Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161};
162
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175}
176
177const char *btrfs_bg_type_to_raid_name(u64 flags)
178{
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185}
186
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
248static int init_first_rw_device(struct btrfs_trans_handle *trans);
249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352DEFINE_MUTEX(uuid_mutex);
353static LIST_HEAD(fs_uuids);
354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355{
356 return &fs_uuids;
357}
358
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370{
371 struct btrfs_fs_devices *fs_devs;
372
373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
381 INIT_LIST_HEAD(&fs_devs->fs_list);
382 INIT_LIST_HEAD(&fs_devs->seed_list);
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
391 return fs_devs;
392}
393
394void btrfs_free_device(struct btrfs_device *device)
395{
396 WARN_ON(!list_empty(&device->post_commit_list));
397 rcu_string_free(device->name);
398 extent_io_tree_release(&device->alloc_state);
399 btrfs_destroy_dev_zone_info(device);
400 kfree(device);
401}
402
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
406
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
412 btrfs_free_device(device);
413 }
414 kfree(fs_devices);
415}
416
417void __exit btrfs_cleanup_fs_uuids(void)
418{
419 struct btrfs_fs_devices *fs_devices;
420
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
425 free_fs_devices(fs_devices);
426 }
427}
428
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
431{
432 struct btrfs_fs_devices *fs_devices;
433
434 ASSERT(fsid);
435
436 /* Handle non-split brain cases */
437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
447 }
448 return NULL;
449}
450
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
495 struct btrfs_super_block **disk_super)
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
503 goto error;
504 }
505
506 if (flush)
507 sync_blockdev(*bdev);
508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
525 return ret;
526}
527
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
531 *
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
534 * @skip_device: Optional. Will skip this device when searching for the stale
535 * devices.
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
540 */
541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
542{
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
545 int ret = 0;
546
547 lockdep_assert_held(&uuid_mutex);
548
549 if (devt)
550 ret = -ENOENT;
551
552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
553
554 mutex_lock(&fs_devices->device_list_mutex);
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
557 if (skip_device && skip_device == device)
558 continue;
559 if (devt && devt != device->devt)
560 continue;
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
563 if (devt && ret != 0)
564 ret = -EBUSY;
565 break;
566 }
567
568 /* delete the stale device */
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
573 ret = 0;
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
576
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
581 }
582 }
583
584 return ret;
585}
586
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
596 struct block_device *bdev;
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
607 &bdev, &disk_super);
608 if (ret)
609 return ret;
610
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
613 goto error_free_page;
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
616 goto error_free_page;
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
625 goto error_free_page;
626 }
627
628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
629 fs_devices->seeding = true;
630 } else {
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 }
636
637 if (!bdev_nonrot(bdev))
638 fs_devices->rotating = true;
639
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
643 device->bdev = bdev;
644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
645 device->mode = flags;
646
647 fs_devices->open_devices++;
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
650 fs_devices->rw_devices++;
651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
652 }
653 btrfs_release_disk_super(disk_super);
654
655 return 0;
656
657error_free_page:
658 btrfs_release_disk_super(disk_super);
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
684 return find_fsid(disk_super->fsid, NULL);
685}
686
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
695 * multiple successful changes of FSID but currently device didn't
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 /* Changed UUIDs */
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
717 return fs_devices;
718 }
719
720 return NULL;
721}
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
731 * time * fs_devices was first created by another constitutent device
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
754 */
755static noinline struct btrfs_device *device_list_add(const char *path,
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
758{
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = NULL;
761 struct rcu_string *name;
762 u64 found_transid = btrfs_super_generation(disk_super);
763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
764 dev_t path_devt;
765 int error;
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
770
771 error = lookup_bdev(path, &path_devt);
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
775 return ERR_PTR(error);
776 }
777
778 if (fsid_change_in_progress) {
779 if (!has_metadata_uuid)
780 fs_devices = find_fsid_inprogress(disk_super);
781 else
782 fs_devices = find_fsid_changed(disk_super);
783 } else if (has_metadata_uuid) {
784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
785 } else {
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
789 }
790
791
792 if (!fs_devices) {
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
799 if (IS_ERR(fs_devices))
800 return ERR_CAST(fs_devices);
801
802 fs_devices->fsid_change = fsid_change_in_progress;
803
804 mutex_lock(&fs_devices->device_list_mutex);
805 list_add(&fs_devices->fs_list, &fs_uuids);
806
807 device = NULL;
808 } else {
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
814 mutex_lock(&fs_devices->device_list_mutex);
815 device = btrfs_find_device(fs_devices, &args);
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
822 if (fs_devices->fsid_change &&
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
834
835 fs_devices->fsid_change = false;
836 }
837 }
838
839 if (!device) {
840 unsigned int nofs_flag;
841
842 if (fs_devices->opened) {
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
846 mutex_unlock(&fs_devices->device_list_mutex);
847 return ERR_PTR(-EBUSY);
848 }
849
850 nofs_flag = memalloc_nofs_save();
851 device = btrfs_alloc_device(NULL, &devid,
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
857 return device;
858 }
859
860 device->devt = path_devt;
861
862 list_add_rcu(&device->dev_list, &fs_devices->devices);
863 fs_devices->num_devices++;
864
865 device->fs_devices = fs_devices;
866 *new_device_added = true;
867
868 if (disk_super->label[0])
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
873 else
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
878
879 } else if (!device->name || strcmp(device->name->str, path)) {
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
905 */
906 if (!fs_devices->opened && found_transid < device->generation) {
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
914 mutex_unlock(&fs_devices->device_list_mutex);
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
918 return ERR_PTR(-EEXIST);
919 }
920
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
929 */
930 if (device->bdev) {
931 if (device->devt != path_devt) {
932 mutex_unlock(&fs_devices->device_list_mutex);
933 btrfs_warn_in_rcu(NULL,
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
938 return ERR_PTR(-EEXIST);
939 }
940 btrfs_info_in_rcu(NULL,
941 "devid %llu device path %s changed to %s scanned by %s (%d)",
942 devid, btrfs_dev_name(device),
943 path, current->comm,
944 task_pid_nr(current));
945 }
946
947 name = rcu_string_strdup(path, GFP_NOFS);
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 return ERR_PTR(-ENOMEM);
951 }
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 fs_devices->missing_devices--;
956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 }
958 device->devt = path_devt;
959 }
960
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
967 if (!fs_devices->opened) {
968 device->generation = found_transid;
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
972
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
975 mutex_unlock(&fs_devices->device_list_mutex);
976 return device;
977}
978
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
984 int ret = 0;
985
986 lockdep_assert_held(&uuid_mutex);
987
988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 if (IS_ERR(fs_devices))
990 return fs_devices;
991
992 fs_devices->total_devices = orig->total_devices;
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
1003
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid, dev_path);
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1008 goto error;
1009 }
1010
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
1030 return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034 struct btrfs_device **latest_dev)
1035{
1036 struct btrfs_device *device, *next;
1037
1038 /* This is the initialized path, it is safe to release the devices. */
1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042 &device->dev_state) &&
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
1048 }
1049 continue;
1050 }
1051
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
1059 if (device->bdev) {
1060 blkdev_put(device->bdev, device->mode);
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065 list_del_init(&device->dev_alloc_list);
1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067 fs_devices->rw_devices--;
1068 }
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
1071 btrfs_free_device(device);
1072 }
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082 struct btrfs_device *latest_dev = NULL;
1083 struct btrfs_fs_devices *seed_dev;
1084
1085 mutex_lock(&uuid_mutex);
1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091 fs_devices->latest_dev = latest_dev;
1092
1093 mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098 if (!device->bdev)
1099 return;
1100
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
1106 blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124 fs_devices->missing_devices--;
1125 }
1126
1127 btrfs_close_bdev(device);
1128 if (device->bdev) {
1129 fs_devices->open_devices--;
1130 device->bdev = NULL;
1131 }
1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 btrfs_destroy_dev_zone_info(device);
1134
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
1138
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
1152 /* Verify the device is back in a pristine state */
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 ASSERT(list_empty(&device->dev_alloc_list));
1156 ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened) {
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 close_fs_devices(fs_devices);
1203 list_del(&fs_devices->seed_list);
1204 free_fs_devices(fs_devices);
1205 }
1206 mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 fmode_t flags, void *holder)
1211{
1212 struct btrfs_device *device;
1213 struct btrfs_device *latest_dev = NULL;
1214 struct btrfs_device *tmp_device;
1215
1216 flags |= FMODE_EXCL;
1217
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
1221
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
1225 latest_dev = device;
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
1231 }
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
1235 fs_devices->opened = 1;
1236 fs_devices->latest_dev = latest_dev;
1237 fs_devices->total_rw_bytes = 0;
1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241 return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
1246{
1247 const struct btrfs_device *dev1, *dev2;
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 fmode_t flags, void *holder)
1261{
1262 int ret;
1263
1264 lockdep_assert_held(&uuid_mutex);
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
1267 * underlying device takes further locks like open_mutex.
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
1272
1273 if (fs_devices->opened) {
1274 fs_devices->opened++;
1275 ret = 0;
1276 } else {
1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 ret = open_fs_devices(fs_devices, flags, holder);
1279 }
1280
1281 return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286 struct page *page = virt_to_page(super);
1287
1288 put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 u64 bytenr, u64 bytenr_orig)
1293{
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 return ERR_PTR(-EINVAL);
1302
1303 /* make sure our super fits in the page */
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
1311
1312 /* pull in the page with our super */
1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
1317
1318 p = page_address(page);
1319
1320 /* align our pointer to the offset of the super block */
1321 disk_super = p + offset_in_page(bytenr);
1322
1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 btrfs_release_disk_super(p);
1326 return ERR_PTR(-EINVAL);
1327 }
1328
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332 return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
1340 ret = btrfs_free_stale_devices(devt, NULL);
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
1353{
1354 struct btrfs_super_block *disk_super;
1355 bool new_device_added = false;
1356 struct btrfs_device *device = NULL;
1357 struct block_device *bdev;
1358 u64 bytenr, bytenr_orig;
1359 int ret;
1360
1361 lockdep_assert_held(&uuid_mutex);
1362
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
1369 flags |= FMODE_EXCL;
1370
1371 bdev = blkdev_get_by_path(path, flags, holder);
1372 if (IS_ERR(bdev))
1373 return ERR_CAST(bdev);
1374
1375 bytenr_orig = btrfs_sb_offset(0);
1376 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 if (ret) {
1378 device = ERR_PTR(ret);
1379 goto error_bdev_put;
1380 }
1381
1382 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 if (IS_ERR(disk_super)) {
1384 device = ERR_CAST(disk_super);
1385 goto error_bdev_put;
1386 }
1387
1388 device = device_list_add(path, disk_super, &new_device_added);
1389 if (!IS_ERR(device) && new_device_added)
1390 btrfs_free_stale_devices(device->devt, device);
1391
1392 btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395 blkdev_put(bdev, flags);
1396
1397 return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 u64 len)
1406{
1407 u64 physical_start, physical_end;
1408
1409 lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411 if (!find_first_extent_bit(&device->alloc_state, *start,
1412 &physical_start, &physical_end,
1413 CHUNK_ALLOCATED, NULL)) {
1414
1415 if (in_range(physical_start, *start, len) ||
1416 in_range(*start, physical_start,
1417 physical_end - physical_start)) {
1418 *start = physical_end + 1;
1419 return true;
1420 }
1421 }
1422 return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
1429 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430 case BTRFS_CHUNK_ALLOC_ZONED:
1431 /*
1432 * We don't care about the starting region like regular
1433 * allocator, because we anyway use/reserve the first two zones
1434 * for superblock logging.
1435 */
1436 return ALIGN(start, device->zone_info->zone_size);
1437 default:
1438 BUG();
1439 }
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 u64 *hole_start, u64 *hole_size,
1444 u64 num_bytes)
1445{
1446 u64 zone_size = device->zone_info->zone_size;
1447 u64 pos;
1448 int ret;
1449 bool changed = false;
1450
1451 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453 while (*hole_size > 0) {
1454 pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 *hole_start + *hole_size,
1456 num_bytes);
1457 if (pos != *hole_start) {
1458 *hole_size = *hole_start + *hole_size - pos;
1459 *hole_start = pos;
1460 changed = true;
1461 if (*hole_size < num_bytes)
1462 break;
1463 }
1464
1465 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467 /* Range is ensured to be empty */
1468 if (!ret)
1469 return changed;
1470
1471 /* Given hole range was invalid (outside of device) */
1472 if (ret == -ERANGE) {
1473 *hole_start += *hole_size;
1474 *hole_size = 0;
1475 return true;
1476 }
1477
1478 *hole_start += zone_size;
1479 *hole_size -= zone_size;
1480 changed = true;
1481 }
1482
1483 return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1499{
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1502
1503 for (;;) {
1504 /*
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1507 */
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1511 else
1512 *hole_size = 0;
1513 changed = true;
1514 }
1515
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1519 break;
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1523 changed = true;
1524 /*
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1527 */
1528 continue;
1529 }
1530 break;
1531 default:
1532 BUG();
1533 }
1534
1535 break;
1536 }
1537
1538 return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device: the device which we search the free space in
1545 * @num_bytes: the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start: store the start of the free space.
1548 * @len: the size of the free space. that we find, or the size
1549 * of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1570 u64 *len)
1571{
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_key key;
1575 struct btrfs_dev_extent *dev_extent;
1576 struct btrfs_path *path;
1577 u64 hole_size;
1578 u64 max_hole_start;
1579 u64 max_hole_size;
1580 u64 extent_end;
1581 u64 search_end = device->total_bytes;
1582 int ret;
1583 int slot;
1584 struct extent_buffer *l;
1585
1586 search_start = dev_extent_search_start(device, search_start);
1587
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 max_hole_start = search_start;
1596 max_hole_size = 0;
1597
1598again:
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 ret = -ENOSPC;
1602 goto out;
1603 }
1604
1605 path->reada = READA_FORWARD;
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
1608
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613 ret = btrfs_search_backwards(root, &key, path);
1614 if (ret < 0)
1615 goto out;
1616
1617 while (search_start < search_end) {
1618 l = path->nodes[0];
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1622 if (ret == 0)
1623 continue;
1624 if (ret < 0)
1625 goto out;
1626
1627 break;
1628 }
1629 btrfs_item_key_to_cpu(l, &key, slot);
1630
1631 if (key.objectid < device->devid)
1632 goto next;
1633
1634 if (key.objectid > device->devid)
1635 break;
1636
1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 goto next;
1639
1640 if (key.offset > search_end)
1641 break;
1642
1643 if (key.offset > search_start) {
1644 hole_size = key.offset - search_start;
1645 dev_extent_hole_check(device, &search_start, &hole_size,
1646 num_bytes);
1647
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
1652
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
1665 }
1666 }
1667
1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
1673next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
1677
1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
1683 if (search_end > search_start) {
1684 hole_size = search_end - search_start;
1685 if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 num_bytes)) {
1687 btrfs_release_path(path);
1688 goto again;
1689 }
1690
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
1695 }
1696
1697 /* See above. */
1698 if (max_hole_size < num_bytes)
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
1703 ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705 btrfs_free_path(path);
1706 *start = max_hole_start;
1707 if (len)
1708 *len = max_hole_size;
1709 return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713 u64 *start, u64 *len)
1714{
1715 /* FIXME use last free of some kind */
1716 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720 struct btrfs_device *device,
1721 u64 start, u64 *dev_extent_len)
1722{
1723 struct btrfs_fs_info *fs_info = device->fs_info;
1724 struct btrfs_root *root = fs_info->dev_root;
1725 int ret;
1726 struct btrfs_path *path;
1727 struct btrfs_key key;
1728 struct btrfs_key found_key;
1729 struct extent_buffer *leaf = NULL;
1730 struct btrfs_dev_extent *extent = NULL;
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
1736 key.objectid = device->devid;
1737 key.offset = start;
1738 key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741 if (ret > 0) {
1742 ret = btrfs_previous_item(root, path, key.objectid,
1743 BTRFS_DEV_EXTENT_KEY);
1744 if (ret)
1745 goto out;
1746 leaf = path->nodes[0];
1747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 extent = btrfs_item_ptr(leaf, path->slots[0],
1749 struct btrfs_dev_extent);
1750 BUG_ON(found_key.offset > start || found_key.offset +
1751 btrfs_dev_extent_length(leaf, extent) < start);
1752 key = found_key;
1753 btrfs_release_path(path);
1754 goto again;
1755 } else if (ret == 0) {
1756 leaf = path->nodes[0];
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
1759 } else {
1760 goto out;
1761 }
1762
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret == 0)
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775 struct extent_map_tree *em_tree;
1776 struct extent_map *em;
1777 struct rb_node *n;
1778 u64 ret = 0;
1779
1780 em_tree = &fs_info->mapping_tree;
1781 read_lock(&em_tree->lock);
1782 n = rb_last(&em_tree->map.rb_root);
1783 if (n) {
1784 em = rb_entry(n, struct extent_map, rb_node);
1785 ret = em->start + em->len;
1786 }
1787 read_unlock(&em_tree->lock);
1788
1789 return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 u64 *devid_ret)
1794{
1795 int ret;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
1798 struct btrfs_path *path;
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = (u64)-1;
1807
1808 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809 if (ret < 0)
1810 goto error;
1811
1812 if (ret == 0) {
1813 /* Corruption */
1814 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = -EUCLEAN;
1816 goto error;
1817 }
1818
1819 ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 BTRFS_DEV_ITEMS_OBJECTID,
1821 BTRFS_DEV_ITEM_KEY);
1822 if (ret) {
1823 *devid_ret = 1;
1824 } else {
1825 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 path->slots[0]);
1827 *devid_ret = found_key.offset + 1;
1828 }
1829 ret = 0;
1830error:
1831 btrfs_free_path(path);
1832 return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840 struct btrfs_device *device)
1841{
1842 int ret;
1843 struct btrfs_path *path;
1844 struct btrfs_dev_item *dev_item;
1845 struct extent_buffer *leaf;
1846 struct btrfs_key key;
1847 unsigned long ptr;
1848
1849 path = btrfs_alloc_path();
1850 if (!path)
1851 return -ENOMEM;
1852
1853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 key.type = BTRFS_DEV_ITEM_KEY;
1855 key.offset = device->devid;
1856
1857 btrfs_reserve_chunk_metadata(trans, true);
1858 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 &key, sizeof(*dev_item));
1860 btrfs_trans_release_chunk_metadata(trans);
1861 if (ret)
1862 goto out;
1863
1864 leaf = path->nodes[0];
1865 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867 btrfs_set_device_id(leaf, dev_item, device->devid);
1868 btrfs_set_device_generation(leaf, dev_item, 0);
1869 btrfs_set_device_type(leaf, dev_item, device->type);
1870 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873 btrfs_set_device_total_bytes(leaf, dev_item,
1874 btrfs_device_get_disk_total_bytes(device));
1875 btrfs_set_device_bytes_used(leaf, dev_item,
1876 btrfs_device_get_bytes_used(device));
1877 btrfs_set_device_group(leaf, dev_item, 0);
1878 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880 btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882 ptr = btrfs_device_uuid(dev_item);
1883 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884 ptr = btrfs_device_fsid(dev_item);
1885 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 ptr, BTRFS_FSID_SIZE);
1887 btrfs_mark_buffer_dirty(leaf);
1888
1889 ret = 0;
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903 struct path path;
1904 struct timespec64 now;
1905 int ret;
1906
1907 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 if (ret)
1909 return;
1910
1911 now = current_time(d_inode(path.dentry));
1912 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 struct btrfs_device *device)
1918{
1919 struct btrfs_root *root = device->fs_info->chunk_root;
1920 int ret;
1921 struct btrfs_path *path;
1922 struct btrfs_key key;
1923
1924 path = btrfs_alloc_path();
1925 if (!path)
1926 return -ENOMEM;
1927
1928 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 key.type = BTRFS_DEV_ITEM_KEY;
1930 key.offset = device->devid;
1931
1932 btrfs_reserve_chunk_metadata(trans, false);
1933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934 btrfs_trans_release_chunk_metadata(trans);
1935 if (ret) {
1936 if (ret > 0)
1937 ret = -ENOENT;
1938 goto out;
1939 }
1940
1941 ret = btrfs_del_item(trans, root, path);
1942out:
1943 btrfs_free_path(path);
1944 return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 u64 num_devices)
1954{
1955 u64 all_avail;
1956 unsigned seq;
1957 int i;
1958
1959 do {
1960 seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962 all_avail = fs_info->avail_data_alloc_bits |
1963 fs_info->avail_system_alloc_bits |
1964 fs_info->avail_metadata_alloc_bits;
1965 } while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969 continue;
1970
1971 if (num_devices < btrfs_raid_array[i].devs_min)
1972 return btrfs_raid_array[i].mindev_error;
1973 }
1974
1975 return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981 struct btrfs_device *next_device;
1982
1983 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 if (next_device != device &&
1985 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 && next_device->bdev)
1987 return next_device;
1988 }
1989
1990 return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000 struct btrfs_device *next_device)
2001{
2002 struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004 if (!next_device)
2005 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006 device);
2007 ASSERT(next_device);
2008
2009 if (fs_info->sb->s_bdev &&
2010 (fs_info->sb->s_bdev == device->bdev))
2011 fs_info->sb->s_bdev = next_device->bdev;
2012
2013 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023 u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025 down_read(&fs_info->dev_replace.rwsem);
2026 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 ASSERT(num_devices > 1);
2028 num_devices--;
2029 }
2030 up_read(&fs_info->dev_replace.rwsem);
2031
2032 return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev, int copy_num)
2037{
2038 struct btrfs_super_block *disk_super;
2039 const size_t len = sizeof(disk_super->magic);
2040 const u64 bytenr = btrfs_sb_offset(copy_num);
2041 int ret;
2042
2043 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044 if (IS_ERR(disk_super))
2045 return;
2046
2047 memset(&disk_super->magic, 0, len);
2048 folio_mark_dirty(virt_to_folio(disk_super));
2049 btrfs_release_disk_super(disk_super);
2050
2051 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052 if (ret)
2053 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
2060{
2061 int copy_num;
2062
2063 if (!bdev)
2064 return;
2065
2066 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067 if (bdev_is_zoned(bdev))
2068 btrfs_reset_sb_log_zones(bdev, copy_num);
2069 else
2070 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071 }
2072
2073 /* Notify udev that device has changed */
2074 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076 /* Update ctime/mtime for device path for libblkid */
2077 update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 struct btrfs_dev_lookup_args *args,
2082 struct block_device **bdev, fmode_t *mode)
2083{
2084 struct btrfs_trans_handle *trans;
2085 struct btrfs_device *device;
2086 struct btrfs_fs_devices *cur_devices;
2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 u64 num_devices;
2089 int ret = 0;
2090
2091 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 return -EINVAL;
2094 }
2095
2096 /*
2097 * The device list in fs_devices is accessed without locks (neither
2098 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 * filesystem and another device rm cannot run.
2100 */
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 return ret;
2106
2107 device = btrfs_find_device(fs_info->fs_devices, args);
2108 if (!device) {
2109 if (args->missing)
2110 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 else
2112 ret = -ENOENT;
2113 return ret;
2114 }
2115
2116 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 btrfs_warn_in_rcu(fs_info,
2118 "cannot remove device %s (devid %llu) due to active swapfile",
2119 btrfs_dev_name(device), device->devid);
2120 return -ETXTBSY;
2121 }
2122
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127 fs_info->fs_devices->rw_devices == 1)
2128 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131 mutex_lock(&fs_info->chunk_mutex);
2132 list_del_init(&device->dev_alloc_list);
2133 device->fs_devices->rw_devices--;
2134 mutex_unlock(&fs_info->chunk_mutex);
2135 }
2136
2137 ret = btrfs_shrink_device(device, 0);
2138 if (ret)
2139 goto error_undo;
2140
2141 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 if (IS_ERR(trans)) {
2143 ret = PTR_ERR(trans);
2144 goto error_undo;
2145 }
2146
2147 ret = btrfs_rm_dev_item(trans, device);
2148 if (ret) {
2149 /* Any error in dev item removal is critical */
2150 btrfs_crit(fs_info,
2151 "failed to remove device item for devid %llu: %d",
2152 device->devid, ret);
2153 btrfs_abort_transaction(trans, ret);
2154 btrfs_end_transaction(trans);
2155 return ret;
2156 }
2157
2158 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159 btrfs_scrub_cancel_dev(device);
2160
2161 /*
2162 * the device list mutex makes sure that we don't change
2163 * the device list while someone else is writing out all
2164 * the device supers. Whoever is writing all supers, should
2165 * lock the device list mutex before getting the number of
2166 * devices in the super block (super_copy). Conversely,
2167 * whoever updates the number of devices in the super block
2168 * (super_copy) should hold the device list mutex.
2169 */
2170
2171 /*
2172 * In normal cases the cur_devices == fs_devices. But in case
2173 * of deleting a seed device, the cur_devices should point to
2174 * its own fs_devices listed under the fs_devices->seed_list.
2175 */
2176 cur_devices = device->fs_devices;
2177 mutex_lock(&fs_devices->device_list_mutex);
2178 list_del_rcu(&device->dev_list);
2179
2180 cur_devices->num_devices--;
2181 cur_devices->total_devices--;
2182 /* Update total_devices of the parent fs_devices if it's seed */
2183 if (cur_devices != fs_devices)
2184 fs_devices->total_devices--;
2185
2186 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187 cur_devices->missing_devices--;
2188
2189 btrfs_assign_next_active_device(device, NULL);
2190
2191 if (device->bdev) {
2192 cur_devices->open_devices--;
2193 /* remove sysfs entry */
2194 btrfs_sysfs_remove_device(device);
2195 }
2196
2197 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199 mutex_unlock(&fs_devices->device_list_mutex);
2200
2201 /*
2202 * At this point, the device is zero sized and detached from the
2203 * devices list. All that's left is to zero out the old supers and
2204 * free the device.
2205 *
2206 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 * block device and it's dependencies. Instead just flush the device
2209 * and let the caller do the final blkdev_put.
2210 */
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 btrfs_scratch_superblocks(fs_info, device->bdev,
2213 device->name->str);
2214 if (device->bdev) {
2215 sync_blockdev(device->bdev);
2216 invalidate_bdev(device->bdev);
2217 }
2218 }
2219
2220 *bdev = device->bdev;
2221 *mode = device->mode;
2222 synchronize_rcu();
2223 btrfs_free_device(device);
2224
2225 /*
2226 * This can happen if cur_devices is the private seed devices list. We
2227 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 * to be held, but in fact we don't need that for the private
2229 * seed_devices, we can simply decrement cur_devices->opened and then
2230 * remove it from our list and free the fs_devices.
2231 */
2232 if (cur_devices->num_devices == 0) {
2233 list_del_init(&cur_devices->seed_list);
2234 ASSERT(cur_devices->opened == 1);
2235 cur_devices->opened--;
2236 free_fs_devices(cur_devices);
2237 }
2238
2239 ret = btrfs_commit_transaction(trans);
2240
2241 return ret;
2242
2243error_undo:
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 mutex_lock(&fs_info->chunk_mutex);
2246 list_add(&device->dev_alloc_list,
2247 &fs_devices->alloc_list);
2248 device->fs_devices->rw_devices++;
2249 mutex_unlock(&fs_info->chunk_mutex);
2250 }
2251 return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256 struct btrfs_fs_devices *fs_devices;
2257
2258 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260 /*
2261 * in case of fs with no seed, srcdev->fs_devices will point
2262 * to fs_devices of fs_info. However when the dev being replaced is
2263 * a seed dev it will point to the seed's local fs_devices. In short
2264 * srcdev will have its correct fs_devices in both the cases.
2265 */
2266 fs_devices = srcdev->fs_devices;
2267
2268 list_del_rcu(&srcdev->dev_list);
2269 list_del(&srcdev->dev_alloc_list);
2270 fs_devices->num_devices--;
2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272 fs_devices->missing_devices--;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275 fs_devices->rw_devices--;
2276
2277 if (srcdev->bdev)
2278 fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285 mutex_lock(&uuid_mutex);
2286
2287 btrfs_close_bdev(srcdev);
2288 synchronize_rcu();
2289 btrfs_free_device(srcdev);
2290
2291 /* if this is no devs we rather delete the fs_devices */
2292 if (!fs_devices->num_devices) {
2293 /*
2294 * On a mounted FS, num_devices can't be zero unless it's a
2295 * seed. In case of a seed device being replaced, the replace
2296 * target added to the sprout FS, so there will be no more
2297 * device left under the seed FS.
2298 */
2299 ASSERT(fs_devices->seeding);
2300
2301 list_del_init(&fs_devices->seed_list);
2302 close_fs_devices(fs_devices);
2303 free_fs_devices(fs_devices);
2304 }
2305 mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312 mutex_lock(&fs_devices->device_list_mutex);
2313
2314 btrfs_sysfs_remove_device(tgtdev);
2315
2316 if (tgtdev->bdev)
2317 fs_devices->open_devices--;
2318
2319 fs_devices->num_devices--;
2320
2321 btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323 list_del_rcu(&tgtdev->dev_list);
2324
2325 mutex_unlock(&fs_devices->device_list_mutex);
2326
2327 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 tgtdev->name->str);
2329
2330 btrfs_close_bdev(tgtdev);
2331 synchronize_rcu();
2332 btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info: the filesystem
2339 * @args: the args to populate
2340 * @path: the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks. The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 struct btrfs_dev_lookup_args *args,
2355 const char *path)
2356{
2357 struct btrfs_super_block *disk_super;
2358 struct block_device *bdev;
2359 int ret;
2360
2361 if (!path || !path[0])
2362 return -EINVAL;
2363 if (!strcmp(path, "missing")) {
2364 args->missing = true;
2365 return 0;
2366 }
2367
2368 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 if (!args->uuid || !args->fsid) {
2371 btrfs_put_dev_args_from_path(args);
2372 return -ENOMEM;
2373 }
2374
2375 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 &bdev, &disk_super);
2377 if (ret) {
2378 btrfs_put_dev_args_from_path(args);
2379 return ret;
2380 }
2381
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 else
2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 btrfs_release_disk_super(disk_super);
2389 blkdev_put(bdev, FMODE_READ);
2390 return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400 kfree(args->uuid);
2401 kfree(args->fsid);
2402 args->uuid = NULL;
2403 args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
2409{
2410 BTRFS_DEV_LOOKUP_ARGS(args);
2411 struct btrfs_device *device;
2412 int ret;
2413
2414 if (devid) {
2415 args.devid = devid;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
2417 if (!device)
2418 return ERR_PTR(-ENOENT);
2419 return device;
2420 }
2421
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 if (ret)
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2427 if (!device)
2428 return ERR_PTR(-ENOENT);
2429 return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 struct btrfs_fs_devices *old_devices;
2436 struct btrfs_fs_devices *seed_devices;
2437
2438 lockdep_assert_held(&uuid_mutex);
2439 if (!fs_devices->seeding)
2440 return ERR_PTR(-EINVAL);
2441
2442 /*
2443 * Private copy of the seed devices, anchored at
2444 * fs_info->fs_devices->seed_list
2445 */
2446 seed_devices = alloc_fs_devices(NULL, NULL);
2447 if (IS_ERR(seed_devices))
2448 return seed_devices;
2449
2450 /*
2451 * It's necessary to retain a copy of the original seed fs_devices in
2452 * fs_uuids so that filesystems which have been seeded can successfully
2453 * reference the seed device from open_seed_devices. This also supports
2454 * multiple fs seed.
2455 */
2456 old_devices = clone_fs_devices(fs_devices);
2457 if (IS_ERR(old_devices)) {
2458 kfree(seed_devices);
2459 return old_devices;
2460 }
2461
2462 list_add(&old_devices->fs_list, &fs_uuids);
2463
2464 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 seed_devices->opened = 1;
2466 INIT_LIST_HEAD(&seed_devices->devices);
2467 INIT_LIST_HEAD(&seed_devices->alloc_list);
2468 mutex_init(&seed_devices->device_list_mutex);
2469
2470 return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 struct btrfs_fs_devices *seed_devices)
2479{
2480 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 struct btrfs_device *device;
2483 u64 super_flags;
2484
2485 /*
2486 * We are updating the fsid, the thread leading to device_list_add()
2487 * could race, so uuid_mutex is needed.
2488 */
2489 lockdep_assert_held(&uuid_mutex);
2490
2491 /*
2492 * The threads listed below may traverse dev_list but can do that without
2493 * device_list_mutex:
2494 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 * - Various dev_list readers - are using RCU.
2496 * - btrfs_ioctl_fitrim() - is using RCU.
2497 *
2498 * For-read threads as below are using device_list_mutex:
2499 * - Readonly scrub btrfs_scrub_dev()
2500 * - Readonly scrub btrfs_scrub_progress()
2501 * - btrfs_get_dev_stats()
2502 */
2503 lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 synchronize_rcu);
2507 list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 device->fs_devices = seed_devices;
2509
2510 fs_devices->seeding = false;
2511 fs_devices->num_devices = 0;
2512 fs_devices->open_devices = 0;
2513 fs_devices->missing_devices = 0;
2514 fs_devices->rotating = false;
2515 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517 generate_random_uuid(fs_devices->fsid);
2518 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521 super_flags = btrfs_super_flags(disk_super) &
2522 ~BTRFS_SUPER_FLAG_SEEDING;
2523 btrfs_set_super_flags(disk_super, super_flags);
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531 BTRFS_DEV_LOOKUP_ARGS(args);
2532 struct btrfs_fs_info *fs_info = trans->fs_info;
2533 struct btrfs_root *root = fs_info->chunk_root;
2534 struct btrfs_path *path;
2535 struct extent_buffer *leaf;
2536 struct btrfs_dev_item *dev_item;
2537 struct btrfs_device *device;
2538 struct btrfs_key key;
2539 u8 fs_uuid[BTRFS_FSID_SIZE];
2540 u8 dev_uuid[BTRFS_UUID_SIZE];
2541 int ret;
2542
2543 path = btrfs_alloc_path();
2544 if (!path)
2545 return -ENOMEM;
2546
2547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 key.offset = 0;
2549 key.type = BTRFS_DEV_ITEM_KEY;
2550
2551 while (1) {
2552 btrfs_reserve_chunk_metadata(trans, false);
2553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554 btrfs_trans_release_chunk_metadata(trans);
2555 if (ret < 0)
2556 goto error;
2557
2558 leaf = path->nodes[0];
2559next_slot:
2560 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 ret = btrfs_next_leaf(root, path);
2562 if (ret > 0)
2563 break;
2564 if (ret < 0)
2565 goto error;
2566 leaf = path->nodes[0];
2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568 btrfs_release_path(path);
2569 continue;
2570 }
2571
2572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 key.type != BTRFS_DEV_ITEM_KEY)
2575 break;
2576
2577 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 struct btrfs_dev_item);
2579 args.devid = btrfs_device_id(leaf, dev_item);
2580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581 BTRFS_UUID_SIZE);
2582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583 BTRFS_FSID_SIZE);
2584 args.uuid = dev_uuid;
2585 args.fsid = fs_uuid;
2586 device = btrfs_find_device(fs_info->fs_devices, &args);
2587 BUG_ON(!device); /* Logic error */
2588
2589 if (device->fs_devices->seeding) {
2590 btrfs_set_device_generation(leaf, dev_item,
2591 device->generation);
2592 btrfs_mark_buffer_dirty(leaf);
2593 }
2594
2595 path->slots[0]++;
2596 goto next_slot;
2597 }
2598 ret = 0;
2599error:
2600 btrfs_free_path(path);
2601 return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606 struct btrfs_root *root = fs_info->dev_root;
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_device *device;
2609 struct block_device *bdev;
2610 struct super_block *sb = fs_info->sb;
2611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612 struct btrfs_fs_devices *seed_devices;
2613 u64 orig_super_total_bytes;
2614 u64 orig_super_num_devices;
2615 int ret = 0;
2616 bool seeding_dev = false;
2617 bool locked = false;
2618
2619 if (sb_rdonly(sb) && !fs_devices->seeding)
2620 return -EROFS;
2621
2622 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623 fs_info->bdev_holder);
2624 if (IS_ERR(bdev))
2625 return PTR_ERR(bdev);
2626
2627 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 ret = -EINVAL;
2629 goto error;
2630 }
2631
2632 if (fs_devices->seeding) {
2633 seeding_dev = true;
2634 down_write(&sb->s_umount);
2635 mutex_lock(&uuid_mutex);
2636 locked = true;
2637 }
2638
2639 sync_blockdev(bdev);
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643 if (device->bdev == bdev) {
2644 ret = -EEXIST;
2645 rcu_read_unlock();
2646 goto error;
2647 }
2648 }
2649 rcu_read_unlock();
2650
2651 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652 if (IS_ERR(device)) {
2653 /* we can safely leave the fs_devices entry around */
2654 ret = PTR_ERR(device);
2655 goto error;
2656 }
2657
2658 device->fs_info = fs_info;
2659 device->bdev = bdev;
2660 ret = lookup_bdev(device_path, &device->devt);
2661 if (ret)
2662 goto error_free_device;
2663
2664 ret = btrfs_get_dev_zone_info(device, false);
2665 if (ret)
2666 goto error_free_device;
2667
2668 trans = btrfs_start_transaction(root, 0);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 goto error_free_zone;
2672 }
2673
2674 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675 device->generation = trans->transid;
2676 device->io_width = fs_info->sectorsize;
2677 device->io_align = fs_info->sectorsize;
2678 device->sector_size = fs_info->sectorsize;
2679 device->total_bytes =
2680 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681 device->disk_total_bytes = device->total_bytes;
2682 device->commit_total_bytes = device->total_bytes;
2683 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685 device->mode = FMODE_EXCL;
2686 device->dev_stats_valid = 1;
2687 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689 if (seeding_dev) {
2690 btrfs_clear_sb_rdonly(sb);
2691
2692 /* GFP_KERNEL allocation must not be under device_list_mutex */
2693 seed_devices = btrfs_init_sprout(fs_info);
2694 if (IS_ERR(seed_devices)) {
2695 ret = PTR_ERR(seed_devices);
2696 btrfs_abort_transaction(trans, ret);
2697 goto error_trans;
2698 }
2699 }
2700
2701 mutex_lock(&fs_devices->device_list_mutex);
2702 if (seeding_dev) {
2703 btrfs_setup_sprout(fs_info, seed_devices);
2704 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 device);
2706 }
2707
2708 device->fs_devices = fs_devices;
2709
2710 mutex_lock(&fs_info->chunk_mutex);
2711 list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 fs_devices->num_devices++;
2714 fs_devices->open_devices++;
2715 fs_devices->rw_devices++;
2716 fs_devices->total_devices++;
2717 fs_devices->total_rw_bytes += device->total_bytes;
2718
2719 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721 if (!bdev_nonrot(bdev))
2722 fs_devices->rotating = true;
2723
2724 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725 btrfs_set_super_total_bytes(fs_info->super_copy,
2726 round_down(orig_super_total_bytes + device->total_bytes,
2727 fs_info->sectorsize));
2728
2729 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 btrfs_set_super_num_devices(fs_info->super_copy,
2731 orig_super_num_devices + 1);
2732
2733 /*
2734 * we've got more storage, clear any full flags on the space
2735 * infos
2736 */
2737 btrfs_clear_space_info_full(fs_info);
2738
2739 mutex_unlock(&fs_info->chunk_mutex);
2740
2741 /* Add sysfs device entry */
2742 btrfs_sysfs_add_device(device);
2743
2744 mutex_unlock(&fs_devices->device_list_mutex);
2745
2746 if (seeding_dev) {
2747 mutex_lock(&fs_info->chunk_mutex);
2748 ret = init_first_rw_device(trans);
2749 mutex_unlock(&fs_info->chunk_mutex);
2750 if (ret) {
2751 btrfs_abort_transaction(trans, ret);
2752 goto error_sysfs;
2753 }
2754 }
2755
2756 ret = btrfs_add_dev_item(trans, device);
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto error_sysfs;
2760 }
2761
2762 if (seeding_dev) {
2763 ret = btrfs_finish_sprout(trans);
2764 if (ret) {
2765 btrfs_abort_transaction(trans, ret);
2766 goto error_sysfs;
2767 }
2768
2769 /*
2770 * fs_devices now represents the newly sprouted filesystem and
2771 * its fsid has been changed by btrfs_sprout_splice().
2772 */
2773 btrfs_sysfs_update_sprout_fsid(fs_devices);
2774 }
2775
2776 ret = btrfs_commit_transaction(trans);
2777
2778 if (seeding_dev) {
2779 mutex_unlock(&uuid_mutex);
2780 up_write(&sb->s_umount);
2781 locked = false;
2782
2783 if (ret) /* transaction commit */
2784 return ret;
2785
2786 ret = btrfs_relocate_sys_chunks(fs_info);
2787 if (ret < 0)
2788 btrfs_handle_fs_error(fs_info, ret,
2789 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790 trans = btrfs_attach_transaction(root);
2791 if (IS_ERR(trans)) {
2792 if (PTR_ERR(trans) == -ENOENT)
2793 return 0;
2794 ret = PTR_ERR(trans);
2795 trans = NULL;
2796 goto error_sysfs;
2797 }
2798 ret = btrfs_commit_transaction(trans);
2799 }
2800
2801 /*
2802 * Now that we have written a new super block to this device, check all
2803 * other fs_devices list if device_path alienates any other scanned
2804 * device.
2805 * We can ignore the return value as it typically returns -EINVAL and
2806 * only succeeds if the device was an alien.
2807 */
2808 btrfs_forget_devices(device->devt);
2809
2810 /* Update ctime/mtime for blkid or udev */
2811 update_dev_time(device_path);
2812
2813 return ret;
2814
2815error_sysfs:
2816 btrfs_sysfs_remove_device(device);
2817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 mutex_lock(&fs_info->chunk_mutex);
2819 list_del_rcu(&device->dev_list);
2820 list_del(&device->dev_alloc_list);
2821 fs_info->fs_devices->num_devices--;
2822 fs_info->fs_devices->open_devices--;
2823 fs_info->fs_devices->rw_devices--;
2824 fs_info->fs_devices->total_devices--;
2825 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 btrfs_set_super_total_bytes(fs_info->super_copy,
2828 orig_super_total_bytes);
2829 btrfs_set_super_num_devices(fs_info->super_copy,
2830 orig_super_num_devices);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834 if (seeding_dev)
2835 btrfs_set_sb_rdonly(sb);
2836 if (trans)
2837 btrfs_end_transaction(trans);
2838error_free_zone:
2839 btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841 btrfs_free_device(device);
2842error:
2843 blkdev_put(bdev, FMODE_EXCL);
2844 if (locked) {
2845 mutex_unlock(&uuid_mutex);
2846 up_write(&sb->s_umount);
2847 }
2848 return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 struct btrfs_device *device)
2853{
2854 int ret;
2855 struct btrfs_path *path;
2856 struct btrfs_root *root = device->fs_info->chunk_root;
2857 struct btrfs_dev_item *dev_item;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860
2861 path = btrfs_alloc_path();
2862 if (!path)
2863 return -ENOMEM;
2864
2865 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 key.type = BTRFS_DEV_ITEM_KEY;
2867 key.offset = device->devid;
2868
2869 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 if (ret < 0)
2871 goto out;
2872
2873 if (ret > 0) {
2874 ret = -ENOENT;
2875 goto out;
2876 }
2877
2878 leaf = path->nodes[0];
2879 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881 btrfs_set_device_id(leaf, dev_item, device->devid);
2882 btrfs_set_device_type(leaf, dev_item, device->type);
2883 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886 btrfs_set_device_total_bytes(leaf, dev_item,
2887 btrfs_device_get_disk_total_bytes(device));
2888 btrfs_set_device_bytes_used(leaf, dev_item,
2889 btrfs_device_get_bytes_used(device));
2890 btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893 btrfs_free_path(path);
2894 return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898 struct btrfs_device *device, u64 new_size)
2899{
2900 struct btrfs_fs_info *fs_info = device->fs_info;
2901 struct btrfs_super_block *super_copy = fs_info->super_copy;
2902 u64 old_total;
2903 u64 diff;
2904 int ret;
2905
2906 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907 return -EACCES;
2908
2909 new_size = round_down(new_size, fs_info->sectorsize);
2910
2911 mutex_lock(&fs_info->chunk_mutex);
2912 old_total = btrfs_super_total_bytes(super_copy);
2913 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915 if (new_size <= device->total_bytes ||
2916 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917 mutex_unlock(&fs_info->chunk_mutex);
2918 return -EINVAL;
2919 }
2920
2921 btrfs_set_super_total_bytes(super_copy,
2922 round_down(old_total + diff, fs_info->sectorsize));
2923 device->fs_devices->total_rw_bytes += diff;
2924
2925 btrfs_device_set_total_bytes(device, new_size);
2926 btrfs_device_set_disk_total_bytes(device, new_size);
2927 btrfs_clear_space_info_full(device->fs_info);
2928 if (list_empty(&device->post_commit_list))
2929 list_add_tail(&device->post_commit_list,
2930 &trans->transaction->dev_update_list);
2931 mutex_unlock(&fs_info->chunk_mutex);
2932
2933 btrfs_reserve_chunk_metadata(trans, false);
2934 ret = btrfs_update_device(trans, device);
2935 btrfs_trans_release_chunk_metadata(trans);
2936
2937 return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942 struct btrfs_fs_info *fs_info = trans->fs_info;
2943 struct btrfs_root *root = fs_info->chunk_root;
2944 int ret;
2945 struct btrfs_path *path;
2946 struct btrfs_key key;
2947
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
2952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953 key.offset = chunk_offset;
2954 key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957 if (ret < 0)
2958 goto out;
2959 else if (ret > 0) { /* Logic error or corruption */
2960 btrfs_handle_fs_error(fs_info, -ENOENT,
2961 "Failed lookup while freeing chunk.");
2962 ret = -ENOENT;
2963 goto out;
2964 }
2965
2966 ret = btrfs_del_item(trans, root, path);
2967 if (ret < 0)
2968 btrfs_handle_fs_error(fs_info, ret,
2969 "Failed to delete chunk item.");
2970out:
2971 btrfs_free_path(path);
2972 return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977 struct btrfs_super_block *super_copy = fs_info->super_copy;
2978 struct btrfs_disk_key *disk_key;
2979 struct btrfs_chunk *chunk;
2980 u8 *ptr;
2981 int ret = 0;
2982 u32 num_stripes;
2983 u32 array_size;
2984 u32 len = 0;
2985 u32 cur;
2986 struct btrfs_key key;
2987
2988 lockdep_assert_held(&fs_info->chunk_mutex);
2989 array_size = btrfs_super_sys_array_size(super_copy);
2990
2991 ptr = super_copy->sys_chunk_array;
2992 cur = 0;
2993
2994 while (cur < array_size) {
2995 disk_key = (struct btrfs_disk_key *)ptr;
2996 btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998 len = sizeof(*disk_key);
2999
3000 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 chunk = (struct btrfs_chunk *)(ptr + len);
3002 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 len += btrfs_chunk_item_size(num_stripes);
3004 } else {
3005 ret = -EIO;
3006 break;
3007 }
3008 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009 key.offset == chunk_offset) {
3010 memmove(ptr, ptr + len, array_size - (cur + len));
3011 array_size -= len;
3012 btrfs_set_super_sys_array_size(super_copy, array_size);
3013 } else {
3014 ptr += len;
3015 cur += len;
3016 }
3017 }
3018 return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 u64 logical, u64 length)
3030{
3031 struct extent_map_tree *em_tree;
3032 struct extent_map *em;
3033
3034 em_tree = &fs_info->mapping_tree;
3035 read_lock(&em_tree->lock);
3036 em = lookup_extent_mapping(em_tree, logical, length);
3037 read_unlock(&em_tree->lock);
3038
3039 if (!em) {
3040 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 logical, length);
3042 return ERR_PTR(-EINVAL);
3043 }
3044
3045 if (em->start > logical || em->start + em->len < logical) {
3046 btrfs_crit(fs_info,
3047 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 logical, length, em->start, em->start + em->len);
3049 free_extent_map(em);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 /* callers are responsible for dropping em's ref. */
3054 return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 struct map_lookup *map, u64 chunk_offset)
3059{
3060 int i;
3061
3062 /*
3063 * Removing chunk items and updating the device items in the chunks btree
3064 * requires holding the chunk_mutex.
3065 * See the comment at btrfs_chunk_alloc() for the details.
3066 */
3067 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069 for (i = 0; i < map->num_stripes; i++) {
3070 int ret;
3071
3072 ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082 struct btrfs_fs_info *fs_info = trans->fs_info;
3083 struct extent_map *em;
3084 struct map_lookup *map;
3085 u64 dev_extent_len = 0;
3086 int i, ret = 0;
3087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090 if (IS_ERR(em)) {
3091 /*
3092 * This is a logic error, but we don't want to just rely on the
3093 * user having built with ASSERT enabled, so if ASSERT doesn't
3094 * do anything we still error out.
3095 */
3096 ASSERT(0);
3097 return PTR_ERR(em);
3098 }
3099 map = em->map_lookup;
3100
3101 /*
3102 * First delete the device extent items from the devices btree.
3103 * We take the device_list_mutex to avoid racing with the finishing phase
3104 * of a device replace operation. See the comment below before acquiring
3105 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 * because that can result in a deadlock when deleting the device extent
3107 * items from the devices btree - COWing an extent buffer from the btree
3108 * may result in allocating a new metadata chunk, which would attempt to
3109 * lock again fs_info->chunk_mutex.
3110 */
3111 mutex_lock(&fs_devices->device_list_mutex);
3112 for (i = 0; i < map->num_stripes; i++) {
3113 struct btrfs_device *device = map->stripes[i].dev;
3114 ret = btrfs_free_dev_extent(trans, device,
3115 map->stripes[i].physical,
3116 &dev_extent_len);
3117 if (ret) {
3118 mutex_unlock(&fs_devices->device_list_mutex);
3119 btrfs_abort_transaction(trans, ret);
3120 goto out;
3121 }
3122
3123 if (device->bytes_used > 0) {
3124 mutex_lock(&fs_info->chunk_mutex);
3125 btrfs_device_set_bytes_used(device,
3126 device->bytes_used - dev_extent_len);
3127 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128 btrfs_clear_space_info_full(fs_info);
3129 mutex_unlock(&fs_info->chunk_mutex);
3130 }
3131 }
3132 mutex_unlock(&fs_devices->device_list_mutex);
3133
3134 /*
3135 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 *
3137 * 1) Just like with the first phase of the chunk allocation, we must
3138 * reserve system space, do all chunk btree updates and deletions, and
3139 * update the system chunk array in the superblock while holding this
3140 * mutex. This is for similar reasons as explained on the comment at
3141 * the top of btrfs_chunk_alloc();
3142 *
3143 * 2) Prevent races with the final phase of a device replace operation
3144 * that replaces the device object associated with the map's stripes,
3145 * because the device object's id can change at any time during that
3146 * final phase of the device replace operation
3147 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 * replaced device and then see it with an ID of
3149 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 * the device item, which does not exists on the chunk btree.
3151 * The finishing phase of device replace acquires both the
3152 * device_list_mutex and the chunk_mutex, in that order, so we are
3153 * safe by just acquiring the chunk_mutex.
3154 */
3155 trans->removing_chunk = true;
3156 mutex_lock(&fs_info->chunk_mutex);
3157
3158 check_system_chunk(trans, map->type);
3159
3160 ret = remove_chunk_item(trans, map, chunk_offset);
3161 /*
3162 * Normally we should not get -ENOSPC since we reserved space before
3163 * through the call to check_system_chunk().
3164 *
3165 * Despite our system space_info having enough free space, we may not
3166 * be able to allocate extents from its block groups, because all have
3167 * an incompatible profile, which will force us to allocate a new system
3168 * block group with the right profile, or right after we called
3169 * check_system_space() above, a scrub turned the only system block group
3170 * with enough free space into RO mode.
3171 * This is explained with more detail at do_chunk_alloc().
3172 *
3173 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 */
3175 if (ret == -ENOSPC) {
3176 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 struct btrfs_block_group *sys_bg;
3178
3179 sys_bg = btrfs_create_chunk(trans, sys_flags);
3180 if (IS_ERR(sys_bg)) {
3181 ret = PTR_ERR(sys_bg);
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187 if (ret) {
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
3190 }
3191
3192 ret = remove_chunk_item(trans, map, chunk_offset);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197 } else if (ret) {
3198 btrfs_abort_transaction(trans, ret);
3199 goto out;
3200 }
3201
3202 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210 }
3211
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214
3215 /*
3216 * We are done with chunk btree updates and deletions, so release the
3217 * system space we previously reserved (with check_system_chunk()).
3218 */
3219 btrfs_trans_release_chunk_metadata(trans);
3220
3221 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222 if (ret) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226
3227out:
3228 if (trans->removing_chunk) {
3229 mutex_unlock(&fs_info->chunk_mutex);
3230 trans->removing_chunk = false;
3231 }
3232 /* once for us */
3233 free_extent_map(em);
3234 return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239 struct btrfs_root *root = fs_info->chunk_root;
3240 struct btrfs_trans_handle *trans;
3241 struct btrfs_block_group *block_group;
3242 u64 length;
3243 int ret;
3244
3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 btrfs_err(fs_info,
3247 "relocate: not supported on extent tree v2 yet");
3248 return -EINVAL;
3249 }
3250
3251 /*
3252 * Prevent races with automatic removal of unused block groups.
3253 * After we relocate and before we remove the chunk with offset
3254 * chunk_offset, automatic removal of the block group can kick in,
3255 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 *
3257 * Make sure to acquire this mutex before doing a tree search (dev
3258 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 * we release the path used to search the chunk/dev tree and before
3261 * the current task acquires this mutex and calls us.
3262 */
3263 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265 /* step one, relocate all the extents inside this chunk */
3266 btrfs_scrub_pause(fs_info);
3267 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268 btrfs_scrub_continue(fs_info);
3269 if (ret)
3270 return ret;
3271
3272 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 if (!block_group)
3274 return -ENOENT;
3275 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276 length = block_group->length;
3277 btrfs_put_block_group(block_group);
3278
3279 /*
3280 * On a zoned file system, discard the whole block group, this will
3281 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 * resetting the zone fails, don't treat it as a fatal problem from the
3283 * filesystem's point of view.
3284 */
3285 if (btrfs_is_zoned(fs_info)) {
3286 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 if (ret)
3288 btrfs_info(fs_info,
3289 "failed to reset zone %llu after relocation",
3290 chunk_offset);
3291 }
3292
3293 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 chunk_offset);
3295 if (IS_ERR(trans)) {
3296 ret = PTR_ERR(trans);
3297 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 return ret;
3299 }
3300
3301 /*
3302 * step two, delete the device extents and the
3303 * chunk tree entries
3304 */
3305 ret = btrfs_remove_chunk(trans, chunk_offset);
3306 btrfs_end_transaction(trans);
3307 return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312 struct btrfs_root *chunk_root = fs_info->chunk_root;
3313 struct btrfs_path *path;
3314 struct extent_buffer *leaf;
3315 struct btrfs_chunk *chunk;
3316 struct btrfs_key key;
3317 struct btrfs_key found_key;
3318 u64 chunk_type;
3319 bool retried = false;
3320 int failed = 0;
3321 int ret;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
3327again:
3328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 key.offset = (u64)-1;
3330 key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332 while (1) {
3333 mutex_lock(&fs_info->reclaim_bgs_lock);
3334 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335 if (ret < 0) {
3336 mutex_unlock(&fs_info->reclaim_bgs_lock);
3337 goto error;
3338 }
3339 BUG_ON(ret == 0); /* Corruption */
3340
3341 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 key.type);
3343 if (ret)
3344 mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 if (ret < 0)
3346 goto error;
3347 if (ret > 0)
3348 break;
3349
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 struct btrfs_chunk);
3355 chunk_type = btrfs_chunk_type(leaf, chunk);
3356 btrfs_release_path(path);
3357
3358 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360 if (ret == -ENOSPC)
3361 failed++;
3362 else
3363 BUG_ON(ret);
3364 }
3365 mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367 if (found_key.offset == 0)
3368 break;
3369 key.offset = found_key.offset - 1;
3370 }
3371 ret = 0;
3372 if (failed && !retried) {
3373 failed = 0;
3374 retried = true;
3375 goto again;
3376 } else if (WARN_ON(failed && retried)) {
3377 ret = -ENOSPC;
3378 }
3379error:
3380 btrfs_free_path(path);
3381 return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 u64 chunk_offset)
3391{
3392 struct btrfs_block_group *cache;
3393 u64 bytes_used;
3394 u64 chunk_type;
3395
3396 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 ASSERT(cache);
3398 chunk_type = cache->flags;
3399 btrfs_put_block_group(cache);
3400
3401 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 return 0;
3403
3404 spin_lock(&fs_info->data_sinfo->lock);
3405 bytes_used = fs_info->data_sinfo->bytes_used;
3406 spin_unlock(&fs_info->data_sinfo->lock);
3407
3408 if (!bytes_used) {
3409 struct btrfs_trans_handle *trans;
3410 int ret;
3411
3412 trans = btrfs_join_transaction(fs_info->tree_root);
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
3415
3416 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 btrfs_end_transaction(trans);
3418 if (ret < 0)
3419 return ret;
3420 return 1;
3421 }
3422
3423 return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427 struct btrfs_balance_control *bctl)
3428{
3429 struct btrfs_root *root = fs_info->tree_root;
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_balance_item *item;
3432 struct btrfs_disk_balance_args disk_bargs;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key;
3436 int ret, err;
3437
3438 path = btrfs_alloc_path();
3439 if (!path)
3440 return -ENOMEM;
3441
3442 trans = btrfs_start_transaction(root, 0);
3443 if (IS_ERR(trans)) {
3444 btrfs_free_path(path);
3445 return PTR_ERR(trans);
3446 }
3447
3448 key.objectid = BTRFS_BALANCE_OBJECTID;
3449 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450 key.offset = 0;
3451
3452 ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 sizeof(*item));
3454 if (ret)
3455 goto out;
3456
3457 leaf = path->nodes[0];
3458 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469 btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471 btrfs_mark_buffer_dirty(leaf);
3472out:
3473 btrfs_free_path(path);
3474 err = btrfs_commit_transaction(trans);
3475 if (err && !ret)
3476 ret = err;
3477 return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482 struct btrfs_root *root = fs_info->tree_root;
3483 struct btrfs_trans_handle *trans;
3484 struct btrfs_path *path;
3485 struct btrfs_key key;
3486 int ret, err;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493 if (IS_ERR(trans)) {
3494 btrfs_free_path(path);
3495 return PTR_ERR(trans);
3496 }
3497
3498 key.objectid = BTRFS_BALANCE_OBJECTID;
3499 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500 key.offset = 0;
3501
3502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 if (ret < 0)
3504 goto out;
3505 if (ret > 0) {
3506 ret = -ENOENT;
3507 goto out;
3508 }
3509
3510 ret = btrfs_del_item(trans, root, path);
3511out:
3512 btrfs_free_path(path);
3513 err = btrfs_commit_transaction(trans);
3514 if (err && !ret)
3515 ret = err;
3516 return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525 /*
3526 * Turn on soft mode for chunk types that were being converted.
3527 */
3528 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535 /*
3536 * Turn on usage filter if is not already used. The idea is
3537 * that chunks that we have already balanced should be
3538 * reasonably full. Don't do it for chunks that are being
3539 * converted - that will keep us from relocating unconverted
3540 * (albeit full) chunks.
3541 */
3542 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->data.usage = 90;
3547 }
3548 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 bctl->sys.usage = 90;
3553 }
3554 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 bctl->meta.usage = 90;
3559 }
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568 int ret;
3569
3570 BUG_ON(!fs_info->balance_ctl);
3571
3572 spin_lock(&fs_info->balance_lock);
3573 fs_info->balance_ctl = NULL;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 kfree(bctl);
3577 ret = del_balance_item(fs_info);
3578 if (ret)
3579 btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters. Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587 struct btrfs_balance_args *bargs)
3588{
3589 chunk_type = chunk_to_extended(chunk_type) &
3590 BTRFS_EXTENDED_PROFILE_MASK;
3591
3592 if (bargs->profiles & chunk_type)
3593 return 0;
3594
3595 return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599 struct btrfs_balance_args *bargs)
3600{
3601 struct btrfs_block_group *cache;
3602 u64 chunk_used;
3603 u64 user_thresh_min;
3604 u64 user_thresh_max;
3605 int ret = 1;
3606
3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608 chunk_used = cache->used;
3609
3610 if (bargs->usage_min == 0)
3611 user_thresh_min = 0;
3612 else
3613 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615 if (bargs->usage_max == 0)
3616 user_thresh_max = 1;
3617 else if (bargs->usage_max > 100)
3618 user_thresh_max = cache->length;
3619 else
3620 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630 u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632 struct btrfs_block_group *cache;
3633 u64 chunk_used, user_thresh;
3634 int ret = 1;
3635
3636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637 chunk_used = cache->used;
3638
3639 if (bargs->usage_min == 0)
3640 user_thresh = 1;
3641 else if (bargs->usage > 100)
3642 user_thresh = cache->length;
3643 else
3644 user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646 if (chunk_used < user_thresh)
3647 ret = 0;
3648
3649 btrfs_put_block_group(cache);
3650 return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654 struct btrfs_chunk *chunk,
3655 struct btrfs_balance_args *bargs)
3656{
3657 struct btrfs_stripe *stripe;
3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 int i;
3660
3661 for (i = 0; i < num_stripes; i++) {
3662 stripe = btrfs_stripe_nr(chunk, i);
3663 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 return 0;
3665 }
3666
3667 return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672 const int index = btrfs_bg_flags_to_raid_index(type);
3673 const int ncopies = btrfs_raid_array[index].ncopies;
3674 const int nparity = btrfs_raid_array[index].nparity;
3675
3676 return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681 struct btrfs_chunk *chunk,
3682 struct btrfs_balance_args *bargs)
3683{
3684 struct btrfs_stripe *stripe;
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 u64 stripe_offset;
3687 u64 stripe_length;
3688 u64 type;
3689 int factor;
3690 int i;
3691
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 return 0;
3694
3695 type = btrfs_chunk_type(leaf, chunk);
3696 factor = calc_data_stripes(type, num_stripes);
3697
3698 for (i = 0; i < num_stripes; i++) {
3699 stripe = btrfs_stripe_nr(chunk, i);
3700 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 continue;
3702
3703 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 stripe_length = btrfs_chunk_length(leaf, chunk);
3705 stripe_length = div_u64(stripe_length, factor);
3706
3707 if (stripe_offset < bargs->pend &&
3708 stripe_offset + stripe_length > bargs->pstart)
3709 return 0;
3710 }
3711
3712 return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 struct btrfs_chunk *chunk,
3718 u64 chunk_offset,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (chunk_offset < bargs->vend &&
3722 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 /* at least part of the chunk is inside this vrange */
3724 return 0;
3725
3726 return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk,
3731 struct btrfs_balance_args *bargs)
3732{
3733 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735 if (bargs->stripes_min <= num_stripes
3736 && num_stripes <= bargs->stripes_max)
3737 return 0;
3738
3739 return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743 struct btrfs_balance_args *bargs)
3744{
3745 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 return 0;
3747
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->target == chunk_type)
3752 return 1;
3753
3754 return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758 struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760 struct btrfs_fs_info *fs_info = leaf->fs_info;
3761 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762 struct btrfs_balance_args *bargs = NULL;
3763 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765 /* type filter */
3766 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 return 0;
3769 }
3770
3771 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 bargs = &bctl->data;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 bargs = &bctl->sys;
3775 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 bargs = &bctl->meta;
3777
3778 /* profiles filter */
3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 chunk_profiles_filter(chunk_type, bargs)) {
3781 return 0;
3782 }
3783
3784 /* usage filter */
3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787 return 0;
3788 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790 return 0;
3791 }
3792
3793 /* devid filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 chunk_devid_filter(leaf, chunk, bargs)) {
3796 return 0;
3797 }
3798
3799 /* drange filter, makes sense only with devid filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801 chunk_drange_filter(leaf, chunk, bargs)) {
3802 return 0;
3803 }
3804
3805 /* vrange filter */
3806 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 return 0;
3809 }
3810
3811 /* stripes filter */
3812 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 return 0;
3815 }
3816
3817 /* soft profile changing mode */
3818 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 chunk_soft_convert_filter(chunk_type, bargs)) {
3820 return 0;
3821 }
3822
3823 /*
3824 * limited by count, must be the last filter
3825 */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 if (bargs->limit == 0)
3828 return 0;
3829 else
3830 bargs->limit--;
3831 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 /*
3833 * Same logic as the 'limit' filter; the minimum cannot be
3834 * determined here because we do not have the global information
3835 * about the count of all chunks that satisfy the filters.
3836 */
3837 if (bargs->limit_max == 0)
3838 return 0;
3839 else
3840 bargs->limit_max--;
3841 }
3842
3843 return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849 struct btrfs_root *chunk_root = fs_info->chunk_root;
3850 u64 chunk_type;
3851 struct btrfs_chunk *chunk;
3852 struct btrfs_path *path = NULL;
3853 struct btrfs_key key;
3854 struct btrfs_key found_key;
3855 struct extent_buffer *leaf;
3856 int slot;
3857 int ret;
3858 int enospc_errors = 0;
3859 bool counting = true;
3860 /* The single value limit and min/max limits use the same bytes in the */
3861 u64 limit_data = bctl->data.limit;
3862 u64 limit_meta = bctl->meta.limit;
3863 u64 limit_sys = bctl->sys.limit;
3864 u32 count_data = 0;
3865 u32 count_meta = 0;
3866 u32 count_sys = 0;
3867 int chunk_reserved = 0;
3868
3869 path = btrfs_alloc_path();
3870 if (!path) {
3871 ret = -ENOMEM;
3872 goto error;
3873 }
3874
3875 /* zero out stat counters */
3876 spin_lock(&fs_info->balance_lock);
3877 memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 spin_unlock(&fs_info->balance_lock);
3879again:
3880 if (!counting) {
3881 /*
3882 * The single value limit and min/max limits use the same bytes
3883 * in the
3884 */
3885 bctl->data.limit = limit_data;
3886 bctl->meta.limit = limit_meta;
3887 bctl->sys.limit = limit_sys;
3888 }
3889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 key.offset = (u64)-1;
3891 key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893 while (1) {
3894 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895 atomic_read(&fs_info->balance_cancel_req)) {
3896 ret = -ECANCELED;
3897 goto error;
3898 }
3899
3900 mutex_lock(&fs_info->reclaim_bgs_lock);
3901 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902 if (ret < 0) {
3903 mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 goto error;
3905 }
3906
3907 /*
3908 * this shouldn't happen, it means the last relocate
3909 * failed
3910 */
3911 if (ret == 0)
3912 BUG(); /* FIXME break ? */
3913
3914 ret = btrfs_previous_item(chunk_root, path, 0,
3915 BTRFS_CHUNK_ITEM_KEY);
3916 if (ret) {
3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 ret = 0;
3919 break;
3920 }
3921
3922 leaf = path->nodes[0];
3923 slot = path->slots[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926 if (found_key.objectid != key.objectid) {
3927 mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 break;
3929 }
3930
3931 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932 chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934 if (!counting) {
3935 spin_lock(&fs_info->balance_lock);
3936 bctl->stat.considered++;
3937 spin_unlock(&fs_info->balance_lock);
3938 }
3939
3940 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942 btrfs_release_path(path);
3943 if (!ret) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 goto loop;
3946 }
3947
3948 if (counting) {
3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.expected++;
3952 spin_unlock(&fs_info->balance_lock);
3953
3954 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 count_data++;
3956 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 count_sys++;
3958 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 count_meta++;
3960
3961 goto loop;
3962 }
3963
3964 /*
3965 * Apply limit_min filter, no need to check if the LIMITS
3966 * filter is used, limit_min is 0 by default
3967 */
3968 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 count_data < bctl->data.limit_min)
3970 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 count_meta < bctl->meta.limit_min)
3972 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 count_sys < bctl->sys.limit_min)) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 goto loop;
3976 }
3977
3978 if (!chunk_reserved) {
3979 /*
3980 * We may be relocating the only data chunk we have,
3981 * which could potentially end up with losing data's
3982 * raid profile, so lets allocate an empty one in
3983 * advance.
3984 */
3985 ret = btrfs_may_alloc_data_chunk(fs_info,
3986 found_key.offset);
3987 if (ret < 0) {
3988 mutex_unlock(&fs_info->reclaim_bgs_lock);
3989 goto error;
3990 } else if (ret == 1) {
3991 chunk_reserved = 1;
3992 }
3993 }
3994
3995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996 mutex_unlock(&fs_info->reclaim_bgs_lock);
3997 if (ret == -ENOSPC) {
3998 enospc_errors++;
3999 } else if (ret == -ETXTBSY) {
4000 btrfs_info(fs_info,
4001 "skipping relocation of block group %llu due to active swapfile",
4002 found_key.offset);
4003 ret = 0;
4004 } else if (ret) {
4005 goto error;
4006 } else {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.completed++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
4011loop:
4012 if (found_key.offset == 0)
4013 break;
4014 key.offset = found_key.offset - 1;
4015 }
4016
4017 if (counting) {
4018 btrfs_release_path(path);
4019 counting = false;
4020 goto again;
4021 }
4022error:
4023 btrfs_free_path(path);
4024 if (enospc_errors) {
4025 btrfs_info(fs_info, "%d enospc errors during balance",
4026 enospc_errors);
4027 if (!ret)
4028 ret = -ENOSPC;
4029 }
4030
4031 return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags: profile to validate
4038 * @extended: if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047 /* 1) check that all other bits are zeroed */
4048 if (flags & ~mask)
4049 return 0;
4050
4051 /* 2) see if profile is reduced */
4052 if (flags == 0)
4053 return !extended; /* "0" is valid for usual profiles */
4054
4055 return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060 /* cancel requested || normal exit path */
4061 return atomic_read(&fs_info->balance_cancel_req) ||
4062 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 const struct btrfs_balance_args *bargs,
4072 u64 allowed, const char *type)
4073{
4074 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 return true;
4076
4077 /* Profile is valid and does not have bits outside of the allowed set */
4078 if (alloc_profile_is_valid(bargs->target, 1) &&
4079 (bargs->target & ~allowed) == 0)
4080 return true;
4081
4082 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 type, btrfs_bg_type_to_raid_name(bargs->target));
4084 return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 u32 size_buf)
4094{
4095 int ret;
4096 u32 size_bp = size_buf;
4097 char *bp = buf;
4098 u64 flags = bargs->flags;
4099 char tmp_buf[128] = {'\0'};
4100
4101 if (!flags)
4102 return;
4103
4104#define CHECK_APPEND_NOARG(a) \
4105 do { \
4106 ret = snprintf(bp, size_bp, (a)); \
4107 if (ret < 0 || ret >= size_bp) \
4108 goto out_overflow; \
4109 size_bp -= ret; \
4110 bp += ret; \
4111 } while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1) \
4114 do { \
4115 ret = snprintf(bp, size_bp, (a), (v1)); \
4116 if (ret < 0 || ret >= size_bp) \
4117 goto out_overflow; \
4118 size_bp -= ret; \
4119 bp += ret; \
4120 } while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2) \
4123 do { \
4124 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4125 if (ret < 0 || ret >= size_bp) \
4126 goto out_overflow; \
4127 size_bp -= ret; \
4128 bp += ret; \
4129 } while (0)
4130
4131 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 CHECK_APPEND_1ARG("convert=%s,",
4133 btrfs_bg_type_to_raid_name(bargs->target));
4134
4135 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 CHECK_APPEND_NOARG("soft,");
4137
4138 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 sizeof(tmp_buf));
4141 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 }
4143
4144 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 CHECK_APPEND_2ARG("usage=%u..%u,",
4149 bargs->usage_min, bargs->usage_max);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 bargs->pstart, bargs->pend);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 bargs->vstart, bargs->vend);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 CHECK_APPEND_2ARG("limit=%u..%u,",
4167 bargs->limit_min, bargs->limit_max);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179 if (size_bp < size_buf)
4180 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 else
4182 buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187 u32 size_buf = 1024;
4188 char tmp_buf[192] = {'\0'};
4189 char *buf;
4190 char *bp;
4191 u32 size_bp = size_buf;
4192 int ret;
4193 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195 buf = kzalloc(size_buf, GFP_KERNEL);
4196 if (!buf)
4197 return;
4198
4199 bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1) \
4202 do { \
4203 ret = snprintf(bp, size_bp, (a), (v1)); \
4204 if (ret < 0 || ret >= size_bp) \
4205 goto out_overflow; \
4206 size_bp -= ret; \
4207 bp += ret; \
4208 } while (0)
4209
4210 if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 CHECK_APPEND_1ARG("%s", "-f ");
4212
4213 if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 }
4217
4218 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 }
4222
4223 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 }
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232 if (size_bp < size_buf)
4233 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 btrfs_info(fs_info, "balance: %s %s",
4235 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 "resume" : "start", buf);
4237
4238 kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 struct btrfs_balance_control *bctl,
4246 struct btrfs_ioctl_balance_args *bargs)
4247{
4248 u64 meta_target, data_target;
4249 u64 allowed;
4250 int mixed = 0;
4251 int ret;
4252 u64 num_devices;
4253 unsigned seq;
4254 bool reducing_redundancy;
4255 int i;
4256
4257 if (btrfs_fs_closing(fs_info) ||
4258 atomic_read(&fs_info->balance_pause_req) ||
4259 btrfs_should_cancel_balance(fs_info)) {
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
4264 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 mixed = 1;
4267
4268 /*
4269 * In case of mixed groups both data and meta should be picked,
4270 * and identical options should be given for both of them.
4271 */
4272 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 if (mixed && (bctl->flags & allowed)) {
4274 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277 btrfs_err(fs_info,
4278 "balance: mixed groups data and metadata options must be the same");
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282 }
4283
4284 /*
4285 * rw_devices will not change at the moment, device add/delete/replace
4286 * are exclusive
4287 */
4288 num_devices = fs_info->fs_devices->rw_devices;
4289
4290 /*
4291 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 * special bit for it, to make it easier to distinguish. Thus we need
4293 * to set it manually, or balance would refuse the profile.
4294 */
4295 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 if (num_devices >= btrfs_raid_array[i].devs_min)
4298 allowed |= btrfs_raid_array[i].bg_flag;
4299
4300 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
4307 /*
4308 * Allow to reduce metadata or system integrity only if force set for
4309 * profiles with redundancy (copies, parity)
4310 */
4311 allowed = 0;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 if (btrfs_raid_array[i].ncopies >= 2 ||
4314 btrfs_raid_array[i].tolerated_failures >= 1)
4315 allowed |= btrfs_raid_array[i].bg_flag;
4316 }
4317 do {
4318 seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 (fs_info->avail_system_alloc_bits & allowed) &&
4322 !(bctl->sys.target & allowed)) ||
4323 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_metadata_alloc_bits & allowed) &&
4325 !(bctl->meta.target & allowed)))
4326 reducing_redundancy = true;
4327 else
4328 reducing_redundancy = false;
4329
4330 /* if we're not converting, the target field is uninitialized */
4331 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 bctl->data.target : fs_info->avail_data_alloc_bits;
4335 } while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337 if (reducing_redundancy) {
4338 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 btrfs_info(fs_info,
4340 "balance: force reducing metadata redundancy");
4341 } else {
4342 btrfs_err(fs_info,
4343 "balance: reduces metadata redundancy, use --force if you want this");
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351 btrfs_warn(fs_info,
4352 "balance: metadata profile %s has lower redundancy than data profile %s",
4353 btrfs_bg_type_to_raid_name(meta_target),
4354 btrfs_bg_type_to_raid_name(data_target));
4355 }
4356
4357 ret = insert_balance_item(fs_info, bctl);
4358 if (ret && ret != -EEXIST)
4359 goto out;
4360
4361 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 BUG_ON(ret == -EEXIST);
4363 BUG_ON(fs_info->balance_ctl);
4364 spin_lock(&fs_info->balance_lock);
4365 fs_info->balance_ctl = bctl;
4366 spin_unlock(&fs_info->balance_lock);
4367 } else {
4368 BUG_ON(ret != -EEXIST);
4369 spin_lock(&fs_info->balance_lock);
4370 update_balance_args(bctl);
4371 spin_unlock(&fs_info->balance_lock);
4372 }
4373
4374 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376 describe_balance_start_or_resume(fs_info);
4377 mutex_unlock(&fs_info->balance_mutex);
4378
4379 ret = __btrfs_balance(fs_info);
4380
4381 mutex_lock(&fs_info->balance_mutex);
4382 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383 btrfs_info(fs_info, "balance: paused");
4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 }
4386 /*
4387 * Balance can be canceled by:
4388 *
4389 * - Regular cancel request
4390 * Then ret == -ECANCELED and balance_cancel_req > 0
4391 *
4392 * - Fatal signal to "btrfs" process
4393 * Either the signal caught by wait_reserve_ticket() and callers
4394 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 * got -ECANCELED.
4396 * Either way, in this case balance_cancel_req = 0, and
4397 * ret == -EINTR or ret == -ECANCELED.
4398 *
4399 * So here we only check the return value to catch canceled balance.
4400 */
4401 else if (ret == -ECANCELED || ret == -EINTR)
4402 btrfs_info(fs_info, "balance: canceled");
4403 else
4404 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408 if (bargs) {
4409 memset(bargs, 0, sizeof(*bargs));
4410 btrfs_update_ioctl_balance_args(fs_info, bargs);
4411 }
4412
4413 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 balance_need_close(fs_info)) {
4415 reset_balance_state(fs_info);
4416 btrfs_exclop_finish(fs_info);
4417 }
4418
4419 wake_up(&fs_info->balance_wait_q);
4420
4421 return ret;
4422out:
4423 if (bctl->flags & BTRFS_BALANCE_RESUME)
4424 reset_balance_state(fs_info);
4425 else
4426 kfree(bctl);
4427 btrfs_exclop_finish(fs_info);
4428
4429 return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434 struct btrfs_fs_info *fs_info = data;
4435 int ret = 0;
4436
4437 sb_start_write(fs_info->sb);
4438 mutex_lock(&fs_info->balance_mutex);
4439 if (fs_info->balance_ctl)
4440 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441 mutex_unlock(&fs_info->balance_mutex);
4442 sb_end_write(fs_info->sb);
4443
4444 return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449 struct task_struct *tsk;
4450
4451 mutex_lock(&fs_info->balance_mutex);
4452 if (!fs_info->balance_ctl) {
4453 mutex_unlock(&fs_info->balance_mutex);
4454 return 0;
4455 }
4456 mutex_unlock(&fs_info->balance_mutex);
4457
4458 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459 btrfs_info(fs_info, "balance: resume skipped");
4460 return 0;
4461 }
4462
4463 spin_lock(&fs_info->super_lock);
4464 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 spin_unlock(&fs_info->super_lock);
4467 /*
4468 * A ro->rw remount sequence should continue with the paused balance
4469 * regardless of who pauses it, system or the user as of now, so set
4470 * the resume flag.
4471 */
4472 spin_lock(&fs_info->balance_lock);
4473 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 spin_unlock(&fs_info->balance_lock);
4475
4476 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477 return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482 struct btrfs_balance_control *bctl;
4483 struct btrfs_balance_item *item;
4484 struct btrfs_disk_balance_args disk_bargs;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_key key;
4488 int ret;
4489
4490 path = btrfs_alloc_path();
4491 if (!path)
4492 return -ENOMEM;
4493
4494 key.objectid = BTRFS_BALANCE_OBJECTID;
4495 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496 key.offset = 0;
4497
4498 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499 if (ret < 0)
4500 goto out;
4501 if (ret > 0) { /* ret = -ENOENT; */
4502 ret = 0;
4503 goto out;
4504 }
4505
4506 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 if (!bctl) {
4508 ret = -ENOMEM;
4509 goto out;
4510 }
4511
4512 leaf = path->nodes[0];
4513 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515 bctl->flags = btrfs_balance_flags(leaf, item);
4516 bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518 btrfs_balance_data(leaf, item, &disk_bargs);
4519 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 btrfs_balance_meta(leaf, item, &disk_bargs);
4521 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 btrfs_balance_sys(leaf, item, &disk_bargs);
4523 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525 /*
4526 * This should never happen, as the paused balance state is recovered
4527 * during mount without any chance of other exclusive ops to collide.
4528 *
4529 * This gives the exclusive op status to balance and keeps in paused
4530 * state until user intervention (cancel or umount). If the ownership
4531 * cannot be assigned, show a message but do not fail. The balance
4532 * is in a paused state and must have fs_info::balance_ctl properly
4533 * set up.
4534 */
4535 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536 btrfs_warn(fs_info,
4537 "balance: cannot set exclusive op status, resume manually");
4538
4539 btrfs_release_path(path);
4540
4541 mutex_lock(&fs_info->balance_mutex);
4542 BUG_ON(fs_info->balance_ctl);
4543 spin_lock(&fs_info->balance_lock);
4544 fs_info->balance_ctl = bctl;
4545 spin_unlock(&fs_info->balance_lock);
4546 mutex_unlock(&fs_info->balance_mutex);
4547out:
4548 btrfs_free_path(path);
4549 return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554 int ret = 0;
4555
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
4562 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563 atomic_inc(&fs_info->balance_pause_req);
4564 mutex_unlock(&fs_info->balance_mutex);
4565
4566 wait_event(fs_info->balance_wait_q,
4567 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 /* we are good with balance_ctl ripped off from under us */
4571 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572 atomic_dec(&fs_info->balance_pause_req);
4573 } else {
4574 ret = -ENOTCONN;
4575 }
4576
4577 mutex_unlock(&fs_info->balance_mutex);
4578 return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (!fs_info->balance_ctl) {
4585 mutex_unlock(&fs_info->balance_mutex);
4586 return -ENOTCONN;
4587 }
4588
4589 /*
4590 * A paused balance with the item stored on disk can be resumed at
4591 * mount time if the mount is read-write. Otherwise it's still paused
4592 * and we must not allow cancelling as it deletes the item.
4593 */
4594 if (sb_rdonly(fs_info->sb)) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -EROFS;
4597 }
4598
4599 atomic_inc(&fs_info->balance_cancel_req);
4600 /*
4601 * if we are running just wait and return, balance item is
4602 * deleted in btrfs_balance in this case
4603 */
4604 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605 mutex_unlock(&fs_info->balance_mutex);
4606 wait_event(fs_info->balance_wait_q,
4607 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 mutex_lock(&fs_info->balance_mutex);
4609 } else {
4610 mutex_unlock(&fs_info->balance_mutex);
4611 /*
4612 * Lock released to allow other waiters to continue, we'll
4613 * reexamine the status again.
4614 */
4615 mutex_lock(&fs_info->balance_mutex);
4616
4617 if (fs_info->balance_ctl) {
4618 reset_balance_state(fs_info);
4619 btrfs_exclop_finish(fs_info);
4620 btrfs_info(fs_info, "balance: canceled");
4621 }
4622 }
4623
4624 BUG_ON(fs_info->balance_ctl ||
4625 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626 atomic_dec(&fs_info->balance_cancel_req);
4627 mutex_unlock(&fs_info->balance_mutex);
4628 return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633 struct btrfs_fs_info *fs_info = data;
4634 struct btrfs_root *root = fs_info->tree_root;
4635 struct btrfs_key key;
4636 struct btrfs_path *path = NULL;
4637 int ret = 0;
4638 struct extent_buffer *eb;
4639 int slot;
4640 struct btrfs_root_item root_item;
4641 u32 item_size;
4642 struct btrfs_trans_handle *trans = NULL;
4643 bool closing = false;
4644
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 ret = -ENOMEM;
4648 goto out;
4649 }
4650
4651 key.objectid = 0;
4652 key.type = BTRFS_ROOT_ITEM_KEY;
4653 key.offset = 0;
4654
4655 while (1) {
4656 if (btrfs_fs_closing(fs_info)) {
4657 closing = true;
4658 break;
4659 }
4660 ret = btrfs_search_forward(root, &key, path,
4661 BTRFS_OLDEST_GENERATION);
4662 if (ret) {
4663 if (ret > 0)
4664 ret = 0;
4665 break;
4666 }
4667
4668 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 goto skip;
4673
4674 eb = path->nodes[0];
4675 slot = path->slots[0];
4676 item_size = btrfs_item_size(eb, slot);
4677 if (item_size < sizeof(root_item))
4678 goto skip;
4679
4680 read_extent_buffer(eb, &root_item,
4681 btrfs_item_ptr_offset(eb, slot),
4682 (int)sizeof(root_item));
4683 if (btrfs_root_refs(&root_item) == 0)
4684 goto skip;
4685
4686 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 if (trans)
4689 goto update_tree;
4690
4691 btrfs_release_path(path);
4692 /*
4693 * 1 - subvol uuid item
4694 * 1 - received_subvol uuid item
4695 */
4696 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 if (IS_ERR(trans)) {
4698 ret = PTR_ERR(trans);
4699 break;
4700 }
4701 continue;
4702 } else {
4703 goto skip;
4704 }
4705update_tree:
4706 btrfs_release_path(path);
4707 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709 BTRFS_UUID_KEY_SUBVOL,
4710 key.objectid);
4711 if (ret < 0) {
4712 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713 ret);
4714 break;
4715 }
4716 }
4717
4718 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719 ret = btrfs_uuid_tree_add(trans,
4720 root_item.received_uuid,
4721 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 key.objectid);
4723 if (ret < 0) {
4724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725 ret);
4726 break;
4727 }
4728 }
4729
4730skip:
4731 btrfs_release_path(path);
4732 if (trans) {
4733 ret = btrfs_end_transaction(trans);
4734 trans = NULL;
4735 if (ret)
4736 break;
4737 }
4738
4739 if (key.offset < (u64)-1) {
4740 key.offset++;
4741 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 key.offset = 0;
4743 key.type = BTRFS_ROOT_ITEM_KEY;
4744 } else if (key.objectid < (u64)-1) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 key.objectid++;
4748 } else {
4749 break;
4750 }
4751 cond_resched();
4752 }
4753
4754out:
4755 btrfs_free_path(path);
4756 if (trans && !IS_ERR(trans))
4757 btrfs_end_transaction(trans);
4758 if (ret)
4759 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760 else if (!closing)
4761 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762 up(&fs_info->uuid_tree_rescan_sem);
4763 return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *tree_root = fs_info->tree_root;
4770 struct btrfs_root *uuid_root;
4771 struct task_struct *task;
4772 int ret;
4773
4774 /*
4775 * 1 - root node
4776 * 1 - root item
4777 */
4778 trans = btrfs_start_transaction(tree_root, 2);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
4782 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783 if (IS_ERR(uuid_root)) {
4784 ret = PTR_ERR(uuid_root);
4785 btrfs_abort_transaction(trans, ret);
4786 btrfs_end_transaction(trans);
4787 return ret;
4788 }
4789
4790 fs_info->uuid_root = uuid_root;
4791
4792 ret = btrfs_commit_transaction(trans);
4793 if (ret)
4794 return ret;
4795
4796 down(&fs_info->uuid_tree_rescan_sem);
4797 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 if (IS_ERR(task)) {
4799 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800 btrfs_warn(fs_info, "failed to start uuid_scan task");
4801 up(&fs_info->uuid_tree_rescan_sem);
4802 return PTR_ERR(task);
4803 }
4804
4805 return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815 struct btrfs_fs_info *fs_info = device->fs_info;
4816 struct btrfs_root *root = fs_info->dev_root;
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_dev_extent *dev_extent = NULL;
4819 struct btrfs_path *path;
4820 u64 length;
4821 u64 chunk_offset;
4822 int ret;
4823 int slot;
4824 int failed = 0;
4825 bool retried = false;
4826 struct extent_buffer *l;
4827 struct btrfs_key key;
4828 struct btrfs_super_block *super_copy = fs_info->super_copy;
4829 u64 old_total = btrfs_super_total_bytes(super_copy);
4830 u64 old_size = btrfs_device_get_total_bytes(device);
4831 u64 diff;
4832 u64 start;
4833
4834 new_size = round_down(new_size, fs_info->sectorsize);
4835 start = new_size;
4836 diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839 return -EINVAL;
4840
4841 path = btrfs_alloc_path();
4842 if (!path)
4843 return -ENOMEM;
4844
4845 path->reada = READA_BACK;
4846
4847 trans = btrfs_start_transaction(root, 0);
4848 if (IS_ERR(trans)) {
4849 btrfs_free_path(path);
4850 return PTR_ERR(trans);
4851 }
4852
4853 mutex_lock(&fs_info->chunk_mutex);
4854
4855 btrfs_device_set_total_bytes(device, new_size);
4856 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857 device->fs_devices->total_rw_bytes -= diff;
4858 atomic64_sub(diff, &fs_info->free_chunk_space);
4859 }
4860
4861 /*
4862 * Once the device's size has been set to the new size, ensure all
4863 * in-memory chunks are synced to disk so that the loop below sees them
4864 * and relocates them accordingly.
4865 */
4866 if (contains_pending_extent(device, &start, diff)) {
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 ret = btrfs_commit_transaction(trans);
4869 if (ret)
4870 goto done;
4871 } else {
4872 mutex_unlock(&fs_info->chunk_mutex);
4873 btrfs_end_transaction(trans);
4874 }
4875
4876again:
4877 key.objectid = device->devid;
4878 key.offset = (u64)-1;
4879 key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881 do {
4882 mutex_lock(&fs_info->reclaim_bgs_lock);
4883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884 if (ret < 0) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 goto done;
4887 }
4888
4889 ret = btrfs_previous_item(root, path, 0, key.type);
4890 if (ret) {
4891 mutex_unlock(&fs_info->reclaim_bgs_lock);
4892 if (ret < 0)
4893 goto done;
4894 ret = 0;
4895 btrfs_release_path(path);
4896 break;
4897 }
4898
4899 l = path->nodes[0];
4900 slot = path->slots[0];
4901 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903 if (key.objectid != device->devid) {
4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 btrfs_release_path(path);
4906 break;
4907 }
4908
4909 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 length = btrfs_dev_extent_length(l, dev_extent);
4911
4912 if (key.offset + length <= new_size) {
4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 btrfs_release_path(path);
4915 break;
4916 }
4917
4918 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919 btrfs_release_path(path);
4920
4921 /*
4922 * We may be relocating the only data chunk we have,
4923 * which could potentially end up with losing data's
4924 * raid profile, so lets allocate an empty one in
4925 * advance.
4926 */
4927 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 if (ret < 0) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 goto done;
4931 }
4932
4933 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934 mutex_unlock(&fs_info->reclaim_bgs_lock);
4935 if (ret == -ENOSPC) {
4936 failed++;
4937 } else if (ret) {
4938 if (ret == -ETXTBSY) {
4939 btrfs_warn(fs_info,
4940 "could not shrink block group %llu due to active swapfile",
4941 chunk_offset);
4942 }
4943 goto done;
4944 }
4945 } while (key.offset-- > 0);
4946
4947 if (failed && !retried) {
4948 failed = 0;
4949 retried = true;
4950 goto again;
4951 } else if (failed && retried) {
4952 ret = -ENOSPC;
4953 goto done;
4954 }
4955
4956 /* Shrinking succeeded, else we would be at "done". */
4957 trans = btrfs_start_transaction(root, 0);
4958 if (IS_ERR(trans)) {
4959 ret = PTR_ERR(trans);
4960 goto done;
4961 }
4962
4963 mutex_lock(&fs_info->chunk_mutex);
4964 /* Clear all state bits beyond the shrunk device size */
4965 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 CHUNK_STATE_MASK);
4967
4968 btrfs_device_set_disk_total_bytes(device, new_size);
4969 if (list_empty(&device->post_commit_list))
4970 list_add_tail(&device->post_commit_list,
4971 &trans->transaction->dev_update_list);
4972
4973 WARN_ON(diff > old_total);
4974 btrfs_set_super_total_bytes(super_copy,
4975 round_down(old_total - diff, fs_info->sectorsize));
4976 mutex_unlock(&fs_info->chunk_mutex);
4977
4978 btrfs_reserve_chunk_metadata(trans, false);
4979 /* Now btrfs_update_device() will change the on-disk size. */
4980 ret = btrfs_update_device(trans, device);
4981 btrfs_trans_release_chunk_metadata(trans);
4982 if (ret < 0) {
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4985 } else {
4986 ret = btrfs_commit_transaction(trans);
4987 }
4988done:
4989 btrfs_free_path(path);
4990 if (ret) {
4991 mutex_lock(&fs_info->chunk_mutex);
4992 btrfs_device_set_total_bytes(device, old_size);
4993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994 device->fs_devices->total_rw_bytes += diff;
4995 atomic64_add(diff, &fs_info->free_chunk_space);
4996 mutex_unlock(&fs_info->chunk_mutex);
4997 }
4998 return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002 struct btrfs_key *key,
5003 struct btrfs_chunk *chunk, int item_size)
5004{
5005 struct btrfs_super_block *super_copy = fs_info->super_copy;
5006 struct btrfs_disk_key disk_key;
5007 u32 array_size;
5008 u8 *ptr;
5009
5010 lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012 array_size = btrfs_super_sys_array_size(super_copy);
5013 if (array_size + item_size + sizeof(disk_key)
5014 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015 return -EFBIG;
5016
5017 ptr = super_copy->sys_chunk_array + array_size;
5018 btrfs_cpu_key_to_disk(&disk_key, key);
5019 memcpy(ptr, &disk_key, sizeof(disk_key));
5020 ptr += sizeof(disk_key);
5021 memcpy(ptr, chunk, item_size);
5022 item_size += sizeof(disk_key);
5023 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025 return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033 const struct btrfs_device_info *di_a = a;
5034 const struct btrfs_device_info *di_b = b;
5035
5036 if (di_a->max_avail > di_b->max_avail)
5037 return -1;
5038 if (di_a->max_avail < di_b->max_avail)
5039 return 1;
5040 if (di_a->total_avail > di_b->total_avail)
5041 return -1;
5042 if (di_a->total_avail < di_b->total_avail)
5043 return 1;
5044 return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050 return;
5051
5052 btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068 u64 start;
5069 u64 type;
5070 /* Total number of stripes to allocate */
5071 int num_stripes;
5072 /* sub_stripes info for map */
5073 int sub_stripes;
5074 /* Stripes per device */
5075 int dev_stripes;
5076 /* Maximum number of devices to use */
5077 int devs_max;
5078 /* Minimum number of devices to use */
5079 int devs_min;
5080 /* ndevs has to be a multiple of this */
5081 int devs_increment;
5082 /* Number of copies */
5083 int ncopies;
5084 /* Number of stripes worth of bytes to store parity information */
5085 int nparity;
5086 u64 max_stripe_size;
5087 u64 max_chunk_size;
5088 u64 dev_extent_min;
5089 u64 stripe_size;
5090 u64 chunk_size;
5091 int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095 struct btrfs_fs_devices *fs_devices,
5096 struct alloc_chunk_ctl *ctl)
5097{
5098 struct btrfs_space_info *space_info;
5099
5100 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 ASSERT(space_info);
5102
5103 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109 /* We don't want a chunk larger than 10% of writable space */
5110 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111 ctl->max_chunk_size);
5112 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116 struct btrfs_fs_devices *fs_devices,
5117 struct alloc_chunk_ctl *ctl)
5118{
5119 u64 zone_size = fs_devices->fs_info->zone_size;
5120 u64 limit;
5121 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 u64 min_chunk_size = min_data_stripes * zone_size;
5124 u64 type = ctl->type;
5125
5126 ctl->max_stripe_size = zone_size;
5127 if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 zone_size);
5130 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 ctl->max_chunk_size = ctl->max_stripe_size;
5132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 ctl->devs_max = min_t(int, ctl->devs_max,
5135 BTRFS_MAX_DEVS_SYS_CHUNK);
5136 } else {
5137 BUG();
5138 }
5139
5140 /* We don't want a chunk larger than 10% of writable space */
5141 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142 zone_size),
5143 min_chunk_size);
5144 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 struct alloc_chunk_ctl *ctl)
5150{
5151 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 if (!ctl->devs_max)
5157 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 ctl->nparity = btrfs_raid_array[index].nparity;
5162 ctl->ndevs = 0;
5163
5164 switch (fs_devices->chunk_alloc_policy) {
5165 case BTRFS_CHUNK_ALLOC_REGULAR:
5166 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 break;
5168 case BTRFS_CHUNK_ALLOC_ZONED:
5169 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 break;
5171 default:
5172 BUG();
5173 }
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl,
5178 struct btrfs_device_info *devices_info)
5179{
5180 struct btrfs_fs_info *info = fs_devices->fs_info;
5181 struct btrfs_device *device;
5182 u64 total_avail;
5183 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184 int ret;
5185 int ndevs = 0;
5186 u64 max_avail;
5187 u64 dev_offset;
5188
5189 /*
5190 * in the first pass through the devices list, we gather information
5191 * about the available holes on each device.
5192 */
5193 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195 WARN(1, KERN_ERR
5196 "BTRFS: read-only device in alloc_list\n");
5197 continue;
5198 }
5199
5200 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 &device->dev_state) ||
5202 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203 continue;
5204
5205 if (device->total_bytes > device->bytes_used)
5206 total_avail = device->total_bytes - device->bytes_used;
5207 else
5208 total_avail = 0;
5209
5210 /* If there is no space on this device, skip it. */
5211 if (total_avail < ctl->dev_extent_min)
5212 continue;
5213
5214 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 &max_avail);
5216 if (ret && ret != -ENOSPC)
5217 return ret;
5218
5219 if (ret == 0)
5220 max_avail = dev_extent_want;
5221
5222 if (max_avail < ctl->dev_extent_min) {
5223 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 btrfs_debug(info,
5225 "%s: devid %llu has no free space, have=%llu want=%llu",
5226 __func__, device->devid, max_avail,
5227 ctl->dev_extent_min);
5228 continue;
5229 }
5230
5231 if (ndevs == fs_devices->rw_devices) {
5232 WARN(1, "%s: found more than %llu devices\n",
5233 __func__, fs_devices->rw_devices);
5234 break;
5235 }
5236 devices_info[ndevs].dev_offset = dev_offset;
5237 devices_info[ndevs].max_avail = max_avail;
5238 devices_info[ndevs].total_avail = total_avail;
5239 devices_info[ndevs].dev = device;
5240 ++ndevs;
5241 }
5242 ctl->ndevs = ndevs;
5243
5244 /*
5245 * now sort the devices by hole size / available space
5246 */
5247 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248 btrfs_cmp_device_info, NULL);
5249
5250 return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 struct btrfs_device_info *devices_info)
5255{
5256 /* Number of stripes that count for block group size */
5257 int data_stripes;
5258
5259 /*
5260 * The primary goal is to maximize the number of stripes, so use as
5261 * many devices as possible, even if the stripes are not maximum sized.
5262 *
5263 * The DUP profile stores more than one stripe per device, the
5264 * max_avail is the total size so we have to adjust.
5265 */
5266 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 ctl->dev_stripes);
5268 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273 /*
5274 * Use the number of data stripes to figure out how big this chunk is
5275 * really going to be in terms of logical address space, and compare
5276 * that answer with the max chunk size. If it's higher, we try to
5277 * reduce stripe_size.
5278 */
5279 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 /*
5281 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 * then use it, unless it ends up being even bigger than the
5283 * previous value we had already.
5284 */
5285 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 data_stripes), SZ_16M),
5287 ctl->stripe_size);
5288 }
5289
5290 /* Stripe size should not go beyond 1G. */
5291 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293 /* Align to BTRFS_STRIPE_LEN */
5294 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297 return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 struct btrfs_device_info *devices_info)
5302{
5303 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 /* Number of stripes that count for block group size */
5305 int data_stripes;
5306
5307 /*
5308 * It should hold because:
5309 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 */
5311 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313 ctl->stripe_size = zone_size;
5314 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 ctl->stripe_size) + ctl->nparity,
5321 ctl->dev_stripes);
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 }
5326
5327 ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329 return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 struct alloc_chunk_ctl *ctl,
5334 struct btrfs_device_info *devices_info)
5335{
5336 struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338 /*
5339 * Round down to number of usable stripes, devs_increment can be any
5340 * number so we can't use round_down() that requires power of 2, while
5341 * rounddown is safe.
5342 */
5343 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345 if (ctl->ndevs < ctl->devs_min) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 btrfs_debug(info,
5348 "%s: not enough devices with free space: have=%d minimum required=%d",
5349 __func__, ctl->ndevs, ctl->devs_min);
5350 }
5351 return -ENOSPC;
5352 }
5353
5354 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356 switch (fs_devices->chunk_alloc_policy) {
5357 case BTRFS_CHUNK_ALLOC_REGULAR:
5358 return decide_stripe_size_regular(ctl, devices_info);
5359 case BTRFS_CHUNK_ALLOC_ZONED:
5360 return decide_stripe_size_zoned(ctl, devices_info);
5361 default:
5362 BUG();
5363 }
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369{
5370 struct btrfs_fs_info *info = trans->fs_info;
5371 struct map_lookup *map = NULL;
5372 struct extent_map_tree *em_tree;
5373 struct btrfs_block_group *block_group;
5374 struct extent_map *em;
5375 u64 start = ctl->start;
5376 u64 type = ctl->type;
5377 int ret;
5378 int i;
5379 int j;
5380
5381 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 if (!map)
5383 return ERR_PTR(-ENOMEM);
5384 map->num_stripes = ctl->num_stripes;
5385
5386 for (i = 0; i < ctl->ndevs; ++i) {
5387 for (j = 0; j < ctl->dev_stripes; ++j) {
5388 int s = i * ctl->dev_stripes + j;
5389 map->stripes[s].dev = devices_info[i].dev;
5390 map->stripes[s].physical = devices_info[i].dev_offset +
5391 j * ctl->stripe_size;
5392 }
5393 }
5394 map->stripe_len = BTRFS_STRIPE_LEN;
5395 map->io_align = BTRFS_STRIPE_LEN;
5396 map->io_width = BTRFS_STRIPE_LEN;
5397 map->type = type;
5398 map->sub_stripes = ctl->sub_stripes;
5399
5400 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402 em = alloc_extent_map();
5403 if (!em) {
5404 kfree(map);
5405 return ERR_PTR(-ENOMEM);
5406 }
5407 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408 em->map_lookup = map;
5409 em->start = start;
5410 em->len = ctl->chunk_size;
5411 em->block_start = 0;
5412 em->block_len = em->len;
5413 em->orig_block_len = ctl->stripe_size;
5414
5415 em_tree = &info->mapping_tree;
5416 write_lock(&em_tree->lock);
5417 ret = add_extent_mapping(em_tree, em, 0);
5418 if (ret) {
5419 write_unlock(&em_tree->lock);
5420 free_extent_map(em);
5421 return ERR_PTR(ret);
5422 }
5423 write_unlock(&em_tree->lock);
5424
5425 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 if (IS_ERR(block_group))
5427 goto error_del_extent;
5428
5429 for (i = 0; i < map->num_stripes; i++) {
5430 struct btrfs_device *dev = map->stripes[i].dev;
5431
5432 btrfs_device_set_bytes_used(dev,
5433 dev->bytes_used + ctl->stripe_size);
5434 if (list_empty(&dev->post_commit_list))
5435 list_add_tail(&dev->post_commit_list,
5436 &trans->transaction->dev_update_list);
5437 }
5438
5439 atomic64_sub(ctl->stripe_size * map->num_stripes,
5440 &info->free_chunk_space);
5441
5442 free_extent_map(em);
5443 check_raid56_incompat_flag(info, type);
5444 check_raid1c34_incompat_flag(info, type);
5445
5446 return block_group;
5447
5448error_del_extent:
5449 write_lock(&em_tree->lock);
5450 remove_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452
5453 /* One for our allocation */
5454 free_extent_map(em);
5455 /* One for the tree reference */
5456 free_extent_map(em);
5457
5458 return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462 u64 type)
5463{
5464 struct btrfs_fs_info *info = trans->fs_info;
5465 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 struct btrfs_device_info *devices_info = NULL;
5467 struct alloc_chunk_ctl ctl;
5468 struct btrfs_block_group *block_group;
5469 int ret;
5470
5471 lockdep_assert_held(&info->chunk_mutex);
5472
5473 if (!alloc_profile_is_valid(type, 0)) {
5474 ASSERT(0);
5475 return ERR_PTR(-EINVAL);
5476 }
5477
5478 if (list_empty(&fs_devices->alloc_list)) {
5479 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 btrfs_debug(info, "%s: no writable device", __func__);
5481 return ERR_PTR(-ENOSPC);
5482 }
5483
5484 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 ASSERT(0);
5487 return ERR_PTR(-EINVAL);
5488 }
5489
5490 ctl.start = find_next_chunk(info);
5491 ctl.type = type;
5492 init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 GFP_NOFS);
5496 if (!devices_info)
5497 return ERR_PTR(-ENOMEM);
5498
5499 ret = gather_device_info(fs_devices, &ctl, devices_info);
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
5502 goto out;
5503 }
5504
5505 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506 if (ret < 0) {
5507 block_group = ERR_PTR(ret);
5508 goto out;
5509 }
5510
5511 block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514 kfree(devices_info);
5515 return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 struct btrfs_block_group *bg)
5528{
5529 struct btrfs_fs_info *fs_info = trans->fs_info;
5530 struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 struct btrfs_key key;
5532 struct btrfs_chunk *chunk;
5533 struct btrfs_stripe *stripe;
5534 struct extent_map *em;
5535 struct map_lookup *map;
5536 size_t item_size;
5537 int i;
5538 int ret;
5539
5540 /*
5541 * We take the chunk_mutex for 2 reasons:
5542 *
5543 * 1) Updates and insertions in the chunk btree must be done while holding
5544 * the chunk_mutex, as well as updating the system chunk array in the
5545 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 * details;
5547 *
5548 * 2) To prevent races with the final phase of a device replace operation
5549 * that replaces the device object associated with the map's stripes,
5550 * because the device object's id can change at any time during that
5551 * final phase of the device replace operation
5552 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 * which would cause a failure when updating the device item, which does
5555 * not exists, or persisting a stripe of the chunk item with such ID.
5556 * Here we can't use the device_list_mutex because our caller already
5557 * has locked the chunk_mutex, and the final phase of device replace
5558 * acquires both mutexes - first the device_list_mutex and then the
5559 * chunk_mutex. Using any of those two mutexes protects us from a
5560 * concurrent device replace.
5561 */
5562 lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 if (IS_ERR(em)) {
5566 ret = PTR_ERR(em);
5567 btrfs_abort_transaction(trans, ret);
5568 return ret;
5569 }
5570
5571 map = em->map_lookup;
5572 item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574 chunk = kzalloc(item_size, GFP_NOFS);
5575 if (!chunk) {
5576 ret = -ENOMEM;
5577 btrfs_abort_transaction(trans, ret);
5578 goto out;
5579 }
5580
5581 for (i = 0; i < map->num_stripes; i++) {
5582 struct btrfs_device *device = map->stripes[i].dev;
5583
5584 ret = btrfs_update_device(trans, device);
5585 if (ret)
5586 goto out;
5587 }
5588
5589 stripe = &chunk->stripe;
5590 for (i = 0; i < map->num_stripes; i++) {
5591 struct btrfs_device *device = map->stripes[i].dev;
5592 const u64 dev_offset = map->stripes[i].physical;
5593
5594 btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597 stripe++;
5598 }
5599
5600 btrfs_set_stack_chunk_length(chunk, bg->length);
5601 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 btrfs_set_stack_chunk_type(chunk, map->type);
5604 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 key.type = BTRFS_CHUNK_ITEM_KEY;
5612 key.offset = bg->start;
5613
5614 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615 if (ret)
5616 goto out;
5617
5618 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622 if (ret)
5623 goto out;
5624 }
5625
5626out:
5627 kfree(chunk);
5628 free_extent_map(em);
5629 return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634 struct btrfs_fs_info *fs_info = trans->fs_info;
5635 u64 alloc_profile;
5636 struct btrfs_block_group *meta_bg;
5637 struct btrfs_block_group *sys_bg;
5638
5639 /*
5640 * When adding a new device for sprouting, the seed device is read-only
5641 * so we must first allocate a metadata and a system chunk. But before
5642 * adding the block group items to the extent, device and chunk btrees,
5643 * we must first:
5644 *
5645 * 1) Create both chunks without doing any changes to the btrees, as
5646 * otherwise we would get -ENOSPC since the block groups from the
5647 * seed device are read-only;
5648 *
5649 * 2) Add the device item for the new sprout device - finishing the setup
5650 * of a new block group requires updating the device item in the chunk
5651 * btree, so it must exist when we attempt to do it. The previous step
5652 * ensures this does not fail with -ENOSPC.
5653 *
5654 * After that we can add the block group items to their btrees:
5655 * update existing device item in the chunk btree, add a new block group
5656 * item to the extent btree, add a new chunk item to the chunk btree and
5657 * finally add the new device extent items to the devices btree.
5658 */
5659
5660 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662 if (IS_ERR(meta_bg))
5663 return PTR_ERR(meta_bg);
5664
5665 alloc_profile = btrfs_system_alloc_profile(fs_info);
5666 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667 if (IS_ERR(sys_bg))
5668 return PTR_ERR(sys_bg);
5669
5670 return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675 const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677 return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682 struct extent_map *em;
5683 struct map_lookup *map;
5684 int miss_ndevs = 0;
5685 int i;
5686 bool ret = true;
5687
5688 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689 if (IS_ERR(em))
5690 return false;
5691
5692 map = em->map_lookup;
5693 for (i = 0; i < map->num_stripes; i++) {
5694 if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 &map->stripes[i].dev->dev_state)) {
5696 miss_ndevs++;
5697 continue;
5698 }
5699 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 &map->stripes[i].dev->dev_state)) {
5701 ret = false;
5702 goto end;
5703 }
5704 }
5705
5706 /*
5707 * If the number of missing devices is larger than max errors, we can
5708 * not write the data into that chunk successfully.
5709 */
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
5711 ret = false;
5712end:
5713 free_extent_map(em);
5714 return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719 struct extent_map *em;
5720
5721 while (1) {
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
5724 if (em)
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
5727 if (!em)
5728 break;
5729 /* once for us */
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5733 }
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738 struct extent_map *em;
5739 struct map_lookup *map;
5740 enum btrfs_raid_types index;
5741 int ret = 1;
5742
5743 em = btrfs_get_chunk_map(fs_info, logical, len);
5744 if (IS_ERR(em))
5745 /*
5746 * We could return errors for these cases, but that could get
5747 * ugly and we'd probably do the same thing which is just not do
5748 * anything else and exit, so return 1 so the callers don't try
5749 * to use other copies.
5750 */
5751 return 1;
5752
5753 map = em->map_lookup;
5754 index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 ret = btrfs_raid_array[index].ncopies;
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 ret = 2;
5761 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762 /*
5763 * There could be two corrupted data stripes, we need
5764 * to loop retry in order to rebuild the correct data.
5765 *
5766 * Fail a stripe at a time on every retry except the
5767 * stripe under reconstruction.
5768 */
5769 ret = map->num_stripes;
5770 free_extent_map(em);
5771
5772 down_read(&fs_info->dev_replace.rwsem);
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
5775 ret++;
5776 up_read(&fs_info->dev_replace.rwsem);
5777
5778 return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 u64 logical)
5783{
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5787
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
5791 em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = map->stripe_len * nr_data_stripes(map);
5797 free_extent_map(em);
5798 }
5799 return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804 struct extent_map *em;
5805 struct map_lookup *map;
5806 int ret = 0;
5807
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
5811 em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
5819 return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 struct map_lookup *map, int first,
5824 int dev_replace_is_ongoing)
5825{
5826 int i;
5827 int num_stripes;
5828 int preferred_mirror;
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
5832 ASSERT((map->type &
5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
5852
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
5869 for (i = first; i < first + num_stripes; i++) {
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
5874 }
5875
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
5879 return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885 int i;
5886 int again = 1;
5887
5888 while (again) {
5889 again = 0;
5890 for (i = 0; i < num_stripes - 1; i++) {
5891 /* Swap if parity is on a smaller index */
5892 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895 again = 1;
5896 }
5897 }
5898 }
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 int total_stripes,
5903 int real_stripes)
5904{
5905 struct btrfs_io_context *bioc = kzalloc(
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
5909 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 /* Plus the variable array for the tgt dev */
5911 sizeof(int) * (real_stripes) +
5912 /*
5913 * Plus the raid_map, which includes both the tgt dev
5914 * and the stripes.
5915 */
5916 sizeof(u64) * (total_stripes),
5917 GFP_NOFS);
5918
5919 if (!bioc)
5920 return NULL;
5921
5922 refcount_set(&bioc->refs, 1);
5923
5924 bioc->fs_info = fs_info;
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928 return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939 if (!bioc)
5940 return;
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
5952{
5953 struct extent_map *em;
5954 struct map_lookup *map;
5955 struct btrfs_discard_stripe *stripes;
5956 u64 length = *length_ret;
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
5970 int ret;
5971 int i;
5972
5973 em = btrfs_get_chunk_map(fs_info, logical, length);
5974 if (IS_ERR(em))
5975 return ERR_CAST(em);
5976
5977 map = em->map_lookup;
5978
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
5982 goto out_free_map;
5983}
5984
5985 offset = logical - em->start;
5986 length = min_t(u64, em->start + em->len - logical, length);
5987 *length_ret = length;
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
6009 *num_stripes = 1;
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
6019 *num_stripes = min_t(u64, map->num_stripes,
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 BTRFS_BLOCK_GROUP_DUP)) {
6029 *num_stripes = map->num_stripes;
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
6037 ret = -ENOMEM;
6038 goto out_free_map;
6039 }
6040
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
6045 stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
6049 stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051 if (i / sub_stripes < remaining_stripes)
6052 stripes[i].length += map->stripe_len;
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
6063 stripes[i].length -= stripe_offset;
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
6068 stripes[i].length -= stripe_end_offset;
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
6073 stripes[i].length = length;
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
6083 free_extent_map(em);
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107{
6108 struct btrfs_io_context *bioc = NULL;
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 logical, &length, &bioc, NULL, NULL, 0);
6118 if (ret) {
6119 ASSERT(bioc == NULL);
6120 return ret;
6121 }
6122
6123 num_stripes = bioc->num_stripes;
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
6130 btrfs_put_bioc(bioc);
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
6148 physical_of_found <= bioc->stripes[i].physical)
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bioc->stripes[i].physical;
6154 }
6155
6156 btrfs_put_bioc(bioc);
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
6172 /* Non zoned filesystem does not use "to_copy" flag */
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_io_context **bioc_ret,
6186 struct btrfs_dev_replace *dev_replace,
6187 u64 logical,
6188 int *num_stripes_ret, int *max_errors_ret)
6189{
6190 struct btrfs_io_context *bioc = *bioc_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
6226
6227 new->physical = old->physical;
6228 new->dev = dev_replace->tgtdev;
6229 bioc->tgtdev_map[i] = index_where_to_add;
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
6256 physical_of_found <= bioc->stripes[i].physical)
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
6260 physical_of_found = bioc->stripes[i].physical;
6261 }
6262 }
6263 if (found) {
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
6266
6267 tgtdev_stripe->physical = physical_of_found;
6268 tgtdev_stripe->dev = dev_replace->tgtdev;
6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302 enum btrfs_map_op op, u64 logical,
6303 struct btrfs_io_geometry *io_geom)
6304{
6305 struct map_lookup *map;
6306 u64 len;
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
6310 u32 stripe_len;
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
6327
6328 data_stripes = nr_data_stripes(map);
6329
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371 return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383 u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386 int need_raid_map)
6387{
6388 struct extent_map *em;
6389 struct map_lookup *map;
6390 u64 stripe_offset;
6391 u64 stripe_nr;
6392 u64 stripe_len;
6393 u32 stripe_index;
6394 int data_stripes;
6395 int i;
6396 int ret = 0;
6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398 int num_stripes;
6399 int max_errors = 0;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_io_context *bioc = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6409
6410 ASSERT(bioc_ret);
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417 if (ret < 0)
6418 return ret;
6419
6420 map = em->map_lookup;
6421
6422 *length = geom.len;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6428
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6437
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
6445 goto out;
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
6452 num_stripes = 1;
6453 stripe_index = 0;
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
6457 if (!need_full_stripe(op))
6458 mirror_num = 1;
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6464 else {
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6475 } else {
6476 mirror_num = 1;
6477 }
6478
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6484
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6489 else {
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6495 }
6496
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 /* push stripe_nr back to the start of the full stripe */
6501 stripe_nr = div64_u64(raid56_full_stripe_start,
6502 stripe_len * data_stripes);
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6506 max_errors = btrfs_chunk_max_errors(map);
6507
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
6520 stripe_nr = div_u64_rem(stripe_nr,
6521 data_stripes, &stripe_index);
6522 if (mirror_num > 1)
6523 stripe_index = data_stripes + mirror_num - 2;
6524
6525 /* We distribute the parity blocks across stripes */
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
6528 if (!need_full_stripe(op) && mirror_num <= 1)
6529 mirror_num = 1;
6530 }
6531 } else {
6532 /*
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
6536 */
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
6539 mirror_num = stripe_index + 1;
6540 }
6541 if (stripe_index >= map->num_stripes) {
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
6548
6549 num_alloc_stripes = num_stripes;
6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551 if (op == BTRFS_MAP_WRITE)
6552 num_alloc_stripes <<= 1;
6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554 num_alloc_stripes++;
6555 tgtdev_indexes = num_stripes;
6556 }
6557
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582 if (!bioc) {
6583 ret = -ENOMEM;
6584 goto out;
6585 }
6586
6587 for (i = 0; i < num_stripes; i++) {
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
6590 stripe_index++;
6591 }
6592
6593 /* Build raid_map */
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
6596 u64 tmp;
6597 unsigned rot;
6598
6599 /* Work out the disk rotation on this stripe-set */
6600 div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602 /* Fill in the logical address of each stripe */
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
6605 bioc->raid_map[(i + rot) % num_stripes] =
6606 em->start + (tmp + i) * map->stripe_len;
6607
6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
6611 RAID6_Q_STRIPE;
6612
6613 sort_parity_stripes(bioc, num_stripes);
6614 }
6615
6616 if (need_full_stripe(op))
6617 max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 need_full_stripe(op)) {
6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622 &num_stripes, &max_errors);
6623 }
6624
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
6641 }
6642out:
6643 if (dev_replace_is_ongoing) {
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
6646 up_read(&dev_replace->rwsem);
6647 }
6648 free_extent_map(em);
6649 return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662 u64 logical, u64 *length,
6663 struct btrfs_io_context **bioc_ret)
6664{
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670 const struct btrfs_fs_devices *fs_devices)
6671{
6672 if (args->fsid == NULL)
6673 return true;
6674 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675 return true;
6676 return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680 const struct btrfs_device *device)
6681{
6682 if (args->missing) {
6683 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684 !device->bdev)
6685 return true;
6686 return false;
6687 }
6688
6689 if (device->devid != args->devid)
6690 return false;
6691 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692 return false;
6693 return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704 const struct btrfs_dev_lookup_args *args)
6705{
6706 struct btrfs_device *device;
6707 struct btrfs_fs_devices *seed_devs;
6708
6709 if (dev_args_match_fs_devices(args, fs_devices)) {
6710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711 if (dev_args_match_device(args, device))
6712 return device;
6713 }
6714 }
6715
6716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717 if (!dev_args_match_fs_devices(args, seed_devs))
6718 continue;
6719 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720 if (dev_args_match_device(args, device))
6721 return device;
6722 }
6723 }
6724
6725 return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729 u64 devid, u8 *dev_uuid)
6730{
6731 struct btrfs_device *device;
6732 unsigned int nofs_flag;
6733
6734 /*
6735 * We call this under the chunk_mutex, so we want to use NOFS for this
6736 * allocation, however we don't want to change btrfs_alloc_device() to
6737 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738 * places.
6739 */
6740
6741 nofs_flag = memalloc_nofs_save();
6742 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743 memalloc_nofs_restore(nofs_flag);
6744 if (IS_ERR(device))
6745 return device;
6746
6747 list_add(&device->dev_list, &fs_devices->devices);
6748 device->fs_devices = fs_devices;
6749 fs_devices->num_devices++;
6750
6751 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752 fs_devices->missing_devices++;
6753
6754 return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info: used only for generating a new devid, can be NULL if
6761 * devid is provided (i.e. @devid != NULL).
6762 * @devid: a pointer to devid for this device. If NULL a new devid
6763 * is generated.
6764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6765 * is generated.
6766 * @path: a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error. Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773 const u64 *devid, const u8 *uuid,
6774 const char *path)
6775{
6776 struct btrfs_device *dev;
6777 u64 tmp;
6778
6779 if (WARN_ON(!devid && !fs_info))
6780 return ERR_PTR(-EINVAL);
6781
6782 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783 if (!dev)
6784 return ERR_PTR(-ENOMEM);
6785
6786 INIT_LIST_HEAD(&dev->dev_list);
6787 INIT_LIST_HEAD(&dev->dev_alloc_list);
6788 INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790 atomic_set(&dev->dev_stats_ccnt, 0);
6791 btrfs_device_data_ordered_init(dev);
6792 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794 if (devid)
6795 tmp = *devid;
6796 else {
6797 int ret;
6798
6799 ret = find_next_devid(fs_info, &tmp);
6800 if (ret) {
6801 btrfs_free_device(dev);
6802 return ERR_PTR(ret);
6803 }
6804 }
6805 dev->devid = tmp;
6806
6807 if (uuid)
6808 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809 else
6810 generate_random_uuid(dev->uuid);
6811
6812 if (path) {
6813 struct rcu_string *name;
6814
6815 name = rcu_string_strdup(path, GFP_KERNEL);
6816 if (!name) {
6817 btrfs_free_device(dev);
6818 return ERR_PTR(-ENOMEM);
6819 }
6820 rcu_assign_pointer(dev->name, name);
6821 }
6822
6823 return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827 u64 devid, u8 *uuid, bool error)
6828{
6829 if (error)
6830 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831 devid, uuid);
6832 else
6833 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834 devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839 const struct map_lookup *map = em->map_lookup;
6840 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842 return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854 u64 logical, u64 length, u64 type)
6855{
6856 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857 return 0;
6858
6859 if (logical + length < MAX_LFS_FILESIZE)
6860 return 0;
6861
6862 btrfs_err_32bit_limit(fs_info);
6863 return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873 u64 logical, u64 length, u64 type)
6874{
6875 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876 return;
6877
6878 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879 return;
6880
6881 btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886 u64 devid, u8 *uuid)
6887{
6888 struct btrfs_device *dev;
6889
6890 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891 btrfs_report_missing_device(fs_info, devid, uuid, true);
6892 return ERR_PTR(-ENOENT);
6893 }
6894
6895 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896 if (IS_ERR(dev)) {
6897 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898 devid, PTR_ERR(dev));
6899 return dev;
6900 }
6901 btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903 return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907 struct btrfs_chunk *chunk)
6908{
6909 BTRFS_DEV_LOOKUP_ARGS(args);
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
6916 u64 devid;
6917 u64 type;
6918 u8 uuid[BTRFS_UUID_SIZE];
6919 int index;
6920 int num_stripes;
6921 int ret;
6922 int i;
6923
6924 logical = key->offset;
6925 length = btrfs_chunk_length(leaf, chunk);
6926 type = btrfs_chunk_type(leaf, chunk);
6927 index = btrfs_bg_flags_to_raid_index(type);
6928 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932 if (ret < 0)
6933 return ret;
6934 warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937 /*
6938 * Only need to verify chunk item if we're reading from sys chunk array,
6939 * as chunk item in tree block is already verified by tree-checker.
6940 */
6941 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943 if (ret)
6944 return ret;
6945 }
6946
6947 read_lock(&map_tree->lock);
6948 em = lookup_extent_mapping(map_tree, logical, 1);
6949 read_unlock(&map_tree->lock);
6950
6951 /* already mapped? */
6952 if (em && em->start <= logical && em->start + em->len > logical) {
6953 free_extent_map(em);
6954 return 0;
6955 } else if (em) {
6956 free_extent_map(em);
6957 }
6958
6959 em = alloc_extent_map();
6960 if (!em)
6961 return -ENOMEM;
6962 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963 if (!map) {
6964 free_extent_map(em);
6965 return -ENOMEM;
6966 }
6967
6968 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969 em->map_lookup = map;
6970 em->start = logical;
6971 em->len = length;
6972 em->orig_start = 0;
6973 em->block_start = 0;
6974 em->block_len = em->len;
6975
6976 map->num_stripes = num_stripes;
6977 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980 map->type = type;
6981 /*
6982 * We can't use the sub_stripes value, as for profiles other than
6983 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984 * older mkfs (<v5.4).
6985 * In that case, it can cause divide-by-zero errors later.
6986 * Since currently sub_stripes is fixed for each profile, let's
6987 * use the trusted value instead.
6988 */
6989 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990 map->verified_stripes = 0;
6991 em->orig_block_len = btrfs_calc_stripe_length(em);
6992 for (i = 0; i < num_stripes; i++) {
6993 map->stripes[i].physical =
6994 btrfs_stripe_offset_nr(leaf, chunk, i);
6995 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996 args.devid = devid;
6997 read_extent_buffer(leaf, uuid, (unsigned long)
6998 btrfs_stripe_dev_uuid_nr(chunk, i),
6999 BTRFS_UUID_SIZE);
7000 args.uuid = uuid;
7001 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7002 if (!map->stripes[i].dev) {
7003 map->stripes[i].dev = handle_missing_device(fs_info,
7004 devid, uuid);
7005 if (IS_ERR(map->stripes[i].dev)) {
7006 ret = PTR_ERR(map->stripes[i].dev);
7007 free_extent_map(em);
7008 return ret;
7009 }
7010 }
7011
7012 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013 &(map->stripes[i].dev->dev_state));
7014 }
7015
7016 write_lock(&map_tree->lock);
7017 ret = add_extent_mapping(map_tree, em, 0);
7018 write_unlock(&map_tree->lock);
7019 if (ret < 0) {
7020 btrfs_err(fs_info,
7021 "failed to add chunk map, start=%llu len=%llu: %d",
7022 em->start, em->len, ret);
7023 }
7024 free_extent_map(em);
7025
7026 return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030 struct btrfs_dev_item *dev_item,
7031 struct btrfs_device *device)
7032{
7033 unsigned long ptr;
7034
7035 device->devid = btrfs_device_id(leaf, dev_item);
7036 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037 device->total_bytes = device->disk_total_bytes;
7038 device->commit_total_bytes = device->disk_total_bytes;
7039 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040 device->commit_bytes_used = device->bytes_used;
7041 device->type = btrfs_device_type(leaf, dev_item);
7042 device->io_align = btrfs_device_io_align(leaf, dev_item);
7043 device->io_width = btrfs_device_io_width(leaf, dev_item);
7044 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048 ptr = btrfs_device_uuid(dev_item);
7049 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053 u8 *fsid)
7054{
7055 struct btrfs_fs_devices *fs_devices;
7056 int ret;
7057
7058 lockdep_assert_held(&uuid_mutex);
7059 ASSERT(fsid);
7060
7061 /* This will match only for multi-device seed fs */
7062 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064 return fs_devices;
7065
7066
7067 fs_devices = find_fsid(fsid, NULL);
7068 if (!fs_devices) {
7069 if (!btrfs_test_opt(fs_info, DEGRADED))
7070 return ERR_PTR(-ENOENT);
7071
7072 fs_devices = alloc_fs_devices(fsid, NULL);
7073 if (IS_ERR(fs_devices))
7074 return fs_devices;
7075
7076 fs_devices->seeding = true;
7077 fs_devices->opened = 1;
7078 return fs_devices;
7079 }
7080
7081 /*
7082 * Upon first call for a seed fs fsid, just create a private copy of the
7083 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084 */
7085 fs_devices = clone_fs_devices(fs_devices);
7086 if (IS_ERR(fs_devices))
7087 return fs_devices;
7088
7089 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090 if (ret) {
7091 free_fs_devices(fs_devices);
7092 return ERR_PTR(ret);
7093 }
7094
7095 if (!fs_devices->seeding) {
7096 close_fs_devices(fs_devices);
7097 free_fs_devices(fs_devices);
7098 return ERR_PTR(-EINVAL);
7099 }
7100
7101 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103 return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107 struct btrfs_dev_item *dev_item)
7108{
7109 BTRFS_DEV_LOOKUP_ARGS(args);
7110 struct btrfs_fs_info *fs_info = leaf->fs_info;
7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 struct btrfs_device *device;
7113 u64 devid;
7114 int ret;
7115 u8 fs_uuid[BTRFS_FSID_SIZE];
7116 u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118 devid = btrfs_device_id(leaf, dev_item);
7119 args.devid = devid;
7120 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121 BTRFS_UUID_SIZE);
7122 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123 BTRFS_FSID_SIZE);
7124 args.uuid = dev_uuid;
7125 args.fsid = fs_uuid;
7126
7127 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128 fs_devices = open_seed_devices(fs_info, fs_uuid);
7129 if (IS_ERR(fs_devices))
7130 return PTR_ERR(fs_devices);
7131 }
7132
7133 device = btrfs_find_device(fs_info->fs_devices, &args);
7134 if (!device) {
7135 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136 btrfs_report_missing_device(fs_info, devid,
7137 dev_uuid, true);
7138 return -ENOENT;
7139 }
7140
7141 device = add_missing_dev(fs_devices, devid, dev_uuid);
7142 if (IS_ERR(device)) {
7143 btrfs_err(fs_info,
7144 "failed to add missing dev %llu: %ld",
7145 devid, PTR_ERR(device));
7146 return PTR_ERR(device);
7147 }
7148 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149 } else {
7150 if (!device->bdev) {
7151 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152 btrfs_report_missing_device(fs_info,
7153 devid, dev_uuid, true);
7154 return -ENOENT;
7155 }
7156 btrfs_report_missing_device(fs_info, devid,
7157 dev_uuid, false);
7158 }
7159
7160 if (!device->bdev &&
7161 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162 /*
7163 * this happens when a device that was properly setup
7164 * in the device info lists suddenly goes bad.
7165 * device->bdev is NULL, and so we have to set
7166 * device->missing to one here
7167 */
7168 device->fs_devices->missing_devices++;
7169 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170 }
7171
7172 /* Move the device to its own fs_devices */
7173 if (device->fs_devices != fs_devices) {
7174 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175 &device->dev_state));
7176
7177 list_move(&device->dev_list, &fs_devices->devices);
7178 device->fs_devices->num_devices--;
7179 fs_devices->num_devices++;
7180
7181 device->fs_devices->missing_devices--;
7182 fs_devices->missing_devices++;
7183
7184 device->fs_devices = fs_devices;
7185 }
7186 }
7187
7188 if (device->fs_devices != fs_info->fs_devices) {
7189 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190 if (device->generation !=
7191 btrfs_device_generation(leaf, dev_item))
7192 return -EINVAL;
7193 }
7194
7195 fill_device_from_item(leaf, dev_item, device);
7196 if (device->bdev) {
7197 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199 if (device->total_bytes > max_total_bytes) {
7200 btrfs_err(fs_info,
7201 "device total_bytes should be at most %llu but found %llu",
7202 max_total_bytes, device->total_bytes);
7203 return -EINVAL;
7204 }
7205 }
7206 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209 device->fs_devices->total_rw_bytes += device->total_bytes;
7210 atomic64_add(device->total_bytes - device->bytes_used,
7211 &fs_info->free_chunk_space);
7212 }
7213 ret = 0;
7214 return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219 struct btrfs_super_block *super_copy = fs_info->super_copy;
7220 struct extent_buffer *sb;
7221 struct btrfs_disk_key *disk_key;
7222 struct btrfs_chunk *chunk;
7223 u8 *array_ptr;
7224 unsigned long sb_array_offset;
7225 int ret = 0;
7226 u32 num_stripes;
7227 u32 array_size;
7228 u32 len = 0;
7229 u32 cur_offset;
7230 u64 type;
7231 struct btrfs_key key;
7232
7233 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235 /*
7236 * We allocated a dummy extent, just to use extent buffer accessors.
7237 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238 * that's fine, we will not go beyond system chunk array anyway.
7239 */
7240 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241 if (!sb)
7242 return -ENOMEM;
7243 set_extent_buffer_uptodate(sb);
7244
7245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246 array_size = btrfs_super_sys_array_size(super_copy);
7247
7248 array_ptr = super_copy->sys_chunk_array;
7249 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250 cur_offset = 0;
7251
7252 while (cur_offset < array_size) {
7253 disk_key = (struct btrfs_disk_key *)array_ptr;
7254 len = sizeof(*disk_key);
7255 if (cur_offset + len > array_size)
7256 goto out_short_read;
7257
7258 btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260 array_ptr += len;
7261 sb_array_offset += len;
7262 cur_offset += len;
7263
7264 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265 btrfs_err(fs_info,
7266 "unexpected item type %u in sys_array at offset %u",
7267 (u32)key.type, cur_offset);
7268 ret = -EIO;
7269 break;
7270 }
7271
7272 chunk = (struct btrfs_chunk *)sb_array_offset;
7273 /*
7274 * At least one btrfs_chunk with one stripe must be present,
7275 * exact stripe count check comes afterwards
7276 */
7277 len = btrfs_chunk_item_size(1);
7278 if (cur_offset + len > array_size)
7279 goto out_short_read;
7280
7281 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282 if (!num_stripes) {
7283 btrfs_err(fs_info,
7284 "invalid number of stripes %u in sys_array at offset %u",
7285 num_stripes, cur_offset);
7286 ret = -EIO;
7287 break;
7288 }
7289
7290 type = btrfs_chunk_type(sb, chunk);
7291 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292 btrfs_err(fs_info,
7293 "invalid chunk type %llu in sys_array at offset %u",
7294 type, cur_offset);
7295 ret = -EIO;
7296 break;
7297 }
7298
7299 len = btrfs_chunk_item_size(num_stripes);
7300 if (cur_offset + len > array_size)
7301 goto out_short_read;
7302
7303 ret = read_one_chunk(&key, sb, chunk);
7304 if (ret)
7305 break;
7306
7307 array_ptr += len;
7308 sb_array_offset += len;
7309 cur_offset += len;
7310 }
7311 clear_extent_buffer_uptodate(sb);
7312 free_extent_buffer_stale(sb);
7313 return ret;
7314
7315out_short_read:
7316 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317 len, cur_offset);
7318 clear_extent_buffer_uptodate(sb);
7319 free_extent_buffer_stale(sb);
7320 return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332 struct btrfs_device *failing_dev)
7333{
7334 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335 struct extent_map *em;
7336 u64 next_start = 0;
7337 bool ret = true;
7338
7339 read_lock(&map_tree->lock);
7340 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341 read_unlock(&map_tree->lock);
7342 /* No chunk at all? Return false anyway */
7343 if (!em) {
7344 ret = false;
7345 goto out;
7346 }
7347 while (em) {
7348 struct map_lookup *map;
7349 int missing = 0;
7350 int max_tolerated;
7351 int i;
7352
7353 map = em->map_lookup;
7354 max_tolerated =
7355 btrfs_get_num_tolerated_disk_barrier_failures(
7356 map->type);
7357 for (i = 0; i < map->num_stripes; i++) {
7358 struct btrfs_device *dev = map->stripes[i].dev;
7359
7360 if (!dev || !dev->bdev ||
7361 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362 dev->last_flush_error)
7363 missing++;
7364 else if (failing_dev && failing_dev == dev)
7365 missing++;
7366 }
7367 if (missing > max_tolerated) {
7368 if (!failing_dev)
7369 btrfs_warn(fs_info,
7370 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371 em->start, missing, max_tolerated);
7372 free_extent_map(em);
7373 ret = false;
7374 goto out;
7375 }
7376 next_start = extent_map_end(em);
7377 free_extent_map(em);
7378
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, next_start,
7381 (u64)(-1) - next_start);
7382 read_unlock(&map_tree->lock);
7383 }
7384out:
7385 return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390 int i;
7391 const int nr_items = btrfs_header_nritems(node);
7392
7393 for (i = 0; i < nr_items; i++)
7394 btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399 struct btrfs_root *root = fs_info->chunk_root;
7400 struct btrfs_path *path;
7401 struct extent_buffer *leaf;
7402 struct btrfs_key key;
7403 struct btrfs_key found_key;
7404 int ret;
7405 int slot;
7406 int iter_ret = 0;
7407 u64 total_dev = 0;
7408 u64 last_ra_node = 0;
7409
7410 path = btrfs_alloc_path();
7411 if (!path)
7412 return -ENOMEM;
7413
7414 /*
7415 * uuid_mutex is needed only if we are mounting a sprout FS
7416 * otherwise we don't need it.
7417 */
7418 mutex_lock(&uuid_mutex);
7419
7420 /*
7421 * It is possible for mount and umount to race in such a way that
7422 * we execute this code path, but open_fs_devices failed to clear
7423 * total_rw_bytes. We certainly want it cleared before reading the
7424 * device items, so clear it here.
7425 */
7426 fs_info->fs_devices->total_rw_bytes = 0;
7427
7428 /*
7429 * Lockdep complains about possible circular locking dependency between
7430 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431 * used for freeze procection of a fs (struct super_block.s_writers),
7432 * which we take when starting a transaction, and extent buffers of the
7433 * chunk tree if we call read_one_dev() while holding a lock on an
7434 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435 * and at this point there can't be any concurrent task modifying the
7436 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437 */
7438 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439 path->skip_locking = 1;
7440
7441 /*
7442 * Read all device items, and then all the chunk items. All
7443 * device items are found before any chunk item (their object id
7444 * is smaller than the lowest possible object id for a chunk
7445 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446 */
7447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448 key.offset = 0;
7449 key.type = 0;
7450 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451 struct extent_buffer *node = path->nodes[1];
7452
7453 leaf = path->nodes[0];
7454 slot = path->slots[0];
7455
7456 if (node) {
7457 if (last_ra_node != node->start) {
7458 readahead_tree_node_children(node);
7459 last_ra_node = node->start;
7460 }
7461 }
7462 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463 struct btrfs_dev_item *dev_item;
7464 dev_item = btrfs_item_ptr(leaf, slot,
7465 struct btrfs_dev_item);
7466 ret = read_one_dev(leaf, dev_item);
7467 if (ret)
7468 goto error;
7469 total_dev++;
7470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471 struct btrfs_chunk *chunk;
7472
7473 /*
7474 * We are only called at mount time, so no need to take
7475 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476 * we always lock first fs_info->chunk_mutex before
7477 * acquiring any locks on the chunk tree. This is a
7478 * requirement for chunk allocation, see the comment on
7479 * top of btrfs_chunk_alloc() for details.
7480 */
7481 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482 ret = read_one_chunk(&found_key, leaf, chunk);
7483 if (ret)
7484 goto error;
7485 }
7486 }
7487 /* Catch error found during iteration */
7488 if (iter_ret < 0) {
7489 ret = iter_ret;
7490 goto error;
7491 }
7492
7493 /*
7494 * After loading chunk tree, we've got all device information,
7495 * do another round of validation checks.
7496 */
7497 if (total_dev != fs_info->fs_devices->total_devices) {
7498 btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500 btrfs_super_num_devices(fs_info->super_copy),
7501 total_dev);
7502 fs_info->fs_devices->total_devices = total_dev;
7503 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504 }
7505 if (btrfs_super_total_bytes(fs_info->super_copy) <
7506 fs_info->fs_devices->total_rw_bytes) {
7507 btrfs_err(fs_info,
7508 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509 btrfs_super_total_bytes(fs_info->super_copy),
7510 fs_info->fs_devices->total_rw_bytes);
7511 ret = -EINVAL;
7512 goto error;
7513 }
7514 ret = 0;
7515error:
7516 mutex_unlock(&uuid_mutex);
7517
7518 btrfs_free_path(path);
7519 return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525 struct btrfs_device *device;
7526 int ret = 0;
7527
7528 fs_devices->fs_info = fs_info;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
7531 list_for_each_entry(device, &fs_devices->devices, dev_list)
7532 device->fs_info = fs_info;
7533
7534 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536 device->fs_info = fs_info;
7537 ret = btrfs_get_dev_zone_info(device, false);
7538 if (ret)
7539 break;
7540 }
7541
7542 seed_devs->fs_info = fs_info;
7543 }
7544 mutex_unlock(&fs_devices->device_list_mutex);
7545
7546 return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550 const struct btrfs_dev_stats_item *ptr,
7551 int index)
7552{
7553 u64 val;
7554
7555 read_extent_buffer(eb, &val,
7556 offsetof(struct btrfs_dev_stats_item, values) +
7557 ((unsigned long)ptr) + (index * sizeof(u64)),
7558 sizeof(val));
7559 return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563 struct btrfs_dev_stats_item *ptr,
7564 int index, u64 val)
7565{
7566 write_extent_buffer(eb, &val,
7567 offsetof(struct btrfs_dev_stats_item, values) +
7568 ((unsigned long)ptr) + (index * sizeof(u64)),
7569 sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573 struct btrfs_path *path)
7574{
7575 struct btrfs_dev_stats_item *ptr;
7576 struct extent_buffer *eb;
7577 struct btrfs_key key;
7578 int item_size;
7579 int i, ret, slot;
7580
7581 if (!device->fs_info->dev_root)
7582 return 0;
7583
7584 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586 key.offset = device->devid;
7587 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588 if (ret) {
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590 btrfs_dev_stat_set(device, i, 0);
7591 device->dev_stats_valid = 1;
7592 btrfs_release_path(path);
7593 return ret < 0 ? ret : 0;
7594 }
7595 slot = path->slots[0];
7596 eb = path->nodes[0];
7597 item_size = btrfs_item_size(eb, slot);
7598
7599 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602 if (item_size >= (1 + i) * sizeof(__le64))
7603 btrfs_dev_stat_set(device, i,
7604 btrfs_dev_stats_value(eb, ptr, i));
7605 else
7606 btrfs_dev_stat_set(device, i, 0);
7607 }
7608
7609 device->dev_stats_valid = 1;
7610 btrfs_dev_stat_print_on_load(device);
7611 btrfs_release_path(path);
7612
7613 return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619 struct btrfs_device *device;
7620 struct btrfs_path *path = NULL;
7621 int ret = 0;
7622
7623 path = btrfs_alloc_path();
7624 if (!path)
7625 return -ENOMEM;
7626
7627 mutex_lock(&fs_devices->device_list_mutex);
7628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629 ret = btrfs_device_init_dev_stats(device, path);
7630 if (ret)
7631 goto out;
7632 }
7633 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635 ret = btrfs_device_init_dev_stats(device, path);
7636 if (ret)
7637 goto out;
7638 }
7639 }
7640out:
7641 mutex_unlock(&fs_devices->device_list_mutex);
7642
7643 btrfs_free_path(path);
7644 return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648 struct btrfs_device *device)
7649{
7650 struct btrfs_fs_info *fs_info = trans->fs_info;
7651 struct btrfs_root *dev_root = fs_info->dev_root;
7652 struct btrfs_path *path;
7653 struct btrfs_key key;
7654 struct extent_buffer *eb;
7655 struct btrfs_dev_stats_item *ptr;
7656 int ret;
7657 int i;
7658
7659 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661 key.offset = device->devid;
7662
7663 path = btrfs_alloc_path();
7664 if (!path)
7665 return -ENOMEM;
7666 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667 if (ret < 0) {
7668 btrfs_warn_in_rcu(fs_info,
7669 "error %d while searching for dev_stats item for device %s",
7670 ret, btrfs_dev_name(device));
7671 goto out;
7672 }
7673
7674 if (ret == 0 &&
7675 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676 /* need to delete old one and insert a new one */
7677 ret = btrfs_del_item(trans, dev_root, path);
7678 if (ret != 0) {
7679 btrfs_warn_in_rcu(fs_info,
7680 "delete too small dev_stats item for device %s failed %d",
7681 btrfs_dev_name(device), ret);
7682 goto out;
7683 }
7684 ret = 1;
7685 }
7686
7687 if (ret == 1) {
7688 /* need to insert a new item */
7689 btrfs_release_path(path);
7690 ret = btrfs_insert_empty_item(trans, dev_root, path,
7691 &key, sizeof(*ptr));
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "insert dev_stats item for device %s failed %d",
7695 btrfs_dev_name(device), ret);
7696 goto out;
7697 }
7698 }
7699
7700 eb = path->nodes[0];
7701 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703 btrfs_set_dev_stats_value(eb, ptr, i,
7704 btrfs_dev_stat_read(device, i));
7705 btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708 btrfs_free_path(path);
7709 return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717 struct btrfs_fs_info *fs_info = trans->fs_info;
7718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719 struct btrfs_device *device;
7720 int stats_cnt;
7721 int ret = 0;
7722
7723 mutex_lock(&fs_devices->device_list_mutex);
7724 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726 if (!device->dev_stats_valid || stats_cnt == 0)
7727 continue;
7728
7729
7730 /*
7731 * There is a LOAD-LOAD control dependency between the value of
7732 * dev_stats_ccnt and updating the on-disk values which requires
7733 * reading the in-memory counters. Such control dependencies
7734 * require explicit read memory barriers.
7735 *
7736 * This memory barriers pairs with smp_mb__before_atomic in
7737 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738 * barrier implied by atomic_xchg in
7739 * btrfs_dev_stats_read_and_reset
7740 */
7741 smp_rmb();
7742
7743 ret = update_dev_stat_item(trans, device);
7744 if (!ret)
7745 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746 }
7747 mutex_unlock(&fs_devices->device_list_mutex);
7748
7749 return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754 btrfs_dev_stat_inc(dev, index);
7755
7756 if (!dev->dev_stats_valid)
7757 return;
7758 btrfs_err_rl_in_rcu(dev->fs_info,
7759 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760 btrfs_dev_name(dev),
7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770 int i;
7771
7772 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773 if (btrfs_dev_stat_read(dev, i) != 0)
7774 break;
7775 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776 return; /* all values == 0, suppress message */
7777
7778 btrfs_info_in_rcu(dev->fs_info,
7779 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780 btrfs_dev_name(dev),
7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789 struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791 BTRFS_DEV_LOOKUP_ARGS(args);
7792 struct btrfs_device *dev;
7793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794 int i;
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
7797 args.devid = stats->devid;
7798 dev = btrfs_find_device(fs_info->fs_devices, &args);
7799 mutex_unlock(&fs_devices->device_list_mutex);
7800
7801 if (!dev) {
7802 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803 return -ENODEV;
7804 } else if (!dev->dev_stats_valid) {
7805 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806 return -ENODEV;
7807 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809 if (stats->nr_items > i)
7810 stats->values[i] =
7811 btrfs_dev_stat_read_and_reset(dev, i);
7812 else
7813 btrfs_dev_stat_set(dev, i, 0);
7814 }
7815 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816 current->comm, task_pid_nr(current));
7817 } else {
7818 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819 if (stats->nr_items > i)
7820 stats->values[i] = btrfs_dev_stat_read(dev, i);
7821 }
7822 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824 return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed. This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836 struct btrfs_device *curr, *next;
7837
7838 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840 if (list_empty(&trans->dev_update_list))
7841 return;
7842
7843 /*
7844 * We don't need the device_list_mutex here. This list is owned by the
7845 * transaction and the transaction must complete before the device is
7846 * released.
7847 */
7848 mutex_lock(&trans->fs_info->chunk_mutex);
7849 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850 post_commit_list) {
7851 list_del_init(&curr->post_commit_list);
7852 curr->commit_total_bytes = curr->disk_total_bytes;
7853 curr->commit_bytes_used = curr->bytes_used;
7854 }
7855 mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863 const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865 return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873{
7874 struct btrfs_dev_lookup_args args = { .devid = devid };
7875 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876 struct extent_map *em;
7877 struct map_lookup *map;
7878 struct btrfs_device *dev;
7879 u64 stripe_len;
7880 bool found = false;
7881 int ret = 0;
7882 int i;
7883
7884 read_lock(&em_tree->lock);
7885 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886 read_unlock(&em_tree->lock);
7887
7888 if (!em) {
7889 btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891 physical_offset, devid);
7892 ret = -EUCLEAN;
7893 goto out;
7894 }
7895
7896 map = em->map_lookup;
7897 stripe_len = btrfs_calc_stripe_length(em);
7898 if (physical_len != stripe_len) {
7899 btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901 physical_offset, devid, em->start, physical_len,
7902 stripe_len);
7903 ret = -EUCLEAN;
7904 goto out;
7905 }
7906
7907 /*
7908 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909 * space. Although kernel can handle it without problem, better to warn
7910 * the users.
7911 */
7912 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913 btrfs_warn(fs_info,
7914 "devid %llu physical %llu len %llu inside the reserved space",
7915 devid, physical_offset, physical_len);
7916
7917 for (i = 0; i < map->num_stripes; i++) {
7918 if (map->stripes[i].dev->devid == devid &&
7919 map->stripes[i].physical == physical_offset) {
7920 found = true;
7921 if (map->verified_stripes >= map->num_stripes) {
7922 btrfs_err(fs_info,
7923 "too many dev extents for chunk %llu found",
7924 em->start);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 map->verified_stripes++;
7929 break;
7930 }
7931 }
7932 if (!found) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 }
7938
7939 /* Make sure no dev extent is beyond device boundary */
7940 dev = btrfs_find_device(fs_info->fs_devices, &args);
7941 if (!dev) {
7942 btrfs_err(fs_info, "failed to find devid %llu", devid);
7943 ret = -EUCLEAN;
7944 goto out;
7945 }
7946
7947 if (physical_offset + physical_len > dev->disk_total_bytes) {
7948 btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950 devid, physical_offset, physical_len,
7951 dev->disk_total_bytes);
7952 ret = -EUCLEAN;
7953 goto out;
7954 }
7955
7956 if (dev->zone_info) {
7957 u64 zone_size = dev->zone_info->zone_size;
7958
7959 if (!IS_ALIGNED(physical_offset, zone_size) ||
7960 !IS_ALIGNED(physical_len, zone_size)) {
7961 btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963 devid, physical_offset, physical_len);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
7967 }
7968
7969out:
7970 free_extent_map(em);
7971 return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977 struct extent_map *em;
7978 struct rb_node *node;
7979 int ret = 0;
7980
7981 read_lock(&em_tree->lock);
7982 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983 em = rb_entry(node, struct extent_map, rb_node);
7984 if (em->map_lookup->num_stripes !=
7985 em->map_lookup->verified_stripes) {
7986 btrfs_err(fs_info,
7987 "chunk %llu has missing dev extent, have %d expect %d",
7988 em->start, em->map_lookup->verified_stripes,
7989 em->map_lookup->num_stripes);
7990 ret = -EUCLEAN;
7991 goto out;
7992 }
7993 }
7994out:
7995 read_unlock(&em_tree->lock);
7996 return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree. This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008 struct btrfs_path *path;
8009 struct btrfs_root *root = fs_info->dev_root;
8010 struct btrfs_key key;
8011 u64 prev_devid = 0;
8012 u64 prev_dev_ext_end = 0;
8013 int ret = 0;
8014
8015 /*
8016 * We don't have a dev_root because we mounted with ignorebadroots and
8017 * failed to load the root, so we want to skip the verification in this
8018 * case for sure.
8019 *
8020 * However if the dev root is fine, but the tree itself is corrupted
8021 * we'd still fail to mount. This verification is only to make sure
8022 * writes can happen safely, so instead just bypass this check
8023 * completely in the case of IGNOREBADROOTS.
8024 */
8025 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026 return 0;
8027
8028 key.objectid = 1;
8029 key.type = BTRFS_DEV_EXTENT_KEY;
8030 key.offset = 0;
8031
8032 path = btrfs_alloc_path();
8033 if (!path)
8034 return -ENOMEM;
8035
8036 path->reada = READA_FORWARD;
8037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038 if (ret < 0)
8039 goto out;
8040
8041 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042 ret = btrfs_next_leaf(root, path);
8043 if (ret < 0)
8044 goto out;
8045 /* No dev extents at all? Not good */
8046 if (ret > 0) {
8047 ret = -EUCLEAN;
8048 goto out;
8049 }
8050 }
8051 while (1) {
8052 struct extent_buffer *leaf = path->nodes[0];
8053 struct btrfs_dev_extent *dext;
8054 int slot = path->slots[0];
8055 u64 chunk_offset;
8056 u64 physical_offset;
8057 u64 physical_len;
8058 u64 devid;
8059
8060 btrfs_item_key_to_cpu(leaf, &key, slot);
8061 if (key.type != BTRFS_DEV_EXTENT_KEY)
8062 break;
8063 devid = key.objectid;
8064 physical_offset = key.offset;
8065
8066 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068 physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070 /* Check if this dev extent overlaps with the previous one */
8071 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072 btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074 devid, physical_offset, prev_dev_ext_end);
8075 ret = -EUCLEAN;
8076 goto out;
8077 }
8078
8079 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080 physical_offset, physical_len);
8081 if (ret < 0)
8082 goto out;
8083 prev_devid = devid;
8084 prev_dev_ext_end = physical_offset + physical_len;
8085
8086 ret = btrfs_next_item(root, path);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0) {
8090 ret = 0;
8091 break;
8092 }
8093 }
8094
8095 /* Ensure all chunks have corresponding dev extents */
8096 ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098 btrfs_free_path(path);
8099 return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108 struct btrfs_swapfile_pin *sp;
8109 struct rb_node *node;
8110
8111 spin_lock(&fs_info->swapfile_pins_lock);
8112 node = fs_info->swapfile_pins.rb_node;
8113 while (node) {
8114 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115 if (ptr < sp->ptr)
8116 node = node->rb_left;
8117 else if (ptr > sp->ptr)
8118 node = node->rb_right;
8119 else
8120 break;
8121 }
8122 spin_unlock(&fs_info->swapfile_pins_lock);
8123 return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128 struct btrfs_block_group *cache = data;
8129 struct btrfs_fs_info *fs_info = cache->fs_info;
8130 u64 target;
8131 int ret = 0;
8132
8133 target = cache->start;
8134 btrfs_put_block_group(cache);
8135
8136 sb_start_write(fs_info->sb);
8137 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138 btrfs_info(fs_info,
8139 "zoned: skip relocating block group %llu to repair: EBUSY",
8140 target);
8141 sb_end_write(fs_info->sb);
8142 return -EBUSY;
8143 }
8144
8145 mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147 /* Ensure block group still exists */
8148 cache = btrfs_lookup_block_group(fs_info, target);
8149 if (!cache)
8150 goto out;
8151
8152 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153 goto out;
8154
8155 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156 if (ret < 0)
8157 goto out;
8158
8159 btrfs_info(fs_info,
8160 "zoned: relocating block group %llu to repair IO failure",
8161 target);
8162 ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165 if (cache)
8166 btrfs_put_block_group(cache);
8167 mutex_unlock(&fs_info->reclaim_bgs_lock);
8168 btrfs_exclop_finish(fs_info);
8169 sb_end_write(fs_info->sb);
8170
8171 return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176 struct btrfs_block_group *cache;
8177
8178 if (!btrfs_is_zoned(fs_info))
8179 return false;
8180
8181 /* Do not attempt to repair in degraded state */
8182 if (btrfs_test_opt(fs_info, DEGRADED))
8183 return true;
8184
8185 cache = btrfs_lookup_block_group(fs_info, logical);
8186 if (!cache)
8187 return true;
8188
8189 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190 btrfs_put_block_group(cache);
8191 return true;
8192 }
8193
8194 kthread_run(relocating_repair_kthread, cache,
8195 "btrfs-relocating-repair");
8196
8197 return true;
8198}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/random.h>
24#include <linux/iocontext.h>
25#include <linux/capability.h>
26#include <asm/div64.h>
27#include "compat.h"
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
34#include "async-thread.h"
35
36static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
40
41static DEFINE_MUTEX(uuid_mutex);
42static LIST_HEAD(fs_uuids);
43
44static void lock_chunks(struct btrfs_root *root)
45{
46 mutex_lock(&root->fs_info->chunk_mutex);
47}
48
49static void unlock_chunks(struct btrfs_root *root)
50{
51 mutex_unlock(&root->fs_info->chunk_mutex);
52}
53
54static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
55{
56 struct btrfs_device *device;
57 WARN_ON(fs_devices->opened);
58 while (!list_empty(&fs_devices->devices)) {
59 device = list_entry(fs_devices->devices.next,
60 struct btrfs_device, dev_list);
61 list_del(&device->dev_list);
62 kfree(device->name);
63 kfree(device);
64 }
65 kfree(fs_devices);
66}
67
68int btrfs_cleanup_fs_uuids(void)
69{
70 struct btrfs_fs_devices *fs_devices;
71
72 while (!list_empty(&fs_uuids)) {
73 fs_devices = list_entry(fs_uuids.next,
74 struct btrfs_fs_devices, list);
75 list_del(&fs_devices->list);
76 free_fs_devices(fs_devices);
77 }
78 return 0;
79}
80
81static noinline struct btrfs_device *__find_device(struct list_head *head,
82 u64 devid, u8 *uuid)
83{
84 struct btrfs_device *dev;
85
86 list_for_each_entry(dev, head, dev_list) {
87 if (dev->devid == devid &&
88 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
89 return dev;
90 }
91 }
92 return NULL;
93}
94
95static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
96{
97 struct btrfs_fs_devices *fs_devices;
98
99 list_for_each_entry(fs_devices, &fs_uuids, list) {
100 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
101 return fs_devices;
102 }
103 return NULL;
104}
105
106static void requeue_list(struct btrfs_pending_bios *pending_bios,
107 struct bio *head, struct bio *tail)
108{
109
110 struct bio *old_head;
111
112 old_head = pending_bios->head;
113 pending_bios->head = head;
114 if (pending_bios->tail)
115 tail->bi_next = old_head;
116 else
117 pending_bios->tail = tail;
118}
119
120/*
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
124 *
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
130 */
131static noinline int run_scheduled_bios(struct btrfs_device *device)
132{
133 struct bio *pending;
134 struct backing_dev_info *bdi;
135 struct btrfs_fs_info *fs_info;
136 struct btrfs_pending_bios *pending_bios;
137 struct bio *tail;
138 struct bio *cur;
139 int again = 0;
140 unsigned long num_run;
141 unsigned long batch_run = 0;
142 unsigned long limit;
143 unsigned long last_waited = 0;
144 int force_reg = 0;
145 int sync_pending = 0;
146 struct blk_plug plug;
147
148 /*
149 * this function runs all the bios we've collected for
150 * a particular device. We don't want to wander off to
151 * another device without first sending all of these down.
152 * So, setup a plug here and finish it off before we return
153 */
154 blk_start_plug(&plug);
155
156 bdi = blk_get_backing_dev_info(device->bdev);
157 fs_info = device->dev_root->fs_info;
158 limit = btrfs_async_submit_limit(fs_info);
159 limit = limit * 2 / 3;
160
161loop:
162 spin_lock(&device->io_lock);
163
164loop_lock:
165 num_run = 0;
166
167 /* take all the bios off the list at once and process them
168 * later on (without the lock held). But, remember the
169 * tail and other pointers so the bios can be properly reinserted
170 * into the list if we hit congestion
171 */
172 if (!force_reg && device->pending_sync_bios.head) {
173 pending_bios = &device->pending_sync_bios;
174 force_reg = 1;
175 } else {
176 pending_bios = &device->pending_bios;
177 force_reg = 0;
178 }
179
180 pending = pending_bios->head;
181 tail = pending_bios->tail;
182 WARN_ON(pending && !tail);
183
184 /*
185 * if pending was null this time around, no bios need processing
186 * at all and we can stop. Otherwise it'll loop back up again
187 * and do an additional check so no bios are missed.
188 *
189 * device->running_pending is used to synchronize with the
190 * schedule_bio code.
191 */
192 if (device->pending_sync_bios.head == NULL &&
193 device->pending_bios.head == NULL) {
194 again = 0;
195 device->running_pending = 0;
196 } else {
197 again = 1;
198 device->running_pending = 1;
199 }
200
201 pending_bios->head = NULL;
202 pending_bios->tail = NULL;
203
204 spin_unlock(&device->io_lock);
205
206 while (pending) {
207
208 rmb();
209 /* we want to work on both lists, but do more bios on the
210 * sync list than the regular list
211 */
212 if ((num_run > 32 &&
213 pending_bios != &device->pending_sync_bios &&
214 device->pending_sync_bios.head) ||
215 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
216 device->pending_bios.head)) {
217 spin_lock(&device->io_lock);
218 requeue_list(pending_bios, pending, tail);
219 goto loop_lock;
220 }
221
222 cur = pending;
223 pending = pending->bi_next;
224 cur->bi_next = NULL;
225 atomic_dec(&fs_info->nr_async_bios);
226
227 if (atomic_read(&fs_info->nr_async_bios) < limit &&
228 waitqueue_active(&fs_info->async_submit_wait))
229 wake_up(&fs_info->async_submit_wait);
230
231 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
232
233 /*
234 * if we're doing the sync list, record that our
235 * plug has some sync requests on it
236 *
237 * If we're doing the regular list and there are
238 * sync requests sitting around, unplug before
239 * we add more
240 */
241 if (pending_bios == &device->pending_sync_bios) {
242 sync_pending = 1;
243 } else if (sync_pending) {
244 blk_finish_plug(&plug);
245 blk_start_plug(&plug);
246 sync_pending = 0;
247 }
248
249 submit_bio(cur->bi_rw, cur);
250 num_run++;
251 batch_run++;
252 if (need_resched())
253 cond_resched();
254
255 /*
256 * we made progress, there is more work to do and the bdi
257 * is now congested. Back off and let other work structs
258 * run instead
259 */
260 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
261 fs_info->fs_devices->open_devices > 1) {
262 struct io_context *ioc;
263
264 ioc = current->io_context;
265
266 /*
267 * the main goal here is that we don't want to
268 * block if we're going to be able to submit
269 * more requests without blocking.
270 *
271 * This code does two great things, it pokes into
272 * the elevator code from a filesystem _and_
273 * it makes assumptions about how batching works.
274 */
275 if (ioc && ioc->nr_batch_requests > 0 &&
276 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
277 (last_waited == 0 ||
278 ioc->last_waited == last_waited)) {
279 /*
280 * we want to go through our batch of
281 * requests and stop. So, we copy out
282 * the ioc->last_waited time and test
283 * against it before looping
284 */
285 last_waited = ioc->last_waited;
286 if (need_resched())
287 cond_resched();
288 continue;
289 }
290 spin_lock(&device->io_lock);
291 requeue_list(pending_bios, pending, tail);
292 device->running_pending = 1;
293
294 spin_unlock(&device->io_lock);
295 btrfs_requeue_work(&device->work);
296 goto done;
297 }
298 }
299
300 cond_resched();
301 if (again)
302 goto loop;
303
304 spin_lock(&device->io_lock);
305 if (device->pending_bios.head || device->pending_sync_bios.head)
306 goto loop_lock;
307 spin_unlock(&device->io_lock);
308
309done:
310 blk_finish_plug(&plug);
311 return 0;
312}
313
314static void pending_bios_fn(struct btrfs_work *work)
315{
316 struct btrfs_device *device;
317
318 device = container_of(work, struct btrfs_device, work);
319 run_scheduled_bios(device);
320}
321
322static noinline int device_list_add(const char *path,
323 struct btrfs_super_block *disk_super,
324 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
325{
326 struct btrfs_device *device;
327 struct btrfs_fs_devices *fs_devices;
328 u64 found_transid = btrfs_super_generation(disk_super);
329 char *name;
330
331 fs_devices = find_fsid(disk_super->fsid);
332 if (!fs_devices) {
333 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
334 if (!fs_devices)
335 return -ENOMEM;
336 INIT_LIST_HEAD(&fs_devices->devices);
337 INIT_LIST_HEAD(&fs_devices->alloc_list);
338 list_add(&fs_devices->list, &fs_uuids);
339 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
340 fs_devices->latest_devid = devid;
341 fs_devices->latest_trans = found_transid;
342 mutex_init(&fs_devices->device_list_mutex);
343 device = NULL;
344 } else {
345 device = __find_device(&fs_devices->devices, devid,
346 disk_super->dev_item.uuid);
347 }
348 if (!device) {
349 if (fs_devices->opened)
350 return -EBUSY;
351
352 device = kzalloc(sizeof(*device), GFP_NOFS);
353 if (!device) {
354 /* we can safely leave the fs_devices entry around */
355 return -ENOMEM;
356 }
357 device->devid = devid;
358 device->work.func = pending_bios_fn;
359 memcpy(device->uuid, disk_super->dev_item.uuid,
360 BTRFS_UUID_SIZE);
361 spin_lock_init(&device->io_lock);
362 device->name = kstrdup(path, GFP_NOFS);
363 if (!device->name) {
364 kfree(device);
365 return -ENOMEM;
366 }
367 INIT_LIST_HEAD(&device->dev_alloc_list);
368
369 mutex_lock(&fs_devices->device_list_mutex);
370 list_add_rcu(&device->dev_list, &fs_devices->devices);
371 mutex_unlock(&fs_devices->device_list_mutex);
372
373 device->fs_devices = fs_devices;
374 fs_devices->num_devices++;
375 } else if (!device->name || strcmp(device->name, path)) {
376 name = kstrdup(path, GFP_NOFS);
377 if (!name)
378 return -ENOMEM;
379 kfree(device->name);
380 device->name = name;
381 if (device->missing) {
382 fs_devices->missing_devices--;
383 device->missing = 0;
384 }
385 }
386
387 if (found_transid > fs_devices->latest_trans) {
388 fs_devices->latest_devid = devid;
389 fs_devices->latest_trans = found_transid;
390 }
391 *fs_devices_ret = fs_devices;
392 return 0;
393}
394
395static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
396{
397 struct btrfs_fs_devices *fs_devices;
398 struct btrfs_device *device;
399 struct btrfs_device *orig_dev;
400
401 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
402 if (!fs_devices)
403 return ERR_PTR(-ENOMEM);
404
405 INIT_LIST_HEAD(&fs_devices->devices);
406 INIT_LIST_HEAD(&fs_devices->alloc_list);
407 INIT_LIST_HEAD(&fs_devices->list);
408 mutex_init(&fs_devices->device_list_mutex);
409 fs_devices->latest_devid = orig->latest_devid;
410 fs_devices->latest_trans = orig->latest_trans;
411 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
412
413 /* We have held the volume lock, it is safe to get the devices. */
414 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
415 device = kzalloc(sizeof(*device), GFP_NOFS);
416 if (!device)
417 goto error;
418
419 device->name = kstrdup(orig_dev->name, GFP_NOFS);
420 if (!device->name) {
421 kfree(device);
422 goto error;
423 }
424
425 device->devid = orig_dev->devid;
426 device->work.func = pending_bios_fn;
427 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
428 spin_lock_init(&device->io_lock);
429 INIT_LIST_HEAD(&device->dev_list);
430 INIT_LIST_HEAD(&device->dev_alloc_list);
431
432 list_add(&device->dev_list, &fs_devices->devices);
433 device->fs_devices = fs_devices;
434 fs_devices->num_devices++;
435 }
436 return fs_devices;
437error:
438 free_fs_devices(fs_devices);
439 return ERR_PTR(-ENOMEM);
440}
441
442int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
443{
444 struct btrfs_device *device, *next;
445
446 mutex_lock(&uuid_mutex);
447again:
448 /* This is the initialized path, it is safe to release the devices. */
449 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
450 if (device->in_fs_metadata)
451 continue;
452
453 if (device->bdev) {
454 blkdev_put(device->bdev, device->mode);
455 device->bdev = NULL;
456 fs_devices->open_devices--;
457 }
458 if (device->writeable) {
459 list_del_init(&device->dev_alloc_list);
460 device->writeable = 0;
461 fs_devices->rw_devices--;
462 }
463 list_del_init(&device->dev_list);
464 fs_devices->num_devices--;
465 kfree(device->name);
466 kfree(device);
467 }
468
469 if (fs_devices->seed) {
470 fs_devices = fs_devices->seed;
471 goto again;
472 }
473
474 mutex_unlock(&uuid_mutex);
475 return 0;
476}
477
478static void __free_device(struct work_struct *work)
479{
480 struct btrfs_device *device;
481
482 device = container_of(work, struct btrfs_device, rcu_work);
483
484 if (device->bdev)
485 blkdev_put(device->bdev, device->mode);
486
487 kfree(device->name);
488 kfree(device);
489}
490
491static void free_device(struct rcu_head *head)
492{
493 struct btrfs_device *device;
494
495 device = container_of(head, struct btrfs_device, rcu);
496
497 INIT_WORK(&device->rcu_work, __free_device);
498 schedule_work(&device->rcu_work);
499}
500
501static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
502{
503 struct btrfs_device *device;
504
505 if (--fs_devices->opened > 0)
506 return 0;
507
508 mutex_lock(&fs_devices->device_list_mutex);
509 list_for_each_entry(device, &fs_devices->devices, dev_list) {
510 struct btrfs_device *new_device;
511
512 if (device->bdev)
513 fs_devices->open_devices--;
514
515 if (device->writeable) {
516 list_del_init(&device->dev_alloc_list);
517 fs_devices->rw_devices--;
518 }
519
520 if (device->can_discard)
521 fs_devices->num_can_discard--;
522
523 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
524 BUG_ON(!new_device);
525 memcpy(new_device, device, sizeof(*new_device));
526 new_device->name = kstrdup(device->name, GFP_NOFS);
527 BUG_ON(device->name && !new_device->name);
528 new_device->bdev = NULL;
529 new_device->writeable = 0;
530 new_device->in_fs_metadata = 0;
531 new_device->can_discard = 0;
532 list_replace_rcu(&device->dev_list, &new_device->dev_list);
533
534 call_rcu(&device->rcu, free_device);
535 }
536 mutex_unlock(&fs_devices->device_list_mutex);
537
538 WARN_ON(fs_devices->open_devices);
539 WARN_ON(fs_devices->rw_devices);
540 fs_devices->opened = 0;
541 fs_devices->seeding = 0;
542
543 return 0;
544}
545
546int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
547{
548 struct btrfs_fs_devices *seed_devices = NULL;
549 int ret;
550
551 mutex_lock(&uuid_mutex);
552 ret = __btrfs_close_devices(fs_devices);
553 if (!fs_devices->opened) {
554 seed_devices = fs_devices->seed;
555 fs_devices->seed = NULL;
556 }
557 mutex_unlock(&uuid_mutex);
558
559 while (seed_devices) {
560 fs_devices = seed_devices;
561 seed_devices = fs_devices->seed;
562 __btrfs_close_devices(fs_devices);
563 free_fs_devices(fs_devices);
564 }
565 return ret;
566}
567
568static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
569 fmode_t flags, void *holder)
570{
571 struct request_queue *q;
572 struct block_device *bdev;
573 struct list_head *head = &fs_devices->devices;
574 struct btrfs_device *device;
575 struct block_device *latest_bdev = NULL;
576 struct buffer_head *bh;
577 struct btrfs_super_block *disk_super;
578 u64 latest_devid = 0;
579 u64 latest_transid = 0;
580 u64 devid;
581 int seeding = 1;
582 int ret = 0;
583
584 flags |= FMODE_EXCL;
585
586 list_for_each_entry(device, head, dev_list) {
587 if (device->bdev)
588 continue;
589 if (!device->name)
590 continue;
591
592 bdev = blkdev_get_by_path(device->name, flags, holder);
593 if (IS_ERR(bdev)) {
594 printk(KERN_INFO "open %s failed\n", device->name);
595 goto error;
596 }
597 set_blocksize(bdev, 4096);
598
599 bh = btrfs_read_dev_super(bdev);
600 if (!bh) {
601 ret = -EINVAL;
602 goto error_close;
603 }
604
605 disk_super = (struct btrfs_super_block *)bh->b_data;
606 devid = btrfs_stack_device_id(&disk_super->dev_item);
607 if (devid != device->devid)
608 goto error_brelse;
609
610 if (memcmp(device->uuid, disk_super->dev_item.uuid,
611 BTRFS_UUID_SIZE))
612 goto error_brelse;
613
614 device->generation = btrfs_super_generation(disk_super);
615 if (!latest_transid || device->generation > latest_transid) {
616 latest_devid = devid;
617 latest_transid = device->generation;
618 latest_bdev = bdev;
619 }
620
621 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
622 device->writeable = 0;
623 } else {
624 device->writeable = !bdev_read_only(bdev);
625 seeding = 0;
626 }
627
628 q = bdev_get_queue(bdev);
629 if (blk_queue_discard(q)) {
630 device->can_discard = 1;
631 fs_devices->num_can_discard++;
632 }
633
634 device->bdev = bdev;
635 device->in_fs_metadata = 0;
636 device->mode = flags;
637
638 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
639 fs_devices->rotating = 1;
640
641 fs_devices->open_devices++;
642 if (device->writeable) {
643 fs_devices->rw_devices++;
644 list_add(&device->dev_alloc_list,
645 &fs_devices->alloc_list);
646 }
647 brelse(bh);
648 continue;
649
650error_brelse:
651 brelse(bh);
652error_close:
653 blkdev_put(bdev, flags);
654error:
655 continue;
656 }
657 if (fs_devices->open_devices == 0) {
658 ret = -EIO;
659 goto out;
660 }
661 fs_devices->seeding = seeding;
662 fs_devices->opened = 1;
663 fs_devices->latest_bdev = latest_bdev;
664 fs_devices->latest_devid = latest_devid;
665 fs_devices->latest_trans = latest_transid;
666 fs_devices->total_rw_bytes = 0;
667out:
668 return ret;
669}
670
671int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
672 fmode_t flags, void *holder)
673{
674 int ret;
675
676 mutex_lock(&uuid_mutex);
677 if (fs_devices->opened) {
678 fs_devices->opened++;
679 ret = 0;
680 } else {
681 ret = __btrfs_open_devices(fs_devices, flags, holder);
682 }
683 mutex_unlock(&uuid_mutex);
684 return ret;
685}
686
687int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
688 struct btrfs_fs_devices **fs_devices_ret)
689{
690 struct btrfs_super_block *disk_super;
691 struct block_device *bdev;
692 struct buffer_head *bh;
693 int ret;
694 u64 devid;
695 u64 transid;
696
697 mutex_lock(&uuid_mutex);
698
699 flags |= FMODE_EXCL;
700 bdev = blkdev_get_by_path(path, flags, holder);
701
702 if (IS_ERR(bdev)) {
703 ret = PTR_ERR(bdev);
704 goto error;
705 }
706
707 ret = set_blocksize(bdev, 4096);
708 if (ret)
709 goto error_close;
710 bh = btrfs_read_dev_super(bdev);
711 if (!bh) {
712 ret = -EINVAL;
713 goto error_close;
714 }
715 disk_super = (struct btrfs_super_block *)bh->b_data;
716 devid = btrfs_stack_device_id(&disk_super->dev_item);
717 transid = btrfs_super_generation(disk_super);
718 if (disk_super->label[0])
719 printk(KERN_INFO "device label %s ", disk_super->label);
720 else
721 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
722 printk(KERN_CONT "devid %llu transid %llu %s\n",
723 (unsigned long long)devid, (unsigned long long)transid, path);
724 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
725
726 brelse(bh);
727error_close:
728 blkdev_put(bdev, flags);
729error:
730 mutex_unlock(&uuid_mutex);
731 return ret;
732}
733
734/* helper to account the used device space in the range */
735int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
736 u64 end, u64 *length)
737{
738 struct btrfs_key key;
739 struct btrfs_root *root = device->dev_root;
740 struct btrfs_dev_extent *dev_extent;
741 struct btrfs_path *path;
742 u64 extent_end;
743 int ret;
744 int slot;
745 struct extent_buffer *l;
746
747 *length = 0;
748
749 if (start >= device->total_bytes)
750 return 0;
751
752 path = btrfs_alloc_path();
753 if (!path)
754 return -ENOMEM;
755 path->reada = 2;
756
757 key.objectid = device->devid;
758 key.offset = start;
759 key.type = BTRFS_DEV_EXTENT_KEY;
760
761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 if (ret < 0)
763 goto out;
764 if (ret > 0) {
765 ret = btrfs_previous_item(root, path, key.objectid, key.type);
766 if (ret < 0)
767 goto out;
768 }
769
770 while (1) {
771 l = path->nodes[0];
772 slot = path->slots[0];
773 if (slot >= btrfs_header_nritems(l)) {
774 ret = btrfs_next_leaf(root, path);
775 if (ret == 0)
776 continue;
777 if (ret < 0)
778 goto out;
779
780 break;
781 }
782 btrfs_item_key_to_cpu(l, &key, slot);
783
784 if (key.objectid < device->devid)
785 goto next;
786
787 if (key.objectid > device->devid)
788 break;
789
790 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
791 goto next;
792
793 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
794 extent_end = key.offset + btrfs_dev_extent_length(l,
795 dev_extent);
796 if (key.offset <= start && extent_end > end) {
797 *length = end - start + 1;
798 break;
799 } else if (key.offset <= start && extent_end > start)
800 *length += extent_end - start;
801 else if (key.offset > start && extent_end <= end)
802 *length += extent_end - key.offset;
803 else if (key.offset > start && key.offset <= end) {
804 *length += end - key.offset + 1;
805 break;
806 } else if (key.offset > end)
807 break;
808
809next:
810 path->slots[0]++;
811 }
812 ret = 0;
813out:
814 btrfs_free_path(path);
815 return ret;
816}
817
818/*
819 * find_free_dev_extent - find free space in the specified device
820 * @trans: transaction handler
821 * @device: the device which we search the free space in
822 * @num_bytes: the size of the free space that we need
823 * @start: store the start of the free space.
824 * @len: the size of the free space. that we find, or the size of the max
825 * free space if we don't find suitable free space
826 *
827 * this uses a pretty simple search, the expectation is that it is
828 * called very infrequently and that a given device has a small number
829 * of extents
830 *
831 * @start is used to store the start of the free space if we find. But if we
832 * don't find suitable free space, it will be used to store the start position
833 * of the max free space.
834 *
835 * @len is used to store the size of the free space that we find.
836 * But if we don't find suitable free space, it is used to store the size of
837 * the max free space.
838 */
839int find_free_dev_extent(struct btrfs_trans_handle *trans,
840 struct btrfs_device *device, u64 num_bytes,
841 u64 *start, u64 *len)
842{
843 struct btrfs_key key;
844 struct btrfs_root *root = device->dev_root;
845 struct btrfs_dev_extent *dev_extent;
846 struct btrfs_path *path;
847 u64 hole_size;
848 u64 max_hole_start;
849 u64 max_hole_size;
850 u64 extent_end;
851 u64 search_start;
852 u64 search_end = device->total_bytes;
853 int ret;
854 int slot;
855 struct extent_buffer *l;
856
857 /* FIXME use last free of some kind */
858
859 /* we don't want to overwrite the superblock on the drive,
860 * so we make sure to start at an offset of at least 1MB
861 */
862 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
863
864 max_hole_start = search_start;
865 max_hole_size = 0;
866 hole_size = 0;
867
868 if (search_start >= search_end) {
869 ret = -ENOSPC;
870 goto error;
871 }
872
873 path = btrfs_alloc_path();
874 if (!path) {
875 ret = -ENOMEM;
876 goto error;
877 }
878 path->reada = 2;
879
880 key.objectid = device->devid;
881 key.offset = search_start;
882 key.type = BTRFS_DEV_EXTENT_KEY;
883
884 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
885 if (ret < 0)
886 goto out;
887 if (ret > 0) {
888 ret = btrfs_previous_item(root, path, key.objectid, key.type);
889 if (ret < 0)
890 goto out;
891 }
892
893 while (1) {
894 l = path->nodes[0];
895 slot = path->slots[0];
896 if (slot >= btrfs_header_nritems(l)) {
897 ret = btrfs_next_leaf(root, path);
898 if (ret == 0)
899 continue;
900 if (ret < 0)
901 goto out;
902
903 break;
904 }
905 btrfs_item_key_to_cpu(l, &key, slot);
906
907 if (key.objectid < device->devid)
908 goto next;
909
910 if (key.objectid > device->devid)
911 break;
912
913 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
914 goto next;
915
916 if (key.offset > search_start) {
917 hole_size = key.offset - search_start;
918
919 if (hole_size > max_hole_size) {
920 max_hole_start = search_start;
921 max_hole_size = hole_size;
922 }
923
924 /*
925 * If this free space is greater than which we need,
926 * it must be the max free space that we have found
927 * until now, so max_hole_start must point to the start
928 * of this free space and the length of this free space
929 * is stored in max_hole_size. Thus, we return
930 * max_hole_start and max_hole_size and go back to the
931 * caller.
932 */
933 if (hole_size >= num_bytes) {
934 ret = 0;
935 goto out;
936 }
937 }
938
939 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
940 extent_end = key.offset + btrfs_dev_extent_length(l,
941 dev_extent);
942 if (extent_end > search_start)
943 search_start = extent_end;
944next:
945 path->slots[0]++;
946 cond_resched();
947 }
948
949 /*
950 * At this point, search_start should be the end of
951 * allocated dev extents, and when shrinking the device,
952 * search_end may be smaller than search_start.
953 */
954 if (search_end > search_start)
955 hole_size = search_end - search_start;
956
957 if (hole_size > max_hole_size) {
958 max_hole_start = search_start;
959 max_hole_size = hole_size;
960 }
961
962 /* See above. */
963 if (hole_size < num_bytes)
964 ret = -ENOSPC;
965 else
966 ret = 0;
967
968out:
969 btrfs_free_path(path);
970error:
971 *start = max_hole_start;
972 if (len)
973 *len = max_hole_size;
974 return ret;
975}
976
977static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
978 struct btrfs_device *device,
979 u64 start)
980{
981 int ret;
982 struct btrfs_path *path;
983 struct btrfs_root *root = device->dev_root;
984 struct btrfs_key key;
985 struct btrfs_key found_key;
986 struct extent_buffer *leaf = NULL;
987 struct btrfs_dev_extent *extent = NULL;
988
989 path = btrfs_alloc_path();
990 if (!path)
991 return -ENOMEM;
992
993 key.objectid = device->devid;
994 key.offset = start;
995 key.type = BTRFS_DEV_EXTENT_KEY;
996
997 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
998 if (ret > 0) {
999 ret = btrfs_previous_item(root, path, key.objectid,
1000 BTRFS_DEV_EXTENT_KEY);
1001 if (ret)
1002 goto out;
1003 leaf = path->nodes[0];
1004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1005 extent = btrfs_item_ptr(leaf, path->slots[0],
1006 struct btrfs_dev_extent);
1007 BUG_ON(found_key.offset > start || found_key.offset +
1008 btrfs_dev_extent_length(leaf, extent) < start);
1009 } else if (ret == 0) {
1010 leaf = path->nodes[0];
1011 extent = btrfs_item_ptr(leaf, path->slots[0],
1012 struct btrfs_dev_extent);
1013 }
1014 BUG_ON(ret);
1015
1016 if (device->bytes_used > 0)
1017 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1018 ret = btrfs_del_item(trans, root, path);
1019
1020out:
1021 btrfs_free_path(path);
1022 return ret;
1023}
1024
1025int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1026 struct btrfs_device *device,
1027 u64 chunk_tree, u64 chunk_objectid,
1028 u64 chunk_offset, u64 start, u64 num_bytes)
1029{
1030 int ret;
1031 struct btrfs_path *path;
1032 struct btrfs_root *root = device->dev_root;
1033 struct btrfs_dev_extent *extent;
1034 struct extent_buffer *leaf;
1035 struct btrfs_key key;
1036
1037 WARN_ON(!device->in_fs_metadata);
1038 path = btrfs_alloc_path();
1039 if (!path)
1040 return -ENOMEM;
1041
1042 key.objectid = device->devid;
1043 key.offset = start;
1044 key.type = BTRFS_DEV_EXTENT_KEY;
1045 ret = btrfs_insert_empty_item(trans, root, path, &key,
1046 sizeof(*extent));
1047 BUG_ON(ret);
1048
1049 leaf = path->nodes[0];
1050 extent = btrfs_item_ptr(leaf, path->slots[0],
1051 struct btrfs_dev_extent);
1052 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1053 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1054 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1055
1056 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1057 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1058 BTRFS_UUID_SIZE);
1059
1060 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1061 btrfs_mark_buffer_dirty(leaf);
1062 btrfs_free_path(path);
1063 return ret;
1064}
1065
1066static noinline int find_next_chunk(struct btrfs_root *root,
1067 u64 objectid, u64 *offset)
1068{
1069 struct btrfs_path *path;
1070 int ret;
1071 struct btrfs_key key;
1072 struct btrfs_chunk *chunk;
1073 struct btrfs_key found_key;
1074
1075 path = btrfs_alloc_path();
1076 if (!path)
1077 return -ENOMEM;
1078
1079 key.objectid = objectid;
1080 key.offset = (u64)-1;
1081 key.type = BTRFS_CHUNK_ITEM_KEY;
1082
1083 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1084 if (ret < 0)
1085 goto error;
1086
1087 BUG_ON(ret == 0);
1088
1089 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1090 if (ret) {
1091 *offset = 0;
1092 } else {
1093 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1094 path->slots[0]);
1095 if (found_key.objectid != objectid)
1096 *offset = 0;
1097 else {
1098 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1099 struct btrfs_chunk);
1100 *offset = found_key.offset +
1101 btrfs_chunk_length(path->nodes[0], chunk);
1102 }
1103 }
1104 ret = 0;
1105error:
1106 btrfs_free_path(path);
1107 return ret;
1108}
1109
1110static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1111{
1112 int ret;
1113 struct btrfs_key key;
1114 struct btrfs_key found_key;
1115 struct btrfs_path *path;
1116
1117 root = root->fs_info->chunk_root;
1118
1119 path = btrfs_alloc_path();
1120 if (!path)
1121 return -ENOMEM;
1122
1123 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1124 key.type = BTRFS_DEV_ITEM_KEY;
1125 key.offset = (u64)-1;
1126
1127 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1128 if (ret < 0)
1129 goto error;
1130
1131 BUG_ON(ret == 0);
1132
1133 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1134 BTRFS_DEV_ITEM_KEY);
1135 if (ret) {
1136 *objectid = 1;
1137 } else {
1138 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1139 path->slots[0]);
1140 *objectid = found_key.offset + 1;
1141 }
1142 ret = 0;
1143error:
1144 btrfs_free_path(path);
1145 return ret;
1146}
1147
1148/*
1149 * the device information is stored in the chunk root
1150 * the btrfs_device struct should be fully filled in
1151 */
1152int btrfs_add_device(struct btrfs_trans_handle *trans,
1153 struct btrfs_root *root,
1154 struct btrfs_device *device)
1155{
1156 int ret;
1157 struct btrfs_path *path;
1158 struct btrfs_dev_item *dev_item;
1159 struct extent_buffer *leaf;
1160 struct btrfs_key key;
1161 unsigned long ptr;
1162
1163 root = root->fs_info->chunk_root;
1164
1165 path = btrfs_alloc_path();
1166 if (!path)
1167 return -ENOMEM;
1168
1169 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1170 key.type = BTRFS_DEV_ITEM_KEY;
1171 key.offset = device->devid;
1172
1173 ret = btrfs_insert_empty_item(trans, root, path, &key,
1174 sizeof(*dev_item));
1175 if (ret)
1176 goto out;
1177
1178 leaf = path->nodes[0];
1179 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1180
1181 btrfs_set_device_id(leaf, dev_item, device->devid);
1182 btrfs_set_device_generation(leaf, dev_item, 0);
1183 btrfs_set_device_type(leaf, dev_item, device->type);
1184 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1185 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1186 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1187 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1188 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1189 btrfs_set_device_group(leaf, dev_item, 0);
1190 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1191 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1192 btrfs_set_device_start_offset(leaf, dev_item, 0);
1193
1194 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1195 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1196 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1197 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1198 btrfs_mark_buffer_dirty(leaf);
1199
1200 ret = 0;
1201out:
1202 btrfs_free_path(path);
1203 return ret;
1204}
1205
1206static int btrfs_rm_dev_item(struct btrfs_root *root,
1207 struct btrfs_device *device)
1208{
1209 int ret;
1210 struct btrfs_path *path;
1211 struct btrfs_key key;
1212 struct btrfs_trans_handle *trans;
1213
1214 root = root->fs_info->chunk_root;
1215
1216 path = btrfs_alloc_path();
1217 if (!path)
1218 return -ENOMEM;
1219
1220 trans = btrfs_start_transaction(root, 0);
1221 if (IS_ERR(trans)) {
1222 btrfs_free_path(path);
1223 return PTR_ERR(trans);
1224 }
1225 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1226 key.type = BTRFS_DEV_ITEM_KEY;
1227 key.offset = device->devid;
1228 lock_chunks(root);
1229
1230 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1231 if (ret < 0)
1232 goto out;
1233
1234 if (ret > 0) {
1235 ret = -ENOENT;
1236 goto out;
1237 }
1238
1239 ret = btrfs_del_item(trans, root, path);
1240 if (ret)
1241 goto out;
1242out:
1243 btrfs_free_path(path);
1244 unlock_chunks(root);
1245 btrfs_commit_transaction(trans, root);
1246 return ret;
1247}
1248
1249int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1250{
1251 struct btrfs_device *device;
1252 struct btrfs_device *next_device;
1253 struct block_device *bdev;
1254 struct buffer_head *bh = NULL;
1255 struct btrfs_super_block *disk_super;
1256 struct btrfs_fs_devices *cur_devices;
1257 u64 all_avail;
1258 u64 devid;
1259 u64 num_devices;
1260 u8 *dev_uuid;
1261 int ret = 0;
1262 bool clear_super = false;
1263
1264 mutex_lock(&uuid_mutex);
1265 mutex_lock(&root->fs_info->volume_mutex);
1266
1267 all_avail = root->fs_info->avail_data_alloc_bits |
1268 root->fs_info->avail_system_alloc_bits |
1269 root->fs_info->avail_metadata_alloc_bits;
1270
1271 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1272 root->fs_info->fs_devices->num_devices <= 4) {
1273 printk(KERN_ERR "btrfs: unable to go below four devices "
1274 "on raid10\n");
1275 ret = -EINVAL;
1276 goto out;
1277 }
1278
1279 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1280 root->fs_info->fs_devices->num_devices <= 2) {
1281 printk(KERN_ERR "btrfs: unable to go below two "
1282 "devices on raid1\n");
1283 ret = -EINVAL;
1284 goto out;
1285 }
1286
1287 if (strcmp(device_path, "missing") == 0) {
1288 struct list_head *devices;
1289 struct btrfs_device *tmp;
1290
1291 device = NULL;
1292 devices = &root->fs_info->fs_devices->devices;
1293 /*
1294 * It is safe to read the devices since the volume_mutex
1295 * is held.
1296 */
1297 list_for_each_entry(tmp, devices, dev_list) {
1298 if (tmp->in_fs_metadata && !tmp->bdev) {
1299 device = tmp;
1300 break;
1301 }
1302 }
1303 bdev = NULL;
1304 bh = NULL;
1305 disk_super = NULL;
1306 if (!device) {
1307 printk(KERN_ERR "btrfs: no missing devices found to "
1308 "remove\n");
1309 goto out;
1310 }
1311 } else {
1312 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1313 root->fs_info->bdev_holder);
1314 if (IS_ERR(bdev)) {
1315 ret = PTR_ERR(bdev);
1316 goto out;
1317 }
1318
1319 set_blocksize(bdev, 4096);
1320 bh = btrfs_read_dev_super(bdev);
1321 if (!bh) {
1322 ret = -EINVAL;
1323 goto error_close;
1324 }
1325 disk_super = (struct btrfs_super_block *)bh->b_data;
1326 devid = btrfs_stack_device_id(&disk_super->dev_item);
1327 dev_uuid = disk_super->dev_item.uuid;
1328 device = btrfs_find_device(root, devid, dev_uuid,
1329 disk_super->fsid);
1330 if (!device) {
1331 ret = -ENOENT;
1332 goto error_brelse;
1333 }
1334 }
1335
1336 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1337 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1338 "device\n");
1339 ret = -EINVAL;
1340 goto error_brelse;
1341 }
1342
1343 if (device->writeable) {
1344 lock_chunks(root);
1345 list_del_init(&device->dev_alloc_list);
1346 unlock_chunks(root);
1347 root->fs_info->fs_devices->rw_devices--;
1348 clear_super = true;
1349 }
1350
1351 ret = btrfs_shrink_device(device, 0);
1352 if (ret)
1353 goto error_undo;
1354
1355 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1356 if (ret)
1357 goto error_undo;
1358
1359 device->in_fs_metadata = 0;
1360 btrfs_scrub_cancel_dev(root, device);
1361
1362 /*
1363 * the device list mutex makes sure that we don't change
1364 * the device list while someone else is writing out all
1365 * the device supers.
1366 */
1367
1368 cur_devices = device->fs_devices;
1369 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1370 list_del_rcu(&device->dev_list);
1371
1372 device->fs_devices->num_devices--;
1373
1374 if (device->missing)
1375 root->fs_info->fs_devices->missing_devices--;
1376
1377 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1378 struct btrfs_device, dev_list);
1379 if (device->bdev == root->fs_info->sb->s_bdev)
1380 root->fs_info->sb->s_bdev = next_device->bdev;
1381 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1382 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1383
1384 if (device->bdev)
1385 device->fs_devices->open_devices--;
1386
1387 call_rcu(&device->rcu, free_device);
1388 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1389
1390 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1391 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1392
1393 if (cur_devices->open_devices == 0) {
1394 struct btrfs_fs_devices *fs_devices;
1395 fs_devices = root->fs_info->fs_devices;
1396 while (fs_devices) {
1397 if (fs_devices->seed == cur_devices)
1398 break;
1399 fs_devices = fs_devices->seed;
1400 }
1401 fs_devices->seed = cur_devices->seed;
1402 cur_devices->seed = NULL;
1403 lock_chunks(root);
1404 __btrfs_close_devices(cur_devices);
1405 unlock_chunks(root);
1406 free_fs_devices(cur_devices);
1407 }
1408
1409 /*
1410 * at this point, the device is zero sized. We want to
1411 * remove it from the devices list and zero out the old super
1412 */
1413 if (clear_super) {
1414 /* make sure this device isn't detected as part of
1415 * the FS anymore
1416 */
1417 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1418 set_buffer_dirty(bh);
1419 sync_dirty_buffer(bh);
1420 }
1421
1422 ret = 0;
1423
1424error_brelse:
1425 brelse(bh);
1426error_close:
1427 if (bdev)
1428 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1429out:
1430 mutex_unlock(&root->fs_info->volume_mutex);
1431 mutex_unlock(&uuid_mutex);
1432 return ret;
1433error_undo:
1434 if (device->writeable) {
1435 lock_chunks(root);
1436 list_add(&device->dev_alloc_list,
1437 &root->fs_info->fs_devices->alloc_list);
1438 unlock_chunks(root);
1439 root->fs_info->fs_devices->rw_devices++;
1440 }
1441 goto error_brelse;
1442}
1443
1444/*
1445 * does all the dirty work required for changing file system's UUID.
1446 */
1447static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root)
1449{
1450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1451 struct btrfs_fs_devices *old_devices;
1452 struct btrfs_fs_devices *seed_devices;
1453 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1454 struct btrfs_device *device;
1455 u64 super_flags;
1456
1457 BUG_ON(!mutex_is_locked(&uuid_mutex));
1458 if (!fs_devices->seeding)
1459 return -EINVAL;
1460
1461 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1462 if (!seed_devices)
1463 return -ENOMEM;
1464
1465 old_devices = clone_fs_devices(fs_devices);
1466 if (IS_ERR(old_devices)) {
1467 kfree(seed_devices);
1468 return PTR_ERR(old_devices);
1469 }
1470
1471 list_add(&old_devices->list, &fs_uuids);
1472
1473 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1474 seed_devices->opened = 1;
1475 INIT_LIST_HEAD(&seed_devices->devices);
1476 INIT_LIST_HEAD(&seed_devices->alloc_list);
1477 mutex_init(&seed_devices->device_list_mutex);
1478
1479 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1480 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1481 synchronize_rcu);
1482 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1483
1484 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1485 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1486 device->fs_devices = seed_devices;
1487 }
1488
1489 fs_devices->seeding = 0;
1490 fs_devices->num_devices = 0;
1491 fs_devices->open_devices = 0;
1492 fs_devices->seed = seed_devices;
1493
1494 generate_random_uuid(fs_devices->fsid);
1495 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1497 super_flags = btrfs_super_flags(disk_super) &
1498 ~BTRFS_SUPER_FLAG_SEEDING;
1499 btrfs_set_super_flags(disk_super, super_flags);
1500
1501 return 0;
1502}
1503
1504/*
1505 * strore the expected generation for seed devices in device items.
1506 */
1507static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1508 struct btrfs_root *root)
1509{
1510 struct btrfs_path *path;
1511 struct extent_buffer *leaf;
1512 struct btrfs_dev_item *dev_item;
1513 struct btrfs_device *device;
1514 struct btrfs_key key;
1515 u8 fs_uuid[BTRFS_UUID_SIZE];
1516 u8 dev_uuid[BTRFS_UUID_SIZE];
1517 u64 devid;
1518 int ret;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 root = root->fs_info->chunk_root;
1525 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1526 key.offset = 0;
1527 key.type = BTRFS_DEV_ITEM_KEY;
1528
1529 while (1) {
1530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1531 if (ret < 0)
1532 goto error;
1533
1534 leaf = path->nodes[0];
1535next_slot:
1536 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1537 ret = btrfs_next_leaf(root, path);
1538 if (ret > 0)
1539 break;
1540 if (ret < 0)
1541 goto error;
1542 leaf = path->nodes[0];
1543 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1544 btrfs_release_path(path);
1545 continue;
1546 }
1547
1548 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1549 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1550 key.type != BTRFS_DEV_ITEM_KEY)
1551 break;
1552
1553 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1554 struct btrfs_dev_item);
1555 devid = btrfs_device_id(leaf, dev_item);
1556 read_extent_buffer(leaf, dev_uuid,
1557 (unsigned long)btrfs_device_uuid(dev_item),
1558 BTRFS_UUID_SIZE);
1559 read_extent_buffer(leaf, fs_uuid,
1560 (unsigned long)btrfs_device_fsid(dev_item),
1561 BTRFS_UUID_SIZE);
1562 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1563 BUG_ON(!device);
1564
1565 if (device->fs_devices->seeding) {
1566 btrfs_set_device_generation(leaf, dev_item,
1567 device->generation);
1568 btrfs_mark_buffer_dirty(leaf);
1569 }
1570
1571 path->slots[0]++;
1572 goto next_slot;
1573 }
1574 ret = 0;
1575error:
1576 btrfs_free_path(path);
1577 return ret;
1578}
1579
1580int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1581{
1582 struct request_queue *q;
1583 struct btrfs_trans_handle *trans;
1584 struct btrfs_device *device;
1585 struct block_device *bdev;
1586 struct list_head *devices;
1587 struct super_block *sb = root->fs_info->sb;
1588 u64 total_bytes;
1589 int seeding_dev = 0;
1590 int ret = 0;
1591
1592 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1593 return -EINVAL;
1594
1595 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1596 root->fs_info->bdev_holder);
1597 if (IS_ERR(bdev))
1598 return PTR_ERR(bdev);
1599
1600 if (root->fs_info->fs_devices->seeding) {
1601 seeding_dev = 1;
1602 down_write(&sb->s_umount);
1603 mutex_lock(&uuid_mutex);
1604 }
1605
1606 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1607 mutex_lock(&root->fs_info->volume_mutex);
1608
1609 devices = &root->fs_info->fs_devices->devices;
1610 /*
1611 * we have the volume lock, so we don't need the extra
1612 * device list mutex while reading the list here.
1613 */
1614 list_for_each_entry(device, devices, dev_list) {
1615 if (device->bdev == bdev) {
1616 ret = -EEXIST;
1617 goto error;
1618 }
1619 }
1620
1621 device = kzalloc(sizeof(*device), GFP_NOFS);
1622 if (!device) {
1623 /* we can safely leave the fs_devices entry around */
1624 ret = -ENOMEM;
1625 goto error;
1626 }
1627
1628 device->name = kstrdup(device_path, GFP_NOFS);
1629 if (!device->name) {
1630 kfree(device);
1631 ret = -ENOMEM;
1632 goto error;
1633 }
1634
1635 ret = find_next_devid(root, &device->devid);
1636 if (ret) {
1637 kfree(device->name);
1638 kfree(device);
1639 goto error;
1640 }
1641
1642 trans = btrfs_start_transaction(root, 0);
1643 if (IS_ERR(trans)) {
1644 kfree(device->name);
1645 kfree(device);
1646 ret = PTR_ERR(trans);
1647 goto error;
1648 }
1649
1650 lock_chunks(root);
1651
1652 q = bdev_get_queue(bdev);
1653 if (blk_queue_discard(q))
1654 device->can_discard = 1;
1655 device->writeable = 1;
1656 device->work.func = pending_bios_fn;
1657 generate_random_uuid(device->uuid);
1658 spin_lock_init(&device->io_lock);
1659 device->generation = trans->transid;
1660 device->io_width = root->sectorsize;
1661 device->io_align = root->sectorsize;
1662 device->sector_size = root->sectorsize;
1663 device->total_bytes = i_size_read(bdev->bd_inode);
1664 device->disk_total_bytes = device->total_bytes;
1665 device->dev_root = root->fs_info->dev_root;
1666 device->bdev = bdev;
1667 device->in_fs_metadata = 1;
1668 device->mode = FMODE_EXCL;
1669 set_blocksize(device->bdev, 4096);
1670
1671 if (seeding_dev) {
1672 sb->s_flags &= ~MS_RDONLY;
1673 ret = btrfs_prepare_sprout(trans, root);
1674 BUG_ON(ret);
1675 }
1676
1677 device->fs_devices = root->fs_info->fs_devices;
1678
1679 /*
1680 * we don't want write_supers to jump in here with our device
1681 * half setup
1682 */
1683 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1684 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1685 list_add(&device->dev_alloc_list,
1686 &root->fs_info->fs_devices->alloc_list);
1687 root->fs_info->fs_devices->num_devices++;
1688 root->fs_info->fs_devices->open_devices++;
1689 root->fs_info->fs_devices->rw_devices++;
1690 if (device->can_discard)
1691 root->fs_info->fs_devices->num_can_discard++;
1692 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1693
1694 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1695 root->fs_info->fs_devices->rotating = 1;
1696
1697 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1698 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1699 total_bytes + device->total_bytes);
1700
1701 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1702 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1703 total_bytes + 1);
1704 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1705
1706 if (seeding_dev) {
1707 ret = init_first_rw_device(trans, root, device);
1708 BUG_ON(ret);
1709 ret = btrfs_finish_sprout(trans, root);
1710 BUG_ON(ret);
1711 } else {
1712 ret = btrfs_add_device(trans, root, device);
1713 }
1714
1715 /*
1716 * we've got more storage, clear any full flags on the space
1717 * infos
1718 */
1719 btrfs_clear_space_info_full(root->fs_info);
1720
1721 unlock_chunks(root);
1722 btrfs_commit_transaction(trans, root);
1723
1724 if (seeding_dev) {
1725 mutex_unlock(&uuid_mutex);
1726 up_write(&sb->s_umount);
1727
1728 ret = btrfs_relocate_sys_chunks(root);
1729 BUG_ON(ret);
1730 }
1731out:
1732 mutex_unlock(&root->fs_info->volume_mutex);
1733 return ret;
1734error:
1735 blkdev_put(bdev, FMODE_EXCL);
1736 if (seeding_dev) {
1737 mutex_unlock(&uuid_mutex);
1738 up_write(&sb->s_umount);
1739 }
1740 goto out;
1741}
1742
1743static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1744 struct btrfs_device *device)
1745{
1746 int ret;
1747 struct btrfs_path *path;
1748 struct btrfs_root *root;
1749 struct btrfs_dev_item *dev_item;
1750 struct extent_buffer *leaf;
1751 struct btrfs_key key;
1752
1753 root = device->dev_root->fs_info->chunk_root;
1754
1755 path = btrfs_alloc_path();
1756 if (!path)
1757 return -ENOMEM;
1758
1759 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760 key.type = BTRFS_DEV_ITEM_KEY;
1761 key.offset = device->devid;
1762
1763 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1764 if (ret < 0)
1765 goto out;
1766
1767 if (ret > 0) {
1768 ret = -ENOENT;
1769 goto out;
1770 }
1771
1772 leaf = path->nodes[0];
1773 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1774
1775 btrfs_set_device_id(leaf, dev_item, device->devid);
1776 btrfs_set_device_type(leaf, dev_item, device->type);
1777 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1778 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1779 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1780 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1781 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1782 btrfs_mark_buffer_dirty(leaf);
1783
1784out:
1785 btrfs_free_path(path);
1786 return ret;
1787}
1788
1789static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1790 struct btrfs_device *device, u64 new_size)
1791{
1792 struct btrfs_super_block *super_copy =
1793 &device->dev_root->fs_info->super_copy;
1794 u64 old_total = btrfs_super_total_bytes(super_copy);
1795 u64 diff = new_size - device->total_bytes;
1796
1797 if (!device->writeable)
1798 return -EACCES;
1799 if (new_size <= device->total_bytes)
1800 return -EINVAL;
1801
1802 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1803 device->fs_devices->total_rw_bytes += diff;
1804
1805 device->total_bytes = new_size;
1806 device->disk_total_bytes = new_size;
1807 btrfs_clear_space_info_full(device->dev_root->fs_info);
1808
1809 return btrfs_update_device(trans, device);
1810}
1811
1812int btrfs_grow_device(struct btrfs_trans_handle *trans,
1813 struct btrfs_device *device, u64 new_size)
1814{
1815 int ret;
1816 lock_chunks(device->dev_root);
1817 ret = __btrfs_grow_device(trans, device, new_size);
1818 unlock_chunks(device->dev_root);
1819 return ret;
1820}
1821
1822static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root,
1824 u64 chunk_tree, u64 chunk_objectid,
1825 u64 chunk_offset)
1826{
1827 int ret;
1828 struct btrfs_path *path;
1829 struct btrfs_key key;
1830
1831 root = root->fs_info->chunk_root;
1832 path = btrfs_alloc_path();
1833 if (!path)
1834 return -ENOMEM;
1835
1836 key.objectid = chunk_objectid;
1837 key.offset = chunk_offset;
1838 key.type = BTRFS_CHUNK_ITEM_KEY;
1839
1840 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1841 BUG_ON(ret);
1842
1843 ret = btrfs_del_item(trans, root, path);
1844
1845 btrfs_free_path(path);
1846 return ret;
1847}
1848
1849static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1850 chunk_offset)
1851{
1852 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1853 struct btrfs_disk_key *disk_key;
1854 struct btrfs_chunk *chunk;
1855 u8 *ptr;
1856 int ret = 0;
1857 u32 num_stripes;
1858 u32 array_size;
1859 u32 len = 0;
1860 u32 cur;
1861 struct btrfs_key key;
1862
1863 array_size = btrfs_super_sys_array_size(super_copy);
1864
1865 ptr = super_copy->sys_chunk_array;
1866 cur = 0;
1867
1868 while (cur < array_size) {
1869 disk_key = (struct btrfs_disk_key *)ptr;
1870 btrfs_disk_key_to_cpu(&key, disk_key);
1871
1872 len = sizeof(*disk_key);
1873
1874 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1875 chunk = (struct btrfs_chunk *)(ptr + len);
1876 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1877 len += btrfs_chunk_item_size(num_stripes);
1878 } else {
1879 ret = -EIO;
1880 break;
1881 }
1882 if (key.objectid == chunk_objectid &&
1883 key.offset == chunk_offset) {
1884 memmove(ptr, ptr + len, array_size - (cur + len));
1885 array_size -= len;
1886 btrfs_set_super_sys_array_size(super_copy, array_size);
1887 } else {
1888 ptr += len;
1889 cur += len;
1890 }
1891 }
1892 return ret;
1893}
1894
1895static int btrfs_relocate_chunk(struct btrfs_root *root,
1896 u64 chunk_tree, u64 chunk_objectid,
1897 u64 chunk_offset)
1898{
1899 struct extent_map_tree *em_tree;
1900 struct btrfs_root *extent_root;
1901 struct btrfs_trans_handle *trans;
1902 struct extent_map *em;
1903 struct map_lookup *map;
1904 int ret;
1905 int i;
1906
1907 root = root->fs_info->chunk_root;
1908 extent_root = root->fs_info->extent_root;
1909 em_tree = &root->fs_info->mapping_tree.map_tree;
1910
1911 ret = btrfs_can_relocate(extent_root, chunk_offset);
1912 if (ret)
1913 return -ENOSPC;
1914
1915 /* step one, relocate all the extents inside this chunk */
1916 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1917 if (ret)
1918 return ret;
1919
1920 trans = btrfs_start_transaction(root, 0);
1921 BUG_ON(IS_ERR(trans));
1922
1923 lock_chunks(root);
1924
1925 /*
1926 * step two, delete the device extents and the
1927 * chunk tree entries
1928 */
1929 read_lock(&em_tree->lock);
1930 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1931 read_unlock(&em_tree->lock);
1932
1933 BUG_ON(em->start > chunk_offset ||
1934 em->start + em->len < chunk_offset);
1935 map = (struct map_lookup *)em->bdev;
1936
1937 for (i = 0; i < map->num_stripes; i++) {
1938 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1939 map->stripes[i].physical);
1940 BUG_ON(ret);
1941
1942 if (map->stripes[i].dev) {
1943 ret = btrfs_update_device(trans, map->stripes[i].dev);
1944 BUG_ON(ret);
1945 }
1946 }
1947 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1948 chunk_offset);
1949
1950 BUG_ON(ret);
1951
1952 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1953
1954 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1955 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1956 BUG_ON(ret);
1957 }
1958
1959 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1960 BUG_ON(ret);
1961
1962 write_lock(&em_tree->lock);
1963 remove_extent_mapping(em_tree, em);
1964 write_unlock(&em_tree->lock);
1965
1966 kfree(map);
1967 em->bdev = NULL;
1968
1969 /* once for the tree */
1970 free_extent_map(em);
1971 /* once for us */
1972 free_extent_map(em);
1973
1974 unlock_chunks(root);
1975 btrfs_end_transaction(trans, root);
1976 return 0;
1977}
1978
1979static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1980{
1981 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1982 struct btrfs_path *path;
1983 struct extent_buffer *leaf;
1984 struct btrfs_chunk *chunk;
1985 struct btrfs_key key;
1986 struct btrfs_key found_key;
1987 u64 chunk_tree = chunk_root->root_key.objectid;
1988 u64 chunk_type;
1989 bool retried = false;
1990 int failed = 0;
1991 int ret;
1992
1993 path = btrfs_alloc_path();
1994 if (!path)
1995 return -ENOMEM;
1996
1997again:
1998 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1999 key.offset = (u64)-1;
2000 key.type = BTRFS_CHUNK_ITEM_KEY;
2001
2002 while (1) {
2003 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2004 if (ret < 0)
2005 goto error;
2006 BUG_ON(ret == 0);
2007
2008 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2009 key.type);
2010 if (ret < 0)
2011 goto error;
2012 if (ret > 0)
2013 break;
2014
2015 leaf = path->nodes[0];
2016 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2017
2018 chunk = btrfs_item_ptr(leaf, path->slots[0],
2019 struct btrfs_chunk);
2020 chunk_type = btrfs_chunk_type(leaf, chunk);
2021 btrfs_release_path(path);
2022
2023 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2024 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2025 found_key.objectid,
2026 found_key.offset);
2027 if (ret == -ENOSPC)
2028 failed++;
2029 else if (ret)
2030 BUG();
2031 }
2032
2033 if (found_key.offset == 0)
2034 break;
2035 key.offset = found_key.offset - 1;
2036 }
2037 ret = 0;
2038 if (failed && !retried) {
2039 failed = 0;
2040 retried = true;
2041 goto again;
2042 } else if (failed && retried) {
2043 WARN_ON(1);
2044 ret = -ENOSPC;
2045 }
2046error:
2047 btrfs_free_path(path);
2048 return ret;
2049}
2050
2051static u64 div_factor(u64 num, int factor)
2052{
2053 if (factor == 10)
2054 return num;
2055 num *= factor;
2056 do_div(num, 10);
2057 return num;
2058}
2059
2060int btrfs_balance(struct btrfs_root *dev_root)
2061{
2062 int ret;
2063 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2064 struct btrfs_device *device;
2065 u64 old_size;
2066 u64 size_to_free;
2067 struct btrfs_path *path;
2068 struct btrfs_key key;
2069 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2070 struct btrfs_trans_handle *trans;
2071 struct btrfs_key found_key;
2072
2073 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2074 return -EROFS;
2075
2076 if (!capable(CAP_SYS_ADMIN))
2077 return -EPERM;
2078
2079 mutex_lock(&dev_root->fs_info->volume_mutex);
2080 dev_root = dev_root->fs_info->dev_root;
2081
2082 /* step one make some room on all the devices */
2083 list_for_each_entry(device, devices, dev_list) {
2084 old_size = device->total_bytes;
2085 size_to_free = div_factor(old_size, 1);
2086 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2087 if (!device->writeable ||
2088 device->total_bytes - device->bytes_used > size_to_free)
2089 continue;
2090
2091 ret = btrfs_shrink_device(device, old_size - size_to_free);
2092 if (ret == -ENOSPC)
2093 break;
2094 BUG_ON(ret);
2095
2096 trans = btrfs_start_transaction(dev_root, 0);
2097 BUG_ON(IS_ERR(trans));
2098
2099 ret = btrfs_grow_device(trans, device, old_size);
2100 BUG_ON(ret);
2101
2102 btrfs_end_transaction(trans, dev_root);
2103 }
2104
2105 /* step two, relocate all the chunks */
2106 path = btrfs_alloc_path();
2107 if (!path) {
2108 ret = -ENOMEM;
2109 goto error;
2110 }
2111 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2112 key.offset = (u64)-1;
2113 key.type = BTRFS_CHUNK_ITEM_KEY;
2114
2115 while (1) {
2116 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2117 if (ret < 0)
2118 goto error;
2119
2120 /*
2121 * this shouldn't happen, it means the last relocate
2122 * failed
2123 */
2124 if (ret == 0)
2125 break;
2126
2127 ret = btrfs_previous_item(chunk_root, path, 0,
2128 BTRFS_CHUNK_ITEM_KEY);
2129 if (ret)
2130 break;
2131
2132 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2133 path->slots[0]);
2134 if (found_key.objectid != key.objectid)
2135 break;
2136
2137 /* chunk zero is special */
2138 if (found_key.offset == 0)
2139 break;
2140
2141 btrfs_release_path(path);
2142 ret = btrfs_relocate_chunk(chunk_root,
2143 chunk_root->root_key.objectid,
2144 found_key.objectid,
2145 found_key.offset);
2146 if (ret && ret != -ENOSPC)
2147 goto error;
2148 key.offset = found_key.offset - 1;
2149 }
2150 ret = 0;
2151error:
2152 btrfs_free_path(path);
2153 mutex_unlock(&dev_root->fs_info->volume_mutex);
2154 return ret;
2155}
2156
2157/*
2158 * shrinking a device means finding all of the device extents past
2159 * the new size, and then following the back refs to the chunks.
2160 * The chunk relocation code actually frees the device extent
2161 */
2162int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2163{
2164 struct btrfs_trans_handle *trans;
2165 struct btrfs_root *root = device->dev_root;
2166 struct btrfs_dev_extent *dev_extent = NULL;
2167 struct btrfs_path *path;
2168 u64 length;
2169 u64 chunk_tree;
2170 u64 chunk_objectid;
2171 u64 chunk_offset;
2172 int ret;
2173 int slot;
2174 int failed = 0;
2175 bool retried = false;
2176 struct extent_buffer *l;
2177 struct btrfs_key key;
2178 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2179 u64 old_total = btrfs_super_total_bytes(super_copy);
2180 u64 old_size = device->total_bytes;
2181 u64 diff = device->total_bytes - new_size;
2182
2183 if (new_size >= device->total_bytes)
2184 return -EINVAL;
2185
2186 path = btrfs_alloc_path();
2187 if (!path)
2188 return -ENOMEM;
2189
2190 path->reada = 2;
2191
2192 lock_chunks(root);
2193
2194 device->total_bytes = new_size;
2195 if (device->writeable)
2196 device->fs_devices->total_rw_bytes -= diff;
2197 unlock_chunks(root);
2198
2199again:
2200 key.objectid = device->devid;
2201 key.offset = (u64)-1;
2202 key.type = BTRFS_DEV_EXTENT_KEY;
2203
2204 while (1) {
2205 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2206 if (ret < 0)
2207 goto done;
2208
2209 ret = btrfs_previous_item(root, path, 0, key.type);
2210 if (ret < 0)
2211 goto done;
2212 if (ret) {
2213 ret = 0;
2214 btrfs_release_path(path);
2215 break;
2216 }
2217
2218 l = path->nodes[0];
2219 slot = path->slots[0];
2220 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2221
2222 if (key.objectid != device->devid) {
2223 btrfs_release_path(path);
2224 break;
2225 }
2226
2227 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2228 length = btrfs_dev_extent_length(l, dev_extent);
2229
2230 if (key.offset + length <= new_size) {
2231 btrfs_release_path(path);
2232 break;
2233 }
2234
2235 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2236 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2237 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2238 btrfs_release_path(path);
2239
2240 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2241 chunk_offset);
2242 if (ret && ret != -ENOSPC)
2243 goto done;
2244 if (ret == -ENOSPC)
2245 failed++;
2246 key.offset -= 1;
2247 }
2248
2249 if (failed && !retried) {
2250 failed = 0;
2251 retried = true;
2252 goto again;
2253 } else if (failed && retried) {
2254 ret = -ENOSPC;
2255 lock_chunks(root);
2256
2257 device->total_bytes = old_size;
2258 if (device->writeable)
2259 device->fs_devices->total_rw_bytes += diff;
2260 unlock_chunks(root);
2261 goto done;
2262 }
2263
2264 /* Shrinking succeeded, else we would be at "done". */
2265 trans = btrfs_start_transaction(root, 0);
2266 if (IS_ERR(trans)) {
2267 ret = PTR_ERR(trans);
2268 goto done;
2269 }
2270
2271 lock_chunks(root);
2272
2273 device->disk_total_bytes = new_size;
2274 /* Now btrfs_update_device() will change the on-disk size. */
2275 ret = btrfs_update_device(trans, device);
2276 if (ret) {
2277 unlock_chunks(root);
2278 btrfs_end_transaction(trans, root);
2279 goto done;
2280 }
2281 WARN_ON(diff > old_total);
2282 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2283 unlock_chunks(root);
2284 btrfs_end_transaction(trans, root);
2285done:
2286 btrfs_free_path(path);
2287 return ret;
2288}
2289
2290static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2291 struct btrfs_root *root,
2292 struct btrfs_key *key,
2293 struct btrfs_chunk *chunk, int item_size)
2294{
2295 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2296 struct btrfs_disk_key disk_key;
2297 u32 array_size;
2298 u8 *ptr;
2299
2300 array_size = btrfs_super_sys_array_size(super_copy);
2301 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2302 return -EFBIG;
2303
2304 ptr = super_copy->sys_chunk_array + array_size;
2305 btrfs_cpu_key_to_disk(&disk_key, key);
2306 memcpy(ptr, &disk_key, sizeof(disk_key));
2307 ptr += sizeof(disk_key);
2308 memcpy(ptr, chunk, item_size);
2309 item_size += sizeof(disk_key);
2310 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2311 return 0;
2312}
2313
2314/*
2315 * sort the devices in descending order by max_avail, total_avail
2316 */
2317static int btrfs_cmp_device_info(const void *a, const void *b)
2318{
2319 const struct btrfs_device_info *di_a = a;
2320 const struct btrfs_device_info *di_b = b;
2321
2322 if (di_a->max_avail > di_b->max_avail)
2323 return -1;
2324 if (di_a->max_avail < di_b->max_avail)
2325 return 1;
2326 if (di_a->total_avail > di_b->total_avail)
2327 return -1;
2328 if (di_a->total_avail < di_b->total_avail)
2329 return 1;
2330 return 0;
2331}
2332
2333static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *extent_root,
2335 struct map_lookup **map_ret,
2336 u64 *num_bytes_out, u64 *stripe_size_out,
2337 u64 start, u64 type)
2338{
2339 struct btrfs_fs_info *info = extent_root->fs_info;
2340 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2341 struct list_head *cur;
2342 struct map_lookup *map = NULL;
2343 struct extent_map_tree *em_tree;
2344 struct extent_map *em;
2345 struct btrfs_device_info *devices_info = NULL;
2346 u64 total_avail;
2347 int num_stripes; /* total number of stripes to allocate */
2348 int sub_stripes; /* sub_stripes info for map */
2349 int dev_stripes; /* stripes per dev */
2350 int devs_max; /* max devs to use */
2351 int devs_min; /* min devs needed */
2352 int devs_increment; /* ndevs has to be a multiple of this */
2353 int ncopies; /* how many copies to data has */
2354 int ret;
2355 u64 max_stripe_size;
2356 u64 max_chunk_size;
2357 u64 stripe_size;
2358 u64 num_bytes;
2359 int ndevs;
2360 int i;
2361 int j;
2362
2363 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2364 (type & BTRFS_BLOCK_GROUP_DUP)) {
2365 WARN_ON(1);
2366 type &= ~BTRFS_BLOCK_GROUP_DUP;
2367 }
2368
2369 if (list_empty(&fs_devices->alloc_list))
2370 return -ENOSPC;
2371
2372 sub_stripes = 1;
2373 dev_stripes = 1;
2374 devs_increment = 1;
2375 ncopies = 1;
2376 devs_max = 0; /* 0 == as many as possible */
2377 devs_min = 1;
2378
2379 /*
2380 * define the properties of each RAID type.
2381 * FIXME: move this to a global table and use it in all RAID
2382 * calculation code
2383 */
2384 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2385 dev_stripes = 2;
2386 ncopies = 2;
2387 devs_max = 1;
2388 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2389 devs_min = 2;
2390 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2391 devs_increment = 2;
2392 ncopies = 2;
2393 devs_max = 2;
2394 devs_min = 2;
2395 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2396 sub_stripes = 2;
2397 devs_increment = 2;
2398 ncopies = 2;
2399 devs_min = 4;
2400 } else {
2401 devs_max = 1;
2402 }
2403
2404 if (type & BTRFS_BLOCK_GROUP_DATA) {
2405 max_stripe_size = 1024 * 1024 * 1024;
2406 max_chunk_size = 10 * max_stripe_size;
2407 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2408 max_stripe_size = 256 * 1024 * 1024;
2409 max_chunk_size = max_stripe_size;
2410 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2411 max_stripe_size = 8 * 1024 * 1024;
2412 max_chunk_size = 2 * max_stripe_size;
2413 } else {
2414 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
2415 type);
2416 BUG_ON(1);
2417 }
2418
2419 /* we don't want a chunk larger than 10% of writeable space */
2420 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2421 max_chunk_size);
2422
2423 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2424 GFP_NOFS);
2425 if (!devices_info)
2426 return -ENOMEM;
2427
2428 cur = fs_devices->alloc_list.next;
2429
2430 /*
2431 * in the first pass through the devices list, we gather information
2432 * about the available holes on each device.
2433 */
2434 ndevs = 0;
2435 while (cur != &fs_devices->alloc_list) {
2436 struct btrfs_device *device;
2437 u64 max_avail;
2438 u64 dev_offset;
2439
2440 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2441
2442 cur = cur->next;
2443
2444 if (!device->writeable) {
2445 printk(KERN_ERR
2446 "btrfs: read-only device in alloc_list\n");
2447 WARN_ON(1);
2448 continue;
2449 }
2450
2451 if (!device->in_fs_metadata)
2452 continue;
2453
2454 if (device->total_bytes > device->bytes_used)
2455 total_avail = device->total_bytes - device->bytes_used;
2456 else
2457 total_avail = 0;
2458
2459 /* If there is no space on this device, skip it. */
2460 if (total_avail == 0)
2461 continue;
2462
2463 ret = find_free_dev_extent(trans, device,
2464 max_stripe_size * dev_stripes,
2465 &dev_offset, &max_avail);
2466 if (ret && ret != -ENOSPC)
2467 goto error;
2468
2469 if (ret == 0)
2470 max_avail = max_stripe_size * dev_stripes;
2471
2472 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
2473 continue;
2474
2475 devices_info[ndevs].dev_offset = dev_offset;
2476 devices_info[ndevs].max_avail = max_avail;
2477 devices_info[ndevs].total_avail = total_avail;
2478 devices_info[ndevs].dev = device;
2479 ++ndevs;
2480 }
2481
2482 /*
2483 * now sort the devices by hole size / available space
2484 */
2485 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
2486 btrfs_cmp_device_info, NULL);
2487
2488 /* round down to number of usable stripes */
2489 ndevs -= ndevs % devs_increment;
2490
2491 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
2492 ret = -ENOSPC;
2493 goto error;
2494 }
2495
2496 if (devs_max && ndevs > devs_max)
2497 ndevs = devs_max;
2498 /*
2499 * the primary goal is to maximize the number of stripes, so use as many
2500 * devices as possible, even if the stripes are not maximum sized.
2501 */
2502 stripe_size = devices_info[ndevs-1].max_avail;
2503 num_stripes = ndevs * dev_stripes;
2504
2505 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
2506 stripe_size = max_chunk_size * ncopies;
2507 do_div(stripe_size, num_stripes);
2508 }
2509
2510 do_div(stripe_size, dev_stripes);
2511 do_div(stripe_size, BTRFS_STRIPE_LEN);
2512 stripe_size *= BTRFS_STRIPE_LEN;
2513
2514 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2515 if (!map) {
2516 ret = -ENOMEM;
2517 goto error;
2518 }
2519 map->num_stripes = num_stripes;
2520
2521 for (i = 0; i < ndevs; ++i) {
2522 for (j = 0; j < dev_stripes; ++j) {
2523 int s = i * dev_stripes + j;
2524 map->stripes[s].dev = devices_info[i].dev;
2525 map->stripes[s].physical = devices_info[i].dev_offset +
2526 j * stripe_size;
2527 }
2528 }
2529 map->sector_size = extent_root->sectorsize;
2530 map->stripe_len = BTRFS_STRIPE_LEN;
2531 map->io_align = BTRFS_STRIPE_LEN;
2532 map->io_width = BTRFS_STRIPE_LEN;
2533 map->type = type;
2534 map->sub_stripes = sub_stripes;
2535
2536 *map_ret = map;
2537 num_bytes = stripe_size * (num_stripes / ncopies);
2538
2539 *stripe_size_out = stripe_size;
2540 *num_bytes_out = num_bytes;
2541
2542 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
2543
2544 em = alloc_extent_map();
2545 if (!em) {
2546 ret = -ENOMEM;
2547 goto error;
2548 }
2549 em->bdev = (struct block_device *)map;
2550 em->start = start;
2551 em->len = num_bytes;
2552 em->block_start = 0;
2553 em->block_len = em->len;
2554
2555 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2556 write_lock(&em_tree->lock);
2557 ret = add_extent_mapping(em_tree, em);
2558 write_unlock(&em_tree->lock);
2559 BUG_ON(ret);
2560 free_extent_map(em);
2561
2562 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2563 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2564 start, num_bytes);
2565 BUG_ON(ret);
2566
2567 for (i = 0; i < map->num_stripes; ++i) {
2568 struct btrfs_device *device;
2569 u64 dev_offset;
2570
2571 device = map->stripes[i].dev;
2572 dev_offset = map->stripes[i].physical;
2573
2574 ret = btrfs_alloc_dev_extent(trans, device,
2575 info->chunk_root->root_key.objectid,
2576 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2577 start, dev_offset, stripe_size);
2578 BUG_ON(ret);
2579 }
2580
2581 kfree(devices_info);
2582 return 0;
2583
2584error:
2585 kfree(map);
2586 kfree(devices_info);
2587 return ret;
2588}
2589
2590static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2591 struct btrfs_root *extent_root,
2592 struct map_lookup *map, u64 chunk_offset,
2593 u64 chunk_size, u64 stripe_size)
2594{
2595 u64 dev_offset;
2596 struct btrfs_key key;
2597 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2598 struct btrfs_device *device;
2599 struct btrfs_chunk *chunk;
2600 struct btrfs_stripe *stripe;
2601 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2602 int index = 0;
2603 int ret;
2604
2605 chunk = kzalloc(item_size, GFP_NOFS);
2606 if (!chunk)
2607 return -ENOMEM;
2608
2609 index = 0;
2610 while (index < map->num_stripes) {
2611 device = map->stripes[index].dev;
2612 device->bytes_used += stripe_size;
2613 ret = btrfs_update_device(trans, device);
2614 BUG_ON(ret);
2615 index++;
2616 }
2617
2618 index = 0;
2619 stripe = &chunk->stripe;
2620 while (index < map->num_stripes) {
2621 device = map->stripes[index].dev;
2622 dev_offset = map->stripes[index].physical;
2623
2624 btrfs_set_stack_stripe_devid(stripe, device->devid);
2625 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2626 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2627 stripe++;
2628 index++;
2629 }
2630
2631 btrfs_set_stack_chunk_length(chunk, chunk_size);
2632 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2633 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2634 btrfs_set_stack_chunk_type(chunk, map->type);
2635 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2636 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2637 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2638 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2639 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2640
2641 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2642 key.type = BTRFS_CHUNK_ITEM_KEY;
2643 key.offset = chunk_offset;
2644
2645 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2646 BUG_ON(ret);
2647
2648 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2649 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2650 item_size);
2651 BUG_ON(ret);
2652 }
2653
2654 kfree(chunk);
2655 return 0;
2656}
2657
2658/*
2659 * Chunk allocation falls into two parts. The first part does works
2660 * that make the new allocated chunk useable, but not do any operation
2661 * that modifies the chunk tree. The second part does the works that
2662 * require modifying the chunk tree. This division is important for the
2663 * bootstrap process of adding storage to a seed btrfs.
2664 */
2665int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2666 struct btrfs_root *extent_root, u64 type)
2667{
2668 u64 chunk_offset;
2669 u64 chunk_size;
2670 u64 stripe_size;
2671 struct map_lookup *map;
2672 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2673 int ret;
2674
2675 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2676 &chunk_offset);
2677 if (ret)
2678 return ret;
2679
2680 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2681 &stripe_size, chunk_offset, type);
2682 if (ret)
2683 return ret;
2684
2685 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2686 chunk_size, stripe_size);
2687 BUG_ON(ret);
2688 return 0;
2689}
2690
2691static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *root,
2693 struct btrfs_device *device)
2694{
2695 u64 chunk_offset;
2696 u64 sys_chunk_offset;
2697 u64 chunk_size;
2698 u64 sys_chunk_size;
2699 u64 stripe_size;
2700 u64 sys_stripe_size;
2701 u64 alloc_profile;
2702 struct map_lookup *map;
2703 struct map_lookup *sys_map;
2704 struct btrfs_fs_info *fs_info = root->fs_info;
2705 struct btrfs_root *extent_root = fs_info->extent_root;
2706 int ret;
2707
2708 ret = find_next_chunk(fs_info->chunk_root,
2709 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2710 if (ret)
2711 return ret;
2712
2713 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2714 (fs_info->metadata_alloc_profile &
2715 fs_info->avail_metadata_alloc_bits);
2716 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2717
2718 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2719 &stripe_size, chunk_offset, alloc_profile);
2720 BUG_ON(ret);
2721
2722 sys_chunk_offset = chunk_offset + chunk_size;
2723
2724 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2725 (fs_info->system_alloc_profile &
2726 fs_info->avail_system_alloc_bits);
2727 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2728
2729 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2730 &sys_chunk_size, &sys_stripe_size,
2731 sys_chunk_offset, alloc_profile);
2732 BUG_ON(ret);
2733
2734 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2735 BUG_ON(ret);
2736
2737 /*
2738 * Modifying chunk tree needs allocating new blocks from both
2739 * system block group and metadata block group. So we only can
2740 * do operations require modifying the chunk tree after both
2741 * block groups were created.
2742 */
2743 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2744 chunk_size, stripe_size);
2745 BUG_ON(ret);
2746
2747 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2748 sys_chunk_offset, sys_chunk_size,
2749 sys_stripe_size);
2750 BUG_ON(ret);
2751 return 0;
2752}
2753
2754int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2755{
2756 struct extent_map *em;
2757 struct map_lookup *map;
2758 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2759 int readonly = 0;
2760 int i;
2761
2762 read_lock(&map_tree->map_tree.lock);
2763 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2764 read_unlock(&map_tree->map_tree.lock);
2765 if (!em)
2766 return 1;
2767
2768 if (btrfs_test_opt(root, DEGRADED)) {
2769 free_extent_map(em);
2770 return 0;
2771 }
2772
2773 map = (struct map_lookup *)em->bdev;
2774 for (i = 0; i < map->num_stripes; i++) {
2775 if (!map->stripes[i].dev->writeable) {
2776 readonly = 1;
2777 break;
2778 }
2779 }
2780 free_extent_map(em);
2781 return readonly;
2782}
2783
2784void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2785{
2786 extent_map_tree_init(&tree->map_tree);
2787}
2788
2789void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2790{
2791 struct extent_map *em;
2792
2793 while (1) {
2794 write_lock(&tree->map_tree.lock);
2795 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2796 if (em)
2797 remove_extent_mapping(&tree->map_tree, em);
2798 write_unlock(&tree->map_tree.lock);
2799 if (!em)
2800 break;
2801 kfree(em->bdev);
2802 /* once for us */
2803 free_extent_map(em);
2804 /* once for the tree */
2805 free_extent_map(em);
2806 }
2807}
2808
2809int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2810{
2811 struct extent_map *em;
2812 struct map_lookup *map;
2813 struct extent_map_tree *em_tree = &map_tree->map_tree;
2814 int ret;
2815
2816 read_lock(&em_tree->lock);
2817 em = lookup_extent_mapping(em_tree, logical, len);
2818 read_unlock(&em_tree->lock);
2819 BUG_ON(!em);
2820
2821 BUG_ON(em->start > logical || em->start + em->len < logical);
2822 map = (struct map_lookup *)em->bdev;
2823 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2824 ret = map->num_stripes;
2825 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2826 ret = map->sub_stripes;
2827 else
2828 ret = 1;
2829 free_extent_map(em);
2830 return ret;
2831}
2832
2833static int find_live_mirror(struct map_lookup *map, int first, int num,
2834 int optimal)
2835{
2836 int i;
2837 if (map->stripes[optimal].dev->bdev)
2838 return optimal;
2839 for (i = first; i < first + num; i++) {
2840 if (map->stripes[i].dev->bdev)
2841 return i;
2842 }
2843 /* we couldn't find one that doesn't fail. Just return something
2844 * and the io error handling code will clean up eventually
2845 */
2846 return optimal;
2847}
2848
2849static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2850 u64 logical, u64 *length,
2851 struct btrfs_multi_bio **multi_ret,
2852 int mirror_num)
2853{
2854 struct extent_map *em;
2855 struct map_lookup *map;
2856 struct extent_map_tree *em_tree = &map_tree->map_tree;
2857 u64 offset;
2858 u64 stripe_offset;
2859 u64 stripe_end_offset;
2860 u64 stripe_nr;
2861 u64 stripe_nr_orig;
2862 u64 stripe_nr_end;
2863 int stripes_allocated = 8;
2864 int stripes_required = 1;
2865 int stripe_index;
2866 int i;
2867 int num_stripes;
2868 int max_errors = 0;
2869 struct btrfs_multi_bio *multi = NULL;
2870
2871 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2872 stripes_allocated = 1;
2873again:
2874 if (multi_ret) {
2875 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2876 GFP_NOFS);
2877 if (!multi)
2878 return -ENOMEM;
2879
2880 atomic_set(&multi->error, 0);
2881 }
2882
2883 read_lock(&em_tree->lock);
2884 em = lookup_extent_mapping(em_tree, logical, *length);
2885 read_unlock(&em_tree->lock);
2886
2887 if (!em) {
2888 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2889 (unsigned long long)logical,
2890 (unsigned long long)*length);
2891 BUG();
2892 }
2893
2894 BUG_ON(em->start > logical || em->start + em->len < logical);
2895 map = (struct map_lookup *)em->bdev;
2896 offset = logical - em->start;
2897
2898 if (mirror_num > map->num_stripes)
2899 mirror_num = 0;
2900
2901 /* if our multi bio struct is too small, back off and try again */
2902 if (rw & REQ_WRITE) {
2903 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2904 BTRFS_BLOCK_GROUP_DUP)) {
2905 stripes_required = map->num_stripes;
2906 max_errors = 1;
2907 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2908 stripes_required = map->sub_stripes;
2909 max_errors = 1;
2910 }
2911 }
2912 if (rw & REQ_DISCARD) {
2913 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2914 BTRFS_BLOCK_GROUP_RAID1 |
2915 BTRFS_BLOCK_GROUP_DUP |
2916 BTRFS_BLOCK_GROUP_RAID10)) {
2917 stripes_required = map->num_stripes;
2918 }
2919 }
2920 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
2921 stripes_allocated < stripes_required) {
2922 stripes_allocated = map->num_stripes;
2923 free_extent_map(em);
2924 kfree(multi);
2925 goto again;
2926 }
2927 stripe_nr = offset;
2928 /*
2929 * stripe_nr counts the total number of stripes we have to stride
2930 * to get to this block
2931 */
2932 do_div(stripe_nr, map->stripe_len);
2933
2934 stripe_offset = stripe_nr * map->stripe_len;
2935 BUG_ON(offset < stripe_offset);
2936
2937 /* stripe_offset is the offset of this block in its stripe*/
2938 stripe_offset = offset - stripe_offset;
2939
2940 if (rw & REQ_DISCARD)
2941 *length = min_t(u64, em->len - offset, *length);
2942 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2943 BTRFS_BLOCK_GROUP_RAID1 |
2944 BTRFS_BLOCK_GROUP_RAID10 |
2945 BTRFS_BLOCK_GROUP_DUP)) {
2946 /* we limit the length of each bio to what fits in a stripe */
2947 *length = min_t(u64, em->len - offset,
2948 map->stripe_len - stripe_offset);
2949 } else {
2950 *length = em->len - offset;
2951 }
2952
2953 if (!multi_ret)
2954 goto out;
2955
2956 num_stripes = 1;
2957 stripe_index = 0;
2958 stripe_nr_orig = stripe_nr;
2959 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
2960 (~(map->stripe_len - 1));
2961 do_div(stripe_nr_end, map->stripe_len);
2962 stripe_end_offset = stripe_nr_end * map->stripe_len -
2963 (offset + *length);
2964 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2965 if (rw & REQ_DISCARD)
2966 num_stripes = min_t(u64, map->num_stripes,
2967 stripe_nr_end - stripe_nr_orig);
2968 stripe_index = do_div(stripe_nr, map->num_stripes);
2969 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2970 if (rw & (REQ_WRITE | REQ_DISCARD))
2971 num_stripes = map->num_stripes;
2972 else if (mirror_num)
2973 stripe_index = mirror_num - 1;
2974 else {
2975 stripe_index = find_live_mirror(map, 0,
2976 map->num_stripes,
2977 current->pid % map->num_stripes);
2978 }
2979
2980 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2981 if (rw & (REQ_WRITE | REQ_DISCARD))
2982 num_stripes = map->num_stripes;
2983 else if (mirror_num)
2984 stripe_index = mirror_num - 1;
2985
2986 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2987 int factor = map->num_stripes / map->sub_stripes;
2988
2989 stripe_index = do_div(stripe_nr, factor);
2990 stripe_index *= map->sub_stripes;
2991
2992 if (rw & REQ_WRITE)
2993 num_stripes = map->sub_stripes;
2994 else if (rw & REQ_DISCARD)
2995 num_stripes = min_t(u64, map->sub_stripes *
2996 (stripe_nr_end - stripe_nr_orig),
2997 map->num_stripes);
2998 else if (mirror_num)
2999 stripe_index += mirror_num - 1;
3000 else {
3001 stripe_index = find_live_mirror(map, stripe_index,
3002 map->sub_stripes, stripe_index +
3003 current->pid % map->sub_stripes);
3004 }
3005 } else {
3006 /*
3007 * after this do_div call, stripe_nr is the number of stripes
3008 * on this device we have to walk to find the data, and
3009 * stripe_index is the number of our device in the stripe array
3010 */
3011 stripe_index = do_div(stripe_nr, map->num_stripes);
3012 }
3013 BUG_ON(stripe_index >= map->num_stripes);
3014
3015 if (rw & REQ_DISCARD) {
3016 for (i = 0; i < num_stripes; i++) {
3017 multi->stripes[i].physical =
3018 map->stripes[stripe_index].physical +
3019 stripe_offset + stripe_nr * map->stripe_len;
3020 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3021
3022 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3023 u64 stripes;
3024 u32 last_stripe = 0;
3025 int j;
3026
3027 div_u64_rem(stripe_nr_end - 1,
3028 map->num_stripes,
3029 &last_stripe);
3030
3031 for (j = 0; j < map->num_stripes; j++) {
3032 u32 test;
3033
3034 div_u64_rem(stripe_nr_end - 1 - j,
3035 map->num_stripes, &test);
3036 if (test == stripe_index)
3037 break;
3038 }
3039 stripes = stripe_nr_end - 1 - j;
3040 do_div(stripes, map->num_stripes);
3041 multi->stripes[i].length = map->stripe_len *
3042 (stripes - stripe_nr + 1);
3043
3044 if (i == 0) {
3045 multi->stripes[i].length -=
3046 stripe_offset;
3047 stripe_offset = 0;
3048 }
3049 if (stripe_index == last_stripe)
3050 multi->stripes[i].length -=
3051 stripe_end_offset;
3052 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3053 u64 stripes;
3054 int j;
3055 int factor = map->num_stripes /
3056 map->sub_stripes;
3057 u32 last_stripe = 0;
3058
3059 div_u64_rem(stripe_nr_end - 1,
3060 factor, &last_stripe);
3061 last_stripe *= map->sub_stripes;
3062
3063 for (j = 0; j < factor; j++) {
3064 u32 test;
3065
3066 div_u64_rem(stripe_nr_end - 1 - j,
3067 factor, &test);
3068
3069 if (test ==
3070 stripe_index / map->sub_stripes)
3071 break;
3072 }
3073 stripes = stripe_nr_end - 1 - j;
3074 do_div(stripes, factor);
3075 multi->stripes[i].length = map->stripe_len *
3076 (stripes - stripe_nr + 1);
3077
3078 if (i < map->sub_stripes) {
3079 multi->stripes[i].length -=
3080 stripe_offset;
3081 if (i == map->sub_stripes - 1)
3082 stripe_offset = 0;
3083 }
3084 if (stripe_index >= last_stripe &&
3085 stripe_index <= (last_stripe +
3086 map->sub_stripes - 1)) {
3087 multi->stripes[i].length -=
3088 stripe_end_offset;
3089 }
3090 } else
3091 multi->stripes[i].length = *length;
3092
3093 stripe_index++;
3094 if (stripe_index == map->num_stripes) {
3095 /* This could only happen for RAID0/10 */
3096 stripe_index = 0;
3097 stripe_nr++;
3098 }
3099 }
3100 } else {
3101 for (i = 0; i < num_stripes; i++) {
3102 multi->stripes[i].physical =
3103 map->stripes[stripe_index].physical +
3104 stripe_offset +
3105 stripe_nr * map->stripe_len;
3106 multi->stripes[i].dev =
3107 map->stripes[stripe_index].dev;
3108 stripe_index++;
3109 }
3110 }
3111 if (multi_ret) {
3112 *multi_ret = multi;
3113 multi->num_stripes = num_stripes;
3114 multi->max_errors = max_errors;
3115 }
3116out:
3117 free_extent_map(em);
3118 return 0;
3119}
3120
3121int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3122 u64 logical, u64 *length,
3123 struct btrfs_multi_bio **multi_ret, int mirror_num)
3124{
3125 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3126 mirror_num);
3127}
3128
3129int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3130 u64 chunk_start, u64 physical, u64 devid,
3131 u64 **logical, int *naddrs, int *stripe_len)
3132{
3133 struct extent_map_tree *em_tree = &map_tree->map_tree;
3134 struct extent_map *em;
3135 struct map_lookup *map;
3136 u64 *buf;
3137 u64 bytenr;
3138 u64 length;
3139 u64 stripe_nr;
3140 int i, j, nr = 0;
3141
3142 read_lock(&em_tree->lock);
3143 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3144 read_unlock(&em_tree->lock);
3145
3146 BUG_ON(!em || em->start != chunk_start);
3147 map = (struct map_lookup *)em->bdev;
3148
3149 length = em->len;
3150 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3151 do_div(length, map->num_stripes / map->sub_stripes);
3152 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3153 do_div(length, map->num_stripes);
3154
3155 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3156 BUG_ON(!buf);
3157
3158 for (i = 0; i < map->num_stripes; i++) {
3159 if (devid && map->stripes[i].dev->devid != devid)
3160 continue;
3161 if (map->stripes[i].physical > physical ||
3162 map->stripes[i].physical + length <= physical)
3163 continue;
3164
3165 stripe_nr = physical - map->stripes[i].physical;
3166 do_div(stripe_nr, map->stripe_len);
3167
3168 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3169 stripe_nr = stripe_nr * map->num_stripes + i;
3170 do_div(stripe_nr, map->sub_stripes);
3171 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3172 stripe_nr = stripe_nr * map->num_stripes + i;
3173 }
3174 bytenr = chunk_start + stripe_nr * map->stripe_len;
3175 WARN_ON(nr >= map->num_stripes);
3176 for (j = 0; j < nr; j++) {
3177 if (buf[j] == bytenr)
3178 break;
3179 }
3180 if (j == nr) {
3181 WARN_ON(nr >= map->num_stripes);
3182 buf[nr++] = bytenr;
3183 }
3184 }
3185
3186 *logical = buf;
3187 *naddrs = nr;
3188 *stripe_len = map->stripe_len;
3189
3190 free_extent_map(em);
3191 return 0;
3192}
3193
3194static void end_bio_multi_stripe(struct bio *bio, int err)
3195{
3196 struct btrfs_multi_bio *multi = bio->bi_private;
3197 int is_orig_bio = 0;
3198
3199 if (err)
3200 atomic_inc(&multi->error);
3201
3202 if (bio == multi->orig_bio)
3203 is_orig_bio = 1;
3204
3205 if (atomic_dec_and_test(&multi->stripes_pending)) {
3206 if (!is_orig_bio) {
3207 bio_put(bio);
3208 bio = multi->orig_bio;
3209 }
3210 bio->bi_private = multi->private;
3211 bio->bi_end_io = multi->end_io;
3212 /* only send an error to the higher layers if it is
3213 * beyond the tolerance of the multi-bio
3214 */
3215 if (atomic_read(&multi->error) > multi->max_errors) {
3216 err = -EIO;
3217 } else if (err) {
3218 /*
3219 * this bio is actually up to date, we didn't
3220 * go over the max number of errors
3221 */
3222 set_bit(BIO_UPTODATE, &bio->bi_flags);
3223 err = 0;
3224 }
3225 kfree(multi);
3226
3227 bio_endio(bio, err);
3228 } else if (!is_orig_bio) {
3229 bio_put(bio);
3230 }
3231}
3232
3233struct async_sched {
3234 struct bio *bio;
3235 int rw;
3236 struct btrfs_fs_info *info;
3237 struct btrfs_work work;
3238};
3239
3240/*
3241 * see run_scheduled_bios for a description of why bios are collected for
3242 * async submit.
3243 *
3244 * This will add one bio to the pending list for a device and make sure
3245 * the work struct is scheduled.
3246 */
3247static noinline int schedule_bio(struct btrfs_root *root,
3248 struct btrfs_device *device,
3249 int rw, struct bio *bio)
3250{
3251 int should_queue = 1;
3252 struct btrfs_pending_bios *pending_bios;
3253
3254 /* don't bother with additional async steps for reads, right now */
3255 if (!(rw & REQ_WRITE)) {
3256 bio_get(bio);
3257 submit_bio(rw, bio);
3258 bio_put(bio);
3259 return 0;
3260 }
3261
3262 /*
3263 * nr_async_bios allows us to reliably return congestion to the
3264 * higher layers. Otherwise, the async bio makes it appear we have
3265 * made progress against dirty pages when we've really just put it
3266 * on a queue for later
3267 */
3268 atomic_inc(&root->fs_info->nr_async_bios);
3269 WARN_ON(bio->bi_next);
3270 bio->bi_next = NULL;
3271 bio->bi_rw |= rw;
3272
3273 spin_lock(&device->io_lock);
3274 if (bio->bi_rw & REQ_SYNC)
3275 pending_bios = &device->pending_sync_bios;
3276 else
3277 pending_bios = &device->pending_bios;
3278
3279 if (pending_bios->tail)
3280 pending_bios->tail->bi_next = bio;
3281
3282 pending_bios->tail = bio;
3283 if (!pending_bios->head)
3284 pending_bios->head = bio;
3285 if (device->running_pending)
3286 should_queue = 0;
3287
3288 spin_unlock(&device->io_lock);
3289
3290 if (should_queue)
3291 btrfs_queue_worker(&root->fs_info->submit_workers,
3292 &device->work);
3293 return 0;
3294}
3295
3296int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3297 int mirror_num, int async_submit)
3298{
3299 struct btrfs_mapping_tree *map_tree;
3300 struct btrfs_device *dev;
3301 struct bio *first_bio = bio;
3302 u64 logical = (u64)bio->bi_sector << 9;
3303 u64 length = 0;
3304 u64 map_length;
3305 struct btrfs_multi_bio *multi = NULL;
3306 int ret;
3307 int dev_nr = 0;
3308 int total_devs = 1;
3309
3310 length = bio->bi_size;
3311 map_tree = &root->fs_info->mapping_tree;
3312 map_length = length;
3313
3314 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3315 mirror_num);
3316 BUG_ON(ret);
3317
3318 total_devs = multi->num_stripes;
3319 if (map_length < length) {
3320 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3321 "len %llu\n", (unsigned long long)logical,
3322 (unsigned long long)length,
3323 (unsigned long long)map_length);
3324 BUG();
3325 }
3326 multi->end_io = first_bio->bi_end_io;
3327 multi->private = first_bio->bi_private;
3328 multi->orig_bio = first_bio;
3329 atomic_set(&multi->stripes_pending, multi->num_stripes);
3330
3331 while (dev_nr < total_devs) {
3332 if (total_devs > 1) {
3333 if (dev_nr < total_devs - 1) {
3334 bio = bio_clone(first_bio, GFP_NOFS);
3335 BUG_ON(!bio);
3336 } else {
3337 bio = first_bio;
3338 }
3339 bio->bi_private = multi;
3340 bio->bi_end_io = end_bio_multi_stripe;
3341 }
3342 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3343 dev = multi->stripes[dev_nr].dev;
3344 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3345 bio->bi_bdev = dev->bdev;
3346 if (async_submit)
3347 schedule_bio(root, dev, rw, bio);
3348 else
3349 submit_bio(rw, bio);
3350 } else {
3351 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3352 bio->bi_sector = logical >> 9;
3353 bio_endio(bio, -EIO);
3354 }
3355 dev_nr++;
3356 }
3357 if (total_devs == 1)
3358 kfree(multi);
3359 return 0;
3360}
3361
3362struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3363 u8 *uuid, u8 *fsid)
3364{
3365 struct btrfs_device *device;
3366 struct btrfs_fs_devices *cur_devices;
3367
3368 cur_devices = root->fs_info->fs_devices;
3369 while (cur_devices) {
3370 if (!fsid ||
3371 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3372 device = __find_device(&cur_devices->devices,
3373 devid, uuid);
3374 if (device)
3375 return device;
3376 }
3377 cur_devices = cur_devices->seed;
3378 }
3379 return NULL;
3380}
3381
3382static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3383 u64 devid, u8 *dev_uuid)
3384{
3385 struct btrfs_device *device;
3386 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3387
3388 device = kzalloc(sizeof(*device), GFP_NOFS);
3389 if (!device)
3390 return NULL;
3391 list_add(&device->dev_list,
3392 &fs_devices->devices);
3393 device->dev_root = root->fs_info->dev_root;
3394 device->devid = devid;
3395 device->work.func = pending_bios_fn;
3396 device->fs_devices = fs_devices;
3397 device->missing = 1;
3398 fs_devices->num_devices++;
3399 fs_devices->missing_devices++;
3400 spin_lock_init(&device->io_lock);
3401 INIT_LIST_HEAD(&device->dev_alloc_list);
3402 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3403 return device;
3404}
3405
3406static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3407 struct extent_buffer *leaf,
3408 struct btrfs_chunk *chunk)
3409{
3410 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3411 struct map_lookup *map;
3412 struct extent_map *em;
3413 u64 logical;
3414 u64 length;
3415 u64 devid;
3416 u8 uuid[BTRFS_UUID_SIZE];
3417 int num_stripes;
3418 int ret;
3419 int i;
3420
3421 logical = key->offset;
3422 length = btrfs_chunk_length(leaf, chunk);
3423
3424 read_lock(&map_tree->map_tree.lock);
3425 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3426 read_unlock(&map_tree->map_tree.lock);
3427
3428 /* already mapped? */
3429 if (em && em->start <= logical && em->start + em->len > logical) {
3430 free_extent_map(em);
3431 return 0;
3432 } else if (em) {
3433 free_extent_map(em);
3434 }
3435
3436 em = alloc_extent_map();
3437 if (!em)
3438 return -ENOMEM;
3439 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3440 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3441 if (!map) {
3442 free_extent_map(em);
3443 return -ENOMEM;
3444 }
3445
3446 em->bdev = (struct block_device *)map;
3447 em->start = logical;
3448 em->len = length;
3449 em->block_start = 0;
3450 em->block_len = em->len;
3451
3452 map->num_stripes = num_stripes;
3453 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3454 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3455 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3456 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3457 map->type = btrfs_chunk_type(leaf, chunk);
3458 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3459 for (i = 0; i < num_stripes; i++) {
3460 map->stripes[i].physical =
3461 btrfs_stripe_offset_nr(leaf, chunk, i);
3462 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3463 read_extent_buffer(leaf, uuid, (unsigned long)
3464 btrfs_stripe_dev_uuid_nr(chunk, i),
3465 BTRFS_UUID_SIZE);
3466 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3467 NULL);
3468 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3469 kfree(map);
3470 free_extent_map(em);
3471 return -EIO;
3472 }
3473 if (!map->stripes[i].dev) {
3474 map->stripes[i].dev =
3475 add_missing_dev(root, devid, uuid);
3476 if (!map->stripes[i].dev) {
3477 kfree(map);
3478 free_extent_map(em);
3479 return -EIO;
3480 }
3481 }
3482 map->stripes[i].dev->in_fs_metadata = 1;
3483 }
3484
3485 write_lock(&map_tree->map_tree.lock);
3486 ret = add_extent_mapping(&map_tree->map_tree, em);
3487 write_unlock(&map_tree->map_tree.lock);
3488 BUG_ON(ret);
3489 free_extent_map(em);
3490
3491 return 0;
3492}
3493
3494static int fill_device_from_item(struct extent_buffer *leaf,
3495 struct btrfs_dev_item *dev_item,
3496 struct btrfs_device *device)
3497{
3498 unsigned long ptr;
3499
3500 device->devid = btrfs_device_id(leaf, dev_item);
3501 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3502 device->total_bytes = device->disk_total_bytes;
3503 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3504 device->type = btrfs_device_type(leaf, dev_item);
3505 device->io_align = btrfs_device_io_align(leaf, dev_item);
3506 device->io_width = btrfs_device_io_width(leaf, dev_item);
3507 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3508
3509 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3510 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3511
3512 return 0;
3513}
3514
3515static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3516{
3517 struct btrfs_fs_devices *fs_devices;
3518 int ret;
3519
3520 mutex_lock(&uuid_mutex);
3521
3522 fs_devices = root->fs_info->fs_devices->seed;
3523 while (fs_devices) {
3524 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3525 ret = 0;
3526 goto out;
3527 }
3528 fs_devices = fs_devices->seed;
3529 }
3530
3531 fs_devices = find_fsid(fsid);
3532 if (!fs_devices) {
3533 ret = -ENOENT;
3534 goto out;
3535 }
3536
3537 fs_devices = clone_fs_devices(fs_devices);
3538 if (IS_ERR(fs_devices)) {
3539 ret = PTR_ERR(fs_devices);
3540 goto out;
3541 }
3542
3543 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3544 root->fs_info->bdev_holder);
3545 if (ret)
3546 goto out;
3547
3548 if (!fs_devices->seeding) {
3549 __btrfs_close_devices(fs_devices);
3550 free_fs_devices(fs_devices);
3551 ret = -EINVAL;
3552 goto out;
3553 }
3554
3555 fs_devices->seed = root->fs_info->fs_devices->seed;
3556 root->fs_info->fs_devices->seed = fs_devices;
3557out:
3558 mutex_unlock(&uuid_mutex);
3559 return ret;
3560}
3561
3562static int read_one_dev(struct btrfs_root *root,
3563 struct extent_buffer *leaf,
3564 struct btrfs_dev_item *dev_item)
3565{
3566 struct btrfs_device *device;
3567 u64 devid;
3568 int ret;
3569 u8 fs_uuid[BTRFS_UUID_SIZE];
3570 u8 dev_uuid[BTRFS_UUID_SIZE];
3571
3572 devid = btrfs_device_id(leaf, dev_item);
3573 read_extent_buffer(leaf, dev_uuid,
3574 (unsigned long)btrfs_device_uuid(dev_item),
3575 BTRFS_UUID_SIZE);
3576 read_extent_buffer(leaf, fs_uuid,
3577 (unsigned long)btrfs_device_fsid(dev_item),
3578 BTRFS_UUID_SIZE);
3579
3580 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3581 ret = open_seed_devices(root, fs_uuid);
3582 if (ret && !btrfs_test_opt(root, DEGRADED))
3583 return ret;
3584 }
3585
3586 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3587 if (!device || !device->bdev) {
3588 if (!btrfs_test_opt(root, DEGRADED))
3589 return -EIO;
3590
3591 if (!device) {
3592 printk(KERN_WARNING "warning devid %llu missing\n",
3593 (unsigned long long)devid);
3594 device = add_missing_dev(root, devid, dev_uuid);
3595 if (!device)
3596 return -ENOMEM;
3597 } else if (!device->missing) {
3598 /*
3599 * this happens when a device that was properly setup
3600 * in the device info lists suddenly goes bad.
3601 * device->bdev is NULL, and so we have to set
3602 * device->missing to one here
3603 */
3604 root->fs_info->fs_devices->missing_devices++;
3605 device->missing = 1;
3606 }
3607 }
3608
3609 if (device->fs_devices != root->fs_info->fs_devices) {
3610 BUG_ON(device->writeable);
3611 if (device->generation !=
3612 btrfs_device_generation(leaf, dev_item))
3613 return -EINVAL;
3614 }
3615
3616 fill_device_from_item(leaf, dev_item, device);
3617 device->dev_root = root->fs_info->dev_root;
3618 device->in_fs_metadata = 1;
3619 if (device->writeable)
3620 device->fs_devices->total_rw_bytes += device->total_bytes;
3621 ret = 0;
3622 return ret;
3623}
3624
3625int btrfs_read_sys_array(struct btrfs_root *root)
3626{
3627 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3628 struct extent_buffer *sb;
3629 struct btrfs_disk_key *disk_key;
3630 struct btrfs_chunk *chunk;
3631 u8 *ptr;
3632 unsigned long sb_ptr;
3633 int ret = 0;
3634 u32 num_stripes;
3635 u32 array_size;
3636 u32 len = 0;
3637 u32 cur;
3638 struct btrfs_key key;
3639
3640 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3641 BTRFS_SUPER_INFO_SIZE);
3642 if (!sb)
3643 return -ENOMEM;
3644 btrfs_set_buffer_uptodate(sb);
3645 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
3646
3647 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3648 array_size = btrfs_super_sys_array_size(super_copy);
3649
3650 ptr = super_copy->sys_chunk_array;
3651 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3652 cur = 0;
3653
3654 while (cur < array_size) {
3655 disk_key = (struct btrfs_disk_key *)ptr;
3656 btrfs_disk_key_to_cpu(&key, disk_key);
3657
3658 len = sizeof(*disk_key); ptr += len;
3659 sb_ptr += len;
3660 cur += len;
3661
3662 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3663 chunk = (struct btrfs_chunk *)sb_ptr;
3664 ret = read_one_chunk(root, &key, sb, chunk);
3665 if (ret)
3666 break;
3667 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3668 len = btrfs_chunk_item_size(num_stripes);
3669 } else {
3670 ret = -EIO;
3671 break;
3672 }
3673 ptr += len;
3674 sb_ptr += len;
3675 cur += len;
3676 }
3677 free_extent_buffer(sb);
3678 return ret;
3679}
3680
3681int btrfs_read_chunk_tree(struct btrfs_root *root)
3682{
3683 struct btrfs_path *path;
3684 struct extent_buffer *leaf;
3685 struct btrfs_key key;
3686 struct btrfs_key found_key;
3687 int ret;
3688 int slot;
3689
3690 root = root->fs_info->chunk_root;
3691
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3695
3696 /* first we search for all of the device items, and then we
3697 * read in all of the chunk items. This way we can create chunk
3698 * mappings that reference all of the devices that are afound
3699 */
3700 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3701 key.offset = 0;
3702 key.type = 0;
3703again:
3704 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3705 if (ret < 0)
3706 goto error;
3707 while (1) {
3708 leaf = path->nodes[0];
3709 slot = path->slots[0];
3710 if (slot >= btrfs_header_nritems(leaf)) {
3711 ret = btrfs_next_leaf(root, path);
3712 if (ret == 0)
3713 continue;
3714 if (ret < 0)
3715 goto error;
3716 break;
3717 }
3718 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3719 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3720 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3721 break;
3722 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3723 struct btrfs_dev_item *dev_item;
3724 dev_item = btrfs_item_ptr(leaf, slot,
3725 struct btrfs_dev_item);
3726 ret = read_one_dev(root, leaf, dev_item);
3727 if (ret)
3728 goto error;
3729 }
3730 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3731 struct btrfs_chunk *chunk;
3732 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3733 ret = read_one_chunk(root, &found_key, leaf, chunk);
3734 if (ret)
3735 goto error;
3736 }
3737 path->slots[0]++;
3738 }
3739 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3740 key.objectid = 0;
3741 btrfs_release_path(path);
3742 goto again;
3743 }
3744 ret = 0;
3745error:
3746 btrfs_free_path(path);
3747 return ret;
3748}