Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161};
162
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175}
176
177const char *btrfs_bg_type_to_raid_name(u64 flags)
178{
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185}
186
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
248static int init_first_rw_device(struct btrfs_trans_handle *trans);
249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352DEFINE_MUTEX(uuid_mutex);
353static LIST_HEAD(fs_uuids);
354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355{
356 return &fs_uuids;
357}
358
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370{
371 struct btrfs_fs_devices *fs_devs;
372
373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
381 INIT_LIST_HEAD(&fs_devs->fs_list);
382 INIT_LIST_HEAD(&fs_devs->seed_list);
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
391 return fs_devs;
392}
393
394void btrfs_free_device(struct btrfs_device *device)
395{
396 WARN_ON(!list_empty(&device->post_commit_list));
397 rcu_string_free(device->name);
398 extent_io_tree_release(&device->alloc_state);
399 btrfs_destroy_dev_zone_info(device);
400 kfree(device);
401}
402
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
406
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
412 btrfs_free_device(device);
413 }
414 kfree(fs_devices);
415}
416
417void __exit btrfs_cleanup_fs_uuids(void)
418{
419 struct btrfs_fs_devices *fs_devices;
420
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
425 free_fs_devices(fs_devices);
426 }
427}
428
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
431{
432 struct btrfs_fs_devices *fs_devices;
433
434 ASSERT(fsid);
435
436 /* Handle non-split brain cases */
437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
447 }
448 return NULL;
449}
450
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
495 struct btrfs_super_block **disk_super)
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
503 goto error;
504 }
505
506 if (flush)
507 sync_blockdev(*bdev);
508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
525 return ret;
526}
527
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
531 *
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
534 * @skip_device: Optional. Will skip this device when searching for the stale
535 * devices.
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
540 */
541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
542{
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
545 int ret = 0;
546
547 lockdep_assert_held(&uuid_mutex);
548
549 if (devt)
550 ret = -ENOENT;
551
552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
553
554 mutex_lock(&fs_devices->device_list_mutex);
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
557 if (skip_device && skip_device == device)
558 continue;
559 if (devt && devt != device->devt)
560 continue;
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
563 if (devt && ret != 0)
564 ret = -EBUSY;
565 break;
566 }
567
568 /* delete the stale device */
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
573 ret = 0;
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
576
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
581 }
582 }
583
584 return ret;
585}
586
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
596 struct block_device *bdev;
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
607 &bdev, &disk_super);
608 if (ret)
609 return ret;
610
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
613 goto error_free_page;
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
616 goto error_free_page;
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
625 goto error_free_page;
626 }
627
628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
629 fs_devices->seeding = true;
630 } else {
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 }
636
637 if (!bdev_nonrot(bdev))
638 fs_devices->rotating = true;
639
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
643 device->bdev = bdev;
644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
645 device->mode = flags;
646
647 fs_devices->open_devices++;
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
650 fs_devices->rw_devices++;
651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
652 }
653 btrfs_release_disk_super(disk_super);
654
655 return 0;
656
657error_free_page:
658 btrfs_release_disk_super(disk_super);
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
684 return find_fsid(disk_super->fsid, NULL);
685}
686
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
695 * multiple successful changes of FSID but currently device didn't
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 /* Changed UUIDs */
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
717 return fs_devices;
718 }
719
720 return NULL;
721}
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
731 * time * fs_devices was first created by another constitutent device
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
754 */
755static noinline struct btrfs_device *device_list_add(const char *path,
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
758{
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = NULL;
761 struct rcu_string *name;
762 u64 found_transid = btrfs_super_generation(disk_super);
763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
764 dev_t path_devt;
765 int error;
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
770
771 error = lookup_bdev(path, &path_devt);
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
775 return ERR_PTR(error);
776 }
777
778 if (fsid_change_in_progress) {
779 if (!has_metadata_uuid)
780 fs_devices = find_fsid_inprogress(disk_super);
781 else
782 fs_devices = find_fsid_changed(disk_super);
783 } else if (has_metadata_uuid) {
784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
785 } else {
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
789 }
790
791
792 if (!fs_devices) {
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
799 if (IS_ERR(fs_devices))
800 return ERR_CAST(fs_devices);
801
802 fs_devices->fsid_change = fsid_change_in_progress;
803
804 mutex_lock(&fs_devices->device_list_mutex);
805 list_add(&fs_devices->fs_list, &fs_uuids);
806
807 device = NULL;
808 } else {
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
814 mutex_lock(&fs_devices->device_list_mutex);
815 device = btrfs_find_device(fs_devices, &args);
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
822 if (fs_devices->fsid_change &&
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
834
835 fs_devices->fsid_change = false;
836 }
837 }
838
839 if (!device) {
840 unsigned int nofs_flag;
841
842 if (fs_devices->opened) {
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
846 mutex_unlock(&fs_devices->device_list_mutex);
847 return ERR_PTR(-EBUSY);
848 }
849
850 nofs_flag = memalloc_nofs_save();
851 device = btrfs_alloc_device(NULL, &devid,
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
857 return device;
858 }
859
860 device->devt = path_devt;
861
862 list_add_rcu(&device->dev_list, &fs_devices->devices);
863 fs_devices->num_devices++;
864
865 device->fs_devices = fs_devices;
866 *new_device_added = true;
867
868 if (disk_super->label[0])
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
873 else
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
878
879 } else if (!device->name || strcmp(device->name->str, path)) {
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
905 */
906 if (!fs_devices->opened && found_transid < device->generation) {
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
914 mutex_unlock(&fs_devices->device_list_mutex);
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
918 return ERR_PTR(-EEXIST);
919 }
920
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
929 */
930 if (device->bdev) {
931 if (device->devt != path_devt) {
932 mutex_unlock(&fs_devices->device_list_mutex);
933 btrfs_warn_in_rcu(NULL,
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
938 return ERR_PTR(-EEXIST);
939 }
940 btrfs_info_in_rcu(NULL,
941 "devid %llu device path %s changed to %s scanned by %s (%d)",
942 devid, btrfs_dev_name(device),
943 path, current->comm,
944 task_pid_nr(current));
945 }
946
947 name = rcu_string_strdup(path, GFP_NOFS);
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 return ERR_PTR(-ENOMEM);
951 }
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 fs_devices->missing_devices--;
956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 }
958 device->devt = path_devt;
959 }
960
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
967 if (!fs_devices->opened) {
968 device->generation = found_transid;
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
972
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
975 mutex_unlock(&fs_devices->device_list_mutex);
976 return device;
977}
978
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
984 int ret = 0;
985
986 lockdep_assert_held(&uuid_mutex);
987
988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 if (IS_ERR(fs_devices))
990 return fs_devices;
991
992 fs_devices->total_devices = orig->total_devices;
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
1003
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid, dev_path);
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1008 goto error;
1009 }
1010
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
1030 return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034 struct btrfs_device **latest_dev)
1035{
1036 struct btrfs_device *device, *next;
1037
1038 /* This is the initialized path, it is safe to release the devices. */
1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042 &device->dev_state) &&
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
1048 }
1049 continue;
1050 }
1051
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
1059 if (device->bdev) {
1060 blkdev_put(device->bdev, device->mode);
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065 list_del_init(&device->dev_alloc_list);
1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067 fs_devices->rw_devices--;
1068 }
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
1071 btrfs_free_device(device);
1072 }
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082 struct btrfs_device *latest_dev = NULL;
1083 struct btrfs_fs_devices *seed_dev;
1084
1085 mutex_lock(&uuid_mutex);
1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091 fs_devices->latest_dev = latest_dev;
1092
1093 mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098 if (!device->bdev)
1099 return;
1100
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
1106 blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124 fs_devices->missing_devices--;
1125 }
1126
1127 btrfs_close_bdev(device);
1128 if (device->bdev) {
1129 fs_devices->open_devices--;
1130 device->bdev = NULL;
1131 }
1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 btrfs_destroy_dev_zone_info(device);
1134
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
1138
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
1152 /* Verify the device is back in a pristine state */
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 ASSERT(list_empty(&device->dev_alloc_list));
1156 ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened) {
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 close_fs_devices(fs_devices);
1203 list_del(&fs_devices->seed_list);
1204 free_fs_devices(fs_devices);
1205 }
1206 mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 fmode_t flags, void *holder)
1211{
1212 struct btrfs_device *device;
1213 struct btrfs_device *latest_dev = NULL;
1214 struct btrfs_device *tmp_device;
1215
1216 flags |= FMODE_EXCL;
1217
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
1221
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
1225 latest_dev = device;
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
1231 }
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
1235 fs_devices->opened = 1;
1236 fs_devices->latest_dev = latest_dev;
1237 fs_devices->total_rw_bytes = 0;
1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241 return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
1246{
1247 const struct btrfs_device *dev1, *dev2;
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 fmode_t flags, void *holder)
1261{
1262 int ret;
1263
1264 lockdep_assert_held(&uuid_mutex);
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
1267 * underlying device takes further locks like open_mutex.
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
1272
1273 if (fs_devices->opened) {
1274 fs_devices->opened++;
1275 ret = 0;
1276 } else {
1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 ret = open_fs_devices(fs_devices, flags, holder);
1279 }
1280
1281 return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286 struct page *page = virt_to_page(super);
1287
1288 put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 u64 bytenr, u64 bytenr_orig)
1293{
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 return ERR_PTR(-EINVAL);
1302
1303 /* make sure our super fits in the page */
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
1311
1312 /* pull in the page with our super */
1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
1317
1318 p = page_address(page);
1319
1320 /* align our pointer to the offset of the super block */
1321 disk_super = p + offset_in_page(bytenr);
1322
1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 btrfs_release_disk_super(p);
1326 return ERR_PTR(-EINVAL);
1327 }
1328
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332 return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
1340 ret = btrfs_free_stale_devices(devt, NULL);
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
1353{
1354 struct btrfs_super_block *disk_super;
1355 bool new_device_added = false;
1356 struct btrfs_device *device = NULL;
1357 struct block_device *bdev;
1358 u64 bytenr, bytenr_orig;
1359 int ret;
1360
1361 lockdep_assert_held(&uuid_mutex);
1362
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
1369 flags |= FMODE_EXCL;
1370
1371 bdev = blkdev_get_by_path(path, flags, holder);
1372 if (IS_ERR(bdev))
1373 return ERR_CAST(bdev);
1374
1375 bytenr_orig = btrfs_sb_offset(0);
1376 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 if (ret) {
1378 device = ERR_PTR(ret);
1379 goto error_bdev_put;
1380 }
1381
1382 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 if (IS_ERR(disk_super)) {
1384 device = ERR_CAST(disk_super);
1385 goto error_bdev_put;
1386 }
1387
1388 device = device_list_add(path, disk_super, &new_device_added);
1389 if (!IS_ERR(device) && new_device_added)
1390 btrfs_free_stale_devices(device->devt, device);
1391
1392 btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395 blkdev_put(bdev, flags);
1396
1397 return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 u64 len)
1406{
1407 u64 physical_start, physical_end;
1408
1409 lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411 if (!find_first_extent_bit(&device->alloc_state, *start,
1412 &physical_start, &physical_end,
1413 CHUNK_ALLOCATED, NULL)) {
1414
1415 if (in_range(physical_start, *start, len) ||
1416 in_range(*start, physical_start,
1417 physical_end - physical_start)) {
1418 *start = physical_end + 1;
1419 return true;
1420 }
1421 }
1422 return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
1429 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430 case BTRFS_CHUNK_ALLOC_ZONED:
1431 /*
1432 * We don't care about the starting region like regular
1433 * allocator, because we anyway use/reserve the first two zones
1434 * for superblock logging.
1435 */
1436 return ALIGN(start, device->zone_info->zone_size);
1437 default:
1438 BUG();
1439 }
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 u64 *hole_start, u64 *hole_size,
1444 u64 num_bytes)
1445{
1446 u64 zone_size = device->zone_info->zone_size;
1447 u64 pos;
1448 int ret;
1449 bool changed = false;
1450
1451 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453 while (*hole_size > 0) {
1454 pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 *hole_start + *hole_size,
1456 num_bytes);
1457 if (pos != *hole_start) {
1458 *hole_size = *hole_start + *hole_size - pos;
1459 *hole_start = pos;
1460 changed = true;
1461 if (*hole_size < num_bytes)
1462 break;
1463 }
1464
1465 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467 /* Range is ensured to be empty */
1468 if (!ret)
1469 return changed;
1470
1471 /* Given hole range was invalid (outside of device) */
1472 if (ret == -ERANGE) {
1473 *hole_start += *hole_size;
1474 *hole_size = 0;
1475 return true;
1476 }
1477
1478 *hole_start += zone_size;
1479 *hole_size -= zone_size;
1480 changed = true;
1481 }
1482
1483 return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1499{
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1502
1503 for (;;) {
1504 /*
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1507 */
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1511 else
1512 *hole_size = 0;
1513 changed = true;
1514 }
1515
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1519 break;
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1523 changed = true;
1524 /*
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1527 */
1528 continue;
1529 }
1530 break;
1531 default:
1532 BUG();
1533 }
1534
1535 break;
1536 }
1537
1538 return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device: the device which we search the free space in
1545 * @num_bytes: the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start: store the start of the free space.
1548 * @len: the size of the free space. that we find, or the size
1549 * of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1570 u64 *len)
1571{
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_key key;
1575 struct btrfs_dev_extent *dev_extent;
1576 struct btrfs_path *path;
1577 u64 hole_size;
1578 u64 max_hole_start;
1579 u64 max_hole_size;
1580 u64 extent_end;
1581 u64 search_end = device->total_bytes;
1582 int ret;
1583 int slot;
1584 struct extent_buffer *l;
1585
1586 search_start = dev_extent_search_start(device, search_start);
1587
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 max_hole_start = search_start;
1596 max_hole_size = 0;
1597
1598again:
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 ret = -ENOSPC;
1602 goto out;
1603 }
1604
1605 path->reada = READA_FORWARD;
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
1608
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613 ret = btrfs_search_backwards(root, &key, path);
1614 if (ret < 0)
1615 goto out;
1616
1617 while (search_start < search_end) {
1618 l = path->nodes[0];
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1622 if (ret == 0)
1623 continue;
1624 if (ret < 0)
1625 goto out;
1626
1627 break;
1628 }
1629 btrfs_item_key_to_cpu(l, &key, slot);
1630
1631 if (key.objectid < device->devid)
1632 goto next;
1633
1634 if (key.objectid > device->devid)
1635 break;
1636
1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 goto next;
1639
1640 if (key.offset > search_end)
1641 break;
1642
1643 if (key.offset > search_start) {
1644 hole_size = key.offset - search_start;
1645 dev_extent_hole_check(device, &search_start, &hole_size,
1646 num_bytes);
1647
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
1652
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
1665 }
1666 }
1667
1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
1673next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
1677
1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
1683 if (search_end > search_start) {
1684 hole_size = search_end - search_start;
1685 if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 num_bytes)) {
1687 btrfs_release_path(path);
1688 goto again;
1689 }
1690
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
1695 }
1696
1697 /* See above. */
1698 if (max_hole_size < num_bytes)
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
1703 ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705 btrfs_free_path(path);
1706 *start = max_hole_start;
1707 if (len)
1708 *len = max_hole_size;
1709 return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713 u64 *start, u64 *len)
1714{
1715 /* FIXME use last free of some kind */
1716 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720 struct btrfs_device *device,
1721 u64 start, u64 *dev_extent_len)
1722{
1723 struct btrfs_fs_info *fs_info = device->fs_info;
1724 struct btrfs_root *root = fs_info->dev_root;
1725 int ret;
1726 struct btrfs_path *path;
1727 struct btrfs_key key;
1728 struct btrfs_key found_key;
1729 struct extent_buffer *leaf = NULL;
1730 struct btrfs_dev_extent *extent = NULL;
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
1736 key.objectid = device->devid;
1737 key.offset = start;
1738 key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741 if (ret > 0) {
1742 ret = btrfs_previous_item(root, path, key.objectid,
1743 BTRFS_DEV_EXTENT_KEY);
1744 if (ret)
1745 goto out;
1746 leaf = path->nodes[0];
1747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 extent = btrfs_item_ptr(leaf, path->slots[0],
1749 struct btrfs_dev_extent);
1750 BUG_ON(found_key.offset > start || found_key.offset +
1751 btrfs_dev_extent_length(leaf, extent) < start);
1752 key = found_key;
1753 btrfs_release_path(path);
1754 goto again;
1755 } else if (ret == 0) {
1756 leaf = path->nodes[0];
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
1759 } else {
1760 goto out;
1761 }
1762
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret == 0)
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775 struct extent_map_tree *em_tree;
1776 struct extent_map *em;
1777 struct rb_node *n;
1778 u64 ret = 0;
1779
1780 em_tree = &fs_info->mapping_tree;
1781 read_lock(&em_tree->lock);
1782 n = rb_last(&em_tree->map.rb_root);
1783 if (n) {
1784 em = rb_entry(n, struct extent_map, rb_node);
1785 ret = em->start + em->len;
1786 }
1787 read_unlock(&em_tree->lock);
1788
1789 return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 u64 *devid_ret)
1794{
1795 int ret;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
1798 struct btrfs_path *path;
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = (u64)-1;
1807
1808 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809 if (ret < 0)
1810 goto error;
1811
1812 if (ret == 0) {
1813 /* Corruption */
1814 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = -EUCLEAN;
1816 goto error;
1817 }
1818
1819 ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 BTRFS_DEV_ITEMS_OBJECTID,
1821 BTRFS_DEV_ITEM_KEY);
1822 if (ret) {
1823 *devid_ret = 1;
1824 } else {
1825 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 path->slots[0]);
1827 *devid_ret = found_key.offset + 1;
1828 }
1829 ret = 0;
1830error:
1831 btrfs_free_path(path);
1832 return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840 struct btrfs_device *device)
1841{
1842 int ret;
1843 struct btrfs_path *path;
1844 struct btrfs_dev_item *dev_item;
1845 struct extent_buffer *leaf;
1846 struct btrfs_key key;
1847 unsigned long ptr;
1848
1849 path = btrfs_alloc_path();
1850 if (!path)
1851 return -ENOMEM;
1852
1853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 key.type = BTRFS_DEV_ITEM_KEY;
1855 key.offset = device->devid;
1856
1857 btrfs_reserve_chunk_metadata(trans, true);
1858 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 &key, sizeof(*dev_item));
1860 btrfs_trans_release_chunk_metadata(trans);
1861 if (ret)
1862 goto out;
1863
1864 leaf = path->nodes[0];
1865 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867 btrfs_set_device_id(leaf, dev_item, device->devid);
1868 btrfs_set_device_generation(leaf, dev_item, 0);
1869 btrfs_set_device_type(leaf, dev_item, device->type);
1870 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873 btrfs_set_device_total_bytes(leaf, dev_item,
1874 btrfs_device_get_disk_total_bytes(device));
1875 btrfs_set_device_bytes_used(leaf, dev_item,
1876 btrfs_device_get_bytes_used(device));
1877 btrfs_set_device_group(leaf, dev_item, 0);
1878 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880 btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882 ptr = btrfs_device_uuid(dev_item);
1883 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884 ptr = btrfs_device_fsid(dev_item);
1885 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 ptr, BTRFS_FSID_SIZE);
1887 btrfs_mark_buffer_dirty(leaf);
1888
1889 ret = 0;
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903 struct path path;
1904 struct timespec64 now;
1905 int ret;
1906
1907 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 if (ret)
1909 return;
1910
1911 now = current_time(d_inode(path.dentry));
1912 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 struct btrfs_device *device)
1918{
1919 struct btrfs_root *root = device->fs_info->chunk_root;
1920 int ret;
1921 struct btrfs_path *path;
1922 struct btrfs_key key;
1923
1924 path = btrfs_alloc_path();
1925 if (!path)
1926 return -ENOMEM;
1927
1928 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 key.type = BTRFS_DEV_ITEM_KEY;
1930 key.offset = device->devid;
1931
1932 btrfs_reserve_chunk_metadata(trans, false);
1933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934 btrfs_trans_release_chunk_metadata(trans);
1935 if (ret) {
1936 if (ret > 0)
1937 ret = -ENOENT;
1938 goto out;
1939 }
1940
1941 ret = btrfs_del_item(trans, root, path);
1942out:
1943 btrfs_free_path(path);
1944 return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 u64 num_devices)
1954{
1955 u64 all_avail;
1956 unsigned seq;
1957 int i;
1958
1959 do {
1960 seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962 all_avail = fs_info->avail_data_alloc_bits |
1963 fs_info->avail_system_alloc_bits |
1964 fs_info->avail_metadata_alloc_bits;
1965 } while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969 continue;
1970
1971 if (num_devices < btrfs_raid_array[i].devs_min)
1972 return btrfs_raid_array[i].mindev_error;
1973 }
1974
1975 return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981 struct btrfs_device *next_device;
1982
1983 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 if (next_device != device &&
1985 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 && next_device->bdev)
1987 return next_device;
1988 }
1989
1990 return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000 struct btrfs_device *next_device)
2001{
2002 struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004 if (!next_device)
2005 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006 device);
2007 ASSERT(next_device);
2008
2009 if (fs_info->sb->s_bdev &&
2010 (fs_info->sb->s_bdev == device->bdev))
2011 fs_info->sb->s_bdev = next_device->bdev;
2012
2013 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023 u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025 down_read(&fs_info->dev_replace.rwsem);
2026 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 ASSERT(num_devices > 1);
2028 num_devices--;
2029 }
2030 up_read(&fs_info->dev_replace.rwsem);
2031
2032 return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev, int copy_num)
2037{
2038 struct btrfs_super_block *disk_super;
2039 const size_t len = sizeof(disk_super->magic);
2040 const u64 bytenr = btrfs_sb_offset(copy_num);
2041 int ret;
2042
2043 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044 if (IS_ERR(disk_super))
2045 return;
2046
2047 memset(&disk_super->magic, 0, len);
2048 folio_mark_dirty(virt_to_folio(disk_super));
2049 btrfs_release_disk_super(disk_super);
2050
2051 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052 if (ret)
2053 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
2060{
2061 int copy_num;
2062
2063 if (!bdev)
2064 return;
2065
2066 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067 if (bdev_is_zoned(bdev))
2068 btrfs_reset_sb_log_zones(bdev, copy_num);
2069 else
2070 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071 }
2072
2073 /* Notify udev that device has changed */
2074 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076 /* Update ctime/mtime for device path for libblkid */
2077 update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 struct btrfs_dev_lookup_args *args,
2082 struct block_device **bdev, fmode_t *mode)
2083{
2084 struct btrfs_trans_handle *trans;
2085 struct btrfs_device *device;
2086 struct btrfs_fs_devices *cur_devices;
2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 u64 num_devices;
2089 int ret = 0;
2090
2091 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 return -EINVAL;
2094 }
2095
2096 /*
2097 * The device list in fs_devices is accessed without locks (neither
2098 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 * filesystem and another device rm cannot run.
2100 */
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 return ret;
2106
2107 device = btrfs_find_device(fs_info->fs_devices, args);
2108 if (!device) {
2109 if (args->missing)
2110 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 else
2112 ret = -ENOENT;
2113 return ret;
2114 }
2115
2116 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 btrfs_warn_in_rcu(fs_info,
2118 "cannot remove device %s (devid %llu) due to active swapfile",
2119 btrfs_dev_name(device), device->devid);
2120 return -ETXTBSY;
2121 }
2122
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127 fs_info->fs_devices->rw_devices == 1)
2128 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131 mutex_lock(&fs_info->chunk_mutex);
2132 list_del_init(&device->dev_alloc_list);
2133 device->fs_devices->rw_devices--;
2134 mutex_unlock(&fs_info->chunk_mutex);
2135 }
2136
2137 ret = btrfs_shrink_device(device, 0);
2138 if (ret)
2139 goto error_undo;
2140
2141 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 if (IS_ERR(trans)) {
2143 ret = PTR_ERR(trans);
2144 goto error_undo;
2145 }
2146
2147 ret = btrfs_rm_dev_item(trans, device);
2148 if (ret) {
2149 /* Any error in dev item removal is critical */
2150 btrfs_crit(fs_info,
2151 "failed to remove device item for devid %llu: %d",
2152 device->devid, ret);
2153 btrfs_abort_transaction(trans, ret);
2154 btrfs_end_transaction(trans);
2155 return ret;
2156 }
2157
2158 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159 btrfs_scrub_cancel_dev(device);
2160
2161 /*
2162 * the device list mutex makes sure that we don't change
2163 * the device list while someone else is writing out all
2164 * the device supers. Whoever is writing all supers, should
2165 * lock the device list mutex before getting the number of
2166 * devices in the super block (super_copy). Conversely,
2167 * whoever updates the number of devices in the super block
2168 * (super_copy) should hold the device list mutex.
2169 */
2170
2171 /*
2172 * In normal cases the cur_devices == fs_devices. But in case
2173 * of deleting a seed device, the cur_devices should point to
2174 * its own fs_devices listed under the fs_devices->seed_list.
2175 */
2176 cur_devices = device->fs_devices;
2177 mutex_lock(&fs_devices->device_list_mutex);
2178 list_del_rcu(&device->dev_list);
2179
2180 cur_devices->num_devices--;
2181 cur_devices->total_devices--;
2182 /* Update total_devices of the parent fs_devices if it's seed */
2183 if (cur_devices != fs_devices)
2184 fs_devices->total_devices--;
2185
2186 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187 cur_devices->missing_devices--;
2188
2189 btrfs_assign_next_active_device(device, NULL);
2190
2191 if (device->bdev) {
2192 cur_devices->open_devices--;
2193 /* remove sysfs entry */
2194 btrfs_sysfs_remove_device(device);
2195 }
2196
2197 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199 mutex_unlock(&fs_devices->device_list_mutex);
2200
2201 /*
2202 * At this point, the device is zero sized and detached from the
2203 * devices list. All that's left is to zero out the old supers and
2204 * free the device.
2205 *
2206 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 * block device and it's dependencies. Instead just flush the device
2209 * and let the caller do the final blkdev_put.
2210 */
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 btrfs_scratch_superblocks(fs_info, device->bdev,
2213 device->name->str);
2214 if (device->bdev) {
2215 sync_blockdev(device->bdev);
2216 invalidate_bdev(device->bdev);
2217 }
2218 }
2219
2220 *bdev = device->bdev;
2221 *mode = device->mode;
2222 synchronize_rcu();
2223 btrfs_free_device(device);
2224
2225 /*
2226 * This can happen if cur_devices is the private seed devices list. We
2227 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 * to be held, but in fact we don't need that for the private
2229 * seed_devices, we can simply decrement cur_devices->opened and then
2230 * remove it from our list and free the fs_devices.
2231 */
2232 if (cur_devices->num_devices == 0) {
2233 list_del_init(&cur_devices->seed_list);
2234 ASSERT(cur_devices->opened == 1);
2235 cur_devices->opened--;
2236 free_fs_devices(cur_devices);
2237 }
2238
2239 ret = btrfs_commit_transaction(trans);
2240
2241 return ret;
2242
2243error_undo:
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 mutex_lock(&fs_info->chunk_mutex);
2246 list_add(&device->dev_alloc_list,
2247 &fs_devices->alloc_list);
2248 device->fs_devices->rw_devices++;
2249 mutex_unlock(&fs_info->chunk_mutex);
2250 }
2251 return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256 struct btrfs_fs_devices *fs_devices;
2257
2258 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260 /*
2261 * in case of fs with no seed, srcdev->fs_devices will point
2262 * to fs_devices of fs_info. However when the dev being replaced is
2263 * a seed dev it will point to the seed's local fs_devices. In short
2264 * srcdev will have its correct fs_devices in both the cases.
2265 */
2266 fs_devices = srcdev->fs_devices;
2267
2268 list_del_rcu(&srcdev->dev_list);
2269 list_del(&srcdev->dev_alloc_list);
2270 fs_devices->num_devices--;
2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272 fs_devices->missing_devices--;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275 fs_devices->rw_devices--;
2276
2277 if (srcdev->bdev)
2278 fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285 mutex_lock(&uuid_mutex);
2286
2287 btrfs_close_bdev(srcdev);
2288 synchronize_rcu();
2289 btrfs_free_device(srcdev);
2290
2291 /* if this is no devs we rather delete the fs_devices */
2292 if (!fs_devices->num_devices) {
2293 /*
2294 * On a mounted FS, num_devices can't be zero unless it's a
2295 * seed. In case of a seed device being replaced, the replace
2296 * target added to the sprout FS, so there will be no more
2297 * device left under the seed FS.
2298 */
2299 ASSERT(fs_devices->seeding);
2300
2301 list_del_init(&fs_devices->seed_list);
2302 close_fs_devices(fs_devices);
2303 free_fs_devices(fs_devices);
2304 }
2305 mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312 mutex_lock(&fs_devices->device_list_mutex);
2313
2314 btrfs_sysfs_remove_device(tgtdev);
2315
2316 if (tgtdev->bdev)
2317 fs_devices->open_devices--;
2318
2319 fs_devices->num_devices--;
2320
2321 btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323 list_del_rcu(&tgtdev->dev_list);
2324
2325 mutex_unlock(&fs_devices->device_list_mutex);
2326
2327 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 tgtdev->name->str);
2329
2330 btrfs_close_bdev(tgtdev);
2331 synchronize_rcu();
2332 btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info: the filesystem
2339 * @args: the args to populate
2340 * @path: the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks. The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 struct btrfs_dev_lookup_args *args,
2355 const char *path)
2356{
2357 struct btrfs_super_block *disk_super;
2358 struct block_device *bdev;
2359 int ret;
2360
2361 if (!path || !path[0])
2362 return -EINVAL;
2363 if (!strcmp(path, "missing")) {
2364 args->missing = true;
2365 return 0;
2366 }
2367
2368 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 if (!args->uuid || !args->fsid) {
2371 btrfs_put_dev_args_from_path(args);
2372 return -ENOMEM;
2373 }
2374
2375 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 &bdev, &disk_super);
2377 if (ret) {
2378 btrfs_put_dev_args_from_path(args);
2379 return ret;
2380 }
2381
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 else
2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 btrfs_release_disk_super(disk_super);
2389 blkdev_put(bdev, FMODE_READ);
2390 return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400 kfree(args->uuid);
2401 kfree(args->fsid);
2402 args->uuid = NULL;
2403 args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
2409{
2410 BTRFS_DEV_LOOKUP_ARGS(args);
2411 struct btrfs_device *device;
2412 int ret;
2413
2414 if (devid) {
2415 args.devid = devid;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
2417 if (!device)
2418 return ERR_PTR(-ENOENT);
2419 return device;
2420 }
2421
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 if (ret)
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2427 if (!device)
2428 return ERR_PTR(-ENOENT);
2429 return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 struct btrfs_fs_devices *old_devices;
2436 struct btrfs_fs_devices *seed_devices;
2437
2438 lockdep_assert_held(&uuid_mutex);
2439 if (!fs_devices->seeding)
2440 return ERR_PTR(-EINVAL);
2441
2442 /*
2443 * Private copy of the seed devices, anchored at
2444 * fs_info->fs_devices->seed_list
2445 */
2446 seed_devices = alloc_fs_devices(NULL, NULL);
2447 if (IS_ERR(seed_devices))
2448 return seed_devices;
2449
2450 /*
2451 * It's necessary to retain a copy of the original seed fs_devices in
2452 * fs_uuids so that filesystems which have been seeded can successfully
2453 * reference the seed device from open_seed_devices. This also supports
2454 * multiple fs seed.
2455 */
2456 old_devices = clone_fs_devices(fs_devices);
2457 if (IS_ERR(old_devices)) {
2458 kfree(seed_devices);
2459 return old_devices;
2460 }
2461
2462 list_add(&old_devices->fs_list, &fs_uuids);
2463
2464 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 seed_devices->opened = 1;
2466 INIT_LIST_HEAD(&seed_devices->devices);
2467 INIT_LIST_HEAD(&seed_devices->alloc_list);
2468 mutex_init(&seed_devices->device_list_mutex);
2469
2470 return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 struct btrfs_fs_devices *seed_devices)
2479{
2480 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 struct btrfs_device *device;
2483 u64 super_flags;
2484
2485 /*
2486 * We are updating the fsid, the thread leading to device_list_add()
2487 * could race, so uuid_mutex is needed.
2488 */
2489 lockdep_assert_held(&uuid_mutex);
2490
2491 /*
2492 * The threads listed below may traverse dev_list but can do that without
2493 * device_list_mutex:
2494 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 * - Various dev_list readers - are using RCU.
2496 * - btrfs_ioctl_fitrim() - is using RCU.
2497 *
2498 * For-read threads as below are using device_list_mutex:
2499 * - Readonly scrub btrfs_scrub_dev()
2500 * - Readonly scrub btrfs_scrub_progress()
2501 * - btrfs_get_dev_stats()
2502 */
2503 lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 synchronize_rcu);
2507 list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 device->fs_devices = seed_devices;
2509
2510 fs_devices->seeding = false;
2511 fs_devices->num_devices = 0;
2512 fs_devices->open_devices = 0;
2513 fs_devices->missing_devices = 0;
2514 fs_devices->rotating = false;
2515 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517 generate_random_uuid(fs_devices->fsid);
2518 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521 super_flags = btrfs_super_flags(disk_super) &
2522 ~BTRFS_SUPER_FLAG_SEEDING;
2523 btrfs_set_super_flags(disk_super, super_flags);
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531 BTRFS_DEV_LOOKUP_ARGS(args);
2532 struct btrfs_fs_info *fs_info = trans->fs_info;
2533 struct btrfs_root *root = fs_info->chunk_root;
2534 struct btrfs_path *path;
2535 struct extent_buffer *leaf;
2536 struct btrfs_dev_item *dev_item;
2537 struct btrfs_device *device;
2538 struct btrfs_key key;
2539 u8 fs_uuid[BTRFS_FSID_SIZE];
2540 u8 dev_uuid[BTRFS_UUID_SIZE];
2541 int ret;
2542
2543 path = btrfs_alloc_path();
2544 if (!path)
2545 return -ENOMEM;
2546
2547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 key.offset = 0;
2549 key.type = BTRFS_DEV_ITEM_KEY;
2550
2551 while (1) {
2552 btrfs_reserve_chunk_metadata(trans, false);
2553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554 btrfs_trans_release_chunk_metadata(trans);
2555 if (ret < 0)
2556 goto error;
2557
2558 leaf = path->nodes[0];
2559next_slot:
2560 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 ret = btrfs_next_leaf(root, path);
2562 if (ret > 0)
2563 break;
2564 if (ret < 0)
2565 goto error;
2566 leaf = path->nodes[0];
2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568 btrfs_release_path(path);
2569 continue;
2570 }
2571
2572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 key.type != BTRFS_DEV_ITEM_KEY)
2575 break;
2576
2577 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 struct btrfs_dev_item);
2579 args.devid = btrfs_device_id(leaf, dev_item);
2580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581 BTRFS_UUID_SIZE);
2582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583 BTRFS_FSID_SIZE);
2584 args.uuid = dev_uuid;
2585 args.fsid = fs_uuid;
2586 device = btrfs_find_device(fs_info->fs_devices, &args);
2587 BUG_ON(!device); /* Logic error */
2588
2589 if (device->fs_devices->seeding) {
2590 btrfs_set_device_generation(leaf, dev_item,
2591 device->generation);
2592 btrfs_mark_buffer_dirty(leaf);
2593 }
2594
2595 path->slots[0]++;
2596 goto next_slot;
2597 }
2598 ret = 0;
2599error:
2600 btrfs_free_path(path);
2601 return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606 struct btrfs_root *root = fs_info->dev_root;
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_device *device;
2609 struct block_device *bdev;
2610 struct super_block *sb = fs_info->sb;
2611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612 struct btrfs_fs_devices *seed_devices;
2613 u64 orig_super_total_bytes;
2614 u64 orig_super_num_devices;
2615 int ret = 0;
2616 bool seeding_dev = false;
2617 bool locked = false;
2618
2619 if (sb_rdonly(sb) && !fs_devices->seeding)
2620 return -EROFS;
2621
2622 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623 fs_info->bdev_holder);
2624 if (IS_ERR(bdev))
2625 return PTR_ERR(bdev);
2626
2627 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 ret = -EINVAL;
2629 goto error;
2630 }
2631
2632 if (fs_devices->seeding) {
2633 seeding_dev = true;
2634 down_write(&sb->s_umount);
2635 mutex_lock(&uuid_mutex);
2636 locked = true;
2637 }
2638
2639 sync_blockdev(bdev);
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643 if (device->bdev == bdev) {
2644 ret = -EEXIST;
2645 rcu_read_unlock();
2646 goto error;
2647 }
2648 }
2649 rcu_read_unlock();
2650
2651 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652 if (IS_ERR(device)) {
2653 /* we can safely leave the fs_devices entry around */
2654 ret = PTR_ERR(device);
2655 goto error;
2656 }
2657
2658 device->fs_info = fs_info;
2659 device->bdev = bdev;
2660 ret = lookup_bdev(device_path, &device->devt);
2661 if (ret)
2662 goto error_free_device;
2663
2664 ret = btrfs_get_dev_zone_info(device, false);
2665 if (ret)
2666 goto error_free_device;
2667
2668 trans = btrfs_start_transaction(root, 0);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 goto error_free_zone;
2672 }
2673
2674 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675 device->generation = trans->transid;
2676 device->io_width = fs_info->sectorsize;
2677 device->io_align = fs_info->sectorsize;
2678 device->sector_size = fs_info->sectorsize;
2679 device->total_bytes =
2680 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681 device->disk_total_bytes = device->total_bytes;
2682 device->commit_total_bytes = device->total_bytes;
2683 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685 device->mode = FMODE_EXCL;
2686 device->dev_stats_valid = 1;
2687 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689 if (seeding_dev) {
2690 btrfs_clear_sb_rdonly(sb);
2691
2692 /* GFP_KERNEL allocation must not be under device_list_mutex */
2693 seed_devices = btrfs_init_sprout(fs_info);
2694 if (IS_ERR(seed_devices)) {
2695 ret = PTR_ERR(seed_devices);
2696 btrfs_abort_transaction(trans, ret);
2697 goto error_trans;
2698 }
2699 }
2700
2701 mutex_lock(&fs_devices->device_list_mutex);
2702 if (seeding_dev) {
2703 btrfs_setup_sprout(fs_info, seed_devices);
2704 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 device);
2706 }
2707
2708 device->fs_devices = fs_devices;
2709
2710 mutex_lock(&fs_info->chunk_mutex);
2711 list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 fs_devices->num_devices++;
2714 fs_devices->open_devices++;
2715 fs_devices->rw_devices++;
2716 fs_devices->total_devices++;
2717 fs_devices->total_rw_bytes += device->total_bytes;
2718
2719 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721 if (!bdev_nonrot(bdev))
2722 fs_devices->rotating = true;
2723
2724 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725 btrfs_set_super_total_bytes(fs_info->super_copy,
2726 round_down(orig_super_total_bytes + device->total_bytes,
2727 fs_info->sectorsize));
2728
2729 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 btrfs_set_super_num_devices(fs_info->super_copy,
2731 orig_super_num_devices + 1);
2732
2733 /*
2734 * we've got more storage, clear any full flags on the space
2735 * infos
2736 */
2737 btrfs_clear_space_info_full(fs_info);
2738
2739 mutex_unlock(&fs_info->chunk_mutex);
2740
2741 /* Add sysfs device entry */
2742 btrfs_sysfs_add_device(device);
2743
2744 mutex_unlock(&fs_devices->device_list_mutex);
2745
2746 if (seeding_dev) {
2747 mutex_lock(&fs_info->chunk_mutex);
2748 ret = init_first_rw_device(trans);
2749 mutex_unlock(&fs_info->chunk_mutex);
2750 if (ret) {
2751 btrfs_abort_transaction(trans, ret);
2752 goto error_sysfs;
2753 }
2754 }
2755
2756 ret = btrfs_add_dev_item(trans, device);
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto error_sysfs;
2760 }
2761
2762 if (seeding_dev) {
2763 ret = btrfs_finish_sprout(trans);
2764 if (ret) {
2765 btrfs_abort_transaction(trans, ret);
2766 goto error_sysfs;
2767 }
2768
2769 /*
2770 * fs_devices now represents the newly sprouted filesystem and
2771 * its fsid has been changed by btrfs_sprout_splice().
2772 */
2773 btrfs_sysfs_update_sprout_fsid(fs_devices);
2774 }
2775
2776 ret = btrfs_commit_transaction(trans);
2777
2778 if (seeding_dev) {
2779 mutex_unlock(&uuid_mutex);
2780 up_write(&sb->s_umount);
2781 locked = false;
2782
2783 if (ret) /* transaction commit */
2784 return ret;
2785
2786 ret = btrfs_relocate_sys_chunks(fs_info);
2787 if (ret < 0)
2788 btrfs_handle_fs_error(fs_info, ret,
2789 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790 trans = btrfs_attach_transaction(root);
2791 if (IS_ERR(trans)) {
2792 if (PTR_ERR(trans) == -ENOENT)
2793 return 0;
2794 ret = PTR_ERR(trans);
2795 trans = NULL;
2796 goto error_sysfs;
2797 }
2798 ret = btrfs_commit_transaction(trans);
2799 }
2800
2801 /*
2802 * Now that we have written a new super block to this device, check all
2803 * other fs_devices list if device_path alienates any other scanned
2804 * device.
2805 * We can ignore the return value as it typically returns -EINVAL and
2806 * only succeeds if the device was an alien.
2807 */
2808 btrfs_forget_devices(device->devt);
2809
2810 /* Update ctime/mtime for blkid or udev */
2811 update_dev_time(device_path);
2812
2813 return ret;
2814
2815error_sysfs:
2816 btrfs_sysfs_remove_device(device);
2817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 mutex_lock(&fs_info->chunk_mutex);
2819 list_del_rcu(&device->dev_list);
2820 list_del(&device->dev_alloc_list);
2821 fs_info->fs_devices->num_devices--;
2822 fs_info->fs_devices->open_devices--;
2823 fs_info->fs_devices->rw_devices--;
2824 fs_info->fs_devices->total_devices--;
2825 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 btrfs_set_super_total_bytes(fs_info->super_copy,
2828 orig_super_total_bytes);
2829 btrfs_set_super_num_devices(fs_info->super_copy,
2830 orig_super_num_devices);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834 if (seeding_dev)
2835 btrfs_set_sb_rdonly(sb);
2836 if (trans)
2837 btrfs_end_transaction(trans);
2838error_free_zone:
2839 btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841 btrfs_free_device(device);
2842error:
2843 blkdev_put(bdev, FMODE_EXCL);
2844 if (locked) {
2845 mutex_unlock(&uuid_mutex);
2846 up_write(&sb->s_umount);
2847 }
2848 return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 struct btrfs_device *device)
2853{
2854 int ret;
2855 struct btrfs_path *path;
2856 struct btrfs_root *root = device->fs_info->chunk_root;
2857 struct btrfs_dev_item *dev_item;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860
2861 path = btrfs_alloc_path();
2862 if (!path)
2863 return -ENOMEM;
2864
2865 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 key.type = BTRFS_DEV_ITEM_KEY;
2867 key.offset = device->devid;
2868
2869 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 if (ret < 0)
2871 goto out;
2872
2873 if (ret > 0) {
2874 ret = -ENOENT;
2875 goto out;
2876 }
2877
2878 leaf = path->nodes[0];
2879 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881 btrfs_set_device_id(leaf, dev_item, device->devid);
2882 btrfs_set_device_type(leaf, dev_item, device->type);
2883 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886 btrfs_set_device_total_bytes(leaf, dev_item,
2887 btrfs_device_get_disk_total_bytes(device));
2888 btrfs_set_device_bytes_used(leaf, dev_item,
2889 btrfs_device_get_bytes_used(device));
2890 btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893 btrfs_free_path(path);
2894 return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898 struct btrfs_device *device, u64 new_size)
2899{
2900 struct btrfs_fs_info *fs_info = device->fs_info;
2901 struct btrfs_super_block *super_copy = fs_info->super_copy;
2902 u64 old_total;
2903 u64 diff;
2904 int ret;
2905
2906 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907 return -EACCES;
2908
2909 new_size = round_down(new_size, fs_info->sectorsize);
2910
2911 mutex_lock(&fs_info->chunk_mutex);
2912 old_total = btrfs_super_total_bytes(super_copy);
2913 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915 if (new_size <= device->total_bytes ||
2916 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917 mutex_unlock(&fs_info->chunk_mutex);
2918 return -EINVAL;
2919 }
2920
2921 btrfs_set_super_total_bytes(super_copy,
2922 round_down(old_total + diff, fs_info->sectorsize));
2923 device->fs_devices->total_rw_bytes += diff;
2924
2925 btrfs_device_set_total_bytes(device, new_size);
2926 btrfs_device_set_disk_total_bytes(device, new_size);
2927 btrfs_clear_space_info_full(device->fs_info);
2928 if (list_empty(&device->post_commit_list))
2929 list_add_tail(&device->post_commit_list,
2930 &trans->transaction->dev_update_list);
2931 mutex_unlock(&fs_info->chunk_mutex);
2932
2933 btrfs_reserve_chunk_metadata(trans, false);
2934 ret = btrfs_update_device(trans, device);
2935 btrfs_trans_release_chunk_metadata(trans);
2936
2937 return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942 struct btrfs_fs_info *fs_info = trans->fs_info;
2943 struct btrfs_root *root = fs_info->chunk_root;
2944 int ret;
2945 struct btrfs_path *path;
2946 struct btrfs_key key;
2947
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
2952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953 key.offset = chunk_offset;
2954 key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957 if (ret < 0)
2958 goto out;
2959 else if (ret > 0) { /* Logic error or corruption */
2960 btrfs_handle_fs_error(fs_info, -ENOENT,
2961 "Failed lookup while freeing chunk.");
2962 ret = -ENOENT;
2963 goto out;
2964 }
2965
2966 ret = btrfs_del_item(trans, root, path);
2967 if (ret < 0)
2968 btrfs_handle_fs_error(fs_info, ret,
2969 "Failed to delete chunk item.");
2970out:
2971 btrfs_free_path(path);
2972 return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977 struct btrfs_super_block *super_copy = fs_info->super_copy;
2978 struct btrfs_disk_key *disk_key;
2979 struct btrfs_chunk *chunk;
2980 u8 *ptr;
2981 int ret = 0;
2982 u32 num_stripes;
2983 u32 array_size;
2984 u32 len = 0;
2985 u32 cur;
2986 struct btrfs_key key;
2987
2988 lockdep_assert_held(&fs_info->chunk_mutex);
2989 array_size = btrfs_super_sys_array_size(super_copy);
2990
2991 ptr = super_copy->sys_chunk_array;
2992 cur = 0;
2993
2994 while (cur < array_size) {
2995 disk_key = (struct btrfs_disk_key *)ptr;
2996 btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998 len = sizeof(*disk_key);
2999
3000 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 chunk = (struct btrfs_chunk *)(ptr + len);
3002 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 len += btrfs_chunk_item_size(num_stripes);
3004 } else {
3005 ret = -EIO;
3006 break;
3007 }
3008 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009 key.offset == chunk_offset) {
3010 memmove(ptr, ptr + len, array_size - (cur + len));
3011 array_size -= len;
3012 btrfs_set_super_sys_array_size(super_copy, array_size);
3013 } else {
3014 ptr += len;
3015 cur += len;
3016 }
3017 }
3018 return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 u64 logical, u64 length)
3030{
3031 struct extent_map_tree *em_tree;
3032 struct extent_map *em;
3033
3034 em_tree = &fs_info->mapping_tree;
3035 read_lock(&em_tree->lock);
3036 em = lookup_extent_mapping(em_tree, logical, length);
3037 read_unlock(&em_tree->lock);
3038
3039 if (!em) {
3040 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 logical, length);
3042 return ERR_PTR(-EINVAL);
3043 }
3044
3045 if (em->start > logical || em->start + em->len < logical) {
3046 btrfs_crit(fs_info,
3047 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 logical, length, em->start, em->start + em->len);
3049 free_extent_map(em);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 /* callers are responsible for dropping em's ref. */
3054 return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 struct map_lookup *map, u64 chunk_offset)
3059{
3060 int i;
3061
3062 /*
3063 * Removing chunk items and updating the device items in the chunks btree
3064 * requires holding the chunk_mutex.
3065 * See the comment at btrfs_chunk_alloc() for the details.
3066 */
3067 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069 for (i = 0; i < map->num_stripes; i++) {
3070 int ret;
3071
3072 ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082 struct btrfs_fs_info *fs_info = trans->fs_info;
3083 struct extent_map *em;
3084 struct map_lookup *map;
3085 u64 dev_extent_len = 0;
3086 int i, ret = 0;
3087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090 if (IS_ERR(em)) {
3091 /*
3092 * This is a logic error, but we don't want to just rely on the
3093 * user having built with ASSERT enabled, so if ASSERT doesn't
3094 * do anything we still error out.
3095 */
3096 ASSERT(0);
3097 return PTR_ERR(em);
3098 }
3099 map = em->map_lookup;
3100
3101 /*
3102 * First delete the device extent items from the devices btree.
3103 * We take the device_list_mutex to avoid racing with the finishing phase
3104 * of a device replace operation. See the comment below before acquiring
3105 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 * because that can result in a deadlock when deleting the device extent
3107 * items from the devices btree - COWing an extent buffer from the btree
3108 * may result in allocating a new metadata chunk, which would attempt to
3109 * lock again fs_info->chunk_mutex.
3110 */
3111 mutex_lock(&fs_devices->device_list_mutex);
3112 for (i = 0; i < map->num_stripes; i++) {
3113 struct btrfs_device *device = map->stripes[i].dev;
3114 ret = btrfs_free_dev_extent(trans, device,
3115 map->stripes[i].physical,
3116 &dev_extent_len);
3117 if (ret) {
3118 mutex_unlock(&fs_devices->device_list_mutex);
3119 btrfs_abort_transaction(trans, ret);
3120 goto out;
3121 }
3122
3123 if (device->bytes_used > 0) {
3124 mutex_lock(&fs_info->chunk_mutex);
3125 btrfs_device_set_bytes_used(device,
3126 device->bytes_used - dev_extent_len);
3127 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128 btrfs_clear_space_info_full(fs_info);
3129 mutex_unlock(&fs_info->chunk_mutex);
3130 }
3131 }
3132 mutex_unlock(&fs_devices->device_list_mutex);
3133
3134 /*
3135 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 *
3137 * 1) Just like with the first phase of the chunk allocation, we must
3138 * reserve system space, do all chunk btree updates and deletions, and
3139 * update the system chunk array in the superblock while holding this
3140 * mutex. This is for similar reasons as explained on the comment at
3141 * the top of btrfs_chunk_alloc();
3142 *
3143 * 2) Prevent races with the final phase of a device replace operation
3144 * that replaces the device object associated with the map's stripes,
3145 * because the device object's id can change at any time during that
3146 * final phase of the device replace operation
3147 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 * replaced device and then see it with an ID of
3149 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 * the device item, which does not exists on the chunk btree.
3151 * The finishing phase of device replace acquires both the
3152 * device_list_mutex and the chunk_mutex, in that order, so we are
3153 * safe by just acquiring the chunk_mutex.
3154 */
3155 trans->removing_chunk = true;
3156 mutex_lock(&fs_info->chunk_mutex);
3157
3158 check_system_chunk(trans, map->type);
3159
3160 ret = remove_chunk_item(trans, map, chunk_offset);
3161 /*
3162 * Normally we should not get -ENOSPC since we reserved space before
3163 * through the call to check_system_chunk().
3164 *
3165 * Despite our system space_info having enough free space, we may not
3166 * be able to allocate extents from its block groups, because all have
3167 * an incompatible profile, which will force us to allocate a new system
3168 * block group with the right profile, or right after we called
3169 * check_system_space() above, a scrub turned the only system block group
3170 * with enough free space into RO mode.
3171 * This is explained with more detail at do_chunk_alloc().
3172 *
3173 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 */
3175 if (ret == -ENOSPC) {
3176 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 struct btrfs_block_group *sys_bg;
3178
3179 sys_bg = btrfs_create_chunk(trans, sys_flags);
3180 if (IS_ERR(sys_bg)) {
3181 ret = PTR_ERR(sys_bg);
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187 if (ret) {
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
3190 }
3191
3192 ret = remove_chunk_item(trans, map, chunk_offset);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197 } else if (ret) {
3198 btrfs_abort_transaction(trans, ret);
3199 goto out;
3200 }
3201
3202 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210 }
3211
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214
3215 /*
3216 * We are done with chunk btree updates and deletions, so release the
3217 * system space we previously reserved (with check_system_chunk()).
3218 */
3219 btrfs_trans_release_chunk_metadata(trans);
3220
3221 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222 if (ret) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226
3227out:
3228 if (trans->removing_chunk) {
3229 mutex_unlock(&fs_info->chunk_mutex);
3230 trans->removing_chunk = false;
3231 }
3232 /* once for us */
3233 free_extent_map(em);
3234 return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239 struct btrfs_root *root = fs_info->chunk_root;
3240 struct btrfs_trans_handle *trans;
3241 struct btrfs_block_group *block_group;
3242 u64 length;
3243 int ret;
3244
3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 btrfs_err(fs_info,
3247 "relocate: not supported on extent tree v2 yet");
3248 return -EINVAL;
3249 }
3250
3251 /*
3252 * Prevent races with automatic removal of unused block groups.
3253 * After we relocate and before we remove the chunk with offset
3254 * chunk_offset, automatic removal of the block group can kick in,
3255 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 *
3257 * Make sure to acquire this mutex before doing a tree search (dev
3258 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 * we release the path used to search the chunk/dev tree and before
3261 * the current task acquires this mutex and calls us.
3262 */
3263 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265 /* step one, relocate all the extents inside this chunk */
3266 btrfs_scrub_pause(fs_info);
3267 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268 btrfs_scrub_continue(fs_info);
3269 if (ret)
3270 return ret;
3271
3272 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 if (!block_group)
3274 return -ENOENT;
3275 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276 length = block_group->length;
3277 btrfs_put_block_group(block_group);
3278
3279 /*
3280 * On a zoned file system, discard the whole block group, this will
3281 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 * resetting the zone fails, don't treat it as a fatal problem from the
3283 * filesystem's point of view.
3284 */
3285 if (btrfs_is_zoned(fs_info)) {
3286 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 if (ret)
3288 btrfs_info(fs_info,
3289 "failed to reset zone %llu after relocation",
3290 chunk_offset);
3291 }
3292
3293 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 chunk_offset);
3295 if (IS_ERR(trans)) {
3296 ret = PTR_ERR(trans);
3297 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 return ret;
3299 }
3300
3301 /*
3302 * step two, delete the device extents and the
3303 * chunk tree entries
3304 */
3305 ret = btrfs_remove_chunk(trans, chunk_offset);
3306 btrfs_end_transaction(trans);
3307 return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312 struct btrfs_root *chunk_root = fs_info->chunk_root;
3313 struct btrfs_path *path;
3314 struct extent_buffer *leaf;
3315 struct btrfs_chunk *chunk;
3316 struct btrfs_key key;
3317 struct btrfs_key found_key;
3318 u64 chunk_type;
3319 bool retried = false;
3320 int failed = 0;
3321 int ret;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
3327again:
3328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 key.offset = (u64)-1;
3330 key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332 while (1) {
3333 mutex_lock(&fs_info->reclaim_bgs_lock);
3334 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335 if (ret < 0) {
3336 mutex_unlock(&fs_info->reclaim_bgs_lock);
3337 goto error;
3338 }
3339 BUG_ON(ret == 0); /* Corruption */
3340
3341 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 key.type);
3343 if (ret)
3344 mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 if (ret < 0)
3346 goto error;
3347 if (ret > 0)
3348 break;
3349
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 struct btrfs_chunk);
3355 chunk_type = btrfs_chunk_type(leaf, chunk);
3356 btrfs_release_path(path);
3357
3358 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360 if (ret == -ENOSPC)
3361 failed++;
3362 else
3363 BUG_ON(ret);
3364 }
3365 mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367 if (found_key.offset == 0)
3368 break;
3369 key.offset = found_key.offset - 1;
3370 }
3371 ret = 0;
3372 if (failed && !retried) {
3373 failed = 0;
3374 retried = true;
3375 goto again;
3376 } else if (WARN_ON(failed && retried)) {
3377 ret = -ENOSPC;
3378 }
3379error:
3380 btrfs_free_path(path);
3381 return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 u64 chunk_offset)
3391{
3392 struct btrfs_block_group *cache;
3393 u64 bytes_used;
3394 u64 chunk_type;
3395
3396 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 ASSERT(cache);
3398 chunk_type = cache->flags;
3399 btrfs_put_block_group(cache);
3400
3401 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 return 0;
3403
3404 spin_lock(&fs_info->data_sinfo->lock);
3405 bytes_used = fs_info->data_sinfo->bytes_used;
3406 spin_unlock(&fs_info->data_sinfo->lock);
3407
3408 if (!bytes_used) {
3409 struct btrfs_trans_handle *trans;
3410 int ret;
3411
3412 trans = btrfs_join_transaction(fs_info->tree_root);
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
3415
3416 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 btrfs_end_transaction(trans);
3418 if (ret < 0)
3419 return ret;
3420 return 1;
3421 }
3422
3423 return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427 struct btrfs_balance_control *bctl)
3428{
3429 struct btrfs_root *root = fs_info->tree_root;
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_balance_item *item;
3432 struct btrfs_disk_balance_args disk_bargs;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key;
3436 int ret, err;
3437
3438 path = btrfs_alloc_path();
3439 if (!path)
3440 return -ENOMEM;
3441
3442 trans = btrfs_start_transaction(root, 0);
3443 if (IS_ERR(trans)) {
3444 btrfs_free_path(path);
3445 return PTR_ERR(trans);
3446 }
3447
3448 key.objectid = BTRFS_BALANCE_OBJECTID;
3449 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450 key.offset = 0;
3451
3452 ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 sizeof(*item));
3454 if (ret)
3455 goto out;
3456
3457 leaf = path->nodes[0];
3458 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469 btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471 btrfs_mark_buffer_dirty(leaf);
3472out:
3473 btrfs_free_path(path);
3474 err = btrfs_commit_transaction(trans);
3475 if (err && !ret)
3476 ret = err;
3477 return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482 struct btrfs_root *root = fs_info->tree_root;
3483 struct btrfs_trans_handle *trans;
3484 struct btrfs_path *path;
3485 struct btrfs_key key;
3486 int ret, err;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493 if (IS_ERR(trans)) {
3494 btrfs_free_path(path);
3495 return PTR_ERR(trans);
3496 }
3497
3498 key.objectid = BTRFS_BALANCE_OBJECTID;
3499 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500 key.offset = 0;
3501
3502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 if (ret < 0)
3504 goto out;
3505 if (ret > 0) {
3506 ret = -ENOENT;
3507 goto out;
3508 }
3509
3510 ret = btrfs_del_item(trans, root, path);
3511out:
3512 btrfs_free_path(path);
3513 err = btrfs_commit_transaction(trans);
3514 if (err && !ret)
3515 ret = err;
3516 return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525 /*
3526 * Turn on soft mode for chunk types that were being converted.
3527 */
3528 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535 /*
3536 * Turn on usage filter if is not already used. The idea is
3537 * that chunks that we have already balanced should be
3538 * reasonably full. Don't do it for chunks that are being
3539 * converted - that will keep us from relocating unconverted
3540 * (albeit full) chunks.
3541 */
3542 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->data.usage = 90;
3547 }
3548 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 bctl->sys.usage = 90;
3553 }
3554 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 bctl->meta.usage = 90;
3559 }
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568 int ret;
3569
3570 BUG_ON(!fs_info->balance_ctl);
3571
3572 spin_lock(&fs_info->balance_lock);
3573 fs_info->balance_ctl = NULL;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 kfree(bctl);
3577 ret = del_balance_item(fs_info);
3578 if (ret)
3579 btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters. Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587 struct btrfs_balance_args *bargs)
3588{
3589 chunk_type = chunk_to_extended(chunk_type) &
3590 BTRFS_EXTENDED_PROFILE_MASK;
3591
3592 if (bargs->profiles & chunk_type)
3593 return 0;
3594
3595 return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599 struct btrfs_balance_args *bargs)
3600{
3601 struct btrfs_block_group *cache;
3602 u64 chunk_used;
3603 u64 user_thresh_min;
3604 u64 user_thresh_max;
3605 int ret = 1;
3606
3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608 chunk_used = cache->used;
3609
3610 if (bargs->usage_min == 0)
3611 user_thresh_min = 0;
3612 else
3613 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615 if (bargs->usage_max == 0)
3616 user_thresh_max = 1;
3617 else if (bargs->usage_max > 100)
3618 user_thresh_max = cache->length;
3619 else
3620 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630 u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632 struct btrfs_block_group *cache;
3633 u64 chunk_used, user_thresh;
3634 int ret = 1;
3635
3636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637 chunk_used = cache->used;
3638
3639 if (bargs->usage_min == 0)
3640 user_thresh = 1;
3641 else if (bargs->usage > 100)
3642 user_thresh = cache->length;
3643 else
3644 user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646 if (chunk_used < user_thresh)
3647 ret = 0;
3648
3649 btrfs_put_block_group(cache);
3650 return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654 struct btrfs_chunk *chunk,
3655 struct btrfs_balance_args *bargs)
3656{
3657 struct btrfs_stripe *stripe;
3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 int i;
3660
3661 for (i = 0; i < num_stripes; i++) {
3662 stripe = btrfs_stripe_nr(chunk, i);
3663 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 return 0;
3665 }
3666
3667 return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672 const int index = btrfs_bg_flags_to_raid_index(type);
3673 const int ncopies = btrfs_raid_array[index].ncopies;
3674 const int nparity = btrfs_raid_array[index].nparity;
3675
3676 return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681 struct btrfs_chunk *chunk,
3682 struct btrfs_balance_args *bargs)
3683{
3684 struct btrfs_stripe *stripe;
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 u64 stripe_offset;
3687 u64 stripe_length;
3688 u64 type;
3689 int factor;
3690 int i;
3691
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 return 0;
3694
3695 type = btrfs_chunk_type(leaf, chunk);
3696 factor = calc_data_stripes(type, num_stripes);
3697
3698 for (i = 0; i < num_stripes; i++) {
3699 stripe = btrfs_stripe_nr(chunk, i);
3700 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 continue;
3702
3703 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 stripe_length = btrfs_chunk_length(leaf, chunk);
3705 stripe_length = div_u64(stripe_length, factor);
3706
3707 if (stripe_offset < bargs->pend &&
3708 stripe_offset + stripe_length > bargs->pstart)
3709 return 0;
3710 }
3711
3712 return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 struct btrfs_chunk *chunk,
3718 u64 chunk_offset,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (chunk_offset < bargs->vend &&
3722 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 /* at least part of the chunk is inside this vrange */
3724 return 0;
3725
3726 return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk,
3731 struct btrfs_balance_args *bargs)
3732{
3733 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735 if (bargs->stripes_min <= num_stripes
3736 && num_stripes <= bargs->stripes_max)
3737 return 0;
3738
3739 return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743 struct btrfs_balance_args *bargs)
3744{
3745 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 return 0;
3747
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->target == chunk_type)
3752 return 1;
3753
3754 return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758 struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760 struct btrfs_fs_info *fs_info = leaf->fs_info;
3761 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762 struct btrfs_balance_args *bargs = NULL;
3763 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765 /* type filter */
3766 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 return 0;
3769 }
3770
3771 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 bargs = &bctl->data;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 bargs = &bctl->sys;
3775 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 bargs = &bctl->meta;
3777
3778 /* profiles filter */
3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 chunk_profiles_filter(chunk_type, bargs)) {
3781 return 0;
3782 }
3783
3784 /* usage filter */
3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787 return 0;
3788 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790 return 0;
3791 }
3792
3793 /* devid filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 chunk_devid_filter(leaf, chunk, bargs)) {
3796 return 0;
3797 }
3798
3799 /* drange filter, makes sense only with devid filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801 chunk_drange_filter(leaf, chunk, bargs)) {
3802 return 0;
3803 }
3804
3805 /* vrange filter */
3806 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 return 0;
3809 }
3810
3811 /* stripes filter */
3812 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 return 0;
3815 }
3816
3817 /* soft profile changing mode */
3818 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 chunk_soft_convert_filter(chunk_type, bargs)) {
3820 return 0;
3821 }
3822
3823 /*
3824 * limited by count, must be the last filter
3825 */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 if (bargs->limit == 0)
3828 return 0;
3829 else
3830 bargs->limit--;
3831 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 /*
3833 * Same logic as the 'limit' filter; the minimum cannot be
3834 * determined here because we do not have the global information
3835 * about the count of all chunks that satisfy the filters.
3836 */
3837 if (bargs->limit_max == 0)
3838 return 0;
3839 else
3840 bargs->limit_max--;
3841 }
3842
3843 return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849 struct btrfs_root *chunk_root = fs_info->chunk_root;
3850 u64 chunk_type;
3851 struct btrfs_chunk *chunk;
3852 struct btrfs_path *path = NULL;
3853 struct btrfs_key key;
3854 struct btrfs_key found_key;
3855 struct extent_buffer *leaf;
3856 int slot;
3857 int ret;
3858 int enospc_errors = 0;
3859 bool counting = true;
3860 /* The single value limit and min/max limits use the same bytes in the */
3861 u64 limit_data = bctl->data.limit;
3862 u64 limit_meta = bctl->meta.limit;
3863 u64 limit_sys = bctl->sys.limit;
3864 u32 count_data = 0;
3865 u32 count_meta = 0;
3866 u32 count_sys = 0;
3867 int chunk_reserved = 0;
3868
3869 path = btrfs_alloc_path();
3870 if (!path) {
3871 ret = -ENOMEM;
3872 goto error;
3873 }
3874
3875 /* zero out stat counters */
3876 spin_lock(&fs_info->balance_lock);
3877 memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 spin_unlock(&fs_info->balance_lock);
3879again:
3880 if (!counting) {
3881 /*
3882 * The single value limit and min/max limits use the same bytes
3883 * in the
3884 */
3885 bctl->data.limit = limit_data;
3886 bctl->meta.limit = limit_meta;
3887 bctl->sys.limit = limit_sys;
3888 }
3889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 key.offset = (u64)-1;
3891 key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893 while (1) {
3894 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895 atomic_read(&fs_info->balance_cancel_req)) {
3896 ret = -ECANCELED;
3897 goto error;
3898 }
3899
3900 mutex_lock(&fs_info->reclaim_bgs_lock);
3901 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902 if (ret < 0) {
3903 mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 goto error;
3905 }
3906
3907 /*
3908 * this shouldn't happen, it means the last relocate
3909 * failed
3910 */
3911 if (ret == 0)
3912 BUG(); /* FIXME break ? */
3913
3914 ret = btrfs_previous_item(chunk_root, path, 0,
3915 BTRFS_CHUNK_ITEM_KEY);
3916 if (ret) {
3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 ret = 0;
3919 break;
3920 }
3921
3922 leaf = path->nodes[0];
3923 slot = path->slots[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926 if (found_key.objectid != key.objectid) {
3927 mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 break;
3929 }
3930
3931 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932 chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934 if (!counting) {
3935 spin_lock(&fs_info->balance_lock);
3936 bctl->stat.considered++;
3937 spin_unlock(&fs_info->balance_lock);
3938 }
3939
3940 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942 btrfs_release_path(path);
3943 if (!ret) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 goto loop;
3946 }
3947
3948 if (counting) {
3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.expected++;
3952 spin_unlock(&fs_info->balance_lock);
3953
3954 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 count_data++;
3956 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 count_sys++;
3958 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 count_meta++;
3960
3961 goto loop;
3962 }
3963
3964 /*
3965 * Apply limit_min filter, no need to check if the LIMITS
3966 * filter is used, limit_min is 0 by default
3967 */
3968 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 count_data < bctl->data.limit_min)
3970 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 count_meta < bctl->meta.limit_min)
3972 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 count_sys < bctl->sys.limit_min)) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 goto loop;
3976 }
3977
3978 if (!chunk_reserved) {
3979 /*
3980 * We may be relocating the only data chunk we have,
3981 * which could potentially end up with losing data's
3982 * raid profile, so lets allocate an empty one in
3983 * advance.
3984 */
3985 ret = btrfs_may_alloc_data_chunk(fs_info,
3986 found_key.offset);
3987 if (ret < 0) {
3988 mutex_unlock(&fs_info->reclaim_bgs_lock);
3989 goto error;
3990 } else if (ret == 1) {
3991 chunk_reserved = 1;
3992 }
3993 }
3994
3995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996 mutex_unlock(&fs_info->reclaim_bgs_lock);
3997 if (ret == -ENOSPC) {
3998 enospc_errors++;
3999 } else if (ret == -ETXTBSY) {
4000 btrfs_info(fs_info,
4001 "skipping relocation of block group %llu due to active swapfile",
4002 found_key.offset);
4003 ret = 0;
4004 } else if (ret) {
4005 goto error;
4006 } else {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.completed++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
4011loop:
4012 if (found_key.offset == 0)
4013 break;
4014 key.offset = found_key.offset - 1;
4015 }
4016
4017 if (counting) {
4018 btrfs_release_path(path);
4019 counting = false;
4020 goto again;
4021 }
4022error:
4023 btrfs_free_path(path);
4024 if (enospc_errors) {
4025 btrfs_info(fs_info, "%d enospc errors during balance",
4026 enospc_errors);
4027 if (!ret)
4028 ret = -ENOSPC;
4029 }
4030
4031 return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags: profile to validate
4038 * @extended: if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047 /* 1) check that all other bits are zeroed */
4048 if (flags & ~mask)
4049 return 0;
4050
4051 /* 2) see if profile is reduced */
4052 if (flags == 0)
4053 return !extended; /* "0" is valid for usual profiles */
4054
4055 return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060 /* cancel requested || normal exit path */
4061 return atomic_read(&fs_info->balance_cancel_req) ||
4062 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 const struct btrfs_balance_args *bargs,
4072 u64 allowed, const char *type)
4073{
4074 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 return true;
4076
4077 /* Profile is valid and does not have bits outside of the allowed set */
4078 if (alloc_profile_is_valid(bargs->target, 1) &&
4079 (bargs->target & ~allowed) == 0)
4080 return true;
4081
4082 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 type, btrfs_bg_type_to_raid_name(bargs->target));
4084 return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 u32 size_buf)
4094{
4095 int ret;
4096 u32 size_bp = size_buf;
4097 char *bp = buf;
4098 u64 flags = bargs->flags;
4099 char tmp_buf[128] = {'\0'};
4100
4101 if (!flags)
4102 return;
4103
4104#define CHECK_APPEND_NOARG(a) \
4105 do { \
4106 ret = snprintf(bp, size_bp, (a)); \
4107 if (ret < 0 || ret >= size_bp) \
4108 goto out_overflow; \
4109 size_bp -= ret; \
4110 bp += ret; \
4111 } while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1) \
4114 do { \
4115 ret = snprintf(bp, size_bp, (a), (v1)); \
4116 if (ret < 0 || ret >= size_bp) \
4117 goto out_overflow; \
4118 size_bp -= ret; \
4119 bp += ret; \
4120 } while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2) \
4123 do { \
4124 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4125 if (ret < 0 || ret >= size_bp) \
4126 goto out_overflow; \
4127 size_bp -= ret; \
4128 bp += ret; \
4129 } while (0)
4130
4131 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 CHECK_APPEND_1ARG("convert=%s,",
4133 btrfs_bg_type_to_raid_name(bargs->target));
4134
4135 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 CHECK_APPEND_NOARG("soft,");
4137
4138 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 sizeof(tmp_buf));
4141 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 }
4143
4144 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 CHECK_APPEND_2ARG("usage=%u..%u,",
4149 bargs->usage_min, bargs->usage_max);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 bargs->pstart, bargs->pend);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 bargs->vstart, bargs->vend);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 CHECK_APPEND_2ARG("limit=%u..%u,",
4167 bargs->limit_min, bargs->limit_max);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179 if (size_bp < size_buf)
4180 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 else
4182 buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187 u32 size_buf = 1024;
4188 char tmp_buf[192] = {'\0'};
4189 char *buf;
4190 char *bp;
4191 u32 size_bp = size_buf;
4192 int ret;
4193 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195 buf = kzalloc(size_buf, GFP_KERNEL);
4196 if (!buf)
4197 return;
4198
4199 bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1) \
4202 do { \
4203 ret = snprintf(bp, size_bp, (a), (v1)); \
4204 if (ret < 0 || ret >= size_bp) \
4205 goto out_overflow; \
4206 size_bp -= ret; \
4207 bp += ret; \
4208 } while (0)
4209
4210 if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 CHECK_APPEND_1ARG("%s", "-f ");
4212
4213 if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 }
4217
4218 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 }
4222
4223 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 }
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232 if (size_bp < size_buf)
4233 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 btrfs_info(fs_info, "balance: %s %s",
4235 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 "resume" : "start", buf);
4237
4238 kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 struct btrfs_balance_control *bctl,
4246 struct btrfs_ioctl_balance_args *bargs)
4247{
4248 u64 meta_target, data_target;
4249 u64 allowed;
4250 int mixed = 0;
4251 int ret;
4252 u64 num_devices;
4253 unsigned seq;
4254 bool reducing_redundancy;
4255 int i;
4256
4257 if (btrfs_fs_closing(fs_info) ||
4258 atomic_read(&fs_info->balance_pause_req) ||
4259 btrfs_should_cancel_balance(fs_info)) {
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
4264 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 mixed = 1;
4267
4268 /*
4269 * In case of mixed groups both data and meta should be picked,
4270 * and identical options should be given for both of them.
4271 */
4272 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 if (mixed && (bctl->flags & allowed)) {
4274 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277 btrfs_err(fs_info,
4278 "balance: mixed groups data and metadata options must be the same");
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282 }
4283
4284 /*
4285 * rw_devices will not change at the moment, device add/delete/replace
4286 * are exclusive
4287 */
4288 num_devices = fs_info->fs_devices->rw_devices;
4289
4290 /*
4291 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 * special bit for it, to make it easier to distinguish. Thus we need
4293 * to set it manually, or balance would refuse the profile.
4294 */
4295 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 if (num_devices >= btrfs_raid_array[i].devs_min)
4298 allowed |= btrfs_raid_array[i].bg_flag;
4299
4300 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
4307 /*
4308 * Allow to reduce metadata or system integrity only if force set for
4309 * profiles with redundancy (copies, parity)
4310 */
4311 allowed = 0;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 if (btrfs_raid_array[i].ncopies >= 2 ||
4314 btrfs_raid_array[i].tolerated_failures >= 1)
4315 allowed |= btrfs_raid_array[i].bg_flag;
4316 }
4317 do {
4318 seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 (fs_info->avail_system_alloc_bits & allowed) &&
4322 !(bctl->sys.target & allowed)) ||
4323 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_metadata_alloc_bits & allowed) &&
4325 !(bctl->meta.target & allowed)))
4326 reducing_redundancy = true;
4327 else
4328 reducing_redundancy = false;
4329
4330 /* if we're not converting, the target field is uninitialized */
4331 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 bctl->data.target : fs_info->avail_data_alloc_bits;
4335 } while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337 if (reducing_redundancy) {
4338 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 btrfs_info(fs_info,
4340 "balance: force reducing metadata redundancy");
4341 } else {
4342 btrfs_err(fs_info,
4343 "balance: reduces metadata redundancy, use --force if you want this");
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351 btrfs_warn(fs_info,
4352 "balance: metadata profile %s has lower redundancy than data profile %s",
4353 btrfs_bg_type_to_raid_name(meta_target),
4354 btrfs_bg_type_to_raid_name(data_target));
4355 }
4356
4357 ret = insert_balance_item(fs_info, bctl);
4358 if (ret && ret != -EEXIST)
4359 goto out;
4360
4361 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 BUG_ON(ret == -EEXIST);
4363 BUG_ON(fs_info->balance_ctl);
4364 spin_lock(&fs_info->balance_lock);
4365 fs_info->balance_ctl = bctl;
4366 spin_unlock(&fs_info->balance_lock);
4367 } else {
4368 BUG_ON(ret != -EEXIST);
4369 spin_lock(&fs_info->balance_lock);
4370 update_balance_args(bctl);
4371 spin_unlock(&fs_info->balance_lock);
4372 }
4373
4374 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376 describe_balance_start_or_resume(fs_info);
4377 mutex_unlock(&fs_info->balance_mutex);
4378
4379 ret = __btrfs_balance(fs_info);
4380
4381 mutex_lock(&fs_info->balance_mutex);
4382 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383 btrfs_info(fs_info, "balance: paused");
4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 }
4386 /*
4387 * Balance can be canceled by:
4388 *
4389 * - Regular cancel request
4390 * Then ret == -ECANCELED and balance_cancel_req > 0
4391 *
4392 * - Fatal signal to "btrfs" process
4393 * Either the signal caught by wait_reserve_ticket() and callers
4394 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 * got -ECANCELED.
4396 * Either way, in this case balance_cancel_req = 0, and
4397 * ret == -EINTR or ret == -ECANCELED.
4398 *
4399 * So here we only check the return value to catch canceled balance.
4400 */
4401 else if (ret == -ECANCELED || ret == -EINTR)
4402 btrfs_info(fs_info, "balance: canceled");
4403 else
4404 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408 if (bargs) {
4409 memset(bargs, 0, sizeof(*bargs));
4410 btrfs_update_ioctl_balance_args(fs_info, bargs);
4411 }
4412
4413 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 balance_need_close(fs_info)) {
4415 reset_balance_state(fs_info);
4416 btrfs_exclop_finish(fs_info);
4417 }
4418
4419 wake_up(&fs_info->balance_wait_q);
4420
4421 return ret;
4422out:
4423 if (bctl->flags & BTRFS_BALANCE_RESUME)
4424 reset_balance_state(fs_info);
4425 else
4426 kfree(bctl);
4427 btrfs_exclop_finish(fs_info);
4428
4429 return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434 struct btrfs_fs_info *fs_info = data;
4435 int ret = 0;
4436
4437 sb_start_write(fs_info->sb);
4438 mutex_lock(&fs_info->balance_mutex);
4439 if (fs_info->balance_ctl)
4440 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441 mutex_unlock(&fs_info->balance_mutex);
4442 sb_end_write(fs_info->sb);
4443
4444 return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449 struct task_struct *tsk;
4450
4451 mutex_lock(&fs_info->balance_mutex);
4452 if (!fs_info->balance_ctl) {
4453 mutex_unlock(&fs_info->balance_mutex);
4454 return 0;
4455 }
4456 mutex_unlock(&fs_info->balance_mutex);
4457
4458 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459 btrfs_info(fs_info, "balance: resume skipped");
4460 return 0;
4461 }
4462
4463 spin_lock(&fs_info->super_lock);
4464 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 spin_unlock(&fs_info->super_lock);
4467 /*
4468 * A ro->rw remount sequence should continue with the paused balance
4469 * regardless of who pauses it, system or the user as of now, so set
4470 * the resume flag.
4471 */
4472 spin_lock(&fs_info->balance_lock);
4473 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 spin_unlock(&fs_info->balance_lock);
4475
4476 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477 return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482 struct btrfs_balance_control *bctl;
4483 struct btrfs_balance_item *item;
4484 struct btrfs_disk_balance_args disk_bargs;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_key key;
4488 int ret;
4489
4490 path = btrfs_alloc_path();
4491 if (!path)
4492 return -ENOMEM;
4493
4494 key.objectid = BTRFS_BALANCE_OBJECTID;
4495 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496 key.offset = 0;
4497
4498 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499 if (ret < 0)
4500 goto out;
4501 if (ret > 0) { /* ret = -ENOENT; */
4502 ret = 0;
4503 goto out;
4504 }
4505
4506 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 if (!bctl) {
4508 ret = -ENOMEM;
4509 goto out;
4510 }
4511
4512 leaf = path->nodes[0];
4513 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515 bctl->flags = btrfs_balance_flags(leaf, item);
4516 bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518 btrfs_balance_data(leaf, item, &disk_bargs);
4519 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 btrfs_balance_meta(leaf, item, &disk_bargs);
4521 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 btrfs_balance_sys(leaf, item, &disk_bargs);
4523 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525 /*
4526 * This should never happen, as the paused balance state is recovered
4527 * during mount without any chance of other exclusive ops to collide.
4528 *
4529 * This gives the exclusive op status to balance and keeps in paused
4530 * state until user intervention (cancel or umount). If the ownership
4531 * cannot be assigned, show a message but do not fail. The balance
4532 * is in a paused state and must have fs_info::balance_ctl properly
4533 * set up.
4534 */
4535 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536 btrfs_warn(fs_info,
4537 "balance: cannot set exclusive op status, resume manually");
4538
4539 btrfs_release_path(path);
4540
4541 mutex_lock(&fs_info->balance_mutex);
4542 BUG_ON(fs_info->balance_ctl);
4543 spin_lock(&fs_info->balance_lock);
4544 fs_info->balance_ctl = bctl;
4545 spin_unlock(&fs_info->balance_lock);
4546 mutex_unlock(&fs_info->balance_mutex);
4547out:
4548 btrfs_free_path(path);
4549 return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554 int ret = 0;
4555
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
4562 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563 atomic_inc(&fs_info->balance_pause_req);
4564 mutex_unlock(&fs_info->balance_mutex);
4565
4566 wait_event(fs_info->balance_wait_q,
4567 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 /* we are good with balance_ctl ripped off from under us */
4571 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572 atomic_dec(&fs_info->balance_pause_req);
4573 } else {
4574 ret = -ENOTCONN;
4575 }
4576
4577 mutex_unlock(&fs_info->balance_mutex);
4578 return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (!fs_info->balance_ctl) {
4585 mutex_unlock(&fs_info->balance_mutex);
4586 return -ENOTCONN;
4587 }
4588
4589 /*
4590 * A paused balance with the item stored on disk can be resumed at
4591 * mount time if the mount is read-write. Otherwise it's still paused
4592 * and we must not allow cancelling as it deletes the item.
4593 */
4594 if (sb_rdonly(fs_info->sb)) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -EROFS;
4597 }
4598
4599 atomic_inc(&fs_info->balance_cancel_req);
4600 /*
4601 * if we are running just wait and return, balance item is
4602 * deleted in btrfs_balance in this case
4603 */
4604 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605 mutex_unlock(&fs_info->balance_mutex);
4606 wait_event(fs_info->balance_wait_q,
4607 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 mutex_lock(&fs_info->balance_mutex);
4609 } else {
4610 mutex_unlock(&fs_info->balance_mutex);
4611 /*
4612 * Lock released to allow other waiters to continue, we'll
4613 * reexamine the status again.
4614 */
4615 mutex_lock(&fs_info->balance_mutex);
4616
4617 if (fs_info->balance_ctl) {
4618 reset_balance_state(fs_info);
4619 btrfs_exclop_finish(fs_info);
4620 btrfs_info(fs_info, "balance: canceled");
4621 }
4622 }
4623
4624 BUG_ON(fs_info->balance_ctl ||
4625 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626 atomic_dec(&fs_info->balance_cancel_req);
4627 mutex_unlock(&fs_info->balance_mutex);
4628 return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633 struct btrfs_fs_info *fs_info = data;
4634 struct btrfs_root *root = fs_info->tree_root;
4635 struct btrfs_key key;
4636 struct btrfs_path *path = NULL;
4637 int ret = 0;
4638 struct extent_buffer *eb;
4639 int slot;
4640 struct btrfs_root_item root_item;
4641 u32 item_size;
4642 struct btrfs_trans_handle *trans = NULL;
4643 bool closing = false;
4644
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 ret = -ENOMEM;
4648 goto out;
4649 }
4650
4651 key.objectid = 0;
4652 key.type = BTRFS_ROOT_ITEM_KEY;
4653 key.offset = 0;
4654
4655 while (1) {
4656 if (btrfs_fs_closing(fs_info)) {
4657 closing = true;
4658 break;
4659 }
4660 ret = btrfs_search_forward(root, &key, path,
4661 BTRFS_OLDEST_GENERATION);
4662 if (ret) {
4663 if (ret > 0)
4664 ret = 0;
4665 break;
4666 }
4667
4668 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 goto skip;
4673
4674 eb = path->nodes[0];
4675 slot = path->slots[0];
4676 item_size = btrfs_item_size(eb, slot);
4677 if (item_size < sizeof(root_item))
4678 goto skip;
4679
4680 read_extent_buffer(eb, &root_item,
4681 btrfs_item_ptr_offset(eb, slot),
4682 (int)sizeof(root_item));
4683 if (btrfs_root_refs(&root_item) == 0)
4684 goto skip;
4685
4686 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 if (trans)
4689 goto update_tree;
4690
4691 btrfs_release_path(path);
4692 /*
4693 * 1 - subvol uuid item
4694 * 1 - received_subvol uuid item
4695 */
4696 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 if (IS_ERR(trans)) {
4698 ret = PTR_ERR(trans);
4699 break;
4700 }
4701 continue;
4702 } else {
4703 goto skip;
4704 }
4705update_tree:
4706 btrfs_release_path(path);
4707 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709 BTRFS_UUID_KEY_SUBVOL,
4710 key.objectid);
4711 if (ret < 0) {
4712 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713 ret);
4714 break;
4715 }
4716 }
4717
4718 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719 ret = btrfs_uuid_tree_add(trans,
4720 root_item.received_uuid,
4721 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 key.objectid);
4723 if (ret < 0) {
4724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725 ret);
4726 break;
4727 }
4728 }
4729
4730skip:
4731 btrfs_release_path(path);
4732 if (trans) {
4733 ret = btrfs_end_transaction(trans);
4734 trans = NULL;
4735 if (ret)
4736 break;
4737 }
4738
4739 if (key.offset < (u64)-1) {
4740 key.offset++;
4741 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 key.offset = 0;
4743 key.type = BTRFS_ROOT_ITEM_KEY;
4744 } else if (key.objectid < (u64)-1) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 key.objectid++;
4748 } else {
4749 break;
4750 }
4751 cond_resched();
4752 }
4753
4754out:
4755 btrfs_free_path(path);
4756 if (trans && !IS_ERR(trans))
4757 btrfs_end_transaction(trans);
4758 if (ret)
4759 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760 else if (!closing)
4761 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762 up(&fs_info->uuid_tree_rescan_sem);
4763 return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *tree_root = fs_info->tree_root;
4770 struct btrfs_root *uuid_root;
4771 struct task_struct *task;
4772 int ret;
4773
4774 /*
4775 * 1 - root node
4776 * 1 - root item
4777 */
4778 trans = btrfs_start_transaction(tree_root, 2);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
4782 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783 if (IS_ERR(uuid_root)) {
4784 ret = PTR_ERR(uuid_root);
4785 btrfs_abort_transaction(trans, ret);
4786 btrfs_end_transaction(trans);
4787 return ret;
4788 }
4789
4790 fs_info->uuid_root = uuid_root;
4791
4792 ret = btrfs_commit_transaction(trans);
4793 if (ret)
4794 return ret;
4795
4796 down(&fs_info->uuid_tree_rescan_sem);
4797 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 if (IS_ERR(task)) {
4799 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800 btrfs_warn(fs_info, "failed to start uuid_scan task");
4801 up(&fs_info->uuid_tree_rescan_sem);
4802 return PTR_ERR(task);
4803 }
4804
4805 return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815 struct btrfs_fs_info *fs_info = device->fs_info;
4816 struct btrfs_root *root = fs_info->dev_root;
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_dev_extent *dev_extent = NULL;
4819 struct btrfs_path *path;
4820 u64 length;
4821 u64 chunk_offset;
4822 int ret;
4823 int slot;
4824 int failed = 0;
4825 bool retried = false;
4826 struct extent_buffer *l;
4827 struct btrfs_key key;
4828 struct btrfs_super_block *super_copy = fs_info->super_copy;
4829 u64 old_total = btrfs_super_total_bytes(super_copy);
4830 u64 old_size = btrfs_device_get_total_bytes(device);
4831 u64 diff;
4832 u64 start;
4833
4834 new_size = round_down(new_size, fs_info->sectorsize);
4835 start = new_size;
4836 diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839 return -EINVAL;
4840
4841 path = btrfs_alloc_path();
4842 if (!path)
4843 return -ENOMEM;
4844
4845 path->reada = READA_BACK;
4846
4847 trans = btrfs_start_transaction(root, 0);
4848 if (IS_ERR(trans)) {
4849 btrfs_free_path(path);
4850 return PTR_ERR(trans);
4851 }
4852
4853 mutex_lock(&fs_info->chunk_mutex);
4854
4855 btrfs_device_set_total_bytes(device, new_size);
4856 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857 device->fs_devices->total_rw_bytes -= diff;
4858 atomic64_sub(diff, &fs_info->free_chunk_space);
4859 }
4860
4861 /*
4862 * Once the device's size has been set to the new size, ensure all
4863 * in-memory chunks are synced to disk so that the loop below sees them
4864 * and relocates them accordingly.
4865 */
4866 if (contains_pending_extent(device, &start, diff)) {
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 ret = btrfs_commit_transaction(trans);
4869 if (ret)
4870 goto done;
4871 } else {
4872 mutex_unlock(&fs_info->chunk_mutex);
4873 btrfs_end_transaction(trans);
4874 }
4875
4876again:
4877 key.objectid = device->devid;
4878 key.offset = (u64)-1;
4879 key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881 do {
4882 mutex_lock(&fs_info->reclaim_bgs_lock);
4883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884 if (ret < 0) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 goto done;
4887 }
4888
4889 ret = btrfs_previous_item(root, path, 0, key.type);
4890 if (ret) {
4891 mutex_unlock(&fs_info->reclaim_bgs_lock);
4892 if (ret < 0)
4893 goto done;
4894 ret = 0;
4895 btrfs_release_path(path);
4896 break;
4897 }
4898
4899 l = path->nodes[0];
4900 slot = path->slots[0];
4901 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903 if (key.objectid != device->devid) {
4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 btrfs_release_path(path);
4906 break;
4907 }
4908
4909 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 length = btrfs_dev_extent_length(l, dev_extent);
4911
4912 if (key.offset + length <= new_size) {
4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 btrfs_release_path(path);
4915 break;
4916 }
4917
4918 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919 btrfs_release_path(path);
4920
4921 /*
4922 * We may be relocating the only data chunk we have,
4923 * which could potentially end up with losing data's
4924 * raid profile, so lets allocate an empty one in
4925 * advance.
4926 */
4927 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 if (ret < 0) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 goto done;
4931 }
4932
4933 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934 mutex_unlock(&fs_info->reclaim_bgs_lock);
4935 if (ret == -ENOSPC) {
4936 failed++;
4937 } else if (ret) {
4938 if (ret == -ETXTBSY) {
4939 btrfs_warn(fs_info,
4940 "could not shrink block group %llu due to active swapfile",
4941 chunk_offset);
4942 }
4943 goto done;
4944 }
4945 } while (key.offset-- > 0);
4946
4947 if (failed && !retried) {
4948 failed = 0;
4949 retried = true;
4950 goto again;
4951 } else if (failed && retried) {
4952 ret = -ENOSPC;
4953 goto done;
4954 }
4955
4956 /* Shrinking succeeded, else we would be at "done". */
4957 trans = btrfs_start_transaction(root, 0);
4958 if (IS_ERR(trans)) {
4959 ret = PTR_ERR(trans);
4960 goto done;
4961 }
4962
4963 mutex_lock(&fs_info->chunk_mutex);
4964 /* Clear all state bits beyond the shrunk device size */
4965 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 CHUNK_STATE_MASK);
4967
4968 btrfs_device_set_disk_total_bytes(device, new_size);
4969 if (list_empty(&device->post_commit_list))
4970 list_add_tail(&device->post_commit_list,
4971 &trans->transaction->dev_update_list);
4972
4973 WARN_ON(diff > old_total);
4974 btrfs_set_super_total_bytes(super_copy,
4975 round_down(old_total - diff, fs_info->sectorsize));
4976 mutex_unlock(&fs_info->chunk_mutex);
4977
4978 btrfs_reserve_chunk_metadata(trans, false);
4979 /* Now btrfs_update_device() will change the on-disk size. */
4980 ret = btrfs_update_device(trans, device);
4981 btrfs_trans_release_chunk_metadata(trans);
4982 if (ret < 0) {
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4985 } else {
4986 ret = btrfs_commit_transaction(trans);
4987 }
4988done:
4989 btrfs_free_path(path);
4990 if (ret) {
4991 mutex_lock(&fs_info->chunk_mutex);
4992 btrfs_device_set_total_bytes(device, old_size);
4993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994 device->fs_devices->total_rw_bytes += diff;
4995 atomic64_add(diff, &fs_info->free_chunk_space);
4996 mutex_unlock(&fs_info->chunk_mutex);
4997 }
4998 return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002 struct btrfs_key *key,
5003 struct btrfs_chunk *chunk, int item_size)
5004{
5005 struct btrfs_super_block *super_copy = fs_info->super_copy;
5006 struct btrfs_disk_key disk_key;
5007 u32 array_size;
5008 u8 *ptr;
5009
5010 lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012 array_size = btrfs_super_sys_array_size(super_copy);
5013 if (array_size + item_size + sizeof(disk_key)
5014 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015 return -EFBIG;
5016
5017 ptr = super_copy->sys_chunk_array + array_size;
5018 btrfs_cpu_key_to_disk(&disk_key, key);
5019 memcpy(ptr, &disk_key, sizeof(disk_key));
5020 ptr += sizeof(disk_key);
5021 memcpy(ptr, chunk, item_size);
5022 item_size += sizeof(disk_key);
5023 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025 return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033 const struct btrfs_device_info *di_a = a;
5034 const struct btrfs_device_info *di_b = b;
5035
5036 if (di_a->max_avail > di_b->max_avail)
5037 return -1;
5038 if (di_a->max_avail < di_b->max_avail)
5039 return 1;
5040 if (di_a->total_avail > di_b->total_avail)
5041 return -1;
5042 if (di_a->total_avail < di_b->total_avail)
5043 return 1;
5044 return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050 return;
5051
5052 btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068 u64 start;
5069 u64 type;
5070 /* Total number of stripes to allocate */
5071 int num_stripes;
5072 /* sub_stripes info for map */
5073 int sub_stripes;
5074 /* Stripes per device */
5075 int dev_stripes;
5076 /* Maximum number of devices to use */
5077 int devs_max;
5078 /* Minimum number of devices to use */
5079 int devs_min;
5080 /* ndevs has to be a multiple of this */
5081 int devs_increment;
5082 /* Number of copies */
5083 int ncopies;
5084 /* Number of stripes worth of bytes to store parity information */
5085 int nparity;
5086 u64 max_stripe_size;
5087 u64 max_chunk_size;
5088 u64 dev_extent_min;
5089 u64 stripe_size;
5090 u64 chunk_size;
5091 int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095 struct btrfs_fs_devices *fs_devices,
5096 struct alloc_chunk_ctl *ctl)
5097{
5098 struct btrfs_space_info *space_info;
5099
5100 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 ASSERT(space_info);
5102
5103 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109 /* We don't want a chunk larger than 10% of writable space */
5110 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111 ctl->max_chunk_size);
5112 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116 struct btrfs_fs_devices *fs_devices,
5117 struct alloc_chunk_ctl *ctl)
5118{
5119 u64 zone_size = fs_devices->fs_info->zone_size;
5120 u64 limit;
5121 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 u64 min_chunk_size = min_data_stripes * zone_size;
5124 u64 type = ctl->type;
5125
5126 ctl->max_stripe_size = zone_size;
5127 if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 zone_size);
5130 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 ctl->max_chunk_size = ctl->max_stripe_size;
5132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 ctl->devs_max = min_t(int, ctl->devs_max,
5135 BTRFS_MAX_DEVS_SYS_CHUNK);
5136 } else {
5137 BUG();
5138 }
5139
5140 /* We don't want a chunk larger than 10% of writable space */
5141 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142 zone_size),
5143 min_chunk_size);
5144 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 struct alloc_chunk_ctl *ctl)
5150{
5151 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 if (!ctl->devs_max)
5157 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 ctl->nparity = btrfs_raid_array[index].nparity;
5162 ctl->ndevs = 0;
5163
5164 switch (fs_devices->chunk_alloc_policy) {
5165 case BTRFS_CHUNK_ALLOC_REGULAR:
5166 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 break;
5168 case BTRFS_CHUNK_ALLOC_ZONED:
5169 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 break;
5171 default:
5172 BUG();
5173 }
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl,
5178 struct btrfs_device_info *devices_info)
5179{
5180 struct btrfs_fs_info *info = fs_devices->fs_info;
5181 struct btrfs_device *device;
5182 u64 total_avail;
5183 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184 int ret;
5185 int ndevs = 0;
5186 u64 max_avail;
5187 u64 dev_offset;
5188
5189 /*
5190 * in the first pass through the devices list, we gather information
5191 * about the available holes on each device.
5192 */
5193 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195 WARN(1, KERN_ERR
5196 "BTRFS: read-only device in alloc_list\n");
5197 continue;
5198 }
5199
5200 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 &device->dev_state) ||
5202 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203 continue;
5204
5205 if (device->total_bytes > device->bytes_used)
5206 total_avail = device->total_bytes - device->bytes_used;
5207 else
5208 total_avail = 0;
5209
5210 /* If there is no space on this device, skip it. */
5211 if (total_avail < ctl->dev_extent_min)
5212 continue;
5213
5214 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 &max_avail);
5216 if (ret && ret != -ENOSPC)
5217 return ret;
5218
5219 if (ret == 0)
5220 max_avail = dev_extent_want;
5221
5222 if (max_avail < ctl->dev_extent_min) {
5223 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 btrfs_debug(info,
5225 "%s: devid %llu has no free space, have=%llu want=%llu",
5226 __func__, device->devid, max_avail,
5227 ctl->dev_extent_min);
5228 continue;
5229 }
5230
5231 if (ndevs == fs_devices->rw_devices) {
5232 WARN(1, "%s: found more than %llu devices\n",
5233 __func__, fs_devices->rw_devices);
5234 break;
5235 }
5236 devices_info[ndevs].dev_offset = dev_offset;
5237 devices_info[ndevs].max_avail = max_avail;
5238 devices_info[ndevs].total_avail = total_avail;
5239 devices_info[ndevs].dev = device;
5240 ++ndevs;
5241 }
5242 ctl->ndevs = ndevs;
5243
5244 /*
5245 * now sort the devices by hole size / available space
5246 */
5247 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248 btrfs_cmp_device_info, NULL);
5249
5250 return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 struct btrfs_device_info *devices_info)
5255{
5256 /* Number of stripes that count for block group size */
5257 int data_stripes;
5258
5259 /*
5260 * The primary goal is to maximize the number of stripes, so use as
5261 * many devices as possible, even if the stripes are not maximum sized.
5262 *
5263 * The DUP profile stores more than one stripe per device, the
5264 * max_avail is the total size so we have to adjust.
5265 */
5266 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 ctl->dev_stripes);
5268 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273 /*
5274 * Use the number of data stripes to figure out how big this chunk is
5275 * really going to be in terms of logical address space, and compare
5276 * that answer with the max chunk size. If it's higher, we try to
5277 * reduce stripe_size.
5278 */
5279 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 /*
5281 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 * then use it, unless it ends up being even bigger than the
5283 * previous value we had already.
5284 */
5285 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 data_stripes), SZ_16M),
5287 ctl->stripe_size);
5288 }
5289
5290 /* Stripe size should not go beyond 1G. */
5291 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293 /* Align to BTRFS_STRIPE_LEN */
5294 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297 return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 struct btrfs_device_info *devices_info)
5302{
5303 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 /* Number of stripes that count for block group size */
5305 int data_stripes;
5306
5307 /*
5308 * It should hold because:
5309 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 */
5311 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313 ctl->stripe_size = zone_size;
5314 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 ctl->stripe_size) + ctl->nparity,
5321 ctl->dev_stripes);
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 }
5326
5327 ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329 return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 struct alloc_chunk_ctl *ctl,
5334 struct btrfs_device_info *devices_info)
5335{
5336 struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338 /*
5339 * Round down to number of usable stripes, devs_increment can be any
5340 * number so we can't use round_down() that requires power of 2, while
5341 * rounddown is safe.
5342 */
5343 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345 if (ctl->ndevs < ctl->devs_min) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 btrfs_debug(info,
5348 "%s: not enough devices with free space: have=%d minimum required=%d",
5349 __func__, ctl->ndevs, ctl->devs_min);
5350 }
5351 return -ENOSPC;
5352 }
5353
5354 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356 switch (fs_devices->chunk_alloc_policy) {
5357 case BTRFS_CHUNK_ALLOC_REGULAR:
5358 return decide_stripe_size_regular(ctl, devices_info);
5359 case BTRFS_CHUNK_ALLOC_ZONED:
5360 return decide_stripe_size_zoned(ctl, devices_info);
5361 default:
5362 BUG();
5363 }
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369{
5370 struct btrfs_fs_info *info = trans->fs_info;
5371 struct map_lookup *map = NULL;
5372 struct extent_map_tree *em_tree;
5373 struct btrfs_block_group *block_group;
5374 struct extent_map *em;
5375 u64 start = ctl->start;
5376 u64 type = ctl->type;
5377 int ret;
5378 int i;
5379 int j;
5380
5381 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 if (!map)
5383 return ERR_PTR(-ENOMEM);
5384 map->num_stripes = ctl->num_stripes;
5385
5386 for (i = 0; i < ctl->ndevs; ++i) {
5387 for (j = 0; j < ctl->dev_stripes; ++j) {
5388 int s = i * ctl->dev_stripes + j;
5389 map->stripes[s].dev = devices_info[i].dev;
5390 map->stripes[s].physical = devices_info[i].dev_offset +
5391 j * ctl->stripe_size;
5392 }
5393 }
5394 map->stripe_len = BTRFS_STRIPE_LEN;
5395 map->io_align = BTRFS_STRIPE_LEN;
5396 map->io_width = BTRFS_STRIPE_LEN;
5397 map->type = type;
5398 map->sub_stripes = ctl->sub_stripes;
5399
5400 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402 em = alloc_extent_map();
5403 if (!em) {
5404 kfree(map);
5405 return ERR_PTR(-ENOMEM);
5406 }
5407 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408 em->map_lookup = map;
5409 em->start = start;
5410 em->len = ctl->chunk_size;
5411 em->block_start = 0;
5412 em->block_len = em->len;
5413 em->orig_block_len = ctl->stripe_size;
5414
5415 em_tree = &info->mapping_tree;
5416 write_lock(&em_tree->lock);
5417 ret = add_extent_mapping(em_tree, em, 0);
5418 if (ret) {
5419 write_unlock(&em_tree->lock);
5420 free_extent_map(em);
5421 return ERR_PTR(ret);
5422 }
5423 write_unlock(&em_tree->lock);
5424
5425 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 if (IS_ERR(block_group))
5427 goto error_del_extent;
5428
5429 for (i = 0; i < map->num_stripes; i++) {
5430 struct btrfs_device *dev = map->stripes[i].dev;
5431
5432 btrfs_device_set_bytes_used(dev,
5433 dev->bytes_used + ctl->stripe_size);
5434 if (list_empty(&dev->post_commit_list))
5435 list_add_tail(&dev->post_commit_list,
5436 &trans->transaction->dev_update_list);
5437 }
5438
5439 atomic64_sub(ctl->stripe_size * map->num_stripes,
5440 &info->free_chunk_space);
5441
5442 free_extent_map(em);
5443 check_raid56_incompat_flag(info, type);
5444 check_raid1c34_incompat_flag(info, type);
5445
5446 return block_group;
5447
5448error_del_extent:
5449 write_lock(&em_tree->lock);
5450 remove_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452
5453 /* One for our allocation */
5454 free_extent_map(em);
5455 /* One for the tree reference */
5456 free_extent_map(em);
5457
5458 return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462 u64 type)
5463{
5464 struct btrfs_fs_info *info = trans->fs_info;
5465 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 struct btrfs_device_info *devices_info = NULL;
5467 struct alloc_chunk_ctl ctl;
5468 struct btrfs_block_group *block_group;
5469 int ret;
5470
5471 lockdep_assert_held(&info->chunk_mutex);
5472
5473 if (!alloc_profile_is_valid(type, 0)) {
5474 ASSERT(0);
5475 return ERR_PTR(-EINVAL);
5476 }
5477
5478 if (list_empty(&fs_devices->alloc_list)) {
5479 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 btrfs_debug(info, "%s: no writable device", __func__);
5481 return ERR_PTR(-ENOSPC);
5482 }
5483
5484 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 ASSERT(0);
5487 return ERR_PTR(-EINVAL);
5488 }
5489
5490 ctl.start = find_next_chunk(info);
5491 ctl.type = type;
5492 init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 GFP_NOFS);
5496 if (!devices_info)
5497 return ERR_PTR(-ENOMEM);
5498
5499 ret = gather_device_info(fs_devices, &ctl, devices_info);
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
5502 goto out;
5503 }
5504
5505 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506 if (ret < 0) {
5507 block_group = ERR_PTR(ret);
5508 goto out;
5509 }
5510
5511 block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514 kfree(devices_info);
5515 return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 struct btrfs_block_group *bg)
5528{
5529 struct btrfs_fs_info *fs_info = trans->fs_info;
5530 struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 struct btrfs_key key;
5532 struct btrfs_chunk *chunk;
5533 struct btrfs_stripe *stripe;
5534 struct extent_map *em;
5535 struct map_lookup *map;
5536 size_t item_size;
5537 int i;
5538 int ret;
5539
5540 /*
5541 * We take the chunk_mutex for 2 reasons:
5542 *
5543 * 1) Updates and insertions in the chunk btree must be done while holding
5544 * the chunk_mutex, as well as updating the system chunk array in the
5545 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 * details;
5547 *
5548 * 2) To prevent races with the final phase of a device replace operation
5549 * that replaces the device object associated with the map's stripes,
5550 * because the device object's id can change at any time during that
5551 * final phase of the device replace operation
5552 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 * which would cause a failure when updating the device item, which does
5555 * not exists, or persisting a stripe of the chunk item with such ID.
5556 * Here we can't use the device_list_mutex because our caller already
5557 * has locked the chunk_mutex, and the final phase of device replace
5558 * acquires both mutexes - first the device_list_mutex and then the
5559 * chunk_mutex. Using any of those two mutexes protects us from a
5560 * concurrent device replace.
5561 */
5562 lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 if (IS_ERR(em)) {
5566 ret = PTR_ERR(em);
5567 btrfs_abort_transaction(trans, ret);
5568 return ret;
5569 }
5570
5571 map = em->map_lookup;
5572 item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574 chunk = kzalloc(item_size, GFP_NOFS);
5575 if (!chunk) {
5576 ret = -ENOMEM;
5577 btrfs_abort_transaction(trans, ret);
5578 goto out;
5579 }
5580
5581 for (i = 0; i < map->num_stripes; i++) {
5582 struct btrfs_device *device = map->stripes[i].dev;
5583
5584 ret = btrfs_update_device(trans, device);
5585 if (ret)
5586 goto out;
5587 }
5588
5589 stripe = &chunk->stripe;
5590 for (i = 0; i < map->num_stripes; i++) {
5591 struct btrfs_device *device = map->stripes[i].dev;
5592 const u64 dev_offset = map->stripes[i].physical;
5593
5594 btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597 stripe++;
5598 }
5599
5600 btrfs_set_stack_chunk_length(chunk, bg->length);
5601 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 btrfs_set_stack_chunk_type(chunk, map->type);
5604 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 key.type = BTRFS_CHUNK_ITEM_KEY;
5612 key.offset = bg->start;
5613
5614 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615 if (ret)
5616 goto out;
5617
5618 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622 if (ret)
5623 goto out;
5624 }
5625
5626out:
5627 kfree(chunk);
5628 free_extent_map(em);
5629 return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634 struct btrfs_fs_info *fs_info = trans->fs_info;
5635 u64 alloc_profile;
5636 struct btrfs_block_group *meta_bg;
5637 struct btrfs_block_group *sys_bg;
5638
5639 /*
5640 * When adding a new device for sprouting, the seed device is read-only
5641 * so we must first allocate a metadata and a system chunk. But before
5642 * adding the block group items to the extent, device and chunk btrees,
5643 * we must first:
5644 *
5645 * 1) Create both chunks without doing any changes to the btrees, as
5646 * otherwise we would get -ENOSPC since the block groups from the
5647 * seed device are read-only;
5648 *
5649 * 2) Add the device item for the new sprout device - finishing the setup
5650 * of a new block group requires updating the device item in the chunk
5651 * btree, so it must exist when we attempt to do it. The previous step
5652 * ensures this does not fail with -ENOSPC.
5653 *
5654 * After that we can add the block group items to their btrees:
5655 * update existing device item in the chunk btree, add a new block group
5656 * item to the extent btree, add a new chunk item to the chunk btree and
5657 * finally add the new device extent items to the devices btree.
5658 */
5659
5660 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662 if (IS_ERR(meta_bg))
5663 return PTR_ERR(meta_bg);
5664
5665 alloc_profile = btrfs_system_alloc_profile(fs_info);
5666 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667 if (IS_ERR(sys_bg))
5668 return PTR_ERR(sys_bg);
5669
5670 return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675 const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677 return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682 struct extent_map *em;
5683 struct map_lookup *map;
5684 int miss_ndevs = 0;
5685 int i;
5686 bool ret = true;
5687
5688 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689 if (IS_ERR(em))
5690 return false;
5691
5692 map = em->map_lookup;
5693 for (i = 0; i < map->num_stripes; i++) {
5694 if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 &map->stripes[i].dev->dev_state)) {
5696 miss_ndevs++;
5697 continue;
5698 }
5699 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 &map->stripes[i].dev->dev_state)) {
5701 ret = false;
5702 goto end;
5703 }
5704 }
5705
5706 /*
5707 * If the number of missing devices is larger than max errors, we can
5708 * not write the data into that chunk successfully.
5709 */
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
5711 ret = false;
5712end:
5713 free_extent_map(em);
5714 return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719 struct extent_map *em;
5720
5721 while (1) {
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
5724 if (em)
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
5727 if (!em)
5728 break;
5729 /* once for us */
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5733 }
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738 struct extent_map *em;
5739 struct map_lookup *map;
5740 enum btrfs_raid_types index;
5741 int ret = 1;
5742
5743 em = btrfs_get_chunk_map(fs_info, logical, len);
5744 if (IS_ERR(em))
5745 /*
5746 * We could return errors for these cases, but that could get
5747 * ugly and we'd probably do the same thing which is just not do
5748 * anything else and exit, so return 1 so the callers don't try
5749 * to use other copies.
5750 */
5751 return 1;
5752
5753 map = em->map_lookup;
5754 index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 ret = btrfs_raid_array[index].ncopies;
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 ret = 2;
5761 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762 /*
5763 * There could be two corrupted data stripes, we need
5764 * to loop retry in order to rebuild the correct data.
5765 *
5766 * Fail a stripe at a time on every retry except the
5767 * stripe under reconstruction.
5768 */
5769 ret = map->num_stripes;
5770 free_extent_map(em);
5771
5772 down_read(&fs_info->dev_replace.rwsem);
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
5775 ret++;
5776 up_read(&fs_info->dev_replace.rwsem);
5777
5778 return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 u64 logical)
5783{
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5787
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
5791 em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = map->stripe_len * nr_data_stripes(map);
5797 free_extent_map(em);
5798 }
5799 return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804 struct extent_map *em;
5805 struct map_lookup *map;
5806 int ret = 0;
5807
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
5811 em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
5819 return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 struct map_lookup *map, int first,
5824 int dev_replace_is_ongoing)
5825{
5826 int i;
5827 int num_stripes;
5828 int preferred_mirror;
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
5832 ASSERT((map->type &
5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
5852
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
5869 for (i = first; i < first + num_stripes; i++) {
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
5874 }
5875
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
5879 return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885 int i;
5886 int again = 1;
5887
5888 while (again) {
5889 again = 0;
5890 for (i = 0; i < num_stripes - 1; i++) {
5891 /* Swap if parity is on a smaller index */
5892 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895 again = 1;
5896 }
5897 }
5898 }
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 int total_stripes,
5903 int real_stripes)
5904{
5905 struct btrfs_io_context *bioc = kzalloc(
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
5909 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 /* Plus the variable array for the tgt dev */
5911 sizeof(int) * (real_stripes) +
5912 /*
5913 * Plus the raid_map, which includes both the tgt dev
5914 * and the stripes.
5915 */
5916 sizeof(u64) * (total_stripes),
5917 GFP_NOFS);
5918
5919 if (!bioc)
5920 return NULL;
5921
5922 refcount_set(&bioc->refs, 1);
5923
5924 bioc->fs_info = fs_info;
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928 return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939 if (!bioc)
5940 return;
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
5952{
5953 struct extent_map *em;
5954 struct map_lookup *map;
5955 struct btrfs_discard_stripe *stripes;
5956 u64 length = *length_ret;
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
5970 int ret;
5971 int i;
5972
5973 em = btrfs_get_chunk_map(fs_info, logical, length);
5974 if (IS_ERR(em))
5975 return ERR_CAST(em);
5976
5977 map = em->map_lookup;
5978
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
5982 goto out_free_map;
5983}
5984
5985 offset = logical - em->start;
5986 length = min_t(u64, em->start + em->len - logical, length);
5987 *length_ret = length;
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
6009 *num_stripes = 1;
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
6019 *num_stripes = min_t(u64, map->num_stripes,
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 BTRFS_BLOCK_GROUP_DUP)) {
6029 *num_stripes = map->num_stripes;
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
6037 ret = -ENOMEM;
6038 goto out_free_map;
6039 }
6040
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
6045 stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
6049 stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051 if (i / sub_stripes < remaining_stripes)
6052 stripes[i].length += map->stripe_len;
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
6063 stripes[i].length -= stripe_offset;
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
6068 stripes[i].length -= stripe_end_offset;
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
6073 stripes[i].length = length;
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
6083 free_extent_map(em);
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107{
6108 struct btrfs_io_context *bioc = NULL;
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 logical, &length, &bioc, NULL, NULL, 0);
6118 if (ret) {
6119 ASSERT(bioc == NULL);
6120 return ret;
6121 }
6122
6123 num_stripes = bioc->num_stripes;
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
6130 btrfs_put_bioc(bioc);
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
6148 physical_of_found <= bioc->stripes[i].physical)
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bioc->stripes[i].physical;
6154 }
6155
6156 btrfs_put_bioc(bioc);
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
6172 /* Non zoned filesystem does not use "to_copy" flag */
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_io_context **bioc_ret,
6186 struct btrfs_dev_replace *dev_replace,
6187 u64 logical,
6188 int *num_stripes_ret, int *max_errors_ret)
6189{
6190 struct btrfs_io_context *bioc = *bioc_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
6226
6227 new->physical = old->physical;
6228 new->dev = dev_replace->tgtdev;
6229 bioc->tgtdev_map[i] = index_where_to_add;
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
6256 physical_of_found <= bioc->stripes[i].physical)
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
6260 physical_of_found = bioc->stripes[i].physical;
6261 }
6262 }
6263 if (found) {
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
6266
6267 tgtdev_stripe->physical = physical_of_found;
6268 tgtdev_stripe->dev = dev_replace->tgtdev;
6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302 enum btrfs_map_op op, u64 logical,
6303 struct btrfs_io_geometry *io_geom)
6304{
6305 struct map_lookup *map;
6306 u64 len;
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
6310 u32 stripe_len;
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
6327
6328 data_stripes = nr_data_stripes(map);
6329
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371 return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383 u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386 int need_raid_map)
6387{
6388 struct extent_map *em;
6389 struct map_lookup *map;
6390 u64 stripe_offset;
6391 u64 stripe_nr;
6392 u64 stripe_len;
6393 u32 stripe_index;
6394 int data_stripes;
6395 int i;
6396 int ret = 0;
6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398 int num_stripes;
6399 int max_errors = 0;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_io_context *bioc = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6409
6410 ASSERT(bioc_ret);
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417 if (ret < 0)
6418 return ret;
6419
6420 map = em->map_lookup;
6421
6422 *length = geom.len;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6428
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6437
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
6445 goto out;
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
6452 num_stripes = 1;
6453 stripe_index = 0;
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
6457 if (!need_full_stripe(op))
6458 mirror_num = 1;
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6464 else {
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6475 } else {
6476 mirror_num = 1;
6477 }
6478
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6484
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6489 else {
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6495 }
6496
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 /* push stripe_nr back to the start of the full stripe */
6501 stripe_nr = div64_u64(raid56_full_stripe_start,
6502 stripe_len * data_stripes);
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6506 max_errors = btrfs_chunk_max_errors(map);
6507
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
6520 stripe_nr = div_u64_rem(stripe_nr,
6521 data_stripes, &stripe_index);
6522 if (mirror_num > 1)
6523 stripe_index = data_stripes + mirror_num - 2;
6524
6525 /* We distribute the parity blocks across stripes */
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
6528 if (!need_full_stripe(op) && mirror_num <= 1)
6529 mirror_num = 1;
6530 }
6531 } else {
6532 /*
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
6536 */
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
6539 mirror_num = stripe_index + 1;
6540 }
6541 if (stripe_index >= map->num_stripes) {
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
6548
6549 num_alloc_stripes = num_stripes;
6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551 if (op == BTRFS_MAP_WRITE)
6552 num_alloc_stripes <<= 1;
6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554 num_alloc_stripes++;
6555 tgtdev_indexes = num_stripes;
6556 }
6557
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582 if (!bioc) {
6583 ret = -ENOMEM;
6584 goto out;
6585 }
6586
6587 for (i = 0; i < num_stripes; i++) {
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
6590 stripe_index++;
6591 }
6592
6593 /* Build raid_map */
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
6596 u64 tmp;
6597 unsigned rot;
6598
6599 /* Work out the disk rotation on this stripe-set */
6600 div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602 /* Fill in the logical address of each stripe */
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
6605 bioc->raid_map[(i + rot) % num_stripes] =
6606 em->start + (tmp + i) * map->stripe_len;
6607
6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
6611 RAID6_Q_STRIPE;
6612
6613 sort_parity_stripes(bioc, num_stripes);
6614 }
6615
6616 if (need_full_stripe(op))
6617 max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 need_full_stripe(op)) {
6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622 &num_stripes, &max_errors);
6623 }
6624
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
6641 }
6642out:
6643 if (dev_replace_is_ongoing) {
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
6646 up_read(&dev_replace->rwsem);
6647 }
6648 free_extent_map(em);
6649 return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662 u64 logical, u64 *length,
6663 struct btrfs_io_context **bioc_ret)
6664{
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670 const struct btrfs_fs_devices *fs_devices)
6671{
6672 if (args->fsid == NULL)
6673 return true;
6674 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675 return true;
6676 return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680 const struct btrfs_device *device)
6681{
6682 if (args->missing) {
6683 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684 !device->bdev)
6685 return true;
6686 return false;
6687 }
6688
6689 if (device->devid != args->devid)
6690 return false;
6691 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692 return false;
6693 return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704 const struct btrfs_dev_lookup_args *args)
6705{
6706 struct btrfs_device *device;
6707 struct btrfs_fs_devices *seed_devs;
6708
6709 if (dev_args_match_fs_devices(args, fs_devices)) {
6710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711 if (dev_args_match_device(args, device))
6712 return device;
6713 }
6714 }
6715
6716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717 if (!dev_args_match_fs_devices(args, seed_devs))
6718 continue;
6719 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720 if (dev_args_match_device(args, device))
6721 return device;
6722 }
6723 }
6724
6725 return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729 u64 devid, u8 *dev_uuid)
6730{
6731 struct btrfs_device *device;
6732 unsigned int nofs_flag;
6733
6734 /*
6735 * We call this under the chunk_mutex, so we want to use NOFS for this
6736 * allocation, however we don't want to change btrfs_alloc_device() to
6737 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738 * places.
6739 */
6740
6741 nofs_flag = memalloc_nofs_save();
6742 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743 memalloc_nofs_restore(nofs_flag);
6744 if (IS_ERR(device))
6745 return device;
6746
6747 list_add(&device->dev_list, &fs_devices->devices);
6748 device->fs_devices = fs_devices;
6749 fs_devices->num_devices++;
6750
6751 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752 fs_devices->missing_devices++;
6753
6754 return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info: used only for generating a new devid, can be NULL if
6761 * devid is provided (i.e. @devid != NULL).
6762 * @devid: a pointer to devid for this device. If NULL a new devid
6763 * is generated.
6764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6765 * is generated.
6766 * @path: a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error. Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773 const u64 *devid, const u8 *uuid,
6774 const char *path)
6775{
6776 struct btrfs_device *dev;
6777 u64 tmp;
6778
6779 if (WARN_ON(!devid && !fs_info))
6780 return ERR_PTR(-EINVAL);
6781
6782 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783 if (!dev)
6784 return ERR_PTR(-ENOMEM);
6785
6786 INIT_LIST_HEAD(&dev->dev_list);
6787 INIT_LIST_HEAD(&dev->dev_alloc_list);
6788 INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790 atomic_set(&dev->dev_stats_ccnt, 0);
6791 btrfs_device_data_ordered_init(dev);
6792 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794 if (devid)
6795 tmp = *devid;
6796 else {
6797 int ret;
6798
6799 ret = find_next_devid(fs_info, &tmp);
6800 if (ret) {
6801 btrfs_free_device(dev);
6802 return ERR_PTR(ret);
6803 }
6804 }
6805 dev->devid = tmp;
6806
6807 if (uuid)
6808 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809 else
6810 generate_random_uuid(dev->uuid);
6811
6812 if (path) {
6813 struct rcu_string *name;
6814
6815 name = rcu_string_strdup(path, GFP_KERNEL);
6816 if (!name) {
6817 btrfs_free_device(dev);
6818 return ERR_PTR(-ENOMEM);
6819 }
6820 rcu_assign_pointer(dev->name, name);
6821 }
6822
6823 return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827 u64 devid, u8 *uuid, bool error)
6828{
6829 if (error)
6830 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831 devid, uuid);
6832 else
6833 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834 devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839 const struct map_lookup *map = em->map_lookup;
6840 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842 return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854 u64 logical, u64 length, u64 type)
6855{
6856 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857 return 0;
6858
6859 if (logical + length < MAX_LFS_FILESIZE)
6860 return 0;
6861
6862 btrfs_err_32bit_limit(fs_info);
6863 return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873 u64 logical, u64 length, u64 type)
6874{
6875 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876 return;
6877
6878 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879 return;
6880
6881 btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886 u64 devid, u8 *uuid)
6887{
6888 struct btrfs_device *dev;
6889
6890 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891 btrfs_report_missing_device(fs_info, devid, uuid, true);
6892 return ERR_PTR(-ENOENT);
6893 }
6894
6895 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896 if (IS_ERR(dev)) {
6897 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898 devid, PTR_ERR(dev));
6899 return dev;
6900 }
6901 btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903 return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907 struct btrfs_chunk *chunk)
6908{
6909 BTRFS_DEV_LOOKUP_ARGS(args);
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
6916 u64 devid;
6917 u64 type;
6918 u8 uuid[BTRFS_UUID_SIZE];
6919 int index;
6920 int num_stripes;
6921 int ret;
6922 int i;
6923
6924 logical = key->offset;
6925 length = btrfs_chunk_length(leaf, chunk);
6926 type = btrfs_chunk_type(leaf, chunk);
6927 index = btrfs_bg_flags_to_raid_index(type);
6928 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932 if (ret < 0)
6933 return ret;
6934 warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937 /*
6938 * Only need to verify chunk item if we're reading from sys chunk array,
6939 * as chunk item in tree block is already verified by tree-checker.
6940 */
6941 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943 if (ret)
6944 return ret;
6945 }
6946
6947 read_lock(&map_tree->lock);
6948 em = lookup_extent_mapping(map_tree, logical, 1);
6949 read_unlock(&map_tree->lock);
6950
6951 /* already mapped? */
6952 if (em && em->start <= logical && em->start + em->len > logical) {
6953 free_extent_map(em);
6954 return 0;
6955 } else if (em) {
6956 free_extent_map(em);
6957 }
6958
6959 em = alloc_extent_map();
6960 if (!em)
6961 return -ENOMEM;
6962 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963 if (!map) {
6964 free_extent_map(em);
6965 return -ENOMEM;
6966 }
6967
6968 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969 em->map_lookup = map;
6970 em->start = logical;
6971 em->len = length;
6972 em->orig_start = 0;
6973 em->block_start = 0;
6974 em->block_len = em->len;
6975
6976 map->num_stripes = num_stripes;
6977 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980 map->type = type;
6981 /*
6982 * We can't use the sub_stripes value, as for profiles other than
6983 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984 * older mkfs (<v5.4).
6985 * In that case, it can cause divide-by-zero errors later.
6986 * Since currently sub_stripes is fixed for each profile, let's
6987 * use the trusted value instead.
6988 */
6989 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990 map->verified_stripes = 0;
6991 em->orig_block_len = btrfs_calc_stripe_length(em);
6992 for (i = 0; i < num_stripes; i++) {
6993 map->stripes[i].physical =
6994 btrfs_stripe_offset_nr(leaf, chunk, i);
6995 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996 args.devid = devid;
6997 read_extent_buffer(leaf, uuid, (unsigned long)
6998 btrfs_stripe_dev_uuid_nr(chunk, i),
6999 BTRFS_UUID_SIZE);
7000 args.uuid = uuid;
7001 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7002 if (!map->stripes[i].dev) {
7003 map->stripes[i].dev = handle_missing_device(fs_info,
7004 devid, uuid);
7005 if (IS_ERR(map->stripes[i].dev)) {
7006 ret = PTR_ERR(map->stripes[i].dev);
7007 free_extent_map(em);
7008 return ret;
7009 }
7010 }
7011
7012 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013 &(map->stripes[i].dev->dev_state));
7014 }
7015
7016 write_lock(&map_tree->lock);
7017 ret = add_extent_mapping(map_tree, em, 0);
7018 write_unlock(&map_tree->lock);
7019 if (ret < 0) {
7020 btrfs_err(fs_info,
7021 "failed to add chunk map, start=%llu len=%llu: %d",
7022 em->start, em->len, ret);
7023 }
7024 free_extent_map(em);
7025
7026 return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030 struct btrfs_dev_item *dev_item,
7031 struct btrfs_device *device)
7032{
7033 unsigned long ptr;
7034
7035 device->devid = btrfs_device_id(leaf, dev_item);
7036 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037 device->total_bytes = device->disk_total_bytes;
7038 device->commit_total_bytes = device->disk_total_bytes;
7039 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040 device->commit_bytes_used = device->bytes_used;
7041 device->type = btrfs_device_type(leaf, dev_item);
7042 device->io_align = btrfs_device_io_align(leaf, dev_item);
7043 device->io_width = btrfs_device_io_width(leaf, dev_item);
7044 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048 ptr = btrfs_device_uuid(dev_item);
7049 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053 u8 *fsid)
7054{
7055 struct btrfs_fs_devices *fs_devices;
7056 int ret;
7057
7058 lockdep_assert_held(&uuid_mutex);
7059 ASSERT(fsid);
7060
7061 /* This will match only for multi-device seed fs */
7062 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064 return fs_devices;
7065
7066
7067 fs_devices = find_fsid(fsid, NULL);
7068 if (!fs_devices) {
7069 if (!btrfs_test_opt(fs_info, DEGRADED))
7070 return ERR_PTR(-ENOENT);
7071
7072 fs_devices = alloc_fs_devices(fsid, NULL);
7073 if (IS_ERR(fs_devices))
7074 return fs_devices;
7075
7076 fs_devices->seeding = true;
7077 fs_devices->opened = 1;
7078 return fs_devices;
7079 }
7080
7081 /*
7082 * Upon first call for a seed fs fsid, just create a private copy of the
7083 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084 */
7085 fs_devices = clone_fs_devices(fs_devices);
7086 if (IS_ERR(fs_devices))
7087 return fs_devices;
7088
7089 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090 if (ret) {
7091 free_fs_devices(fs_devices);
7092 return ERR_PTR(ret);
7093 }
7094
7095 if (!fs_devices->seeding) {
7096 close_fs_devices(fs_devices);
7097 free_fs_devices(fs_devices);
7098 return ERR_PTR(-EINVAL);
7099 }
7100
7101 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103 return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107 struct btrfs_dev_item *dev_item)
7108{
7109 BTRFS_DEV_LOOKUP_ARGS(args);
7110 struct btrfs_fs_info *fs_info = leaf->fs_info;
7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 struct btrfs_device *device;
7113 u64 devid;
7114 int ret;
7115 u8 fs_uuid[BTRFS_FSID_SIZE];
7116 u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118 devid = btrfs_device_id(leaf, dev_item);
7119 args.devid = devid;
7120 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121 BTRFS_UUID_SIZE);
7122 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123 BTRFS_FSID_SIZE);
7124 args.uuid = dev_uuid;
7125 args.fsid = fs_uuid;
7126
7127 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128 fs_devices = open_seed_devices(fs_info, fs_uuid);
7129 if (IS_ERR(fs_devices))
7130 return PTR_ERR(fs_devices);
7131 }
7132
7133 device = btrfs_find_device(fs_info->fs_devices, &args);
7134 if (!device) {
7135 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136 btrfs_report_missing_device(fs_info, devid,
7137 dev_uuid, true);
7138 return -ENOENT;
7139 }
7140
7141 device = add_missing_dev(fs_devices, devid, dev_uuid);
7142 if (IS_ERR(device)) {
7143 btrfs_err(fs_info,
7144 "failed to add missing dev %llu: %ld",
7145 devid, PTR_ERR(device));
7146 return PTR_ERR(device);
7147 }
7148 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149 } else {
7150 if (!device->bdev) {
7151 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152 btrfs_report_missing_device(fs_info,
7153 devid, dev_uuid, true);
7154 return -ENOENT;
7155 }
7156 btrfs_report_missing_device(fs_info, devid,
7157 dev_uuid, false);
7158 }
7159
7160 if (!device->bdev &&
7161 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162 /*
7163 * this happens when a device that was properly setup
7164 * in the device info lists suddenly goes bad.
7165 * device->bdev is NULL, and so we have to set
7166 * device->missing to one here
7167 */
7168 device->fs_devices->missing_devices++;
7169 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170 }
7171
7172 /* Move the device to its own fs_devices */
7173 if (device->fs_devices != fs_devices) {
7174 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175 &device->dev_state));
7176
7177 list_move(&device->dev_list, &fs_devices->devices);
7178 device->fs_devices->num_devices--;
7179 fs_devices->num_devices++;
7180
7181 device->fs_devices->missing_devices--;
7182 fs_devices->missing_devices++;
7183
7184 device->fs_devices = fs_devices;
7185 }
7186 }
7187
7188 if (device->fs_devices != fs_info->fs_devices) {
7189 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190 if (device->generation !=
7191 btrfs_device_generation(leaf, dev_item))
7192 return -EINVAL;
7193 }
7194
7195 fill_device_from_item(leaf, dev_item, device);
7196 if (device->bdev) {
7197 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199 if (device->total_bytes > max_total_bytes) {
7200 btrfs_err(fs_info,
7201 "device total_bytes should be at most %llu but found %llu",
7202 max_total_bytes, device->total_bytes);
7203 return -EINVAL;
7204 }
7205 }
7206 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209 device->fs_devices->total_rw_bytes += device->total_bytes;
7210 atomic64_add(device->total_bytes - device->bytes_used,
7211 &fs_info->free_chunk_space);
7212 }
7213 ret = 0;
7214 return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219 struct btrfs_super_block *super_copy = fs_info->super_copy;
7220 struct extent_buffer *sb;
7221 struct btrfs_disk_key *disk_key;
7222 struct btrfs_chunk *chunk;
7223 u8 *array_ptr;
7224 unsigned long sb_array_offset;
7225 int ret = 0;
7226 u32 num_stripes;
7227 u32 array_size;
7228 u32 len = 0;
7229 u32 cur_offset;
7230 u64 type;
7231 struct btrfs_key key;
7232
7233 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235 /*
7236 * We allocated a dummy extent, just to use extent buffer accessors.
7237 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238 * that's fine, we will not go beyond system chunk array anyway.
7239 */
7240 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241 if (!sb)
7242 return -ENOMEM;
7243 set_extent_buffer_uptodate(sb);
7244
7245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246 array_size = btrfs_super_sys_array_size(super_copy);
7247
7248 array_ptr = super_copy->sys_chunk_array;
7249 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250 cur_offset = 0;
7251
7252 while (cur_offset < array_size) {
7253 disk_key = (struct btrfs_disk_key *)array_ptr;
7254 len = sizeof(*disk_key);
7255 if (cur_offset + len > array_size)
7256 goto out_short_read;
7257
7258 btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260 array_ptr += len;
7261 sb_array_offset += len;
7262 cur_offset += len;
7263
7264 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265 btrfs_err(fs_info,
7266 "unexpected item type %u in sys_array at offset %u",
7267 (u32)key.type, cur_offset);
7268 ret = -EIO;
7269 break;
7270 }
7271
7272 chunk = (struct btrfs_chunk *)sb_array_offset;
7273 /*
7274 * At least one btrfs_chunk with one stripe must be present,
7275 * exact stripe count check comes afterwards
7276 */
7277 len = btrfs_chunk_item_size(1);
7278 if (cur_offset + len > array_size)
7279 goto out_short_read;
7280
7281 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282 if (!num_stripes) {
7283 btrfs_err(fs_info,
7284 "invalid number of stripes %u in sys_array at offset %u",
7285 num_stripes, cur_offset);
7286 ret = -EIO;
7287 break;
7288 }
7289
7290 type = btrfs_chunk_type(sb, chunk);
7291 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292 btrfs_err(fs_info,
7293 "invalid chunk type %llu in sys_array at offset %u",
7294 type, cur_offset);
7295 ret = -EIO;
7296 break;
7297 }
7298
7299 len = btrfs_chunk_item_size(num_stripes);
7300 if (cur_offset + len > array_size)
7301 goto out_short_read;
7302
7303 ret = read_one_chunk(&key, sb, chunk);
7304 if (ret)
7305 break;
7306
7307 array_ptr += len;
7308 sb_array_offset += len;
7309 cur_offset += len;
7310 }
7311 clear_extent_buffer_uptodate(sb);
7312 free_extent_buffer_stale(sb);
7313 return ret;
7314
7315out_short_read:
7316 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317 len, cur_offset);
7318 clear_extent_buffer_uptodate(sb);
7319 free_extent_buffer_stale(sb);
7320 return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332 struct btrfs_device *failing_dev)
7333{
7334 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335 struct extent_map *em;
7336 u64 next_start = 0;
7337 bool ret = true;
7338
7339 read_lock(&map_tree->lock);
7340 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341 read_unlock(&map_tree->lock);
7342 /* No chunk at all? Return false anyway */
7343 if (!em) {
7344 ret = false;
7345 goto out;
7346 }
7347 while (em) {
7348 struct map_lookup *map;
7349 int missing = 0;
7350 int max_tolerated;
7351 int i;
7352
7353 map = em->map_lookup;
7354 max_tolerated =
7355 btrfs_get_num_tolerated_disk_barrier_failures(
7356 map->type);
7357 for (i = 0; i < map->num_stripes; i++) {
7358 struct btrfs_device *dev = map->stripes[i].dev;
7359
7360 if (!dev || !dev->bdev ||
7361 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362 dev->last_flush_error)
7363 missing++;
7364 else if (failing_dev && failing_dev == dev)
7365 missing++;
7366 }
7367 if (missing > max_tolerated) {
7368 if (!failing_dev)
7369 btrfs_warn(fs_info,
7370 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371 em->start, missing, max_tolerated);
7372 free_extent_map(em);
7373 ret = false;
7374 goto out;
7375 }
7376 next_start = extent_map_end(em);
7377 free_extent_map(em);
7378
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, next_start,
7381 (u64)(-1) - next_start);
7382 read_unlock(&map_tree->lock);
7383 }
7384out:
7385 return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390 int i;
7391 const int nr_items = btrfs_header_nritems(node);
7392
7393 for (i = 0; i < nr_items; i++)
7394 btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399 struct btrfs_root *root = fs_info->chunk_root;
7400 struct btrfs_path *path;
7401 struct extent_buffer *leaf;
7402 struct btrfs_key key;
7403 struct btrfs_key found_key;
7404 int ret;
7405 int slot;
7406 int iter_ret = 0;
7407 u64 total_dev = 0;
7408 u64 last_ra_node = 0;
7409
7410 path = btrfs_alloc_path();
7411 if (!path)
7412 return -ENOMEM;
7413
7414 /*
7415 * uuid_mutex is needed only if we are mounting a sprout FS
7416 * otherwise we don't need it.
7417 */
7418 mutex_lock(&uuid_mutex);
7419
7420 /*
7421 * It is possible for mount and umount to race in such a way that
7422 * we execute this code path, but open_fs_devices failed to clear
7423 * total_rw_bytes. We certainly want it cleared before reading the
7424 * device items, so clear it here.
7425 */
7426 fs_info->fs_devices->total_rw_bytes = 0;
7427
7428 /*
7429 * Lockdep complains about possible circular locking dependency between
7430 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431 * used for freeze procection of a fs (struct super_block.s_writers),
7432 * which we take when starting a transaction, and extent buffers of the
7433 * chunk tree if we call read_one_dev() while holding a lock on an
7434 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435 * and at this point there can't be any concurrent task modifying the
7436 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437 */
7438 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439 path->skip_locking = 1;
7440
7441 /*
7442 * Read all device items, and then all the chunk items. All
7443 * device items are found before any chunk item (their object id
7444 * is smaller than the lowest possible object id for a chunk
7445 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446 */
7447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448 key.offset = 0;
7449 key.type = 0;
7450 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451 struct extent_buffer *node = path->nodes[1];
7452
7453 leaf = path->nodes[0];
7454 slot = path->slots[0];
7455
7456 if (node) {
7457 if (last_ra_node != node->start) {
7458 readahead_tree_node_children(node);
7459 last_ra_node = node->start;
7460 }
7461 }
7462 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463 struct btrfs_dev_item *dev_item;
7464 dev_item = btrfs_item_ptr(leaf, slot,
7465 struct btrfs_dev_item);
7466 ret = read_one_dev(leaf, dev_item);
7467 if (ret)
7468 goto error;
7469 total_dev++;
7470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471 struct btrfs_chunk *chunk;
7472
7473 /*
7474 * We are only called at mount time, so no need to take
7475 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476 * we always lock first fs_info->chunk_mutex before
7477 * acquiring any locks on the chunk tree. This is a
7478 * requirement for chunk allocation, see the comment on
7479 * top of btrfs_chunk_alloc() for details.
7480 */
7481 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482 ret = read_one_chunk(&found_key, leaf, chunk);
7483 if (ret)
7484 goto error;
7485 }
7486 }
7487 /* Catch error found during iteration */
7488 if (iter_ret < 0) {
7489 ret = iter_ret;
7490 goto error;
7491 }
7492
7493 /*
7494 * After loading chunk tree, we've got all device information,
7495 * do another round of validation checks.
7496 */
7497 if (total_dev != fs_info->fs_devices->total_devices) {
7498 btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500 btrfs_super_num_devices(fs_info->super_copy),
7501 total_dev);
7502 fs_info->fs_devices->total_devices = total_dev;
7503 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504 }
7505 if (btrfs_super_total_bytes(fs_info->super_copy) <
7506 fs_info->fs_devices->total_rw_bytes) {
7507 btrfs_err(fs_info,
7508 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509 btrfs_super_total_bytes(fs_info->super_copy),
7510 fs_info->fs_devices->total_rw_bytes);
7511 ret = -EINVAL;
7512 goto error;
7513 }
7514 ret = 0;
7515error:
7516 mutex_unlock(&uuid_mutex);
7517
7518 btrfs_free_path(path);
7519 return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525 struct btrfs_device *device;
7526 int ret = 0;
7527
7528 fs_devices->fs_info = fs_info;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
7531 list_for_each_entry(device, &fs_devices->devices, dev_list)
7532 device->fs_info = fs_info;
7533
7534 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536 device->fs_info = fs_info;
7537 ret = btrfs_get_dev_zone_info(device, false);
7538 if (ret)
7539 break;
7540 }
7541
7542 seed_devs->fs_info = fs_info;
7543 }
7544 mutex_unlock(&fs_devices->device_list_mutex);
7545
7546 return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550 const struct btrfs_dev_stats_item *ptr,
7551 int index)
7552{
7553 u64 val;
7554
7555 read_extent_buffer(eb, &val,
7556 offsetof(struct btrfs_dev_stats_item, values) +
7557 ((unsigned long)ptr) + (index * sizeof(u64)),
7558 sizeof(val));
7559 return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563 struct btrfs_dev_stats_item *ptr,
7564 int index, u64 val)
7565{
7566 write_extent_buffer(eb, &val,
7567 offsetof(struct btrfs_dev_stats_item, values) +
7568 ((unsigned long)ptr) + (index * sizeof(u64)),
7569 sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573 struct btrfs_path *path)
7574{
7575 struct btrfs_dev_stats_item *ptr;
7576 struct extent_buffer *eb;
7577 struct btrfs_key key;
7578 int item_size;
7579 int i, ret, slot;
7580
7581 if (!device->fs_info->dev_root)
7582 return 0;
7583
7584 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586 key.offset = device->devid;
7587 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588 if (ret) {
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590 btrfs_dev_stat_set(device, i, 0);
7591 device->dev_stats_valid = 1;
7592 btrfs_release_path(path);
7593 return ret < 0 ? ret : 0;
7594 }
7595 slot = path->slots[0];
7596 eb = path->nodes[0];
7597 item_size = btrfs_item_size(eb, slot);
7598
7599 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602 if (item_size >= (1 + i) * sizeof(__le64))
7603 btrfs_dev_stat_set(device, i,
7604 btrfs_dev_stats_value(eb, ptr, i));
7605 else
7606 btrfs_dev_stat_set(device, i, 0);
7607 }
7608
7609 device->dev_stats_valid = 1;
7610 btrfs_dev_stat_print_on_load(device);
7611 btrfs_release_path(path);
7612
7613 return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619 struct btrfs_device *device;
7620 struct btrfs_path *path = NULL;
7621 int ret = 0;
7622
7623 path = btrfs_alloc_path();
7624 if (!path)
7625 return -ENOMEM;
7626
7627 mutex_lock(&fs_devices->device_list_mutex);
7628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629 ret = btrfs_device_init_dev_stats(device, path);
7630 if (ret)
7631 goto out;
7632 }
7633 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635 ret = btrfs_device_init_dev_stats(device, path);
7636 if (ret)
7637 goto out;
7638 }
7639 }
7640out:
7641 mutex_unlock(&fs_devices->device_list_mutex);
7642
7643 btrfs_free_path(path);
7644 return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648 struct btrfs_device *device)
7649{
7650 struct btrfs_fs_info *fs_info = trans->fs_info;
7651 struct btrfs_root *dev_root = fs_info->dev_root;
7652 struct btrfs_path *path;
7653 struct btrfs_key key;
7654 struct extent_buffer *eb;
7655 struct btrfs_dev_stats_item *ptr;
7656 int ret;
7657 int i;
7658
7659 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661 key.offset = device->devid;
7662
7663 path = btrfs_alloc_path();
7664 if (!path)
7665 return -ENOMEM;
7666 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667 if (ret < 0) {
7668 btrfs_warn_in_rcu(fs_info,
7669 "error %d while searching for dev_stats item for device %s",
7670 ret, btrfs_dev_name(device));
7671 goto out;
7672 }
7673
7674 if (ret == 0 &&
7675 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676 /* need to delete old one and insert a new one */
7677 ret = btrfs_del_item(trans, dev_root, path);
7678 if (ret != 0) {
7679 btrfs_warn_in_rcu(fs_info,
7680 "delete too small dev_stats item for device %s failed %d",
7681 btrfs_dev_name(device), ret);
7682 goto out;
7683 }
7684 ret = 1;
7685 }
7686
7687 if (ret == 1) {
7688 /* need to insert a new item */
7689 btrfs_release_path(path);
7690 ret = btrfs_insert_empty_item(trans, dev_root, path,
7691 &key, sizeof(*ptr));
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "insert dev_stats item for device %s failed %d",
7695 btrfs_dev_name(device), ret);
7696 goto out;
7697 }
7698 }
7699
7700 eb = path->nodes[0];
7701 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703 btrfs_set_dev_stats_value(eb, ptr, i,
7704 btrfs_dev_stat_read(device, i));
7705 btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708 btrfs_free_path(path);
7709 return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717 struct btrfs_fs_info *fs_info = trans->fs_info;
7718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719 struct btrfs_device *device;
7720 int stats_cnt;
7721 int ret = 0;
7722
7723 mutex_lock(&fs_devices->device_list_mutex);
7724 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726 if (!device->dev_stats_valid || stats_cnt == 0)
7727 continue;
7728
7729
7730 /*
7731 * There is a LOAD-LOAD control dependency between the value of
7732 * dev_stats_ccnt and updating the on-disk values which requires
7733 * reading the in-memory counters. Such control dependencies
7734 * require explicit read memory barriers.
7735 *
7736 * This memory barriers pairs with smp_mb__before_atomic in
7737 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738 * barrier implied by atomic_xchg in
7739 * btrfs_dev_stats_read_and_reset
7740 */
7741 smp_rmb();
7742
7743 ret = update_dev_stat_item(trans, device);
7744 if (!ret)
7745 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746 }
7747 mutex_unlock(&fs_devices->device_list_mutex);
7748
7749 return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754 btrfs_dev_stat_inc(dev, index);
7755
7756 if (!dev->dev_stats_valid)
7757 return;
7758 btrfs_err_rl_in_rcu(dev->fs_info,
7759 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760 btrfs_dev_name(dev),
7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770 int i;
7771
7772 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773 if (btrfs_dev_stat_read(dev, i) != 0)
7774 break;
7775 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776 return; /* all values == 0, suppress message */
7777
7778 btrfs_info_in_rcu(dev->fs_info,
7779 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780 btrfs_dev_name(dev),
7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789 struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791 BTRFS_DEV_LOOKUP_ARGS(args);
7792 struct btrfs_device *dev;
7793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794 int i;
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
7797 args.devid = stats->devid;
7798 dev = btrfs_find_device(fs_info->fs_devices, &args);
7799 mutex_unlock(&fs_devices->device_list_mutex);
7800
7801 if (!dev) {
7802 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803 return -ENODEV;
7804 } else if (!dev->dev_stats_valid) {
7805 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806 return -ENODEV;
7807 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809 if (stats->nr_items > i)
7810 stats->values[i] =
7811 btrfs_dev_stat_read_and_reset(dev, i);
7812 else
7813 btrfs_dev_stat_set(dev, i, 0);
7814 }
7815 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816 current->comm, task_pid_nr(current));
7817 } else {
7818 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819 if (stats->nr_items > i)
7820 stats->values[i] = btrfs_dev_stat_read(dev, i);
7821 }
7822 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824 return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed. This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836 struct btrfs_device *curr, *next;
7837
7838 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840 if (list_empty(&trans->dev_update_list))
7841 return;
7842
7843 /*
7844 * We don't need the device_list_mutex here. This list is owned by the
7845 * transaction and the transaction must complete before the device is
7846 * released.
7847 */
7848 mutex_lock(&trans->fs_info->chunk_mutex);
7849 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850 post_commit_list) {
7851 list_del_init(&curr->post_commit_list);
7852 curr->commit_total_bytes = curr->disk_total_bytes;
7853 curr->commit_bytes_used = curr->bytes_used;
7854 }
7855 mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863 const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865 return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873{
7874 struct btrfs_dev_lookup_args args = { .devid = devid };
7875 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876 struct extent_map *em;
7877 struct map_lookup *map;
7878 struct btrfs_device *dev;
7879 u64 stripe_len;
7880 bool found = false;
7881 int ret = 0;
7882 int i;
7883
7884 read_lock(&em_tree->lock);
7885 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886 read_unlock(&em_tree->lock);
7887
7888 if (!em) {
7889 btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891 physical_offset, devid);
7892 ret = -EUCLEAN;
7893 goto out;
7894 }
7895
7896 map = em->map_lookup;
7897 stripe_len = btrfs_calc_stripe_length(em);
7898 if (physical_len != stripe_len) {
7899 btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901 physical_offset, devid, em->start, physical_len,
7902 stripe_len);
7903 ret = -EUCLEAN;
7904 goto out;
7905 }
7906
7907 /*
7908 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909 * space. Although kernel can handle it without problem, better to warn
7910 * the users.
7911 */
7912 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913 btrfs_warn(fs_info,
7914 "devid %llu physical %llu len %llu inside the reserved space",
7915 devid, physical_offset, physical_len);
7916
7917 for (i = 0; i < map->num_stripes; i++) {
7918 if (map->stripes[i].dev->devid == devid &&
7919 map->stripes[i].physical == physical_offset) {
7920 found = true;
7921 if (map->verified_stripes >= map->num_stripes) {
7922 btrfs_err(fs_info,
7923 "too many dev extents for chunk %llu found",
7924 em->start);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 map->verified_stripes++;
7929 break;
7930 }
7931 }
7932 if (!found) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 }
7938
7939 /* Make sure no dev extent is beyond device boundary */
7940 dev = btrfs_find_device(fs_info->fs_devices, &args);
7941 if (!dev) {
7942 btrfs_err(fs_info, "failed to find devid %llu", devid);
7943 ret = -EUCLEAN;
7944 goto out;
7945 }
7946
7947 if (physical_offset + physical_len > dev->disk_total_bytes) {
7948 btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950 devid, physical_offset, physical_len,
7951 dev->disk_total_bytes);
7952 ret = -EUCLEAN;
7953 goto out;
7954 }
7955
7956 if (dev->zone_info) {
7957 u64 zone_size = dev->zone_info->zone_size;
7958
7959 if (!IS_ALIGNED(physical_offset, zone_size) ||
7960 !IS_ALIGNED(physical_len, zone_size)) {
7961 btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963 devid, physical_offset, physical_len);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
7967 }
7968
7969out:
7970 free_extent_map(em);
7971 return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977 struct extent_map *em;
7978 struct rb_node *node;
7979 int ret = 0;
7980
7981 read_lock(&em_tree->lock);
7982 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983 em = rb_entry(node, struct extent_map, rb_node);
7984 if (em->map_lookup->num_stripes !=
7985 em->map_lookup->verified_stripes) {
7986 btrfs_err(fs_info,
7987 "chunk %llu has missing dev extent, have %d expect %d",
7988 em->start, em->map_lookup->verified_stripes,
7989 em->map_lookup->num_stripes);
7990 ret = -EUCLEAN;
7991 goto out;
7992 }
7993 }
7994out:
7995 read_unlock(&em_tree->lock);
7996 return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree. This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008 struct btrfs_path *path;
8009 struct btrfs_root *root = fs_info->dev_root;
8010 struct btrfs_key key;
8011 u64 prev_devid = 0;
8012 u64 prev_dev_ext_end = 0;
8013 int ret = 0;
8014
8015 /*
8016 * We don't have a dev_root because we mounted with ignorebadroots and
8017 * failed to load the root, so we want to skip the verification in this
8018 * case for sure.
8019 *
8020 * However if the dev root is fine, but the tree itself is corrupted
8021 * we'd still fail to mount. This verification is only to make sure
8022 * writes can happen safely, so instead just bypass this check
8023 * completely in the case of IGNOREBADROOTS.
8024 */
8025 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026 return 0;
8027
8028 key.objectid = 1;
8029 key.type = BTRFS_DEV_EXTENT_KEY;
8030 key.offset = 0;
8031
8032 path = btrfs_alloc_path();
8033 if (!path)
8034 return -ENOMEM;
8035
8036 path->reada = READA_FORWARD;
8037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038 if (ret < 0)
8039 goto out;
8040
8041 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042 ret = btrfs_next_leaf(root, path);
8043 if (ret < 0)
8044 goto out;
8045 /* No dev extents at all? Not good */
8046 if (ret > 0) {
8047 ret = -EUCLEAN;
8048 goto out;
8049 }
8050 }
8051 while (1) {
8052 struct extent_buffer *leaf = path->nodes[0];
8053 struct btrfs_dev_extent *dext;
8054 int slot = path->slots[0];
8055 u64 chunk_offset;
8056 u64 physical_offset;
8057 u64 physical_len;
8058 u64 devid;
8059
8060 btrfs_item_key_to_cpu(leaf, &key, slot);
8061 if (key.type != BTRFS_DEV_EXTENT_KEY)
8062 break;
8063 devid = key.objectid;
8064 physical_offset = key.offset;
8065
8066 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068 physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070 /* Check if this dev extent overlaps with the previous one */
8071 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072 btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074 devid, physical_offset, prev_dev_ext_end);
8075 ret = -EUCLEAN;
8076 goto out;
8077 }
8078
8079 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080 physical_offset, physical_len);
8081 if (ret < 0)
8082 goto out;
8083 prev_devid = devid;
8084 prev_dev_ext_end = physical_offset + physical_len;
8085
8086 ret = btrfs_next_item(root, path);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0) {
8090 ret = 0;
8091 break;
8092 }
8093 }
8094
8095 /* Ensure all chunks have corresponding dev extents */
8096 ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098 btrfs_free_path(path);
8099 return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108 struct btrfs_swapfile_pin *sp;
8109 struct rb_node *node;
8110
8111 spin_lock(&fs_info->swapfile_pins_lock);
8112 node = fs_info->swapfile_pins.rb_node;
8113 while (node) {
8114 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115 if (ptr < sp->ptr)
8116 node = node->rb_left;
8117 else if (ptr > sp->ptr)
8118 node = node->rb_right;
8119 else
8120 break;
8121 }
8122 spin_unlock(&fs_info->swapfile_pins_lock);
8123 return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128 struct btrfs_block_group *cache = data;
8129 struct btrfs_fs_info *fs_info = cache->fs_info;
8130 u64 target;
8131 int ret = 0;
8132
8133 target = cache->start;
8134 btrfs_put_block_group(cache);
8135
8136 sb_start_write(fs_info->sb);
8137 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138 btrfs_info(fs_info,
8139 "zoned: skip relocating block group %llu to repair: EBUSY",
8140 target);
8141 sb_end_write(fs_info->sb);
8142 return -EBUSY;
8143 }
8144
8145 mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147 /* Ensure block group still exists */
8148 cache = btrfs_lookup_block_group(fs_info, target);
8149 if (!cache)
8150 goto out;
8151
8152 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153 goto out;
8154
8155 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156 if (ret < 0)
8157 goto out;
8158
8159 btrfs_info(fs_info,
8160 "zoned: relocating block group %llu to repair IO failure",
8161 target);
8162 ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165 if (cache)
8166 btrfs_put_block_group(cache);
8167 mutex_unlock(&fs_info->reclaim_bgs_lock);
8168 btrfs_exclop_finish(fs_info);
8169 sb_end_write(fs_info->sb);
8170
8171 return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176 struct btrfs_block_group *cache;
8177
8178 if (!btrfs_is_zoned(fs_info))
8179 return false;
8180
8181 /* Do not attempt to repair in degraded state */
8182 if (btrfs_test_opt(fs_info, DEGRADED))
8183 return true;
8184
8185 cache = btrfs_lookup_block_group(fs_info, logical);
8186 if (!cache)
8187 return true;
8188
8189 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190 btrfs_put_block_group(cache);
8191 return true;
8192 }
8193
8194 kthread_run(relocating_repair_kthread, cache,
8195 "btrfs-relocating-repair");
8196
8197 return true;
8198}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38#include "raid-stripe-tree.h"
39
40#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
43
44struct btrfs_io_geometry {
45 u32 stripe_index;
46 u32 stripe_nr;
47 int mirror_num;
48 int num_stripes;
49 u64 stripe_offset;
50 u64 raid56_full_stripe_start;
51 int max_errors;
52 enum btrfs_map_op op;
53};
54
55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 [BTRFS_RAID_RAID10] = {
57 .sub_stripes = 2,
58 .dev_stripes = 1,
59 .devs_max = 0, /* 0 == as many as possible */
60 .devs_min = 2,
61 .tolerated_failures = 1,
62 .devs_increment = 2,
63 .ncopies = 2,
64 .nparity = 0,
65 .raid_name = "raid10",
66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
68 },
69 [BTRFS_RAID_RAID1] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 2,
73 .devs_min = 2,
74 .tolerated_failures = 1,
75 .devs_increment = 2,
76 .ncopies = 2,
77 .nparity = 0,
78 .raid_name = "raid1",
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
81 },
82 [BTRFS_RAID_RAID1C3] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 3,
86 .devs_min = 3,
87 .tolerated_failures = 2,
88 .devs_increment = 3,
89 .ncopies = 3,
90 .nparity = 0,
91 .raid_name = "raid1c3",
92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
94 },
95 [BTRFS_RAID_RAID1C4] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
98 .devs_max = 4,
99 .devs_min = 4,
100 .tolerated_failures = 3,
101 .devs_increment = 4,
102 .ncopies = 4,
103 .nparity = 0,
104 .raid_name = "raid1c4",
105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
107 },
108 [BTRFS_RAID_DUP] = {
109 .sub_stripes = 1,
110 .dev_stripes = 2,
111 .devs_max = 1,
112 .devs_min = 1,
113 .tolerated_failures = 0,
114 .devs_increment = 1,
115 .ncopies = 2,
116 .nparity = 0,
117 .raid_name = "dup",
118 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
119 .mindev_error = 0,
120 },
121 [BTRFS_RAID_RAID0] = {
122 .sub_stripes = 1,
123 .dev_stripes = 1,
124 .devs_max = 0,
125 .devs_min = 1,
126 .tolerated_failures = 0,
127 .devs_increment = 1,
128 .ncopies = 1,
129 .nparity = 0,
130 .raid_name = "raid0",
131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
132 .mindev_error = 0,
133 },
134 [BTRFS_RAID_SINGLE] = {
135 .sub_stripes = 1,
136 .dev_stripes = 1,
137 .devs_max = 1,
138 .devs_min = 1,
139 .tolerated_failures = 0,
140 .devs_increment = 1,
141 .ncopies = 1,
142 .nparity = 0,
143 .raid_name = "single",
144 .bg_flag = 0,
145 .mindev_error = 0,
146 },
147 [BTRFS_RAID_RAID5] = {
148 .sub_stripes = 1,
149 .dev_stripes = 1,
150 .devs_max = 0,
151 .devs_min = 2,
152 .tolerated_failures = 1,
153 .devs_increment = 1,
154 .ncopies = 1,
155 .nparity = 1,
156 .raid_name = "raid5",
157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
159 },
160 [BTRFS_RAID_RAID6] = {
161 .sub_stripes = 1,
162 .dev_stripes = 1,
163 .devs_max = 0,
164 .devs_min = 3,
165 .tolerated_failures = 2,
166 .devs_increment = 1,
167 .ncopies = 1,
168 .nparity = 2,
169 .raid_name = "raid6",
170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
172 },
173};
174
175/*
176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177 * can be used as index to access btrfs_raid_array[].
178 */
179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
180{
181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
182
183 if (!profile)
184 return BTRFS_RAID_SINGLE;
185
186 return BTRFS_BG_FLAG_TO_INDEX(profile);
187}
188
189const char *btrfs_bg_type_to_raid_name(u64 flags)
190{
191 const int index = btrfs_bg_flags_to_raid_index(flags);
192
193 if (index >= BTRFS_NR_RAID_TYPES)
194 return NULL;
195
196 return btrfs_raid_array[index].raid_name;
197}
198
199int btrfs_nr_parity_stripes(u64 type)
200{
201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
202
203 return btrfs_raid_array[index].nparity;
204}
205
206/*
207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
208 * bytes including terminating null byte.
209 */
210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
211{
212 int i;
213 int ret;
214 char *bp = buf;
215 u64 flags = bg_flags;
216 u32 size_bp = size_buf;
217
218 if (!flags) {
219 strcpy(bp, "NONE");
220 return;
221 }
222
223#define DESCRIBE_FLAG(flag, desc) \
224 do { \
225 if (flags & (flag)) { \
226 ret = snprintf(bp, size_bp, "%s|", (desc)); \
227 if (ret < 0 || ret >= size_bp) \
228 goto out_overflow; \
229 size_bp -= ret; \
230 bp += ret; \
231 flags &= ~(flag); \
232 } \
233 } while (0)
234
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
238
239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 btrfs_raid_array[i].raid_name);
243#undef DESCRIBE_FLAG
244
245 if (flags) {
246 ret = snprintf(bp, size_bp, "0x%llx|", flags);
247 size_bp -= ret;
248 }
249
250 if (size_bp < size_buf)
251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252
253 /*
254 * The text is trimmed, it's up to the caller to provide sufficiently
255 * large buffer
256 */
257out_overflow:;
258}
259
260static int init_first_rw_device(struct btrfs_trans_handle *trans);
261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
263
264/*
265 * Device locking
266 * ==============
267 *
268 * There are several mutexes that protect manipulation of devices and low-level
269 * structures like chunks but not block groups, extents or files
270 *
271 * uuid_mutex (global lock)
272 * ------------------------
273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275 * device) or requested by the device= mount option
276 *
277 * the mutex can be very coarse and can cover long-running operations
278 *
279 * protects: updates to fs_devices counters like missing devices, rw devices,
280 * seeding, structure cloning, opening/closing devices at mount/umount time
281 *
282 * global::fs_devs - add, remove, updates to the global list
283 *
284 * does not protect: manipulation of the fs_devices::devices list in general
285 * but in mount context it could be used to exclude list modifications by eg.
286 * scan ioctl
287 *
288 * btrfs_device::name - renames (write side), read is RCU
289 *
290 * fs_devices::device_list_mutex (per-fs, with RCU)
291 * ------------------------------------------------
292 * protects updates to fs_devices::devices, ie. adding and deleting
293 *
294 * simple list traversal with read-only actions can be done with RCU protection
295 *
296 * may be used to exclude some operations from running concurrently without any
297 * modifications to the list (see write_all_supers)
298 *
299 * Is not required at mount and close times, because our device list is
300 * protected by the uuid_mutex at that point.
301 *
302 * balance_mutex
303 * -------------
304 * protects balance structures (status, state) and context accessed from
305 * several places (internally, ioctl)
306 *
307 * chunk_mutex
308 * -----------
309 * protects chunks, adding or removing during allocation, trim or when a new
310 * device is added/removed. Additionally it also protects post_commit_list of
311 * individual devices, since they can be added to the transaction's
312 * post_commit_list only with chunk_mutex held.
313 *
314 * cleaner_mutex
315 * -------------
316 * a big lock that is held by the cleaner thread and prevents running subvolume
317 * cleaning together with relocation or delayed iputs
318 *
319 *
320 * Lock nesting
321 * ============
322 *
323 * uuid_mutex
324 * device_list_mutex
325 * chunk_mutex
326 * balance_mutex
327 *
328 *
329 * Exclusive operations
330 * ====================
331 *
332 * Maintains the exclusivity of the following operations that apply to the
333 * whole filesystem and cannot run in parallel.
334 *
335 * - Balance (*)
336 * - Device add
337 * - Device remove
338 * - Device replace (*)
339 * - Resize
340 *
341 * The device operations (as above) can be in one of the following states:
342 *
343 * - Running state
344 * - Paused state
345 * - Completed state
346 *
347 * Only device operations marked with (*) can go into the Paused state for the
348 * following reasons:
349 *
350 * - ioctl (only Balance can be Paused through ioctl)
351 * - filesystem remounted as read-only
352 * - filesystem unmounted and mounted as read-only
353 * - system power-cycle and filesystem mounted as read-only
354 * - filesystem or device errors leading to forced read-only
355 *
356 * The status of exclusive operation is set and cleared atomically.
357 * During the course of Paused state, fs_info::exclusive_operation remains set.
358 * A device operation in Paused or Running state can be canceled or resumed
359 * either by ioctl (Balance only) or when remounted as read-write.
360 * The exclusive status is cleared when the device operation is canceled or
361 * completed.
362 */
363
364DEFINE_MUTEX(uuid_mutex);
365static LIST_HEAD(fs_uuids);
366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
367{
368 return &fs_uuids;
369}
370
371/*
372 * Allocate new btrfs_fs_devices structure identified by a fsid.
373 *
374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
375 * fs_devices::metadata_fsid
376 *
377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378 * The returned struct is not linked onto any lists and can be destroyed with
379 * kfree() right away.
380 */
381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
382{
383 struct btrfs_fs_devices *fs_devs;
384
385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
386 if (!fs_devs)
387 return ERR_PTR(-ENOMEM);
388
389 mutex_init(&fs_devs->device_list_mutex);
390
391 INIT_LIST_HEAD(&fs_devs->devices);
392 INIT_LIST_HEAD(&fs_devs->alloc_list);
393 INIT_LIST_HEAD(&fs_devs->fs_list);
394 INIT_LIST_HEAD(&fs_devs->seed_list);
395
396 if (fsid) {
397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 }
400
401 return fs_devs;
402}
403
404static void btrfs_free_device(struct btrfs_device *device)
405{
406 WARN_ON(!list_empty(&device->post_commit_list));
407 rcu_string_free(device->name);
408 extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411}
412
413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414{
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 while (!list_empty(&fs_devices->devices)) {
419 device = list_entry(fs_devices->devices.next,
420 struct btrfs_device, dev_list);
421 list_del(&device->dev_list);
422 btrfs_free_device(device);
423 }
424 kfree(fs_devices);
425}
426
427void __exit btrfs_cleanup_fs_uuids(void)
428{
429 struct btrfs_fs_devices *fs_devices;
430
431 while (!list_empty(&fs_uuids)) {
432 fs_devices = list_entry(fs_uuids.next,
433 struct btrfs_fs_devices, fs_list);
434 list_del(&fs_devices->fs_list);
435 free_fs_devices(fs_devices);
436 }
437}
438
439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 const u8 *fsid, const u8 *metadata_fsid)
441{
442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
443 return false;
444
445 if (!metadata_fsid)
446 return true;
447
448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
449 return false;
450
451 return true;
452}
453
454static noinline struct btrfs_fs_devices *find_fsid(
455 const u8 *fsid, const u8 *metadata_fsid)
456{
457 struct btrfs_fs_devices *fs_devices;
458
459 ASSERT(fsid);
460
461 /* Handle non-split brain cases */
462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
464 return fs_devices;
465 }
466 return NULL;
467}
468
469static int
470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
471 int flush, struct bdev_handle **bdev_handle,
472 struct btrfs_super_block **disk_super)
473{
474 struct block_device *bdev;
475 int ret;
476
477 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
478
479 if (IS_ERR(*bdev_handle)) {
480 ret = PTR_ERR(*bdev_handle);
481 goto error;
482 }
483 bdev = (*bdev_handle)->bdev;
484
485 if (flush)
486 sync_blockdev(bdev);
487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
488 if (ret) {
489 bdev_release(*bdev_handle);
490 goto error;
491 }
492 invalidate_bdev(bdev);
493 *disk_super = btrfs_read_dev_super(bdev);
494 if (IS_ERR(*disk_super)) {
495 ret = PTR_ERR(*disk_super);
496 bdev_release(*bdev_handle);
497 goto error;
498 }
499
500 return 0;
501
502error:
503 *bdev_handle = NULL;
504 return ret;
505}
506
507/*
508 * Search and remove all stale devices (which are not mounted). When both
509 * inputs are NULL, it will search and release all stale devices.
510 *
511 * @devt: Optional. When provided will it release all unmounted devices
512 * matching this devt only.
513 * @skip_device: Optional. Will skip this device when searching for the stale
514 * devices.
515 *
516 * Return: 0 for success or if @devt is 0.
517 * -EBUSY if @devt is a mounted device.
518 * -ENOENT if @devt does not match any device in the list.
519 */
520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
521{
522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 struct btrfs_device *device, *tmp_device;
524 int ret;
525 bool freed = false;
526
527 lockdep_assert_held(&uuid_mutex);
528
529 /* Return good status if there is no instance of devt. */
530 ret = 0;
531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
532
533 mutex_lock(&fs_devices->device_list_mutex);
534 list_for_each_entry_safe(device, tmp_device,
535 &fs_devices->devices, dev_list) {
536 if (skip_device && skip_device == device)
537 continue;
538 if (devt && devt != device->devt)
539 continue;
540 if (fs_devices->opened) {
541 if (devt)
542 ret = -EBUSY;
543 break;
544 }
545
546 /* delete the stale device */
547 fs_devices->num_devices--;
548 list_del(&device->dev_list);
549 btrfs_free_device(device);
550
551 freed = true;
552 }
553 mutex_unlock(&fs_devices->device_list_mutex);
554
555 if (fs_devices->num_devices == 0) {
556 btrfs_sysfs_remove_fsid(fs_devices);
557 list_del(&fs_devices->fs_list);
558 free_fs_devices(fs_devices);
559 }
560 }
561
562 /* If there is at least one freed device return 0. */
563 if (freed)
564 return 0;
565
566 return ret;
567}
568
569static struct btrfs_fs_devices *find_fsid_by_device(
570 struct btrfs_super_block *disk_super,
571 dev_t devt, bool *same_fsid_diff_dev)
572{
573 struct btrfs_fs_devices *fsid_fs_devices;
574 struct btrfs_fs_devices *devt_fs_devices;
575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
577 bool found_by_devt = false;
578
579 /* Find the fs_device by the usual method, if found use it. */
580 fsid_fs_devices = find_fsid(disk_super->fsid,
581 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
582
583 /* The temp_fsid feature is supported only with single device filesystem. */
584 if (btrfs_super_num_devices(disk_super) != 1)
585 return fsid_fs_devices;
586
587 /*
588 * A seed device is an integral component of the sprout device, which
589 * functions as a multi-device filesystem. So, temp-fsid feature is
590 * not supported.
591 */
592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 return fsid_fs_devices;
594
595 /* Try to find a fs_devices by matching devt. */
596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 struct btrfs_device *device;
598
599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 if (device->devt == devt) {
601 found_by_devt = true;
602 break;
603 }
604 }
605 if (found_by_devt)
606 break;
607 }
608
609 if (found_by_devt) {
610 /* Existing device. */
611 if (fsid_fs_devices == NULL) {
612 if (devt_fs_devices->opened == 0) {
613 /* Stale device. */
614 return NULL;
615 } else {
616 /* temp_fsid is mounting a subvol. */
617 return devt_fs_devices;
618 }
619 } else {
620 /* Regular or temp_fsid device mounting a subvol. */
621 return devt_fs_devices;
622 }
623 } else {
624 /* New device. */
625 if (fsid_fs_devices == NULL) {
626 return NULL;
627 } else {
628 /* sb::fsid is already used create a new temp_fsid. */
629 *same_fsid_diff_dev = true;
630 return NULL;
631 }
632 }
633
634 /* Not reached. */
635}
636
637/*
638 * This is only used on mount, and we are protected from competing things
639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
640 * fs_devices->device_list_mutex here.
641 */
642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
643 struct btrfs_device *device, blk_mode_t flags,
644 void *holder)
645{
646 struct bdev_handle *bdev_handle;
647 struct btrfs_super_block *disk_super;
648 u64 devid;
649 int ret;
650
651 if (device->bdev)
652 return -EINVAL;
653 if (!device->name)
654 return -EINVAL;
655
656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
657 &bdev_handle, &disk_super);
658 if (ret)
659 return ret;
660
661 devid = btrfs_stack_device_id(&disk_super->dev_item);
662 if (devid != device->devid)
663 goto error_free_page;
664
665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
666 goto error_free_page;
667
668 device->generation = btrfs_super_generation(disk_super);
669
670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
671 if (btrfs_super_incompat_flags(disk_super) &
672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
673 pr_err(
674 "BTRFS: Invalid seeding and uuid-changed device detected\n");
675 goto error_free_page;
676 }
677
678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
679 fs_devices->seeding = true;
680 } else {
681 if (bdev_read_only(bdev_handle->bdev))
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 else
684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 }
686
687 if (!bdev_nonrot(bdev_handle->bdev))
688 fs_devices->rotating = true;
689
690 if (bdev_max_discard_sectors(bdev_handle->bdev))
691 fs_devices->discardable = true;
692
693 device->bdev_handle = bdev_handle;
694 device->bdev = bdev_handle->bdev;
695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
696
697 fs_devices->open_devices++;
698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 device->devid != BTRFS_DEV_REPLACE_DEVID) {
700 fs_devices->rw_devices++;
701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
702 }
703 btrfs_release_disk_super(disk_super);
704
705 return 0;
706
707error_free_page:
708 btrfs_release_disk_super(disk_super);
709 bdev_release(bdev_handle);
710
711 return -EINVAL;
712}
713
714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
715{
716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
718
719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
720}
721
722/*
723 * Add new device to list of registered devices
724 *
725 * Returns:
726 * device pointer which was just added or updated when successful
727 * error pointer when failed
728 */
729static noinline struct btrfs_device *device_list_add(const char *path,
730 struct btrfs_super_block *disk_super,
731 bool *new_device_added)
732{
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices = NULL;
735 struct rcu_string *name;
736 u64 found_transid = btrfs_super_generation(disk_super);
737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
738 dev_t path_devt;
739 int error;
740 bool same_fsid_diff_dev = false;
741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
743
744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
745 btrfs_err(NULL,
746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
747 path);
748 return ERR_PTR(-EAGAIN);
749 }
750
751 error = lookup_bdev(path, &path_devt);
752 if (error) {
753 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
754 path, error);
755 return ERR_PTR(error);
756 }
757
758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
759
760 if (!fs_devices) {
761 fs_devices = alloc_fs_devices(disk_super->fsid);
762 if (IS_ERR(fs_devices))
763 return ERR_CAST(fs_devices);
764
765 if (has_metadata_uuid)
766 memcpy(fs_devices->metadata_uuid,
767 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
768
769 if (same_fsid_diff_dev) {
770 generate_random_uuid(fs_devices->fsid);
771 fs_devices->temp_fsid = true;
772 pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 path, fs_devices->fsid);
774 }
775
776 mutex_lock(&fs_devices->device_list_mutex);
777 list_add(&fs_devices->fs_list, &fs_uuids);
778
779 device = NULL;
780 } else {
781 struct btrfs_dev_lookup_args args = {
782 .devid = devid,
783 .uuid = disk_super->dev_item.uuid,
784 };
785
786 mutex_lock(&fs_devices->device_list_mutex);
787 device = btrfs_find_device(fs_devices, &args);
788
789 if (found_transid > fs_devices->latest_generation) {
790 memcpy(fs_devices->fsid, disk_super->fsid,
791 BTRFS_FSID_SIZE);
792 memcpy(fs_devices->metadata_uuid,
793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
794 }
795 }
796
797 if (!device) {
798 unsigned int nofs_flag;
799
800 if (fs_devices->opened) {
801 btrfs_err(NULL,
802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 path, fs_devices->fsid, current->comm,
804 task_pid_nr(current));
805 mutex_unlock(&fs_devices->device_list_mutex);
806 return ERR_PTR(-EBUSY);
807 }
808
809 nofs_flag = memalloc_nofs_save();
810 device = btrfs_alloc_device(NULL, &devid,
811 disk_super->dev_item.uuid, path);
812 memalloc_nofs_restore(nofs_flag);
813 if (IS_ERR(device)) {
814 mutex_unlock(&fs_devices->device_list_mutex);
815 /* we can safely leave the fs_devices entry around */
816 return device;
817 }
818
819 device->devt = path_devt;
820
821 list_add_rcu(&device->dev_list, &fs_devices->devices);
822 fs_devices->num_devices++;
823
824 device->fs_devices = fs_devices;
825 *new_device_added = true;
826
827 if (disk_super->label[0])
828 pr_info(
829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 disk_super->label, devid, found_transid, path,
831 current->comm, task_pid_nr(current));
832 else
833 pr_info(
834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 disk_super->fsid, devid, found_transid, path,
836 current->comm, task_pid_nr(current));
837
838 } else if (!device->name || strcmp(device->name->str, path)) {
839 /*
840 * When FS is already mounted.
841 * 1. If you are here and if the device->name is NULL that
842 * means this device was missing at time of FS mount.
843 * 2. If you are here and if the device->name is different
844 * from 'path' that means either
845 * a. The same device disappeared and reappeared with
846 * different name. or
847 * b. The missing-disk-which-was-replaced, has
848 * reappeared now.
849 *
850 * We must allow 1 and 2a above. But 2b would be a spurious
851 * and unintentional.
852 *
853 * Further in case of 1 and 2a above, the disk at 'path'
854 * would have missed some transaction when it was away and
855 * in case of 2a the stale bdev has to be updated as well.
856 * 2b must not be allowed at all time.
857 */
858
859 /*
860 * For now, we do allow update to btrfs_fs_device through the
861 * btrfs dev scan cli after FS has been mounted. We're still
862 * tracking a problem where systems fail mount by subvolume id
863 * when we reject replacement on a mounted FS.
864 */
865 if (!fs_devices->opened && found_transid < device->generation) {
866 /*
867 * That is if the FS is _not_ mounted and if you
868 * are here, that means there is more than one
869 * disk with same uuid and devid.We keep the one
870 * with larger generation number or the last-in if
871 * generation are equal.
872 */
873 mutex_unlock(&fs_devices->device_list_mutex);
874 btrfs_err(NULL,
875"device %s already registered with a higher generation, found %llu expect %llu",
876 path, found_transid, device->generation);
877 return ERR_PTR(-EEXIST);
878 }
879
880 /*
881 * We are going to replace the device path for a given devid,
882 * make sure it's the same device if the device is mounted
883 *
884 * NOTE: the device->fs_info may not be reliable here so pass
885 * in a NULL to message helpers instead. This avoids a possible
886 * use-after-free when the fs_info and fs_info->sb are already
887 * torn down.
888 */
889 if (device->bdev) {
890 if (device->devt != path_devt) {
891 mutex_unlock(&fs_devices->device_list_mutex);
892 btrfs_warn_in_rcu(NULL,
893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 path, devid, found_transid,
895 current->comm,
896 task_pid_nr(current));
897 return ERR_PTR(-EEXIST);
898 }
899 btrfs_info_in_rcu(NULL,
900 "devid %llu device path %s changed to %s scanned by %s (%d)",
901 devid, btrfs_dev_name(device),
902 path, current->comm,
903 task_pid_nr(current));
904 }
905
906 name = rcu_string_strdup(path, GFP_NOFS);
907 if (!name) {
908 mutex_unlock(&fs_devices->device_list_mutex);
909 return ERR_PTR(-ENOMEM);
910 }
911 rcu_string_free(device->name);
912 rcu_assign_pointer(device->name, name);
913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
914 fs_devices->missing_devices--;
915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
916 }
917 device->devt = path_devt;
918 }
919
920 /*
921 * Unmount does not free the btrfs_device struct but would zero
922 * generation along with most of the other members. So just update
923 * it back. We need it to pick the disk with largest generation
924 * (as above).
925 */
926 if (!fs_devices->opened) {
927 device->generation = found_transid;
928 fs_devices->latest_generation = max_t(u64, found_transid,
929 fs_devices->latest_generation);
930 }
931
932 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
933
934 mutex_unlock(&fs_devices->device_list_mutex);
935 return device;
936}
937
938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
939{
940 struct btrfs_fs_devices *fs_devices;
941 struct btrfs_device *device;
942 struct btrfs_device *orig_dev;
943 int ret = 0;
944
945 lockdep_assert_held(&uuid_mutex);
946
947 fs_devices = alloc_fs_devices(orig->fsid);
948 if (IS_ERR(fs_devices))
949 return fs_devices;
950
951 fs_devices->total_devices = orig->total_devices;
952
953 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
954 const char *dev_path = NULL;
955
956 /*
957 * This is ok to do without RCU read locked because we hold the
958 * uuid mutex so nothing we touch in here is going to disappear.
959 */
960 if (orig_dev->name)
961 dev_path = orig_dev->name->str;
962
963 device = btrfs_alloc_device(NULL, &orig_dev->devid,
964 orig_dev->uuid, dev_path);
965 if (IS_ERR(device)) {
966 ret = PTR_ERR(device);
967 goto error;
968 }
969
970 if (orig_dev->zone_info) {
971 struct btrfs_zoned_device_info *zone_info;
972
973 zone_info = btrfs_clone_dev_zone_info(orig_dev);
974 if (!zone_info) {
975 btrfs_free_device(device);
976 ret = -ENOMEM;
977 goto error;
978 }
979 device->zone_info = zone_info;
980 }
981
982 list_add(&device->dev_list, &fs_devices->devices);
983 device->fs_devices = fs_devices;
984 fs_devices->num_devices++;
985 }
986 return fs_devices;
987error:
988 free_fs_devices(fs_devices);
989 return ERR_PTR(ret);
990}
991
992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
993 struct btrfs_device **latest_dev)
994{
995 struct btrfs_device *device, *next;
996
997 /* This is the initialized path, it is safe to release the devices. */
998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 &device->dev_state) &&
1002 !test_bit(BTRFS_DEV_STATE_MISSING,
1003 &device->dev_state) &&
1004 (!*latest_dev ||
1005 device->generation > (*latest_dev)->generation)) {
1006 *latest_dev = device;
1007 }
1008 continue;
1009 }
1010
1011 /*
1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 * in btrfs_init_dev_replace() so just continue.
1014 */
1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016 continue;
1017
1018 if (device->bdev_handle) {
1019 bdev_release(device->bdev_handle);
1020 device->bdev = NULL;
1021 device->bdev_handle = NULL;
1022 fs_devices->open_devices--;
1023 }
1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025 list_del_init(&device->dev_alloc_list);
1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027 fs_devices->rw_devices--;
1028 }
1029 list_del_init(&device->dev_list);
1030 fs_devices->num_devices--;
1031 btrfs_free_device(device);
1032 }
1033
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041{
1042 struct btrfs_device *latest_dev = NULL;
1043 struct btrfs_fs_devices *seed_dev;
1044
1045 mutex_lock(&uuid_mutex);
1046 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1047
1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1050
1051 fs_devices->latest_dev = latest_dev;
1052
1053 mutex_unlock(&uuid_mutex);
1054}
1055
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
1058 if (!device->bdev)
1059 return;
1060
1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062 sync_blockdev(device->bdev);
1063 invalidate_bdev(device->bdev);
1064 }
1065
1066 bdev_release(device->bdev_handle);
1067}
1068
1069static void btrfs_close_one_device(struct btrfs_device *device)
1070{
1071 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 list_del_init(&device->dev_alloc_list);
1076 fs_devices->rw_devices--;
1077 }
1078
1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084 fs_devices->missing_devices--;
1085 }
1086
1087 btrfs_close_bdev(device);
1088 if (device->bdev) {
1089 fs_devices->open_devices--;
1090 device->bdev = NULL;
1091 }
1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093 btrfs_destroy_dev_zone_info(device);
1094
1095 device->fs_info = NULL;
1096 atomic_set(&device->dev_stats_ccnt, 0);
1097 extent_io_tree_release(&device->alloc_state);
1098
1099 /*
1100 * Reset the flush error record. We might have a transient flush error
1101 * in this mount, and if so we aborted the current transaction and set
1102 * the fs to an error state, guaranteeing no super blocks can be further
1103 * committed. However that error might be transient and if we unmount the
1104 * filesystem and mount it again, we should allow the mount to succeed
1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 * filesystem again we still get flush errors, then we will again abort
1107 * any transaction and set the error state, guaranteeing no commits of
1108 * unsafe super blocks.
1109 */
1110 device->last_flush_error = 0;
1111
1112 /* Verify the device is back in a pristine state */
1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 WARN_ON(!list_empty(&device->dev_alloc_list));
1116 WARN_ON(!list_empty(&device->post_commit_list));
1117}
1118
1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120{
1121 struct btrfs_device *device, *tmp;
1122
1123 lockdep_assert_held(&uuid_mutex);
1124
1125 if (--fs_devices->opened > 0)
1126 return;
1127
1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129 btrfs_close_one_device(device);
1130
1131 WARN_ON(fs_devices->open_devices);
1132 WARN_ON(fs_devices->rw_devices);
1133 fs_devices->opened = 0;
1134 fs_devices->seeding = false;
1135 fs_devices->fs_info = NULL;
1136}
1137
1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139{
1140 LIST_HEAD(list);
1141 struct btrfs_fs_devices *tmp;
1142
1143 mutex_lock(&uuid_mutex);
1144 close_fs_devices(fs_devices);
1145 if (!fs_devices->opened) {
1146 list_splice_init(&fs_devices->seed_list, &list);
1147
1148 /*
1149 * If the struct btrfs_fs_devices is not assembled with any
1150 * other device, it can be re-initialized during the next mount
1151 * without the needing device-scan step. Therefore, it can be
1152 * fully freed.
1153 */
1154 if (fs_devices->num_devices == 1) {
1155 list_del(&fs_devices->fs_list);
1156 free_fs_devices(fs_devices);
1157 }
1158 }
1159
1160
1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162 close_fs_devices(fs_devices);
1163 list_del(&fs_devices->seed_list);
1164 free_fs_devices(fs_devices);
1165 }
1166 mutex_unlock(&uuid_mutex);
1167}
1168
1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170 blk_mode_t flags, void *holder)
1171{
1172 struct btrfs_device *device;
1173 struct btrfs_device *latest_dev = NULL;
1174 struct btrfs_device *tmp_device;
1175
1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177 dev_list) {
1178 int ret;
1179
1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181 if (ret == 0 &&
1182 (!latest_dev || device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 } else if (ret == -ENODATA) {
1185 fs_devices->num_devices--;
1186 list_del(&device->dev_list);
1187 btrfs_free_device(device);
1188 }
1189 }
1190 if (fs_devices->open_devices == 0)
1191 return -EINVAL;
1192
1193 fs_devices->opened = 1;
1194 fs_devices->latest_dev = latest_dev;
1195 fs_devices->total_rw_bytes = 0;
1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1198
1199 return 0;
1200}
1201
1202static int devid_cmp(void *priv, const struct list_head *a,
1203 const struct list_head *b)
1204{
1205 const struct btrfs_device *dev1, *dev2;
1206
1207 dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210 if (dev1->devid < dev2->devid)
1211 return -1;
1212 else if (dev1->devid > dev2->devid)
1213 return 1;
1214 return 0;
1215}
1216
1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218 blk_mode_t flags, void *holder)
1219{
1220 int ret;
1221
1222 lockdep_assert_held(&uuid_mutex);
1223 /*
1224 * The device_list_mutex cannot be taken here in case opening the
1225 * underlying device takes further locks like open_mutex.
1226 *
1227 * We also don't need the lock here as this is called during mount and
1228 * exclusion is provided by uuid_mutex
1229 */
1230
1231 if (fs_devices->opened) {
1232 fs_devices->opened++;
1233 ret = 0;
1234 } else {
1235 list_sort(NULL, &fs_devices->devices, devid_cmp);
1236 ret = open_fs_devices(fs_devices, flags, holder);
1237 }
1238
1239 return ret;
1240}
1241
1242void btrfs_release_disk_super(struct btrfs_super_block *super)
1243{
1244 struct page *page = virt_to_page(super);
1245
1246 put_page(page);
1247}
1248
1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250 u64 bytenr, u64 bytenr_orig)
1251{
1252 struct btrfs_super_block *disk_super;
1253 struct page *page;
1254 void *p;
1255 pgoff_t index;
1256
1257 /* make sure our super fits in the device */
1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259 return ERR_PTR(-EINVAL);
1260
1261 /* make sure our super fits in the page */
1262 if (sizeof(*disk_super) > PAGE_SIZE)
1263 return ERR_PTR(-EINVAL);
1264
1265 /* make sure our super doesn't straddle pages on disk */
1266 index = bytenr >> PAGE_SHIFT;
1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 return ERR_PTR(-EINVAL);
1269
1270 /* pull in the page with our super */
1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272
1273 if (IS_ERR(page))
1274 return ERR_CAST(page);
1275
1276 p = page_address(page);
1277
1278 /* align our pointer to the offset of the super block */
1279 disk_super = p + offset_in_page(bytenr);
1280
1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283 btrfs_release_disk_super(p);
1284 return ERR_PTR(-EINVAL);
1285 }
1286
1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289
1290 return disk_super;
1291}
1292
1293int btrfs_forget_devices(dev_t devt)
1294{
1295 int ret;
1296
1297 mutex_lock(&uuid_mutex);
1298 ret = btrfs_free_stale_devices(devt, NULL);
1299 mutex_unlock(&uuid_mutex);
1300
1301 return ret;
1302}
1303
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
1312 */
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314 bool mount_arg_dev)
1315{
1316 struct btrfs_super_block *disk_super;
1317 bool new_device_added = false;
1318 struct btrfs_device *device = NULL;
1319 struct bdev_handle *bdev_handle;
1320 u64 bytenr, bytenr_orig;
1321 int ret;
1322
1323 lockdep_assert_held(&uuid_mutex);
1324
1325 /*
1326 * we would like to check all the supers, but that would make
1327 * a btrfs mount succeed after a mkfs from a different FS.
1328 * So, we need to add a special mount option to scan for
1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 */
1331
1332 /*
1333 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 * device scan which may race with the user's mount or mkfs command,
1335 * resulting in failure.
1336 * Since the device scan is solely for reading purposes, there is no
1337 * need for an exclusive open. Additionally, the devices are read again
1338 * during the mount process. It is ok to get some inconsistent
1339 * values temporarily, as the device paths of the fsid are the only
1340 * required information for assembling the volume.
1341 */
1342 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343 if (IS_ERR(bdev_handle))
1344 return ERR_CAST(bdev_handle);
1345
1346 bytenr_orig = btrfs_sb_offset(0);
1347 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348 if (ret) {
1349 device = ERR_PTR(ret);
1350 goto error_bdev_put;
1351 }
1352
1353 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354 bytenr_orig);
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
1357 goto error_bdev_put;
1358 }
1359
1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362 dev_t devt;
1363
1364 ret = lookup_bdev(path, &devt);
1365 if (ret)
1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367 path, ret);
1368 else
1369 btrfs_free_stale_devices(devt, NULL);
1370
1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372 device = NULL;
1373 goto free_disk_super;
1374 }
1375
1376 device = device_list_add(path, disk_super, &new_device_added);
1377 if (!IS_ERR(device) && new_device_added)
1378 btrfs_free_stale_devices(device->devt, device);
1379
1380free_disk_super:
1381 btrfs_release_disk_super(disk_super);
1382
1383error_bdev_put:
1384 bdev_release(bdev_handle);
1385
1386 return device;
1387}
1388
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
1395{
1396 u64 physical_start, physical_end;
1397
1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400 if (find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
1403
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
1409 }
1410 }
1411 return false;
1412}
1413
1414static u64 dev_extent_search_start(struct btrfs_device *device)
1415{
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 return BTRFS_DEVICE_RANGE_RESERVED;
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1420 /*
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1424 */
1425 return 0;
1426 default:
1427 BUG();
1428 }
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1433 u64 num_bytes)
1434{
1435 u64 zone_size = device->zone_info->zone_size;
1436 u64 pos;
1437 int ret;
1438 bool changed = false;
1439
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1445 num_bytes);
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1448 *hole_start = pos;
1449 changed = true;
1450 if (*hole_size < num_bytes)
1451 break;
1452 }
1453
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456 /* Range is ensured to be empty */
1457 if (!ret)
1458 return changed;
1459
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
1463 *hole_size = 0;
1464 return true;
1465 }
1466
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1469 changed = true;
1470 }
1471
1472 return changed;
1473}
1474
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1488{
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1491
1492 for (;;) {
1493 /*
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1496 */
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1500 else
1501 *hole_size = 0;
1502 changed = true;
1503 }
1504
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1508 break;
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1512 changed = true;
1513 /*
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1516 */
1517 continue;
1518 }
1519 break;
1520 default:
1521 BUG();
1522 }
1523
1524 break;
1525 }
1526
1527 return changed;
1528}
1529
1530/*
1531 * Find free space in the specified device.
1532 *
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1539 *
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 u64 *start, u64 *len)
1559{
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_key key;
1563 struct btrfs_dev_extent *dev_extent;
1564 struct btrfs_path *path;
1565 u64 search_start;
1566 u64 hole_size;
1567 u64 max_hole_start;
1568 u64 max_hole_size = 0;
1569 u64 extent_end;
1570 u64 search_end = device->total_bytes;
1571 int ret;
1572 int slot;
1573 struct extent_buffer *l;
1574
1575 search_start = dev_extent_search_start(device);
1576 max_hole_start = search_start;
1577
1578 WARN_ON(device->zone_info &&
1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto out;
1585 }
1586again:
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 ret = -ENOSPC;
1590 goto out;
1591 }
1592
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1596
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601 ret = btrfs_search_backwards(root, &key, path);
1602 if (ret < 0)
1603 goto out;
1604
1605 while (search_start < search_end) {
1606 l = path->nodes[0];
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1610 if (ret == 0)
1611 continue;
1612 if (ret < 0)
1613 goto out;
1614
1615 break;
1616 }
1617 btrfs_item_key_to_cpu(l, &key, slot);
1618
1619 if (key.objectid < device->devid)
1620 goto next;
1621
1622 if (key.objectid > device->devid)
1623 break;
1624
1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
1626 goto next;
1627
1628 if (key.offset > search_end)
1629 break;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633 dev_extent_hole_check(device, &search_start, &hole_size,
1634 num_bytes);
1635
1636 if (hole_size > max_hole_size) {
1637 max_hole_start = search_start;
1638 max_hole_size = hole_size;
1639 }
1640
1641 /*
1642 * If this free space is greater than which we need,
1643 * it must be the max free space that we have found
1644 * until now, so max_hole_start must point to the start
1645 * of this free space and the length of this free space
1646 * is stored in max_hole_size. Thus, we return
1647 * max_hole_start and max_hole_size and go back to the
1648 * caller.
1649 */
1650 if (hole_size >= num_bytes) {
1651 ret = 0;
1652 goto out;
1653 }
1654 }
1655
1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 extent_end = key.offset + btrfs_dev_extent_length(l,
1658 dev_extent);
1659 if (extent_end > search_start)
1660 search_start = extent_end;
1661next:
1662 path->slots[0]++;
1663 cond_resched();
1664 }
1665
1666 /*
1667 * At this point, search_start should be the end of
1668 * allocated dev extents, and when shrinking the device,
1669 * search_end may be smaller than search_start.
1670 */
1671 if (search_end > search_start) {
1672 hole_size = search_end - search_start;
1673 if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 num_bytes)) {
1675 btrfs_release_path(path);
1676 goto again;
1677 }
1678
1679 if (hole_size > max_hole_size) {
1680 max_hole_start = search_start;
1681 max_hole_size = hole_size;
1682 }
1683 }
1684
1685 /* See above. */
1686 if (max_hole_size < num_bytes)
1687 ret = -ENOSPC;
1688 else
1689 ret = 0;
1690
1691 ASSERT(max_hole_start + max_hole_size <= search_end);
1692out:
1693 btrfs_free_path(path);
1694 *start = max_hole_start;
1695 if (len)
1696 *len = max_hole_size;
1697 return ret;
1698}
1699
1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 start, u64 *dev_extent_len)
1703{
1704 struct btrfs_fs_info *fs_info = device->fs_info;
1705 struct btrfs_root *root = fs_info->dev_root;
1706 int ret;
1707 struct btrfs_path *path;
1708 struct btrfs_key key;
1709 struct btrfs_key found_key;
1710 struct extent_buffer *leaf = NULL;
1711 struct btrfs_dev_extent *extent = NULL;
1712
1713 path = btrfs_alloc_path();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 key.objectid = device->devid;
1718 key.offset = start;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
1720again:
1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722 if (ret > 0) {
1723 ret = btrfs_previous_item(root, path, key.objectid,
1724 BTRFS_DEV_EXTENT_KEY);
1725 if (ret)
1726 goto out;
1727 leaf = path->nodes[0];
1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
1731 BUG_ON(found_key.offset > start || found_key.offset +
1732 btrfs_dev_extent_length(leaf, extent) < start);
1733 key = found_key;
1734 btrfs_release_path(path);
1735 goto again;
1736 } else if (ret == 0) {
1737 leaf = path->nodes[0];
1738 extent = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_dev_extent);
1740 } else {
1741 goto out;
1742 }
1743
1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
1746 ret = btrfs_del_item(trans, root, path);
1747 if (ret == 0)
1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1749out:
1750 btrfs_free_path(path);
1751 return ret;
1752}
1753
1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1755{
1756 struct rb_node *n;
1757 u64 ret = 0;
1758
1759 read_lock(&fs_info->mapping_tree_lock);
1760 n = rb_last(&fs_info->mapping_tree.rb_root);
1761 if (n) {
1762 struct btrfs_chunk_map *map;
1763
1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 ret = map->start + map->chunk_len;
1766 }
1767 read_unlock(&fs_info->mapping_tree_lock);
1768
1769 return ret;
1770}
1771
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773 u64 *devid_ret)
1774{
1775 int ret;
1776 struct btrfs_key key;
1777 struct btrfs_key found_key;
1778 struct btrfs_path *path;
1779
1780 path = btrfs_alloc_path();
1781 if (!path)
1782 return -ENOMEM;
1783
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 key.type = BTRFS_DEV_ITEM_KEY;
1786 key.offset = (u64)-1;
1787
1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789 if (ret < 0)
1790 goto error;
1791
1792 if (ret == 0) {
1793 /* Corruption */
1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 ret = -EUCLEAN;
1796 goto error;
1797 }
1798
1799 ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 BTRFS_DEV_ITEMS_OBJECTID,
1801 BTRFS_DEV_ITEM_KEY);
1802 if (ret) {
1803 *devid_ret = 1;
1804 } else {
1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806 path->slots[0]);
1807 *devid_ret = found_key.offset + 1;
1808 }
1809 ret = 0;
1810error:
1811 btrfs_free_path(path);
1812 return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_device *device)
1821{
1822 int ret;
1823 struct btrfs_path *path;
1824 struct btrfs_dev_item *dev_item;
1825 struct extent_buffer *leaf;
1826 struct btrfs_key key;
1827 unsigned long ptr;
1828
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 key.type = BTRFS_DEV_ITEM_KEY;
1835 key.offset = device->devid;
1836
1837 btrfs_reserve_chunk_metadata(trans, true);
1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 &key, sizeof(*dev_item));
1840 btrfs_trans_release_chunk_metadata(trans);
1841 if (ret)
1842 goto out;
1843
1844 leaf = path->nodes[0];
1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847 btrfs_set_device_id(leaf, dev_item, device->devid);
1848 btrfs_set_device_generation(leaf, dev_item, 0);
1849 btrfs_set_device_type(leaf, dev_item, device->type);
1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853 btrfs_set_device_total_bytes(leaf, dev_item,
1854 btrfs_device_get_disk_total_bytes(device));
1855 btrfs_set_device_bytes_used(leaf, dev_item,
1856 btrfs_device_get_bytes_used(device));
1857 btrfs_set_device_group(leaf, dev_item, 0);
1858 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860 btrfs_set_device_start_offset(leaf, dev_item, 0);
1861
1862 ptr = btrfs_device_uuid(dev_item);
1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864 ptr = btrfs_device_fsid(dev_item);
1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 ptr, BTRFS_FSID_SIZE);
1867 btrfs_mark_buffer_dirty(trans, leaf);
1868
1869 ret = 0;
1870out:
1871 btrfs_free_path(path);
1872 return ret;
1873}
1874
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
1880 */
1881static void update_dev_time(const char *device_path)
1882{
1883 struct path path;
1884 int ret;
1885
1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887 if (ret)
1888 return;
1889
1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891 path_put(&path);
1892}
1893
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 struct btrfs_device *device)
1896{
1897 struct btrfs_root *root = device->fs_info->chunk_root;
1898 int ret;
1899 struct btrfs_path *path;
1900 struct btrfs_key key;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1909
1910 btrfs_reserve_chunk_metadata(trans, false);
1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912 btrfs_trans_release_chunk_metadata(trans);
1913 if (ret) {
1914 if (ret > 0)
1915 ret = -ENOENT;
1916 goto out;
1917 }
1918
1919 ret = btrfs_del_item(trans, root, path);
1920out:
1921 btrfs_free_path(path);
1922 return ret;
1923}
1924
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931 u64 num_devices)
1932{
1933 u64 all_avail;
1934 unsigned seq;
1935 int i;
1936
1937 do {
1938 seq = read_seqbegin(&fs_info->profiles_lock);
1939
1940 all_avail = fs_info->avail_data_alloc_bits |
1941 fs_info->avail_system_alloc_bits |
1942 fs_info->avail_metadata_alloc_bits;
1943 } while (read_seqretry(&fs_info->profiles_lock, seq));
1944
1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947 continue;
1948
1949 if (num_devices < btrfs_raid_array[i].devs_min)
1950 return btrfs_raid_array[i].mindev_error;
1951 }
1952
1953 return 0;
1954}
1955
1956static struct btrfs_device * btrfs_find_next_active_device(
1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958{
1959 struct btrfs_device *next_device;
1960
1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 if (next_device != device &&
1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 && next_device->bdev)
1965 return next_device;
1966 }
1967
1968 return NULL;
1969}
1970
1971/*
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978 struct btrfs_device *next_device)
1979{
1980 struct btrfs_fs_info *fs_info = device->fs_info;
1981
1982 if (!next_device)
1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984 device);
1985 ASSERT(next_device);
1986
1987 if (fs_info->sb->s_bdev &&
1988 (fs_info->sb->s_bdev == device->bdev))
1989 fs_info->sb->s_bdev = next_device->bdev;
1990
1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 fs_info->fs_devices->latest_dev = next_device;
1993}
1994
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001 u64 num_devices = fs_info->fs_devices->num_devices;
2002
2003 down_read(&fs_info->dev_replace.rwsem);
2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 ASSERT(num_devices > 1);
2006 num_devices--;
2007 }
2008 up_read(&fs_info->dev_replace.rwsem);
2009
2010 return num_devices;
2011}
2012
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 struct block_device *bdev, int copy_num)
2015{
2016 struct btrfs_super_block *disk_super;
2017 const size_t len = sizeof(disk_super->magic);
2018 const u64 bytenr = btrfs_sb_offset(copy_num);
2019 int ret;
2020
2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022 if (IS_ERR(disk_super))
2023 return;
2024
2025 memset(&disk_super->magic, 0, len);
2026 folio_mark_dirty(virt_to_folio(disk_super));
2027 btrfs_release_disk_super(disk_super);
2028
2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030 if (ret)
2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032 copy_num, ret);
2033}
2034
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev,
2037 const char *device_path)
2038{
2039 int copy_num;
2040
2041 if (!bdev)
2042 return;
2043
2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045 if (bdev_is_zoned(bdev))
2046 btrfs_reset_sb_log_zones(bdev, copy_num);
2047 else
2048 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049 }
2050
2051 /* Notify udev that device has changed */
2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054 /* Update ctime/mtime for device path for libblkid */
2055 update_dev_time(device_path);
2056}
2057
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 struct btrfs_dev_lookup_args *args,
2060 struct bdev_handle **bdev_handle)
2061{
2062 struct btrfs_trans_handle *trans;
2063 struct btrfs_device *device;
2064 struct btrfs_fs_devices *cur_devices;
2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2066 u64 num_devices;
2067 int ret = 0;
2068
2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071 return -EINVAL;
2072 }
2073
2074 /*
2075 * The device list in fs_devices is accessed without locks (neither
2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 * filesystem and another device rm cannot run.
2078 */
2079 num_devices = btrfs_num_devices(fs_info);
2080
2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082 if (ret)
2083 return ret;
2084
2085 device = btrfs_find_device(fs_info->fs_devices, args);
2086 if (!device) {
2087 if (args->missing)
2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089 else
2090 ret = -ENOENT;
2091 return ret;
2092 }
2093
2094 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 btrfs_warn_in_rcu(fs_info,
2096 "cannot remove device %s (devid %llu) due to active swapfile",
2097 btrfs_dev_name(device), device->devid);
2098 return -ETXTBSY;
2099 }
2100
2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 return BTRFS_ERROR_DEV_TGT_REPLACE;
2103
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105 fs_info->fs_devices->rw_devices == 1)
2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 mutex_lock(&fs_info->chunk_mutex);
2110 list_del_init(&device->dev_alloc_list);
2111 device->fs_devices->rw_devices--;
2112 mutex_unlock(&fs_info->chunk_mutex);
2113 }
2114
2115 ret = btrfs_shrink_device(device, 0);
2116 if (ret)
2117 goto error_undo;
2118
2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 if (IS_ERR(trans)) {
2121 ret = PTR_ERR(trans);
2122 goto error_undo;
2123 }
2124
2125 ret = btrfs_rm_dev_item(trans, device);
2126 if (ret) {
2127 /* Any error in dev item removal is critical */
2128 btrfs_crit(fs_info,
2129 "failed to remove device item for devid %llu: %d",
2130 device->devid, ret);
2131 btrfs_abort_transaction(trans, ret);
2132 btrfs_end_transaction(trans);
2133 return ret;
2134 }
2135
2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137 btrfs_scrub_cancel_dev(device);
2138
2139 /*
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
2147 */
2148
2149 /*
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
2152 * its own fs_devices listed under the fs_devices->seed_list.
2153 */
2154 cur_devices = device->fs_devices;
2155 mutex_lock(&fs_devices->device_list_mutex);
2156 list_del_rcu(&device->dev_list);
2157
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2163
2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165 cur_devices->missing_devices--;
2166
2167 btrfs_assign_next_active_device(device, NULL);
2168
2169 if (device->bdev_handle) {
2170 cur_devices->open_devices--;
2171 /* remove sysfs entry */
2172 btrfs_sysfs_remove_device(device);
2173 }
2174
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177 mutex_unlock(&fs_devices->device_list_mutex);
2178
2179 /*
2180 * At this point, the device is zero sized and detached from the
2181 * devices list. All that's left is to zero out the old supers and
2182 * free the device.
2183 *
2184 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185 * write lock, and bdev_release() will pull in the ->open_mutex on
2186 * the block device and it's dependencies. Instead just flush the
2187 * device and let the caller do the final bdev_release.
2188 */
2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190 btrfs_scratch_superblocks(fs_info, device->bdev,
2191 device->name->str);
2192 if (device->bdev) {
2193 sync_blockdev(device->bdev);
2194 invalidate_bdev(device->bdev);
2195 }
2196 }
2197
2198 *bdev_handle = device->bdev_handle;
2199 synchronize_rcu();
2200 btrfs_free_device(device);
2201
2202 /*
2203 * This can happen if cur_devices is the private seed devices list. We
2204 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 * to be held, but in fact we don't need that for the private
2206 * seed_devices, we can simply decrement cur_devices->opened and then
2207 * remove it from our list and free the fs_devices.
2208 */
2209 if (cur_devices->num_devices == 0) {
2210 list_del_init(&cur_devices->seed_list);
2211 ASSERT(cur_devices->opened == 1);
2212 cur_devices->opened--;
2213 free_fs_devices(cur_devices);
2214 }
2215
2216 ret = btrfs_commit_transaction(trans);
2217
2218 return ret;
2219
2220error_undo:
2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222 mutex_lock(&fs_info->chunk_mutex);
2223 list_add(&device->dev_alloc_list,
2224 &fs_devices->alloc_list);
2225 device->fs_devices->rw_devices++;
2226 mutex_unlock(&fs_info->chunk_mutex);
2227 }
2228 return ret;
2229}
2230
2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232{
2233 struct btrfs_fs_devices *fs_devices;
2234
2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236
2237 /*
2238 * in case of fs with no seed, srcdev->fs_devices will point
2239 * to fs_devices of fs_info. However when the dev being replaced is
2240 * a seed dev it will point to the seed's local fs_devices. In short
2241 * srcdev will have its correct fs_devices in both the cases.
2242 */
2243 fs_devices = srcdev->fs_devices;
2244
2245 list_del_rcu(&srcdev->dev_list);
2246 list_del(&srcdev->dev_alloc_list);
2247 fs_devices->num_devices--;
2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249 fs_devices->missing_devices--;
2250
2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252 fs_devices->rw_devices--;
2253
2254 if (srcdev->bdev)
2255 fs_devices->open_devices--;
2256}
2257
2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259{
2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261
2262 mutex_lock(&uuid_mutex);
2263
2264 btrfs_close_bdev(srcdev);
2265 synchronize_rcu();
2266 btrfs_free_device(srcdev);
2267
2268 /* if this is no devs we rather delete the fs_devices */
2269 if (!fs_devices->num_devices) {
2270 /*
2271 * On a mounted FS, num_devices can't be zero unless it's a
2272 * seed. In case of a seed device being replaced, the replace
2273 * target added to the sprout FS, so there will be no more
2274 * device left under the seed FS.
2275 */
2276 ASSERT(fs_devices->seeding);
2277
2278 list_del_init(&fs_devices->seed_list);
2279 close_fs_devices(fs_devices);
2280 free_fs_devices(fs_devices);
2281 }
2282 mutex_unlock(&uuid_mutex);
2283}
2284
2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286{
2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288
2289 mutex_lock(&fs_devices->device_list_mutex);
2290
2291 btrfs_sysfs_remove_device(tgtdev);
2292
2293 if (tgtdev->bdev)
2294 fs_devices->open_devices--;
2295
2296 fs_devices->num_devices--;
2297
2298 btrfs_assign_next_active_device(tgtdev, NULL);
2299
2300 list_del_rcu(&tgtdev->dev_list);
2301
2302 mutex_unlock(&fs_devices->device_list_mutex);
2303
2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 tgtdev->name->str);
2306
2307 btrfs_close_bdev(tgtdev);
2308 synchronize_rcu();
2309 btrfs_free_device(tgtdev);
2310}
2311
2312/*
2313 * Populate args from device at path.
2314 *
2315 * @fs_info: the filesystem
2316 * @args: the args to populate
2317 * @path: the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks. The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 struct btrfs_dev_lookup_args *args,
2332 const char *path)
2333{
2334 struct btrfs_super_block *disk_super;
2335 struct bdev_handle *bdev_handle;
2336 int ret;
2337
2338 if (!path || !path[0])
2339 return -EINVAL;
2340 if (!strcmp(path, "missing")) {
2341 args->missing = true;
2342 return 0;
2343 }
2344
2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 if (!args->uuid || !args->fsid) {
2348 btrfs_put_dev_args_from_path(args);
2349 return -ENOMEM;
2350 }
2351
2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 &bdev_handle, &disk_super);
2354 if (ret) {
2355 btrfs_put_dev_args_from_path(args);
2356 return ret;
2357 }
2358
2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363 else
2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 btrfs_release_disk_super(disk_super);
2366 bdev_release(bdev_handle);
2367 return 0;
2368}
2369
2370/*
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2374 */
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377 kfree(args->uuid);
2378 kfree(args->fsid);
2379 args->uuid = NULL;
2380 args->fsid = NULL;
2381}
2382
2383struct btrfs_device *btrfs_find_device_by_devspec(
2384 struct btrfs_fs_info *fs_info, u64 devid,
2385 const char *device_path)
2386{
2387 BTRFS_DEV_LOOKUP_ARGS(args);
2388 struct btrfs_device *device;
2389 int ret;
2390
2391 if (devid) {
2392 args.devid = devid;
2393 device = btrfs_find_device(fs_info->fs_devices, &args);
2394 if (!device)
2395 return ERR_PTR(-ENOENT);
2396 return device;
2397 }
2398
2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 if (ret)
2401 return ERR_PTR(ret);
2402 device = btrfs_find_device(fs_info->fs_devices, &args);
2403 btrfs_put_dev_args_from_path(&args);
2404 if (!device)
2405 return ERR_PTR(-ENOENT);
2406 return device;
2407}
2408
2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410{
2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 struct btrfs_fs_devices *old_devices;
2413 struct btrfs_fs_devices *seed_devices;
2414
2415 lockdep_assert_held(&uuid_mutex);
2416 if (!fs_devices->seeding)
2417 return ERR_PTR(-EINVAL);
2418
2419 /*
2420 * Private copy of the seed devices, anchored at
2421 * fs_info->fs_devices->seed_list
2422 */
2423 seed_devices = alloc_fs_devices(NULL);
2424 if (IS_ERR(seed_devices))
2425 return seed_devices;
2426
2427 /*
2428 * It's necessary to retain a copy of the original seed fs_devices in
2429 * fs_uuids so that filesystems which have been seeded can successfully
2430 * reference the seed device from open_seed_devices. This also supports
2431 * multiple fs seed.
2432 */
2433 old_devices = clone_fs_devices(fs_devices);
2434 if (IS_ERR(old_devices)) {
2435 kfree(seed_devices);
2436 return old_devices;
2437 }
2438
2439 list_add(&old_devices->fs_list, &fs_uuids);
2440
2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 seed_devices->opened = 1;
2443 INIT_LIST_HEAD(&seed_devices->devices);
2444 INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 mutex_init(&seed_devices->device_list_mutex);
2446
2447 return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 struct btrfs_fs_devices *seed_devices)
2456{
2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 struct btrfs_device *device;
2460 u64 super_flags;
2461
2462 /*
2463 * We are updating the fsid, the thread leading to device_list_add()
2464 * could race, so uuid_mutex is needed.
2465 */
2466 lockdep_assert_held(&uuid_mutex);
2467
2468 /*
2469 * The threads listed below may traverse dev_list but can do that without
2470 * device_list_mutex:
2471 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 * - Various dev_list readers - are using RCU.
2473 * - btrfs_ioctl_fitrim() - is using RCU.
2474 *
2475 * For-read threads as below are using device_list_mutex:
2476 * - Readonly scrub btrfs_scrub_dev()
2477 * - Readonly scrub btrfs_scrub_progress()
2478 * - btrfs_get_dev_stats()
2479 */
2480 lockdep_assert_held(&fs_devices->device_list_mutex);
2481
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 synchronize_rcu);
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
2486
2487 fs_devices->seeding = false;
2488 fs_devices->num_devices = 0;
2489 fs_devices->open_devices = 0;
2490 fs_devices->missing_devices = 0;
2491 fs_devices->rotating = false;
2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493
2494 generate_random_uuid(fs_devices->fsid);
2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497
2498 super_flags = btrfs_super_flags(disk_super) &
2499 ~BTRFS_SUPER_FLAG_SEEDING;
2500 btrfs_set_super_flags(disk_super, super_flags);
2501}
2502
2503/*
2504 * Store the expected generation for seed devices in device items.
2505 */
2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507{
2508 BTRFS_DEV_LOOKUP_ARGS(args);
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
2510 struct btrfs_root *root = fs_info->chunk_root;
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 key.offset = 0;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527
2528 while (1) {
2529 btrfs_reserve_chunk_metadata(trans, false);
2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 btrfs_trans_release_chunk_metadata(trans);
2532 if (ret < 0)
2533 goto error;
2534
2535 leaf = path->nodes[0];
2536next_slot:
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2539 if (ret > 0)
2540 break;
2541 if (ret < 0)
2542 goto error;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 btrfs_release_path(path);
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2552 break;
2553
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
2556 args.devid = btrfs_device_id(leaf, dev_item);
2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 BTRFS_UUID_SIZE);
2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 BTRFS_FSID_SIZE);
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
2564 BUG_ON(!device); /* Logic error */
2565
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
2569 btrfs_mark_buffer_dirty(trans, leaf);
2570 }
2571
2572 path->slots[0]++;
2573 goto next_slot;
2574 }
2575 ret = 0;
2576error:
2577 btrfs_free_path(path);
2578 return ret;
2579}
2580
2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582{
2583 struct btrfs_root *root = fs_info->dev_root;
2584 struct btrfs_trans_handle *trans;
2585 struct btrfs_device *device;
2586 struct bdev_handle *bdev_handle;
2587 struct super_block *sb = fs_info->sb;
2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 struct btrfs_fs_devices *seed_devices = NULL;
2590 u64 orig_super_total_bytes;
2591 u64 orig_super_num_devices;
2592 int ret = 0;
2593 bool seeding_dev = false;
2594 bool locked = false;
2595
2596 if (sb_rdonly(sb) && !fs_devices->seeding)
2597 return -EROFS;
2598
2599 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600 fs_info->bdev_holder, NULL);
2601 if (IS_ERR(bdev_handle))
2602 return PTR_ERR(bdev_handle);
2603
2604 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605 ret = -EINVAL;
2606 goto error;
2607 }
2608
2609 if (fs_devices->seeding) {
2610 seeding_dev = true;
2611 down_write(&sb->s_umount);
2612 mutex_lock(&uuid_mutex);
2613 locked = true;
2614 }
2615
2616 sync_blockdev(bdev_handle->bdev);
2617
2618 rcu_read_lock();
2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 if (device->bdev == bdev_handle->bdev) {
2621 ret = -EEXIST;
2622 rcu_read_unlock();
2623 goto error;
2624 }
2625 }
2626 rcu_read_unlock();
2627
2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 if (IS_ERR(device)) {
2630 /* we can safely leave the fs_devices entry around */
2631 ret = PTR_ERR(device);
2632 goto error;
2633 }
2634
2635 device->fs_info = fs_info;
2636 device->bdev_handle = bdev_handle;
2637 device->bdev = bdev_handle->bdev;
2638 ret = lookup_bdev(device_path, &device->devt);
2639 if (ret)
2640 goto error_free_device;
2641
2642 ret = btrfs_get_dev_zone_info(device, false);
2643 if (ret)
2644 goto error_free_device;
2645
2646 trans = btrfs_start_transaction(root, 0);
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 goto error_free_zone;
2650 }
2651
2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 device->generation = trans->transid;
2654 device->io_width = fs_info->sectorsize;
2655 device->io_align = fs_info->sectorsize;
2656 device->sector_size = fs_info->sectorsize;
2657 device->total_bytes =
2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 device->disk_total_bytes = device->total_bytes;
2660 device->commit_total_bytes = device->total_bytes;
2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 device->dev_stats_valid = 1;
2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665
2666 if (seeding_dev) {
2667 btrfs_clear_sb_rdonly(sb);
2668
2669 /* GFP_KERNEL allocation must not be under device_list_mutex */
2670 seed_devices = btrfs_init_sprout(fs_info);
2671 if (IS_ERR(seed_devices)) {
2672 ret = PTR_ERR(seed_devices);
2673 btrfs_abort_transaction(trans, ret);
2674 goto error_trans;
2675 }
2676 }
2677
2678 mutex_lock(&fs_devices->device_list_mutex);
2679 if (seeding_dev) {
2680 btrfs_setup_sprout(fs_info, seed_devices);
2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 device);
2683 }
2684
2685 device->fs_devices = fs_devices;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 fs_devices->num_devices++;
2691 fs_devices->open_devices++;
2692 fs_devices->rw_devices++;
2693 fs_devices->total_devices++;
2694 fs_devices->total_rw_bytes += device->total_bytes;
2695
2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697
2698 if (!bdev_nonrot(device->bdev))
2699 fs_devices->rotating = true;
2700
2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 btrfs_set_super_total_bytes(fs_info->super_copy,
2703 round_down(orig_super_total_bytes + device->total_bytes,
2704 fs_info->sectorsize));
2705
2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 btrfs_set_super_num_devices(fs_info->super_copy,
2708 orig_super_num_devices + 1);
2709
2710 /*
2711 * we've got more storage, clear any full flags on the space
2712 * infos
2713 */
2714 btrfs_clear_space_info_full(fs_info);
2715
2716 mutex_unlock(&fs_info->chunk_mutex);
2717
2718 /* Add sysfs device entry */
2719 btrfs_sysfs_add_device(device);
2720
2721 mutex_unlock(&fs_devices->device_list_mutex);
2722
2723 if (seeding_dev) {
2724 mutex_lock(&fs_info->chunk_mutex);
2725 ret = init_first_rw_device(trans);
2726 mutex_unlock(&fs_info->chunk_mutex);
2727 if (ret) {
2728 btrfs_abort_transaction(trans, ret);
2729 goto error_sysfs;
2730 }
2731 }
2732
2733 ret = btrfs_add_dev_item(trans, device);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto error_sysfs;
2737 }
2738
2739 if (seeding_dev) {
2740 ret = btrfs_finish_sprout(trans);
2741 if (ret) {
2742 btrfs_abort_transaction(trans, ret);
2743 goto error_sysfs;
2744 }
2745
2746 /*
2747 * fs_devices now represents the newly sprouted filesystem and
2748 * its fsid has been changed by btrfs_sprout_splice().
2749 */
2750 btrfs_sysfs_update_sprout_fsid(fs_devices);
2751 }
2752
2753 ret = btrfs_commit_transaction(trans);
2754
2755 if (seeding_dev) {
2756 mutex_unlock(&uuid_mutex);
2757 up_write(&sb->s_umount);
2758 locked = false;
2759
2760 if (ret) /* transaction commit */
2761 return ret;
2762
2763 ret = btrfs_relocate_sys_chunks(fs_info);
2764 if (ret < 0)
2765 btrfs_handle_fs_error(fs_info, ret,
2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 trans = btrfs_attach_transaction(root);
2768 if (IS_ERR(trans)) {
2769 if (PTR_ERR(trans) == -ENOENT)
2770 return 0;
2771 ret = PTR_ERR(trans);
2772 trans = NULL;
2773 goto error_sysfs;
2774 }
2775 ret = btrfs_commit_transaction(trans);
2776 }
2777
2778 /*
2779 * Now that we have written a new super block to this device, check all
2780 * other fs_devices list if device_path alienates any other scanned
2781 * device.
2782 * We can ignore the return value as it typically returns -EINVAL and
2783 * only succeeds if the device was an alien.
2784 */
2785 btrfs_forget_devices(device->devt);
2786
2787 /* Update ctime/mtime for blkid or udev */
2788 update_dev_time(device_path);
2789
2790 return ret;
2791
2792error_sysfs:
2793 btrfs_sysfs_remove_device(device);
2794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 mutex_lock(&fs_info->chunk_mutex);
2796 list_del_rcu(&device->dev_list);
2797 list_del(&device->dev_alloc_list);
2798 fs_info->fs_devices->num_devices--;
2799 fs_info->fs_devices->open_devices--;
2800 fs_info->fs_devices->rw_devices--;
2801 fs_info->fs_devices->total_devices--;
2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 btrfs_set_super_total_bytes(fs_info->super_copy,
2805 orig_super_total_bytes);
2806 btrfs_set_super_num_devices(fs_info->super_copy,
2807 orig_super_num_devices);
2808 mutex_unlock(&fs_info->chunk_mutex);
2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810error_trans:
2811 if (seeding_dev)
2812 btrfs_set_sb_rdonly(sb);
2813 if (trans)
2814 btrfs_end_transaction(trans);
2815error_free_zone:
2816 btrfs_destroy_dev_zone_info(device);
2817error_free_device:
2818 btrfs_free_device(device);
2819error:
2820 bdev_release(bdev_handle);
2821 if (locked) {
2822 mutex_unlock(&uuid_mutex);
2823 up_write(&sb->s_umount);
2824 }
2825 return ret;
2826}
2827
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 struct btrfs_device *device)
2830{
2831 int ret;
2832 struct btrfs_path *path;
2833 struct btrfs_root *root = device->fs_info->chunk_root;
2834 struct btrfs_dev_item *dev_item;
2835 struct extent_buffer *leaf;
2836 struct btrfs_key key;
2837
2838 path = btrfs_alloc_path();
2839 if (!path)
2840 return -ENOMEM;
2841
2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 key.type = BTRFS_DEV_ITEM_KEY;
2844 key.offset = device->devid;
2845
2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 if (ret < 0)
2848 goto out;
2849
2850 if (ret > 0) {
2851 ret = -ENOENT;
2852 goto out;
2853 }
2854
2855 leaf = path->nodes[0];
2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858 btrfs_set_device_id(leaf, dev_item, device->devid);
2859 btrfs_set_device_type(leaf, dev_item, device->type);
2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 btrfs_set_device_total_bytes(leaf, dev_item,
2864 btrfs_device_get_disk_total_bytes(device));
2865 btrfs_set_device_bytes_used(leaf, dev_item,
2866 btrfs_device_get_bytes_used(device));
2867 btrfs_mark_buffer_dirty(trans, leaf);
2868
2869out:
2870 btrfs_free_path(path);
2871 return ret;
2872}
2873
2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 struct btrfs_device *device, u64 new_size)
2876{
2877 struct btrfs_fs_info *fs_info = device->fs_info;
2878 struct btrfs_super_block *super_copy = fs_info->super_copy;
2879 u64 old_total;
2880 u64 diff;
2881 int ret;
2882
2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884 return -EACCES;
2885
2886 new_size = round_down(new_size, fs_info->sectorsize);
2887
2888 mutex_lock(&fs_info->chunk_mutex);
2889 old_total = btrfs_super_total_bytes(super_copy);
2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891
2892 if (new_size <= device->total_bytes ||
2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 mutex_unlock(&fs_info->chunk_mutex);
2895 return -EINVAL;
2896 }
2897
2898 btrfs_set_super_total_bytes(super_copy,
2899 round_down(old_total + diff, fs_info->sectorsize));
2900 device->fs_devices->total_rw_bytes += diff;
2901 atomic64_add(diff, &fs_info->free_chunk_space);
2902
2903 btrfs_device_set_total_bytes(device, new_size);
2904 btrfs_device_set_disk_total_bytes(device, new_size);
2905 btrfs_clear_space_info_full(device->fs_info);
2906 if (list_empty(&device->post_commit_list))
2907 list_add_tail(&device->post_commit_list,
2908 &trans->transaction->dev_update_list);
2909 mutex_unlock(&fs_info->chunk_mutex);
2910
2911 btrfs_reserve_chunk_metadata(trans, false);
2912 ret = btrfs_update_device(trans, device);
2913 btrfs_trans_release_chunk_metadata(trans);
2914
2915 return ret;
2916}
2917
2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919{
2920 struct btrfs_fs_info *fs_info = trans->fs_info;
2921 struct btrfs_root *root = fs_info->chunk_root;
2922 int ret;
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
2925
2926 path = btrfs_alloc_path();
2927 if (!path)
2928 return -ENOMEM;
2929
2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 key.offset = chunk_offset;
2932 key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935 if (ret < 0)
2936 goto out;
2937 else if (ret > 0) { /* Logic error or corruption */
2938 btrfs_handle_fs_error(fs_info, -ENOENT,
2939 "Failed lookup while freeing chunk.");
2940 ret = -ENOENT;
2941 goto out;
2942 }
2943
2944 ret = btrfs_del_item(trans, root, path);
2945 if (ret < 0)
2946 btrfs_handle_fs_error(fs_info, ret,
2947 "Failed to delete chunk item.");
2948out:
2949 btrfs_free_path(path);
2950 return ret;
2951}
2952
2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954{
2955 struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 struct btrfs_disk_key *disk_key;
2957 struct btrfs_chunk *chunk;
2958 u8 *ptr;
2959 int ret = 0;
2960 u32 num_stripes;
2961 u32 array_size;
2962 u32 len = 0;
2963 u32 cur;
2964 struct btrfs_key key;
2965
2966 lockdep_assert_held(&fs_info->chunk_mutex);
2967 array_size = btrfs_super_sys_array_size(super_copy);
2968
2969 ptr = super_copy->sys_chunk_array;
2970 cur = 0;
2971
2972 while (cur < array_size) {
2973 disk_key = (struct btrfs_disk_key *)ptr;
2974 btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976 len = sizeof(*disk_key);
2977
2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 chunk = (struct btrfs_chunk *)(ptr + len);
2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 len += btrfs_chunk_item_size(num_stripes);
2982 } else {
2983 ret = -EIO;
2984 break;
2985 }
2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 key.offset == chunk_offset) {
2988 memmove(ptr, ptr + len, array_size - (cur + len));
2989 array_size -= len;
2990 btrfs_set_super_sys_array_size(super_copy, array_size);
2991 } else {
2992 ptr += len;
2993 cur += len;
2994 }
2995 }
2996 return ret;
2997}
2998
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 u64 logical, u64 length)
3001{
3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 struct rb_node *prev = NULL;
3004 struct rb_node *orig_prev;
3005 struct btrfs_chunk_map *map;
3006 struct btrfs_chunk_map *prev_map = NULL;
3007
3008 while (node) {
3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 prev = node;
3011 prev_map = map;
3012
3013 if (logical < map->start) {
3014 node = node->rb_left;
3015 } else if (logical >= map->start + map->chunk_len) {
3016 node = node->rb_right;
3017 } else {
3018 refcount_inc(&map->refs);
3019 return map;
3020 }
3021 }
3022
3023 if (!prev)
3024 return NULL;
3025
3026 orig_prev = prev;
3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 prev = rb_next(prev);
3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 }
3031
3032 if (!prev) {
3033 prev = orig_prev;
3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 while (prev && logical < prev_map->start) {
3036 prev = rb_prev(prev);
3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 }
3039 }
3040
3041 if (prev) {
3042 u64 end = logical + length;
3043
3044 /*
3045 * Caller can pass a U64_MAX length when it wants to get any
3046 * chunk starting at an offset of 'logical' or higher, so deal
3047 * with underflow by resetting the end offset to U64_MAX.
3048 */
3049 if (end < logical)
3050 end = U64_MAX;
3051
3052 if (end > prev_map->start &&
3053 logical < prev_map->start + prev_map->chunk_len) {
3054 refcount_inc(&prev_map->refs);
3055 return prev_map;
3056 }
3057 }
3058
3059 return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
3064{
3065 struct btrfs_chunk_map *map;
3066
3067 read_lock(&fs_info->mapping_tree_lock);
3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 read_unlock(&fs_info->mapping_tree_lock);
3070
3071 return map;
3072}
3073
3074/*
3075 * Find the mapping containing the given logical extent.
3076 *
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 u64 logical, u64 length)
3084{
3085 struct btrfs_chunk_map *map;
3086
3087 map = btrfs_find_chunk_map(fs_info, logical, length);
3088
3089 if (unlikely(!map)) {
3090 btrfs_crit(fs_info,
3091 "unable to find chunk map for logical %llu length %llu",
3092 logical, length);
3093 return ERR_PTR(-EINVAL);
3094 }
3095
3096 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097 btrfs_crit(fs_info,
3098 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099 logical, logical + length, map->start,
3100 map->start + map->chunk_len);
3101 btrfs_free_chunk_map(map);
3102 return ERR_PTR(-EINVAL);
3103 }
3104
3105 /* Callers are responsible for dropping the reference. */
3106 return map;
3107}
3108
3109static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_chunk_map *map, u64 chunk_offset)
3111{
3112 int i;
3113
3114 /*
3115 * Removing chunk items and updating the device items in the chunks btree
3116 * requires holding the chunk_mutex.
3117 * See the comment at btrfs_chunk_alloc() for the details.
3118 */
3119 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120
3121 for (i = 0; i < map->num_stripes; i++) {
3122 int ret;
3123
3124 ret = btrfs_update_device(trans, map->stripes[i].dev);
3125 if (ret)
3126 return ret;
3127 }
3128
3129 return btrfs_free_chunk(trans, chunk_offset);
3130}
3131
3132int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133{
3134 struct btrfs_fs_info *fs_info = trans->fs_info;
3135 struct btrfs_chunk_map *map;
3136 u64 dev_extent_len = 0;
3137 int i, ret = 0;
3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139
3140 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141 if (IS_ERR(map)) {
3142 /*
3143 * This is a logic error, but we don't want to just rely on the
3144 * user having built with ASSERT enabled, so if ASSERT doesn't
3145 * do anything we still error out.
3146 */
3147 ASSERT(0);
3148 return PTR_ERR(map);
3149 }
3150
3151 /*
3152 * First delete the device extent items from the devices btree.
3153 * We take the device_list_mutex to avoid racing with the finishing phase
3154 * of a device replace operation. See the comment below before acquiring
3155 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156 * because that can result in a deadlock when deleting the device extent
3157 * items from the devices btree - COWing an extent buffer from the btree
3158 * may result in allocating a new metadata chunk, which would attempt to
3159 * lock again fs_info->chunk_mutex.
3160 */
3161 mutex_lock(&fs_devices->device_list_mutex);
3162 for (i = 0; i < map->num_stripes; i++) {
3163 struct btrfs_device *device = map->stripes[i].dev;
3164 ret = btrfs_free_dev_extent(trans, device,
3165 map->stripes[i].physical,
3166 &dev_extent_len);
3167 if (ret) {
3168 mutex_unlock(&fs_devices->device_list_mutex);
3169 btrfs_abort_transaction(trans, ret);
3170 goto out;
3171 }
3172
3173 if (device->bytes_used > 0) {
3174 mutex_lock(&fs_info->chunk_mutex);
3175 btrfs_device_set_bytes_used(device,
3176 device->bytes_used - dev_extent_len);
3177 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178 btrfs_clear_space_info_full(fs_info);
3179 mutex_unlock(&fs_info->chunk_mutex);
3180 }
3181 }
3182 mutex_unlock(&fs_devices->device_list_mutex);
3183
3184 /*
3185 * We acquire fs_info->chunk_mutex for 2 reasons:
3186 *
3187 * 1) Just like with the first phase of the chunk allocation, we must
3188 * reserve system space, do all chunk btree updates and deletions, and
3189 * update the system chunk array in the superblock while holding this
3190 * mutex. This is for similar reasons as explained on the comment at
3191 * the top of btrfs_chunk_alloc();
3192 *
3193 * 2) Prevent races with the final phase of a device replace operation
3194 * that replaces the device object associated with the map's stripes,
3195 * because the device object's id can change at any time during that
3196 * final phase of the device replace operation
3197 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198 * replaced device and then see it with an ID of
3199 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200 * the device item, which does not exists on the chunk btree.
3201 * The finishing phase of device replace acquires both the
3202 * device_list_mutex and the chunk_mutex, in that order, so we are
3203 * safe by just acquiring the chunk_mutex.
3204 */
3205 trans->removing_chunk = true;
3206 mutex_lock(&fs_info->chunk_mutex);
3207
3208 check_system_chunk(trans, map->type);
3209
3210 ret = remove_chunk_item(trans, map, chunk_offset);
3211 /*
3212 * Normally we should not get -ENOSPC since we reserved space before
3213 * through the call to check_system_chunk().
3214 *
3215 * Despite our system space_info having enough free space, we may not
3216 * be able to allocate extents from its block groups, because all have
3217 * an incompatible profile, which will force us to allocate a new system
3218 * block group with the right profile, or right after we called
3219 * check_system_space() above, a scrub turned the only system block group
3220 * with enough free space into RO mode.
3221 * This is explained with more detail at do_chunk_alloc().
3222 *
3223 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224 */
3225 if (ret == -ENOSPC) {
3226 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227 struct btrfs_block_group *sys_bg;
3228
3229 sys_bg = btrfs_create_chunk(trans, sys_flags);
3230 if (IS_ERR(sys_bg)) {
3231 ret = PTR_ERR(sys_bg);
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235
3236 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237 if (ret) {
3238 btrfs_abort_transaction(trans, ret);
3239 goto out;
3240 }
3241
3242 ret = remove_chunk_item(trans, map, chunk_offset);
3243 if (ret) {
3244 btrfs_abort_transaction(trans, ret);
3245 goto out;
3246 }
3247 } else if (ret) {
3248 btrfs_abort_transaction(trans, ret);
3249 goto out;
3250 }
3251
3252 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253
3254 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256 if (ret) {
3257 btrfs_abort_transaction(trans, ret);
3258 goto out;
3259 }
3260 }
3261
3262 mutex_unlock(&fs_info->chunk_mutex);
3263 trans->removing_chunk = false;
3264
3265 /*
3266 * We are done with chunk btree updates and deletions, so release the
3267 * system space we previously reserved (with check_system_chunk()).
3268 */
3269 btrfs_trans_release_chunk_metadata(trans);
3270
3271 ret = btrfs_remove_block_group(trans, map);
3272 if (ret) {
3273 btrfs_abort_transaction(trans, ret);
3274 goto out;
3275 }
3276
3277out:
3278 if (trans->removing_chunk) {
3279 mutex_unlock(&fs_info->chunk_mutex);
3280 trans->removing_chunk = false;
3281 }
3282 /* once for us */
3283 btrfs_free_chunk_map(map);
3284 return ret;
3285}
3286
3287int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288{
3289 struct btrfs_root *root = fs_info->chunk_root;
3290 struct btrfs_trans_handle *trans;
3291 struct btrfs_block_group *block_group;
3292 u64 length;
3293 int ret;
3294
3295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296 btrfs_err(fs_info,
3297 "relocate: not supported on extent tree v2 yet");
3298 return -EINVAL;
3299 }
3300
3301 /*
3302 * Prevent races with automatic removal of unused block groups.
3303 * After we relocate and before we remove the chunk with offset
3304 * chunk_offset, automatic removal of the block group can kick in,
3305 * resulting in a failure when calling btrfs_remove_chunk() below.
3306 *
3307 * Make sure to acquire this mutex before doing a tree search (dev
3308 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310 * we release the path used to search the chunk/dev tree and before
3311 * the current task acquires this mutex and calls us.
3312 */
3313 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314
3315 /* step one, relocate all the extents inside this chunk */
3316 btrfs_scrub_pause(fs_info);
3317 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318 btrfs_scrub_continue(fs_info);
3319 if (ret) {
3320 /*
3321 * If we had a transaction abort, stop all running scrubs.
3322 * See transaction.c:cleanup_transaction() why we do it here.
3323 */
3324 if (BTRFS_FS_ERROR(fs_info))
3325 btrfs_scrub_cancel(fs_info);
3326 return ret;
3327 }
3328
3329 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 if (!block_group)
3331 return -ENOENT;
3332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333 length = block_group->length;
3334 btrfs_put_block_group(block_group);
3335
3336 /*
3337 * On a zoned file system, discard the whole block group, this will
3338 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339 * resetting the zone fails, don't treat it as a fatal problem from the
3340 * filesystem's point of view.
3341 */
3342 if (btrfs_is_zoned(fs_info)) {
3343 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344 if (ret)
3345 btrfs_info(fs_info,
3346 "failed to reset zone %llu after relocation",
3347 chunk_offset);
3348 }
3349
3350 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351 chunk_offset);
3352 if (IS_ERR(trans)) {
3353 ret = PTR_ERR(trans);
3354 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355 return ret;
3356 }
3357
3358 /*
3359 * step two, delete the device extents and the
3360 * chunk tree entries
3361 */
3362 ret = btrfs_remove_chunk(trans, chunk_offset);
3363 btrfs_end_transaction(trans);
3364 return ret;
3365}
3366
3367static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368{
3369 struct btrfs_root *chunk_root = fs_info->chunk_root;
3370 struct btrfs_path *path;
3371 struct extent_buffer *leaf;
3372 struct btrfs_chunk *chunk;
3373 struct btrfs_key key;
3374 struct btrfs_key found_key;
3375 u64 chunk_type;
3376 bool retried = false;
3377 int failed = 0;
3378 int ret;
3379
3380 path = btrfs_alloc_path();
3381 if (!path)
3382 return -ENOMEM;
3383
3384again:
3385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386 key.offset = (u64)-1;
3387 key.type = BTRFS_CHUNK_ITEM_KEY;
3388
3389 while (1) {
3390 mutex_lock(&fs_info->reclaim_bgs_lock);
3391 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392 if (ret < 0) {
3393 mutex_unlock(&fs_info->reclaim_bgs_lock);
3394 goto error;
3395 }
3396 BUG_ON(ret == 0); /* Corruption */
3397
3398 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3399 key.type);
3400 if (ret)
3401 mutex_unlock(&fs_info->reclaim_bgs_lock);
3402 if (ret < 0)
3403 goto error;
3404 if (ret > 0)
3405 break;
3406
3407 leaf = path->nodes[0];
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410 chunk = btrfs_item_ptr(leaf, path->slots[0],
3411 struct btrfs_chunk);
3412 chunk_type = btrfs_chunk_type(leaf, chunk);
3413 btrfs_release_path(path);
3414
3415 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3417 if (ret == -ENOSPC)
3418 failed++;
3419 else
3420 BUG_ON(ret);
3421 }
3422 mutex_unlock(&fs_info->reclaim_bgs_lock);
3423
3424 if (found_key.offset == 0)
3425 break;
3426 key.offset = found_key.offset - 1;
3427 }
3428 ret = 0;
3429 if (failed && !retried) {
3430 failed = 0;
3431 retried = true;
3432 goto again;
3433 } else if (WARN_ON(failed && retried)) {
3434 ret = -ENOSPC;
3435 }
3436error:
3437 btrfs_free_path(path);
3438 return ret;
3439}
3440
3441/*
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3445 */
3446static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3447 u64 chunk_offset)
3448{
3449 struct btrfs_block_group *cache;
3450 u64 bytes_used;
3451 u64 chunk_type;
3452
3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454 ASSERT(cache);
3455 chunk_type = cache->flags;
3456 btrfs_put_block_group(cache);
3457
3458 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3459 return 0;
3460
3461 spin_lock(&fs_info->data_sinfo->lock);
3462 bytes_used = fs_info->data_sinfo->bytes_used;
3463 spin_unlock(&fs_info->data_sinfo->lock);
3464
3465 if (!bytes_used) {
3466 struct btrfs_trans_handle *trans;
3467 int ret;
3468
3469 trans = btrfs_join_transaction(fs_info->tree_root);
3470 if (IS_ERR(trans))
3471 return PTR_ERR(trans);
3472
3473 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474 btrfs_end_transaction(trans);
3475 if (ret < 0)
3476 return ret;
3477 return 1;
3478 }
3479
3480 return 0;
3481}
3482
3483static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484 struct btrfs_balance_control *bctl)
3485{
3486 struct btrfs_root *root = fs_info->tree_root;
3487 struct btrfs_trans_handle *trans;
3488 struct btrfs_balance_item *item;
3489 struct btrfs_disk_balance_args disk_bargs;
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_key key;
3493 int ret, err;
3494
3495 path = btrfs_alloc_path();
3496 if (!path)
3497 return -ENOMEM;
3498
3499 trans = btrfs_start_transaction(root, 0);
3500 if (IS_ERR(trans)) {
3501 btrfs_free_path(path);
3502 return PTR_ERR(trans);
3503 }
3504
3505 key.objectid = BTRFS_BALANCE_OBJECTID;
3506 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507 key.offset = 0;
3508
3509 ret = btrfs_insert_empty_item(trans, root, path, &key,
3510 sizeof(*item));
3511 if (ret)
3512 goto out;
3513
3514 leaf = path->nodes[0];
3515 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3516
3517 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3518
3519 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520 btrfs_set_balance_data(leaf, item, &disk_bargs);
3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3525
3526 btrfs_set_balance_flags(leaf, item, bctl->flags);
3527
3528 btrfs_mark_buffer_dirty(trans, leaf);
3529out:
3530 btrfs_free_path(path);
3531 err = btrfs_commit_transaction(trans);
3532 if (err && !ret)
3533 ret = err;
3534 return ret;
3535}
3536
3537static int del_balance_item(struct btrfs_fs_info *fs_info)
3538{
3539 struct btrfs_root *root = fs_info->tree_root;
3540 struct btrfs_trans_handle *trans;
3541 struct btrfs_path *path;
3542 struct btrfs_key key;
3543 int ret, err;
3544
3545 path = btrfs_alloc_path();
3546 if (!path)
3547 return -ENOMEM;
3548
3549 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550 if (IS_ERR(trans)) {
3551 btrfs_free_path(path);
3552 return PTR_ERR(trans);
3553 }
3554
3555 key.objectid = BTRFS_BALANCE_OBJECTID;
3556 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3557 key.offset = 0;
3558
3559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3560 if (ret < 0)
3561 goto out;
3562 if (ret > 0) {
3563 ret = -ENOENT;
3564 goto out;
3565 }
3566
3567 ret = btrfs_del_item(trans, root, path);
3568out:
3569 btrfs_free_path(path);
3570 err = btrfs_commit_transaction(trans);
3571 if (err && !ret)
3572 ret = err;
3573 return ret;
3574}
3575
3576/*
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3579 */
3580static void update_balance_args(struct btrfs_balance_control *bctl)
3581{
3582 /*
3583 * Turn on soft mode for chunk types that were being converted.
3584 */
3585 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591
3592 /*
3593 * Turn on usage filter if is not already used. The idea is
3594 * that chunks that we have already balanced should be
3595 * reasonably full. Don't do it for chunks that are being
3596 * converted - that will keep us from relocating unconverted
3597 * (albeit full) chunks.
3598 */
3599 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603 bctl->data.usage = 90;
3604 }
3605 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609 bctl->sys.usage = 90;
3610 }
3611 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615 bctl->meta.usage = 90;
3616 }
3617}
3618
3619/*
3620 * Clear the balance status in fs_info and delete the balance item from disk.
3621 */
3622static void reset_balance_state(struct btrfs_fs_info *fs_info)
3623{
3624 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3625 int ret;
3626
3627 BUG_ON(!fs_info->balance_ctl);
3628
3629 spin_lock(&fs_info->balance_lock);
3630 fs_info->balance_ctl = NULL;
3631 spin_unlock(&fs_info->balance_lock);
3632
3633 kfree(bctl);
3634 ret = del_balance_item(fs_info);
3635 if (ret)
3636 btrfs_handle_fs_error(fs_info, ret, NULL);
3637}
3638
3639/*
3640 * Balance filters. Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3642 */
3643static int chunk_profiles_filter(u64 chunk_type,
3644 struct btrfs_balance_args *bargs)
3645{
3646 chunk_type = chunk_to_extended(chunk_type) &
3647 BTRFS_EXTENDED_PROFILE_MASK;
3648
3649 if (bargs->profiles & chunk_type)
3650 return 0;
3651
3652 return 1;
3653}
3654
3655static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656 struct btrfs_balance_args *bargs)
3657{
3658 struct btrfs_block_group *cache;
3659 u64 chunk_used;
3660 u64 user_thresh_min;
3661 u64 user_thresh_max;
3662 int ret = 1;
3663
3664 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665 chunk_used = cache->used;
3666
3667 if (bargs->usage_min == 0)
3668 user_thresh_min = 0;
3669 else
3670 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3671
3672 if (bargs->usage_max == 0)
3673 user_thresh_max = 1;
3674 else if (bargs->usage_max > 100)
3675 user_thresh_max = cache->length;
3676 else
3677 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3678
3679 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3680 ret = 0;
3681
3682 btrfs_put_block_group(cache);
3683 return ret;
3684}
3685
3686static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687 u64 chunk_offset, struct btrfs_balance_args *bargs)
3688{
3689 struct btrfs_block_group *cache;
3690 u64 chunk_used, user_thresh;
3691 int ret = 1;
3692
3693 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694 chunk_used = cache->used;
3695
3696 if (bargs->usage_min == 0)
3697 user_thresh = 1;
3698 else if (bargs->usage > 100)
3699 user_thresh = cache->length;
3700 else
3701 user_thresh = mult_perc(cache->length, bargs->usage);
3702
3703 if (chunk_used < user_thresh)
3704 ret = 0;
3705
3706 btrfs_put_block_group(cache);
3707 return ret;
3708}
3709
3710static int chunk_devid_filter(struct extent_buffer *leaf,
3711 struct btrfs_chunk *chunk,
3712 struct btrfs_balance_args *bargs)
3713{
3714 struct btrfs_stripe *stripe;
3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716 int i;
3717
3718 for (i = 0; i < num_stripes; i++) {
3719 stripe = btrfs_stripe_nr(chunk, i);
3720 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3721 return 0;
3722 }
3723
3724 return 1;
3725}
3726
3727static u64 calc_data_stripes(u64 type, int num_stripes)
3728{
3729 const int index = btrfs_bg_flags_to_raid_index(type);
3730 const int ncopies = btrfs_raid_array[index].ncopies;
3731 const int nparity = btrfs_raid_array[index].nparity;
3732
3733 return (num_stripes - nparity) / ncopies;
3734}
3735
3736/* [pstart, pend) */
3737static int chunk_drange_filter(struct extent_buffer *leaf,
3738 struct btrfs_chunk *chunk,
3739 struct btrfs_balance_args *bargs)
3740{
3741 struct btrfs_stripe *stripe;
3742 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743 u64 stripe_offset;
3744 u64 stripe_length;
3745 u64 type;
3746 int factor;
3747 int i;
3748
3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3750 return 0;
3751
3752 type = btrfs_chunk_type(leaf, chunk);
3753 factor = calc_data_stripes(type, num_stripes);
3754
3755 for (i = 0; i < num_stripes; i++) {
3756 stripe = btrfs_stripe_nr(chunk, i);
3757 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3758 continue;
3759
3760 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761 stripe_length = btrfs_chunk_length(leaf, chunk);
3762 stripe_length = div_u64(stripe_length, factor);
3763
3764 if (stripe_offset < bargs->pend &&
3765 stripe_offset + stripe_length > bargs->pstart)
3766 return 0;
3767 }
3768
3769 return 1;
3770}
3771
3772/* [vstart, vend) */
3773static int chunk_vrange_filter(struct extent_buffer *leaf,
3774 struct btrfs_chunk *chunk,
3775 u64 chunk_offset,
3776 struct btrfs_balance_args *bargs)
3777{
3778 if (chunk_offset < bargs->vend &&
3779 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780 /* at least part of the chunk is inside this vrange */
3781 return 0;
3782
3783 return 1;
3784}
3785
3786static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787 struct btrfs_chunk *chunk,
3788 struct btrfs_balance_args *bargs)
3789{
3790 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791
3792 if (bargs->stripes_min <= num_stripes
3793 && num_stripes <= bargs->stripes_max)
3794 return 0;
3795
3796 return 1;
3797}
3798
3799static int chunk_soft_convert_filter(u64 chunk_type,
3800 struct btrfs_balance_args *bargs)
3801{
3802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3803 return 0;
3804
3805 chunk_type = chunk_to_extended(chunk_type) &
3806 BTRFS_EXTENDED_PROFILE_MASK;
3807
3808 if (bargs->target == chunk_type)
3809 return 1;
3810
3811 return 0;
3812}
3813
3814static int should_balance_chunk(struct extent_buffer *leaf,
3815 struct btrfs_chunk *chunk, u64 chunk_offset)
3816{
3817 struct btrfs_fs_info *fs_info = leaf->fs_info;
3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 struct btrfs_balance_args *bargs = NULL;
3820 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3821
3822 /* type filter */
3823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3825 return 0;
3826 }
3827
3828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829 bargs = &bctl->data;
3830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3831 bargs = &bctl->sys;
3832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833 bargs = &bctl->meta;
3834
3835 /* profiles filter */
3836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837 chunk_profiles_filter(chunk_type, bargs)) {
3838 return 0;
3839 }
3840
3841 /* usage filter */
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3844 return 0;
3845 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3847 return 0;
3848 }
3849
3850 /* devid filter */
3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852 chunk_devid_filter(leaf, chunk, bargs)) {
3853 return 0;
3854 }
3855
3856 /* drange filter, makes sense only with devid filter */
3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858 chunk_drange_filter(leaf, chunk, bargs)) {
3859 return 0;
3860 }
3861
3862 /* vrange filter */
3863 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3865 return 0;
3866 }
3867
3868 /* stripes filter */
3869 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3871 return 0;
3872 }
3873
3874 /* soft profile changing mode */
3875 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876 chunk_soft_convert_filter(chunk_type, bargs)) {
3877 return 0;
3878 }
3879
3880 /*
3881 * limited by count, must be the last filter
3882 */
3883 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884 if (bargs->limit == 0)
3885 return 0;
3886 else
3887 bargs->limit--;
3888 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3889 /*
3890 * Same logic as the 'limit' filter; the minimum cannot be
3891 * determined here because we do not have the global information
3892 * about the count of all chunks that satisfy the filters.
3893 */
3894 if (bargs->limit_max == 0)
3895 return 0;
3896 else
3897 bargs->limit_max--;
3898 }
3899
3900 return 1;
3901}
3902
3903static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3904{
3905 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906 struct btrfs_root *chunk_root = fs_info->chunk_root;
3907 u64 chunk_type;
3908 struct btrfs_chunk *chunk;
3909 struct btrfs_path *path = NULL;
3910 struct btrfs_key key;
3911 struct btrfs_key found_key;
3912 struct extent_buffer *leaf;
3913 int slot;
3914 int ret;
3915 int enospc_errors = 0;
3916 bool counting = true;
3917 /* The single value limit and min/max limits use the same bytes in the */
3918 u64 limit_data = bctl->data.limit;
3919 u64 limit_meta = bctl->meta.limit;
3920 u64 limit_sys = bctl->sys.limit;
3921 u32 count_data = 0;
3922 u32 count_meta = 0;
3923 u32 count_sys = 0;
3924 int chunk_reserved = 0;
3925
3926 path = btrfs_alloc_path();
3927 if (!path) {
3928 ret = -ENOMEM;
3929 goto error;
3930 }
3931
3932 /* zero out stat counters */
3933 spin_lock(&fs_info->balance_lock);
3934 memset(&bctl->stat, 0, sizeof(bctl->stat));
3935 spin_unlock(&fs_info->balance_lock);
3936again:
3937 if (!counting) {
3938 /*
3939 * The single value limit and min/max limits use the same bytes
3940 * in the
3941 */
3942 bctl->data.limit = limit_data;
3943 bctl->meta.limit = limit_meta;
3944 bctl->sys.limit = limit_sys;
3945 }
3946 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947 key.offset = (u64)-1;
3948 key.type = BTRFS_CHUNK_ITEM_KEY;
3949
3950 while (1) {
3951 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952 atomic_read(&fs_info->balance_cancel_req)) {
3953 ret = -ECANCELED;
3954 goto error;
3955 }
3956
3957 mutex_lock(&fs_info->reclaim_bgs_lock);
3958 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3959 if (ret < 0) {
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 goto error;
3962 }
3963
3964 /*
3965 * this shouldn't happen, it means the last relocate
3966 * failed
3967 */
3968 if (ret == 0)
3969 BUG(); /* FIXME break ? */
3970
3971 ret = btrfs_previous_item(chunk_root, path, 0,
3972 BTRFS_CHUNK_ITEM_KEY);
3973 if (ret) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 ret = 0;
3976 break;
3977 }
3978
3979 leaf = path->nodes[0];
3980 slot = path->slots[0];
3981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3982
3983 if (found_key.objectid != key.objectid) {
3984 mutex_unlock(&fs_info->reclaim_bgs_lock);
3985 break;
3986 }
3987
3988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989 chunk_type = btrfs_chunk_type(leaf, chunk);
3990
3991 if (!counting) {
3992 spin_lock(&fs_info->balance_lock);
3993 bctl->stat.considered++;
3994 spin_unlock(&fs_info->balance_lock);
3995 }
3996
3997 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3998
3999 btrfs_release_path(path);
4000 if (!ret) {
4001 mutex_unlock(&fs_info->reclaim_bgs_lock);
4002 goto loop;
4003 }
4004
4005 if (counting) {
4006 mutex_unlock(&fs_info->reclaim_bgs_lock);
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.expected++;
4009 spin_unlock(&fs_info->balance_lock);
4010
4011 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4012 count_data++;
4013 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4014 count_sys++;
4015 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4016 count_meta++;
4017
4018 goto loop;
4019 }
4020
4021 /*
4022 * Apply limit_min filter, no need to check if the LIMITS
4023 * filter is used, limit_min is 0 by default
4024 */
4025 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026 count_data < bctl->data.limit_min)
4027 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028 count_meta < bctl->meta.limit_min)
4029 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030 count_sys < bctl->sys.limit_min)) {
4031 mutex_unlock(&fs_info->reclaim_bgs_lock);
4032 goto loop;
4033 }
4034
4035 if (!chunk_reserved) {
4036 /*
4037 * We may be relocating the only data chunk we have,
4038 * which could potentially end up with losing data's
4039 * raid profile, so lets allocate an empty one in
4040 * advance.
4041 */
4042 ret = btrfs_may_alloc_data_chunk(fs_info,
4043 found_key.offset);
4044 if (ret < 0) {
4045 mutex_unlock(&fs_info->reclaim_bgs_lock);
4046 goto error;
4047 } else if (ret == 1) {
4048 chunk_reserved = 1;
4049 }
4050 }
4051
4052 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053 mutex_unlock(&fs_info->reclaim_bgs_lock);
4054 if (ret == -ENOSPC) {
4055 enospc_errors++;
4056 } else if (ret == -ETXTBSY) {
4057 btrfs_info(fs_info,
4058 "skipping relocation of block group %llu due to active swapfile",
4059 found_key.offset);
4060 ret = 0;
4061 } else if (ret) {
4062 goto error;
4063 } else {
4064 spin_lock(&fs_info->balance_lock);
4065 bctl->stat.completed++;
4066 spin_unlock(&fs_info->balance_lock);
4067 }
4068loop:
4069 if (found_key.offset == 0)
4070 break;
4071 key.offset = found_key.offset - 1;
4072 }
4073
4074 if (counting) {
4075 btrfs_release_path(path);
4076 counting = false;
4077 goto again;
4078 }
4079error:
4080 btrfs_free_path(path);
4081 if (enospc_errors) {
4082 btrfs_info(fs_info, "%d enospc errors during balance",
4083 enospc_errors);
4084 if (!ret)
4085 ret = -ENOSPC;
4086 }
4087
4088 return ret;
4089}
4090
4091/*
4092 * See if a given profile is valid and reduced.
4093 *
4094 * @flags: profile to validate
4095 * @extended: if true @flags is treated as an extended profile
4096 */
4097static int alloc_profile_is_valid(u64 flags, int extended)
4098{
4099 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4101
4102 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4103
4104 /* 1) check that all other bits are zeroed */
4105 if (flags & ~mask)
4106 return 0;
4107
4108 /* 2) see if profile is reduced */
4109 if (flags == 0)
4110 return !extended; /* "0" is valid for usual profiles */
4111
4112 return has_single_bit_set(flags);
4113}
4114
4115/*
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4118 */
4119static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120 const struct btrfs_balance_args *bargs,
4121 u64 allowed, const char *type)
4122{
4123 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4124 return true;
4125
4126 /* Profile is valid and does not have bits outside of the allowed set */
4127 if (alloc_profile_is_valid(bargs->target, 1) &&
4128 (bargs->target & ~allowed) == 0)
4129 return true;
4130
4131 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132 type, btrfs_bg_type_to_raid_name(bargs->target));
4133 return false;
4134}
4135
4136/*
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4140 */
4141static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4142 u32 size_buf)
4143{
4144 int ret;
4145 u32 size_bp = size_buf;
4146 char *bp = buf;
4147 u64 flags = bargs->flags;
4148 char tmp_buf[128] = {'\0'};
4149
4150 if (!flags)
4151 return;
4152
4153#define CHECK_APPEND_NOARG(a) \
4154 do { \
4155 ret = snprintf(bp, size_bp, (a)); \
4156 if (ret < 0 || ret >= size_bp) \
4157 goto out_overflow; \
4158 size_bp -= ret; \
4159 bp += ret; \
4160 } while (0)
4161
4162#define CHECK_APPEND_1ARG(a, v1) \
4163 do { \
4164 ret = snprintf(bp, size_bp, (a), (v1)); \
4165 if (ret < 0 || ret >= size_bp) \
4166 goto out_overflow; \
4167 size_bp -= ret; \
4168 bp += ret; \
4169 } while (0)
4170
4171#define CHECK_APPEND_2ARG(a, v1, v2) \
4172 do { \
4173 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4174 if (ret < 0 || ret >= size_bp) \
4175 goto out_overflow; \
4176 size_bp -= ret; \
4177 bp += ret; \
4178 } while (0)
4179
4180 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181 CHECK_APPEND_1ARG("convert=%s,",
4182 btrfs_bg_type_to_raid_name(bargs->target));
4183
4184 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185 CHECK_APPEND_NOARG("soft,");
4186
4187 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4189 sizeof(tmp_buf));
4190 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4191 }
4192
4193 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4195
4196 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197 CHECK_APPEND_2ARG("usage=%u..%u,",
4198 bargs->usage_min, bargs->usage_max);
4199
4200 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4202
4203 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205 bargs->pstart, bargs->pend);
4206
4207 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209 bargs->vstart, bargs->vend);
4210
4211 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4213
4214 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215 CHECK_APPEND_2ARG("limit=%u..%u,",
4216 bargs->limit_min, bargs->limit_max);
4217
4218 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219 CHECK_APPEND_2ARG("stripes=%u..%u,",
4220 bargs->stripes_min, bargs->stripes_max);
4221
4222#undef CHECK_APPEND_2ARG
4223#undef CHECK_APPEND_1ARG
4224#undef CHECK_APPEND_NOARG
4225
4226out_overflow:
4227
4228 if (size_bp < size_buf)
4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4230 else
4231 buf[0] = '\0';
4232}
4233
4234static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4235{
4236 u32 size_buf = 1024;
4237 char tmp_buf[192] = {'\0'};
4238 char *buf;
4239 char *bp;
4240 u32 size_bp = size_buf;
4241 int ret;
4242 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4243
4244 buf = kzalloc(size_buf, GFP_KERNEL);
4245 if (!buf)
4246 return;
4247
4248 bp = buf;
4249
4250#define CHECK_APPEND_1ARG(a, v1) \
4251 do { \
4252 ret = snprintf(bp, size_bp, (a), (v1)); \
4253 if (ret < 0 || ret >= size_bp) \
4254 goto out_overflow; \
4255 size_bp -= ret; \
4256 bp += ret; \
4257 } while (0)
4258
4259 if (bctl->flags & BTRFS_BALANCE_FORCE)
4260 CHECK_APPEND_1ARG("%s", "-f ");
4261
4262 if (bctl->flags & BTRFS_BALANCE_DATA) {
4263 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4265 }
4266
4267 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4270 }
4271
4272 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4275 }
4276
4277#undef CHECK_APPEND_1ARG
4278
4279out_overflow:
4280
4281 if (size_bp < size_buf)
4282 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283 btrfs_info(fs_info, "balance: %s %s",
4284 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285 "resume" : "start", buf);
4286
4287 kfree(buf);
4288}
4289
4290/*
4291 * Should be called with balance mutexe held
4292 */
4293int btrfs_balance(struct btrfs_fs_info *fs_info,
4294 struct btrfs_balance_control *bctl,
4295 struct btrfs_ioctl_balance_args *bargs)
4296{
4297 u64 meta_target, data_target;
4298 u64 allowed;
4299 int mixed = 0;
4300 int ret;
4301 u64 num_devices;
4302 unsigned seq;
4303 bool reducing_redundancy;
4304 bool paused = false;
4305 int i;
4306
4307 if (btrfs_fs_closing(fs_info) ||
4308 atomic_read(&fs_info->balance_pause_req) ||
4309 btrfs_should_cancel_balance(fs_info)) {
4310 ret = -EINVAL;
4311 goto out;
4312 }
4313
4314 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4316 mixed = 1;
4317
4318 /*
4319 * In case of mixed groups both data and meta should be picked,
4320 * and identical options should be given for both of them.
4321 */
4322 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323 if (mixed && (bctl->flags & allowed)) {
4324 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4327 btrfs_err(fs_info,
4328 "balance: mixed groups data and metadata options must be the same");
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332 }
4333
4334 /*
4335 * rw_devices will not change at the moment, device add/delete/replace
4336 * are exclusive
4337 */
4338 num_devices = fs_info->fs_devices->rw_devices;
4339
4340 /*
4341 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342 * special bit for it, to make it easier to distinguish. Thus we need
4343 * to set it manually, or balance would refuse the profile.
4344 */
4345 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347 if (num_devices >= btrfs_raid_array[i].devs_min)
4348 allowed |= btrfs_raid_array[i].bg_flag;
4349
4350 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4353 ret = -EINVAL;
4354 goto out;
4355 }
4356
4357 /*
4358 * Allow to reduce metadata or system integrity only if force set for
4359 * profiles with redundancy (copies, parity)
4360 */
4361 allowed = 0;
4362 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363 if (btrfs_raid_array[i].ncopies >= 2 ||
4364 btrfs_raid_array[i].tolerated_failures >= 1)
4365 allowed |= btrfs_raid_array[i].bg_flag;
4366 }
4367 do {
4368 seq = read_seqbegin(&fs_info->profiles_lock);
4369
4370 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371 (fs_info->avail_system_alloc_bits & allowed) &&
4372 !(bctl->sys.target & allowed)) ||
4373 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374 (fs_info->avail_metadata_alloc_bits & allowed) &&
4375 !(bctl->meta.target & allowed)))
4376 reducing_redundancy = true;
4377 else
4378 reducing_redundancy = false;
4379
4380 /* if we're not converting, the target field is uninitialized */
4381 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 bctl->data.target : fs_info->avail_data_alloc_bits;
4385 } while (read_seqretry(&fs_info->profiles_lock, seq));
4386
4387 if (reducing_redundancy) {
4388 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4389 btrfs_info(fs_info,
4390 "balance: force reducing metadata redundancy");
4391 } else {
4392 btrfs_err(fs_info,
4393 "balance: reduces metadata redundancy, use --force if you want this");
4394 ret = -EINVAL;
4395 goto out;
4396 }
4397 }
4398
4399 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4401 btrfs_warn(fs_info,
4402 "balance: metadata profile %s has lower redundancy than data profile %s",
4403 btrfs_bg_type_to_raid_name(meta_target),
4404 btrfs_bg_type_to_raid_name(data_target));
4405 }
4406
4407 ret = insert_balance_item(fs_info, bctl);
4408 if (ret && ret != -EEXIST)
4409 goto out;
4410
4411 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412 BUG_ON(ret == -EEXIST);
4413 BUG_ON(fs_info->balance_ctl);
4414 spin_lock(&fs_info->balance_lock);
4415 fs_info->balance_ctl = bctl;
4416 spin_unlock(&fs_info->balance_lock);
4417 } else {
4418 BUG_ON(ret != -EEXIST);
4419 spin_lock(&fs_info->balance_lock);
4420 update_balance_args(bctl);
4421 spin_unlock(&fs_info->balance_lock);
4422 }
4423
4424 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426 describe_balance_start_or_resume(fs_info);
4427 mutex_unlock(&fs_info->balance_mutex);
4428
4429 ret = __btrfs_balance(fs_info);
4430
4431 mutex_lock(&fs_info->balance_mutex);
4432 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433 btrfs_info(fs_info, "balance: paused");
4434 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4435 paused = true;
4436 }
4437 /*
4438 * Balance can be canceled by:
4439 *
4440 * - Regular cancel request
4441 * Then ret == -ECANCELED and balance_cancel_req > 0
4442 *
4443 * - Fatal signal to "btrfs" process
4444 * Either the signal caught by wait_reserve_ticket() and callers
4445 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4446 * got -ECANCELED.
4447 * Either way, in this case balance_cancel_req = 0, and
4448 * ret == -EINTR or ret == -ECANCELED.
4449 *
4450 * So here we only check the return value to catch canceled balance.
4451 */
4452 else if (ret == -ECANCELED || ret == -EINTR)
4453 btrfs_info(fs_info, "balance: canceled");
4454 else
4455 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4456
4457 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4458
4459 if (bargs) {
4460 memset(bargs, 0, sizeof(*bargs));
4461 btrfs_update_ioctl_balance_args(fs_info, bargs);
4462 }
4463
4464 /* We didn't pause, we can clean everything up. */
4465 if (!paused) {
4466 reset_balance_state(fs_info);
4467 btrfs_exclop_finish(fs_info);
4468 }
4469
4470 wake_up(&fs_info->balance_wait_q);
4471
4472 return ret;
4473out:
4474 if (bctl->flags & BTRFS_BALANCE_RESUME)
4475 reset_balance_state(fs_info);
4476 else
4477 kfree(bctl);
4478 btrfs_exclop_finish(fs_info);
4479
4480 return ret;
4481}
4482
4483static int balance_kthread(void *data)
4484{
4485 struct btrfs_fs_info *fs_info = data;
4486 int ret = 0;
4487
4488 sb_start_write(fs_info->sb);
4489 mutex_lock(&fs_info->balance_mutex);
4490 if (fs_info->balance_ctl)
4491 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4492 mutex_unlock(&fs_info->balance_mutex);
4493 sb_end_write(fs_info->sb);
4494
4495 return ret;
4496}
4497
4498int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4499{
4500 struct task_struct *tsk;
4501
4502 mutex_lock(&fs_info->balance_mutex);
4503 if (!fs_info->balance_ctl) {
4504 mutex_unlock(&fs_info->balance_mutex);
4505 return 0;
4506 }
4507 mutex_unlock(&fs_info->balance_mutex);
4508
4509 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510 btrfs_info(fs_info, "balance: resume skipped");
4511 return 0;
4512 }
4513
4514 spin_lock(&fs_info->super_lock);
4515 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517 spin_unlock(&fs_info->super_lock);
4518 /*
4519 * A ro->rw remount sequence should continue with the paused balance
4520 * regardless of who pauses it, system or the user as of now, so set
4521 * the resume flag.
4522 */
4523 spin_lock(&fs_info->balance_lock);
4524 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525 spin_unlock(&fs_info->balance_lock);
4526
4527 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528 return PTR_ERR_OR_ZERO(tsk);
4529}
4530
4531int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4532{
4533 struct btrfs_balance_control *bctl;
4534 struct btrfs_balance_item *item;
4535 struct btrfs_disk_balance_args disk_bargs;
4536 struct btrfs_path *path;
4537 struct extent_buffer *leaf;
4538 struct btrfs_key key;
4539 int ret;
4540
4541 path = btrfs_alloc_path();
4542 if (!path)
4543 return -ENOMEM;
4544
4545 key.objectid = BTRFS_BALANCE_OBJECTID;
4546 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4547 key.offset = 0;
4548
4549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4550 if (ret < 0)
4551 goto out;
4552 if (ret > 0) { /* ret = -ENOENT; */
4553 ret = 0;
4554 goto out;
4555 }
4556
4557 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4558 if (!bctl) {
4559 ret = -ENOMEM;
4560 goto out;
4561 }
4562
4563 leaf = path->nodes[0];
4564 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4565
4566 bctl->flags = btrfs_balance_flags(leaf, item);
4567 bctl->flags |= BTRFS_BALANCE_RESUME;
4568
4569 btrfs_balance_data(leaf, item, &disk_bargs);
4570 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571 btrfs_balance_meta(leaf, item, &disk_bargs);
4572 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573 btrfs_balance_sys(leaf, item, &disk_bargs);
4574 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4575
4576 /*
4577 * This should never happen, as the paused balance state is recovered
4578 * during mount without any chance of other exclusive ops to collide.
4579 *
4580 * This gives the exclusive op status to balance and keeps in paused
4581 * state until user intervention (cancel or umount). If the ownership
4582 * cannot be assigned, show a message but do not fail. The balance
4583 * is in a paused state and must have fs_info::balance_ctl properly
4584 * set up.
4585 */
4586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4587 btrfs_warn(fs_info,
4588 "balance: cannot set exclusive op status, resume manually");
4589
4590 btrfs_release_path(path);
4591
4592 mutex_lock(&fs_info->balance_mutex);
4593 BUG_ON(fs_info->balance_ctl);
4594 spin_lock(&fs_info->balance_lock);
4595 fs_info->balance_ctl = bctl;
4596 spin_unlock(&fs_info->balance_lock);
4597 mutex_unlock(&fs_info->balance_mutex);
4598out:
4599 btrfs_free_path(path);
4600 return ret;
4601}
4602
4603int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4604{
4605 int ret = 0;
4606
4607 mutex_lock(&fs_info->balance_mutex);
4608 if (!fs_info->balance_ctl) {
4609 mutex_unlock(&fs_info->balance_mutex);
4610 return -ENOTCONN;
4611 }
4612
4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 atomic_inc(&fs_info->balance_pause_req);
4615 mutex_unlock(&fs_info->balance_mutex);
4616
4617 wait_event(fs_info->balance_wait_q,
4618 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4619
4620 mutex_lock(&fs_info->balance_mutex);
4621 /* we are good with balance_ctl ripped off from under us */
4622 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623 atomic_dec(&fs_info->balance_pause_req);
4624 } else {
4625 ret = -ENOTCONN;
4626 }
4627
4628 mutex_unlock(&fs_info->balance_mutex);
4629 return ret;
4630}
4631
4632int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4633{
4634 mutex_lock(&fs_info->balance_mutex);
4635 if (!fs_info->balance_ctl) {
4636 mutex_unlock(&fs_info->balance_mutex);
4637 return -ENOTCONN;
4638 }
4639
4640 /*
4641 * A paused balance with the item stored on disk can be resumed at
4642 * mount time if the mount is read-write. Otherwise it's still paused
4643 * and we must not allow cancelling as it deletes the item.
4644 */
4645 if (sb_rdonly(fs_info->sb)) {
4646 mutex_unlock(&fs_info->balance_mutex);
4647 return -EROFS;
4648 }
4649
4650 atomic_inc(&fs_info->balance_cancel_req);
4651 /*
4652 * if we are running just wait and return, balance item is
4653 * deleted in btrfs_balance in this case
4654 */
4655 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656 mutex_unlock(&fs_info->balance_mutex);
4657 wait_event(fs_info->balance_wait_q,
4658 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659 mutex_lock(&fs_info->balance_mutex);
4660 } else {
4661 mutex_unlock(&fs_info->balance_mutex);
4662 /*
4663 * Lock released to allow other waiters to continue, we'll
4664 * reexamine the status again.
4665 */
4666 mutex_lock(&fs_info->balance_mutex);
4667
4668 if (fs_info->balance_ctl) {
4669 reset_balance_state(fs_info);
4670 btrfs_exclop_finish(fs_info);
4671 btrfs_info(fs_info, "balance: canceled");
4672 }
4673 }
4674
4675 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676 atomic_dec(&fs_info->balance_cancel_req);
4677 mutex_unlock(&fs_info->balance_mutex);
4678 return 0;
4679}
4680
4681int btrfs_uuid_scan_kthread(void *data)
4682{
4683 struct btrfs_fs_info *fs_info = data;
4684 struct btrfs_root *root = fs_info->tree_root;
4685 struct btrfs_key key;
4686 struct btrfs_path *path = NULL;
4687 int ret = 0;
4688 struct extent_buffer *eb;
4689 int slot;
4690 struct btrfs_root_item root_item;
4691 u32 item_size;
4692 struct btrfs_trans_handle *trans = NULL;
4693 bool closing = false;
4694
4695 path = btrfs_alloc_path();
4696 if (!path) {
4697 ret = -ENOMEM;
4698 goto out;
4699 }
4700
4701 key.objectid = 0;
4702 key.type = BTRFS_ROOT_ITEM_KEY;
4703 key.offset = 0;
4704
4705 while (1) {
4706 if (btrfs_fs_closing(fs_info)) {
4707 closing = true;
4708 break;
4709 }
4710 ret = btrfs_search_forward(root, &key, path,
4711 BTRFS_OLDEST_GENERATION);
4712 if (ret) {
4713 if (ret > 0)
4714 ret = 0;
4715 break;
4716 }
4717
4718 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4722 goto skip;
4723
4724 eb = path->nodes[0];
4725 slot = path->slots[0];
4726 item_size = btrfs_item_size(eb, slot);
4727 if (item_size < sizeof(root_item))
4728 goto skip;
4729
4730 read_extent_buffer(eb, &root_item,
4731 btrfs_item_ptr_offset(eb, slot),
4732 (int)sizeof(root_item));
4733 if (btrfs_root_refs(&root_item) == 0)
4734 goto skip;
4735
4736 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4738 if (trans)
4739 goto update_tree;
4740
4741 btrfs_release_path(path);
4742 /*
4743 * 1 - subvol uuid item
4744 * 1 - received_subvol uuid item
4745 */
4746 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747 if (IS_ERR(trans)) {
4748 ret = PTR_ERR(trans);
4749 break;
4750 }
4751 continue;
4752 } else {
4753 goto skip;
4754 }
4755update_tree:
4756 btrfs_release_path(path);
4757 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759 BTRFS_UUID_KEY_SUBVOL,
4760 key.objectid);
4761 if (ret < 0) {
4762 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4763 ret);
4764 break;
4765 }
4766 }
4767
4768 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769 ret = btrfs_uuid_tree_add(trans,
4770 root_item.received_uuid,
4771 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4772 key.objectid);
4773 if (ret < 0) {
4774 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4775 ret);
4776 break;
4777 }
4778 }
4779
4780skip:
4781 btrfs_release_path(path);
4782 if (trans) {
4783 ret = btrfs_end_transaction(trans);
4784 trans = NULL;
4785 if (ret)
4786 break;
4787 }
4788
4789 if (key.offset < (u64)-1) {
4790 key.offset++;
4791 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4792 key.offset = 0;
4793 key.type = BTRFS_ROOT_ITEM_KEY;
4794 } else if (key.objectid < (u64)-1) {
4795 key.offset = 0;
4796 key.type = BTRFS_ROOT_ITEM_KEY;
4797 key.objectid++;
4798 } else {
4799 break;
4800 }
4801 cond_resched();
4802 }
4803
4804out:
4805 btrfs_free_path(path);
4806 if (trans && !IS_ERR(trans))
4807 btrfs_end_transaction(trans);
4808 if (ret)
4809 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4810 else if (!closing)
4811 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812 up(&fs_info->uuid_tree_rescan_sem);
4813 return 0;
4814}
4815
4816int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4817{
4818 struct btrfs_trans_handle *trans;
4819 struct btrfs_root *tree_root = fs_info->tree_root;
4820 struct btrfs_root *uuid_root;
4821 struct task_struct *task;
4822 int ret;
4823
4824 /*
4825 * 1 - root node
4826 * 1 - root item
4827 */
4828 trans = btrfs_start_transaction(tree_root, 2);
4829 if (IS_ERR(trans))
4830 return PTR_ERR(trans);
4831
4832 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833 if (IS_ERR(uuid_root)) {
4834 ret = PTR_ERR(uuid_root);
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans);
4837 return ret;
4838 }
4839
4840 fs_info->uuid_root = uuid_root;
4841
4842 ret = btrfs_commit_transaction(trans);
4843 if (ret)
4844 return ret;
4845
4846 down(&fs_info->uuid_tree_rescan_sem);
4847 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4848 if (IS_ERR(task)) {
4849 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850 btrfs_warn(fs_info, "failed to start uuid_scan task");
4851 up(&fs_info->uuid_tree_rescan_sem);
4852 return PTR_ERR(task);
4853 }
4854
4855 return 0;
4856}
4857
4858/*
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4862 */
4863int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4864{
4865 struct btrfs_fs_info *fs_info = device->fs_info;
4866 struct btrfs_root *root = fs_info->dev_root;
4867 struct btrfs_trans_handle *trans;
4868 struct btrfs_dev_extent *dev_extent = NULL;
4869 struct btrfs_path *path;
4870 u64 length;
4871 u64 chunk_offset;
4872 int ret;
4873 int slot;
4874 int failed = 0;
4875 bool retried = false;
4876 struct extent_buffer *l;
4877 struct btrfs_key key;
4878 struct btrfs_super_block *super_copy = fs_info->super_copy;
4879 u64 old_total = btrfs_super_total_bytes(super_copy);
4880 u64 old_size = btrfs_device_get_total_bytes(device);
4881 u64 diff;
4882 u64 start;
4883 u64 free_diff = 0;
4884
4885 new_size = round_down(new_size, fs_info->sectorsize);
4886 start = new_size;
4887 diff = round_down(old_size - new_size, fs_info->sectorsize);
4888
4889 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4890 return -EINVAL;
4891
4892 path = btrfs_alloc_path();
4893 if (!path)
4894 return -ENOMEM;
4895
4896 path->reada = READA_BACK;
4897
4898 trans = btrfs_start_transaction(root, 0);
4899 if (IS_ERR(trans)) {
4900 btrfs_free_path(path);
4901 return PTR_ERR(trans);
4902 }
4903
4904 mutex_lock(&fs_info->chunk_mutex);
4905
4906 btrfs_device_set_total_bytes(device, new_size);
4907 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908 device->fs_devices->total_rw_bytes -= diff;
4909
4910 /*
4911 * The new free_chunk_space is new_size - used, so we have to
4912 * subtract the delta of the old free_chunk_space which included
4913 * old_size - used. If used > new_size then just subtract this
4914 * entire device's free space.
4915 */
4916 if (device->bytes_used < new_size)
4917 free_diff = (old_size - device->bytes_used) -
4918 (new_size - device->bytes_used);
4919 else
4920 free_diff = old_size - device->bytes_used;
4921 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4922 }
4923
4924 /*
4925 * Once the device's size has been set to the new size, ensure all
4926 * in-memory chunks are synced to disk so that the loop below sees them
4927 * and relocates them accordingly.
4928 */
4929 if (contains_pending_extent(device, &start, diff)) {
4930 mutex_unlock(&fs_info->chunk_mutex);
4931 ret = btrfs_commit_transaction(trans);
4932 if (ret)
4933 goto done;
4934 } else {
4935 mutex_unlock(&fs_info->chunk_mutex);
4936 btrfs_end_transaction(trans);
4937 }
4938
4939again:
4940 key.objectid = device->devid;
4941 key.offset = (u64)-1;
4942 key.type = BTRFS_DEV_EXTENT_KEY;
4943
4944 do {
4945 mutex_lock(&fs_info->reclaim_bgs_lock);
4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947 if (ret < 0) {
4948 mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 goto done;
4950 }
4951
4952 ret = btrfs_previous_item(root, path, 0, key.type);
4953 if (ret) {
4954 mutex_unlock(&fs_info->reclaim_bgs_lock);
4955 if (ret < 0)
4956 goto done;
4957 ret = 0;
4958 btrfs_release_path(path);
4959 break;
4960 }
4961
4962 l = path->nodes[0];
4963 slot = path->slots[0];
4964 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4965
4966 if (key.objectid != device->devid) {
4967 mutex_unlock(&fs_info->reclaim_bgs_lock);
4968 btrfs_release_path(path);
4969 break;
4970 }
4971
4972 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973 length = btrfs_dev_extent_length(l, dev_extent);
4974
4975 if (key.offset + length <= new_size) {
4976 mutex_unlock(&fs_info->reclaim_bgs_lock);
4977 btrfs_release_path(path);
4978 break;
4979 }
4980
4981 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982 btrfs_release_path(path);
4983
4984 /*
4985 * We may be relocating the only data chunk we have,
4986 * which could potentially end up with losing data's
4987 * raid profile, so lets allocate an empty one in
4988 * advance.
4989 */
4990 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4991 if (ret < 0) {
4992 mutex_unlock(&fs_info->reclaim_bgs_lock);
4993 goto done;
4994 }
4995
4996 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 if (ret == -ENOSPC) {
4999 failed++;
5000 } else if (ret) {
5001 if (ret == -ETXTBSY) {
5002 btrfs_warn(fs_info,
5003 "could not shrink block group %llu due to active swapfile",
5004 chunk_offset);
5005 }
5006 goto done;
5007 }
5008 } while (key.offset-- > 0);
5009
5010 if (failed && !retried) {
5011 failed = 0;
5012 retried = true;
5013 goto again;
5014 } else if (failed && retried) {
5015 ret = -ENOSPC;
5016 goto done;
5017 }
5018
5019 /* Shrinking succeeded, else we would be at "done". */
5020 trans = btrfs_start_transaction(root, 0);
5021 if (IS_ERR(trans)) {
5022 ret = PTR_ERR(trans);
5023 goto done;
5024 }
5025
5026 mutex_lock(&fs_info->chunk_mutex);
5027 /* Clear all state bits beyond the shrunk device size */
5028 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5029 CHUNK_STATE_MASK);
5030
5031 btrfs_device_set_disk_total_bytes(device, new_size);
5032 if (list_empty(&device->post_commit_list))
5033 list_add_tail(&device->post_commit_list,
5034 &trans->transaction->dev_update_list);
5035
5036 WARN_ON(diff > old_total);
5037 btrfs_set_super_total_bytes(super_copy,
5038 round_down(old_total - diff, fs_info->sectorsize));
5039 mutex_unlock(&fs_info->chunk_mutex);
5040
5041 btrfs_reserve_chunk_metadata(trans, false);
5042 /* Now btrfs_update_device() will change the on-disk size. */
5043 ret = btrfs_update_device(trans, device);
5044 btrfs_trans_release_chunk_metadata(trans);
5045 if (ret < 0) {
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5048 } else {
5049 ret = btrfs_commit_transaction(trans);
5050 }
5051done:
5052 btrfs_free_path(path);
5053 if (ret) {
5054 mutex_lock(&fs_info->chunk_mutex);
5055 btrfs_device_set_total_bytes(device, old_size);
5056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057 device->fs_devices->total_rw_bytes += diff;
5058 atomic64_add(free_diff, &fs_info->free_chunk_space);
5059 }
5060 mutex_unlock(&fs_info->chunk_mutex);
5061 }
5062 return ret;
5063}
5064
5065static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066 struct btrfs_key *key,
5067 struct btrfs_chunk *chunk, int item_size)
5068{
5069 struct btrfs_super_block *super_copy = fs_info->super_copy;
5070 struct btrfs_disk_key disk_key;
5071 u32 array_size;
5072 u8 *ptr;
5073
5074 lockdep_assert_held(&fs_info->chunk_mutex);
5075
5076 array_size = btrfs_super_sys_array_size(super_copy);
5077 if (array_size + item_size + sizeof(disk_key)
5078 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5079 return -EFBIG;
5080
5081 ptr = super_copy->sys_chunk_array + array_size;
5082 btrfs_cpu_key_to_disk(&disk_key, key);
5083 memcpy(ptr, &disk_key, sizeof(disk_key));
5084 ptr += sizeof(disk_key);
5085 memcpy(ptr, chunk, item_size);
5086 item_size += sizeof(disk_key);
5087 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5088
5089 return 0;
5090}
5091
5092/*
5093 * sort the devices in descending order by max_avail, total_avail
5094 */
5095static int btrfs_cmp_device_info(const void *a, const void *b)
5096{
5097 const struct btrfs_device_info *di_a = a;
5098 const struct btrfs_device_info *di_b = b;
5099
5100 if (di_a->max_avail > di_b->max_avail)
5101 return -1;
5102 if (di_a->max_avail < di_b->max_avail)
5103 return 1;
5104 if (di_a->total_avail > di_b->total_avail)
5105 return -1;
5106 if (di_a->total_avail < di_b->total_avail)
5107 return 1;
5108 return 0;
5109}
5110
5111static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5112{
5113 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5114 return;
5115
5116 btrfs_set_fs_incompat(info, RAID56);
5117}
5118
5119static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5120{
5121 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5122 return;
5123
5124 btrfs_set_fs_incompat(info, RAID1C34);
5125}
5126
5127/*
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5130 */
5131struct alloc_chunk_ctl {
5132 u64 start;
5133 u64 type;
5134 /* Total number of stripes to allocate */
5135 int num_stripes;
5136 /* sub_stripes info for map */
5137 int sub_stripes;
5138 /* Stripes per device */
5139 int dev_stripes;
5140 /* Maximum number of devices to use */
5141 int devs_max;
5142 /* Minimum number of devices to use */
5143 int devs_min;
5144 /* ndevs has to be a multiple of this */
5145 int devs_increment;
5146 /* Number of copies */
5147 int ncopies;
5148 /* Number of stripes worth of bytes to store parity information */
5149 int nparity;
5150 u64 max_stripe_size;
5151 u64 max_chunk_size;
5152 u64 dev_extent_min;
5153 u64 stripe_size;
5154 u64 chunk_size;
5155 int ndevs;
5156};
5157
5158static void init_alloc_chunk_ctl_policy_regular(
5159 struct btrfs_fs_devices *fs_devices,
5160 struct alloc_chunk_ctl *ctl)
5161{
5162 struct btrfs_space_info *space_info;
5163
5164 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5165 ASSERT(space_info);
5166
5167 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5169
5170 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5172
5173 /* We don't want a chunk larger than 10% of writable space */
5174 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175 ctl->max_chunk_size);
5176 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5177}
5178
5179static void init_alloc_chunk_ctl_policy_zoned(
5180 struct btrfs_fs_devices *fs_devices,
5181 struct alloc_chunk_ctl *ctl)
5182{
5183 u64 zone_size = fs_devices->fs_info->zone_size;
5184 u64 limit;
5185 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187 u64 min_chunk_size = min_data_stripes * zone_size;
5188 u64 type = ctl->type;
5189
5190 ctl->max_stripe_size = zone_size;
5191 if (type & BTRFS_BLOCK_GROUP_DATA) {
5192 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5193 zone_size);
5194 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195 ctl->max_chunk_size = ctl->max_stripe_size;
5196 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198 ctl->devs_max = min_t(int, ctl->devs_max,
5199 BTRFS_MAX_DEVS_SYS_CHUNK);
5200 } else {
5201 BUG();
5202 }
5203
5204 /* We don't want a chunk larger than 10% of writable space */
5205 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5206 zone_size),
5207 min_chunk_size);
5208 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5210}
5211
5212static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5214{
5215 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5216
5217 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219 ctl->devs_max = btrfs_raid_array[index].devs_max;
5220 if (!ctl->devs_max)
5221 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222 ctl->devs_min = btrfs_raid_array[index].devs_min;
5223 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224 ctl->ncopies = btrfs_raid_array[index].ncopies;
5225 ctl->nparity = btrfs_raid_array[index].nparity;
5226 ctl->ndevs = 0;
5227
5228 switch (fs_devices->chunk_alloc_policy) {
5229 case BTRFS_CHUNK_ALLOC_REGULAR:
5230 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5231 break;
5232 case BTRFS_CHUNK_ALLOC_ZONED:
5233 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5234 break;
5235 default:
5236 BUG();
5237 }
5238}
5239
5240static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241 struct alloc_chunk_ctl *ctl,
5242 struct btrfs_device_info *devices_info)
5243{
5244 struct btrfs_fs_info *info = fs_devices->fs_info;
5245 struct btrfs_device *device;
5246 u64 total_avail;
5247 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5248 int ret;
5249 int ndevs = 0;
5250 u64 max_avail;
5251 u64 dev_offset;
5252
5253 /*
5254 * in the first pass through the devices list, we gather information
5255 * about the available holes on each device.
5256 */
5257 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5259 WARN(1, KERN_ERR
5260 "BTRFS: read-only device in alloc_list\n");
5261 continue;
5262 }
5263
5264 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265 &device->dev_state) ||
5266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5267 continue;
5268
5269 if (device->total_bytes > device->bytes_used)
5270 total_avail = device->total_bytes - device->bytes_used;
5271 else
5272 total_avail = 0;
5273
5274 /* If there is no space on this device, skip it. */
5275 if (total_avail < ctl->dev_extent_min)
5276 continue;
5277
5278 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5279 &max_avail);
5280 if (ret && ret != -ENOSPC)
5281 return ret;
5282
5283 if (ret == 0)
5284 max_avail = dev_extent_want;
5285
5286 if (max_avail < ctl->dev_extent_min) {
5287 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5288 btrfs_debug(info,
5289 "%s: devid %llu has no free space, have=%llu want=%llu",
5290 __func__, device->devid, max_avail,
5291 ctl->dev_extent_min);
5292 continue;
5293 }
5294
5295 if (ndevs == fs_devices->rw_devices) {
5296 WARN(1, "%s: found more than %llu devices\n",
5297 __func__, fs_devices->rw_devices);
5298 break;
5299 }
5300 devices_info[ndevs].dev_offset = dev_offset;
5301 devices_info[ndevs].max_avail = max_avail;
5302 devices_info[ndevs].total_avail = total_avail;
5303 devices_info[ndevs].dev = device;
5304 ++ndevs;
5305 }
5306 ctl->ndevs = ndevs;
5307
5308 /*
5309 * now sort the devices by hole size / available space
5310 */
5311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312 btrfs_cmp_device_info, NULL);
5313
5314 return 0;
5315}
5316
5317static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318 struct btrfs_device_info *devices_info)
5319{
5320 /* Number of stripes that count for block group size */
5321 int data_stripes;
5322
5323 /*
5324 * The primary goal is to maximize the number of stripes, so use as
5325 * many devices as possible, even if the stripes are not maximum sized.
5326 *
5327 * The DUP profile stores more than one stripe per device, the
5328 * max_avail is the total size so we have to adjust.
5329 */
5330 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5331 ctl->dev_stripes);
5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333
5334 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5335 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336
5337 /*
5338 * Use the number of data stripes to figure out how big this chunk is
5339 * really going to be in terms of logical address space, and compare
5340 * that answer with the max chunk size. If it's higher, we try to
5341 * reduce stripe_size.
5342 */
5343 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5344 /*
5345 * Reduce stripe_size, round it up to a 16MB boundary again and
5346 * then use it, unless it ends up being even bigger than the
5347 * previous value we had already.
5348 */
5349 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350 data_stripes), SZ_16M),
5351 ctl->stripe_size);
5352 }
5353
5354 /* Stripe size should not go beyond 1G. */
5355 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5356
5357 /* Align to BTRFS_STRIPE_LEN */
5358 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359 ctl->chunk_size = ctl->stripe_size * data_stripes;
5360
5361 return 0;
5362}
5363
5364static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365 struct btrfs_device_info *devices_info)
5366{
5367 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368 /* Number of stripes that count for block group size */
5369 int data_stripes;
5370
5371 /*
5372 * It should hold because:
5373 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5374 */
5375 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5376
5377 ctl->stripe_size = zone_size;
5378 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5380
5381 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384 ctl->stripe_size) + ctl->nparity,
5385 ctl->dev_stripes);
5386 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5389 }
5390
5391 ctl->chunk_size = ctl->stripe_size * data_stripes;
5392
5393 return 0;
5394}
5395
5396static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397 struct alloc_chunk_ctl *ctl,
5398 struct btrfs_device_info *devices_info)
5399{
5400 struct btrfs_fs_info *info = fs_devices->fs_info;
5401
5402 /*
5403 * Round down to number of usable stripes, devs_increment can be any
5404 * number so we can't use round_down() that requires power of 2, while
5405 * rounddown is safe.
5406 */
5407 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5408
5409 if (ctl->ndevs < ctl->devs_min) {
5410 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5411 btrfs_debug(info,
5412 "%s: not enough devices with free space: have=%d minimum required=%d",
5413 __func__, ctl->ndevs, ctl->devs_min);
5414 }
5415 return -ENOSPC;
5416 }
5417
5418 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5419
5420 switch (fs_devices->chunk_alloc_policy) {
5421 case BTRFS_CHUNK_ALLOC_REGULAR:
5422 return decide_stripe_size_regular(ctl, devices_info);
5423 case BTRFS_CHUNK_ALLOC_ZONED:
5424 return decide_stripe_size_zoned(ctl, devices_info);
5425 default:
5426 BUG();
5427 }
5428}
5429
5430static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5431{
5432 for (int i = 0; i < map->num_stripes; i++) {
5433 struct btrfs_io_stripe *stripe = &map->stripes[i];
5434 struct btrfs_device *device = stripe->dev;
5435
5436 set_extent_bit(&device->alloc_state, stripe->physical,
5437 stripe->physical + map->stripe_size - 1,
5438 bits | EXTENT_NOWAIT, NULL);
5439 }
5440}
5441
5442static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5443{
5444 for (int i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_io_stripe *stripe = &map->stripes[i];
5446 struct btrfs_device *device = stripe->dev;
5447
5448 __clear_extent_bit(&device->alloc_state, stripe->physical,
5449 stripe->physical + map->stripe_size - 1,
5450 bits | EXTENT_NOWAIT,
5451 NULL, NULL);
5452 }
5453}
5454
5455void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5456{
5457 write_lock(&fs_info->mapping_tree_lock);
5458 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459 RB_CLEAR_NODE(&map->rb_node);
5460 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461 write_unlock(&fs_info->mapping_tree_lock);
5462
5463 /* Once for the tree reference. */
5464 btrfs_free_chunk_map(map);
5465}
5466
5467EXPORT_FOR_TESTS
5468int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5469{
5470 struct rb_node **p;
5471 struct rb_node *parent = NULL;
5472 bool leftmost = true;
5473
5474 write_lock(&fs_info->mapping_tree_lock);
5475 p = &fs_info->mapping_tree.rb_root.rb_node;
5476 while (*p) {
5477 struct btrfs_chunk_map *entry;
5478
5479 parent = *p;
5480 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5481
5482 if (map->start < entry->start) {
5483 p = &(*p)->rb_left;
5484 } else if (map->start > entry->start) {
5485 p = &(*p)->rb_right;
5486 leftmost = false;
5487 } else {
5488 write_unlock(&fs_info->mapping_tree_lock);
5489 return -EEXIST;
5490 }
5491 }
5492 rb_link_node(&map->rb_node, parent, p);
5493 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496 write_unlock(&fs_info->mapping_tree_lock);
5497
5498 return 0;
5499}
5500
5501EXPORT_FOR_TESTS
5502struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5503{
5504 struct btrfs_chunk_map *map;
5505
5506 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5507 if (!map)
5508 return NULL;
5509
5510 refcount_set(&map->refs, 1);
5511 RB_CLEAR_NODE(&map->rb_node);
5512
5513 return map;
5514}
5515
5516struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5517{
5518 const int size = btrfs_chunk_map_size(map->num_stripes);
5519 struct btrfs_chunk_map *clone;
5520
5521 clone = kmemdup(map, size, gfp);
5522 if (!clone)
5523 return NULL;
5524
5525 refcount_set(&clone->refs, 1);
5526 RB_CLEAR_NODE(&clone->rb_node);
5527
5528 return clone;
5529}
5530
5531static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532 struct alloc_chunk_ctl *ctl,
5533 struct btrfs_device_info *devices_info)
5534{
5535 struct btrfs_fs_info *info = trans->fs_info;
5536 struct btrfs_chunk_map *map;
5537 struct btrfs_block_group *block_group;
5538 u64 start = ctl->start;
5539 u64 type = ctl->type;
5540 int ret;
5541 int i;
5542 int j;
5543
5544 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5545 if (!map)
5546 return ERR_PTR(-ENOMEM);
5547
5548 map->start = start;
5549 map->chunk_len = ctl->chunk_size;
5550 map->stripe_size = ctl->stripe_size;
5551 map->type = type;
5552 map->io_align = BTRFS_STRIPE_LEN;
5553 map->io_width = BTRFS_STRIPE_LEN;
5554 map->sub_stripes = ctl->sub_stripes;
5555 map->num_stripes = ctl->num_stripes;
5556
5557 for (i = 0; i < ctl->ndevs; ++i) {
5558 for (j = 0; j < ctl->dev_stripes; ++j) {
5559 int s = i * ctl->dev_stripes + j;
5560 map->stripes[s].dev = devices_info[i].dev;
5561 map->stripes[s].physical = devices_info[i].dev_offset +
5562 j * ctl->stripe_size;
5563 }
5564 }
5565
5566 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5567
5568 ret = btrfs_add_chunk_map(info, map);
5569 if (ret) {
5570 btrfs_free_chunk_map(map);
5571 return ERR_PTR(ret);
5572 }
5573
5574 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575 if (IS_ERR(block_group)) {
5576 btrfs_remove_chunk_map(info, map);
5577 return block_group;
5578 }
5579
5580 for (int i = 0; i < map->num_stripes; i++) {
5581 struct btrfs_device *dev = map->stripes[i].dev;
5582
5583 btrfs_device_set_bytes_used(dev,
5584 dev->bytes_used + ctl->stripe_size);
5585 if (list_empty(&dev->post_commit_list))
5586 list_add_tail(&dev->post_commit_list,
5587 &trans->transaction->dev_update_list);
5588 }
5589
5590 atomic64_sub(ctl->stripe_size * map->num_stripes,
5591 &info->free_chunk_space);
5592
5593 check_raid56_incompat_flag(info, type);
5594 check_raid1c34_incompat_flag(info, type);
5595
5596 return block_group;
5597}
5598
5599struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5600 u64 type)
5601{
5602 struct btrfs_fs_info *info = trans->fs_info;
5603 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604 struct btrfs_device_info *devices_info = NULL;
5605 struct alloc_chunk_ctl ctl;
5606 struct btrfs_block_group *block_group;
5607 int ret;
5608
5609 lockdep_assert_held(&info->chunk_mutex);
5610
5611 if (!alloc_profile_is_valid(type, 0)) {
5612 ASSERT(0);
5613 return ERR_PTR(-EINVAL);
5614 }
5615
5616 if (list_empty(&fs_devices->alloc_list)) {
5617 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618 btrfs_debug(info, "%s: no writable device", __func__);
5619 return ERR_PTR(-ENOSPC);
5620 }
5621
5622 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5624 ASSERT(0);
5625 return ERR_PTR(-EINVAL);
5626 }
5627
5628 ctl.start = find_next_chunk(info);
5629 ctl.type = type;
5630 init_alloc_chunk_ctl(fs_devices, &ctl);
5631
5632 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5633 GFP_NOFS);
5634 if (!devices_info)
5635 return ERR_PTR(-ENOMEM);
5636
5637 ret = gather_device_info(fs_devices, &ctl, devices_info);
5638 if (ret < 0) {
5639 block_group = ERR_PTR(ret);
5640 goto out;
5641 }
5642
5643 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5644 if (ret < 0) {
5645 block_group = ERR_PTR(ret);
5646 goto out;
5647 }
5648
5649 block_group = create_chunk(trans, &ctl, devices_info);
5650
5651out:
5652 kfree(devices_info);
5653 return block_group;
5654}
5655
5656/*
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5659 * chunks.
5660 *
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5662 * phases.
5663 */
5664int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665 struct btrfs_block_group *bg)
5666{
5667 struct btrfs_fs_info *fs_info = trans->fs_info;
5668 struct btrfs_root *chunk_root = fs_info->chunk_root;
5669 struct btrfs_key key;
5670 struct btrfs_chunk *chunk;
5671 struct btrfs_stripe *stripe;
5672 struct btrfs_chunk_map *map;
5673 size_t item_size;
5674 int i;
5675 int ret;
5676
5677 /*
5678 * We take the chunk_mutex for 2 reasons:
5679 *
5680 * 1) Updates and insertions in the chunk btree must be done while holding
5681 * the chunk_mutex, as well as updating the system chunk array in the
5682 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5683 * details;
5684 *
5685 * 2) To prevent races with the final phase of a device replace operation
5686 * that replaces the device object associated with the map's stripes,
5687 * because the device object's id can change at any time during that
5688 * final phase of the device replace operation
5689 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691 * which would cause a failure when updating the device item, which does
5692 * not exists, or persisting a stripe of the chunk item with such ID.
5693 * Here we can't use the device_list_mutex because our caller already
5694 * has locked the chunk_mutex, and the final phase of device replace
5695 * acquires both mutexes - first the device_list_mutex and then the
5696 * chunk_mutex. Using any of those two mutexes protects us from a
5697 * concurrent device replace.
5698 */
5699 lockdep_assert_held(&fs_info->chunk_mutex);
5700
5701 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5702 if (IS_ERR(map)) {
5703 ret = PTR_ERR(map);
5704 btrfs_abort_transaction(trans, ret);
5705 return ret;
5706 }
5707
5708 item_size = btrfs_chunk_item_size(map->num_stripes);
5709
5710 chunk = kzalloc(item_size, GFP_NOFS);
5711 if (!chunk) {
5712 ret = -ENOMEM;
5713 btrfs_abort_transaction(trans, ret);
5714 goto out;
5715 }
5716
5717 for (i = 0; i < map->num_stripes; i++) {
5718 struct btrfs_device *device = map->stripes[i].dev;
5719
5720 ret = btrfs_update_device(trans, device);
5721 if (ret)
5722 goto out;
5723 }
5724
5725 stripe = &chunk->stripe;
5726 for (i = 0; i < map->num_stripes; i++) {
5727 struct btrfs_device *device = map->stripes[i].dev;
5728 const u64 dev_offset = map->stripes[i].physical;
5729
5730 btrfs_set_stack_stripe_devid(stripe, device->devid);
5731 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5733 stripe++;
5734 }
5735
5736 btrfs_set_stack_chunk_length(chunk, bg->length);
5737 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739 btrfs_set_stack_chunk_type(chunk, map->type);
5740 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5745
5746 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747 key.type = BTRFS_CHUNK_ITEM_KEY;
5748 key.offset = bg->start;
5749
5750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5751 if (ret)
5752 goto out;
5753
5754 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5755
5756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5758 if (ret)
5759 goto out;
5760 }
5761
5762out:
5763 kfree(chunk);
5764 btrfs_free_chunk_map(map);
5765 return ret;
5766}
5767
5768static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5769{
5770 struct btrfs_fs_info *fs_info = trans->fs_info;
5771 u64 alloc_profile;
5772 struct btrfs_block_group *meta_bg;
5773 struct btrfs_block_group *sys_bg;
5774
5775 /*
5776 * When adding a new device for sprouting, the seed device is read-only
5777 * so we must first allocate a metadata and a system chunk. But before
5778 * adding the block group items to the extent, device and chunk btrees,
5779 * we must first:
5780 *
5781 * 1) Create both chunks without doing any changes to the btrees, as
5782 * otherwise we would get -ENOSPC since the block groups from the
5783 * seed device are read-only;
5784 *
5785 * 2) Add the device item for the new sprout device - finishing the setup
5786 * of a new block group requires updating the device item in the chunk
5787 * btree, so it must exist when we attempt to do it. The previous step
5788 * ensures this does not fail with -ENOSPC.
5789 *
5790 * After that we can add the block group items to their btrees:
5791 * update existing device item in the chunk btree, add a new block group
5792 * item to the extent btree, add a new chunk item to the chunk btree and
5793 * finally add the new device extent items to the devices btree.
5794 */
5795
5796 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798 if (IS_ERR(meta_bg))
5799 return PTR_ERR(meta_bg);
5800
5801 alloc_profile = btrfs_system_alloc_profile(fs_info);
5802 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5803 if (IS_ERR(sys_bg))
5804 return PTR_ERR(sys_bg);
5805
5806 return 0;
5807}
5808
5809static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5810{
5811 const int index = btrfs_bg_flags_to_raid_index(map->type);
5812
5813 return btrfs_raid_array[index].tolerated_failures;
5814}
5815
5816bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817{
5818 struct btrfs_chunk_map *map;
5819 int miss_ndevs = 0;
5820 int i;
5821 bool ret = true;
5822
5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824 if (IS_ERR(map))
5825 return false;
5826
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (test_bit(BTRFS_DEV_STATE_MISSING,
5829 &map->stripes[i].dev->dev_state)) {
5830 miss_ndevs++;
5831 continue;
5832 }
5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834 &map->stripes[i].dev->dev_state)) {
5835 ret = false;
5836 goto end;
5837 }
5838 }
5839
5840 /*
5841 * If the number of missing devices is larger than max errors, we can
5842 * not write the data into that chunk successfully.
5843 */
5844 if (miss_ndevs > btrfs_chunk_max_errors(map))
5845 ret = false;
5846end:
5847 btrfs_free_chunk_map(map);
5848 return ret;
5849}
5850
5851void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852{
5853 write_lock(&fs_info->mapping_tree_lock);
5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855 struct btrfs_chunk_map *map;
5856 struct rb_node *node;
5857
5858 node = rb_first_cached(&fs_info->mapping_tree);
5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861 RB_CLEAR_NODE(&map->rb_node);
5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863 /* Once for the tree ref. */
5864 btrfs_free_chunk_map(map);
5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866 }
5867 write_unlock(&fs_info->mapping_tree_lock);
5868}
5869
5870int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5871{
5872 struct btrfs_chunk_map *map;
5873 enum btrfs_raid_types index;
5874 int ret = 1;
5875
5876 map = btrfs_get_chunk_map(fs_info, logical, len);
5877 if (IS_ERR(map))
5878 /*
5879 * We could return errors for these cases, but that could get
5880 * ugly and we'd probably do the same thing which is just not do
5881 * anything else and exit, so return 1 so the callers don't try
5882 * to use other copies.
5883 */
5884 return 1;
5885
5886 index = btrfs_bg_flags_to_raid_index(map->type);
5887
5888 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890 ret = btrfs_raid_array[index].ncopies;
5891 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5892 ret = 2;
5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5894 /*
5895 * There could be two corrupted data stripes, we need
5896 * to loop retry in order to rebuild the correct data.
5897 *
5898 * Fail a stripe at a time on every retry except the
5899 * stripe under reconstruction.
5900 */
5901 ret = map->num_stripes;
5902 btrfs_free_chunk_map(map);
5903 return ret;
5904}
5905
5906unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5907 u64 logical)
5908{
5909 struct btrfs_chunk_map *map;
5910 unsigned long len = fs_info->sectorsize;
5911
5912 if (!btrfs_fs_incompat(fs_info, RAID56))
5913 return len;
5914
5915 map = btrfs_get_chunk_map(fs_info, logical, len);
5916
5917 if (!WARN_ON(IS_ERR(map))) {
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920 btrfs_free_chunk_map(map);
5921 }
5922 return len;
5923}
5924
5925int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5926{
5927 struct btrfs_chunk_map *map;
5928 int ret = 0;
5929
5930 if (!btrfs_fs_incompat(fs_info, RAID56))
5931 return 0;
5932
5933 map = btrfs_get_chunk_map(fs_info, logical, len);
5934
5935 if (!WARN_ON(IS_ERR(map))) {
5936 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5937 ret = 1;
5938 btrfs_free_chunk_map(map);
5939 }
5940 return ret;
5941}
5942
5943static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944 struct btrfs_chunk_map *map, int first,
5945 int dev_replace_is_ongoing)
5946{
5947 int i;
5948 int num_stripes;
5949 int preferred_mirror;
5950 int tolerance;
5951 struct btrfs_device *srcdev;
5952
5953 ASSERT((map->type &
5954 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5955
5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957 num_stripes = map->sub_stripes;
5958 else
5959 num_stripes = map->num_stripes;
5960
5961 switch (fs_info->fs_devices->read_policy) {
5962 default:
5963 /* Shouldn't happen, just warn and use pid instead of failing */
5964 btrfs_warn_rl(fs_info,
5965 "unknown read_policy type %u, reset to pid",
5966 fs_info->fs_devices->read_policy);
5967 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5968 fallthrough;
5969 case BTRFS_READ_POLICY_PID:
5970 preferred_mirror = first + (current->pid % num_stripes);
5971 break;
5972 }
5973
5974 if (dev_replace_is_ongoing &&
5975 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977 srcdev = fs_info->dev_replace.srcdev;
5978 else
5979 srcdev = NULL;
5980
5981 /*
5982 * try to avoid the drive that is the source drive for a
5983 * dev-replace procedure, only choose it if no other non-missing
5984 * mirror is available
5985 */
5986 for (tolerance = 0; tolerance < 2; tolerance++) {
5987 if (map->stripes[preferred_mirror].dev->bdev &&
5988 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989 return preferred_mirror;
5990 for (i = first; i < first + num_stripes; i++) {
5991 if (map->stripes[i].dev->bdev &&
5992 (tolerance || map->stripes[i].dev != srcdev))
5993 return i;
5994 }
5995 }
5996
5997 /* we couldn't find one that doesn't fail. Just return something
5998 * and the io error handling code will clean up eventually
5999 */
6000 return preferred_mirror;
6001}
6002
6003static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6004 u64 logical,
6005 u16 total_stripes)
6006{
6007 struct btrfs_io_context *bioc;
6008
6009 bioc = kzalloc(
6010 /* The size of btrfs_io_context */
6011 sizeof(struct btrfs_io_context) +
6012 /* Plus the variable array for the stripes */
6013 sizeof(struct btrfs_io_stripe) * (total_stripes),
6014 GFP_NOFS);
6015
6016 if (!bioc)
6017 return NULL;
6018
6019 refcount_set(&bioc->refs, 1);
6020
6021 bioc->fs_info = fs_info;
6022 bioc->replace_stripe_src = -1;
6023 bioc->full_stripe_logical = (u64)-1;
6024 bioc->logical = logical;
6025
6026 return bioc;
6027}
6028
6029void btrfs_get_bioc(struct btrfs_io_context *bioc)
6030{
6031 WARN_ON(!refcount_read(&bioc->refs));
6032 refcount_inc(&bioc->refs);
6033}
6034
6035void btrfs_put_bioc(struct btrfs_io_context *bioc)
6036{
6037 if (!bioc)
6038 return;
6039 if (refcount_dec_and_test(&bioc->refs))
6040 kfree(bioc);
6041}
6042
6043/*
6044 * Please note that, discard won't be sent to target device of device
6045 * replace.
6046 */
6047struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048 u64 logical, u64 *length_ret,
6049 u32 *num_stripes)
6050{
6051 struct btrfs_chunk_map *map;
6052 struct btrfs_discard_stripe *stripes;
6053 u64 length = *length_ret;
6054 u64 offset;
6055 u32 stripe_nr;
6056 u32 stripe_nr_end;
6057 u32 stripe_cnt;
6058 u64 stripe_end_offset;
6059 u64 stripe_offset;
6060 u32 stripe_index;
6061 u32 factor = 0;
6062 u32 sub_stripes = 0;
6063 u32 stripes_per_dev = 0;
6064 u32 remaining_stripes = 0;
6065 u32 last_stripe = 0;
6066 int ret;
6067 int i;
6068
6069 map = btrfs_get_chunk_map(fs_info, logical, length);
6070 if (IS_ERR(map))
6071 return ERR_CAST(map);
6072
6073 /* we don't discard raid56 yet */
6074 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075 ret = -EOPNOTSUPP;
6076 goto out_free_map;
6077 }
6078
6079 offset = logical - map->start;
6080 length = min_t(u64, map->start + map->chunk_len - logical, length);
6081 *length_ret = length;
6082
6083 /*
6084 * stripe_nr counts the total number of stripes we have to stride
6085 * to get to this block
6086 */
6087 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6088
6089 /* stripe_offset is the offset of this block in its stripe */
6090 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6091
6092 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093 BTRFS_STRIPE_LEN_SHIFT;
6094 stripe_cnt = stripe_nr_end - stripe_nr;
6095 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6096 (offset + length);
6097 /*
6098 * after this, stripe_nr is the number of stripes on this
6099 * device we have to walk to find the data, and stripe_index is
6100 * the number of our device in the stripe array
6101 */
6102 *num_stripes = 1;
6103 stripe_index = 0;
6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105 BTRFS_BLOCK_GROUP_RAID10)) {
6106 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6107 sub_stripes = 1;
6108 else
6109 sub_stripes = map->sub_stripes;
6110
6111 factor = map->num_stripes / sub_stripes;
6112 *num_stripes = min_t(u64, map->num_stripes,
6113 sub_stripes * stripe_cnt);
6114 stripe_index = stripe_nr % factor;
6115 stripe_nr /= factor;
6116 stripe_index *= sub_stripes;
6117
6118 remaining_stripes = stripe_cnt % factor;
6119 stripes_per_dev = stripe_cnt / factor;
6120 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122 BTRFS_BLOCK_GROUP_DUP)) {
6123 *num_stripes = map->num_stripes;
6124 } else {
6125 stripe_index = stripe_nr % map->num_stripes;
6126 stripe_nr /= map->num_stripes;
6127 }
6128
6129 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6130 if (!stripes) {
6131 ret = -ENOMEM;
6132 goto out_free_map;
6133 }
6134
6135 for (i = 0; i < *num_stripes; i++) {
6136 stripes[i].physical =
6137 map->stripes[stripe_index].physical +
6138 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139 stripes[i].dev = map->stripes[stripe_index].dev;
6140
6141 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142 BTRFS_BLOCK_GROUP_RAID10)) {
6143 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6144
6145 if (i / sub_stripes < remaining_stripes)
6146 stripes[i].length += BTRFS_STRIPE_LEN;
6147
6148 /*
6149 * Special for the first stripe and
6150 * the last stripe:
6151 *
6152 * |-------|...|-------|
6153 * |----------|
6154 * off end_off
6155 */
6156 if (i < sub_stripes)
6157 stripes[i].length -= stripe_offset;
6158
6159 if (stripe_index >= last_stripe &&
6160 stripe_index <= (last_stripe +
6161 sub_stripes - 1))
6162 stripes[i].length -= stripe_end_offset;
6163
6164 if (i == sub_stripes - 1)
6165 stripe_offset = 0;
6166 } else {
6167 stripes[i].length = length;
6168 }
6169
6170 stripe_index++;
6171 if (stripe_index == map->num_stripes) {
6172 stripe_index = 0;
6173 stripe_nr++;
6174 }
6175 }
6176
6177 btrfs_free_chunk_map(map);
6178 return stripes;
6179out_free_map:
6180 btrfs_free_chunk_map(map);
6181 return ERR_PTR(ret);
6182}
6183
6184static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6185{
6186 struct btrfs_block_group *cache;
6187 bool ret;
6188
6189 /* Non zoned filesystem does not use "to_copy" flag */
6190 if (!btrfs_is_zoned(fs_info))
6191 return false;
6192
6193 cache = btrfs_lookup_block_group(fs_info, logical);
6194
6195 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6196
6197 btrfs_put_block_group(cache);
6198 return ret;
6199}
6200
6201static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202 struct btrfs_io_context *bioc,
6203 struct btrfs_dev_replace *dev_replace,
6204 u64 logical,
6205 int *num_stripes_ret, int *max_errors_ret)
6206{
6207 u64 srcdev_devid = dev_replace->srcdev->devid;
6208 /*
6209 * At this stage, num_stripes is still the real number of stripes,
6210 * excluding the duplicated stripes.
6211 */
6212 int num_stripes = *num_stripes_ret;
6213 int nr_extra_stripes = 0;
6214 int max_errors = *max_errors_ret;
6215 int i;
6216
6217 /*
6218 * A block group which has "to_copy" set will eventually be copied by
6219 * the dev-replace process. We can avoid cloning IO here.
6220 */
6221 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6222 return;
6223
6224 /*
6225 * Duplicate the write operations while the dev-replace procedure is
6226 * running. Since the copying of the old disk to the new disk takes
6227 * place at run time while the filesystem is mounted writable, the
6228 * regular write operations to the old disk have to be duplicated to go
6229 * to the new disk as well.
6230 *
6231 * Note that device->missing is handled by the caller, and that the
6232 * write to the old disk is already set up in the stripes array.
6233 */
6234 for (i = 0; i < num_stripes; i++) {
6235 struct btrfs_io_stripe *old = &bioc->stripes[i];
6236 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6237
6238 if (old->dev->devid != srcdev_devid)
6239 continue;
6240
6241 new->physical = old->physical;
6242 new->dev = dev_replace->tgtdev;
6243 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244 bioc->replace_stripe_src = i;
6245 nr_extra_stripes++;
6246 }
6247
6248 /* We can only have at most 2 extra nr_stripes (for DUP). */
6249 ASSERT(nr_extra_stripes <= 2);
6250 /*
6251 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6252 * replace.
6253 * If we have 2 extra stripes, only choose the one with smaller physical.
6254 */
6255 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6258
6259 /* Only DUP can have two extra stripes. */
6260 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6261
6262 /*
6263 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264 * The extra stripe would still be there, but won't be accessed.
6265 */
6266 if (first->physical > second->physical) {
6267 swap(second->physical, first->physical);
6268 swap(second->dev, first->dev);
6269 nr_extra_stripes--;
6270 }
6271 }
6272
6273 *num_stripes_ret = num_stripes + nr_extra_stripes;
6274 *max_errors_ret = max_errors + nr_extra_stripes;
6275 bioc->replace_nr_stripes = nr_extra_stripes;
6276}
6277
6278static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279 struct btrfs_io_geometry *io_geom)
6280{
6281 /*
6282 * Stripe_nr is the stripe where this block falls. stripe_offset is
6283 * the offset of this block in its stripe.
6284 */
6285 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287 ASSERT(io_geom->stripe_offset < U32_MAX);
6288
6289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290 unsigned long full_stripe_len =
6291 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6292
6293 /*
6294 * For full stripe start, we use previously calculated
6295 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6296 * STRIPE_LEN.
6297 *
6298 * By this we can avoid u64 division completely. And we have
6299 * to go rounddown(), not round_down(), as nr_data_stripes is
6300 * not ensured to be power of 2.
6301 */
6302 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6304
6305 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6307 /*
6308 * For writes to RAID56, allow to write a full stripe set, but
6309 * no straddling of stripe sets.
6310 */
6311 if (io_geom->op == BTRFS_MAP_WRITE)
6312 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6313 }
6314
6315 /*
6316 * For other RAID types and for RAID56 reads, allow a single stripe (on
6317 * a single disk).
6318 */
6319 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6321 return U64_MAX;
6322}
6323
6324static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325 u64 *length, struct btrfs_io_stripe *dst,
6326 struct btrfs_chunk_map *map,
6327 struct btrfs_io_geometry *io_geom)
6328{
6329 dst->dev = map->stripes[io_geom->stripe_index].dev;
6330
6331 if (io_geom->op == BTRFS_MAP_READ &&
6332 btrfs_need_stripe_tree_update(fs_info, map->type))
6333 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6334 map->type,
6335 io_geom->stripe_index, dst);
6336
6337 dst->physical = map->stripes[io_geom->stripe_index].physical +
6338 io_geom->stripe_offset +
6339 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6340 return 0;
6341}
6342
6343static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344 const struct btrfs_io_stripe *smap,
6345 const struct btrfs_chunk_map *map,
6346 int num_alloc_stripes,
6347 enum btrfs_map_op op, int mirror_num)
6348{
6349 if (!smap)
6350 return false;
6351
6352 if (num_alloc_stripes != 1)
6353 return false;
6354
6355 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6356 return false;
6357
6358 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6359 return false;
6360
6361 return true;
6362}
6363
6364static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365 struct btrfs_io_geometry *io_geom)
6366{
6367 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368 io_geom->stripe_nr /= map->num_stripes;
6369 if (io_geom->op == BTRFS_MAP_READ)
6370 io_geom->mirror_num = 1;
6371}
6372
6373static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374 struct btrfs_chunk_map *map,
6375 struct btrfs_io_geometry *io_geom,
6376 bool dev_replace_is_ongoing)
6377{
6378 if (io_geom->op != BTRFS_MAP_READ) {
6379 io_geom->num_stripes = map->num_stripes;
6380 return;
6381 }
6382
6383 if (io_geom->mirror_num) {
6384 io_geom->stripe_index = io_geom->mirror_num - 1;
6385 return;
6386 }
6387
6388 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389 dev_replace_is_ongoing);
6390 io_geom->mirror_num = io_geom->stripe_index + 1;
6391}
6392
6393static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394 struct btrfs_io_geometry *io_geom)
6395{
6396 if (io_geom->op != BTRFS_MAP_READ) {
6397 io_geom->num_stripes = map->num_stripes;
6398 return;
6399 }
6400
6401 if (io_geom->mirror_num) {
6402 io_geom->stripe_index = io_geom->mirror_num - 1;
6403 return;
6404 }
6405
6406 io_geom->mirror_num = 1;
6407}
6408
6409static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410 struct btrfs_chunk_map *map,
6411 struct btrfs_io_geometry *io_geom,
6412 bool dev_replace_is_ongoing)
6413{
6414 u32 factor = map->num_stripes / map->sub_stripes;
6415 int old_stripe_index;
6416
6417 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418 io_geom->stripe_nr /= factor;
6419
6420 if (io_geom->op != BTRFS_MAP_READ) {
6421 io_geom->num_stripes = map->sub_stripes;
6422 return;
6423 }
6424
6425 if (io_geom->mirror_num) {
6426 io_geom->stripe_index += io_geom->mirror_num - 1;
6427 return;
6428 }
6429
6430 old_stripe_index = io_geom->stripe_index;
6431 io_geom->stripe_index = find_live_mirror(fs_info, map,
6432 io_geom->stripe_index,
6433 dev_replace_is_ongoing);
6434 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6435}
6436
6437static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438 struct btrfs_io_geometry *io_geom,
6439 u64 logical, u64 *length)
6440{
6441 int data_stripes = nr_data_stripes(map);
6442
6443 /*
6444 * Needs full stripe mapping.
6445 *
6446 * Push stripe_nr back to the start of the full stripe For those cases
6447 * needing a full stripe, @stripe_nr is the full stripe number.
6448 *
6449 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450 * that can be expensive. Here we just divide @stripe_nr with
6451 * @data_stripes.
6452 */
6453 io_geom->stripe_nr /= data_stripes;
6454
6455 /* RAID[56] write or recovery. Return all stripes */
6456 io_geom->num_stripes = map->num_stripes;
6457 io_geom->max_errors = btrfs_chunk_max_errors(map);
6458
6459 /* Return the length to the full stripe end. */
6460 *length = min(logical + *length,
6461 io_geom->raid56_full_stripe_start + map->start +
6462 btrfs_stripe_nr_to_offset(data_stripes)) -
6463 logical;
6464 io_geom->stripe_index = 0;
6465 io_geom->stripe_offset = 0;
6466}
6467
6468static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469 struct btrfs_io_geometry *io_geom)
6470{
6471 int data_stripes = nr_data_stripes(map);
6472
6473 ASSERT(io_geom->mirror_num <= 1);
6474 /* Just grab the data stripe directly. */
6475 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476 io_geom->stripe_nr /= data_stripes;
6477
6478 /* We distribute the parity blocks across stripes. */
6479 io_geom->stripe_index =
6480 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6481
6482 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483 io_geom->mirror_num = 1;
6484}
6485
6486static void map_blocks_single(const struct btrfs_chunk_map *map,
6487 struct btrfs_io_geometry *io_geom)
6488{
6489 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490 io_geom->stripe_nr /= map->num_stripes;
6491 io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494/*
6495 * Map one logical range to one or more physical ranges.
6496 *
6497 * @length: (Mandatory) mapped length of this run.
6498 * One logical range can be split into different segments
6499 * due to factors like zones and RAID0/5/6/10 stripe
6500 * boundaries.
6501 *
6502 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6503 * which has one or more physical ranges (btrfs_io_stripe)
6504 * recorded inside.
6505 * Caller should call btrfs_put_bioc() to free it after use.
6506 *
6507 * @smap: (Optional) single physical range optimization.
6508 * If the map request can be fulfilled by one single
6509 * physical range, and this is parameter is not NULL,
6510 * then @bioc_ret would be NULL, and @smap would be
6511 * updated.
6512 *
6513 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6514 * value is 0.
6515 *
6516 * Mirror number 0 means to choose any live mirrors.
6517 *
6518 * For non-RAID56 profiles, non-zero mirror_num means
6519 * the Nth mirror. (e.g. mirror_num 1 means the first
6520 * copy).
6521 *
6522 * For RAID56 profile, mirror 1 means rebuild from P and
6523 * the remaining data stripes.
6524 *
6525 * For RAID6 profile, mirror > 2 means mark another
6526 * data/P stripe error and rebuild from the remaining
6527 * stripes..
6528 */
6529int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530 u64 logical, u64 *length,
6531 struct btrfs_io_context **bioc_ret,
6532 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6533{
6534 struct btrfs_chunk_map *map;
6535 struct btrfs_io_geometry io_geom = { 0 };
6536 u64 map_offset;
6537 int i;
6538 int ret = 0;
6539 int num_copies;
6540 struct btrfs_io_context *bioc = NULL;
6541 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542 int dev_replace_is_ongoing = 0;
6543 u16 num_alloc_stripes;
6544 u64 max_len;
6545
6546 ASSERT(bioc_ret);
6547
6548 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549 io_geom.num_stripes = 1;
6550 io_geom.stripe_index = 0;
6551 io_geom.op = op;
6552
6553 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554 if (io_geom.mirror_num > num_copies)
6555 return -EINVAL;
6556
6557 map = btrfs_get_chunk_map(fs_info, logical, *length);
6558 if (IS_ERR(map))
6559 return PTR_ERR(map);
6560
6561 map_offset = logical - map->start;
6562 io_geom.raid56_full_stripe_start = (u64)-1;
6563 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6565
6566 down_read(&dev_replace->rwsem);
6567 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6568 /*
6569 * Hold the semaphore for read during the whole operation, write is
6570 * requested at commit time but must wait.
6571 */
6572 if (!dev_replace_is_ongoing)
6573 up_read(&dev_replace->rwsem);
6574
6575 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576 case BTRFS_BLOCK_GROUP_RAID0:
6577 map_blocks_raid0(map, &io_geom);
6578 break;
6579 case BTRFS_BLOCK_GROUP_RAID1:
6580 case BTRFS_BLOCK_GROUP_RAID1C3:
6581 case BTRFS_BLOCK_GROUP_RAID1C4:
6582 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6583 break;
6584 case BTRFS_BLOCK_GROUP_DUP:
6585 map_blocks_dup(map, &io_geom);
6586 break;
6587 case BTRFS_BLOCK_GROUP_RAID10:
6588 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6589 break;
6590 case BTRFS_BLOCK_GROUP_RAID5:
6591 case BTRFS_BLOCK_GROUP_RAID6:
6592 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593 map_blocks_raid56_write(map, &io_geom, logical, length);
6594 else
6595 map_blocks_raid56_read(map, &io_geom);
6596 break;
6597 default:
6598 /*
6599 * After this, stripe_nr is the number of stripes on this
6600 * device we have to walk to find the data, and stripe_index is
6601 * the number of our device in the stripe array
6602 */
6603 map_blocks_single(map, &io_geom);
6604 break;
6605 }
6606 if (io_geom.stripe_index >= map->num_stripes) {
6607 btrfs_crit(fs_info,
6608 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609 io_geom.stripe_index, map->num_stripes);
6610 ret = -EINVAL;
6611 goto out;
6612 }
6613
6614 num_alloc_stripes = io_geom.num_stripes;
6615 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616 op != BTRFS_MAP_READ)
6617 /*
6618 * For replace case, we need to add extra stripes for extra
6619 * duplicated stripes.
6620 *
6621 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622 * 2 more stripes (DUP types, otherwise 1).
6623 */
6624 num_alloc_stripes += 2;
6625
6626 /*
6627 * If this I/O maps to a single device, try to return the device and
6628 * physical block information on the stack instead of allocating an
6629 * I/O context structure.
6630 */
6631 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632 io_geom.mirror_num)) {
6633 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6634 if (mirror_num_ret)
6635 *mirror_num_ret = io_geom.mirror_num;
6636 *bioc_ret = NULL;
6637 goto out;
6638 }
6639
6640 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6641 if (!bioc) {
6642 ret = -ENOMEM;
6643 goto out;
6644 }
6645 bioc->map_type = map->type;
6646
6647 /*
6648 * For RAID56 full map, we need to make sure the stripes[] follows the
6649 * rule that data stripes are all ordered, then followed with P and Q
6650 * (if we have).
6651 *
6652 * It's still mostly the same as other profiles, just with extra rotation.
6653 */
6654 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6656 /*
6657 * For RAID56 @stripe_nr is already the number of full stripes
6658 * before us, which is also the rotation value (needs to modulo
6659 * with num_stripes).
6660 *
6661 * In this case, we just add @stripe_nr with @i, then do the
6662 * modulo, to reduce one modulo call.
6663 */
6664 bioc->full_stripe_logical = map->start +
6665 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666 nr_data_stripes(map));
6667 for (int i = 0; i < io_geom.num_stripes; i++) {
6668 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6669 u32 stripe_index;
6670
6671 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672 dst->dev = map->stripes[stripe_index].dev;
6673 dst->physical =
6674 map->stripes[stripe_index].physical +
6675 io_geom.stripe_offset +
6676 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6677 }
6678 } else {
6679 /*
6680 * For all other non-RAID56 profiles, just copy the target
6681 * stripe into the bioc.
6682 */
6683 for (i = 0; i < io_geom.num_stripes; i++) {
6684 ret = set_io_stripe(fs_info, logical, length,
6685 &bioc->stripes[i], map, &io_geom);
6686 if (ret < 0)
6687 break;
6688 io_geom.stripe_index++;
6689 }
6690 }
6691
6692 if (ret) {
6693 *bioc_ret = NULL;
6694 btrfs_put_bioc(bioc);
6695 goto out;
6696 }
6697
6698 if (op != BTRFS_MAP_READ)
6699 io_geom.max_errors = btrfs_chunk_max_errors(map);
6700
6701 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702 op != BTRFS_MAP_READ) {
6703 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704 &io_geom.num_stripes, &io_geom.max_errors);
6705 }
6706
6707 *bioc_ret = bioc;
6708 bioc->num_stripes = io_geom.num_stripes;
6709 bioc->max_errors = io_geom.max_errors;
6710 bioc->mirror_num = io_geom.mirror_num;
6711
6712out:
6713 if (dev_replace_is_ongoing) {
6714 lockdep_assert_held(&dev_replace->rwsem);
6715 /* Unlock and let waiting writers proceed */
6716 up_read(&dev_replace->rwsem);
6717 }
6718 btrfs_free_chunk_map(map);
6719 return ret;
6720}
6721
6722static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723 const struct btrfs_fs_devices *fs_devices)
6724{
6725 if (args->fsid == NULL)
6726 return true;
6727 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6728 return true;
6729 return false;
6730}
6731
6732static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733 const struct btrfs_device *device)
6734{
6735 if (args->missing) {
6736 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6737 !device->bdev)
6738 return true;
6739 return false;
6740 }
6741
6742 if (device->devid != args->devid)
6743 return false;
6744 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6745 return false;
6746 return true;
6747}
6748
6749/*
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6751 * return NULL.
6752 *
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6755 */
6756struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757 const struct btrfs_dev_lookup_args *args)
6758{
6759 struct btrfs_device *device;
6760 struct btrfs_fs_devices *seed_devs;
6761
6762 if (dev_args_match_fs_devices(args, fs_devices)) {
6763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764 if (dev_args_match_device(args, device))
6765 return device;
6766 }
6767 }
6768
6769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770 if (!dev_args_match_fs_devices(args, seed_devs))
6771 continue;
6772 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773 if (dev_args_match_device(args, device))
6774 return device;
6775 }
6776 }
6777
6778 return NULL;
6779}
6780
6781static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782 u64 devid, u8 *dev_uuid)
6783{
6784 struct btrfs_device *device;
6785 unsigned int nofs_flag;
6786
6787 /*
6788 * We call this under the chunk_mutex, so we want to use NOFS for this
6789 * allocation, however we don't want to change btrfs_alloc_device() to
6790 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6791 * places.
6792 */
6793
6794 nofs_flag = memalloc_nofs_save();
6795 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796 memalloc_nofs_restore(nofs_flag);
6797 if (IS_ERR(device))
6798 return device;
6799
6800 list_add(&device->dev_list, &fs_devices->devices);
6801 device->fs_devices = fs_devices;
6802 fs_devices->num_devices++;
6803
6804 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805 fs_devices->missing_devices++;
6806
6807 return device;
6808}
6809
6810/*
6811 * Allocate new device struct, set up devid and UUID.
6812 *
6813 * @fs_info: used only for generating a new devid, can be NULL if
6814 * devid is provided (i.e. @devid != NULL).
6815 * @devid: a pointer to devid for this device. If NULL a new devid
6816 * is generated.
6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6818 * is generated.
6819 * @path: a pointer to device path if available, NULL otherwise.
6820 *
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error. Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6824 */
6825struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826 const u64 *devid, const u8 *uuid,
6827 const char *path)
6828{
6829 struct btrfs_device *dev;
6830 u64 tmp;
6831
6832 if (WARN_ON(!devid && !fs_info))
6833 return ERR_PTR(-EINVAL);
6834
6835 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836 if (!dev)
6837 return ERR_PTR(-ENOMEM);
6838
6839 INIT_LIST_HEAD(&dev->dev_list);
6840 INIT_LIST_HEAD(&dev->dev_alloc_list);
6841 INIT_LIST_HEAD(&dev->post_commit_list);
6842
6843 atomic_set(&dev->dev_stats_ccnt, 0);
6844 btrfs_device_data_ordered_init(dev);
6845 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6846
6847 if (devid)
6848 tmp = *devid;
6849 else {
6850 int ret;
6851
6852 ret = find_next_devid(fs_info, &tmp);
6853 if (ret) {
6854 btrfs_free_device(dev);
6855 return ERR_PTR(ret);
6856 }
6857 }
6858 dev->devid = tmp;
6859
6860 if (uuid)
6861 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6862 else
6863 generate_random_uuid(dev->uuid);
6864
6865 if (path) {
6866 struct rcu_string *name;
6867
6868 name = rcu_string_strdup(path, GFP_KERNEL);
6869 if (!name) {
6870 btrfs_free_device(dev);
6871 return ERR_PTR(-ENOMEM);
6872 }
6873 rcu_assign_pointer(dev->name, name);
6874 }
6875
6876 return dev;
6877}
6878
6879static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880 u64 devid, u8 *uuid, bool error)
6881{
6882 if (error)
6883 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6884 devid, uuid);
6885 else
6886 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6887 devid, uuid);
6888}
6889
6890u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6891{
6892 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6893
6894 return div_u64(map->chunk_len, data_stripes);
6895}
6896
6897#if BITS_PER_LONG == 32
6898/*
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6901 *
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6904 */
6905static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906 u64 logical, u64 length, u64 type)
6907{
6908 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6909 return 0;
6910
6911 if (logical + length < MAX_LFS_FILESIZE)
6912 return 0;
6913
6914 btrfs_err_32bit_limit(fs_info);
6915 return -EOVERFLOW;
6916}
6917
6918/*
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6923 */
6924static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925 u64 logical, u64 length, u64 type)
6926{
6927 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928 return;
6929
6930 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6931 return;
6932
6933 btrfs_warn_32bit_limit(fs_info);
6934}
6935#endif
6936
6937static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938 u64 devid, u8 *uuid)
6939{
6940 struct btrfs_device *dev;
6941
6942 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 btrfs_report_missing_device(fs_info, devid, uuid, true);
6944 return ERR_PTR(-ENOENT);
6945 }
6946
6947 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6948 if (IS_ERR(dev)) {
6949 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950 devid, PTR_ERR(dev));
6951 return dev;
6952 }
6953 btrfs_report_missing_device(fs_info, devid, uuid, false);
6954
6955 return dev;
6956}
6957
6958static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959 struct btrfs_chunk *chunk)
6960{
6961 BTRFS_DEV_LOOKUP_ARGS(args);
6962 struct btrfs_fs_info *fs_info = leaf->fs_info;
6963 struct btrfs_chunk_map *map;
6964 u64 logical;
6965 u64 length;
6966 u64 devid;
6967 u64 type;
6968 u8 uuid[BTRFS_UUID_SIZE];
6969 int index;
6970 int num_stripes;
6971 int ret;
6972 int i;
6973
6974 logical = key->offset;
6975 length = btrfs_chunk_length(leaf, chunk);
6976 type = btrfs_chunk_type(leaf, chunk);
6977 index = btrfs_bg_flags_to_raid_index(type);
6978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980#if BITS_PER_LONG == 32
6981 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982 if (ret < 0)
6983 return ret;
6984 warn_32bit_meta_chunk(fs_info, logical, length, type);
6985#endif
6986
6987 /*
6988 * Only need to verify chunk item if we're reading from sys chunk array,
6989 * as chunk item in tree block is already verified by tree-checker.
6990 */
6991 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993 if (ret)
6994 return ret;
6995 }
6996
6997 map = btrfs_find_chunk_map(fs_info, logical, 1);
6998
6999 /* already mapped? */
7000 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001 btrfs_free_chunk_map(map);
7002 return 0;
7003 } else if (map) {
7004 btrfs_free_chunk_map(map);
7005 }
7006
7007 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7008 if (!map)
7009 return -ENOMEM;
7010
7011 map->start = logical;
7012 map->chunk_len = length;
7013 map->num_stripes = num_stripes;
7014 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7016 map->type = type;
7017 /*
7018 * We can't use the sub_stripes value, as for profiles other than
7019 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020 * older mkfs (<v5.4).
7021 * In that case, it can cause divide-by-zero errors later.
7022 * Since currently sub_stripes is fixed for each profile, let's
7023 * use the trusted value instead.
7024 */
7025 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026 map->verified_stripes = 0;
7027 map->stripe_size = btrfs_calc_stripe_length(map);
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032 args.devid = devid;
7033 read_extent_buffer(leaf, uuid, (unsigned long)
7034 btrfs_stripe_dev_uuid_nr(chunk, i),
7035 BTRFS_UUID_SIZE);
7036 args.uuid = uuid;
7037 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7038 if (!map->stripes[i].dev) {
7039 map->stripes[i].dev = handle_missing_device(fs_info,
7040 devid, uuid);
7041 if (IS_ERR(map->stripes[i].dev)) {
7042 ret = PTR_ERR(map->stripes[i].dev);
7043 btrfs_free_chunk_map(map);
7044 return ret;
7045 }
7046 }
7047
7048 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049 &(map->stripes[i].dev->dev_state));
7050 }
7051
7052 ret = btrfs_add_chunk_map(fs_info, map);
7053 if (ret < 0) {
7054 btrfs_err(fs_info,
7055 "failed to add chunk map, start=%llu len=%llu: %d",
7056 map->start, map->chunk_len, ret);
7057 }
7058
7059 return ret;
7060}
7061
7062static void fill_device_from_item(struct extent_buffer *leaf,
7063 struct btrfs_dev_item *dev_item,
7064 struct btrfs_device *device)
7065{
7066 unsigned long ptr;
7067
7068 device->devid = btrfs_device_id(leaf, dev_item);
7069 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070 device->total_bytes = device->disk_total_bytes;
7071 device->commit_total_bytes = device->disk_total_bytes;
7072 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073 device->commit_bytes_used = device->bytes_used;
7074 device->type = btrfs_device_type(leaf, dev_item);
7075 device->io_align = btrfs_device_io_align(leaf, dev_item);
7076 device->io_width = btrfs_device_io_width(leaf, dev_item);
7077 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080
7081 ptr = btrfs_device_uuid(dev_item);
7082 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7083}
7084
7085static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7086 u8 *fsid)
7087{
7088 struct btrfs_fs_devices *fs_devices;
7089 int ret;
7090
7091 lockdep_assert_held(&uuid_mutex);
7092 ASSERT(fsid);
7093
7094 /* This will match only for multi-device seed fs */
7095 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7097 return fs_devices;
7098
7099
7100 fs_devices = find_fsid(fsid, NULL);
7101 if (!fs_devices) {
7102 if (!btrfs_test_opt(fs_info, DEGRADED))
7103 return ERR_PTR(-ENOENT);
7104
7105 fs_devices = alloc_fs_devices(fsid);
7106 if (IS_ERR(fs_devices))
7107 return fs_devices;
7108
7109 fs_devices->seeding = true;
7110 fs_devices->opened = 1;
7111 return fs_devices;
7112 }
7113
7114 /*
7115 * Upon first call for a seed fs fsid, just create a private copy of the
7116 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117 */
7118 fs_devices = clone_fs_devices(fs_devices);
7119 if (IS_ERR(fs_devices))
7120 return fs_devices;
7121
7122 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7123 if (ret) {
7124 free_fs_devices(fs_devices);
7125 return ERR_PTR(ret);
7126 }
7127
7128 if (!fs_devices->seeding) {
7129 close_fs_devices(fs_devices);
7130 free_fs_devices(fs_devices);
7131 return ERR_PTR(-EINVAL);
7132 }
7133
7134 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7135
7136 return fs_devices;
7137}
7138
7139static int read_one_dev(struct extent_buffer *leaf,
7140 struct btrfs_dev_item *dev_item)
7141{
7142 BTRFS_DEV_LOOKUP_ARGS(args);
7143 struct btrfs_fs_info *fs_info = leaf->fs_info;
7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 struct btrfs_device *device;
7146 u64 devid;
7147 int ret;
7148 u8 fs_uuid[BTRFS_FSID_SIZE];
7149 u8 dev_uuid[BTRFS_UUID_SIZE];
7150
7151 devid = btrfs_device_id(leaf, dev_item);
7152 args.devid = devid;
7153 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7154 BTRFS_UUID_SIZE);
7155 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7156 BTRFS_FSID_SIZE);
7157 args.uuid = dev_uuid;
7158 args.fsid = fs_uuid;
7159
7160 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161 fs_devices = open_seed_devices(fs_info, fs_uuid);
7162 if (IS_ERR(fs_devices))
7163 return PTR_ERR(fs_devices);
7164 }
7165
7166 device = btrfs_find_device(fs_info->fs_devices, &args);
7167 if (!device) {
7168 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169 btrfs_report_missing_device(fs_info, devid,
7170 dev_uuid, true);
7171 return -ENOENT;
7172 }
7173
7174 device = add_missing_dev(fs_devices, devid, dev_uuid);
7175 if (IS_ERR(device)) {
7176 btrfs_err(fs_info,
7177 "failed to add missing dev %llu: %ld",
7178 devid, PTR_ERR(device));
7179 return PTR_ERR(device);
7180 }
7181 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7182 } else {
7183 if (!device->bdev) {
7184 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185 btrfs_report_missing_device(fs_info,
7186 devid, dev_uuid, true);
7187 return -ENOENT;
7188 }
7189 btrfs_report_missing_device(fs_info, devid,
7190 dev_uuid, false);
7191 }
7192
7193 if (!device->bdev &&
7194 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7195 /*
7196 * this happens when a device that was properly setup
7197 * in the device info lists suddenly goes bad.
7198 * device->bdev is NULL, and so we have to set
7199 * device->missing to one here
7200 */
7201 device->fs_devices->missing_devices++;
7202 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7203 }
7204
7205 /* Move the device to its own fs_devices */
7206 if (device->fs_devices != fs_devices) {
7207 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208 &device->dev_state));
7209
7210 list_move(&device->dev_list, &fs_devices->devices);
7211 device->fs_devices->num_devices--;
7212 fs_devices->num_devices++;
7213
7214 device->fs_devices->missing_devices--;
7215 fs_devices->missing_devices++;
7216
7217 device->fs_devices = fs_devices;
7218 }
7219 }
7220
7221 if (device->fs_devices != fs_info->fs_devices) {
7222 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223 if (device->generation !=
7224 btrfs_device_generation(leaf, dev_item))
7225 return -EINVAL;
7226 }
7227
7228 fill_device_from_item(leaf, dev_item, device);
7229 if (device->bdev) {
7230 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7231
7232 if (device->total_bytes > max_total_bytes) {
7233 btrfs_err(fs_info,
7234 "device total_bytes should be at most %llu but found %llu",
7235 max_total_bytes, device->total_bytes);
7236 return -EINVAL;
7237 }
7238 }
7239 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242 device->fs_devices->total_rw_bytes += device->total_bytes;
7243 atomic64_add(device->total_bytes - device->bytes_used,
7244 &fs_info->free_chunk_space);
7245 }
7246 ret = 0;
7247 return ret;
7248}
7249
7250int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7251{
7252 struct btrfs_super_block *super_copy = fs_info->super_copy;
7253 struct extent_buffer *sb;
7254 struct btrfs_disk_key *disk_key;
7255 struct btrfs_chunk *chunk;
7256 u8 *array_ptr;
7257 unsigned long sb_array_offset;
7258 int ret = 0;
7259 u32 num_stripes;
7260 u32 array_size;
7261 u32 len = 0;
7262 u32 cur_offset;
7263 u64 type;
7264 struct btrfs_key key;
7265
7266 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7267
7268 /*
7269 * We allocated a dummy extent, just to use extent buffer accessors.
7270 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271 * that's fine, we will not go beyond system chunk array anyway.
7272 */
7273 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7274 if (!sb)
7275 return -ENOMEM;
7276 set_extent_buffer_uptodate(sb);
7277
7278 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279 array_size = btrfs_super_sys_array_size(super_copy);
7280
7281 array_ptr = super_copy->sys_chunk_array;
7282 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7283 cur_offset = 0;
7284
7285 while (cur_offset < array_size) {
7286 disk_key = (struct btrfs_disk_key *)array_ptr;
7287 len = sizeof(*disk_key);
7288 if (cur_offset + len > array_size)
7289 goto out_short_read;
7290
7291 btrfs_disk_key_to_cpu(&key, disk_key);
7292
7293 array_ptr += len;
7294 sb_array_offset += len;
7295 cur_offset += len;
7296
7297 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7298 btrfs_err(fs_info,
7299 "unexpected item type %u in sys_array at offset %u",
7300 (u32)key.type, cur_offset);
7301 ret = -EIO;
7302 break;
7303 }
7304
7305 chunk = (struct btrfs_chunk *)sb_array_offset;
7306 /*
7307 * At least one btrfs_chunk with one stripe must be present,
7308 * exact stripe count check comes afterwards
7309 */
7310 len = btrfs_chunk_item_size(1);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7313
7314 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7315 if (!num_stripes) {
7316 btrfs_err(fs_info,
7317 "invalid number of stripes %u in sys_array at offset %u",
7318 num_stripes, cur_offset);
7319 ret = -EIO;
7320 break;
7321 }
7322
7323 type = btrfs_chunk_type(sb, chunk);
7324 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7325 btrfs_err(fs_info,
7326 "invalid chunk type %llu in sys_array at offset %u",
7327 type, cur_offset);
7328 ret = -EIO;
7329 break;
7330 }
7331
7332 len = btrfs_chunk_item_size(num_stripes);
7333 if (cur_offset + len > array_size)
7334 goto out_short_read;
7335
7336 ret = read_one_chunk(&key, sb, chunk);
7337 if (ret)
7338 break;
7339
7340 array_ptr += len;
7341 sb_array_offset += len;
7342 cur_offset += len;
7343 }
7344 clear_extent_buffer_uptodate(sb);
7345 free_extent_buffer_stale(sb);
7346 return ret;
7347
7348out_short_read:
7349 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7350 len, cur_offset);
7351 clear_extent_buffer_uptodate(sb);
7352 free_extent_buffer_stale(sb);
7353 return -EIO;
7354}
7355
7356/*
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7358 *
7359 * If the @failing_dev is specified, it's accounted as missing.
7360 *
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7363 */
7364bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365 struct btrfs_device *failing_dev)
7366{
7367 struct btrfs_chunk_map *map;
7368 u64 next_start;
7369 bool ret = true;
7370
7371 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372 /* No chunk at all? Return false anyway */
7373 if (!map) {
7374 ret = false;
7375 goto out;
7376 }
7377 while (map) {
7378 int missing = 0;
7379 int max_tolerated;
7380 int i;
7381
7382 max_tolerated =
7383 btrfs_get_num_tolerated_disk_barrier_failures(
7384 map->type);
7385 for (i = 0; i < map->num_stripes; i++) {
7386 struct btrfs_device *dev = map->stripes[i].dev;
7387
7388 if (!dev || !dev->bdev ||
7389 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390 dev->last_flush_error)
7391 missing++;
7392 else if (failing_dev && failing_dev == dev)
7393 missing++;
7394 }
7395 if (missing > max_tolerated) {
7396 if (!failing_dev)
7397 btrfs_warn(fs_info,
7398 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399 map->start, missing, max_tolerated);
7400 btrfs_free_chunk_map(map);
7401 ret = false;
7402 goto out;
7403 }
7404 next_start = map->start + map->chunk_len;
7405 btrfs_free_chunk_map(map);
7406
7407 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7408 }
7409out:
7410 return ret;
7411}
7412
7413static void readahead_tree_node_children(struct extent_buffer *node)
7414{
7415 int i;
7416 const int nr_items = btrfs_header_nritems(node);
7417
7418 for (i = 0; i < nr_items; i++)
7419 btrfs_readahead_node_child(node, i);
7420}
7421
7422int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7423{
7424 struct btrfs_root *root = fs_info->chunk_root;
7425 struct btrfs_path *path;
7426 struct extent_buffer *leaf;
7427 struct btrfs_key key;
7428 struct btrfs_key found_key;
7429 int ret;
7430 int slot;
7431 int iter_ret = 0;
7432 u64 total_dev = 0;
7433 u64 last_ra_node = 0;
7434
7435 path = btrfs_alloc_path();
7436 if (!path)
7437 return -ENOMEM;
7438
7439 /*
7440 * uuid_mutex is needed only if we are mounting a sprout FS
7441 * otherwise we don't need it.
7442 */
7443 mutex_lock(&uuid_mutex);
7444
7445 /*
7446 * It is possible for mount and umount to race in such a way that
7447 * we execute this code path, but open_fs_devices failed to clear
7448 * total_rw_bytes. We certainly want it cleared before reading the
7449 * device items, so clear it here.
7450 */
7451 fs_info->fs_devices->total_rw_bytes = 0;
7452
7453 /*
7454 * Lockdep complains about possible circular locking dependency between
7455 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456 * used for freeze procection of a fs (struct super_block.s_writers),
7457 * which we take when starting a transaction, and extent buffers of the
7458 * chunk tree if we call read_one_dev() while holding a lock on an
7459 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460 * and at this point there can't be any concurrent task modifying the
7461 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7462 */
7463 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464 path->skip_locking = 1;
7465
7466 /*
7467 * Read all device items, and then all the chunk items. All
7468 * device items are found before any chunk item (their object id
7469 * is smaller than the lowest possible object id for a chunk
7470 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7471 */
7472 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7473 key.offset = 0;
7474 key.type = 0;
7475 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476 struct extent_buffer *node = path->nodes[1];
7477
7478 leaf = path->nodes[0];
7479 slot = path->slots[0];
7480
7481 if (node) {
7482 if (last_ra_node != node->start) {
7483 readahead_tree_node_children(node);
7484 last_ra_node = node->start;
7485 }
7486 }
7487 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488 struct btrfs_dev_item *dev_item;
7489 dev_item = btrfs_item_ptr(leaf, slot,
7490 struct btrfs_dev_item);
7491 ret = read_one_dev(leaf, dev_item);
7492 if (ret)
7493 goto error;
7494 total_dev++;
7495 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496 struct btrfs_chunk *chunk;
7497
7498 /*
7499 * We are only called at mount time, so no need to take
7500 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501 * we always lock first fs_info->chunk_mutex before
7502 * acquiring any locks on the chunk tree. This is a
7503 * requirement for chunk allocation, see the comment on
7504 * top of btrfs_chunk_alloc() for details.
7505 */
7506 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507 ret = read_one_chunk(&found_key, leaf, chunk);
7508 if (ret)
7509 goto error;
7510 }
7511 }
7512 /* Catch error found during iteration */
7513 if (iter_ret < 0) {
7514 ret = iter_ret;
7515 goto error;
7516 }
7517
7518 /*
7519 * After loading chunk tree, we've got all device information,
7520 * do another round of validation checks.
7521 */
7522 if (total_dev != fs_info->fs_devices->total_devices) {
7523 btrfs_warn(fs_info,
7524"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525 btrfs_super_num_devices(fs_info->super_copy),
7526 total_dev);
7527 fs_info->fs_devices->total_devices = total_dev;
7528 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7529 }
7530 if (btrfs_super_total_bytes(fs_info->super_copy) <
7531 fs_info->fs_devices->total_rw_bytes) {
7532 btrfs_err(fs_info,
7533 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534 btrfs_super_total_bytes(fs_info->super_copy),
7535 fs_info->fs_devices->total_rw_bytes);
7536 ret = -EINVAL;
7537 goto error;
7538 }
7539 ret = 0;
7540error:
7541 mutex_unlock(&uuid_mutex);
7542
7543 btrfs_free_path(path);
7544 return ret;
7545}
7546
7547int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7548{
7549 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550 struct btrfs_device *device;
7551 int ret = 0;
7552
7553 fs_devices->fs_info = fs_info;
7554
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list)
7557 device->fs_info = fs_info;
7558
7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561 device->fs_info = fs_info;
7562 ret = btrfs_get_dev_zone_info(device, false);
7563 if (ret)
7564 break;
7565 }
7566
7567 seed_devs->fs_info = fs_info;
7568 }
7569 mutex_unlock(&fs_devices->device_list_mutex);
7570
7571 return ret;
7572}
7573
7574static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575 const struct btrfs_dev_stats_item *ptr,
7576 int index)
7577{
7578 u64 val;
7579
7580 read_extent_buffer(eb, &val,
7581 offsetof(struct btrfs_dev_stats_item, values) +
7582 ((unsigned long)ptr) + (index * sizeof(u64)),
7583 sizeof(val));
7584 return val;
7585}
7586
7587static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588 struct btrfs_dev_stats_item *ptr,
7589 int index, u64 val)
7590{
7591 write_extent_buffer(eb, &val,
7592 offsetof(struct btrfs_dev_stats_item, values) +
7593 ((unsigned long)ptr) + (index * sizeof(u64)),
7594 sizeof(val));
7595}
7596
7597static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598 struct btrfs_path *path)
7599{
7600 struct btrfs_dev_stats_item *ptr;
7601 struct extent_buffer *eb;
7602 struct btrfs_key key;
7603 int item_size;
7604 int i, ret, slot;
7605
7606 if (!device->fs_info->dev_root)
7607 return 0;
7608
7609 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611 key.offset = device->devid;
7612 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7613 if (ret) {
7614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615 btrfs_dev_stat_set(device, i, 0);
7616 device->dev_stats_valid = 1;
7617 btrfs_release_path(path);
7618 return ret < 0 ? ret : 0;
7619 }
7620 slot = path->slots[0];
7621 eb = path->nodes[0];
7622 item_size = btrfs_item_size(eb, slot);
7623
7624 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7625
7626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627 if (item_size >= (1 + i) * sizeof(__le64))
7628 btrfs_dev_stat_set(device, i,
7629 btrfs_dev_stats_value(eb, ptr, i));
7630 else
7631 btrfs_dev_stat_set(device, i, 0);
7632 }
7633
7634 device->dev_stats_valid = 1;
7635 btrfs_dev_stat_print_on_load(device);
7636 btrfs_release_path(path);
7637
7638 return 0;
7639}
7640
7641int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7642{
7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7644 struct btrfs_device *device;
7645 struct btrfs_path *path = NULL;
7646 int ret = 0;
7647
7648 path = btrfs_alloc_path();
7649 if (!path)
7650 return -ENOMEM;
7651
7652 mutex_lock(&fs_devices->device_list_mutex);
7653 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654 ret = btrfs_device_init_dev_stats(device, path);
7655 if (ret)
7656 goto out;
7657 }
7658 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660 ret = btrfs_device_init_dev_stats(device, path);
7661 if (ret)
7662 goto out;
7663 }
7664 }
7665out:
7666 mutex_unlock(&fs_devices->device_list_mutex);
7667
7668 btrfs_free_path(path);
7669 return ret;
7670}
7671
7672static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7673 struct btrfs_device *device)
7674{
7675 struct btrfs_fs_info *fs_info = trans->fs_info;
7676 struct btrfs_root *dev_root = fs_info->dev_root;
7677 struct btrfs_path *path;
7678 struct btrfs_key key;
7679 struct extent_buffer *eb;
7680 struct btrfs_dev_stats_item *ptr;
7681 int ret;
7682 int i;
7683
7684 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686 key.offset = device->devid;
7687
7688 path = btrfs_alloc_path();
7689 if (!path)
7690 return -ENOMEM;
7691 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "error %d while searching for dev_stats item for device %s",
7695 ret, btrfs_dev_name(device));
7696 goto out;
7697 }
7698
7699 if (ret == 0 &&
7700 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701 /* need to delete old one and insert a new one */
7702 ret = btrfs_del_item(trans, dev_root, path);
7703 if (ret != 0) {
7704 btrfs_warn_in_rcu(fs_info,
7705 "delete too small dev_stats item for device %s failed %d",
7706 btrfs_dev_name(device), ret);
7707 goto out;
7708 }
7709 ret = 1;
7710 }
7711
7712 if (ret == 1) {
7713 /* need to insert a new item */
7714 btrfs_release_path(path);
7715 ret = btrfs_insert_empty_item(trans, dev_root, path,
7716 &key, sizeof(*ptr));
7717 if (ret < 0) {
7718 btrfs_warn_in_rcu(fs_info,
7719 "insert dev_stats item for device %s failed %d",
7720 btrfs_dev_name(device), ret);
7721 goto out;
7722 }
7723 }
7724
7725 eb = path->nodes[0];
7726 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728 btrfs_set_dev_stats_value(eb, ptr, i,
7729 btrfs_dev_stat_read(device, i));
7730 btrfs_mark_buffer_dirty(trans, eb);
7731
7732out:
7733 btrfs_free_path(path);
7734 return ret;
7735}
7736
7737/*
7738 * called from commit_transaction. Writes all changed device stats to disk.
7739 */
7740int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7741{
7742 struct btrfs_fs_info *fs_info = trans->fs_info;
7743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744 struct btrfs_device *device;
7745 int stats_cnt;
7746 int ret = 0;
7747
7748 mutex_lock(&fs_devices->device_list_mutex);
7749 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751 if (!device->dev_stats_valid || stats_cnt == 0)
7752 continue;
7753
7754
7755 /*
7756 * There is a LOAD-LOAD control dependency between the value of
7757 * dev_stats_ccnt and updating the on-disk values which requires
7758 * reading the in-memory counters. Such control dependencies
7759 * require explicit read memory barriers.
7760 *
7761 * This memory barriers pairs with smp_mb__before_atomic in
7762 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763 * barrier implied by atomic_xchg in
7764 * btrfs_dev_stats_read_and_reset
7765 */
7766 smp_rmb();
7767
7768 ret = update_dev_stat_item(trans, device);
7769 if (!ret)
7770 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7771 }
7772 mutex_unlock(&fs_devices->device_list_mutex);
7773
7774 return ret;
7775}
7776
7777void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7778{
7779 btrfs_dev_stat_inc(dev, index);
7780
7781 if (!dev->dev_stats_valid)
7782 return;
7783 btrfs_err_rl_in_rcu(dev->fs_info,
7784 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785 btrfs_dev_name(dev),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7791}
7792
7793static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794{
7795 int i;
7796
7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798 if (btrfs_dev_stat_read(dev, i) != 0)
7799 break;
7800 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801 return; /* all values == 0, suppress message */
7802
7803 btrfs_info_in_rcu(dev->fs_info,
7804 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805 btrfs_dev_name(dev),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811}
7812
7813int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814 struct btrfs_ioctl_get_dev_stats *stats)
7815{
7816 BTRFS_DEV_LOOKUP_ARGS(args);
7817 struct btrfs_device *dev;
7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819 int i;
7820
7821 mutex_lock(&fs_devices->device_list_mutex);
7822 args.devid = stats->devid;
7823 dev = btrfs_find_device(fs_info->fs_devices, &args);
7824 mutex_unlock(&fs_devices->device_list_mutex);
7825
7826 if (!dev) {
7827 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7828 return -ENODEV;
7829 } else if (!dev->dev_stats_valid) {
7830 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7831 return -ENODEV;
7832 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834 if (stats->nr_items > i)
7835 stats->values[i] =
7836 btrfs_dev_stat_read_and_reset(dev, i);
7837 else
7838 btrfs_dev_stat_set(dev, i, 0);
7839 }
7840 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841 current->comm, task_pid_nr(current));
7842 } else {
7843 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844 if (stats->nr_items > i)
7845 stats->values[i] = btrfs_dev_stat_read(dev, i);
7846 }
7847 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7849 return 0;
7850}
7851
7852/*
7853 * Update the size and bytes used for each device where it changed. This is
7854 * delayed since we would otherwise get errors while writing out the
7855 * superblocks.
7856 *
7857 * Must be invoked during transaction commit.
7858 */
7859void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7860{
7861 struct btrfs_device *curr, *next;
7862
7863 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7864
7865 if (list_empty(&trans->dev_update_list))
7866 return;
7867
7868 /*
7869 * We don't need the device_list_mutex here. This list is owned by the
7870 * transaction and the transaction must complete before the device is
7871 * released.
7872 */
7873 mutex_lock(&trans->fs_info->chunk_mutex);
7874 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7875 post_commit_list) {
7876 list_del_init(&curr->post_commit_list);
7877 curr->commit_total_bytes = curr->disk_total_bytes;
7878 curr->commit_bytes_used = curr->bytes_used;
7879 }
7880 mutex_unlock(&trans->fs_info->chunk_mutex);
7881}
7882
7883/*
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7885 */
7886int btrfs_bg_type_to_factor(u64 flags)
7887{
7888 const int index = btrfs_bg_flags_to_raid_index(flags);
7889
7890 return btrfs_raid_array[index].ncopies;
7891}
7892
7893
7894
7895static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896 u64 chunk_offset, u64 devid,
7897 u64 physical_offset, u64 physical_len)
7898{
7899 struct btrfs_dev_lookup_args args = { .devid = devid };
7900 struct btrfs_chunk_map *map;
7901 struct btrfs_device *dev;
7902 u64 stripe_len;
7903 bool found = false;
7904 int ret = 0;
7905 int i;
7906
7907 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7908 if (!map) {
7909 btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911 physical_offset, devid);
7912 ret = -EUCLEAN;
7913 goto out;
7914 }
7915
7916 stripe_len = btrfs_calc_stripe_length(map);
7917 if (physical_len != stripe_len) {
7918 btrfs_err(fs_info,
7919"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920 physical_offset, devid, map->start, physical_len,
7921 stripe_len);
7922 ret = -EUCLEAN;
7923 goto out;
7924 }
7925
7926 /*
7927 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928 * space. Although kernel can handle it without problem, better to warn
7929 * the users.
7930 */
7931 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7932 btrfs_warn(fs_info,
7933 "devid %llu physical %llu len %llu inside the reserved space",
7934 devid, physical_offset, physical_len);
7935
7936 for (i = 0; i < map->num_stripes; i++) {
7937 if (map->stripes[i].dev->devid == devid &&
7938 map->stripes[i].physical == physical_offset) {
7939 found = true;
7940 if (map->verified_stripes >= map->num_stripes) {
7941 btrfs_err(fs_info,
7942 "too many dev extents for chunk %llu found",
7943 map->start);
7944 ret = -EUCLEAN;
7945 goto out;
7946 }
7947 map->verified_stripes++;
7948 break;
7949 }
7950 }
7951 if (!found) {
7952 btrfs_err(fs_info,
7953 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7954 physical_offset, devid);
7955 ret = -EUCLEAN;
7956 }
7957
7958 /* Make sure no dev extent is beyond device boundary */
7959 dev = btrfs_find_device(fs_info->fs_devices, &args);
7960 if (!dev) {
7961 btrfs_err(fs_info, "failed to find devid %llu", devid);
7962 ret = -EUCLEAN;
7963 goto out;
7964 }
7965
7966 if (physical_offset + physical_len > dev->disk_total_bytes) {
7967 btrfs_err(fs_info,
7968"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969 devid, physical_offset, physical_len,
7970 dev->disk_total_bytes);
7971 ret = -EUCLEAN;
7972 goto out;
7973 }
7974
7975 if (dev->zone_info) {
7976 u64 zone_size = dev->zone_info->zone_size;
7977
7978 if (!IS_ALIGNED(physical_offset, zone_size) ||
7979 !IS_ALIGNED(physical_len, zone_size)) {
7980 btrfs_err(fs_info,
7981"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982 devid, physical_offset, physical_len);
7983 ret = -EUCLEAN;
7984 goto out;
7985 }
7986 }
7987
7988out:
7989 btrfs_free_chunk_map(map);
7990 return ret;
7991}
7992
7993static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7994{
7995 struct rb_node *node;
7996 int ret = 0;
7997
7998 read_lock(&fs_info->mapping_tree_lock);
7999 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000 struct btrfs_chunk_map *map;
8001
8002 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003 if (map->num_stripes != map->verified_stripes) {
8004 btrfs_err(fs_info,
8005 "chunk %llu has missing dev extent, have %d expect %d",
8006 map->start, map->verified_stripes, map->num_stripes);
8007 ret = -EUCLEAN;
8008 goto out;
8009 }
8010 }
8011out:
8012 read_unlock(&fs_info->mapping_tree_lock);
8013 return ret;
8014}
8015
8016/*
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8019 *
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree. This slightly increases mount time.
8022 */
8023int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8024{
8025 struct btrfs_path *path;
8026 struct btrfs_root *root = fs_info->dev_root;
8027 struct btrfs_key key;
8028 u64 prev_devid = 0;
8029 u64 prev_dev_ext_end = 0;
8030 int ret = 0;
8031
8032 /*
8033 * We don't have a dev_root because we mounted with ignorebadroots and
8034 * failed to load the root, so we want to skip the verification in this
8035 * case for sure.
8036 *
8037 * However if the dev root is fine, but the tree itself is corrupted
8038 * we'd still fail to mount. This verification is only to make sure
8039 * writes can happen safely, so instead just bypass this check
8040 * completely in the case of IGNOREBADROOTS.
8041 */
8042 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8043 return 0;
8044
8045 key.objectid = 1;
8046 key.type = BTRFS_DEV_EXTENT_KEY;
8047 key.offset = 0;
8048
8049 path = btrfs_alloc_path();
8050 if (!path)
8051 return -ENOMEM;
8052
8053 path->reada = READA_FORWARD;
8054 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8055 if (ret < 0)
8056 goto out;
8057
8058 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059 ret = btrfs_next_leaf(root, path);
8060 if (ret < 0)
8061 goto out;
8062 /* No dev extents at all? Not good */
8063 if (ret > 0) {
8064 ret = -EUCLEAN;
8065 goto out;
8066 }
8067 }
8068 while (1) {
8069 struct extent_buffer *leaf = path->nodes[0];
8070 struct btrfs_dev_extent *dext;
8071 int slot = path->slots[0];
8072 u64 chunk_offset;
8073 u64 physical_offset;
8074 u64 physical_len;
8075 u64 devid;
8076
8077 btrfs_item_key_to_cpu(leaf, &key, slot);
8078 if (key.type != BTRFS_DEV_EXTENT_KEY)
8079 break;
8080 devid = key.objectid;
8081 physical_offset = key.offset;
8082
8083 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085 physical_len = btrfs_dev_extent_length(leaf, dext);
8086
8087 /* Check if this dev extent overlaps with the previous one */
8088 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8089 btrfs_err(fs_info,
8090"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091 devid, physical_offset, prev_dev_ext_end);
8092 ret = -EUCLEAN;
8093 goto out;
8094 }
8095
8096 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097 physical_offset, physical_len);
8098 if (ret < 0)
8099 goto out;
8100 prev_devid = devid;
8101 prev_dev_ext_end = physical_offset + physical_len;
8102
8103 ret = btrfs_next_item(root, path);
8104 if (ret < 0)
8105 goto out;
8106 if (ret > 0) {
8107 ret = 0;
8108 break;
8109 }
8110 }
8111
8112 /* Ensure all chunks have corresponding dev extents */
8113 ret = verify_chunk_dev_extent_mapping(fs_info);
8114out:
8115 btrfs_free_path(path);
8116 return ret;
8117}
8118
8119/*
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8122 */
8123bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8124{
8125 struct btrfs_swapfile_pin *sp;
8126 struct rb_node *node;
8127
8128 spin_lock(&fs_info->swapfile_pins_lock);
8129 node = fs_info->swapfile_pins.rb_node;
8130 while (node) {
8131 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8132 if (ptr < sp->ptr)
8133 node = node->rb_left;
8134 else if (ptr > sp->ptr)
8135 node = node->rb_right;
8136 else
8137 break;
8138 }
8139 spin_unlock(&fs_info->swapfile_pins_lock);
8140 return node != NULL;
8141}
8142
8143static int relocating_repair_kthread(void *data)
8144{
8145 struct btrfs_block_group *cache = data;
8146 struct btrfs_fs_info *fs_info = cache->fs_info;
8147 u64 target;
8148 int ret = 0;
8149
8150 target = cache->start;
8151 btrfs_put_block_group(cache);
8152
8153 sb_start_write(fs_info->sb);
8154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8155 btrfs_info(fs_info,
8156 "zoned: skip relocating block group %llu to repair: EBUSY",
8157 target);
8158 sb_end_write(fs_info->sb);
8159 return -EBUSY;
8160 }
8161
8162 mutex_lock(&fs_info->reclaim_bgs_lock);
8163
8164 /* Ensure block group still exists */
8165 cache = btrfs_lookup_block_group(fs_info, target);
8166 if (!cache)
8167 goto out;
8168
8169 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8170 goto out;
8171
8172 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8173 if (ret < 0)
8174 goto out;
8175
8176 btrfs_info(fs_info,
8177 "zoned: relocating block group %llu to repair IO failure",
8178 target);
8179 ret = btrfs_relocate_chunk(fs_info, target);
8180
8181out:
8182 if (cache)
8183 btrfs_put_block_group(cache);
8184 mutex_unlock(&fs_info->reclaim_bgs_lock);
8185 btrfs_exclop_finish(fs_info);
8186 sb_end_write(fs_info->sb);
8187
8188 return ret;
8189}
8190
8191bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8192{
8193 struct btrfs_block_group *cache;
8194
8195 if (!btrfs_is_zoned(fs_info))
8196 return false;
8197
8198 /* Do not attempt to repair in degraded state */
8199 if (btrfs_test_opt(fs_info, DEGRADED))
8200 return true;
8201
8202 cache = btrfs_lookup_block_group(fs_info, logical);
8203 if (!cache)
8204 return true;
8205
8206 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207 btrfs_put_block_group(cache);
8208 return true;
8209 }
8210
8211 kthread_run(relocating_repair_kthread, cache,
8212 "btrfs-relocating-repair");
8213
8214 return true;
8215}
8216
8217static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218 struct btrfs_io_stripe *smap,
8219 u64 logical)
8220{
8221 int data_stripes = nr_bioc_data_stripes(bioc);
8222 int i;
8223
8224 for (i = 0; i < data_stripes; i++) {
8225 u64 stripe_start = bioc->full_stripe_logical +
8226 btrfs_stripe_nr_to_offset(i);
8227
8228 if (logical >= stripe_start &&
8229 logical < stripe_start + BTRFS_STRIPE_LEN)
8230 break;
8231 }
8232 ASSERT(i < data_stripes);
8233 smap->dev = bioc->stripes[i].dev;
8234 smap->physical = bioc->stripes[i].physical +
8235 ((logical - bioc->full_stripe_logical) &
8236 BTRFS_STRIPE_LEN_MASK);
8237}
8238
8239/*
8240 * Map a repair write into a single device.
8241 *
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8245 *
8246 * Callers should ensure:
8247 *
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8251 */
8252int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253 struct btrfs_io_stripe *smap, u64 logical,
8254 u32 length, int mirror_num)
8255{
8256 struct btrfs_io_context *bioc = NULL;
8257 u64 map_length = length;
8258 int mirror_ret = mirror_num;
8259 int ret;
8260
8261 ASSERT(mirror_num > 0);
8262
8263 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264 &bioc, smap, &mirror_ret);
8265 if (ret < 0)
8266 return ret;
8267
8268 /* The map range should not cross stripe boundary. */
8269 ASSERT(map_length >= length);
8270
8271 /* Already mapped to single stripe. */
8272 if (!bioc)
8273 goto out;
8274
8275 /* Map the RAID56 multi-stripe writes to a single one. */
8276 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277 map_raid56_repair_block(bioc, smap, logical);
8278 goto out;
8279 }
8280
8281 ASSERT(mirror_num <= bioc->num_stripes);
8282 smap->dev = bioc->stripes[mirror_num - 1].dev;
8283 smap->physical = bioc->stripes[mirror_num - 1].physical;
8284out:
8285 btrfs_put_bioc(bioc);
8286 ASSERT(smap->dev);
8287 return 0;
8288}