -ENOMEM;
7461
7462 /*
7463 * uuid_mutex is needed only if we are mounting a sprout FS
7464 * otherwise we don't need it.
7465 */
7466 mutex_lock(&uuid_mutex);
7467
7468 /*
7469 * It is possible for mount and umount to race in such a way that
7470 * we execute this code path, but open_fs_devices failed to clear
7471 * total_rw_bytes. We certainly want it cleared before reading the
7472 * device items, so clear it here.
7473 */
7474 fs_info->fs_devices->total_rw_bytes = 0;
7475
7476 /*
7477 * Lockdep complains about possible circular locking dependency between
7478 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7479 * used for freeze procection of a fs (struct super_block.s_writers),
7480 * which we take when starting a transaction, and extent buffers of the
7481 * chunk tree if we call read_one_dev() while holding a lock on an
7482 * extent buffer of the chunk tree. Since we are mounting the filesystem
7483 * and at this point there can't be any concurrent task modifying the
7484 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7485 */
7486 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7487 path->skip_locking = 1;
7488
7489 /*
7490 * Read all device items, and then all the chunk items. All
7491 * device items are found before any chunk item (their object id
7492 * is smaller than the lowest possible object id for a chunk
7493 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7494 */
7495 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7496 key.offset = 0;
7497 key.type = 0;
7498 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7499 struct extent_buffer *node = path->nodes[1];
7500
7501 leaf = path->nodes[0];
7502 slot = path->slots[0];
7503
7504 if (node) {
7505 if (last_ra_node != node->start) {
7506 readahead_tree_node_children(node);
7507 last_ra_node = node->start;
7508 }
7509 }
7510 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7511 struct btrfs_dev_item *dev_item;
7512 dev_item = btrfs_item_ptr(leaf, slot,
7513 struct btrfs_dev_item);
7514 ret = read_one_dev(leaf, dev_item);
7515 if (ret)
7516 goto error;
7517 total_dev++;
7518 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7519 struct btrfs_chunk *chunk;
7520
7521 /*
7522 * We are only called at mount time, so no need to take
7523 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7524 * we always lock first fs_info->chunk_mutex before
7525 * acquiring any locks on the chunk tree. This is a
7526 * requirement for chunk allocation, see the comment on
7527 * top of btrfs_chunk_alloc() for details.
7528 */
7529 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7530 ret = read_one_chunk(&found_key, leaf, chunk);
7531 if (ret)
7532 goto error;
7533 }
7534 }
7535 /* Catch error found during iteration */
7536 if (iter_ret < 0) {
7537 ret = iter_ret;
7538 goto error;
7539 }
7540
7541 /*
7542 * After loading chunk tree, we've got all device information,
7543 * do another round of validation checks.
7544 */
7545 if (total_dev != fs_info->fs_devices->total_devices) {
7546 btrfs_warn(fs_info,
7547"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7548 btrfs_super_num_devices(fs_info->super_copy),
7549 total_dev);
7550 fs_info->fs_devices->total_devices = total_dev;
7551 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7552 }
7553 if (btrfs_super_total_bytes(fs_info->super_copy) <
7554 fs_info->fs_devices->total_rw_bytes) {
7555 btrfs_err(fs_info,
7556 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7557 btrfs_super_total_bytes(fs_info->super_copy),
7558 fs_info->fs_devices->total_rw_bytes);
7559 ret = -EINVAL;
7560 goto error;
7561 }
7562 ret = 0;
7563error:
7564 mutex_unlock(&uuid_mutex);
7565
7566 btrfs_free_path(path);
7567 return ret;
7568}
7569
7570int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7571{
7572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7573 struct btrfs_device *device;
7574 int ret = 0;
7575
7576 fs_devices->fs_info = fs_info;
7577
7578 mutex_lock(&fs_devices->device_list_mutex);
7579 list_for_each_entry(device, &fs_devices->devices, dev_list)
7580 device->fs_info = fs_info;
7581
7582 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7583 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7584 device->fs_info = fs_info;
7585 ret = btrfs_get_dev_zone_info(device, false);
7586 if (ret)
7587 break;
7588 }
7589
7590 seed_devs->fs_info = fs_info;
7591 }
7592 mutex_unlock(&fs_devices->device_list_mutex);
7593
7594 return ret;
7595}
7596
7597static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7598 const struct btrfs_dev_stats_item *ptr,
7599 int index)
7600{
7601 u64 val;
7602
7603 read_extent_buffer(eb, &val,
7604 offsetof(struct btrfs_dev_stats_item, values) +
7605 ((unsigned long)ptr) + (index * sizeof(u64)),
7606 sizeof(val));
7607 return val;
7608}
7609
7610static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7611 struct btrfs_dev_stats_item *ptr,
7612 int index, u64 val)
7613{
7614 write_extent_buffer(eb, &val,
7615 offsetof(struct btrfs_dev_stats_item, values) +
7616 ((unsigned long)ptr) + (index * sizeof(u64)),
7617 sizeof(val));
7618}
7619
7620static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7621 struct btrfs_path *path)
7622{
7623 struct btrfs_dev_stats_item *ptr;
7624 struct extent_buffer *eb;
7625 struct btrfs_key key;
7626 int item_size;
7627 int i, ret, slot;
7628
7629 if (!device->fs_info->dev_root)
7630 return 0;
7631
7632 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7633 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7634 key.offset = device->devid;
7635 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7636 if (ret) {
7637 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7638 btrfs_dev_stat_set(device, i, 0);
7639 device->dev_stats_valid = 1;
7640 btrfs_release_path(path);
7641 return ret < 0 ? ret : 0;
7642 }
7643 slot = path->slots[0];
7644 eb = path->nodes[0];
7645 item_size = btrfs_item_size(eb, slot);
7646
7647 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7648
7649 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7650 if (item_size >= (1 + i) * sizeof(__le64))
7651 btrfs_dev_stat_set(device, i,
7652 btrfs_dev_stats_value(eb, ptr, i));
7653 else
7654 btrfs_dev_stat_set(device, i, 0);
7655 }
7656
7657 device->dev_stats_valid = 1;
7658 btrfs_dev_stat_print_on_load(device);
7659 btrfs_release_path(path);
7660
7661 return 0;
7662}
7663
7664int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7665{
7666 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7667 struct btrfs_device *device;
7668 struct btrfs_path *path = NULL;
7669 int ret = 0;
7670
7671 path = btrfs_alloc_path();
7672 if (!path)
7673 return -ENOMEM;
7674
7675 mutex_lock(&fs_devices->device_list_mutex);
7676 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7677 ret = btrfs_device_init_dev_stats(device, path);
7678 if (ret)
7679 goto out;
7680 }
7681 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7682 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7683 ret = btrfs_device_init_dev_stats(device, path);
7684 if (ret)
7685 goto out;
7686 }
7687 }
7688out:
7689 mutex_unlock(&fs_devices->device_list_mutex);
7690
7691 btrfs_free_path(path);
7692 return ret;
7693}
7694
7695static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7696 struct btrfs_device *device)
7697{
7698 struct btrfs_fs_info *fs_info = trans->fs_info;
7699 struct btrfs_root *dev_root = fs_info->dev_root;
7700 struct btrfs_path *path;
7701 struct btrfs_key key;
7702 struct extent_buffer *eb;
7703 struct btrfs_dev_stats_item *ptr;
7704 int ret;
7705 int i;
7706
7707 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7708 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7709 key.offset = device->devid;
7710
7711 path = btrfs_alloc_path();
7712 if (!path)
7713 return -ENOMEM;
7714 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7715 if (ret < 0) {
7716 btrfs_warn_in_rcu(fs_info,
7717 "error %d while searching for dev_stats item for device %s",
7718 ret, btrfs_dev_name(device));
7719 goto out;
7720 }
7721
7722 if (ret == 0 &&
7723 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7724 /* need to delete old one and insert a new one */
7725 ret = btrfs_del_item(trans, dev_root, path);
7726 if (ret != 0) {
7727 btrfs_warn_in_rcu(fs_info,
7728 "delete too small dev_stats item for device %s failed %d",
7729 btrfs_dev_name(device), ret);
7730 goto out;
7731 }
7732 ret = 1;
7733 }
7734
7735 if (ret == 1) {
7736 /* need to insert a new item */
7737 btrfs_release_path(path);
7738 ret = btrfs_insert_empty_item(trans, dev_root, path,
7739 &key, sizeof(*ptr));
7740 if (ret < 0) {
7741 btrfs_warn_in_rcu(fs_info,
7742 "insert dev_stats item for device %s failed %d",
7743 btrfs_dev_name(device), ret);
7744 goto out;
7745 }
7746 }
7747
7748 eb = path->nodes[0];
7749 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7750 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7751 btrfs_set_dev_stats_value(eb, ptr, i,
7752 btrfs_dev_stat_read(device, i));
7753 btrfs_mark_buffer_dirty(trans, eb);
7754
7755out:
7756 btrfs_free_path(path);
7757 return ret;
7758}
7759
7760/*
7761 * called from commit_transaction. Writes all changed device stats to disk.
7762 */
7763int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7764{
7765 struct btrfs_fs_info *fs_info = trans->fs_info;
7766 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7767 struct btrfs_device *device;
7768 int stats_cnt;
7769 int ret = 0;
7770
7771 mutex_lock(&fs_devices->device_list_mutex);
7772 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7773 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7774 if (!device->dev_stats_valid || stats_cnt == 0)
7775 continue;
7776
7777
7778 /*
7779 * There is a LOAD-LOAD control dependency between the value of
7780 * dev_stats_ccnt and updating the on-disk values which requires
7781 * reading the in-memory counters. Such control dependencies
7782 * require explicit read memory barriers.
7783 *
7784 * This memory barriers pairs with smp_mb__before_atomic in
7785 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7786 * barrier implied by atomic_xchg in
7787 * btrfs_dev_stats_read_and_reset
7788 */
7789 smp_rmb();
7790
7791 ret = update_dev_stat_item(trans, device);
7792 if (!ret)
7793 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7794 }
7795 mutex_unlock(&fs_devices->device_list_mutex);
7796
7797 return ret;
7798}
7799
7800void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7801{
7802 btrfs_dev_stat_inc(dev, index);
7803
7804 if (!dev->dev_stats_valid)
7805 return;
7806 btrfs_err_rl_in_rcu(dev->fs_info,
7807 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7808 btrfs_dev_name(dev),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7813 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7814}
7815
7816static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7817{
7818 int i;
7819
7820 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7821 if (btrfs_dev_stat_read(dev, i) != 0)
7822 break;
7823 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7824 return; /* all values == 0, suppress message */
7825
7826 btrfs_info_in_rcu(dev->fs_info,
7827 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7828 btrfs_dev_name(dev),
7829 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7834}
7835
7836int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7837 struct btrfs_ioctl_get_dev_stats *stats)
7838{
7839 BTRFS_DEV_LOOKUP_ARGS(args);
7840 struct btrfs_device *dev;
7841 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7842 int i;
7843
7844 mutex_lock(&fs_devices->device_list_mutex);
7845 args.devid = stats->devid;
7846 dev = btrfs_find_device(fs_info->fs_devices, &args);
7847 mutex_unlock(&fs_devices->device_list_mutex);
7848
7849 if (!dev) {
7850 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7851 return -ENODEV;
7852 } else if (!dev->dev_stats_valid) {
7853 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7854 return -ENODEV;
7855 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7856 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7857 if (stats->nr_items > i)
7858 stats->values[i] =
7859 btrfs_dev_stat_read_and_reset(dev, i);
7860 else
7861 btrfs_dev_stat_set(dev, i, 0);
7862 }
7863 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7864 current->comm, task_pid_nr(current));
7865 } else {
7866 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7867 if (stats->nr_items > i)
7868 stats->values[i] = btrfs_dev_stat_read(dev, i);
7869 }
7870 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7871 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7872 return 0;
7873}
7874
7875/*
7876 * Update the size and bytes used for each device where it changed. This is
7877 * delayed since we would otherwise get errors while writing out the
7878 * superblocks.
7879 *
7880 * Must be invoked during transaction commit.
7881 */
7882void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7883{
7884 struct btrfs_device *curr, *next;
7885
7886 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7887
7888 if (list_empty(&trans->dev_update_list))
7889 return;
7890
7891 /*
7892 * We don't need the device_list_mutex here. This list is owned by the
7893 * transaction and the transaction must complete before the device is
7894 * released.
7895 */
7896 mutex_lock(&trans->fs_info->chunk_mutex);
7897 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7898 post_commit_list) {
7899 list_del_init(&curr->post_commit_list);
7900 curr->commit_total_bytes = curr->disk_total_bytes;
7901 curr->commit_bytes_used = curr->bytes_used;
7902 }
7903 mutex_unlock(&trans->fs_info->chunk_mutex);
7904}
7905
7906/*
7907 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7908 */
7909int btrfs_bg_type_to_factor(u64 flags)
7910{
7911 const int index = btrfs_bg_flags_to_raid_index(flags);
7912
7913 return btrfs_raid_array[index].ncopies;
7914}
7915
7916
7917
7918static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7919 u64 chunk_offset, u64 devid,
7920 u64 physical_offset, u64 physical_len)
7921{
7922 struct btrfs_dev_lookup_args args = { .devid = devid };
7923 struct btrfs_chunk_map *map;
7924 struct btrfs_device *dev;
7925 u64 stripe_len;
7926 bool found = false;
7927 int ret = 0;
7928 int i;
7929
7930 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7931 if (!map) {
7932 btrfs_err(fs_info,
7933"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7934 physical_offset, devid);
7935 ret = -EUCLEAN;
7936 goto out;
7937 }
7938
7939 stripe_len = btrfs_calc_stripe_length(map);
7940 if (physical_len != stripe_len) {
7941 btrfs_err(fs_info,
7942"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7943 physical_offset, devid, map->start, physical_len,
7944 stripe_len);
7945 ret = -EUCLEAN;
7946 goto out;
7947 }
7948
7949 /*
7950 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7951 * space. Although kernel can handle it without problem, better to warn
7952 * the users.
7953 */
7954 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7955 btrfs_warn(fs_info,
7956 "devid %llu physical %llu len %llu inside the reserved space",
7957 devid, physical_offset, physical_len);
7958
7959 for (i = 0; i < map->num_stripes; i++) {
7960 if (map->stripes[i].dev->devid == devid &&
7961 map->stripes[i].physical == physical_offset) {
7962 found = true;
7963 if (map->verified_stripes >= map->num_stripes) {
7964 btrfs_err(fs_info,
7965 "too many dev extents for chunk %llu found",
7966 map->start);
7967 ret = -EUCLEAN;
7968 goto out;
7969 }
7970 map->verified_stripes++;
7971 break;
7972 }
7973 }
7974 if (!found) {
7975 btrfs_err(fs_info,
7976 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7977 physical_offset, devid);
7978 ret = -EUCLEAN;
7979 }
7980
7981 /* Make sure no dev extent is beyond device boundary */
7982 dev = btrfs_find_device(fs_info->fs_devices, &args);
7983 if (!dev) {
7984 btrfs_err(fs_info, "failed to find devid %llu", devid);
7985 ret = -EUCLEAN;
7986 goto out;
7987 }
7988
7989 if (physical_offset + physical_len > dev->disk_total_bytes) {
7990 btrfs_err(fs_info,
7991"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7992 devid, physical_offset, physical_len,
7993 dev->disk_total_bytes);
7994 ret = -EUCLEAN;
7995 goto out;
7996 }
7997
7998 if (dev->zone_info) {
7999 u64 zone_size = dev->zone_info->zone_size;
8000
8001 if (!IS_ALIGNED(physical_offset, zone_size) ||
8002 !IS_ALIGNED(physical_len, zone_size)) {
8003 btrfs_err(fs_info,
8004"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8005 devid, physical_offset, physical_len);
8006 ret = -EUCLEAN;
8007 goto out;
8008 }
8009 }
8010
8011out:
8012 btrfs_free_chunk_map(map);
8013 return ret;
8014}
8015
8016static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8017{
8018 struct rb_node *node;
8019 int ret = 0;
8020
8021 read_lock(&fs_info->mapping_tree_lock);
8022 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8023 struct btrfs_chunk_map *map;
8024
8025 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8026 if (map->num_stripes != map->verified_stripes) {
8027 btrfs_err(fs_info,
8028 "chunk %llu has missing dev extent, have %d expect %d",
8029 map->start, map->verified_stripes, map->num_stripes);
8030 ret = -EUCLEAN;
8031 goto out;
8032 }
8033 }
8034out:
8035 read_unlock(&fs_info->mapping_tree_lock);
8036 return ret;
8037}
8038
8039/*
8040 * Ensure that all dev extents are mapped to correct chunk, otherwise
8041 * later chunk allocation/free would cause unexpected behavior.
8042 *
8043 * NOTE: This will iterate through the whole device tree, which should be of
8044 * the same size level as the chunk tree. This slightly increases mount time.
8045 */
8046int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8047{
8048 struct btrfs_path *path;
8049 struct btrfs_root *root = fs_info->dev_root;
8050 struct btrfs_key key;
8051 u64 prev_devid = 0;
8052 u64 prev_dev_ext_end = 0;
8053 int ret = 0;
8054
8055 /*
8056 * We don't have a dev_root because we mounted with ignorebadroots and
8057 * failed to load the root, so we want to skip the verification in this
8058 * case for sure.
8059 *
8060 * However if the dev root is fine, but the tree itself is corrupted
8061 * we'd still fail to mount. This verification is only to make sure
8062 * writes can happen safely, so instead just bypass this check
8063 * completely in the case of IGNOREBADROOTS.
8064 */
8065 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8066 return 0;
8067
8068 key.objectid = 1;
8069 key.type = BTRFS_DEV_EXTENT_KEY;
8070 key.offset = 0;
8071
8072 path = btrfs_alloc_path();
8073 if (!path)
8074 return -ENOMEM;
8075
8076 path->reada = READA_FORWARD;
8077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8078 if (ret < 0)
8079 goto out;
8080
8081 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8082 ret = btrfs_next_leaf(root, path);
8083 if (ret < 0)
8084 goto out;
8085 /* No dev extents at all? Not good */
8086 if (ret > 0) {
8087 ret = -EUCLEAN;
8088 goto out;
8089 }
8090 }
8091 while (1) {
8092 struct extent_buffer *leaf = path->nodes[0];
8093 struct btrfs_dev_extent *dext;
8094 int slot = path->slots[0];
8095 u64 chunk_offset;
8096 u64 physical_offset;
8097 u64 physical_len;
8098 u64 devid;
8099
8100 btrfs_item_key_to_cpu(leaf, &key, slot);
8101 if (key.type != BTRFS_DEV_EXTENT_KEY)
8102 break;
8103 devid = key.objectid;
8104 physical_offset = key.offset;
8105
8106 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8107 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8108 physical_len = btrfs_dev_extent_length(leaf, dext);
8109
8110 /* Check if this dev extent overlaps with the previous one */
8111 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8112 btrfs_err(fs_info,
8113"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8114 devid, physical_offset, prev_dev_ext_end);
8115 ret = -EUCLEAN;
8116 goto out;
8117 }
8118
8119 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8120 physical_offset, physical_len);
8121 if (ret < 0)
8122 goto out;
8123 prev_devid = devid;
8124 prev_dev_ext_end = physical_offset + physical_len;
8125
8126 ret = btrfs_next_item(root, path);
8127 if (ret < 0)
8128 goto out;
8129 if (ret > 0) {
8130 ret = 0;
8131 break;
8132 }
8133 }
8134
8135 /* Ensure all chunks have corresponding dev extents */
8136 ret = verify_chunk_dev_extent_mapping(fs_info);
8137out:
8138 btrfs_free_path(path);
8139 return ret;
8140}
8141
8142/*
8143 * Check whether the given block group or device is pinned by any inode being
8144 * used as a swapfile.
8145 */
8146bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8147{
8148 struct btrfs_swapfile_pin *sp;
8149 struct rb_node *node;
8150
8151 spin_lock(&fs_info->swapfile_pins_lock);
8152 node = fs_info->swapfile_pins.rb_node;
8153 while (node) {
8154 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8155 if (ptr < sp->ptr)
8156 node = node->rb_left;
8157 else if (ptr > sp->ptr)
8158 node = node->rb_right;
8159 else
8160 break;
8161 }
8162 spin_unlock(&fs_info->swapfile_pins_lock);
8163 return node != NULL;
8164}
8165
8166static int relocating_repair_kthread(void *data)
8167{
8168 struct btrfs_block_group *cache = data;
8169 struct btrfs_fs_info *fs_info = cache->fs_info;
8170 u64 target;
8171 int ret = 0;
8172
8173 target = cache->start;
8174 btrfs_put_block_group(cache);
8175
8176 sb_start_write(fs_info->sb);
8177 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8178 btrfs_info(fs_info,
8179 "zoned: skip relocating block group %llu to repair: EBUSY",
8180 target);
8181 sb_end_write(fs_info->sb);
8182 return -EBUSY;
8183 }
8184
8185 mutex_lock(&fs_info->reclaim_bgs_lock);
8186
8187 /* Ensure block group still exists */
8188 cache = btrfs_lookup_block_group(fs_info, target);
8189 if (!cache)
8190 goto out;
8191
8192 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8193 goto out;
8194
8195 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8196 if (ret < 0)
8197 goto out;
8198
8199 btrfs_info(fs_info,
8200 "zoned: relocating block group %llu to repair IO failure",
8201 target);
8202 ret = btrfs_relocate_chunk(fs_info, target);
8203
8204out:
8205 if (cache)
8206 btrfs_put_block_group(cache);
8207 mutex_unlock(&fs_info->reclaim_bgs_lock);
8208 btrfs_exclop_finish(fs_info);
8209 sb_end_write(fs_info->sb);
8210
8211 return ret;
8212}
8213
8214bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8215{
8216 struct btrfs_block_group *cache;
8217
8218 if (!btrfs_is_zoned(fs_info))
8219 return false;
8220
8221 /* Do not attempt to repair in degraded state */
8222 if (btrfs_test_opt(fs_info, DEGRADED))
8223 return true;
8224
8225 cache = btrfs_lookup_block_group(fs_info, logical);
8226 if (!cache)
8227 return true;
8228
8229 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8230 btrfs_put_block_group(cache);
8231 return true;
8232 }
8233
8234 kthread_run(relocating_repair_kthread, cache,
8235 "btrfs-relocating-repair");
8236
8237 return true;
8238}
8239
8240static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8241 struct btrfs_io_stripe *smap,
8242 u64 logical)
8243{
8244 int data_stripes = nr_bioc_data_stripes(bioc);
8245 int i;
8246
8247 for (i = 0; i < data_stripes; i++) {
8248 u64 stripe_start = bioc->full_stripe_logical +
8249 btrfs_stripe_nr_to_offset(i);
8250
8251 if (logical >= stripe_start &&
8252 logical < stripe_start + BTRFS_STRIPE_LEN)
8253 break;
8254 }
8255 ASSERT(i < data_stripes);
8256 smap->dev = bioc->stripes[i].dev;
8257 smap->physical = bioc->stripes[i].physical +
8258 ((logical - bioc->full_stripe_logical) &
8259 BTRFS_STRIPE_LEN_MASK);
8260}
8261
8262/*
8263 * Map a repair write into a single device.
8264 *
8265 * A repair write is triggered by read time repair or scrub, which would only
8266 * update the contents of a single device.
8267 * Not update any other mirrors nor go through RMW path.
8268 *
8269 * Callers should ensure:
8270 *
8271 * - Call btrfs_bio_counter_inc_blocked() first
8272 * - The range does not cross stripe boundary
8273 * - Has a valid @mirror_num passed in.
8274 */
8275int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8276 struct btrfs_io_stripe *smap, u64 logical,
8277 u32 length, int mirror_num)
8278{
8279 struct btrfs_io_context *bioc = NULL;
8280 u64 map_length = length;
8281 int mirror_ret = mirror_num;
8282 int ret;
8283
8284 ASSERT(mirror_num > 0);
8285
8286 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8287 &bioc, smap, &mirror_ret);
8288 if (ret < 0)
8289 return ret;
8290
8291 /* The map range should not cross stripe boundary. */
8292 ASSERT(map_length >= length);
8293
8294 /* Already mapped to single stripe. */
8295 if (!bioc)
8296 goto out;
8297
8298 /* Map the RAID56 multi-stripe writes to a single one. */
8299 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8300 map_raid56_repair_block(bioc, smap, logical);
8301 goto out;
8302 }
8303
8304 ASSERT(mirror_num <= bioc->num_stripes);
8305 smap->dev = bioc->stripes[mirror_num - 1].dev;
8306 smap->physical = bioc->stripes[mirror_num - 1].physical;
8307out:
8308 btrfs_put_bioc(bioc);
8309 ASSERT(smap->dev);
8310 return 0;
8311}