Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
 
 
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
 
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
  17#include "extent_map.h"
  18#include "disk-io.h"
  19#include "transaction.h"
  20#include "print-tree.h"
  21#include "volumes.h"
  22#include "raid56.h"
 
 
  23#include "rcu-string.h"
  24#include "dev-replace.h"
  25#include "sysfs.h"
  26#include "tree-checker.h"
  27#include "space-info.h"
  28#include "block-group.h"
  29#include "discard.h"
  30#include "zoned.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "uuid-tree.h"
  34#include "ioctl.h"
  35#include "relocation.h"
  36#include "scrub.h"
  37#include "super.h"
  38
  39#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  40					 BTRFS_BLOCK_GROUP_RAID10 | \
  41					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  42
  43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  44	[BTRFS_RAID_RAID10] = {
  45		.sub_stripes	= 2,
  46		.dev_stripes	= 1,
  47		.devs_max	= 0,	/* 0 == as many as possible */
  48		.devs_min	= 2,
  49		.tolerated_failures = 1,
  50		.devs_increment	= 2,
  51		.ncopies	= 2,
  52		.nparity        = 0,
  53		.raid_name	= "raid10",
  54		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  55		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  56	},
  57	[BTRFS_RAID_RAID1] = {
  58		.sub_stripes	= 1,
  59		.dev_stripes	= 1,
  60		.devs_max	= 2,
  61		.devs_min	= 2,
  62		.tolerated_failures = 1,
  63		.devs_increment	= 2,
  64		.ncopies	= 2,
  65		.nparity        = 0,
  66		.raid_name	= "raid1",
  67		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  68		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  69	},
  70	[BTRFS_RAID_RAID1C3] = {
  71		.sub_stripes	= 1,
  72		.dev_stripes	= 1,
  73		.devs_max	= 3,
  74		.devs_min	= 3,
  75		.tolerated_failures = 2,
  76		.devs_increment	= 3,
  77		.ncopies	= 3,
  78		.nparity        = 0,
  79		.raid_name	= "raid1c3",
  80		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  81		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  82	},
  83	[BTRFS_RAID_RAID1C4] = {
  84		.sub_stripes	= 1,
  85		.dev_stripes	= 1,
  86		.devs_max	= 4,
  87		.devs_min	= 4,
  88		.tolerated_failures = 3,
  89		.devs_increment	= 4,
  90		.ncopies	= 4,
  91		.nparity        = 0,
  92		.raid_name	= "raid1c4",
  93		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
  94		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
  95	},
  96	[BTRFS_RAID_DUP] = {
  97		.sub_stripes	= 1,
  98		.dev_stripes	= 2,
  99		.devs_max	= 1,
 100		.devs_min	= 1,
 101		.tolerated_failures = 0,
 102		.devs_increment	= 1,
 103		.ncopies	= 2,
 104		.nparity        = 0,
 105		.raid_name	= "dup",
 106		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 107		.mindev_error	= 0,
 108	},
 109	[BTRFS_RAID_RAID0] = {
 110		.sub_stripes	= 1,
 111		.dev_stripes	= 1,
 112		.devs_max	= 0,
 113		.devs_min	= 1,
 114		.tolerated_failures = 0,
 115		.devs_increment	= 1,
 116		.ncopies	= 1,
 117		.nparity        = 0,
 118		.raid_name	= "raid0",
 119		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 120		.mindev_error	= 0,
 121	},
 122	[BTRFS_RAID_SINGLE] = {
 123		.sub_stripes	= 1,
 124		.dev_stripes	= 1,
 125		.devs_max	= 1,
 126		.devs_min	= 1,
 127		.tolerated_failures = 0,
 128		.devs_increment	= 1,
 129		.ncopies	= 1,
 130		.nparity        = 0,
 131		.raid_name	= "single",
 132		.bg_flag	= 0,
 133		.mindev_error	= 0,
 134	},
 135	[BTRFS_RAID_RAID5] = {
 136		.sub_stripes	= 1,
 137		.dev_stripes	= 1,
 138		.devs_max	= 0,
 139		.devs_min	= 2,
 140		.tolerated_failures = 1,
 141		.devs_increment	= 1,
 142		.ncopies	= 1,
 143		.nparity        = 1,
 144		.raid_name	= "raid5",
 145		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 146		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 147	},
 148	[BTRFS_RAID_RAID6] = {
 149		.sub_stripes	= 1,
 150		.dev_stripes	= 1,
 151		.devs_max	= 0,
 152		.devs_min	= 3,
 153		.tolerated_failures = 2,
 154		.devs_increment	= 1,
 155		.ncopies	= 1,
 156		.nparity        = 2,
 157		.raid_name	= "raid6",
 158		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 159		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 160	},
 161};
 162
 163/*
 164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 165 * can be used as index to access btrfs_raid_array[].
 166 */
 167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 168{
 169	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 170
 171	if (!profile)
 172		return BTRFS_RAID_SINGLE;
 173
 174	return BTRFS_BG_FLAG_TO_INDEX(profile);
 175}
 176
 177const char *btrfs_bg_type_to_raid_name(u64 flags)
 178{
 179	const int index = btrfs_bg_flags_to_raid_index(flags);
 180
 181	if (index >= BTRFS_NR_RAID_TYPES)
 182		return NULL;
 183
 184	return btrfs_raid_array[index].raid_name;
 185}
 186
 187int btrfs_nr_parity_stripes(u64 type)
 188{
 189	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 190
 191	return btrfs_raid_array[index].nparity;
 192}
 193
 194/*
 195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 196 * bytes including terminating null byte.
 197 */
 198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 199{
 200	int i;
 201	int ret;
 202	char *bp = buf;
 203	u64 flags = bg_flags;
 204	u32 size_bp = size_buf;
 205
 206	if (!flags) {
 207		strcpy(bp, "NONE");
 208		return;
 209	}
 210
 211#define DESCRIBE_FLAG(flag, desc)						\
 212	do {								\
 213		if (flags & (flag)) {					\
 214			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 215			if (ret < 0 || ret >= size_bp)			\
 216				goto out_overflow;			\
 217			size_bp -= ret;					\
 218			bp += ret;					\
 219			flags &= ~(flag);				\
 220		}							\
 221	} while (0)
 222
 223	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 224	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 225	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 226
 227	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 228	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 229		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 230			      btrfs_raid_array[i].raid_name);
 231#undef DESCRIBE_FLAG
 232
 233	if (flags) {
 234		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 235		size_bp -= ret;
 236	}
 237
 238	if (size_bp < size_buf)
 239		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 240
 241	/*
 242	 * The text is trimmed, it's up to the caller to provide sufficiently
 243	 * large buffer
 244	 */
 245out_overflow:;
 246}
 247
 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 
 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 
 
 
 
 
 251
 252/*
 253 * Device locking
 254 * ==============
 255 *
 256 * There are several mutexes that protect manipulation of devices and low-level
 257 * structures like chunks but not block groups, extents or files
 258 *
 259 * uuid_mutex (global lock)
 260 * ------------------------
 261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 263 * device) or requested by the device= mount option
 264 *
 265 * the mutex can be very coarse and can cover long-running operations
 266 *
 267 * protects: updates to fs_devices counters like missing devices, rw devices,
 268 * seeding, structure cloning, opening/closing devices at mount/umount time
 269 *
 270 * global::fs_devs - add, remove, updates to the global list
 271 *
 272 * does not protect: manipulation of the fs_devices::devices list in general
 273 * but in mount context it could be used to exclude list modifications by eg.
 274 * scan ioctl
 275 *
 276 * btrfs_device::name - renames (write side), read is RCU
 277 *
 278 * fs_devices::device_list_mutex (per-fs, with RCU)
 279 * ------------------------------------------------
 280 * protects updates to fs_devices::devices, ie. adding and deleting
 281 *
 282 * simple list traversal with read-only actions can be done with RCU protection
 283 *
 284 * may be used to exclude some operations from running concurrently without any
 285 * modifications to the list (see write_all_supers)
 286 *
 287 * Is not required at mount and close times, because our device list is
 288 * protected by the uuid_mutex at that point.
 289 *
 290 * balance_mutex
 291 * -------------
 292 * protects balance structures (status, state) and context accessed from
 293 * several places (internally, ioctl)
 294 *
 295 * chunk_mutex
 296 * -----------
 297 * protects chunks, adding or removing during allocation, trim or when a new
 298 * device is added/removed. Additionally it also protects post_commit_list of
 299 * individual devices, since they can be added to the transaction's
 300 * post_commit_list only with chunk_mutex held.
 301 *
 302 * cleaner_mutex
 303 * -------------
 304 * a big lock that is held by the cleaner thread and prevents running subvolume
 305 * cleaning together with relocation or delayed iputs
 306 *
 307 *
 308 * Lock nesting
 309 * ============
 310 *
 311 * uuid_mutex
 312 *   device_list_mutex
 313 *     chunk_mutex
 314 *   balance_mutex
 
 315 *
 316 *
 317 * Exclusive operations
 318 * ====================
 319 *
 320 * Maintains the exclusivity of the following operations that apply to the
 321 * whole filesystem and cannot run in parallel.
 322 *
 323 * - Balance (*)
 324 * - Device add
 325 * - Device remove
 326 * - Device replace (*)
 327 * - Resize
 328 *
 329 * The device operations (as above) can be in one of the following states:
 330 *
 331 * - Running state
 332 * - Paused state
 333 * - Completed state
 334 *
 335 * Only device operations marked with (*) can go into the Paused state for the
 336 * following reasons:
 337 *
 338 * - ioctl (only Balance can be Paused through ioctl)
 339 * - filesystem remounted as read-only
 340 * - filesystem unmounted and mounted as read-only
 341 * - system power-cycle and filesystem mounted as read-only
 342 * - filesystem or device errors leading to forced read-only
 343 *
 344 * The status of exclusive operation is set and cleared atomically.
 345 * During the course of Paused state, fs_info::exclusive_operation remains set.
 346 * A device operation in Paused or Running state can be canceled or resumed
 347 * either by ioctl (Balance only) or when remounted as read-write.
 348 * The exclusive status is cleared when the device operation is canceled or
 349 * completed.
 350 */
 351
 352DEFINE_MUTEX(uuid_mutex);
 353static LIST_HEAD(fs_uuids);
 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 355{
 356	return &fs_uuids;
 357}
 358
 359/*
 360 * alloc_fs_devices - allocate struct btrfs_fs_devices
 361 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 362 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 363 *
 364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 365 * The returned struct is not linked onto any lists and can be destroyed with
 366 * kfree() right away.
 367 */
 368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 369						 const u8 *metadata_fsid)
 370{
 371	struct btrfs_fs_devices *fs_devs;
 372
 373	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 374	if (!fs_devs)
 375		return ERR_PTR(-ENOMEM);
 376
 377	mutex_init(&fs_devs->device_list_mutex);
 378
 379	INIT_LIST_HEAD(&fs_devs->devices);
 380	INIT_LIST_HEAD(&fs_devs->alloc_list);
 381	INIT_LIST_HEAD(&fs_devs->fs_list);
 382	INIT_LIST_HEAD(&fs_devs->seed_list);
 383	if (fsid)
 384		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 385
 386	if (metadata_fsid)
 387		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 388	else if (fsid)
 389		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 390
 391	return fs_devs;
 392}
 393
 394void btrfs_free_device(struct btrfs_device *device)
 395{
 396	WARN_ON(!list_empty(&device->post_commit_list));
 397	rcu_string_free(device->name);
 398	extent_io_tree_release(&device->alloc_state);
 399	btrfs_destroy_dev_zone_info(device);
 400	kfree(device);
 401}
 402
 403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 404{
 405	struct btrfs_device *device;
 406
 407	WARN_ON(fs_devices->opened);
 408	while (!list_empty(&fs_devices->devices)) {
 409		device = list_entry(fs_devices->devices.next,
 410				    struct btrfs_device, dev_list);
 411		list_del(&device->dev_list);
 412		btrfs_free_device(device);
 413	}
 414	kfree(fs_devices);
 415}
 416
 417void __exit btrfs_cleanup_fs_uuids(void)
 418{
 419	struct btrfs_fs_devices *fs_devices;
 420
 421	while (!list_empty(&fs_uuids)) {
 422		fs_devices = list_entry(fs_uuids.next,
 423					struct btrfs_fs_devices, fs_list);
 424		list_del(&fs_devices->fs_list);
 425		free_fs_devices(fs_devices);
 426	}
 427}
 428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429static noinline struct btrfs_fs_devices *find_fsid(
 430		const u8 *fsid, const u8 *metadata_fsid)
 431{
 432	struct btrfs_fs_devices *fs_devices;
 433
 434	ASSERT(fsid);
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436	/* Handle non-split brain cases */
 437	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 438		if (metadata_fsid) {
 439			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 440			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 441				      BTRFS_FSID_SIZE) == 0)
 442				return fs_devices;
 443		} else {
 444			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 445				return fs_devices;
 446		}
 447	}
 448	return NULL;
 449}
 450
 451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
 452				struct btrfs_super_block *disk_super)
 453{
 454
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	/*
 458	 * Handle scanned device having completed its fsid change but
 459	 * belonging to a fs_devices that was created by first scanning
 460	 * a device which didn't have its fsid/metadata_uuid changed
 461	 * at all and the CHANGING_FSID_V2 flag set.
 462	 */
 463	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 464		if (fs_devices->fsid_change &&
 465		    memcmp(disk_super->metadata_uuid, fs_devices->fsid,
 466			   BTRFS_FSID_SIZE) == 0 &&
 467		    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 468			   BTRFS_FSID_SIZE) == 0) {
 469			return fs_devices;
 470		}
 471	}
 472	/*
 473	 * Handle scanned device having completed its fsid change but
 474	 * belonging to a fs_devices that was created by a device that
 475	 * has an outdated pair of fsid/metadata_uuid and
 476	 * CHANGING_FSID_V2 flag set.
 477	 */
 478	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 479		if (fs_devices->fsid_change &&
 480		    memcmp(fs_devices->metadata_uuid,
 481			   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 482		    memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
 483			   BTRFS_FSID_SIZE) == 0) {
 484			return fs_devices;
 485		}
 486	}
 487
 488	return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
 489}
 490
 491
 492static int
 493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 494		      int flush, struct block_device **bdev,
 495		      struct btrfs_super_block **disk_super)
 496{
 497	int ret;
 498
 499	*bdev = blkdev_get_by_path(device_path, flags, holder);
 500
 501	if (IS_ERR(*bdev)) {
 502		ret = PTR_ERR(*bdev);
 503		goto error;
 504	}
 505
 506	if (flush)
 507		sync_blockdev(*bdev);
 508	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 509	if (ret) {
 510		blkdev_put(*bdev, flags);
 511		goto error;
 512	}
 513	invalidate_bdev(*bdev);
 514	*disk_super = btrfs_read_dev_super(*bdev);
 515	if (IS_ERR(*disk_super)) {
 516		ret = PTR_ERR(*disk_super);
 517		blkdev_put(*bdev, flags);
 518		goto error;
 519	}
 520
 521	return 0;
 522
 523error:
 524	*bdev = NULL;
 
 525	return ret;
 526}
 527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528/*
 529 *  Search and remove all stale devices (which are not mounted).  When both
 530 *  inputs are NULL, it will search and release all stale devices.
 
 531 *
 532 *  @devt:         Optional. When provided will it release all unmounted devices
 533 *                 matching this devt only.
 534 *  @skip_device:  Optional. Will skip this device when searching for the stale
 535 *                 devices.
 536 *
 537 *  Return:	0 for success or if @devt is 0.
 538 *		-EBUSY if @devt is a mounted device.
 539 *		-ENOENT if @devt does not match any device in the list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540 */
 541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 
 542{
 543	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 544	struct btrfs_device *device, *tmp_device;
 545	int ret = 0;
 546
 547	lockdep_assert_held(&uuid_mutex);
 548
 549	if (devt)
 550		ret = -ENOENT;
 551
 552	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 553
 554		mutex_lock(&fs_devices->device_list_mutex);
 555		list_for_each_entry_safe(device, tmp_device,
 556					 &fs_devices->devices, dev_list) {
 557			if (skip_device && skip_device == device)
 558				continue;
 559			if (devt && devt != device->devt)
 
 
 560				continue;
 561			if (fs_devices->opened) {
 562				/* for an already deleted device return 0 */
 563				if (devt && ret != 0)
 564					ret = -EBUSY;
 565				break;
 566			}
 567
 568			/* delete the stale device */
 569			fs_devices->num_devices--;
 570			list_del(&device->dev_list);
 571			btrfs_free_device(device);
 572
 573			ret = 0;
 
 
 574		}
 575		mutex_unlock(&fs_devices->device_list_mutex);
 576
 577		if (fs_devices->num_devices == 0) {
 578			btrfs_sysfs_remove_fsid(fs_devices);
 579			list_del(&fs_devices->fs_list);
 580			free_fs_devices(fs_devices);
 581		}
 582	}
 583
 584	return ret;
 585}
 586
 587/*
 588 * This is only used on mount, and we are protected from competing things
 589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 590 * fs_devices->device_list_mutex here.
 591 */
 592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 593			struct btrfs_device *device, fmode_t flags,
 594			void *holder)
 595{
 
 596	struct block_device *bdev;
 
 597	struct btrfs_super_block *disk_super;
 598	u64 devid;
 599	int ret;
 600
 601	if (device->bdev)
 602		return -EINVAL;
 603	if (!device->name)
 604		return -EINVAL;
 605
 606	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 607				    &bdev, &disk_super);
 608	if (ret)
 609		return ret;
 610
 
 611	devid = btrfs_stack_device_id(&disk_super->dev_item);
 612	if (devid != device->devid)
 613		goto error_free_page;
 614
 615	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 616		goto error_free_page;
 617
 618	device->generation = btrfs_super_generation(disk_super);
 619
 620	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 621		if (btrfs_super_incompat_flags(disk_super) &
 622		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 623			pr_err(
 624		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 625			goto error_free_page;
 626		}
 627
 628		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 629		fs_devices->seeding = true;
 630	} else {
 631		if (bdev_read_only(bdev))
 632			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 633		else
 634			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 635	}
 636
 637	if (!bdev_nonrot(bdev))
 638		fs_devices->rotating = true;
 639
 640	if (bdev_max_discard_sectors(bdev))
 641		fs_devices->discardable = true;
 642
 643	device->bdev = bdev;
 644	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 645	device->mode = flags;
 646
 647	fs_devices->open_devices++;
 648	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 649	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 650		fs_devices->rw_devices++;
 651		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 652	}
 653	btrfs_release_disk_super(disk_super);
 654
 655	return 0;
 656
 657error_free_page:
 658	btrfs_release_disk_super(disk_super);
 659	blkdev_put(bdev, flags);
 660
 661	return -EINVAL;
 662}
 663
 664/*
 665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 666 * being created with a disk that has already completed its fsid change. Such
 667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
 668 * Handle both cases here.
 669 */
 670static struct btrfs_fs_devices *find_fsid_inprogress(
 671					struct btrfs_super_block *disk_super)
 672{
 673	struct btrfs_fs_devices *fs_devices;
 674
 675	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 676		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 677			   BTRFS_FSID_SIZE) != 0 &&
 678		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 679			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 680			return fs_devices;
 681		}
 682	}
 683
 684	return find_fsid(disk_super->fsid, NULL);
 685}
 686
 687
 688static struct btrfs_fs_devices *find_fsid_changed(
 689					struct btrfs_super_block *disk_super)
 690{
 691	struct btrfs_fs_devices *fs_devices;
 692
 693	/*
 694	 * Handles the case where scanned device is part of an fs that had
 695	 * multiple successful changes of FSID but currently device didn't
 696	 * observe it. Meaning our fsid will be different than theirs. We need
 697	 * to handle two subcases :
 698	 *  1 - The fs still continues to have different METADATA/FSID uuids.
 699	 *  2 - The fs is switched back to its original FSID (METADATA/FSID
 700	 *  are equal).
 701	 */
 702	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 703		/* Changed UUIDs */
 704		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 705			   BTRFS_FSID_SIZE) != 0 &&
 706		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 707			   BTRFS_FSID_SIZE) == 0 &&
 708		    memcmp(fs_devices->fsid, disk_super->fsid,
 709			   BTRFS_FSID_SIZE) != 0)
 710			return fs_devices;
 711
 712		/* Unchanged UUIDs */
 713		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 714			   BTRFS_FSID_SIZE) == 0 &&
 715		    memcmp(fs_devices->fsid, disk_super->metadata_uuid,
 716			   BTRFS_FSID_SIZE) == 0)
 717			return fs_devices;
 718	}
 719
 720	return NULL;
 721}
 722
 723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
 724				struct btrfs_super_block *disk_super)
 725{
 726	struct btrfs_fs_devices *fs_devices;
 727
 728	/*
 729	 * Handle the case where the scanned device is part of an fs whose last
 730	 * metadata UUID change reverted it to the original FSID. At the same
 731	 * time * fs_devices was first created by another constitutent device
 732	 * which didn't fully observe the operation. This results in an
 733	 * btrfs_fs_devices created with metadata/fsid different AND
 734	 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
 735	 * fs_devices equal to the FSID of the disk.
 736	 */
 737	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 738		if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 739			   BTRFS_FSID_SIZE) != 0 &&
 740		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 741			   BTRFS_FSID_SIZE) == 0 &&
 742		    fs_devices->fsid_change)
 743			return fs_devices;
 
 744	}
 745
 746	return NULL;
 747}
 748/*
 749 * Add new device to list of registered devices
 750 *
 751 * Returns:
 752 * device pointer which was just added or updated when successful
 753 * error pointer when failed
 754 */
 755static noinline struct btrfs_device *device_list_add(const char *path,
 756			   struct btrfs_super_block *disk_super,
 757			   bool *new_device_added)
 758{
 759	struct btrfs_device *device;
 760	struct btrfs_fs_devices *fs_devices = NULL;
 761	struct rcu_string *name;
 762	u64 found_transid = btrfs_super_generation(disk_super);
 763	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 764	dev_t path_devt;
 765	int error;
 766	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 767		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 768	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 769					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 770
 771	error = lookup_bdev(path, &path_devt);
 772	if (error) {
 773		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 774			  path, error);
 775		return ERR_PTR(error);
 776	}
 777
 778	if (fsid_change_in_progress) {
 779		if (!has_metadata_uuid)
 
 
 
 
 
 
 780			fs_devices = find_fsid_inprogress(disk_super);
 781		else
 
 
 782			fs_devices = find_fsid_changed(disk_super);
 
 783	} else if (has_metadata_uuid) {
 784		fs_devices = find_fsid_with_metadata_uuid(disk_super);
 
 785	} else {
 786		fs_devices = find_fsid_reverted_metadata(disk_super);
 787		if (!fs_devices)
 788			fs_devices = find_fsid(disk_super->fsid, NULL);
 789	}
 790
 791
 792	if (!fs_devices) {
 793		if (has_metadata_uuid)
 794			fs_devices = alloc_fs_devices(disk_super->fsid,
 795						      disk_super->metadata_uuid);
 796		else
 797			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 798
 799		if (IS_ERR(fs_devices))
 800			return ERR_CAST(fs_devices);
 801
 802		fs_devices->fsid_change = fsid_change_in_progress;
 803
 804		mutex_lock(&fs_devices->device_list_mutex);
 805		list_add(&fs_devices->fs_list, &fs_uuids);
 806
 807		device = NULL;
 808	} else {
 809		struct btrfs_dev_lookup_args args = {
 810			.devid = devid,
 811			.uuid = disk_super->dev_item.uuid,
 812		};
 813
 814		mutex_lock(&fs_devices->device_list_mutex);
 815		device = btrfs_find_device(fs_devices, &args);
 
 816
 817		/*
 818		 * If this disk has been pulled into an fs devices created by
 819		 * a device which had the CHANGING_FSID_V2 flag then replace the
 820		 * metadata_uuid/fsid values of the fs_devices.
 821		 */
 822		if (fs_devices->fsid_change &&
 823		    found_transid > fs_devices->latest_generation) {
 824			memcpy(fs_devices->fsid, disk_super->fsid,
 825					BTRFS_FSID_SIZE);
 826
 827			if (has_metadata_uuid)
 828				memcpy(fs_devices->metadata_uuid,
 829				       disk_super->metadata_uuid,
 830				       BTRFS_FSID_SIZE);
 831			else
 832				memcpy(fs_devices->metadata_uuid,
 833				       disk_super->fsid, BTRFS_FSID_SIZE);
 834
 835			fs_devices->fsid_change = false;
 836		}
 837	}
 838
 839	if (!device) {
 840		unsigned int nofs_flag;
 841
 842		if (fs_devices->opened) {
 843			btrfs_err(NULL,
 844		"device %s belongs to fsid %pU, and the fs is already mounted",
 845				  path, fs_devices->fsid);
 846			mutex_unlock(&fs_devices->device_list_mutex);
 847			return ERR_PTR(-EBUSY);
 848		}
 849
 850		nofs_flag = memalloc_nofs_save();
 851		device = btrfs_alloc_device(NULL, &devid,
 852					    disk_super->dev_item.uuid, path);
 853		memalloc_nofs_restore(nofs_flag);
 854		if (IS_ERR(device)) {
 855			mutex_unlock(&fs_devices->device_list_mutex);
 856			/* we can safely leave the fs_devices entry around */
 857			return device;
 858		}
 859
 860		device->devt = path_devt;
 
 
 
 
 
 
 861
 862		list_add_rcu(&device->dev_list, &fs_devices->devices);
 863		fs_devices->num_devices++;
 864
 865		device->fs_devices = fs_devices;
 866		*new_device_added = true;
 867
 868		if (disk_super->label[0])
 869			pr_info(
 870	"BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
 871				disk_super->label, devid, found_transid, path,
 872				current->comm, task_pid_nr(current));
 873		else
 874			pr_info(
 875	"BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
 876				disk_super->fsid, devid, found_transid, path,
 877				current->comm, task_pid_nr(current));
 878
 879	} else if (!device->name || strcmp(device->name->str, path)) {
 880		/*
 881		 * When FS is already mounted.
 882		 * 1. If you are here and if the device->name is NULL that
 883		 *    means this device was missing at time of FS mount.
 884		 * 2. If you are here and if the device->name is different
 885		 *    from 'path' that means either
 886		 *      a. The same device disappeared and reappeared with
 887		 *         different name. or
 888		 *      b. The missing-disk-which-was-replaced, has
 889		 *         reappeared now.
 890		 *
 891		 * We must allow 1 and 2a above. But 2b would be a spurious
 892		 * and unintentional.
 893		 *
 894		 * Further in case of 1 and 2a above, the disk at 'path'
 895		 * would have missed some transaction when it was away and
 896		 * in case of 2a the stale bdev has to be updated as well.
 897		 * 2b must not be allowed at all time.
 898		 */
 899
 900		/*
 901		 * For now, we do allow update to btrfs_fs_device through the
 902		 * btrfs dev scan cli after FS has been mounted.  We're still
 903		 * tracking a problem where systems fail mount by subvolume id
 904		 * when we reject replacement on a mounted FS.
 905		 */
 906		if (!fs_devices->opened && found_transid < device->generation) {
 907			/*
 908			 * That is if the FS is _not_ mounted and if you
 909			 * are here, that means there is more than one
 910			 * disk with same uuid and devid.We keep the one
 911			 * with larger generation number or the last-in if
 912			 * generation are equal.
 913			 */
 914			mutex_unlock(&fs_devices->device_list_mutex);
 915			btrfs_err(NULL,
 916"device %s already registered with a higher generation, found %llu expect %llu",
 917				  path, found_transid, device->generation);
 918			return ERR_PTR(-EEXIST);
 919		}
 920
 921		/*
 922		 * We are going to replace the device path for a given devid,
 923		 * make sure it's the same device if the device is mounted
 924		 *
 925		 * NOTE: the device->fs_info may not be reliable here so pass
 926		 * in a NULL to message helpers instead. This avoids a possible
 927		 * use-after-free when the fs_info and fs_info->sb are already
 928		 * torn down.
 929		 */
 930		if (device->bdev) {
 931			if (device->devt != path_devt) {
 
 
 
 
 
 
 
 
 
 932				mutex_unlock(&fs_devices->device_list_mutex);
 933				btrfs_warn_in_rcu(NULL,
 934	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
 935						  path, devid, found_transid,
 936						  current->comm,
 937						  task_pid_nr(current));
 938				return ERR_PTR(-EEXIST);
 939			}
 940			btrfs_info_in_rcu(NULL,
 941	"devid %llu device path %s changed to %s scanned by %s (%d)",
 942					  devid, btrfs_dev_name(device),
 943					  path, current->comm,
 944					  task_pid_nr(current));
 945		}
 946
 947		name = rcu_string_strdup(path, GFP_NOFS);
 948		if (!name) {
 949			mutex_unlock(&fs_devices->device_list_mutex);
 950			return ERR_PTR(-ENOMEM);
 951		}
 952		rcu_string_free(device->name);
 953		rcu_assign_pointer(device->name, name);
 954		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
 955			fs_devices->missing_devices--;
 956			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
 957		}
 958		device->devt = path_devt;
 959	}
 960
 961	/*
 962	 * Unmount does not free the btrfs_device struct but would zero
 963	 * generation along with most of the other members. So just update
 964	 * it back. We need it to pick the disk with largest generation
 965	 * (as above).
 966	 */
 967	if (!fs_devices->opened) {
 968		device->generation = found_transid;
 969		fs_devices->latest_generation = max_t(u64, found_transid,
 970						fs_devices->latest_generation);
 971	}
 972
 973	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 974
 975	mutex_unlock(&fs_devices->device_list_mutex);
 976	return device;
 977}
 978
 979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 980{
 981	struct btrfs_fs_devices *fs_devices;
 982	struct btrfs_device *device;
 983	struct btrfs_device *orig_dev;
 984	int ret = 0;
 985
 986	lockdep_assert_held(&uuid_mutex);
 987
 988	fs_devices = alloc_fs_devices(orig->fsid, NULL);
 989	if (IS_ERR(fs_devices))
 990		return fs_devices;
 991
 
 992	fs_devices->total_devices = orig->total_devices;
 993
 994	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 995		const char *dev_path = NULL;
 996
 997		/*
 998		 * This is ok to do without RCU read locked because we hold the
 999		 * uuid mutex so nothing we touch in here is going to disappear.
1000		 */
1001		if (orig_dev->name)
1002			dev_path = orig_dev->name->str;
1003
1004		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005					    orig_dev->uuid, dev_path);
1006		if (IS_ERR(device)) {
1007			ret = PTR_ERR(device);
1008			goto error;
1009		}
1010
1011		if (orig_dev->zone_info) {
1012			struct btrfs_zoned_device_info *zone_info;
1013
1014			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015			if (!zone_info) {
 
 
 
1016				btrfs_free_device(device);
1017				ret = -ENOMEM;
1018				goto error;
1019			}
1020			device->zone_info = zone_info;
1021		}
1022
1023		list_add(&device->dev_list, &fs_devices->devices);
1024		device->fs_devices = fs_devices;
1025		fs_devices->num_devices++;
1026	}
 
1027	return fs_devices;
1028error:
 
1029	free_fs_devices(fs_devices);
1030	return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034				      struct btrfs_device **latest_dev)
 
 
 
1035{
1036	struct btrfs_device *device, *next;
 
1037
 
 
1038	/* This is the initialized path, it is safe to release the devices. */
1039	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
 
1041			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042				      &device->dev_state) &&
1043			    !test_bit(BTRFS_DEV_STATE_MISSING,
1044				      &device->dev_state) &&
1045			    (!*latest_dev ||
1046			     device->generation > (*latest_dev)->generation)) {
1047				*latest_dev = device;
1048			}
1049			continue;
1050		}
1051
1052		/*
1053		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054		 * in btrfs_init_dev_replace() so just continue.
1055		 */
1056		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057			continue;
1058
 
 
 
 
 
 
 
 
 
1059		if (device->bdev) {
1060			blkdev_put(device->bdev, device->mode);
1061			device->bdev = NULL;
1062			fs_devices->open_devices--;
1063		}
1064		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065			list_del_init(&device->dev_alloc_list);
1066			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067			fs_devices->rw_devices--;
 
 
1068		}
1069		list_del_init(&device->dev_list);
1070		fs_devices->num_devices--;
1071		btrfs_free_device(device);
1072	}
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082	struct btrfs_device *latest_dev = NULL;
1083	struct btrfs_fs_devices *seed_dev;
1084
1085	mutex_lock(&uuid_mutex);
1086	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091	fs_devices->latest_dev = latest_dev;
1092
1093	mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098	if (!device->bdev)
1099		return;
1100
1101	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102		sync_blockdev(device->bdev);
1103		invalidate_bdev(device->bdev);
1104	}
1105
1106	blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111	struct btrfs_fs_devices *fs_devices = device->fs_devices;
 
 
 
 
 
1112
1113	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115		list_del_init(&device->dev_alloc_list);
1116		fs_devices->rw_devices--;
1117	}
1118
1119	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124		fs_devices->missing_devices--;
1125	}
1126
1127	btrfs_close_bdev(device);
1128	if (device->bdev) {
1129		fs_devices->open_devices--;
1130		device->bdev = NULL;
 
 
 
 
 
 
 
1131	}
1132	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133	btrfs_destroy_dev_zone_info(device);
1134
1135	device->fs_info = NULL;
1136	atomic_set(&device->dev_stats_ccnt, 0);
1137	extent_io_tree_release(&device->alloc_state);
1138
1139	/*
1140	 * Reset the flush error record. We might have a transient flush error
1141	 * in this mount, and if so we aborted the current transaction and set
1142	 * the fs to an error state, guaranteeing no super blocks can be further
1143	 * committed. However that error might be transient and if we unmount the
1144	 * filesystem and mount it again, we should allow the mount to succeed
1145	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146	 * filesystem again we still get flush errors, then we will again abort
1147	 * any transaction and set the error state, guaranteeing no commits of
1148	 * unsafe super blocks.
1149	 */
1150	device->last_flush_error = 0;
1151
1152	/* Verify the device is back in a pristine state  */
1153	ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154	ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155	ASSERT(list_empty(&device->dev_alloc_list));
1156	ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161	struct btrfs_device *device, *tmp;
1162
1163	lockdep_assert_held(&uuid_mutex);
1164
1165	if (--fs_devices->opened > 0)
1166		return;
1167
1168	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
 
1169		btrfs_close_one_device(device);
 
 
1170
1171	WARN_ON(fs_devices->open_devices);
1172	WARN_ON(fs_devices->rw_devices);
1173	fs_devices->opened = 0;
1174	fs_devices->seeding = false;
1175	fs_devices->fs_info = NULL;
 
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180	LIST_HEAD(list);
1181	struct btrfs_fs_devices *tmp;
1182
1183	mutex_lock(&uuid_mutex);
1184	close_fs_devices(fs_devices);
1185	if (!fs_devices->opened) {
1186		list_splice_init(&fs_devices->seed_list, &list);
1187
1188		/*
1189		 * If the struct btrfs_fs_devices is not assembled with any
1190		 * other device, it can be re-initialized during the next mount
1191		 * without the needing device-scan step. Therefore, it can be
1192		 * fully freed.
1193		 */
1194		if (fs_devices->num_devices == 1) {
1195			list_del(&fs_devices->fs_list);
1196			free_fs_devices(fs_devices);
1197		}
1198	}
 
1199
1200
1201	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
 
1202		close_fs_devices(fs_devices);
1203		list_del(&fs_devices->seed_list);
1204		free_fs_devices(fs_devices);
1205	}
1206	mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210				fmode_t flags, void *holder)
1211{
1212	struct btrfs_device *device;
1213	struct btrfs_device *latest_dev = NULL;
1214	struct btrfs_device *tmp_device;
1215
1216	flags |= FMODE_EXCL;
1217
1218	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219				 dev_list) {
1220		int ret;
 
1221
1222		ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223		if (ret == 0 &&
1224		    (!latest_dev || device->generation > latest_dev->generation)) {
1225			latest_dev = device;
1226		} else if (ret == -ENODATA) {
1227			fs_devices->num_devices--;
1228			list_del(&device->dev_list);
1229			btrfs_free_device(device);
1230		}
1231	}
1232	if (fs_devices->open_devices == 0)
1233		return -EINVAL;
1234
 
1235	fs_devices->opened = 1;
1236	fs_devices->latest_dev = latest_dev;
1237	fs_devices->total_rw_bytes = 0;
1238	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241	return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245		     const struct list_head *b)
1246{
1247	const struct btrfs_device *dev1, *dev2;
1248
1249	dev1 = list_entry(a, struct btrfs_device, dev_list);
1250	dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252	if (dev1->devid < dev2->devid)
1253		return -1;
1254	else if (dev1->devid > dev2->devid)
1255		return 1;
1256	return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260		       fmode_t flags, void *holder)
1261{
1262	int ret;
1263
1264	lockdep_assert_held(&uuid_mutex);
1265	/*
1266	 * The device_list_mutex cannot be taken here in case opening the
1267	 * underlying device takes further locks like open_mutex.
1268	 *
1269	 * We also don't need the lock here as this is called during mount and
1270	 * exclusion is provided by uuid_mutex
1271	 */
1272
 
1273	if (fs_devices->opened) {
1274		fs_devices->opened++;
1275		ret = 0;
1276	} else {
1277		list_sort(NULL, &fs_devices->devices, devid_cmp);
1278		ret = open_fs_devices(fs_devices, flags, holder);
1279	}
 
1280
1281	return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286	struct page *page = virt_to_page(super);
1287
1288	put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292						       u64 bytenr, u64 bytenr_orig)
 
1293{
1294	struct btrfs_super_block *disk_super;
1295	struct page *page;
1296	void *p;
1297	pgoff_t index;
1298
1299	/* make sure our super fits in the device */
1300	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301		return ERR_PTR(-EINVAL);
1302
1303	/* make sure our super fits in the page */
1304	if (sizeof(*disk_super) > PAGE_SIZE)
1305		return ERR_PTR(-EINVAL);
1306
1307	/* make sure our super doesn't straddle pages on disk */
1308	index = bytenr >> PAGE_SHIFT;
1309	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310		return ERR_PTR(-EINVAL);
1311
1312	/* pull in the page with our super */
1313	page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
 
1314
1315	if (IS_ERR(page))
1316		return ERR_CAST(page);
1317
1318	p = page_address(page);
1319
1320	/* align our pointer to the offset of the super block */
1321	disk_super = p + offset_in_page(bytenr);
1322
1323	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325		btrfs_release_disk_super(p);
1326		return ERR_PTR(-EINVAL);
1327	}
1328
1329	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
 
1331
1332	return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337	int ret;
1338
1339	mutex_lock(&uuid_mutex);
1340	ret = btrfs_free_stale_devices(devt, NULL);
1341	mutex_unlock(&uuid_mutex);
1342
1343	return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352					   void *holder)
1353{
1354	struct btrfs_super_block *disk_super;
1355	bool new_device_added = false;
1356	struct btrfs_device *device = NULL;
1357	struct block_device *bdev;
1358	u64 bytenr, bytenr_orig;
1359	int ret;
1360
1361	lockdep_assert_held(&uuid_mutex);
1362
1363	/*
1364	 * we would like to check all the supers, but that would make
1365	 * a btrfs mount succeed after a mkfs from a different FS.
1366	 * So, we need to add a special mount option to scan for
1367	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368	 */
 
1369	flags |= FMODE_EXCL;
1370
1371	bdev = blkdev_get_by_path(path, flags, holder);
1372	if (IS_ERR(bdev))
1373		return ERR_CAST(bdev);
1374
1375	bytenr_orig = btrfs_sb_offset(0);
1376	ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377	if (ret) {
1378		device = ERR_PTR(ret);
1379		goto error_bdev_put;
1380	}
1381
1382	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383	if (IS_ERR(disk_super)) {
1384		device = ERR_CAST(disk_super);
1385		goto error_bdev_put;
1386	}
1387
1388	device = device_list_add(path, disk_super, &new_device_added);
1389	if (!IS_ERR(device) && new_device_added)
1390		btrfs_free_stale_devices(device->devt, device);
 
 
1391
1392	btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395	blkdev_put(bdev, flags);
1396
1397	return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405				    u64 len)
1406{
1407	u64 physical_start, physical_end;
1408
1409	lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411	if (!find_first_extent_bit(&device->alloc_state, *start,
1412				   &physical_start, &physical_end,
1413				   CHUNK_ALLOCATED, NULL)) {
1414
1415		if (in_range(physical_start, *start, len) ||
1416		    in_range(*start, physical_start,
1417			     physical_end - physical_start)) {
1418			*start = physical_end + 1;
1419			return true;
1420		}
1421	}
1422	return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427	switch (device->fs_devices->chunk_alloc_policy) {
1428	case BTRFS_CHUNK_ALLOC_REGULAR:
1429		return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430	case BTRFS_CHUNK_ALLOC_ZONED:
1431		/*
1432		 * We don't care about the starting region like regular
1433		 * allocator, because we anyway use/reserve the first two zones
1434		 * for superblock logging.
1435		 */
1436		return ALIGN(start, device->zone_info->zone_size);
1437	default:
1438		BUG();
1439	}
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443					u64 *hole_start, u64 *hole_size,
1444					u64 num_bytes)
1445{
1446	u64 zone_size = device->zone_info->zone_size;
1447	u64 pos;
1448	int ret;
1449	bool changed = false;
1450
1451	ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453	while (*hole_size > 0) {
1454		pos = btrfs_find_allocatable_zones(device, *hole_start,
1455						   *hole_start + *hole_size,
1456						   num_bytes);
1457		if (pos != *hole_start) {
1458			*hole_size = *hole_start + *hole_size - pos;
1459			*hole_start = pos;
1460			changed = true;
1461			if (*hole_size < num_bytes)
1462				break;
1463		}
1464
1465		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467		/* Range is ensured to be empty */
1468		if (!ret)
1469			return changed;
1470
1471		/* Given hole range was invalid (outside of device) */
1472		if (ret == -ERANGE) {
1473			*hole_start += *hole_size;
1474			*hole_size = 0;
1475			return true;
1476		}
1477
1478		*hole_start += zone_size;
1479		*hole_size -= zone_size;
1480		changed = true;
1481	}
1482
1483	return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device:	the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size:	the size of the hole
1492 * @num_bytes:	the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498				  u64 *hole_size, u64 num_bytes)
1499{
1500	bool changed = false;
1501	u64 hole_end = *hole_start + *hole_size;
1502
1503	for (;;) {
1504		/*
1505		 * Check before we set max_hole_start, otherwise we could end up
1506		 * sending back this offset anyway.
1507		 */
1508		if (contains_pending_extent(device, hole_start, *hole_size)) {
1509			if (hole_end >= *hole_start)
1510				*hole_size = hole_end - *hole_start;
1511			else
1512				*hole_size = 0;
1513			changed = true;
1514		}
1515
1516		switch (device->fs_devices->chunk_alloc_policy) {
1517		case BTRFS_CHUNK_ALLOC_REGULAR:
1518			/* No extra check */
1519			break;
1520		case BTRFS_CHUNK_ALLOC_ZONED:
1521			if (dev_extent_hole_check_zoned(device, hole_start,
1522							hole_size, num_bytes)) {
1523				changed = true;
1524				/*
1525				 * The changed hole can contain pending extent.
1526				 * Loop again to check that.
1527				 */
1528				continue;
1529			}
1530			break;
1531		default:
1532			BUG();
1533		}
1534
1535		break;
1536	}
1537
1538	return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device:	  the device which we search the free space in
1545 * @num_bytes:	  the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start:	  store the start of the free space.
1548 * @len:	  the size of the free space. that we find, or the size
1549 *		  of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
 
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569				u64 num_bytes, u64 search_start, u64 *start,
1570				u64 *len)
1571{
1572	struct btrfs_fs_info *fs_info = device->fs_info;
1573	struct btrfs_root *root = fs_info->dev_root;
1574	struct btrfs_key key;
1575	struct btrfs_dev_extent *dev_extent;
1576	struct btrfs_path *path;
1577	u64 hole_size;
1578	u64 max_hole_start;
1579	u64 max_hole_size;
1580	u64 extent_end;
1581	u64 search_end = device->total_bytes;
1582	int ret;
1583	int slot;
1584	struct extent_buffer *l;
1585
1586	search_start = dev_extent_search_start(device, search_start);
1587
1588	WARN_ON(device->zone_info &&
1589		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
 
 
1590
1591	path = btrfs_alloc_path();
1592	if (!path)
1593		return -ENOMEM;
1594
1595	max_hole_start = search_start;
1596	max_hole_size = 0;
1597
1598again:
1599	if (search_start >= search_end ||
1600		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601		ret = -ENOSPC;
1602		goto out;
1603	}
1604
1605	path->reada = READA_FORWARD;
1606	path->search_commit_root = 1;
1607	path->skip_locking = 1;
1608
1609	key.objectid = device->devid;
1610	key.offset = search_start;
1611	key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613	ret = btrfs_search_backwards(root, &key, path);
1614	if (ret < 0)
1615		goto out;
 
 
 
 
 
1616
1617	while (search_start < search_end) {
1618		l = path->nodes[0];
1619		slot = path->slots[0];
1620		if (slot >= btrfs_header_nritems(l)) {
1621			ret = btrfs_next_leaf(root, path);
1622			if (ret == 0)
1623				continue;
1624			if (ret < 0)
1625				goto out;
1626
1627			break;
1628		}
1629		btrfs_item_key_to_cpu(l, &key, slot);
1630
1631		if (key.objectid < device->devid)
1632			goto next;
1633
1634		if (key.objectid > device->devid)
1635			break;
1636
1637		if (key.type != BTRFS_DEV_EXTENT_KEY)
1638			goto next;
1639
1640		if (key.offset > search_end)
1641			break;
1642
1643		if (key.offset > search_start) {
1644			hole_size = key.offset - search_start;
1645			dev_extent_hole_check(device, &search_start, &hole_size,
1646					      num_bytes);
 
 
 
 
 
 
 
 
 
 
1647
1648			if (hole_size > max_hole_size) {
1649				max_hole_start = search_start;
1650				max_hole_size = hole_size;
1651			}
1652
1653			/*
1654			 * If this free space is greater than which we need,
1655			 * it must be the max free space that we have found
1656			 * until now, so max_hole_start must point to the start
1657			 * of this free space and the length of this free space
1658			 * is stored in max_hole_size. Thus, we return
1659			 * max_hole_start and max_hole_size and go back to the
1660			 * caller.
1661			 */
1662			if (hole_size >= num_bytes) {
1663				ret = 0;
1664				goto out;
1665			}
1666		}
1667
1668		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669		extent_end = key.offset + btrfs_dev_extent_length(l,
1670								  dev_extent);
1671		if (extent_end > search_start)
1672			search_start = extent_end;
1673next:
1674		path->slots[0]++;
1675		cond_resched();
1676	}
1677
1678	/*
1679	 * At this point, search_start should be the end of
1680	 * allocated dev extents, and when shrinking the device,
1681	 * search_end may be smaller than search_start.
1682	 */
1683	if (search_end > search_start) {
1684		hole_size = search_end - search_start;
1685		if (dev_extent_hole_check(device, &search_start, &hole_size,
1686					  num_bytes)) {
1687			btrfs_release_path(path);
1688			goto again;
1689		}
1690
1691		if (hole_size > max_hole_size) {
1692			max_hole_start = search_start;
1693			max_hole_size = hole_size;
1694		}
1695	}
1696
1697	/* See above. */
1698	if (max_hole_size < num_bytes)
1699		ret = -ENOSPC;
1700	else
1701		ret = 0;
1702
1703	ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705	btrfs_free_path(path);
1706	*start = max_hole_start;
1707	if (len)
1708		*len = max_hole_size;
1709	return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713			 u64 *start, u64 *len)
1714{
1715	/* FIXME use last free of some kind */
1716	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720			  struct btrfs_device *device,
1721			  u64 start, u64 *dev_extent_len)
1722{
1723	struct btrfs_fs_info *fs_info = device->fs_info;
1724	struct btrfs_root *root = fs_info->dev_root;
1725	int ret;
1726	struct btrfs_path *path;
1727	struct btrfs_key key;
1728	struct btrfs_key found_key;
1729	struct extent_buffer *leaf = NULL;
1730	struct btrfs_dev_extent *extent = NULL;
1731
1732	path = btrfs_alloc_path();
1733	if (!path)
1734		return -ENOMEM;
1735
1736	key.objectid = device->devid;
1737	key.offset = start;
1738	key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741	if (ret > 0) {
1742		ret = btrfs_previous_item(root, path, key.objectid,
1743					  BTRFS_DEV_EXTENT_KEY);
1744		if (ret)
1745			goto out;
1746		leaf = path->nodes[0];
1747		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748		extent = btrfs_item_ptr(leaf, path->slots[0],
1749					struct btrfs_dev_extent);
1750		BUG_ON(found_key.offset > start || found_key.offset +
1751		       btrfs_dev_extent_length(leaf, extent) < start);
1752		key = found_key;
1753		btrfs_release_path(path);
1754		goto again;
1755	} else if (ret == 0) {
1756		leaf = path->nodes[0];
1757		extent = btrfs_item_ptr(leaf, path->slots[0],
1758					struct btrfs_dev_extent);
1759	} else {
 
1760		goto out;
1761	}
1762
1763	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765	ret = btrfs_del_item(trans, root, path);
1766	if (ret == 0)
 
 
 
1767		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768out:
1769	btrfs_free_path(path);
1770	return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775	struct extent_map_tree *em_tree;
1776	struct extent_map *em;
1777	struct rb_node *n;
1778	u64 ret = 0;
1779
1780	em_tree = &fs_info->mapping_tree;
1781	read_lock(&em_tree->lock);
1782	n = rb_last(&em_tree->map.rb_root);
1783	if (n) {
1784		em = rb_entry(n, struct extent_map, rb_node);
1785		ret = em->start + em->len;
1786	}
1787	read_unlock(&em_tree->lock);
1788
1789	return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793				    u64 *devid_ret)
1794{
1795	int ret;
1796	struct btrfs_key key;
1797	struct btrfs_key found_key;
1798	struct btrfs_path *path;
1799
1800	path = btrfs_alloc_path();
1801	if (!path)
1802		return -ENOMEM;
1803
1804	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805	key.type = BTRFS_DEV_ITEM_KEY;
1806	key.offset = (u64)-1;
1807
1808	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809	if (ret < 0)
1810		goto error;
1811
1812	if (ret == 0) {
1813		/* Corruption */
1814		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815		ret = -EUCLEAN;
1816		goto error;
1817	}
1818
1819	ret = btrfs_previous_item(fs_info->chunk_root, path,
1820				  BTRFS_DEV_ITEMS_OBJECTID,
1821				  BTRFS_DEV_ITEM_KEY);
1822	if (ret) {
1823		*devid_ret = 1;
1824	} else {
1825		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826				      path->slots[0]);
1827		*devid_ret = found_key.offset + 1;
1828	}
1829	ret = 0;
1830error:
1831	btrfs_free_path(path);
1832	return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840			    struct btrfs_device *device)
1841{
1842	int ret;
1843	struct btrfs_path *path;
1844	struct btrfs_dev_item *dev_item;
1845	struct extent_buffer *leaf;
1846	struct btrfs_key key;
1847	unsigned long ptr;
1848
1849	path = btrfs_alloc_path();
1850	if (!path)
1851		return -ENOMEM;
1852
1853	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854	key.type = BTRFS_DEV_ITEM_KEY;
1855	key.offset = device->devid;
1856
1857	btrfs_reserve_chunk_metadata(trans, true);
1858	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859				      &key, sizeof(*dev_item));
1860	btrfs_trans_release_chunk_metadata(trans);
1861	if (ret)
1862		goto out;
1863
1864	leaf = path->nodes[0];
1865	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867	btrfs_set_device_id(leaf, dev_item, device->devid);
1868	btrfs_set_device_generation(leaf, dev_item, 0);
1869	btrfs_set_device_type(leaf, dev_item, device->type);
1870	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873	btrfs_set_device_total_bytes(leaf, dev_item,
1874				     btrfs_device_get_disk_total_bytes(device));
1875	btrfs_set_device_bytes_used(leaf, dev_item,
1876				    btrfs_device_get_bytes_used(device));
1877	btrfs_set_device_group(leaf, dev_item, 0);
1878	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880	btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882	ptr = btrfs_device_uuid(dev_item);
1883	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884	ptr = btrfs_device_fsid(dev_item);
1885	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886			    ptr, BTRFS_FSID_SIZE);
1887	btrfs_mark_buffer_dirty(leaf);
1888
1889	ret = 0;
1890out:
1891	btrfs_free_path(path);
1892	return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903	struct path path;
1904	struct timespec64 now;
1905	int ret;
1906
1907	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908	if (ret)
1909		return;
1910
1911	now = current_time(d_inode(path.dentry));
1912	inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913	path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917			     struct btrfs_device *device)
1918{
1919	struct btrfs_root *root = device->fs_info->chunk_root;
1920	int ret;
1921	struct btrfs_path *path;
1922	struct btrfs_key key;
 
1923
1924	path = btrfs_alloc_path();
1925	if (!path)
1926		return -ENOMEM;
1927
 
 
 
 
 
1928	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929	key.type = BTRFS_DEV_ITEM_KEY;
1930	key.offset = device->devid;
1931
1932	btrfs_reserve_chunk_metadata(trans, false);
1933	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934	btrfs_trans_release_chunk_metadata(trans);
1935	if (ret) {
1936		if (ret > 0)
1937			ret = -ENOENT;
 
 
1938		goto out;
1939	}
1940
1941	ret = btrfs_del_item(trans, root, path);
 
 
 
 
 
1942out:
1943	btrfs_free_path(path);
 
 
1944	return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953		u64 num_devices)
1954{
1955	u64 all_avail;
1956	unsigned seq;
1957	int i;
1958
1959	do {
1960		seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962		all_avail = fs_info->avail_data_alloc_bits |
1963			    fs_info->avail_system_alloc_bits |
1964			    fs_info->avail_metadata_alloc_bits;
1965	} while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968		if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969			continue;
1970
1971		if (num_devices < btrfs_raid_array[i].devs_min)
1972			return btrfs_raid_array[i].mindev_error;
 
 
 
 
1973	}
1974
1975	return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981	struct btrfs_device *next_device;
1982
1983	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984		if (next_device != device &&
1985		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986		    && next_device->bdev)
1987			return next_device;
1988	}
1989
1990	return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000					    struct btrfs_device *next_device)
2001{
2002	struct btrfs_fs_info *fs_info = device->fs_info;
 
2003
2004	if (!next_device)
 
 
2005		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006							    device);
2007	ASSERT(next_device);
2008
2009	if (fs_info->sb->s_bdev &&
2010			(fs_info->sb->s_bdev == device->bdev))
2011		fs_info->sb->s_bdev = next_device->bdev;
2012
2013	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014		fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023	u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025	down_read(&fs_info->dev_replace.rwsem);
2026	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027		ASSERT(num_devices > 1);
2028		num_devices--;
2029	}
2030	up_read(&fs_info->dev_replace.rwsem);
2031
2032	return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036				     struct block_device *bdev, int copy_num)
2037{
2038	struct btrfs_super_block *disk_super;
2039	const size_t len = sizeof(disk_super->magic);
2040	const u64 bytenr = btrfs_sb_offset(copy_num);
2041	int ret;
2042
2043	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044	if (IS_ERR(disk_super))
2045		return;
2046
2047	memset(&disk_super->magic, 0, len);
2048	folio_mark_dirty(virt_to_folio(disk_super));
2049	btrfs_release_disk_super(disk_super);
2050
2051	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052	if (ret)
2053		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054			copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058			       struct block_device *bdev,
2059			       const char *device_path)
2060{
2061	int copy_num;
2062
2063	if (!bdev)
2064		return;
2065
2066	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067		if (bdev_is_zoned(bdev))
2068			btrfs_reset_sb_log_zones(bdev, copy_num);
2069		else
2070			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071	}
2072
2073	/* Notify udev that device has changed */
2074	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076	/* Update ctime/mtime for device path for libblkid */
2077	update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081		    struct btrfs_dev_lookup_args *args,
2082		    struct block_device **bdev, fmode_t *mode)
2083{
2084	struct btrfs_trans_handle *trans;
2085	struct btrfs_device *device;
2086	struct btrfs_fs_devices *cur_devices;
2087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088	u64 num_devices;
2089	int ret = 0;
2090
2091	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093		return -EINVAL;
2094	}
2095
2096	/*
2097	 * The device list in fs_devices is accessed without locks (neither
2098	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099	 * filesystem and another device rm cannot run.
2100	 */
2101	num_devices = btrfs_num_devices(fs_info);
2102
2103	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104	if (ret)
2105		return ret;
2106
2107	device = btrfs_find_device(fs_info->fs_devices, args);
2108	if (!device) {
2109		if (args->missing)
 
 
2110			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111		else
2112			ret = -ENOENT;
2113		return ret;
2114	}
2115
2116	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117		btrfs_warn_in_rcu(fs_info,
2118		  "cannot remove device %s (devid %llu) due to active swapfile",
2119				  btrfs_dev_name(device), device->devid);
2120		return -ETXTBSY;
 
2121	}
2122
2123	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124		return BTRFS_ERROR_DEV_TGT_REPLACE;
 
 
2125
2126	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127	    fs_info->fs_devices->rw_devices == 1)
2128		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
 
 
2129
2130	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131		mutex_lock(&fs_info->chunk_mutex);
2132		list_del_init(&device->dev_alloc_list);
2133		device->fs_devices->rw_devices--;
2134		mutex_unlock(&fs_info->chunk_mutex);
2135	}
2136
 
2137	ret = btrfs_shrink_device(device, 0);
 
2138	if (ret)
2139		goto error_undo;
2140
2141	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142	if (IS_ERR(trans)) {
2143		ret = PTR_ERR(trans);
 
 
 
 
2144		goto error_undo;
2145	}
2146
2147	ret = btrfs_rm_dev_item(trans, device);
2148	if (ret) {
2149		/* Any error in dev item removal is critical */
2150		btrfs_crit(fs_info,
2151			   "failed to remove device item for devid %llu: %d",
2152			   device->devid, ret);
2153		btrfs_abort_transaction(trans, ret);
2154		btrfs_end_transaction(trans);
2155		return ret;
2156	}
2157
2158	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159	btrfs_scrub_cancel_dev(device);
2160
2161	/*
2162	 * the device list mutex makes sure that we don't change
2163	 * the device list while someone else is writing out all
2164	 * the device supers. Whoever is writing all supers, should
2165	 * lock the device list mutex before getting the number of
2166	 * devices in the super block (super_copy). Conversely,
2167	 * whoever updates the number of devices in the super block
2168	 * (super_copy) should hold the device list mutex.
2169	 */
2170
2171	/*
2172	 * In normal cases the cur_devices == fs_devices. But in case
2173	 * of deleting a seed device, the cur_devices should point to
2174	 * its own fs_devices listed under the fs_devices->seed_list.
2175	 */
2176	cur_devices = device->fs_devices;
2177	mutex_lock(&fs_devices->device_list_mutex);
2178	list_del_rcu(&device->dev_list);
2179
2180	cur_devices->num_devices--;
2181	cur_devices->total_devices--;
2182	/* Update total_devices of the parent fs_devices if it's seed */
2183	if (cur_devices != fs_devices)
2184		fs_devices->total_devices--;
2185
2186	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187		cur_devices->missing_devices--;
2188
2189	btrfs_assign_next_active_device(device, NULL);
2190
2191	if (device->bdev) {
2192		cur_devices->open_devices--;
2193		/* remove sysfs entry */
2194		btrfs_sysfs_remove_device(device);
2195	}
2196
2197	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199	mutex_unlock(&fs_devices->device_list_mutex);
2200
2201	/*
2202	 * At this point, the device is zero sized and detached from the
2203	 * devices list.  All that's left is to zero out the old supers and
2204	 * free the device.
2205	 *
2206	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207	 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208	 * block device and it's dependencies.  Instead just flush the device
2209	 * and let the caller do the final blkdev_put.
2210	 */
2211	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212		btrfs_scratch_superblocks(fs_info, device->bdev,
2213					  device->name->str);
2214		if (device->bdev) {
2215			sync_blockdev(device->bdev);
2216			invalidate_bdev(device->bdev);
2217		}
2218	}
2219
2220	*bdev = device->bdev;
2221	*mode = device->mode;
2222	synchronize_rcu();
2223	btrfs_free_device(device);
2224
2225	/*
2226	 * This can happen if cur_devices is the private seed devices list.  We
2227	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228	 * to be held, but in fact we don't need that for the private
2229	 * seed_devices, we can simply decrement cur_devices->opened and then
2230	 * remove it from our list and free the fs_devices.
2231	 */
2232	if (cur_devices->num_devices == 0) {
2233		list_del_init(&cur_devices->seed_list);
2234		ASSERT(cur_devices->opened == 1);
2235		cur_devices->opened--;
2236		free_fs_devices(cur_devices);
2237	}
2238
2239	ret = btrfs_commit_transaction(trans);
2240
2241	return ret;
2242
2243error_undo:
2244	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245		mutex_lock(&fs_info->chunk_mutex);
2246		list_add(&device->dev_alloc_list,
2247			 &fs_devices->alloc_list);
2248		device->fs_devices->rw_devices++;
2249		mutex_unlock(&fs_info->chunk_mutex);
2250	}
2251	return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256	struct btrfs_fs_devices *fs_devices;
2257
2258	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260	/*
2261	 * in case of fs with no seed, srcdev->fs_devices will point
2262	 * to fs_devices of fs_info. However when the dev being replaced is
2263	 * a seed dev it will point to the seed's local fs_devices. In short
2264	 * srcdev will have its correct fs_devices in both the cases.
2265	 */
2266	fs_devices = srcdev->fs_devices;
2267
2268	list_del_rcu(&srcdev->dev_list);
2269	list_del(&srcdev->dev_alloc_list);
2270	fs_devices->num_devices--;
2271	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272		fs_devices->missing_devices--;
2273
2274	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275		fs_devices->rw_devices--;
2276
2277	if (srcdev->bdev)
2278		fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
 
2283	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285	mutex_lock(&uuid_mutex);
 
 
 
2286
2287	btrfs_close_bdev(srcdev);
2288	synchronize_rcu();
2289	btrfs_free_device(srcdev);
2290
2291	/* if this is no devs we rather delete the fs_devices */
2292	if (!fs_devices->num_devices) {
 
 
2293		/*
2294		 * On a mounted FS, num_devices can't be zero unless it's a
2295		 * seed. In case of a seed device being replaced, the replace
2296		 * target added to the sprout FS, so there will be no more
2297		 * device left under the seed FS.
2298		 */
2299		ASSERT(fs_devices->seeding);
2300
2301		list_del_init(&fs_devices->seed_list);
 
 
 
 
 
 
 
 
2302		close_fs_devices(fs_devices);
2303		free_fs_devices(fs_devices);
2304	}
2305	mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
 
2312	mutex_lock(&fs_devices->device_list_mutex);
2313
2314	btrfs_sysfs_remove_device(tgtdev);
2315
2316	if (tgtdev->bdev)
2317		fs_devices->open_devices--;
2318
2319	fs_devices->num_devices--;
2320
2321	btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323	list_del_rcu(&tgtdev->dev_list);
2324
2325	mutex_unlock(&fs_devices->device_list_mutex);
2326
2327	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328				  tgtdev->name->str);
 
 
 
 
 
 
2329
2330	btrfs_close_bdev(tgtdev);
2331	synchronize_rcu();
2332	btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info:	the filesystem
2339 * @args:	the args to populate
2340 * @path:	the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks.  The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354				 struct btrfs_dev_lookup_args *args,
2355				 const char *path)
2356{
 
2357	struct btrfs_super_block *disk_super;
 
 
2358	struct block_device *bdev;
2359	int ret;
2360
2361	if (!path || !path[0])
2362		return -EINVAL;
2363	if (!strcmp(path, "missing")) {
2364		args->missing = true;
2365		return 0;
2366	}
2367
2368	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370	if (!args->uuid || !args->fsid) {
2371		btrfs_put_dev_args_from_path(args);
2372		return -ENOMEM;
2373	}
2374
2375	ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376				    &bdev, &disk_super);
2377	if (ret) {
2378		btrfs_put_dev_args_from_path(args);
2379		return ret;
2380	}
2381
2382	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
 
 
 
 
 
2384	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 
2386	else
2387		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388	btrfs_release_disk_super(disk_super);
 
 
 
 
2389	blkdev_put(bdev, FMODE_READ);
2390	return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400	kfree(args->uuid);
2401	kfree(args->fsid);
2402	args->uuid = NULL;
2403	args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407		struct btrfs_fs_info *fs_info, u64 devid,
2408		const char *device_path)
2409{
2410	BTRFS_DEV_LOOKUP_ARGS(args);
2411	struct btrfs_device *device;
2412	int ret;
2413
2414	if (devid) {
2415		args.devid = devid;
2416		device = btrfs_find_device(fs_info->fs_devices, &args);
2417		if (!device)
2418			return ERR_PTR(-ENOENT);
2419		return device;
2420	}
2421
2422	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423	if (ret)
2424		return ERR_PTR(ret);
2425	device = btrfs_find_device(fs_info->fs_devices, &args);
2426	btrfs_put_dev_args_from_path(&args);
2427	if (!device)
 
 
 
 
 
2428		return ERR_PTR(-ENOENT);
2429	return device;
 
 
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
 
 
 
2433{
2434	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435	struct btrfs_fs_devices *old_devices;
2436	struct btrfs_fs_devices *seed_devices;
 
 
 
2437
2438	lockdep_assert_held(&uuid_mutex);
2439	if (!fs_devices->seeding)
2440		return ERR_PTR(-EINVAL);
2441
2442	/*
2443	 * Private copy of the seed devices, anchored at
2444	 * fs_info->fs_devices->seed_list
2445	 */
2446	seed_devices = alloc_fs_devices(NULL, NULL);
2447	if (IS_ERR(seed_devices))
2448		return seed_devices;
2449
2450	/*
2451	 * It's necessary to retain a copy of the original seed fs_devices in
2452	 * fs_uuids so that filesystems which have been seeded can successfully
2453	 * reference the seed device from open_seed_devices. This also supports
2454	 * multiple fs seed.
2455	 */
2456	old_devices = clone_fs_devices(fs_devices);
2457	if (IS_ERR(old_devices)) {
2458		kfree(seed_devices);
2459		return old_devices;
2460	}
2461
2462	list_add(&old_devices->fs_list, &fs_uuids);
2463
2464	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465	seed_devices->opened = 1;
2466	INIT_LIST_HEAD(&seed_devices->devices);
2467	INIT_LIST_HEAD(&seed_devices->alloc_list);
2468	mutex_init(&seed_devices->device_list_mutex);
2469
2470	return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478			       struct btrfs_fs_devices *seed_devices)
2479{
2480	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481	struct btrfs_super_block *disk_super = fs_info->super_copy;
2482	struct btrfs_device *device;
2483	u64 super_flags;
2484
2485	/*
2486	 * We are updating the fsid, the thread leading to device_list_add()
2487	 * could race, so uuid_mutex is needed.
2488	 */
2489	lockdep_assert_held(&uuid_mutex);
2490
2491	/*
2492	 * The threads listed below may traverse dev_list but can do that without
2493	 * device_list_mutex:
2494	 * - All device ops and balance - as we are in btrfs_exclop_start.
2495	 * - Various dev_list readers - are using RCU.
2496	 * - btrfs_ioctl_fitrim() - is using RCU.
2497	 *
2498	 * For-read threads as below are using device_list_mutex:
2499	 * - Readonly scrub btrfs_scrub_dev()
2500	 * - Readonly scrub btrfs_scrub_progress()
2501	 * - btrfs_get_dev_stats()
2502	 */
2503	lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506			      synchronize_rcu);
2507	list_for_each_entry(device, &seed_devices->devices, dev_list)
2508		device->fs_devices = seed_devices;
2509
2510	fs_devices->seeding = false;
 
 
 
 
2511	fs_devices->num_devices = 0;
2512	fs_devices->open_devices = 0;
2513	fs_devices->missing_devices = 0;
2514	fs_devices->rotating = false;
2515	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517	generate_random_uuid(fs_devices->fsid);
2518	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 
2520
2521	super_flags = btrfs_super_flags(disk_super) &
2522		      ~BTRFS_SUPER_FLAG_SEEDING;
2523	btrfs_set_super_flags(disk_super, super_flags);
 
 
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531	BTRFS_DEV_LOOKUP_ARGS(args);
2532	struct btrfs_fs_info *fs_info = trans->fs_info;
2533	struct btrfs_root *root = fs_info->chunk_root;
2534	struct btrfs_path *path;
2535	struct extent_buffer *leaf;
2536	struct btrfs_dev_item *dev_item;
2537	struct btrfs_device *device;
2538	struct btrfs_key key;
2539	u8 fs_uuid[BTRFS_FSID_SIZE];
2540	u8 dev_uuid[BTRFS_UUID_SIZE];
 
2541	int ret;
2542
2543	path = btrfs_alloc_path();
2544	if (!path)
2545		return -ENOMEM;
2546
2547	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548	key.offset = 0;
2549	key.type = BTRFS_DEV_ITEM_KEY;
2550
2551	while (1) {
2552		btrfs_reserve_chunk_metadata(trans, false);
2553		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554		btrfs_trans_release_chunk_metadata(trans);
2555		if (ret < 0)
2556			goto error;
2557
2558		leaf = path->nodes[0];
2559next_slot:
2560		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561			ret = btrfs_next_leaf(root, path);
2562			if (ret > 0)
2563				break;
2564			if (ret < 0)
2565				goto error;
2566			leaf = path->nodes[0];
2567			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568			btrfs_release_path(path);
2569			continue;
2570		}
2571
2572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574		    key.type != BTRFS_DEV_ITEM_KEY)
2575			break;
2576
2577		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578					  struct btrfs_dev_item);
2579		args.devid = btrfs_device_id(leaf, dev_item);
2580		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581				   BTRFS_UUID_SIZE);
2582		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583				   BTRFS_FSID_SIZE);
2584		args.uuid = dev_uuid;
2585		args.fsid = fs_uuid;
2586		device = btrfs_find_device(fs_info->fs_devices, &args);
2587		BUG_ON(!device); /* Logic error */
2588
2589		if (device->fs_devices->seeding) {
2590			btrfs_set_device_generation(leaf, dev_item,
2591						    device->generation);
2592			btrfs_mark_buffer_dirty(leaf);
2593		}
2594
2595		path->slots[0]++;
2596		goto next_slot;
2597	}
2598	ret = 0;
2599error:
2600	btrfs_free_path(path);
2601	return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606	struct btrfs_root *root = fs_info->dev_root;
 
2607	struct btrfs_trans_handle *trans;
2608	struct btrfs_device *device;
2609	struct block_device *bdev;
2610	struct super_block *sb = fs_info->sb;
 
2611	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612	struct btrfs_fs_devices *seed_devices;
2613	u64 orig_super_total_bytes;
2614	u64 orig_super_num_devices;
 
2615	int ret = 0;
2616	bool seeding_dev = false;
2617	bool locked = false;
2618
2619	if (sb_rdonly(sb) && !fs_devices->seeding)
2620		return -EROFS;
2621
2622	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623				  fs_info->bdev_holder);
2624	if (IS_ERR(bdev))
2625		return PTR_ERR(bdev);
2626
2627	if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628		ret = -EINVAL;
2629		goto error;
2630	}
2631
2632	if (fs_devices->seeding) {
2633		seeding_dev = true;
2634		down_write(&sb->s_umount);
2635		mutex_lock(&uuid_mutex);
2636		locked = true;
2637	}
2638
2639	sync_blockdev(bdev);
2640
2641	rcu_read_lock();
2642	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643		if (device->bdev == bdev) {
2644			ret = -EEXIST;
2645			rcu_read_unlock();
 
2646			goto error;
2647		}
2648	}
2649	rcu_read_unlock();
2650
2651	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652	if (IS_ERR(device)) {
2653		/* we can safely leave the fs_devices entry around */
2654		ret = PTR_ERR(device);
2655		goto error;
2656	}
2657
2658	device->fs_info = fs_info;
2659	device->bdev = bdev;
2660	ret = lookup_bdev(device_path, &device->devt);
2661	if (ret)
2662		goto error_free_device;
2663
2664	ret = btrfs_get_dev_zone_info(device, false);
2665	if (ret)
2666		goto error_free_device;
 
 
2667
2668	trans = btrfs_start_transaction(root, 0);
2669	if (IS_ERR(trans)) {
2670		ret = PTR_ERR(trans);
2671		goto error_free_zone;
2672	}
2673
 
2674	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675	device->generation = trans->transid;
2676	device->io_width = fs_info->sectorsize;
2677	device->io_align = fs_info->sectorsize;
2678	device->sector_size = fs_info->sectorsize;
2679	device->total_bytes =
2680		round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681	device->disk_total_bytes = device->total_bytes;
2682	device->commit_total_bytes = device->total_bytes;
 
 
2683	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685	device->mode = FMODE_EXCL;
2686	device->dev_stats_valid = 1;
2687	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689	if (seeding_dev) {
2690		btrfs_clear_sb_rdonly(sb);
2691
2692		/* GFP_KERNEL allocation must not be under device_list_mutex */
2693		seed_devices = btrfs_init_sprout(fs_info);
2694		if (IS_ERR(seed_devices)) {
2695			ret = PTR_ERR(seed_devices);
2696			btrfs_abort_transaction(trans, ret);
2697			goto error_trans;
2698		}
2699	}
2700
2701	mutex_lock(&fs_devices->device_list_mutex);
2702	if (seeding_dev) {
2703		btrfs_setup_sprout(fs_info, seed_devices);
2704		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705						device);
2706	}
2707
2708	device->fs_devices = fs_devices;
2709
 
2710	mutex_lock(&fs_info->chunk_mutex);
2711	list_add_rcu(&device->dev_list, &fs_devices->devices);
2712	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713	fs_devices->num_devices++;
2714	fs_devices->open_devices++;
2715	fs_devices->rw_devices++;
2716	fs_devices->total_devices++;
2717	fs_devices->total_rw_bytes += device->total_bytes;
2718
2719	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721	if (!bdev_nonrot(bdev))
2722		fs_devices->rotating = true;
2723
2724	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725	btrfs_set_super_total_bytes(fs_info->super_copy,
2726		round_down(orig_super_total_bytes + device->total_bytes,
2727			   fs_info->sectorsize));
2728
2729	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730	btrfs_set_super_num_devices(fs_info->super_copy,
2731				    orig_super_num_devices + 1);
2732
 
 
 
2733	/*
2734	 * we've got more storage, clear any full flags on the space
2735	 * infos
2736	 */
2737	btrfs_clear_space_info_full(fs_info);
2738
2739	mutex_unlock(&fs_info->chunk_mutex);
2740
2741	/* Add sysfs device entry */
2742	btrfs_sysfs_add_device(device);
2743
2744	mutex_unlock(&fs_devices->device_list_mutex);
2745
2746	if (seeding_dev) {
2747		mutex_lock(&fs_info->chunk_mutex);
2748		ret = init_first_rw_device(trans);
2749		mutex_unlock(&fs_info->chunk_mutex);
2750		if (ret) {
2751			btrfs_abort_transaction(trans, ret);
2752			goto error_sysfs;
2753		}
2754	}
2755
2756	ret = btrfs_add_dev_item(trans, device);
2757	if (ret) {
2758		btrfs_abort_transaction(trans, ret);
2759		goto error_sysfs;
2760	}
2761
2762	if (seeding_dev) {
2763		ret = btrfs_finish_sprout(trans);
2764		if (ret) {
2765			btrfs_abort_transaction(trans, ret);
2766			goto error_sysfs;
2767		}
2768
2769		/*
2770		 * fs_devices now represents the newly sprouted filesystem and
2771		 * its fsid has been changed by btrfs_sprout_splice().
2772		 */
2773		btrfs_sysfs_update_sprout_fsid(fs_devices);
2774	}
2775
2776	ret = btrfs_commit_transaction(trans);
2777
2778	if (seeding_dev) {
2779		mutex_unlock(&uuid_mutex);
2780		up_write(&sb->s_umount);
2781		locked = false;
2782
2783		if (ret) /* transaction commit */
2784			return ret;
2785
2786		ret = btrfs_relocate_sys_chunks(fs_info);
2787		if (ret < 0)
2788			btrfs_handle_fs_error(fs_info, ret,
2789				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790		trans = btrfs_attach_transaction(root);
2791		if (IS_ERR(trans)) {
2792			if (PTR_ERR(trans) == -ENOENT)
2793				return 0;
2794			ret = PTR_ERR(trans);
2795			trans = NULL;
2796			goto error_sysfs;
2797		}
2798		ret = btrfs_commit_transaction(trans);
2799	}
2800
2801	/*
2802	 * Now that we have written a new super block to this device, check all
2803	 * other fs_devices list if device_path alienates any other scanned
2804	 * device.
2805	 * We can ignore the return value as it typically returns -EINVAL and
2806	 * only succeeds if the device was an alien.
2807	 */
2808	btrfs_forget_devices(device->devt);
2809
2810	/* Update ctime/mtime for blkid or udev */
2811	update_dev_time(device_path);
2812
2813	return ret;
2814
2815error_sysfs:
2816	btrfs_sysfs_remove_device(device);
2817	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818	mutex_lock(&fs_info->chunk_mutex);
2819	list_del_rcu(&device->dev_list);
2820	list_del(&device->dev_alloc_list);
2821	fs_info->fs_devices->num_devices--;
2822	fs_info->fs_devices->open_devices--;
2823	fs_info->fs_devices->rw_devices--;
2824	fs_info->fs_devices->total_devices--;
2825	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827	btrfs_set_super_total_bytes(fs_info->super_copy,
2828				    orig_super_total_bytes);
2829	btrfs_set_super_num_devices(fs_info->super_copy,
2830				    orig_super_num_devices);
2831	mutex_unlock(&fs_info->chunk_mutex);
2832	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834	if (seeding_dev)
2835		btrfs_set_sb_rdonly(sb);
2836	if (trans)
2837		btrfs_end_transaction(trans);
2838error_free_zone:
2839	btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841	btrfs_free_device(device);
2842error:
2843	blkdev_put(bdev, FMODE_EXCL);
2844	if (locked) {
2845		mutex_unlock(&uuid_mutex);
2846		up_write(&sb->s_umount);
2847	}
2848	return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852					struct btrfs_device *device)
2853{
2854	int ret;
2855	struct btrfs_path *path;
2856	struct btrfs_root *root = device->fs_info->chunk_root;
2857	struct btrfs_dev_item *dev_item;
2858	struct extent_buffer *leaf;
2859	struct btrfs_key key;
2860
2861	path = btrfs_alloc_path();
2862	if (!path)
2863		return -ENOMEM;
2864
2865	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866	key.type = BTRFS_DEV_ITEM_KEY;
2867	key.offset = device->devid;
2868
2869	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870	if (ret < 0)
2871		goto out;
2872
2873	if (ret > 0) {
2874		ret = -ENOENT;
2875		goto out;
2876	}
2877
2878	leaf = path->nodes[0];
2879	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881	btrfs_set_device_id(leaf, dev_item, device->devid);
2882	btrfs_set_device_type(leaf, dev_item, device->type);
2883	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886	btrfs_set_device_total_bytes(leaf, dev_item,
2887				     btrfs_device_get_disk_total_bytes(device));
2888	btrfs_set_device_bytes_used(leaf, dev_item,
2889				    btrfs_device_get_bytes_used(device));
2890	btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893	btrfs_free_path(path);
2894	return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898		      struct btrfs_device *device, u64 new_size)
2899{
2900	struct btrfs_fs_info *fs_info = device->fs_info;
2901	struct btrfs_super_block *super_copy = fs_info->super_copy;
2902	u64 old_total;
2903	u64 diff;
2904	int ret;
2905
2906	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907		return -EACCES;
2908
2909	new_size = round_down(new_size, fs_info->sectorsize);
2910
2911	mutex_lock(&fs_info->chunk_mutex);
2912	old_total = btrfs_super_total_bytes(super_copy);
2913	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915	if (new_size <= device->total_bytes ||
2916	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917		mutex_unlock(&fs_info->chunk_mutex);
2918		return -EINVAL;
2919	}
2920
2921	btrfs_set_super_total_bytes(super_copy,
2922			round_down(old_total + diff, fs_info->sectorsize));
2923	device->fs_devices->total_rw_bytes += diff;
2924
2925	btrfs_device_set_total_bytes(device, new_size);
2926	btrfs_device_set_disk_total_bytes(device, new_size);
2927	btrfs_clear_space_info_full(device->fs_info);
2928	if (list_empty(&device->post_commit_list))
2929		list_add_tail(&device->post_commit_list,
2930			      &trans->transaction->dev_update_list);
2931	mutex_unlock(&fs_info->chunk_mutex);
2932
2933	btrfs_reserve_chunk_metadata(trans, false);
2934	ret = btrfs_update_device(trans, device);
2935	btrfs_trans_release_chunk_metadata(trans);
2936
2937	return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942	struct btrfs_fs_info *fs_info = trans->fs_info;
2943	struct btrfs_root *root = fs_info->chunk_root;
2944	int ret;
2945	struct btrfs_path *path;
2946	struct btrfs_key key;
2947
2948	path = btrfs_alloc_path();
2949	if (!path)
2950		return -ENOMEM;
2951
2952	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953	key.offset = chunk_offset;
2954	key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957	if (ret < 0)
2958		goto out;
2959	else if (ret > 0) { /* Logic error or corruption */
2960		btrfs_handle_fs_error(fs_info, -ENOENT,
2961				      "Failed lookup while freeing chunk.");
2962		ret = -ENOENT;
2963		goto out;
2964	}
2965
2966	ret = btrfs_del_item(trans, root, path);
2967	if (ret < 0)
2968		btrfs_handle_fs_error(fs_info, ret,
2969				      "Failed to delete chunk item.");
2970out:
2971	btrfs_free_path(path);
2972	return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977	struct btrfs_super_block *super_copy = fs_info->super_copy;
2978	struct btrfs_disk_key *disk_key;
2979	struct btrfs_chunk *chunk;
2980	u8 *ptr;
2981	int ret = 0;
2982	u32 num_stripes;
2983	u32 array_size;
2984	u32 len = 0;
2985	u32 cur;
2986	struct btrfs_key key;
2987
2988	lockdep_assert_held(&fs_info->chunk_mutex);
2989	array_size = btrfs_super_sys_array_size(super_copy);
2990
2991	ptr = super_copy->sys_chunk_array;
2992	cur = 0;
2993
2994	while (cur < array_size) {
2995		disk_key = (struct btrfs_disk_key *)ptr;
2996		btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998		len = sizeof(*disk_key);
2999
3000		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001			chunk = (struct btrfs_chunk *)(ptr + len);
3002			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003			len += btrfs_chunk_item_size(num_stripes);
3004		} else {
3005			ret = -EIO;
3006			break;
3007		}
3008		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009		    key.offset == chunk_offset) {
3010			memmove(ptr, ptr + len, array_size - (cur + len));
3011			array_size -= len;
3012			btrfs_set_super_sys_array_size(super_copy, array_size);
3013		} else {
3014			ptr += len;
3015			cur += len;
3016		}
3017	}
 
3018	return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029				       u64 logical, u64 length)
3030{
3031	struct extent_map_tree *em_tree;
3032	struct extent_map *em;
3033
3034	em_tree = &fs_info->mapping_tree;
3035	read_lock(&em_tree->lock);
3036	em = lookup_extent_mapping(em_tree, logical, length);
3037	read_unlock(&em_tree->lock);
3038
3039	if (!em) {
3040		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041			   logical, length);
3042		return ERR_PTR(-EINVAL);
3043	}
3044
3045	if (em->start > logical || em->start + em->len < logical) {
3046		btrfs_crit(fs_info,
3047			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048			   logical, length, em->start, em->start + em->len);
3049		free_extent_map(em);
3050		return ERR_PTR(-EINVAL);
3051	}
3052
3053	/* callers are responsible for dropping em's ref. */
3054	return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058			     struct map_lookup *map, u64 chunk_offset)
3059{
3060	int i;
3061
3062	/*
3063	 * Removing chunk items and updating the device items in the chunks btree
3064	 * requires holding the chunk_mutex.
3065	 * See the comment at btrfs_chunk_alloc() for the details.
3066	 */
3067	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069	for (i = 0; i < map->num_stripes; i++) {
3070		int ret;
3071
3072		ret = btrfs_update_device(trans, map->stripes[i].dev);
3073		if (ret)
3074			return ret;
3075	}
3076
3077	return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082	struct btrfs_fs_info *fs_info = trans->fs_info;
3083	struct extent_map *em;
3084	struct map_lookup *map;
3085	u64 dev_extent_len = 0;
3086	int i, ret = 0;
3087	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090	if (IS_ERR(em)) {
3091		/*
3092		 * This is a logic error, but we don't want to just rely on the
3093		 * user having built with ASSERT enabled, so if ASSERT doesn't
3094		 * do anything we still error out.
3095		 */
3096		ASSERT(0);
3097		return PTR_ERR(em);
3098	}
3099	map = em->map_lookup;
 
 
 
3100
3101	/*
3102	 * First delete the device extent items from the devices btree.
3103	 * We take the device_list_mutex to avoid racing with the finishing phase
3104	 * of a device replace operation. See the comment below before acquiring
3105	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106	 * because that can result in a deadlock when deleting the device extent
3107	 * items from the devices btree - COWing an extent buffer from the btree
3108	 * may result in allocating a new metadata chunk, which would attempt to
3109	 * lock again fs_info->chunk_mutex.
3110	 */
3111	mutex_lock(&fs_devices->device_list_mutex);
3112	for (i = 0; i < map->num_stripes; i++) {
3113		struct btrfs_device *device = map->stripes[i].dev;
3114		ret = btrfs_free_dev_extent(trans, device,
3115					    map->stripes[i].physical,
3116					    &dev_extent_len);
3117		if (ret) {
3118			mutex_unlock(&fs_devices->device_list_mutex);
3119			btrfs_abort_transaction(trans, ret);
3120			goto out;
3121		}
3122
3123		if (device->bytes_used > 0) {
3124			mutex_lock(&fs_info->chunk_mutex);
3125			btrfs_device_set_bytes_used(device,
3126					device->bytes_used - dev_extent_len);
3127			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128			btrfs_clear_space_info_full(fs_info);
3129			mutex_unlock(&fs_info->chunk_mutex);
3130		}
3131	}
3132	mutex_unlock(&fs_devices->device_list_mutex);
3133
3134	/*
3135	 * We acquire fs_info->chunk_mutex for 2 reasons:
3136	 *
3137	 * 1) Just like with the first phase of the chunk allocation, we must
3138	 *    reserve system space, do all chunk btree updates and deletions, and
3139	 *    update the system chunk array in the superblock while holding this
3140	 *    mutex. This is for similar reasons as explained on the comment at
3141	 *    the top of btrfs_chunk_alloc();
3142	 *
3143	 * 2) Prevent races with the final phase of a device replace operation
3144	 *    that replaces the device object associated with the map's stripes,
3145	 *    because the device object's id can change at any time during that
3146	 *    final phase of the device replace operation
3147	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148	 *    replaced device and then see it with an ID of
3149	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150	 *    the device item, which does not exists on the chunk btree.
3151	 *    The finishing phase of device replace acquires both the
3152	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3153	 *    safe by just acquiring the chunk_mutex.
3154	 */
3155	trans->removing_chunk = true;
3156	mutex_lock(&fs_info->chunk_mutex);
3157
3158	check_system_chunk(trans, map->type);
3159
3160	ret = remove_chunk_item(trans, map, chunk_offset);
3161	/*
3162	 * Normally we should not get -ENOSPC since we reserved space before
3163	 * through the call to check_system_chunk().
3164	 *
3165	 * Despite our system space_info having enough free space, we may not
3166	 * be able to allocate extents from its block groups, because all have
3167	 * an incompatible profile, which will force us to allocate a new system
3168	 * block group with the right profile, or right after we called
3169	 * check_system_space() above, a scrub turned the only system block group
3170	 * with enough free space into RO mode.
3171	 * This is explained with more detail at do_chunk_alloc().
3172	 *
3173	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174	 */
3175	if (ret == -ENOSPC) {
3176		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177		struct btrfs_block_group *sys_bg;
3178
3179		sys_bg = btrfs_create_chunk(trans, sys_flags);
3180		if (IS_ERR(sys_bg)) {
3181			ret = PTR_ERR(sys_bg);
3182			btrfs_abort_transaction(trans, ret);
3183			goto out;
3184		}
3185
3186		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187		if (ret) {
 
3188			btrfs_abort_transaction(trans, ret);
3189			goto out;
3190		}
 
 
3191
3192		ret = remove_chunk_item(trans, map, chunk_offset);
3193		if (ret) {
3194			btrfs_abort_transaction(trans, ret);
3195			goto out;
3196		}
3197	} else if (ret) {
3198		btrfs_abort_transaction(trans, ret);
3199		goto out;
3200	}
3201
3202	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206		if (ret) {
3207			btrfs_abort_transaction(trans, ret);
3208			goto out;
3209		}
3210	}
3211
3212	mutex_unlock(&fs_info->chunk_mutex);
3213	trans->removing_chunk = false;
3214
3215	/*
3216	 * We are done with chunk btree updates and deletions, so release the
3217	 * system space we previously reserved (with check_system_chunk()).
3218	 */
3219	btrfs_trans_release_chunk_metadata(trans);
3220
3221	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222	if (ret) {
3223		btrfs_abort_transaction(trans, ret);
3224		goto out;
3225	}
3226
3227out:
3228	if (trans->removing_chunk) {
3229		mutex_unlock(&fs_info->chunk_mutex);
3230		trans->removing_chunk = false;
3231	}
3232	/* once for us */
3233	free_extent_map(em);
3234	return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239	struct btrfs_root *root = fs_info->chunk_root;
3240	struct btrfs_trans_handle *trans;
3241	struct btrfs_block_group *block_group;
3242	u64 length;
3243	int ret;
3244
3245	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246		btrfs_err(fs_info,
3247			  "relocate: not supported on extent tree v2 yet");
3248		return -EINVAL;
3249	}
3250
3251	/*
3252	 * Prevent races with automatic removal of unused block groups.
3253	 * After we relocate and before we remove the chunk with offset
3254	 * chunk_offset, automatic removal of the block group can kick in,
3255	 * resulting in a failure when calling btrfs_remove_chunk() below.
3256	 *
3257	 * Make sure to acquire this mutex before doing a tree search (dev
3258	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260	 * we release the path used to search the chunk/dev tree and before
3261	 * the current task acquires this mutex and calls us.
3262	 */
3263	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265	/* step one, relocate all the extents inside this chunk */
3266	btrfs_scrub_pause(fs_info);
3267	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268	btrfs_scrub_continue(fs_info);
3269	if (ret)
3270		return ret;
3271
3272	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273	if (!block_group)
3274		return -ENOENT;
3275	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276	length = block_group->length;
3277	btrfs_put_block_group(block_group);
3278
3279	/*
3280	 * On a zoned file system, discard the whole block group, this will
3281	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282	 * resetting the zone fails, don't treat it as a fatal problem from the
3283	 * filesystem's point of view.
3284	 */
3285	if (btrfs_is_zoned(fs_info)) {
3286		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287		if (ret)
3288			btrfs_info(fs_info,
3289				"failed to reset zone %llu after relocation",
3290				chunk_offset);
3291	}
3292
3293	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294						     chunk_offset);
3295	if (IS_ERR(trans)) {
3296		ret = PTR_ERR(trans);
3297		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298		return ret;
3299	}
3300
3301	/*
3302	 * step two, delete the device extents and the
3303	 * chunk tree entries
3304	 */
3305	ret = btrfs_remove_chunk(trans, chunk_offset);
3306	btrfs_end_transaction(trans);
3307	return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312	struct btrfs_root *chunk_root = fs_info->chunk_root;
3313	struct btrfs_path *path;
3314	struct extent_buffer *leaf;
3315	struct btrfs_chunk *chunk;
3316	struct btrfs_key key;
3317	struct btrfs_key found_key;
3318	u64 chunk_type;
3319	bool retried = false;
3320	int failed = 0;
3321	int ret;
3322
3323	path = btrfs_alloc_path();
3324	if (!path)
3325		return -ENOMEM;
3326
3327again:
3328	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329	key.offset = (u64)-1;
3330	key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332	while (1) {
3333		mutex_lock(&fs_info->reclaim_bgs_lock);
3334		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335		if (ret < 0) {
3336			mutex_unlock(&fs_info->reclaim_bgs_lock);
3337			goto error;
3338		}
3339		BUG_ON(ret == 0); /* Corruption */
3340
3341		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342					  key.type);
3343		if (ret)
3344			mutex_unlock(&fs_info->reclaim_bgs_lock);
3345		if (ret < 0)
3346			goto error;
3347		if (ret > 0)
3348			break;
3349
3350		leaf = path->nodes[0];
3351		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353		chunk = btrfs_item_ptr(leaf, path->slots[0],
3354				       struct btrfs_chunk);
3355		chunk_type = btrfs_chunk_type(leaf, chunk);
3356		btrfs_release_path(path);
3357
3358		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360			if (ret == -ENOSPC)
3361				failed++;
3362			else
3363				BUG_ON(ret);
3364		}
3365		mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367		if (found_key.offset == 0)
3368			break;
3369		key.offset = found_key.offset - 1;
3370	}
3371	ret = 0;
3372	if (failed && !retried) {
3373		failed = 0;
3374		retried = true;
3375		goto again;
3376	} else if (WARN_ON(failed && retried)) {
3377		ret = -ENOSPC;
3378	}
3379error:
3380	btrfs_free_path(path);
3381	return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390				      u64 chunk_offset)
3391{
3392	struct btrfs_block_group *cache;
3393	u64 bytes_used;
3394	u64 chunk_type;
3395
3396	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397	ASSERT(cache);
3398	chunk_type = cache->flags;
3399	btrfs_put_block_group(cache);
3400
3401	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402		return 0;
3403
3404	spin_lock(&fs_info->data_sinfo->lock);
3405	bytes_used = fs_info->data_sinfo->bytes_used;
3406	spin_unlock(&fs_info->data_sinfo->lock);
3407
3408	if (!bytes_used) {
3409		struct btrfs_trans_handle *trans;
3410		int ret;
3411
3412		trans =	btrfs_join_transaction(fs_info->tree_root);
3413		if (IS_ERR(trans))
3414			return PTR_ERR(trans);
3415
3416		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417		btrfs_end_transaction(trans);
3418		if (ret < 0)
3419			return ret;
3420		return 1;
3421	}
3422
3423	return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427			       struct btrfs_balance_control *bctl)
3428{
3429	struct btrfs_root *root = fs_info->tree_root;
3430	struct btrfs_trans_handle *trans;
3431	struct btrfs_balance_item *item;
3432	struct btrfs_disk_balance_args disk_bargs;
3433	struct btrfs_path *path;
3434	struct extent_buffer *leaf;
3435	struct btrfs_key key;
3436	int ret, err;
3437
3438	path = btrfs_alloc_path();
3439	if (!path)
3440		return -ENOMEM;
3441
3442	trans = btrfs_start_transaction(root, 0);
3443	if (IS_ERR(trans)) {
3444		btrfs_free_path(path);
3445		return PTR_ERR(trans);
3446	}
3447
3448	key.objectid = BTRFS_BALANCE_OBJECTID;
3449	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450	key.offset = 0;
3451
3452	ret = btrfs_insert_empty_item(trans, root, path, &key,
3453				      sizeof(*item));
3454	if (ret)
3455		goto out;
3456
3457	leaf = path->nodes[0];
3458	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463	btrfs_set_balance_data(leaf, item, &disk_bargs);
3464	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469	btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471	btrfs_mark_buffer_dirty(leaf);
3472out:
3473	btrfs_free_path(path);
3474	err = btrfs_commit_transaction(trans);
3475	if (err && !ret)
3476		ret = err;
3477	return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482	struct btrfs_root *root = fs_info->tree_root;
3483	struct btrfs_trans_handle *trans;
3484	struct btrfs_path *path;
3485	struct btrfs_key key;
3486	int ret, err;
3487
3488	path = btrfs_alloc_path();
3489	if (!path)
3490		return -ENOMEM;
3491
3492	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493	if (IS_ERR(trans)) {
3494		btrfs_free_path(path);
3495		return PTR_ERR(trans);
3496	}
3497
3498	key.objectid = BTRFS_BALANCE_OBJECTID;
3499	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500	key.offset = 0;
3501
3502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503	if (ret < 0)
3504		goto out;
3505	if (ret > 0) {
3506		ret = -ENOENT;
3507		goto out;
3508	}
3509
3510	ret = btrfs_del_item(trans, root, path);
3511out:
3512	btrfs_free_path(path);
3513	err = btrfs_commit_transaction(trans);
3514	if (err && !ret)
3515		ret = err;
3516	return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525	/*
3526	 * Turn on soft mode for chunk types that were being converted.
3527	 */
3528	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535	/*
3536	 * Turn on usage filter if is not already used.  The idea is
3537	 * that chunks that we have already balanced should be
3538	 * reasonably full.  Don't do it for chunks that are being
3539	 * converted - that will keep us from relocating unconverted
3540	 * (albeit full) chunks.
3541	 */
3542	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546		bctl->data.usage = 90;
3547	}
3548	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552		bctl->sys.usage = 90;
3553	}
3554	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558		bctl->meta.usage = 90;
3559	}
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568	int ret;
3569
3570	BUG_ON(!fs_info->balance_ctl);
3571
3572	spin_lock(&fs_info->balance_lock);
3573	fs_info->balance_ctl = NULL;
3574	spin_unlock(&fs_info->balance_lock);
3575
3576	kfree(bctl);
3577	ret = del_balance_item(fs_info);
3578	if (ret)
3579		btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters.  Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587				 struct btrfs_balance_args *bargs)
3588{
3589	chunk_type = chunk_to_extended(chunk_type) &
3590				BTRFS_EXTENDED_PROFILE_MASK;
3591
3592	if (bargs->profiles & chunk_type)
3593		return 0;
3594
3595	return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599			      struct btrfs_balance_args *bargs)
3600{
3601	struct btrfs_block_group *cache;
3602	u64 chunk_used;
3603	u64 user_thresh_min;
3604	u64 user_thresh_max;
3605	int ret = 1;
3606
3607	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608	chunk_used = cache->used;
3609
3610	if (bargs->usage_min == 0)
3611		user_thresh_min = 0;
3612	else
3613		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
 
3614
3615	if (bargs->usage_max == 0)
3616		user_thresh_max = 1;
3617	else if (bargs->usage_max > 100)
3618		user_thresh_max = cache->length;
3619	else
3620		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
 
3621
3622	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623		ret = 0;
3624
3625	btrfs_put_block_group(cache);
3626	return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630		u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632	struct btrfs_block_group *cache;
3633	u64 chunk_used, user_thresh;
3634	int ret = 1;
3635
3636	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637	chunk_used = cache->used;
3638
3639	if (bargs->usage_min == 0)
3640		user_thresh = 1;
3641	else if (bargs->usage > 100)
3642		user_thresh = cache->length;
3643	else
3644		user_thresh = mult_perc(cache->length, bargs->usage);
 
3645
3646	if (chunk_used < user_thresh)
3647		ret = 0;
3648
3649	btrfs_put_block_group(cache);
3650	return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654			      struct btrfs_chunk *chunk,
3655			      struct btrfs_balance_args *bargs)
3656{
3657	struct btrfs_stripe *stripe;
3658	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659	int i;
3660
3661	for (i = 0; i < num_stripes; i++) {
3662		stripe = btrfs_stripe_nr(chunk, i);
3663		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664			return 0;
3665	}
3666
3667	return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672	const int index = btrfs_bg_flags_to_raid_index(type);
3673	const int ncopies = btrfs_raid_array[index].ncopies;
3674	const int nparity = btrfs_raid_array[index].nparity;
3675
3676	return (num_stripes - nparity) / ncopies;
 
 
 
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681			       struct btrfs_chunk *chunk,
3682			       struct btrfs_balance_args *bargs)
3683{
3684	struct btrfs_stripe *stripe;
3685	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686	u64 stripe_offset;
3687	u64 stripe_length;
3688	u64 type;
3689	int factor;
3690	int i;
3691
3692	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693		return 0;
3694
3695	type = btrfs_chunk_type(leaf, chunk);
3696	factor = calc_data_stripes(type, num_stripes);
3697
3698	for (i = 0; i < num_stripes; i++) {
3699		stripe = btrfs_stripe_nr(chunk, i);
3700		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701			continue;
3702
3703		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704		stripe_length = btrfs_chunk_length(leaf, chunk);
3705		stripe_length = div_u64(stripe_length, factor);
3706
3707		if (stripe_offset < bargs->pend &&
3708		    stripe_offset + stripe_length > bargs->pstart)
3709			return 0;
3710	}
3711
3712	return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717			       struct btrfs_chunk *chunk,
3718			       u64 chunk_offset,
3719			       struct btrfs_balance_args *bargs)
3720{
3721	if (chunk_offset < bargs->vend &&
3722	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723		/* at least part of the chunk is inside this vrange */
3724		return 0;
3725
3726	return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730			       struct btrfs_chunk *chunk,
3731			       struct btrfs_balance_args *bargs)
3732{
3733	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735	if (bargs->stripes_min <= num_stripes
3736			&& num_stripes <= bargs->stripes_max)
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743				     struct btrfs_balance_args *bargs)
3744{
3745	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746		return 0;
3747
3748	chunk_type = chunk_to_extended(chunk_type) &
3749				BTRFS_EXTENDED_PROFILE_MASK;
3750
3751	if (bargs->target == chunk_type)
3752		return 1;
3753
3754	return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758				struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760	struct btrfs_fs_info *fs_info = leaf->fs_info;
3761	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762	struct btrfs_balance_args *bargs = NULL;
3763	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765	/* type filter */
3766	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768		return 0;
3769	}
3770
3771	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772		bargs = &bctl->data;
3773	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774		bargs = &bctl->sys;
3775	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776		bargs = &bctl->meta;
3777
3778	/* profiles filter */
3779	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780	    chunk_profiles_filter(chunk_type, bargs)) {
3781		return 0;
3782	}
3783
3784	/* usage filter */
3785	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787		return 0;
3788	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790		return 0;
3791	}
3792
3793	/* devid filter */
3794	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795	    chunk_devid_filter(leaf, chunk, bargs)) {
3796		return 0;
3797	}
3798
3799	/* drange filter, makes sense only with devid filter */
3800	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801	    chunk_drange_filter(leaf, chunk, bargs)) {
3802		return 0;
3803	}
3804
3805	/* vrange filter */
3806	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808		return 0;
3809	}
3810
3811	/* stripes filter */
3812	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814		return 0;
3815	}
3816
3817	/* soft profile changing mode */
3818	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819	    chunk_soft_convert_filter(chunk_type, bargs)) {
3820		return 0;
3821	}
3822
3823	/*
3824	 * limited by count, must be the last filter
3825	 */
3826	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827		if (bargs->limit == 0)
3828			return 0;
3829		else
3830			bargs->limit--;
3831	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832		/*
3833		 * Same logic as the 'limit' filter; the minimum cannot be
3834		 * determined here because we do not have the global information
3835		 * about the count of all chunks that satisfy the filters.
3836		 */
3837		if (bargs->limit_max == 0)
3838			return 0;
3839		else
3840			bargs->limit_max--;
3841	}
3842
3843	return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849	struct btrfs_root *chunk_root = fs_info->chunk_root;
3850	u64 chunk_type;
3851	struct btrfs_chunk *chunk;
3852	struct btrfs_path *path = NULL;
3853	struct btrfs_key key;
3854	struct btrfs_key found_key;
3855	struct extent_buffer *leaf;
3856	int slot;
3857	int ret;
3858	int enospc_errors = 0;
3859	bool counting = true;
3860	/* The single value limit and min/max limits use the same bytes in the */
3861	u64 limit_data = bctl->data.limit;
3862	u64 limit_meta = bctl->meta.limit;
3863	u64 limit_sys = bctl->sys.limit;
3864	u32 count_data = 0;
3865	u32 count_meta = 0;
3866	u32 count_sys = 0;
3867	int chunk_reserved = 0;
3868
3869	path = btrfs_alloc_path();
3870	if (!path) {
3871		ret = -ENOMEM;
3872		goto error;
3873	}
3874
3875	/* zero out stat counters */
3876	spin_lock(&fs_info->balance_lock);
3877	memset(&bctl->stat, 0, sizeof(bctl->stat));
3878	spin_unlock(&fs_info->balance_lock);
3879again:
3880	if (!counting) {
3881		/*
3882		 * The single value limit and min/max limits use the same bytes
3883		 * in the
3884		 */
3885		bctl->data.limit = limit_data;
3886		bctl->meta.limit = limit_meta;
3887		bctl->sys.limit = limit_sys;
3888	}
3889	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890	key.offset = (u64)-1;
3891	key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893	while (1) {
3894		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895		    atomic_read(&fs_info->balance_cancel_req)) {
3896			ret = -ECANCELED;
3897			goto error;
3898		}
3899
3900		mutex_lock(&fs_info->reclaim_bgs_lock);
3901		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902		if (ret < 0) {
3903			mutex_unlock(&fs_info->reclaim_bgs_lock);
3904			goto error;
3905		}
3906
3907		/*
3908		 * this shouldn't happen, it means the last relocate
3909		 * failed
3910		 */
3911		if (ret == 0)
3912			BUG(); /* FIXME break ? */
3913
3914		ret = btrfs_previous_item(chunk_root, path, 0,
3915					  BTRFS_CHUNK_ITEM_KEY);
3916		if (ret) {
3917			mutex_unlock(&fs_info->reclaim_bgs_lock);
3918			ret = 0;
3919			break;
3920		}
3921
3922		leaf = path->nodes[0];
3923		slot = path->slots[0];
3924		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926		if (found_key.objectid != key.objectid) {
3927			mutex_unlock(&fs_info->reclaim_bgs_lock);
3928			break;
3929		}
3930
3931		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932		chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934		if (!counting) {
3935			spin_lock(&fs_info->balance_lock);
3936			bctl->stat.considered++;
3937			spin_unlock(&fs_info->balance_lock);
3938		}
3939
3940		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942		btrfs_release_path(path);
3943		if (!ret) {
3944			mutex_unlock(&fs_info->reclaim_bgs_lock);
3945			goto loop;
3946		}
3947
3948		if (counting) {
3949			mutex_unlock(&fs_info->reclaim_bgs_lock);
3950			spin_lock(&fs_info->balance_lock);
3951			bctl->stat.expected++;
3952			spin_unlock(&fs_info->balance_lock);
3953
3954			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955				count_data++;
3956			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957				count_sys++;
3958			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959				count_meta++;
3960
3961			goto loop;
3962		}
3963
3964		/*
3965		 * Apply limit_min filter, no need to check if the LIMITS
3966		 * filter is used, limit_min is 0 by default
3967		 */
3968		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969					count_data < bctl->data.limit_min)
3970				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971					count_meta < bctl->meta.limit_min)
3972				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973					count_sys < bctl->sys.limit_min)) {
3974			mutex_unlock(&fs_info->reclaim_bgs_lock);
3975			goto loop;
3976		}
3977
3978		if (!chunk_reserved) {
3979			/*
3980			 * We may be relocating the only data chunk we have,
3981			 * which could potentially end up with losing data's
3982			 * raid profile, so lets allocate an empty one in
3983			 * advance.
3984			 */
3985			ret = btrfs_may_alloc_data_chunk(fs_info,
3986							 found_key.offset);
3987			if (ret < 0) {
3988				mutex_unlock(&fs_info->reclaim_bgs_lock);
3989				goto error;
3990			} else if (ret == 1) {
3991				chunk_reserved = 1;
3992			}
3993		}
3994
3995		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996		mutex_unlock(&fs_info->reclaim_bgs_lock);
3997		if (ret == -ENOSPC) {
3998			enospc_errors++;
3999		} else if (ret == -ETXTBSY) {
4000			btrfs_info(fs_info,
4001	   "skipping relocation of block group %llu due to active swapfile",
4002				   found_key.offset);
4003			ret = 0;
4004		} else if (ret) {
4005			goto error;
4006		} else {
4007			spin_lock(&fs_info->balance_lock);
4008			bctl->stat.completed++;
4009			spin_unlock(&fs_info->balance_lock);
4010		}
4011loop:
4012		if (found_key.offset == 0)
4013			break;
4014		key.offset = found_key.offset - 1;
4015	}
4016
4017	if (counting) {
4018		btrfs_release_path(path);
4019		counting = false;
4020		goto again;
4021	}
4022error:
4023	btrfs_free_path(path);
4024	if (enospc_errors) {
4025		btrfs_info(fs_info, "%d enospc errors during balance",
4026			   enospc_errors);
4027		if (!ret)
4028			ret = -ENOSPC;
4029	}
4030
4031	return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags:     profile to validate
4038 * @extended:  if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047	/* 1) check that all other bits are zeroed */
4048	if (flags & ~mask)
4049		return 0;
4050
4051	/* 2) see if profile is reduced */
4052	if (flags == 0)
4053		return !extended; /* "0" is valid for usual profiles */
4054
4055	return has_single_bit_set(flags);
 
 
 
 
 
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060	/* cancel requested || normal exit path */
4061	return atomic_read(&fs_info->balance_cancel_req) ||
4062		(atomic_read(&fs_info->balance_pause_req) == 0 &&
4063		 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071		const struct btrfs_balance_args *bargs,
4072		u64 allowed, const char *type)
4073{
4074	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075		return true;
4076
4077	/* Profile is valid and does not have bits outside of the allowed set */
4078	if (alloc_profile_is_valid(bargs->target, 1) &&
4079	    (bargs->target & ~allowed) == 0)
4080		return true;
4081
4082	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083			type, btrfs_bg_type_to_raid_name(bargs->target));
4084	return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093				 u32 size_buf)
4094{
4095	int ret;
4096	u32 size_bp = size_buf;
4097	char *bp = buf;
4098	u64 flags = bargs->flags;
4099	char tmp_buf[128] = {'\0'};
4100
4101	if (!flags)
4102		return;
4103
4104#define CHECK_APPEND_NOARG(a)						\
4105	do {								\
4106		ret = snprintf(bp, size_bp, (a));			\
4107		if (ret < 0 || ret >= size_bp)				\
4108			goto out_overflow;				\
4109		size_bp -= ret;						\
4110		bp += ret;						\
4111	} while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1)					\
4114	do {								\
4115		ret = snprintf(bp, size_bp, (a), (v1));			\
4116		if (ret < 0 || ret >= size_bp)				\
4117			goto out_overflow;				\
4118		size_bp -= ret;						\
4119		bp += ret;						\
4120	} while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2)					\
4123	do {								\
4124		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4125		if (ret < 0 || ret >= size_bp)				\
4126			goto out_overflow;				\
4127		size_bp -= ret;						\
4128		bp += ret;						\
4129	} while (0)
4130
4131	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132		CHECK_APPEND_1ARG("convert=%s,",
4133				  btrfs_bg_type_to_raid_name(bargs->target));
4134
4135	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136		CHECK_APPEND_NOARG("soft,");
4137
4138	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140					    sizeof(tmp_buf));
4141		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142	}
4143
4144	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148		CHECK_APPEND_2ARG("usage=%u..%u,",
4149				  bargs->usage_min, bargs->usage_max);
4150
4151	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156				  bargs->pstart, bargs->pend);
4157
4158	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160				  bargs->vstart, bargs->vend);
4161
4162	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166		CHECK_APPEND_2ARG("limit=%u..%u,",
4167				bargs->limit_min, bargs->limit_max);
4168
4169	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170		CHECK_APPEND_2ARG("stripes=%u..%u,",
4171				  bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179	if (size_bp < size_buf)
4180		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181	else
4182		buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187	u32 size_buf = 1024;
4188	char tmp_buf[192] = {'\0'};
4189	char *buf;
4190	char *bp;
4191	u32 size_bp = size_buf;
4192	int ret;
4193	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195	buf = kzalloc(size_buf, GFP_KERNEL);
4196	if (!buf)
4197		return;
4198
4199	bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1)					\
4202	do {								\
4203		ret = snprintf(bp, size_bp, (a), (v1));			\
4204		if (ret < 0 || ret >= size_bp)				\
4205			goto out_overflow;				\
4206		size_bp -= ret;						\
4207		bp += ret;						\
4208	} while (0)
4209
4210	if (bctl->flags & BTRFS_BALANCE_FORCE)
4211		CHECK_APPEND_1ARG("%s", "-f ");
4212
4213	if (bctl->flags & BTRFS_BALANCE_DATA) {
4214		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216	}
4217
4218	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221	}
4222
4223	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226	}
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232	if (size_bp < size_buf)
4233		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234	btrfs_info(fs_info, "balance: %s %s",
4235		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236		   "resume" : "start", buf);
4237
4238	kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245		  struct btrfs_balance_control *bctl,
4246		  struct btrfs_ioctl_balance_args *bargs)
4247{
4248	u64 meta_target, data_target;
4249	u64 allowed;
4250	int mixed = 0;
4251	int ret;
4252	u64 num_devices;
4253	unsigned seq;
4254	bool reducing_redundancy;
4255	int i;
4256
4257	if (btrfs_fs_closing(fs_info) ||
4258	    atomic_read(&fs_info->balance_pause_req) ||
4259	    btrfs_should_cancel_balance(fs_info)) {
4260		ret = -EINVAL;
4261		goto out;
4262	}
4263
4264	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266		mixed = 1;
4267
4268	/*
4269	 * In case of mixed groups both data and meta should be picked,
4270	 * and identical options should be given for both of them.
4271	 */
4272	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273	if (mixed && (bctl->flags & allowed)) {
4274		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277			btrfs_err(fs_info,
4278	  "balance: mixed groups data and metadata options must be the same");
4279			ret = -EINVAL;
4280			goto out;
4281		}
4282	}
4283
4284	/*
4285	 * rw_devices will not change at the moment, device add/delete/replace
4286	 * are exclusive
4287	 */
4288	num_devices = fs_info->fs_devices->rw_devices;
4289
4290	/*
4291	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292	 * special bit for it, to make it easier to distinguish.  Thus we need
4293	 * to set it manually, or balance would refuse the profile.
4294	 */
4295	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297		if (num_devices >= btrfs_raid_array[i].devs_min)
4298			allowed |= btrfs_raid_array[i].bg_flag;
4299
4300	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4303		ret = -EINVAL;
4304		goto out;
4305	}
4306
4307	/*
4308	 * Allow to reduce metadata or system integrity only if force set for
4309	 * profiles with redundancy (copies, parity)
4310	 */
4311	allowed = 0;
4312	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313		if (btrfs_raid_array[i].ncopies >= 2 ||
4314		    btrfs_raid_array[i].tolerated_failures >= 1)
4315			allowed |= btrfs_raid_array[i].bg_flag;
4316	}
4317	do {
4318		seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321		     (fs_info->avail_system_alloc_bits & allowed) &&
4322		     !(bctl->sys.target & allowed)) ||
4323		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4325		     !(bctl->meta.target & allowed)))
4326			reducing_redundancy = true;
4327		else
4328			reducing_redundancy = false;
4329
4330		/* if we're not converting, the target field is uninitialized */
4331		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334			bctl->data.target : fs_info->avail_data_alloc_bits;
4335	} while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337	if (reducing_redundancy) {
4338		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339			btrfs_info(fs_info,
4340			   "balance: force reducing metadata redundancy");
4341		} else {
4342			btrfs_err(fs_info,
4343	"balance: reduces metadata redundancy, use --force if you want this");
4344			ret = -EINVAL;
4345			goto out;
4346		}
4347	}
4348
4349	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351		btrfs_warn(fs_info,
4352	"balance: metadata profile %s has lower redundancy than data profile %s",
4353				btrfs_bg_type_to_raid_name(meta_target),
4354				btrfs_bg_type_to_raid_name(data_target));
4355	}
4356
 
 
 
 
 
 
 
 
4357	ret = insert_balance_item(fs_info, bctl);
4358	if (ret && ret != -EEXIST)
4359		goto out;
4360
4361	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362		BUG_ON(ret == -EEXIST);
4363		BUG_ON(fs_info->balance_ctl);
4364		spin_lock(&fs_info->balance_lock);
4365		fs_info->balance_ctl = bctl;
4366		spin_unlock(&fs_info->balance_lock);
4367	} else {
4368		BUG_ON(ret != -EEXIST);
4369		spin_lock(&fs_info->balance_lock);
4370		update_balance_args(bctl);
4371		spin_unlock(&fs_info->balance_lock);
4372	}
4373
4374	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376	describe_balance_start_or_resume(fs_info);
4377	mutex_unlock(&fs_info->balance_mutex);
4378
4379	ret = __btrfs_balance(fs_info);
4380
4381	mutex_lock(&fs_info->balance_mutex);
4382	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383		btrfs_info(fs_info, "balance: paused");
4384		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385	}
4386	/*
4387	 * Balance can be canceled by:
4388	 *
4389	 * - Regular cancel request
4390	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4391	 *
4392	 * - Fatal signal to "btrfs" process
4393	 *   Either the signal caught by wait_reserve_ticket() and callers
4394	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4395	 *   got -ECANCELED.
4396	 *   Either way, in this case balance_cancel_req = 0, and
4397	 *   ret == -EINTR or ret == -ECANCELED.
4398	 *
4399	 * So here we only check the return value to catch canceled balance.
4400	 */
4401	else if (ret == -ECANCELED || ret == -EINTR)
4402		btrfs_info(fs_info, "balance: canceled");
4403	else
4404		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408	if (bargs) {
4409		memset(bargs, 0, sizeof(*bargs));
4410		btrfs_update_ioctl_balance_args(fs_info, bargs);
4411	}
4412
4413	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414	    balance_need_close(fs_info)) {
4415		reset_balance_state(fs_info);
4416		btrfs_exclop_finish(fs_info);
4417	}
4418
4419	wake_up(&fs_info->balance_wait_q);
4420
4421	return ret;
4422out:
4423	if (bctl->flags & BTRFS_BALANCE_RESUME)
4424		reset_balance_state(fs_info);
4425	else
4426		kfree(bctl);
4427	btrfs_exclop_finish(fs_info);
4428
4429	return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434	struct btrfs_fs_info *fs_info = data;
4435	int ret = 0;
4436
4437	sb_start_write(fs_info->sb);
4438	mutex_lock(&fs_info->balance_mutex);
4439	if (fs_info->balance_ctl)
4440		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441	mutex_unlock(&fs_info->balance_mutex);
4442	sb_end_write(fs_info->sb);
4443
4444	return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449	struct task_struct *tsk;
4450
4451	mutex_lock(&fs_info->balance_mutex);
4452	if (!fs_info->balance_ctl) {
4453		mutex_unlock(&fs_info->balance_mutex);
4454		return 0;
4455	}
4456	mutex_unlock(&fs_info->balance_mutex);
4457
4458	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459		btrfs_info(fs_info, "balance: resume skipped");
4460		return 0;
4461	}
4462
4463	spin_lock(&fs_info->super_lock);
4464	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466	spin_unlock(&fs_info->super_lock);
4467	/*
4468	 * A ro->rw remount sequence should continue with the paused balance
4469	 * regardless of who pauses it, system or the user as of now, so set
4470	 * the resume flag.
4471	 */
4472	spin_lock(&fs_info->balance_lock);
4473	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474	spin_unlock(&fs_info->balance_lock);
4475
4476	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477	return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482	struct btrfs_balance_control *bctl;
4483	struct btrfs_balance_item *item;
4484	struct btrfs_disk_balance_args disk_bargs;
4485	struct btrfs_path *path;
4486	struct extent_buffer *leaf;
4487	struct btrfs_key key;
4488	int ret;
4489
4490	path = btrfs_alloc_path();
4491	if (!path)
4492		return -ENOMEM;
4493
4494	key.objectid = BTRFS_BALANCE_OBJECTID;
4495	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496	key.offset = 0;
4497
4498	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499	if (ret < 0)
4500		goto out;
4501	if (ret > 0) { /* ret = -ENOENT; */
4502		ret = 0;
4503		goto out;
4504	}
4505
4506	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507	if (!bctl) {
4508		ret = -ENOMEM;
4509		goto out;
4510	}
4511
4512	leaf = path->nodes[0];
4513	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515	bctl->flags = btrfs_balance_flags(leaf, item);
4516	bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518	btrfs_balance_data(leaf, item, &disk_bargs);
4519	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520	btrfs_balance_meta(leaf, item, &disk_bargs);
4521	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522	btrfs_balance_sys(leaf, item, &disk_bargs);
4523	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525	/*
4526	 * This should never happen, as the paused balance state is recovered
4527	 * during mount without any chance of other exclusive ops to collide.
4528	 *
4529	 * This gives the exclusive op status to balance and keeps in paused
4530	 * state until user intervention (cancel or umount). If the ownership
4531	 * cannot be assigned, show a message but do not fail. The balance
4532	 * is in a paused state and must have fs_info::balance_ctl properly
4533	 * set up.
4534	 */
4535	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536		btrfs_warn(fs_info,
4537	"balance: cannot set exclusive op status, resume manually");
4538
4539	btrfs_release_path(path);
4540
4541	mutex_lock(&fs_info->balance_mutex);
4542	BUG_ON(fs_info->balance_ctl);
4543	spin_lock(&fs_info->balance_lock);
4544	fs_info->balance_ctl = bctl;
4545	spin_unlock(&fs_info->balance_lock);
4546	mutex_unlock(&fs_info->balance_mutex);
4547out:
4548	btrfs_free_path(path);
4549	return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554	int ret = 0;
4555
4556	mutex_lock(&fs_info->balance_mutex);
4557	if (!fs_info->balance_ctl) {
4558		mutex_unlock(&fs_info->balance_mutex);
4559		return -ENOTCONN;
4560	}
4561
4562	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563		atomic_inc(&fs_info->balance_pause_req);
4564		mutex_unlock(&fs_info->balance_mutex);
4565
4566		wait_event(fs_info->balance_wait_q,
4567			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569		mutex_lock(&fs_info->balance_mutex);
4570		/* we are good with balance_ctl ripped off from under us */
4571		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572		atomic_dec(&fs_info->balance_pause_req);
4573	} else {
4574		ret = -ENOTCONN;
4575	}
4576
4577	mutex_unlock(&fs_info->balance_mutex);
4578	return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583	mutex_lock(&fs_info->balance_mutex);
4584	if (!fs_info->balance_ctl) {
4585		mutex_unlock(&fs_info->balance_mutex);
4586		return -ENOTCONN;
4587	}
4588
4589	/*
4590	 * A paused balance with the item stored on disk can be resumed at
4591	 * mount time if the mount is read-write. Otherwise it's still paused
4592	 * and we must not allow cancelling as it deletes the item.
4593	 */
4594	if (sb_rdonly(fs_info->sb)) {
4595		mutex_unlock(&fs_info->balance_mutex);
4596		return -EROFS;
4597	}
4598
4599	atomic_inc(&fs_info->balance_cancel_req);
4600	/*
4601	 * if we are running just wait and return, balance item is
4602	 * deleted in btrfs_balance in this case
4603	 */
4604	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605		mutex_unlock(&fs_info->balance_mutex);
4606		wait_event(fs_info->balance_wait_q,
4607			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608		mutex_lock(&fs_info->balance_mutex);
4609	} else {
4610		mutex_unlock(&fs_info->balance_mutex);
4611		/*
4612		 * Lock released to allow other waiters to continue, we'll
4613		 * reexamine the status again.
4614		 */
4615		mutex_lock(&fs_info->balance_mutex);
4616
4617		if (fs_info->balance_ctl) {
4618			reset_balance_state(fs_info);
4619			btrfs_exclop_finish(fs_info);
4620			btrfs_info(fs_info, "balance: canceled");
4621		}
4622	}
4623
4624	BUG_ON(fs_info->balance_ctl ||
4625		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626	atomic_dec(&fs_info->balance_cancel_req);
4627	mutex_unlock(&fs_info->balance_mutex);
4628	return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633	struct btrfs_fs_info *fs_info = data;
4634	struct btrfs_root *root = fs_info->tree_root;
4635	struct btrfs_key key;
4636	struct btrfs_path *path = NULL;
4637	int ret = 0;
4638	struct extent_buffer *eb;
4639	int slot;
4640	struct btrfs_root_item root_item;
4641	u32 item_size;
4642	struct btrfs_trans_handle *trans = NULL;
4643	bool closing = false;
4644
4645	path = btrfs_alloc_path();
4646	if (!path) {
4647		ret = -ENOMEM;
4648		goto out;
4649	}
4650
4651	key.objectid = 0;
4652	key.type = BTRFS_ROOT_ITEM_KEY;
4653	key.offset = 0;
4654
4655	while (1) {
4656		if (btrfs_fs_closing(fs_info)) {
4657			closing = true;
4658			break;
4659		}
4660		ret = btrfs_search_forward(root, &key, path,
4661				BTRFS_OLDEST_GENERATION);
4662		if (ret) {
4663			if (ret > 0)
4664				ret = 0;
4665			break;
4666		}
4667
4668		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672			goto skip;
4673
4674		eb = path->nodes[0];
4675		slot = path->slots[0];
4676		item_size = btrfs_item_size(eb, slot);
4677		if (item_size < sizeof(root_item))
4678			goto skip;
4679
4680		read_extent_buffer(eb, &root_item,
4681				   btrfs_item_ptr_offset(eb, slot),
4682				   (int)sizeof(root_item));
4683		if (btrfs_root_refs(&root_item) == 0)
4684			goto skip;
4685
4686		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688			if (trans)
4689				goto update_tree;
4690
4691			btrfs_release_path(path);
4692			/*
4693			 * 1 - subvol uuid item
4694			 * 1 - received_subvol uuid item
4695			 */
4696			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697			if (IS_ERR(trans)) {
4698				ret = PTR_ERR(trans);
4699				break;
4700			}
4701			continue;
4702		} else {
4703			goto skip;
4704		}
4705update_tree:
4706		btrfs_release_path(path);
4707		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709						  BTRFS_UUID_KEY_SUBVOL,
4710						  key.objectid);
4711			if (ret < 0) {
4712				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713					ret);
4714				break;
4715			}
4716		}
4717
4718		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719			ret = btrfs_uuid_tree_add(trans,
4720						  root_item.received_uuid,
4721						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722						  key.objectid);
4723			if (ret < 0) {
4724				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725					ret);
4726				break;
4727			}
4728		}
4729
4730skip:
4731		btrfs_release_path(path);
4732		if (trans) {
4733			ret = btrfs_end_transaction(trans);
4734			trans = NULL;
4735			if (ret)
4736				break;
4737		}
4738
 
4739		if (key.offset < (u64)-1) {
4740			key.offset++;
4741		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742			key.offset = 0;
4743			key.type = BTRFS_ROOT_ITEM_KEY;
4744		} else if (key.objectid < (u64)-1) {
4745			key.offset = 0;
4746			key.type = BTRFS_ROOT_ITEM_KEY;
4747			key.objectid++;
4748		} else {
4749			break;
4750		}
4751		cond_resched();
4752	}
4753
4754out:
4755	btrfs_free_path(path);
4756	if (trans && !IS_ERR(trans))
4757		btrfs_end_transaction(trans);
4758	if (ret)
4759		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760	else if (!closing)
4761		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762	up(&fs_info->uuid_tree_rescan_sem);
4763	return 0;
4764}
4765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768	struct btrfs_trans_handle *trans;
4769	struct btrfs_root *tree_root = fs_info->tree_root;
4770	struct btrfs_root *uuid_root;
4771	struct task_struct *task;
4772	int ret;
4773
4774	/*
4775	 * 1 - root node
4776	 * 1 - root item
4777	 */
4778	trans = btrfs_start_transaction(tree_root, 2);
4779	if (IS_ERR(trans))
4780		return PTR_ERR(trans);
4781
4782	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783	if (IS_ERR(uuid_root)) {
4784		ret = PTR_ERR(uuid_root);
4785		btrfs_abort_transaction(trans, ret);
4786		btrfs_end_transaction(trans);
4787		return ret;
4788	}
4789
4790	fs_info->uuid_root = uuid_root;
4791
4792	ret = btrfs_commit_transaction(trans);
4793	if (ret)
4794		return ret;
4795
4796	down(&fs_info->uuid_tree_rescan_sem);
4797	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798	if (IS_ERR(task)) {
4799		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800		btrfs_warn(fs_info, "failed to start uuid_scan task");
4801		up(&fs_info->uuid_tree_rescan_sem);
4802		return PTR_ERR(task);
4803	}
4804
4805	return 0;
4806}
4807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815	struct btrfs_fs_info *fs_info = device->fs_info;
4816	struct btrfs_root *root = fs_info->dev_root;
4817	struct btrfs_trans_handle *trans;
4818	struct btrfs_dev_extent *dev_extent = NULL;
4819	struct btrfs_path *path;
4820	u64 length;
4821	u64 chunk_offset;
4822	int ret;
4823	int slot;
4824	int failed = 0;
4825	bool retried = false;
4826	struct extent_buffer *l;
4827	struct btrfs_key key;
4828	struct btrfs_super_block *super_copy = fs_info->super_copy;
4829	u64 old_total = btrfs_super_total_bytes(super_copy);
4830	u64 old_size = btrfs_device_get_total_bytes(device);
4831	u64 diff;
4832	u64 start;
4833
4834	new_size = round_down(new_size, fs_info->sectorsize);
4835	start = new_size;
4836	diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839		return -EINVAL;
4840
4841	path = btrfs_alloc_path();
4842	if (!path)
4843		return -ENOMEM;
4844
4845	path->reada = READA_BACK;
4846
4847	trans = btrfs_start_transaction(root, 0);
4848	if (IS_ERR(trans)) {
4849		btrfs_free_path(path);
4850		return PTR_ERR(trans);
4851	}
4852
4853	mutex_lock(&fs_info->chunk_mutex);
4854
4855	btrfs_device_set_total_bytes(device, new_size);
4856	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857		device->fs_devices->total_rw_bytes -= diff;
4858		atomic64_sub(diff, &fs_info->free_chunk_space);
4859	}
4860
4861	/*
4862	 * Once the device's size has been set to the new size, ensure all
4863	 * in-memory chunks are synced to disk so that the loop below sees them
4864	 * and relocates them accordingly.
4865	 */
4866	if (contains_pending_extent(device, &start, diff)) {
4867		mutex_unlock(&fs_info->chunk_mutex);
4868		ret = btrfs_commit_transaction(trans);
4869		if (ret)
4870			goto done;
4871	} else {
4872		mutex_unlock(&fs_info->chunk_mutex);
4873		btrfs_end_transaction(trans);
4874	}
4875
4876again:
4877	key.objectid = device->devid;
4878	key.offset = (u64)-1;
4879	key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881	do {
4882		mutex_lock(&fs_info->reclaim_bgs_lock);
4883		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884		if (ret < 0) {
4885			mutex_unlock(&fs_info->reclaim_bgs_lock);
4886			goto done;
4887		}
4888
4889		ret = btrfs_previous_item(root, path, 0, key.type);
 
 
 
 
4890		if (ret) {
4891			mutex_unlock(&fs_info->reclaim_bgs_lock);
4892			if (ret < 0)
4893				goto done;
4894			ret = 0;
4895			btrfs_release_path(path);
4896			break;
4897		}
4898
4899		l = path->nodes[0];
4900		slot = path->slots[0];
4901		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903		if (key.objectid != device->devid) {
4904			mutex_unlock(&fs_info->reclaim_bgs_lock);
4905			btrfs_release_path(path);
4906			break;
4907		}
4908
4909		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910		length = btrfs_dev_extent_length(l, dev_extent);
4911
4912		if (key.offset + length <= new_size) {
4913			mutex_unlock(&fs_info->reclaim_bgs_lock);
4914			btrfs_release_path(path);
4915			break;
4916		}
4917
4918		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919		btrfs_release_path(path);
4920
4921		/*
4922		 * We may be relocating the only data chunk we have,
4923		 * which could potentially end up with losing data's
4924		 * raid profile, so lets allocate an empty one in
4925		 * advance.
4926		 */
4927		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928		if (ret < 0) {
4929			mutex_unlock(&fs_info->reclaim_bgs_lock);
4930			goto done;
4931		}
4932
4933		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934		mutex_unlock(&fs_info->reclaim_bgs_lock);
4935		if (ret == -ENOSPC) {
4936			failed++;
4937		} else if (ret) {
4938			if (ret == -ETXTBSY) {
4939				btrfs_warn(fs_info,
4940		   "could not shrink block group %llu due to active swapfile",
4941					   chunk_offset);
4942			}
4943			goto done;
4944		}
4945	} while (key.offset-- > 0);
4946
4947	if (failed && !retried) {
4948		failed = 0;
4949		retried = true;
4950		goto again;
4951	} else if (failed && retried) {
4952		ret = -ENOSPC;
4953		goto done;
4954	}
4955
4956	/* Shrinking succeeded, else we would be at "done". */
4957	trans = btrfs_start_transaction(root, 0);
4958	if (IS_ERR(trans)) {
4959		ret = PTR_ERR(trans);
4960		goto done;
4961	}
4962
4963	mutex_lock(&fs_info->chunk_mutex);
4964	/* Clear all state bits beyond the shrunk device size */
4965	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966			  CHUNK_STATE_MASK);
4967
4968	btrfs_device_set_disk_total_bytes(device, new_size);
4969	if (list_empty(&device->post_commit_list))
4970		list_add_tail(&device->post_commit_list,
4971			      &trans->transaction->dev_update_list);
4972
4973	WARN_ON(diff > old_total);
4974	btrfs_set_super_total_bytes(super_copy,
4975			round_down(old_total - diff, fs_info->sectorsize));
4976	mutex_unlock(&fs_info->chunk_mutex);
4977
4978	btrfs_reserve_chunk_metadata(trans, false);
4979	/* Now btrfs_update_device() will change the on-disk size. */
4980	ret = btrfs_update_device(trans, device);
4981	btrfs_trans_release_chunk_metadata(trans);
4982	if (ret < 0) {
4983		btrfs_abort_transaction(trans, ret);
4984		btrfs_end_transaction(trans);
4985	} else {
4986		ret = btrfs_commit_transaction(trans);
4987	}
4988done:
4989	btrfs_free_path(path);
4990	if (ret) {
4991		mutex_lock(&fs_info->chunk_mutex);
4992		btrfs_device_set_total_bytes(device, old_size);
4993		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994			device->fs_devices->total_rw_bytes += diff;
4995		atomic64_add(diff, &fs_info->free_chunk_space);
4996		mutex_unlock(&fs_info->chunk_mutex);
4997	}
4998	return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002			   struct btrfs_key *key,
5003			   struct btrfs_chunk *chunk, int item_size)
5004{
5005	struct btrfs_super_block *super_copy = fs_info->super_copy;
5006	struct btrfs_disk_key disk_key;
5007	u32 array_size;
5008	u8 *ptr;
5009
5010	lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012	array_size = btrfs_super_sys_array_size(super_copy);
5013	if (array_size + item_size + sizeof(disk_key)
5014			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
 
5015		return -EFBIG;
 
5016
5017	ptr = super_copy->sys_chunk_array + array_size;
5018	btrfs_cpu_key_to_disk(&disk_key, key);
5019	memcpy(ptr, &disk_key, sizeof(disk_key));
5020	ptr += sizeof(disk_key);
5021	memcpy(ptr, chunk, item_size);
5022	item_size += sizeof(disk_key);
5023	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 
5024
5025	return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033	const struct btrfs_device_info *di_a = a;
5034	const struct btrfs_device_info *di_b = b;
5035
5036	if (di_a->max_avail > di_b->max_avail)
5037		return -1;
5038	if (di_a->max_avail < di_b->max_avail)
5039		return 1;
5040	if (di_a->total_avail > di_b->total_avail)
5041		return -1;
5042	if (di_a->total_avail < di_b->total_avail)
5043		return 1;
5044	return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050		return;
5051
5052	btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
 
5056{
5057	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058		return;
5059
5060	btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068	u64 start;
5069	u64 type;
5070	/* Total number of stripes to allocate */
5071	int num_stripes;
5072	/* sub_stripes info for map */
5073	int sub_stripes;
5074	/* Stripes per device */
5075	int dev_stripes;
5076	/* Maximum number of devices to use */
5077	int devs_max;
5078	/* Minimum number of devices to use */
5079	int devs_min;
5080	/* ndevs has to be a multiple of this */
5081	int devs_increment;
5082	/* Number of copies */
5083	int ncopies;
5084	/* Number of stripes worth of bytes to store parity information */
5085	int nparity;
5086	u64 max_stripe_size;
5087	u64 max_chunk_size;
5088	u64 dev_extent_min;
5089	u64 stripe_size;
5090	u64 chunk_size;
5091	int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095				struct btrfs_fs_devices *fs_devices,
5096				struct alloc_chunk_ctl *ctl)
5097{
5098	struct btrfs_space_info *space_info;
5099
5100	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101	ASSERT(space_info);
5102
5103	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104	ctl->max_stripe_size = ctl->max_chunk_size;
 
 
 
5105
5106	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109	/* We don't want a chunk larger than 10% of writable space */
5110	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111				  ctl->max_chunk_size);
5112	ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116				      struct btrfs_fs_devices *fs_devices,
5117				      struct alloc_chunk_ctl *ctl)
5118{
5119	u64 zone_size = fs_devices->fs_info->zone_size;
5120	u64 limit;
5121	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123	u64 min_chunk_size = min_data_stripes * zone_size;
5124	u64 type = ctl->type;
5125
5126	ctl->max_stripe_size = zone_size;
5127	if (type & BTRFS_BLOCK_GROUP_DATA) {
5128		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129						 zone_size);
5130	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131		ctl->max_chunk_size = ctl->max_stripe_size;
 
 
 
 
 
5132	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134		ctl->devs_max = min_t(int, ctl->devs_max,
5135				      BTRFS_MAX_DEVS_SYS_CHUNK);
5136	} else {
 
 
5137		BUG();
5138	}
5139
5140	/* We don't want a chunk larger than 10% of writable space */
5141	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142			       zone_size),
5143		    min_chunk_size);
5144	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149				 struct alloc_chunk_ctl *ctl)
5150{
5151	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155	ctl->devs_max = btrfs_raid_array[index].devs_max;
5156	if (!ctl->devs_max)
5157		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158	ctl->devs_min = btrfs_raid_array[index].devs_min;
5159	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160	ctl->ncopies = btrfs_raid_array[index].ncopies;
5161	ctl->nparity = btrfs_raid_array[index].nparity;
5162	ctl->ndevs = 0;
5163
5164	switch (fs_devices->chunk_alloc_policy) {
5165	case BTRFS_CHUNK_ALLOC_REGULAR:
5166		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167		break;
5168	case BTRFS_CHUNK_ALLOC_ZONED:
5169		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170		break;
5171	default:
5172		BUG();
5173	}
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177			      struct alloc_chunk_ctl *ctl,
5178			      struct btrfs_device_info *devices_info)
5179{
5180	struct btrfs_fs_info *info = fs_devices->fs_info;
5181	struct btrfs_device *device;
5182	u64 total_avail;
5183	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184	int ret;
5185	int ndevs = 0;
5186	u64 max_avail;
5187	u64 dev_offset;
5188
5189	/*
5190	 * in the first pass through the devices list, we gather information
5191	 * about the available holes on each device.
5192	 */
 
5193	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 
 
 
5194		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195			WARN(1, KERN_ERR
5196			       "BTRFS: read-only device in alloc_list\n");
5197			continue;
5198		}
5199
5200		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201					&device->dev_state) ||
5202		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203			continue;
5204
5205		if (device->total_bytes > device->bytes_used)
5206			total_avail = device->total_bytes - device->bytes_used;
5207		else
5208			total_avail = 0;
5209
5210		/* If there is no space on this device, skip it. */
5211		if (total_avail < ctl->dev_extent_min)
5212			continue;
5213
5214		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215					   &max_avail);
 
5216		if (ret && ret != -ENOSPC)
5217			return ret;
5218
5219		if (ret == 0)
5220			max_avail = dev_extent_want;
5221
5222		if (max_avail < ctl->dev_extent_min) {
5223			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224				btrfs_debug(info,
5225			"%s: devid %llu has no free space, have=%llu want=%llu",
5226					    __func__, device->devid, max_avail,
5227					    ctl->dev_extent_min);
5228			continue;
5229		}
5230
5231		if (ndevs == fs_devices->rw_devices) {
5232			WARN(1, "%s: found more than %llu devices\n",
5233			     __func__, fs_devices->rw_devices);
5234			break;
5235		}
5236		devices_info[ndevs].dev_offset = dev_offset;
5237		devices_info[ndevs].max_avail = max_avail;
5238		devices_info[ndevs].total_avail = total_avail;
5239		devices_info[ndevs].dev = device;
5240		++ndevs;
5241	}
5242	ctl->ndevs = ndevs;
5243
5244	/*
5245	 * now sort the devices by hole size / available space
5246	 */
5247	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248	     btrfs_cmp_device_info, NULL);
5249
5250	return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254				      struct btrfs_device_info *devices_info)
5255{
5256	/* Number of stripes that count for block group size */
5257	int data_stripes;
 
 
 
 
 
 
5258
5259	/*
5260	 * The primary goal is to maximize the number of stripes, so use as
5261	 * many devices as possible, even if the stripes are not maximum sized.
5262	 *
5263	 * The DUP profile stores more than one stripe per device, the
5264	 * max_avail is the total size so we have to adjust.
5265	 */
5266	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267				   ctl->dev_stripes);
5268	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5271	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
 
 
 
5272
5273	/*
5274	 * Use the number of data stripes to figure out how big this chunk is
5275	 * really going to be in terms of logical address space, and compare
5276	 * that answer with the max chunk size. If it's higher, we try to
5277	 * reduce stripe_size.
5278	 */
5279	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280		/*
5281		 * Reduce stripe_size, round it up to a 16MB boundary again and
5282		 * then use it, unless it ends up being even bigger than the
5283		 * previous value we had already.
5284		 */
5285		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286							data_stripes), SZ_16M),
5287				       ctl->stripe_size);
5288	}
5289
5290	/* Stripe size should not go beyond 1G. */
5291	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293	/* Align to BTRFS_STRIPE_LEN */
5294	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295	ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297	return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301				    struct btrfs_device_info *devices_info)
5302{
5303	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304	/* Number of stripes that count for block group size */
5305	int data_stripes;
5306
5307	/*
5308	 * It should hold because:
5309	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310	 */
5311	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313	ctl->stripe_size = zone_size;
5314	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317	/* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320					     ctl->stripe_size) + ctl->nparity,
5321				     ctl->dev_stripes);
5322		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325	}
5326
5327	ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329	return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333			      struct alloc_chunk_ctl *ctl,
5334			      struct btrfs_device_info *devices_info)
5335{
5336	struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338	/*
5339	 * Round down to number of usable stripes, devs_increment can be any
5340	 * number so we can't use round_down() that requires power of 2, while
5341	 * rounddown is safe.
5342	 */
5343	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345	if (ctl->ndevs < ctl->devs_min) {
5346		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347			btrfs_debug(info,
5348	"%s: not enough devices with free space: have=%d minimum required=%d",
5349				    __func__, ctl->ndevs, ctl->devs_min);
5350		}
5351		return -ENOSPC;
5352	}
5353
5354	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
 
5355
5356	switch (fs_devices->chunk_alloc_policy) {
5357	case BTRFS_CHUNK_ALLOC_REGULAR:
5358		return decide_stripe_size_regular(ctl, devices_info);
5359	case BTRFS_CHUNK_ALLOC_ZONED:
5360		return decide_stripe_size_zoned(ctl, devices_info);
5361	default:
5362		BUG();
5363	}
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367			struct alloc_chunk_ctl *ctl,
5368			struct btrfs_device_info *devices_info)
5369{
5370	struct btrfs_fs_info *info = trans->fs_info;
5371	struct map_lookup *map = NULL;
5372	struct extent_map_tree *em_tree;
5373	struct btrfs_block_group *block_group;
5374	struct extent_map *em;
5375	u64 start = ctl->start;
5376	u64 type = ctl->type;
5377	int ret;
5378	int i;
5379	int j;
5380
5381	map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382	if (!map)
5383		return ERR_PTR(-ENOMEM);
5384	map->num_stripes = ctl->num_stripes;
5385
5386	for (i = 0; i < ctl->ndevs; ++i) {
5387		for (j = 0; j < ctl->dev_stripes; ++j) {
5388			int s = i * ctl->dev_stripes + j;
5389			map->stripes[s].dev = devices_info[i].dev;
5390			map->stripes[s].physical = devices_info[i].dev_offset +
5391						   j * ctl->stripe_size;
5392		}
5393	}
5394	map->stripe_len = BTRFS_STRIPE_LEN;
5395	map->io_align = BTRFS_STRIPE_LEN;
5396	map->io_width = BTRFS_STRIPE_LEN;
5397	map->type = type;
5398	map->sub_stripes = ctl->sub_stripes;
 
 
5399
5400	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402	em = alloc_extent_map();
5403	if (!em) {
5404		kfree(map);
5405		return ERR_PTR(-ENOMEM);
 
5406	}
5407	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408	em->map_lookup = map;
5409	em->start = start;
5410	em->len = ctl->chunk_size;
5411	em->block_start = 0;
5412	em->block_len = em->len;
5413	em->orig_block_len = ctl->stripe_size;
5414
5415	em_tree = &info->mapping_tree;
5416	write_lock(&em_tree->lock);
5417	ret = add_extent_mapping(em_tree, em, 0);
5418	if (ret) {
5419		write_unlock(&em_tree->lock);
5420		free_extent_map(em);
5421		return ERR_PTR(ret);
5422	}
5423	write_unlock(&em_tree->lock);
5424
5425	block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426	if (IS_ERR(block_group))
5427		goto error_del_extent;
5428
5429	for (i = 0; i < map->num_stripes; i++) {
5430		struct btrfs_device *dev = map->stripes[i].dev;
5431
5432		btrfs_device_set_bytes_used(dev,
5433					    dev->bytes_used + ctl->stripe_size);
5434		if (list_empty(&dev->post_commit_list))
5435			list_add_tail(&dev->post_commit_list,
5436				      &trans->transaction->dev_update_list);
5437	}
5438
5439	atomic64_sub(ctl->stripe_size * map->num_stripes,
5440		     &info->free_chunk_space);
5441
5442	free_extent_map(em);
5443	check_raid56_incompat_flag(info, type);
5444	check_raid1c34_incompat_flag(info, type);
5445
5446	return block_group;
 
5447
5448error_del_extent:
5449	write_lock(&em_tree->lock);
5450	remove_extent_mapping(em_tree, em);
5451	write_unlock(&em_tree->lock);
5452
5453	/* One for our allocation */
5454	free_extent_map(em);
5455	/* One for the tree reference */
5456	free_extent_map(em);
5457
5458	return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462					    u64 type)
5463{
5464	struct btrfs_fs_info *info = trans->fs_info;
5465	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466	struct btrfs_device_info *devices_info = NULL;
5467	struct alloc_chunk_ctl ctl;
5468	struct btrfs_block_group *block_group;
5469	int ret;
5470
5471	lockdep_assert_held(&info->chunk_mutex);
5472
5473	if (!alloc_profile_is_valid(type, 0)) {
5474		ASSERT(0);
5475		return ERR_PTR(-EINVAL);
5476	}
5477
5478	if (list_empty(&fs_devices->alloc_list)) {
5479		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480			btrfs_debug(info, "%s: no writable device", __func__);
5481		return ERR_PTR(-ENOSPC);
5482	}
5483
5484	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486		ASSERT(0);
5487		return ERR_PTR(-EINVAL);
5488	}
5489
5490	ctl.start = find_next_chunk(info);
5491	ctl.type = type;
5492	init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495			       GFP_NOFS);
5496	if (!devices_info)
5497		return ERR_PTR(-ENOMEM);
5498
5499	ret = gather_device_info(fs_devices, &ctl, devices_info);
5500	if (ret < 0) {
5501		block_group = ERR_PTR(ret);
5502		goto out;
5503	}
5504
5505	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506	if (ret < 0) {
5507		block_group = ERR_PTR(ret);
5508		goto out;
5509	}
5510
5511	block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514	kfree(devices_info);
5515	return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527				     struct btrfs_block_group *bg)
5528{
5529	struct btrfs_fs_info *fs_info = trans->fs_info;
 
5530	struct btrfs_root *chunk_root = fs_info->chunk_root;
5531	struct btrfs_key key;
 
5532	struct btrfs_chunk *chunk;
5533	struct btrfs_stripe *stripe;
5534	struct extent_map *em;
5535	struct map_lookup *map;
5536	size_t item_size;
5537	int i;
5538	int ret;
5539
5540	/*
5541	 * We take the chunk_mutex for 2 reasons:
5542	 *
5543	 * 1) Updates and insertions in the chunk btree must be done while holding
5544	 *    the chunk_mutex, as well as updating the system chunk array in the
5545	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5546	 *    details;
5547	 *
5548	 * 2) To prevent races with the final phase of a device replace operation
5549	 *    that replaces the device object associated with the map's stripes,
5550	 *    because the device object's id can change at any time during that
5551	 *    final phase of the device replace operation
5552	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554	 *    which would cause a failure when updating the device item, which does
5555	 *    not exists, or persisting a stripe of the chunk item with such ID.
5556	 *    Here we can't use the device_list_mutex because our caller already
5557	 *    has locked the chunk_mutex, and the final phase of device replace
5558	 *    acquires both mutexes - first the device_list_mutex and then the
5559	 *    chunk_mutex. Using any of those two mutexes protects us from a
5560	 *    concurrent device replace.
5561	 */
5562	lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564	em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565	if (IS_ERR(em)) {
5566		ret = PTR_ERR(em);
5567		btrfs_abort_transaction(trans, ret);
5568		return ret;
5569	}
5570
5571	map = em->map_lookup;
5572	item_size = btrfs_chunk_item_size(map->num_stripes);
 
5573
5574	chunk = kzalloc(item_size, GFP_NOFS);
5575	if (!chunk) {
5576		ret = -ENOMEM;
5577		btrfs_abort_transaction(trans, ret);
5578		goto out;
5579	}
5580
 
 
 
 
 
 
 
 
5581	for (i = 0; i < map->num_stripes; i++) {
5582		struct btrfs_device *device = map->stripes[i].dev;
 
5583
5584		ret = btrfs_update_device(trans, device);
5585		if (ret)
5586			goto out;
 
 
 
 
 
 
 
 
5587	}
5588
5589	stripe = &chunk->stripe;
5590	for (i = 0; i < map->num_stripes; i++) {
5591		struct btrfs_device *device = map->stripes[i].dev;
5592		const u64 dev_offset = map->stripes[i].physical;
5593
5594		btrfs_set_stack_stripe_devid(stripe, device->devid);
5595		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597		stripe++;
5598	}
 
5599
5600	btrfs_set_stack_chunk_length(chunk, bg->length);
5601	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603	btrfs_set_stack_chunk_type(chunk, map->type);
5604	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611	key.type = BTRFS_CHUNK_ITEM_KEY;
5612	key.offset = bg->start;
5613
5614	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615	if (ret)
5616		goto out;
5617
5618	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622		if (ret)
5623			goto out;
5624	}
5625
5626out:
5627	kfree(chunk);
5628	free_extent_map(em);
5629	return ret;
5630}
5631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634	struct btrfs_fs_info *fs_info = trans->fs_info;
 
 
5635	u64 alloc_profile;
5636	struct btrfs_block_group *meta_bg;
5637	struct btrfs_block_group *sys_bg;
5638
5639	/*
5640	 * When adding a new device for sprouting, the seed device is read-only
5641	 * so we must first allocate a metadata and a system chunk. But before
5642	 * adding the block group items to the extent, device and chunk btrees,
5643	 * we must first:
5644	 *
5645	 * 1) Create both chunks without doing any changes to the btrees, as
5646	 *    otherwise we would get -ENOSPC since the block groups from the
5647	 *    seed device are read-only;
5648	 *
5649	 * 2) Add the device item for the new sprout device - finishing the setup
5650	 *    of a new block group requires updating the device item in the chunk
5651	 *    btree, so it must exist when we attempt to do it. The previous step
5652	 *    ensures this does not fail with -ENOSPC.
5653	 *
5654	 * After that we can add the block group items to their btrees:
5655	 * update existing device item in the chunk btree, add a new block group
5656	 * item to the extent btree, add a new chunk item to the chunk btree and
5657	 * finally add the new device extent items to the devices btree.
5658	 */
5659
 
5660	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662	if (IS_ERR(meta_bg))
5663		return PTR_ERR(meta_bg);
5664
 
5665	alloc_profile = btrfs_system_alloc_profile(fs_info);
5666	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667	if (IS_ERR(sys_bg))
5668		return PTR_ERR(sys_bg);
5669
5670	return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675	const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677	return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682	struct extent_map *em;
5683	struct map_lookup *map;
 
5684	int miss_ndevs = 0;
5685	int i;
5686	bool ret = true;
5687
5688	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689	if (IS_ERR(em))
5690		return false;
5691
5692	map = em->map_lookup;
5693	for (i = 0; i < map->num_stripes; i++) {
5694		if (test_bit(BTRFS_DEV_STATE_MISSING,
5695					&map->stripes[i].dev->dev_state)) {
5696			miss_ndevs++;
5697			continue;
5698		}
5699		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700					&map->stripes[i].dev->dev_state)) {
5701			ret = false;
5702			goto end;
5703		}
5704	}
5705
5706	/*
5707	 * If the number of missing devices is larger than max errors, we can
5708	 * not write the data into that chunk successfully.
 
5709	 */
5710	if (miss_ndevs > btrfs_chunk_max_errors(map))
5711		ret = false;
5712end:
5713	free_extent_map(em);
5714	return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719	struct extent_map *em;
5720
5721	while (1) {
5722		write_lock(&tree->lock);
5723		em = lookup_extent_mapping(tree, 0, (u64)-1);
5724		if (em)
5725			remove_extent_mapping(tree, em);
5726		write_unlock(&tree->lock);
5727		if (!em)
5728			break;
5729		/* once for us */
5730		free_extent_map(em);
5731		/* once for the tree */
5732		free_extent_map(em);
5733	}
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738	struct extent_map *em;
5739	struct map_lookup *map;
5740	enum btrfs_raid_types index;
5741	int ret = 1;
5742
5743	em = btrfs_get_chunk_map(fs_info, logical, len);
5744	if (IS_ERR(em))
5745		/*
5746		 * We could return errors for these cases, but that could get
5747		 * ugly and we'd probably do the same thing which is just not do
5748		 * anything else and exit, so return 1 so the callers don't try
5749		 * to use other copies.
5750		 */
5751		return 1;
5752
5753	map = em->map_lookup;
5754	index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757	if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758		ret = btrfs_raid_array[index].ncopies;
5759	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760		ret = 2;
5761	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762		/*
5763		 * There could be two corrupted data stripes, we need
5764		 * to loop retry in order to rebuild the correct data.
5765		 *
5766		 * Fail a stripe at a time on every retry except the
5767		 * stripe under reconstruction.
5768		 */
5769		ret = map->num_stripes;
 
 
5770	free_extent_map(em);
5771
5772	down_read(&fs_info->dev_replace.rwsem);
5773	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774	    fs_info->dev_replace.tgtdev)
5775		ret++;
5776	up_read(&fs_info->dev_replace.rwsem);
5777
5778	return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782				    u64 logical)
5783{
5784	struct extent_map *em;
5785	struct map_lookup *map;
5786	unsigned long len = fs_info->sectorsize;
5787
5788	if (!btrfs_fs_incompat(fs_info, RAID56))
5789		return len;
5790
5791	em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793	if (!WARN_ON(IS_ERR(em))) {
5794		map = em->map_lookup;
5795		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796			len = map->stripe_len * nr_data_stripes(map);
5797		free_extent_map(em);
5798	}
5799	return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804	struct extent_map *em;
5805	struct map_lookup *map;
5806	int ret = 0;
5807
5808	if (!btrfs_fs_incompat(fs_info, RAID56))
5809		return 0;
5810
5811	em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813	if(!WARN_ON(IS_ERR(em))) {
5814		map = em->map_lookup;
5815		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816			ret = 1;
5817		free_extent_map(em);
5818	}
5819	return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823			    struct map_lookup *map, int first,
5824			    int dev_replace_is_ongoing)
5825{
5826	int i;
5827	int num_stripes;
5828	int preferred_mirror;
5829	int tolerance;
5830	struct btrfs_device *srcdev;
5831
5832	ASSERT((map->type &
5833		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836		num_stripes = map->sub_stripes;
5837	else
5838		num_stripes = map->num_stripes;
5839
5840	switch (fs_info->fs_devices->read_policy) {
5841	default:
5842		/* Shouldn't happen, just warn and use pid instead of failing */
5843		btrfs_warn_rl(fs_info,
5844			      "unknown read_policy type %u, reset to pid",
5845			      fs_info->fs_devices->read_policy);
5846		fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847		fallthrough;
5848	case BTRFS_READ_POLICY_PID:
5849		preferred_mirror = first + (current->pid % num_stripes);
5850		break;
5851	}
5852
5853	if (dev_replace_is_ongoing &&
5854	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856		srcdev = fs_info->dev_replace.srcdev;
5857	else
5858		srcdev = NULL;
5859
5860	/*
5861	 * try to avoid the drive that is the source drive for a
5862	 * dev-replace procedure, only choose it if no other non-missing
5863	 * mirror is available
5864	 */
5865	for (tolerance = 0; tolerance < 2; tolerance++) {
5866		if (map->stripes[preferred_mirror].dev->bdev &&
5867		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868			return preferred_mirror;
5869		for (i = first; i < first + num_stripes; i++) {
5870			if (map->stripes[i].dev->bdev &&
5871			    (tolerance || map->stripes[i].dev != srcdev))
5872				return i;
5873		}
5874	}
5875
5876	/* we couldn't find one that doesn't fail.  Just return something
5877	 * and the io error handling code will clean up eventually
5878	 */
5879	return preferred_mirror;
5880}
5881
 
 
 
 
 
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
 
5885	int i;
 
5886	int again = 1;
5887
5888	while (again) {
5889		again = 0;
5890		for (i = 0; i < num_stripes - 1; i++) {
5891			/* Swap if parity is on a smaller index */
5892			if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893				swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894				swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
 
 
 
 
 
5895				again = 1;
5896			}
5897		}
5898	}
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902						       int total_stripes,
5903						       int real_stripes)
5904{
5905	struct btrfs_io_context *bioc = kzalloc(
5906		 /* The size of btrfs_io_context */
5907		sizeof(struct btrfs_io_context) +
5908		/* Plus the variable array for the stripes */
5909		sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910		/* Plus the variable array for the tgt dev */
5911		sizeof(int) * (real_stripes) +
5912		/*
5913		 * Plus the raid_map, which includes both the tgt dev
5914		 * and the stripes.
5915		 */
5916		sizeof(u64) * (total_stripes),
5917		GFP_NOFS);
5918
5919	if (!bioc)
5920		return NULL;
5921
5922	refcount_set(&bioc->refs, 1);
 
5923
5924	bioc->fs_info = fs_info;
5925	bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926	bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928	return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933	WARN_ON(!refcount_read(&bioc->refs));
5934	refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939	if (!bioc)
5940		return;
5941	if (refcount_dec_and_test(&bioc->refs))
5942		kfree(bioc);
5943}
5944
 
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950					       u64 logical, u64 *length_ret,
5951					       u32 *num_stripes)
5952{
5953	struct extent_map *em;
5954	struct map_lookup *map;
5955	struct btrfs_discard_stripe *stripes;
5956	u64 length = *length_ret;
5957	u64 offset;
5958	u64 stripe_nr;
5959	u64 stripe_nr_end;
5960	u64 stripe_end_offset;
5961	u64 stripe_cnt;
5962	u64 stripe_len;
5963	u64 stripe_offset;
 
5964	u32 stripe_index;
5965	u32 factor = 0;
5966	u32 sub_stripes = 0;
5967	u64 stripes_per_dev = 0;
5968	u32 remaining_stripes = 0;
5969	u32 last_stripe = 0;
5970	int ret;
5971	int i;
5972
 
 
 
5973	em = btrfs_get_chunk_map(fs_info, logical, length);
5974	if (IS_ERR(em))
5975		return ERR_CAST(em);
5976
5977	map = em->map_lookup;
5978
5979	/* we don't discard raid56 yet */
5980	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981		ret = -EOPNOTSUPP;
5982		goto out_free_map;
5983}
5984
5985	offset = logical - em->start;
5986	length = min_t(u64, em->start + em->len - logical, length);
5987	*length_ret = length;
5988
5989	stripe_len = map->stripe_len;
5990	/*
5991	 * stripe_nr counts the total number of stripes we have to stride
5992	 * to get to this block
5993	 */
5994	stripe_nr = div64_u64(offset, stripe_len);
5995
5996	/* stripe_offset is the offset of this block in its stripe */
5997	stripe_offset = offset - stripe_nr * stripe_len;
5998
5999	stripe_nr_end = round_up(offset + length, map->stripe_len);
6000	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001	stripe_cnt = stripe_nr_end - stripe_nr;
6002	stripe_end_offset = stripe_nr_end * map->stripe_len -
6003			    (offset + length);
6004	/*
6005	 * after this, stripe_nr is the number of stripes on this
6006	 * device we have to walk to find the data, and stripe_index is
6007	 * the number of our device in the stripe array
6008	 */
6009	*num_stripes = 1;
6010	stripe_index = 0;
6011	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012			 BTRFS_BLOCK_GROUP_RAID10)) {
6013		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014			sub_stripes = 1;
6015		else
6016			sub_stripes = map->sub_stripes;
6017
6018		factor = map->num_stripes / sub_stripes;
6019		*num_stripes = min_t(u64, map->num_stripes,
6020				    sub_stripes * stripe_cnt);
6021		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022		stripe_index *= sub_stripes;
6023		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024					      &remaining_stripes);
6025		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026		last_stripe *= sub_stripes;
6027	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028				BTRFS_BLOCK_GROUP_DUP)) {
6029		*num_stripes = map->num_stripes;
6030	} else {
6031		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032					&stripe_index);
6033	}
6034
6035	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036	if (!stripes) {
6037		ret = -ENOMEM;
6038		goto out_free_map;
6039	}
6040
6041	for (i = 0; i < *num_stripes; i++) {
6042		stripes[i].physical =
6043			map->stripes[stripe_index].physical +
6044			stripe_offset + stripe_nr * map->stripe_len;
6045		stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048				 BTRFS_BLOCK_GROUP_RAID10)) {
6049			stripes[i].length = stripes_per_dev * map->stripe_len;
 
6050
6051			if (i / sub_stripes < remaining_stripes)
6052				stripes[i].length += map->stripe_len;
 
6053
6054			/*
6055			 * Special for the first stripe and
6056			 * the last stripe:
6057			 *
6058			 * |-------|...|-------|
6059			 *     |----------|
6060			 *    off     end_off
6061			 */
6062			if (i < sub_stripes)
6063				stripes[i].length -= stripe_offset;
 
6064
6065			if (stripe_index >= last_stripe &&
6066			    stripe_index <= (last_stripe +
6067					     sub_stripes - 1))
6068				stripes[i].length -= stripe_end_offset;
 
6069
6070			if (i == sub_stripes - 1)
6071				stripe_offset = 0;
6072		} else {
6073			stripes[i].length = length;
6074		}
6075
6076		stripe_index++;
6077		if (stripe_index == map->num_stripes) {
6078			stripe_index = 0;
6079			stripe_nr++;
6080		}
6081	}
6082
 
 
 
 
6083	free_extent_map(em);
6084	return stripes;
6085out_free_map:
6086	free_extent_map(em);
6087	return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104					 u64 logical, u64 length,
6105					 u64 srcdev_devid, int *mirror_num,
6106					 u64 *physical)
6107{
6108	struct btrfs_io_context *bioc = NULL;
6109	int num_stripes;
6110	int index_srcdev = 0;
6111	int found = 0;
6112	u64 physical_of_found = 0;
6113	int i;
6114	int ret = 0;
6115
6116	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117				logical, &length, &bioc, NULL, NULL, 0);
6118	if (ret) {
6119		ASSERT(bioc == NULL);
6120		return ret;
6121	}
6122
6123	num_stripes = bioc->num_stripes;
6124	if (*mirror_num > num_stripes) {
6125		/*
6126		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127		 * that means that the requested area is not left of the left
6128		 * cursor
6129		 */
6130		btrfs_put_bioc(bioc);
6131		return -EIO;
6132	}
6133
6134	/*
6135	 * process the rest of the function using the mirror_num of the source
6136	 * drive. Therefore look it up first.  At the end, patch the device
6137	 * pointer to the one of the target drive.
6138	 */
6139	for (i = 0; i < num_stripes; i++) {
6140		if (bioc->stripes[i].dev->devid != srcdev_devid)
6141			continue;
6142
6143		/*
6144		 * In case of DUP, in order to keep it simple, only add the
6145		 * mirror with the lowest physical address
6146		 */
6147		if (found &&
6148		    physical_of_found <= bioc->stripes[i].physical)
6149			continue;
6150
6151		index_srcdev = i;
6152		found = 1;
6153		physical_of_found = bioc->stripes[i].physical;
6154	}
6155
6156	btrfs_put_bioc(bioc);
6157
6158	ASSERT(found);
6159	if (!found)
6160		return -EIO;
6161
6162	*mirror_num = index_srcdev + 1;
6163	*physical = physical_of_found;
6164	return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169	struct btrfs_block_group *cache;
6170	bool ret;
6171
6172	/* Non zoned filesystem does not use "to_copy" flag */
6173	if (!btrfs_is_zoned(fs_info))
6174		return false;
6175
6176	cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180	btrfs_put_block_group(cache);
6181	return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185				      struct btrfs_io_context **bioc_ret,
6186				      struct btrfs_dev_replace *dev_replace,
6187				      u64 logical,
6188				      int *num_stripes_ret, int *max_errors_ret)
6189{
6190	struct btrfs_io_context *bioc = *bioc_ret;
6191	u64 srcdev_devid = dev_replace->srcdev->devid;
6192	int tgtdev_indexes = 0;
6193	int num_stripes = *num_stripes_ret;
6194	int max_errors = *max_errors_ret;
6195	int i;
6196
6197	if (op == BTRFS_MAP_WRITE) {
6198		int index_where_to_add;
6199
6200		/*
6201		 * A block group which have "to_copy" set will eventually
6202		 * copied by dev-replace process. We can avoid cloning IO here.
6203		 */
6204		if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205			return;
6206
6207		/*
6208		 * duplicate the write operations while the dev replace
6209		 * procedure is running. Since the copying of the old disk to
6210		 * the new disk takes place at run time while the filesystem is
6211		 * mounted writable, the regular write operations to the old
6212		 * disk have to be duplicated to go to the new disk as well.
6213		 *
6214		 * Note that device->missing is handled by the caller, and that
6215		 * the write to the old disk is already set up in the stripes
6216		 * array.
6217		 */
6218		index_where_to_add = num_stripes;
6219		for (i = 0; i < num_stripes; i++) {
6220			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221				/* write to new disk, too */
6222				struct btrfs_io_stripe *new =
6223					bioc->stripes + index_where_to_add;
6224				struct btrfs_io_stripe *old =
6225					bioc->stripes + i;
6226
6227				new->physical = old->physical;
 
6228				new->dev = dev_replace->tgtdev;
6229				bioc->tgtdev_map[i] = index_where_to_add;
6230				index_where_to_add++;
6231				max_errors++;
6232				tgtdev_indexes++;
6233			}
6234		}
6235		num_stripes = index_where_to_add;
6236	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237		int index_srcdev = 0;
6238		int found = 0;
6239		u64 physical_of_found = 0;
6240
6241		/*
6242		 * During the dev-replace procedure, the target drive can also
6243		 * be used to read data in case it is needed to repair a corrupt
6244		 * block elsewhere. This is possible if the requested area is
6245		 * left of the left cursor. In this area, the target drive is a
6246		 * full copy of the source drive.
6247		 */
6248		for (i = 0; i < num_stripes; i++) {
6249			if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250				/*
6251				 * In case of DUP, in order to keep it simple,
6252				 * only add the mirror with the lowest physical
6253				 * address
6254				 */
6255				if (found &&
6256				    physical_of_found <= bioc->stripes[i].physical)
 
6257					continue;
6258				index_srcdev = i;
6259				found = 1;
6260				physical_of_found = bioc->stripes[i].physical;
6261			}
6262		}
6263		if (found) {
6264			struct btrfs_io_stripe *tgtdev_stripe =
6265				bioc->stripes + num_stripes;
6266
6267			tgtdev_stripe->physical = physical_of_found;
 
 
6268			tgtdev_stripe->dev = dev_replace->tgtdev;
6269			bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271			tgtdev_indexes++;
6272			num_stripes++;
6273		}
6274	}
6275
6276	*num_stripes_ret = num_stripes;
6277	*max_errors_ret = max_errors;
6278	bioc->num_tgtdevs = tgtdev_indexes;
6279	*bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em:      mapping containing the logical extent
6294 * @op:      type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302			  enum btrfs_map_op op, u64 logical,
6303			  struct btrfs_io_geometry *io_geom)
6304{
 
6305	struct map_lookup *map;
6306	u64 len;
6307	u64 offset;
6308	u64 stripe_offset;
6309	u64 stripe_nr;
6310	u32 stripe_len;
6311	u64 raid56_full_stripe_start = (u64)-1;
6312	int data_stripes;
 
6313
6314	ASSERT(op != BTRFS_MAP_DISCARD);
6315
 
 
 
 
6316	map = em->map_lookup;
6317	/* Offset of this logical address in the chunk */
6318	offset = logical - em->start;
6319	/* Len of a stripe in a chunk */
6320	stripe_len = map->stripe_len;
6321	/*
6322	 * Stripe_nr is where this block falls in
6323	 * stripe_offset is the offset of this block in its stripe.
6324	 */
6325	stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326	ASSERT(stripe_offset < U32_MAX);
 
 
 
 
 
6327
 
 
6328	data_stripes = nr_data_stripes(map);
6329
6330	/* Only stripe based profiles needs to check against stripe length. */
6331	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332		u64 max_len = stripe_len - stripe_offset;
6333
6334		/*
6335		 * In case of raid56, we need to know the stripe aligned start
6336		 */
6337		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338			unsigned long full_stripe_len = stripe_len * data_stripes;
6339			raid56_full_stripe_start = offset;
6340
6341			/*
6342			 * Allow a write of a full stripe, but make sure we
6343			 * don't allow straddling of stripes
6344			 */
6345			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346					full_stripe_len);
6347			raid56_full_stripe_start *= full_stripe_len;
6348
6349			/*
6350			 * For writes to RAID[56], allow a full stripeset across
6351			 * all disks. For other RAID types and for RAID[56]
6352			 * reads, just allow a single stripe (on a single disk).
6353			 */
6354			if (op == BTRFS_MAP_WRITE) {
6355				max_len = stripe_len * data_stripes -
6356					  (offset - raid56_full_stripe_start);
6357			}
6358		}
6359		len = min_t(u64, em->len - offset, max_len);
6360	} else {
6361		len = em->len - offset;
6362	}
6363
6364	io_geom->len = len;
6365	io_geom->offset = offset;
6366	io_geom->stripe_len = stripe_len;
6367	io_geom->stripe_nr = stripe_nr;
6368	io_geom->stripe_offset = stripe_offset;
6369	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371	return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375		          u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377	dst->dev = map->stripes[stripe_index].dev;
6378	dst->physical = map->stripes[stripe_index].physical +
6379			stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383		      u64 logical, u64 *length,
6384		      struct btrfs_io_context **bioc_ret,
6385		      struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386		      int need_raid_map)
6387{
6388	struct extent_map *em;
6389	struct map_lookup *map;
6390	u64 stripe_offset;
6391	u64 stripe_nr;
6392	u64 stripe_len;
6393	u32 stripe_index;
6394	int data_stripes;
6395	int i;
6396	int ret = 0;
6397	int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398	int num_stripes;
6399	int max_errors = 0;
6400	int tgtdev_indexes = 0;
6401	struct btrfs_io_context *bioc = NULL;
6402	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403	int dev_replace_is_ongoing = 0;
6404	int num_alloc_stripes;
6405	int patch_the_first_stripe_for_dev_replace = 0;
6406	u64 physical_to_patch_in_first_stripe = 0;
6407	u64 raid56_full_stripe_start = (u64)-1;
6408	struct btrfs_io_geometry geom;
6409
6410	ASSERT(bioc_ret);
6411	ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413	em = btrfs_get_chunk_map(fs_info, logical, *length);
6414	ASSERT(!IS_ERR(em));
 
6415
6416	ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417	if (ret < 0)
6418		return ret;
6419
 
 
6420	map = em->map_lookup;
6421
6422	*length = geom.len;
6423	stripe_len = geom.stripe_len;
6424	stripe_nr = geom.stripe_nr;
6425	stripe_offset = geom.stripe_offset;
6426	raid56_full_stripe_start = geom.raid56_stripe_offset;
6427	data_stripes = nr_data_stripes(map);
6428
6429	down_read(&dev_replace->rwsem);
6430	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431	/*
6432	 * Hold the semaphore for read during the whole operation, write is
6433	 * requested at commit time but must wait.
6434	 */
6435	if (!dev_replace_is_ongoing)
6436		up_read(&dev_replace->rwsem);
6437
6438	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441						    dev_replace->srcdev->devid,
6442						    &mirror_num,
6443					    &physical_to_patch_in_first_stripe);
6444		if (ret)
6445			goto out;
6446		else
6447			patch_the_first_stripe_for_dev_replace = 1;
6448	} else if (mirror_num > map->num_stripes) {
6449		mirror_num = 0;
6450	}
6451
6452	num_stripes = 1;
6453	stripe_index = 0;
6454	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456				&stripe_index);
6457		if (!need_full_stripe(op))
6458			mirror_num = 1;
6459	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460		if (need_full_stripe(op))
6461			num_stripes = map->num_stripes;
6462		else if (mirror_num)
6463			stripe_index = mirror_num - 1;
6464		else {
6465			stripe_index = find_live_mirror(fs_info, map, 0,
6466					    dev_replace_is_ongoing);
6467			mirror_num = stripe_index + 1;
6468		}
6469
6470	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471		if (need_full_stripe(op)) {
6472			num_stripes = map->num_stripes;
6473		} else if (mirror_num) {
6474			stripe_index = mirror_num - 1;
6475		} else {
6476			mirror_num = 1;
6477		}
6478
6479	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480		u32 factor = map->num_stripes / map->sub_stripes;
6481
6482		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483		stripe_index *= map->sub_stripes;
6484
6485		if (need_full_stripe(op))
6486			num_stripes = map->sub_stripes;
6487		else if (mirror_num)
6488			stripe_index += mirror_num - 1;
6489		else {
6490			int old_stripe_index = stripe_index;
6491			stripe_index = find_live_mirror(fs_info, map,
6492					      stripe_index,
6493					      dev_replace_is_ongoing);
6494			mirror_num = stripe_index - old_stripe_index + 1;
6495		}
6496
6497	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498		ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500			/* push stripe_nr back to the start of the full stripe */
6501			stripe_nr = div64_u64(raid56_full_stripe_start,
6502					stripe_len * data_stripes);
6503
6504			/* RAID[56] write or recovery. Return all stripes */
6505			num_stripes = map->num_stripes;
6506			max_errors = btrfs_chunk_max_errors(map);
6507
6508			/* Return the length to the full stripe end */
6509			*length = min(logical + *length,
6510				      raid56_full_stripe_start + em->start +
6511				      data_stripes * stripe_len) - logical;
6512			stripe_index = 0;
6513			stripe_offset = 0;
6514		} else {
6515			/*
6516			 * Mirror #0 or #1 means the original data block.
6517			 * Mirror #2 is RAID5 parity block.
6518			 * Mirror #3 is RAID6 Q block.
6519			 */
6520			stripe_nr = div_u64_rem(stripe_nr,
6521					data_stripes, &stripe_index);
6522			if (mirror_num > 1)
6523				stripe_index = data_stripes + mirror_num - 2;
6524
6525			/* We distribute the parity blocks across stripes */
6526			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527					&stripe_index);
6528			if (!need_full_stripe(op) && mirror_num <= 1)
6529				mirror_num = 1;
6530		}
6531	} else {
6532		/*
6533		 * after this, stripe_nr is the number of stripes on this
6534		 * device we have to walk to find the data, and stripe_index is
6535		 * the number of our device in the stripe array
6536		 */
6537		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538				&stripe_index);
6539		mirror_num = stripe_index + 1;
6540	}
6541	if (stripe_index >= map->num_stripes) {
6542		btrfs_crit(fs_info,
6543			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544			   stripe_index, map->num_stripes);
6545		ret = -EINVAL;
6546		goto out;
6547	}
6548
6549	num_alloc_stripes = num_stripes;
6550	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551		if (op == BTRFS_MAP_WRITE)
6552			num_alloc_stripes <<= 1;
6553		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554			num_alloc_stripes++;
6555		tgtdev_indexes = num_stripes;
6556	}
6557
6558	/*
6559	 * If this I/O maps to a single device, try to return the device and
6560	 * physical block information on the stack instead of allocating an
6561	 * I/O context structure.
6562	 */
6563	if (smap && num_alloc_stripes == 1 &&
6564	    !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565	    (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566	     !dev_replace->tgtdev)) {
6567		if (patch_the_first_stripe_for_dev_replace) {
6568			smap->dev = dev_replace->tgtdev;
6569			smap->physical = physical_to_patch_in_first_stripe;
6570			*mirror_num_ret = map->num_stripes + 1;
6571		} else {
6572			set_io_stripe(smap, map, stripe_index, stripe_offset,
6573				      stripe_nr);
6574			*mirror_num_ret = mirror_num;
6575		}
6576		*bioc_ret = NULL;
6577		ret = 0;
6578		goto out;
6579	}
6580
6581	bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582	if (!bioc) {
6583		ret = -ENOMEM;
6584		goto out;
6585	}
 
 
6586
6587	for (i = 0; i < num_stripes; i++) {
6588		set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589			      stripe_nr);
6590		stripe_index++;
6591	}
6592
6593	/* Build raid_map */
6594	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595	    (need_full_stripe(op) || mirror_num > 1)) {
6596		u64 tmp;
6597		unsigned rot;
6598
 
 
 
 
 
6599		/* Work out the disk rotation on this stripe-set */
6600		div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602		/* Fill in the logical address of each stripe */
6603		tmp = stripe_nr * data_stripes;
6604		for (i = 0; i < data_stripes; i++)
6605			bioc->raid_map[(i + rot) % num_stripes] =
6606				em->start + (tmp + i) * map->stripe_len;
6607
6608		bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610			bioc->raid_map[(i + rot + 1) % num_stripes] =
6611				RAID6_Q_STRIPE;
 
 
6612
6613		sort_parity_stripes(bioc, num_stripes);
 
 
 
 
 
 
 
6614	}
6615
6616	if (need_full_stripe(op))
6617		max_errors = btrfs_chunk_max_errors(map);
6618
 
 
 
6619	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620	    need_full_stripe(op)) {
6621		handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622					  &num_stripes, &max_errors);
6623	}
6624
6625	*bioc_ret = bioc;
6626	bioc->map_type = map->type;
6627	bioc->num_stripes = num_stripes;
6628	bioc->max_errors = max_errors;
6629	bioc->mirror_num = mirror_num;
6630
6631	/*
6632	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634	 * available as a mirror
6635	 */
6636	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637		WARN_ON(num_stripes > 1);
6638		bioc->stripes[0].dev = dev_replace->tgtdev;
6639		bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640		bioc->mirror_num = map->num_stripes + 1;
6641	}
6642out:
6643	if (dev_replace_is_ongoing) {
6644		lockdep_assert_held(&dev_replace->rwsem);
6645		/* Unlock and let waiting writers proceed */
6646		up_read(&dev_replace->rwsem);
6647	}
6648	free_extent_map(em);
6649	return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653		      u64 logical, u64 *length,
6654		      struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657				 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662		     u64 logical, u64 *length,
6663		     struct btrfs_io_context **bioc_ret)
6664{
6665	return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666				 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670				      const struct btrfs_fs_devices *fs_devices)
6671{
6672	if (args->fsid == NULL)
6673		return true;
6674	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675		return true;
6676	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680				  const struct btrfs_device *device)
6681{
6682	if (args->missing) {
6683		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684		    !device->bdev)
6685			return true;
6686		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6687	}
6688
6689	if (device->devid != args->devid)
6690		return false;
6691	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692		return false;
6693	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704				       const struct btrfs_dev_lookup_args *args)
6705{
6706	struct btrfs_device *device;
6707	struct btrfs_fs_devices *seed_devs;
 
6708
6709	if (dev_args_match_fs_devices(args, fs_devices)) {
6710		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711			if (dev_args_match_device(args, device))
6712				return device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6713		}
 
 
 
6714	}
6715
6716	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717		if (!dev_args_match_fs_devices(args, seed_devs))
 
 
 
 
 
 
 
 
 
 
 
 
6718			continue;
6719		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720			if (dev_args_match_device(args, device))
6721				return device;
6722		}
 
 
 
 
 
 
 
 
6723	}
 
 
 
6724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6725	return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729					    u64 devid, u8 *dev_uuid)
6730{
6731	struct btrfs_device *device;
6732	unsigned int nofs_flag;
6733
6734	/*
6735	 * We call this under the chunk_mutex, so we want to use NOFS for this
6736	 * allocation, however we don't want to change btrfs_alloc_device() to
6737	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738	 * places.
6739	 */
6740
6741	nofs_flag = memalloc_nofs_save();
6742	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743	memalloc_nofs_restore(nofs_flag);
6744	if (IS_ERR(device))
6745		return device;
6746
6747	list_add(&device->dev_list, &fs_devices->devices);
6748	device->fs_devices = fs_devices;
6749	fs_devices->num_devices++;
6750
6751	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752	fs_devices->missing_devices++;
6753
6754	return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info:	used only for generating a new devid, can be NULL if
6761 *		devid is provided (i.e. @devid != NULL).
6762 * @devid:	a pointer to devid for this device.  If NULL a new devid
6763 *		is generated.
6764 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6765 *		is generated.
6766 * @path:	a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error.  Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773					const u64 *devid, const u8 *uuid,
6774					const char *path)
6775{
6776	struct btrfs_device *dev;
6777	u64 tmp;
6778
6779	if (WARN_ON(!devid && !fs_info))
6780		return ERR_PTR(-EINVAL);
6781
6782	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783	if (!dev)
6784		return ERR_PTR(-ENOMEM);
6785
6786	INIT_LIST_HEAD(&dev->dev_list);
6787	INIT_LIST_HEAD(&dev->dev_alloc_list);
6788	INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790	atomic_set(&dev->dev_stats_ccnt, 0);
6791	btrfs_device_data_ordered_init(dev);
6792	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794	if (devid)
6795		tmp = *devid;
6796	else {
6797		int ret;
6798
6799		ret = find_next_devid(fs_info, &tmp);
6800		if (ret) {
6801			btrfs_free_device(dev);
6802			return ERR_PTR(ret);
6803		}
6804	}
6805	dev->devid = tmp;
6806
6807	if (uuid)
6808		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809	else
6810		generate_random_uuid(dev->uuid);
6811
6812	if (path) {
6813		struct rcu_string *name;
6814
6815		name = rcu_string_strdup(path, GFP_KERNEL);
6816		if (!name) {
6817			btrfs_free_device(dev);
6818			return ERR_PTR(-ENOMEM);
6819		}
6820		rcu_assign_pointer(dev->name, name);
6821	}
6822
6823	return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827					u64 devid, u8 *uuid, bool error)
6828{
6829	if (error)
6830		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831			      devid, uuid);
6832	else
6833		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834			      devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839	const struct map_lookup *map = em->map_lookup;
6840	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842	return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854				  u64 logical, u64 length, u64 type)
6855{
6856	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857		return 0;
6858
6859	if (logical + length < MAX_LFS_FILESIZE)
6860		return 0;
6861
6862	btrfs_err_32bit_limit(fs_info);
6863	return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873				  u64 logical, u64 length, u64 type)
6874{
6875	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876		return;
6877
6878	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879		return;
6880
6881	btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886						  u64 devid, u8 *uuid)
6887{
6888	struct btrfs_device *dev;
6889
6890	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891		btrfs_report_missing_device(fs_info, devid, uuid, true);
6892		return ERR_PTR(-ENOENT);
6893	}
6894
6895	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896	if (IS_ERR(dev)) {
6897		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898			  devid, PTR_ERR(dev));
6899		return dev;
 
 
 
 
 
6900	}
6901	btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903	return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907			  struct btrfs_chunk *chunk)
6908{
6909	BTRFS_DEV_LOOKUP_ARGS(args);
6910	struct btrfs_fs_info *fs_info = leaf->fs_info;
6911	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912	struct map_lookup *map;
6913	struct extent_map *em;
6914	u64 logical;
6915	u64 length;
6916	u64 devid;
6917	u64 type;
6918	u8 uuid[BTRFS_UUID_SIZE];
6919	int index;
6920	int num_stripes;
6921	int ret;
6922	int i;
6923
6924	logical = key->offset;
6925	length = btrfs_chunk_length(leaf, chunk);
6926	type = btrfs_chunk_type(leaf, chunk);
6927	index = btrfs_bg_flags_to_raid_index(type);
6928	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932	if (ret < 0)
6933		return ret;
6934	warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937	/*
6938	 * Only need to verify chunk item if we're reading from sys chunk array,
6939	 * as chunk item in tree block is already verified by tree-checker.
6940	 */
6941	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943		if (ret)
6944			return ret;
6945	}
6946
6947	read_lock(&map_tree->lock);
6948	em = lookup_extent_mapping(map_tree, logical, 1);
6949	read_unlock(&map_tree->lock);
6950
6951	/* already mapped? */
6952	if (em && em->start <= logical && em->start + em->len > logical) {
6953		free_extent_map(em);
6954		return 0;
6955	} else if (em) {
6956		free_extent_map(em);
6957	}
6958
6959	em = alloc_extent_map();
6960	if (!em)
6961		return -ENOMEM;
6962	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963	if (!map) {
6964		free_extent_map(em);
6965		return -ENOMEM;
6966	}
6967
6968	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969	em->map_lookup = map;
6970	em->start = logical;
6971	em->len = length;
6972	em->orig_start = 0;
6973	em->block_start = 0;
6974	em->block_len = em->len;
6975
6976	map->num_stripes = num_stripes;
6977	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980	map->type = type;
6981	/*
6982	 * We can't use the sub_stripes value, as for profiles other than
6983	 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984	 * older mkfs (<v5.4).
6985	 * In that case, it can cause divide-by-zero errors later.
6986	 * Since currently sub_stripes is fixed for each profile, let's
6987	 * use the trusted value instead.
6988	 */
6989	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990	map->verified_stripes = 0;
6991	em->orig_block_len = btrfs_calc_stripe_length(em);
 
6992	for (i = 0; i < num_stripes; i++) {
6993		map->stripes[i].physical =
6994			btrfs_stripe_offset_nr(leaf, chunk, i);
6995		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996		args.devid = devid;
6997		read_extent_buffer(leaf, uuid, (unsigned long)
6998				   btrfs_stripe_dev_uuid_nr(chunk, i),
6999				   BTRFS_UUID_SIZE);
7000		args.uuid = uuid;
7001		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
 
 
 
 
7002		if (!map->stripes[i].dev) {
7003			map->stripes[i].dev = handle_missing_device(fs_info,
7004								    devid, uuid);
 
7005			if (IS_ERR(map->stripes[i].dev)) {
7006				ret = PTR_ERR(map->stripes[i].dev);
7007				free_extent_map(em);
7008				return ret;
 
 
 
7009			}
 
7010		}
7011
7012		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013				&(map->stripes[i].dev->dev_state));
 
7014	}
7015
7016	write_lock(&map_tree->lock);
7017	ret = add_extent_mapping(map_tree, em, 0);
7018	write_unlock(&map_tree->lock);
7019	if (ret < 0) {
7020		btrfs_err(fs_info,
7021			  "failed to add chunk map, start=%llu len=%llu: %d",
7022			  em->start, em->len, ret);
7023	}
7024	free_extent_map(em);
7025
7026	return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030				 struct btrfs_dev_item *dev_item,
7031				 struct btrfs_device *device)
7032{
7033	unsigned long ptr;
7034
7035	device->devid = btrfs_device_id(leaf, dev_item);
7036	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037	device->total_bytes = device->disk_total_bytes;
7038	device->commit_total_bytes = device->disk_total_bytes;
7039	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040	device->commit_bytes_used = device->bytes_used;
7041	device->type = btrfs_device_type(leaf, dev_item);
7042	device->io_align = btrfs_device_io_align(leaf, dev_item);
7043	device->io_width = btrfs_device_io_width(leaf, dev_item);
7044	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048	ptr = btrfs_device_uuid(dev_item);
7049	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053						  u8 *fsid)
7054{
7055	struct btrfs_fs_devices *fs_devices;
7056	int ret;
7057
7058	lockdep_assert_held(&uuid_mutex);
7059	ASSERT(fsid);
7060
7061	/* This will match only for multi-device seed fs */
7062	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064			return fs_devices;
7065
 
 
7066
7067	fs_devices = find_fsid(fsid, NULL);
7068	if (!fs_devices) {
7069		if (!btrfs_test_opt(fs_info, DEGRADED))
7070			return ERR_PTR(-ENOENT);
7071
7072		fs_devices = alloc_fs_devices(fsid, NULL);
7073		if (IS_ERR(fs_devices))
7074			return fs_devices;
7075
7076		fs_devices->seeding = true;
7077		fs_devices->opened = 1;
7078		return fs_devices;
7079	}
7080
7081	/*
7082	 * Upon first call for a seed fs fsid, just create a private copy of the
7083	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084	 */
7085	fs_devices = clone_fs_devices(fs_devices);
7086	if (IS_ERR(fs_devices))
7087		return fs_devices;
7088
7089	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090	if (ret) {
7091		free_fs_devices(fs_devices);
7092		return ERR_PTR(ret);
 
7093	}
7094
7095	if (!fs_devices->seeding) {
7096		close_fs_devices(fs_devices);
7097		free_fs_devices(fs_devices);
7098		return ERR_PTR(-EINVAL);
 
7099	}
7100
7101	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
 
7103	return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107			struct btrfs_dev_item *dev_item)
7108{
7109	BTRFS_DEV_LOOKUP_ARGS(args);
7110	struct btrfs_fs_info *fs_info = leaf->fs_info;
7111	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112	struct btrfs_device *device;
7113	u64 devid;
7114	int ret;
7115	u8 fs_uuid[BTRFS_FSID_SIZE];
7116	u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118	devid = btrfs_device_id(leaf, dev_item);
7119	args.devid = devid;
7120	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121			   BTRFS_UUID_SIZE);
7122	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123			   BTRFS_FSID_SIZE);
7124	args.uuid = dev_uuid;
7125	args.fsid = fs_uuid;
7126
7127	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128		fs_devices = open_seed_devices(fs_info, fs_uuid);
7129		if (IS_ERR(fs_devices))
7130			return PTR_ERR(fs_devices);
7131	}
7132
7133	device = btrfs_find_device(fs_info->fs_devices, &args);
 
7134	if (!device) {
7135		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136			btrfs_report_missing_device(fs_info, devid,
7137							dev_uuid, true);
7138			return -ENOENT;
7139		}
7140
7141		device = add_missing_dev(fs_devices, devid, dev_uuid);
7142		if (IS_ERR(device)) {
7143			btrfs_err(fs_info,
7144				"failed to add missing dev %llu: %ld",
7145				devid, PTR_ERR(device));
7146			return PTR_ERR(device);
7147		}
7148		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149	} else {
7150		if (!device->bdev) {
7151			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152				btrfs_report_missing_device(fs_info,
7153						devid, dev_uuid, true);
7154				return -ENOENT;
7155			}
7156			btrfs_report_missing_device(fs_info, devid,
7157							dev_uuid, false);
7158		}
7159
7160		if (!device->bdev &&
7161		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162			/*
7163			 * this happens when a device that was properly setup
7164			 * in the device info lists suddenly goes bad.
7165			 * device->bdev is NULL, and so we have to set
7166			 * device->missing to one here
7167			 */
7168			device->fs_devices->missing_devices++;
7169			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170		}
7171
7172		/* Move the device to its own fs_devices */
7173		if (device->fs_devices != fs_devices) {
7174			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175							&device->dev_state));
7176
7177			list_move(&device->dev_list, &fs_devices->devices);
7178			device->fs_devices->num_devices--;
7179			fs_devices->num_devices++;
7180
7181			device->fs_devices->missing_devices--;
7182			fs_devices->missing_devices++;
7183
7184			device->fs_devices = fs_devices;
7185		}
7186	}
7187
7188	if (device->fs_devices != fs_info->fs_devices) {
7189		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190		if (device->generation !=
7191		    btrfs_device_generation(leaf, dev_item))
7192			return -EINVAL;
7193	}
7194
7195	fill_device_from_item(leaf, dev_item, device);
7196	if (device->bdev) {
7197		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199		if (device->total_bytes > max_total_bytes) {
7200			btrfs_err(fs_info,
7201			"device total_bytes should be at most %llu but found %llu",
7202				  max_total_bytes, device->total_bytes);
7203			return -EINVAL;
7204		}
7205	}
7206	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209		device->fs_devices->total_rw_bytes += device->total_bytes;
7210		atomic64_add(device->total_bytes - device->bytes_used,
7211				&fs_info->free_chunk_space);
7212	}
7213	ret = 0;
7214	return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
 
7219	struct btrfs_super_block *super_copy = fs_info->super_copy;
7220	struct extent_buffer *sb;
7221	struct btrfs_disk_key *disk_key;
7222	struct btrfs_chunk *chunk;
7223	u8 *array_ptr;
7224	unsigned long sb_array_offset;
7225	int ret = 0;
7226	u32 num_stripes;
7227	u32 array_size;
7228	u32 len = 0;
7229	u32 cur_offset;
7230	u64 type;
7231	struct btrfs_key key;
7232
7233	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235	/*
7236	 * We allocated a dummy extent, just to use extent buffer accessors.
7237	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238	 * that's fine, we will not go beyond system chunk array anyway.
7239	 */
7240	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241	if (!sb)
7242		return -ENOMEM;
7243	set_extent_buffer_uptodate(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7244
7245	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246	array_size = btrfs_super_sys_array_size(super_copy);
7247
7248	array_ptr = super_copy->sys_chunk_array;
7249	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250	cur_offset = 0;
7251
7252	while (cur_offset < array_size) {
7253		disk_key = (struct btrfs_disk_key *)array_ptr;
7254		len = sizeof(*disk_key);
7255		if (cur_offset + len > array_size)
7256			goto out_short_read;
7257
7258		btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260		array_ptr += len;
7261		sb_array_offset += len;
7262		cur_offset += len;
7263
7264		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265			btrfs_err(fs_info,
7266			    "unexpected item type %u in sys_array at offset %u",
7267				  (u32)key.type, cur_offset);
7268			ret = -EIO;
7269			break;
7270		}
 
 
7271
7272		chunk = (struct btrfs_chunk *)sb_array_offset;
7273		/*
7274		 * At least one btrfs_chunk with one stripe must be present,
7275		 * exact stripe count check comes afterwards
7276		 */
7277		len = btrfs_chunk_item_size(1);
7278		if (cur_offset + len > array_size)
7279			goto out_short_read;
7280
7281		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282		if (!num_stripes) {
7283			btrfs_err(fs_info,
7284			"invalid number of stripes %u in sys_array at offset %u",
7285				  num_stripes, cur_offset);
7286			ret = -EIO;
7287			break;
7288		}
 
 
 
 
7289
7290		type = btrfs_chunk_type(sb, chunk);
7291		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
 
 
7292			btrfs_err(fs_info,
7293			"invalid chunk type %llu in sys_array at offset %u",
7294				  type, cur_offset);
7295			ret = -EIO;
7296			break;
7297		}
7298
7299		len = btrfs_chunk_item_size(num_stripes);
7300		if (cur_offset + len > array_size)
7301			goto out_short_read;
7302
7303		ret = read_one_chunk(&key, sb, chunk);
7304		if (ret)
7305			break;
7306
7307		array_ptr += len;
7308		sb_array_offset += len;
7309		cur_offset += len;
7310	}
7311	clear_extent_buffer_uptodate(sb);
7312	free_extent_buffer_stale(sb);
7313	return ret;
7314
7315out_short_read:
7316	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317			len, cur_offset);
7318	clear_extent_buffer_uptodate(sb);
7319	free_extent_buffer_stale(sb);
7320	return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332					struct btrfs_device *failing_dev)
7333{
7334	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335	struct extent_map *em;
7336	u64 next_start = 0;
7337	bool ret = true;
7338
7339	read_lock(&map_tree->lock);
7340	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341	read_unlock(&map_tree->lock);
7342	/* No chunk at all? Return false anyway */
7343	if (!em) {
7344		ret = false;
7345		goto out;
7346	}
7347	while (em) {
7348		struct map_lookup *map;
7349		int missing = 0;
7350		int max_tolerated;
7351		int i;
7352
7353		map = em->map_lookup;
7354		max_tolerated =
7355			btrfs_get_num_tolerated_disk_barrier_failures(
7356					map->type);
7357		for (i = 0; i < map->num_stripes; i++) {
7358			struct btrfs_device *dev = map->stripes[i].dev;
7359
7360			if (!dev || !dev->bdev ||
7361			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362			    dev->last_flush_error)
7363				missing++;
7364			else if (failing_dev && failing_dev == dev)
7365				missing++;
7366		}
7367		if (missing > max_tolerated) {
7368			if (!failing_dev)
7369				btrfs_warn(fs_info,
7370	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371				   em->start, missing, max_tolerated);
7372			free_extent_map(em);
7373			ret = false;
7374			goto out;
7375		}
7376		next_start = extent_map_end(em);
7377		free_extent_map(em);
7378
7379		read_lock(&map_tree->lock);
7380		em = lookup_extent_mapping(map_tree, next_start,
7381					   (u64)(-1) - next_start);
7382		read_unlock(&map_tree->lock);
7383	}
7384out:
7385	return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390	int i;
7391	const int nr_items = btrfs_header_nritems(node);
7392
7393	for (i = 0; i < nr_items; i++)
7394		btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399	struct btrfs_root *root = fs_info->chunk_root;
7400	struct btrfs_path *path;
7401	struct extent_buffer *leaf;
7402	struct btrfs_key key;
7403	struct btrfs_key found_key;
7404	int ret;
7405	int slot;
7406	int iter_ret = 0;
7407	u64 total_dev = 0;
7408	u64 last_ra_node = 0;
7409
7410	path = btrfs_alloc_path();
7411	if (!path)
7412		return -ENOMEM;
7413
7414	/*
7415	 * uuid_mutex is needed only if we are mounting a sprout FS
7416	 * otherwise we don't need it.
7417	 */
7418	mutex_lock(&uuid_mutex);
7419
7420	/*
7421	 * It is possible for mount and umount to race in such a way that
7422	 * we execute this code path, but open_fs_devices failed to clear
7423	 * total_rw_bytes. We certainly want it cleared before reading the
7424	 * device items, so clear it here.
7425	 */
7426	fs_info->fs_devices->total_rw_bytes = 0;
7427
7428	/*
7429	 * Lockdep complains about possible circular locking dependency between
7430	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431	 * used for freeze procection of a fs (struct super_block.s_writers),
7432	 * which we take when starting a transaction, and extent buffers of the
7433	 * chunk tree if we call read_one_dev() while holding a lock on an
7434	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435	 * and at this point there can't be any concurrent task modifying the
7436	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437	 */
7438	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439	path->skip_locking = 1;
7440
7441	/*
7442	 * Read all device items, and then all the chunk items. All
7443	 * device items are found before any chunk item (their object id
7444	 * is smaller than the lowest possible object id for a chunk
7445	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446	 */
7447	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448	key.offset = 0;
7449	key.type = 0;
7450	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451		struct extent_buffer *node = path->nodes[1];
7452
 
7453		leaf = path->nodes[0];
7454		slot = path->slots[0];
7455
7456		if (node) {
7457			if (last_ra_node != node->start) {
7458				readahead_tree_node_children(node);
7459				last_ra_node = node->start;
7460			}
 
7461		}
 
7462		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463			struct btrfs_dev_item *dev_item;
7464			dev_item = btrfs_item_ptr(leaf, slot,
7465						  struct btrfs_dev_item);
7466			ret = read_one_dev(leaf, dev_item);
7467			if (ret)
7468				goto error;
7469			total_dev++;
7470		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471			struct btrfs_chunk *chunk;
7472
7473			/*
7474			 * We are only called at mount time, so no need to take
7475			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476			 * we always lock first fs_info->chunk_mutex before
7477			 * acquiring any locks on the chunk tree. This is a
7478			 * requirement for chunk allocation, see the comment on
7479			 * top of btrfs_chunk_alloc() for details.
7480			 */
7481			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482			ret = read_one_chunk(&found_key, leaf, chunk);
7483			if (ret)
7484				goto error;
7485		}
7486	}
7487	/* Catch error found during iteration */
7488	if (iter_ret < 0) {
7489		ret = iter_ret;
7490		goto error;
7491	}
7492
7493	/*
7494	 * After loading chunk tree, we've got all device information,
7495	 * do another round of validation checks.
7496	 */
7497	if (total_dev != fs_info->fs_devices->total_devices) {
7498		btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500			  btrfs_super_num_devices(fs_info->super_copy),
7501			  total_dev);
7502		fs_info->fs_devices->total_devices = total_dev;
7503		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504	}
7505	if (btrfs_super_total_bytes(fs_info->super_copy) <
7506	    fs_info->fs_devices->total_rw_bytes) {
7507		btrfs_err(fs_info,
7508	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509			  btrfs_super_total_bytes(fs_info->super_copy),
7510			  fs_info->fs_devices->total_rw_bytes);
7511		ret = -EINVAL;
7512		goto error;
7513	}
7514	ret = 0;
7515error:
 
7516	mutex_unlock(&uuid_mutex);
7517
7518	btrfs_free_path(path);
7519	return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525	struct btrfs_device *device;
7526	int ret = 0;
7527
7528	fs_devices->fs_info = fs_info;
7529
7530	mutex_lock(&fs_devices->device_list_mutex);
7531	list_for_each_entry(device, &fs_devices->devices, dev_list)
7532		device->fs_info = fs_info;
7533
7534	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536			device->fs_info = fs_info;
7537			ret = btrfs_get_dev_zone_info(device, false);
7538			if (ret)
7539				break;
7540		}
7541
7542		seed_devs->fs_info = fs_info;
7543	}
7544	mutex_unlock(&fs_devices->device_list_mutex);
7545
7546	return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550				 const struct btrfs_dev_stats_item *ptr,
7551				 int index)
7552{
7553	u64 val;
7554
7555	read_extent_buffer(eb, &val,
7556			   offsetof(struct btrfs_dev_stats_item, values) +
7557			    ((unsigned long)ptr) + (index * sizeof(u64)),
7558			   sizeof(val));
7559	return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563				      struct btrfs_dev_stats_item *ptr,
7564				      int index, u64 val)
7565{
7566	write_extent_buffer(eb, &val,
7567			    offsetof(struct btrfs_dev_stats_item, values) +
7568			     ((unsigned long)ptr) + (index * sizeof(u64)),
7569			    sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573				       struct btrfs_path *path)
7574{
7575	struct btrfs_dev_stats_item *ptr;
7576	struct extent_buffer *eb;
7577	struct btrfs_key key;
7578	int item_size;
7579	int i, ret, slot;
7580
7581	if (!device->fs_info->dev_root)
7582		return 0;
7583
7584	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586	key.offset = device->devid;
7587	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588	if (ret) {
7589		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590			btrfs_dev_stat_set(device, i, 0);
7591		device->dev_stats_valid = 1;
7592		btrfs_release_path(path);
7593		return ret < 0 ? ret : 0;
7594	}
7595	slot = path->slots[0];
7596	eb = path->nodes[0];
7597	item_size = btrfs_item_size(eb, slot);
7598
7599	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602		if (item_size >= (1 + i) * sizeof(__le64))
7603			btrfs_dev_stat_set(device, i,
7604					   btrfs_dev_stats_value(eb, ptr, i));
7605		else
7606			btrfs_dev_stat_set(device, i, 0);
7607	}
7608
7609	device->dev_stats_valid = 1;
7610	btrfs_dev_stat_print_on_load(device);
7611	btrfs_release_path(path);
7612
7613	return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 
 
 
 
 
7619	struct btrfs_device *device;
7620	struct btrfs_path *path = NULL;
7621	int ret = 0;
7622
7623	path = btrfs_alloc_path();
7624	if (!path)
7625		return -ENOMEM;
7626
7627	mutex_lock(&fs_devices->device_list_mutex);
7628	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629		ret = btrfs_device_init_dev_stats(device, path);
7630		if (ret)
7631			goto out;
7632	}
7633	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635			ret = btrfs_device_init_dev_stats(device, path);
7636			if (ret)
7637				goto out;
 
 
 
 
7638		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7639	}
7640out:
7641	mutex_unlock(&fs_devices->device_list_mutex);
7642
7643	btrfs_free_path(path);
7644	return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648				struct btrfs_device *device)
7649{
7650	struct btrfs_fs_info *fs_info = trans->fs_info;
7651	struct btrfs_root *dev_root = fs_info->dev_root;
7652	struct btrfs_path *path;
7653	struct btrfs_key key;
7654	struct extent_buffer *eb;
7655	struct btrfs_dev_stats_item *ptr;
7656	int ret;
7657	int i;
7658
7659	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661	key.offset = device->devid;
7662
7663	path = btrfs_alloc_path();
7664	if (!path)
7665		return -ENOMEM;
7666	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667	if (ret < 0) {
7668		btrfs_warn_in_rcu(fs_info,
7669			"error %d while searching for dev_stats item for device %s",
7670				  ret, btrfs_dev_name(device));
7671		goto out;
7672	}
7673
7674	if (ret == 0 &&
7675	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676		/* need to delete old one and insert a new one */
7677		ret = btrfs_del_item(trans, dev_root, path);
7678		if (ret != 0) {
7679			btrfs_warn_in_rcu(fs_info,
7680				"delete too small dev_stats item for device %s failed %d",
7681					  btrfs_dev_name(device), ret);
7682			goto out;
7683		}
7684		ret = 1;
7685	}
7686
7687	if (ret == 1) {
7688		/* need to insert a new item */
7689		btrfs_release_path(path);
7690		ret = btrfs_insert_empty_item(trans, dev_root, path,
7691					      &key, sizeof(*ptr));
7692		if (ret < 0) {
7693			btrfs_warn_in_rcu(fs_info,
7694				"insert dev_stats item for device %s failed %d",
7695				btrfs_dev_name(device), ret);
7696			goto out;
7697		}
7698	}
7699
7700	eb = path->nodes[0];
7701	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703		btrfs_set_dev_stats_value(eb, ptr, i,
7704					  btrfs_dev_stat_read(device, i));
7705	btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708	btrfs_free_path(path);
7709	return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717	struct btrfs_fs_info *fs_info = trans->fs_info;
7718	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719	struct btrfs_device *device;
7720	int stats_cnt;
7721	int ret = 0;
7722
7723	mutex_lock(&fs_devices->device_list_mutex);
7724	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726		if (!device->dev_stats_valid || stats_cnt == 0)
7727			continue;
7728
7729
7730		/*
7731		 * There is a LOAD-LOAD control dependency between the value of
7732		 * dev_stats_ccnt and updating the on-disk values which requires
7733		 * reading the in-memory counters. Such control dependencies
7734		 * require explicit read memory barriers.
7735		 *
7736		 * This memory barriers pairs with smp_mb__before_atomic in
7737		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738		 * barrier implied by atomic_xchg in
7739		 * btrfs_dev_stats_read_and_reset
7740		 */
7741		smp_rmb();
7742
7743		ret = update_dev_stat_item(trans, device);
7744		if (!ret)
7745			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746	}
7747	mutex_unlock(&fs_devices->device_list_mutex);
7748
7749	return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754	btrfs_dev_stat_inc(dev, index);
 
 
7755
 
 
7756	if (!dev->dev_stats_valid)
7757		return;
7758	btrfs_err_rl_in_rcu(dev->fs_info,
7759		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760			   btrfs_dev_name(dev),
7761			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770	int i;
7771
7772	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773		if (btrfs_dev_stat_read(dev, i) != 0)
7774			break;
7775	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776		return; /* all values == 0, suppress message */
7777
7778	btrfs_info_in_rcu(dev->fs_info,
7779		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780	       btrfs_dev_name(dev),
7781	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789			struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791	BTRFS_DEV_LOOKUP_ARGS(args);
7792	struct btrfs_device *dev;
7793	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794	int i;
7795
7796	mutex_lock(&fs_devices->device_list_mutex);
7797	args.devid = stats->devid;
7798	dev = btrfs_find_device(fs_info->fs_devices, &args);
7799	mutex_unlock(&fs_devices->device_list_mutex);
7800
7801	if (!dev) {
7802		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803		return -ENODEV;
7804	} else if (!dev->dev_stats_valid) {
7805		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806		return -ENODEV;
7807	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809			if (stats->nr_items > i)
7810				stats->values[i] =
7811					btrfs_dev_stat_read_and_reset(dev, i);
7812			else
7813				btrfs_dev_stat_set(dev, i, 0);
7814		}
7815		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816			   current->comm, task_pid_nr(current));
7817	} else {
7818		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819			if (stats->nr_items > i)
7820				stats->values[i] = btrfs_dev_stat_read(dev, i);
7821	}
7822	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824	return 0;
7825}
7826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7827/*
7828 * Update the size and bytes used for each device where it changed.  This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836	struct btrfs_device *curr, *next;
7837
7838	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840	if (list_empty(&trans->dev_update_list))
7841		return;
7842
7843	/*
7844	 * We don't need the device_list_mutex here.  This list is owned by the
7845	 * transaction and the transaction must complete before the device is
7846	 * released.
7847	 */
7848	mutex_lock(&trans->fs_info->chunk_mutex);
7849	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850				 post_commit_list) {
7851		list_del_init(&curr->post_commit_list);
7852		curr->commit_total_bytes = curr->disk_total_bytes;
7853		curr->commit_bytes_used = curr->bytes_used;
7854	}
7855	mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863	const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865	return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871				 u64 chunk_offset, u64 devid,
7872				 u64 physical_offset, u64 physical_len)
7873{
7874	struct btrfs_dev_lookup_args args = { .devid = devid };
7875	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876	struct extent_map *em;
7877	struct map_lookup *map;
7878	struct btrfs_device *dev;
7879	u64 stripe_len;
7880	bool found = false;
7881	int ret = 0;
7882	int i;
7883
7884	read_lock(&em_tree->lock);
7885	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886	read_unlock(&em_tree->lock);
7887
7888	if (!em) {
7889		btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891			  physical_offset, devid);
7892		ret = -EUCLEAN;
7893		goto out;
7894	}
7895
7896	map = em->map_lookup;
7897	stripe_len = btrfs_calc_stripe_length(em);
7898	if (physical_len != stripe_len) {
7899		btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901			  physical_offset, devid, em->start, physical_len,
7902			  stripe_len);
7903		ret = -EUCLEAN;
7904		goto out;
7905	}
7906
7907	/*
7908	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909	 * space. Although kernel can handle it without problem, better to warn
7910	 * the users.
7911	 */
7912	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913		btrfs_warn(fs_info,
7914		"devid %llu physical %llu len %llu inside the reserved space",
7915			   devid, physical_offset, physical_len);
7916
7917	for (i = 0; i < map->num_stripes; i++) {
7918		if (map->stripes[i].dev->devid == devid &&
7919		    map->stripes[i].physical == physical_offset) {
7920			found = true;
7921			if (map->verified_stripes >= map->num_stripes) {
7922				btrfs_err(fs_info,
7923				"too many dev extents for chunk %llu found",
7924					  em->start);
7925				ret = -EUCLEAN;
7926				goto out;
7927			}
7928			map->verified_stripes++;
7929			break;
7930		}
7931	}
7932	if (!found) {
7933		btrfs_err(fs_info,
7934	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7935			physical_offset, devid);
7936		ret = -EUCLEAN;
7937	}
7938
7939	/* Make sure no dev extent is beyond device boundary */
7940	dev = btrfs_find_device(fs_info->fs_devices, &args);
7941	if (!dev) {
7942		btrfs_err(fs_info, "failed to find devid %llu", devid);
7943		ret = -EUCLEAN;
7944		goto out;
7945	}
7946
 
 
 
 
 
 
 
 
 
 
 
 
7947	if (physical_offset + physical_len > dev->disk_total_bytes) {
7948		btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950			  devid, physical_offset, physical_len,
7951			  dev->disk_total_bytes);
7952		ret = -EUCLEAN;
7953		goto out;
7954	}
7955
7956	if (dev->zone_info) {
7957		u64 zone_size = dev->zone_info->zone_size;
7958
7959		if (!IS_ALIGNED(physical_offset, zone_size) ||
7960		    !IS_ALIGNED(physical_len, zone_size)) {
7961			btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963				  devid, physical_offset, physical_len);
7964			ret = -EUCLEAN;
7965			goto out;
7966		}
7967	}
7968
7969out:
7970	free_extent_map(em);
7971	return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977	struct extent_map *em;
7978	struct rb_node *node;
7979	int ret = 0;
7980
7981	read_lock(&em_tree->lock);
7982	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983		em = rb_entry(node, struct extent_map, rb_node);
7984		if (em->map_lookup->num_stripes !=
7985		    em->map_lookup->verified_stripes) {
7986			btrfs_err(fs_info,
7987			"chunk %llu has missing dev extent, have %d expect %d",
7988				  em->start, em->map_lookup->verified_stripes,
7989				  em->map_lookup->num_stripes);
7990			ret = -EUCLEAN;
7991			goto out;
7992		}
7993	}
7994out:
7995	read_unlock(&em_tree->lock);
7996	return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree.  This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008	struct btrfs_path *path;
8009	struct btrfs_root *root = fs_info->dev_root;
8010	struct btrfs_key key;
8011	u64 prev_devid = 0;
8012	u64 prev_dev_ext_end = 0;
8013	int ret = 0;
8014
8015	/*
8016	 * We don't have a dev_root because we mounted with ignorebadroots and
8017	 * failed to load the root, so we want to skip the verification in this
8018	 * case for sure.
8019	 *
8020	 * However if the dev root is fine, but the tree itself is corrupted
8021	 * we'd still fail to mount.  This verification is only to make sure
8022	 * writes can happen safely, so instead just bypass this check
8023	 * completely in the case of IGNOREBADROOTS.
8024	 */
8025	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026		return 0;
8027
8028	key.objectid = 1;
8029	key.type = BTRFS_DEV_EXTENT_KEY;
8030	key.offset = 0;
8031
8032	path = btrfs_alloc_path();
8033	if (!path)
8034		return -ENOMEM;
8035
8036	path->reada = READA_FORWARD;
8037	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038	if (ret < 0)
8039		goto out;
8040
8041	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042		ret = btrfs_next_leaf(root, path);
8043		if (ret < 0)
8044			goto out;
8045		/* No dev extents at all? Not good */
8046		if (ret > 0) {
8047			ret = -EUCLEAN;
8048			goto out;
8049		}
8050	}
8051	while (1) {
8052		struct extent_buffer *leaf = path->nodes[0];
8053		struct btrfs_dev_extent *dext;
8054		int slot = path->slots[0];
8055		u64 chunk_offset;
8056		u64 physical_offset;
8057		u64 physical_len;
8058		u64 devid;
8059
8060		btrfs_item_key_to_cpu(leaf, &key, slot);
8061		if (key.type != BTRFS_DEV_EXTENT_KEY)
8062			break;
8063		devid = key.objectid;
8064		physical_offset = key.offset;
8065
8066		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068		physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070		/* Check if this dev extent overlaps with the previous one */
8071		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072			btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074				  devid, physical_offset, prev_dev_ext_end);
8075			ret = -EUCLEAN;
8076			goto out;
8077		}
8078
8079		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080					    physical_offset, physical_len);
8081		if (ret < 0)
8082			goto out;
8083		prev_devid = devid;
8084		prev_dev_ext_end = physical_offset + physical_len;
8085
8086		ret = btrfs_next_item(root, path);
8087		if (ret < 0)
8088			goto out;
8089		if (ret > 0) {
8090			ret = 0;
8091			break;
8092		}
8093	}
8094
8095	/* Ensure all chunks have corresponding dev extents */
8096	ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098	btrfs_free_path(path);
8099	return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108	struct btrfs_swapfile_pin *sp;
8109	struct rb_node *node;
8110
8111	spin_lock(&fs_info->swapfile_pins_lock);
8112	node = fs_info->swapfile_pins.rb_node;
8113	while (node) {
8114		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115		if (ptr < sp->ptr)
8116			node = node->rb_left;
8117		else if (ptr > sp->ptr)
8118			node = node->rb_right;
8119		else
8120			break;
8121	}
8122	spin_unlock(&fs_info->swapfile_pins_lock);
8123	return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128	struct btrfs_block_group *cache = data;
8129	struct btrfs_fs_info *fs_info = cache->fs_info;
8130	u64 target;
8131	int ret = 0;
8132
8133	target = cache->start;
8134	btrfs_put_block_group(cache);
8135
8136	sb_start_write(fs_info->sb);
8137	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138		btrfs_info(fs_info,
8139			   "zoned: skip relocating block group %llu to repair: EBUSY",
8140			   target);
8141		sb_end_write(fs_info->sb);
8142		return -EBUSY;
8143	}
8144
8145	mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147	/* Ensure block group still exists */
8148	cache = btrfs_lookup_block_group(fs_info, target);
8149	if (!cache)
8150		goto out;
8151
8152	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153		goto out;
8154
8155	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156	if (ret < 0)
8157		goto out;
8158
8159	btrfs_info(fs_info,
8160		   "zoned: relocating block group %llu to repair IO failure",
8161		   target);
8162	ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165	if (cache)
8166		btrfs_put_block_group(cache);
8167	mutex_unlock(&fs_info->reclaim_bgs_lock);
8168	btrfs_exclop_finish(fs_info);
8169	sb_end_write(fs_info->sb);
8170
8171	return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176	struct btrfs_block_group *cache;
8177
8178	if (!btrfs_is_zoned(fs_info))
8179		return false;
8180
8181	/* Do not attempt to repair in degraded state */
8182	if (btrfs_test_opt(fs_info, DEGRADED))
8183		return true;
8184
8185	cache = btrfs_lookup_block_group(fs_info, logical);
8186	if (!cache)
8187		return true;
8188
8189	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190		btrfs_put_block_group(cache);
8191		return true;
8192	}
8193
8194	kthread_run(relocating_repair_kthread, cache,
8195		    "btrfs-relocating-repair");
8196
8197	return true;
8198}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/bio.h>
   8#include <linux/slab.h>
   9#include <linux/buffer_head.h>
  10#include <linux/blkdev.h>
  11#include <linux/ratelimit.h>
  12#include <linux/kthread.h>
  13#include <linux/raid/pq.h>
  14#include <linux/semaphore.h>
  15#include <linux/uuid.h>
  16#include <linux/list_sort.h>
 
  17#include "misc.h"
  18#include "ctree.h"
  19#include "extent_map.h"
  20#include "disk-io.h"
  21#include "transaction.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "async-thread.h"
  26#include "check-integrity.h"
  27#include "rcu-string.h"
  28#include "dev-replace.h"
  29#include "sysfs.h"
  30#include "tree-checker.h"
  31#include "space-info.h"
  32#include "block-group.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  33
  34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  35	[BTRFS_RAID_RAID10] = {
  36		.sub_stripes	= 2,
  37		.dev_stripes	= 1,
  38		.devs_max	= 0,	/* 0 == as many as possible */
  39		.devs_min	= 4,
  40		.tolerated_failures = 1,
  41		.devs_increment	= 2,
  42		.ncopies	= 2,
  43		.nparity        = 0,
  44		.raid_name	= "raid10",
  45		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  46		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  47	},
  48	[BTRFS_RAID_RAID1] = {
  49		.sub_stripes	= 1,
  50		.dev_stripes	= 1,
  51		.devs_max	= 2,
  52		.devs_min	= 2,
  53		.tolerated_failures = 1,
  54		.devs_increment	= 2,
  55		.ncopies	= 2,
  56		.nparity        = 0,
  57		.raid_name	= "raid1",
  58		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  59		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  60	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61	[BTRFS_RAID_DUP] = {
  62		.sub_stripes	= 1,
  63		.dev_stripes	= 2,
  64		.devs_max	= 1,
  65		.devs_min	= 1,
  66		.tolerated_failures = 0,
  67		.devs_increment	= 1,
  68		.ncopies	= 2,
  69		.nparity        = 0,
  70		.raid_name	= "dup",
  71		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
  72		.mindev_error	= 0,
  73	},
  74	[BTRFS_RAID_RAID0] = {
  75		.sub_stripes	= 1,
  76		.dev_stripes	= 1,
  77		.devs_max	= 0,
  78		.devs_min	= 2,
  79		.tolerated_failures = 0,
  80		.devs_increment	= 1,
  81		.ncopies	= 1,
  82		.nparity        = 0,
  83		.raid_name	= "raid0",
  84		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
  85		.mindev_error	= 0,
  86	},
  87	[BTRFS_RAID_SINGLE] = {
  88		.sub_stripes	= 1,
  89		.dev_stripes	= 1,
  90		.devs_max	= 1,
  91		.devs_min	= 1,
  92		.tolerated_failures = 0,
  93		.devs_increment	= 1,
  94		.ncopies	= 1,
  95		.nparity        = 0,
  96		.raid_name	= "single",
  97		.bg_flag	= 0,
  98		.mindev_error	= 0,
  99	},
 100	[BTRFS_RAID_RAID5] = {
 101		.sub_stripes	= 1,
 102		.dev_stripes	= 1,
 103		.devs_max	= 0,
 104		.devs_min	= 2,
 105		.tolerated_failures = 1,
 106		.devs_increment	= 1,
 107		.ncopies	= 1,
 108		.nparity        = 1,
 109		.raid_name	= "raid5",
 110		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 111		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 112	},
 113	[BTRFS_RAID_RAID6] = {
 114		.sub_stripes	= 1,
 115		.dev_stripes	= 1,
 116		.devs_max	= 0,
 117		.devs_min	= 3,
 118		.tolerated_failures = 2,
 119		.devs_increment	= 1,
 120		.ncopies	= 1,
 121		.nparity        = 2,
 122		.raid_name	= "raid6",
 123		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 124		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 125	},
 126};
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128const char *btrfs_bg_type_to_raid_name(u64 flags)
 129{
 130	const int index = btrfs_bg_flags_to_raid_index(flags);
 131
 132	if (index >= BTRFS_NR_RAID_TYPES)
 133		return NULL;
 134
 135	return btrfs_raid_array[index].raid_name;
 136}
 137
 
 
 
 
 
 
 
 138/*
 139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 140 * bytes including terminating null byte.
 141 */
 142void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 143{
 144	int i;
 145	int ret;
 146	char *bp = buf;
 147	u64 flags = bg_flags;
 148	u32 size_bp = size_buf;
 149
 150	if (!flags) {
 151		strcpy(bp, "NONE");
 152		return;
 153	}
 154
 155#define DESCRIBE_FLAG(flag, desc)						\
 156	do {								\
 157		if (flags & (flag)) {					\
 158			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 159			if (ret < 0 || ret >= size_bp)			\
 160				goto out_overflow;			\
 161			size_bp -= ret;					\
 162			bp += ret;					\
 163			flags &= ~(flag);				\
 164		}							\
 165	} while (0)
 166
 167	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 168	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 169	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 170
 171	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 172	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 173		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 174			      btrfs_raid_array[i].raid_name);
 175#undef DESCRIBE_FLAG
 176
 177	if (flags) {
 178		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 179		size_bp -= ret;
 180	}
 181
 182	if (size_bp < size_buf)
 183		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 184
 185	/*
 186	 * The text is trimmed, it's up to the caller to provide sufficiently
 187	 * large buffer
 188	 */
 189out_overflow:;
 190}
 191
 192static int init_first_rw_device(struct btrfs_trans_handle *trans);
 193static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 194static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 195static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 196static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
 197			     enum btrfs_map_op op,
 198			     u64 logical, u64 *length,
 199			     struct btrfs_bio **bbio_ret,
 200			     int mirror_num, int need_raid_map);
 201
 202/*
 203 * Device locking
 204 * ==============
 205 *
 206 * There are several mutexes that protect manipulation of devices and low-level
 207 * structures like chunks but not block groups, extents or files
 208 *
 209 * uuid_mutex (global lock)
 210 * ------------------------
 211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 213 * device) or requested by the device= mount option
 214 *
 215 * the mutex can be very coarse and can cover long-running operations
 216 *
 217 * protects: updates to fs_devices counters like missing devices, rw devices,
 218 * seeding, structure cloning, opening/closing devices at mount/umount time
 219 *
 220 * global::fs_devs - add, remove, updates to the global list
 221 *
 222 * does not protect: manipulation of the fs_devices::devices list!
 
 
 223 *
 224 * btrfs_device::name - renames (write side), read is RCU
 225 *
 226 * fs_devices::device_list_mutex (per-fs, with RCU)
 227 * ------------------------------------------------
 228 * protects updates to fs_devices::devices, ie. adding and deleting
 229 *
 230 * simple list traversal with read-only actions can be done with RCU protection
 231 *
 232 * may be used to exclude some operations from running concurrently without any
 233 * modifications to the list (see write_all_supers)
 234 *
 
 
 
 235 * balance_mutex
 236 * -------------
 237 * protects balance structures (status, state) and context accessed from
 238 * several places (internally, ioctl)
 239 *
 240 * chunk_mutex
 241 * -----------
 242 * protects chunks, adding or removing during allocation, trim or when a new
 243 * device is added/removed. Additionally it also protects post_commit_list of
 244 * individual devices, since they can be added to the transaction's
 245 * post_commit_list only with chunk_mutex held.
 246 *
 247 * cleaner_mutex
 248 * -------------
 249 * a big lock that is held by the cleaner thread and prevents running subvolume
 250 * cleaning together with relocation or delayed iputs
 251 *
 252 *
 253 * Lock nesting
 254 * ============
 255 *
 256 * uuid_mutex
 257 *   volume_mutex
 258 *     device_list_mutex
 259 *       chunk_mutex
 260 *     balance_mutex
 261 *
 262 *
 263 * Exclusive operations, BTRFS_FS_EXCL_OP
 264 * ======================================
 265 *
 266 * Maintains the exclusivity of the following operations that apply to the
 267 * whole filesystem and cannot run in parallel.
 268 *
 269 * - Balance (*)
 270 * - Device add
 271 * - Device remove
 272 * - Device replace (*)
 273 * - Resize
 274 *
 275 * The device operations (as above) can be in one of the following states:
 276 *
 277 * - Running state
 278 * - Paused state
 279 * - Completed state
 280 *
 281 * Only device operations marked with (*) can go into the Paused state for the
 282 * following reasons:
 283 *
 284 * - ioctl (only Balance can be Paused through ioctl)
 285 * - filesystem remounted as read-only
 286 * - filesystem unmounted and mounted as read-only
 287 * - system power-cycle and filesystem mounted as read-only
 288 * - filesystem or device errors leading to forced read-only
 289 *
 290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
 291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
 292 * A device operation in Paused or Running state can be canceled or resumed
 293 * either by ioctl (Balance only) or when remounted as read-write.
 294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
 295 * completed.
 296 */
 297
 298DEFINE_MUTEX(uuid_mutex);
 299static LIST_HEAD(fs_uuids);
 300struct list_head *btrfs_get_fs_uuids(void)
 301{
 302	return &fs_uuids;
 303}
 304
 305/*
 306 * alloc_fs_devices - allocate struct btrfs_fs_devices
 307 * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
 308 * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
 309 *
 310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 311 * The returned struct is not linked onto any lists and can be destroyed with
 312 * kfree() right away.
 313 */
 314static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
 315						 const u8 *metadata_fsid)
 316{
 317	struct btrfs_fs_devices *fs_devs;
 318
 319	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 320	if (!fs_devs)
 321		return ERR_PTR(-ENOMEM);
 322
 323	mutex_init(&fs_devs->device_list_mutex);
 324
 325	INIT_LIST_HEAD(&fs_devs->devices);
 326	INIT_LIST_HEAD(&fs_devs->alloc_list);
 327	INIT_LIST_HEAD(&fs_devs->fs_list);
 
 328	if (fsid)
 329		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 330
 331	if (metadata_fsid)
 332		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
 333	else if (fsid)
 334		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 335
 336	return fs_devs;
 337}
 338
 339void btrfs_free_device(struct btrfs_device *device)
 340{
 341	WARN_ON(!list_empty(&device->post_commit_list));
 342	rcu_string_free(device->name);
 343	extent_io_tree_release(&device->alloc_state);
 344	bio_put(device->flush_bio);
 345	kfree(device);
 346}
 347
 348static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 349{
 350	struct btrfs_device *device;
 
 351	WARN_ON(fs_devices->opened);
 352	while (!list_empty(&fs_devices->devices)) {
 353		device = list_entry(fs_devices->devices.next,
 354				    struct btrfs_device, dev_list);
 355		list_del(&device->dev_list);
 356		btrfs_free_device(device);
 357	}
 358	kfree(fs_devices);
 359}
 360
 361void __exit btrfs_cleanup_fs_uuids(void)
 362{
 363	struct btrfs_fs_devices *fs_devices;
 364
 365	while (!list_empty(&fs_uuids)) {
 366		fs_devices = list_entry(fs_uuids.next,
 367					struct btrfs_fs_devices, fs_list);
 368		list_del(&fs_devices->fs_list);
 369		free_fs_devices(fs_devices);
 370	}
 371}
 372
 373/*
 374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
 375 * Returned struct is not linked onto any lists and must be destroyed using
 376 * btrfs_free_device.
 377 */
 378static struct btrfs_device *__alloc_device(void)
 379{
 380	struct btrfs_device *dev;
 381
 382	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 383	if (!dev)
 384		return ERR_PTR(-ENOMEM);
 385
 386	/*
 387	 * Preallocate a bio that's always going to be used for flushing device
 388	 * barriers and matches the device lifespan
 389	 */
 390	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
 391	if (!dev->flush_bio) {
 392		kfree(dev);
 393		return ERR_PTR(-ENOMEM);
 394	}
 395
 396	INIT_LIST_HEAD(&dev->dev_list);
 397	INIT_LIST_HEAD(&dev->dev_alloc_list);
 398	INIT_LIST_HEAD(&dev->post_commit_list);
 399
 400	spin_lock_init(&dev->io_lock);
 401
 402	atomic_set(&dev->reada_in_flight, 0);
 403	atomic_set(&dev->dev_stats_ccnt, 0);
 404	btrfs_device_data_ordered_init(dev);
 405	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 406	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 407	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
 408
 409	return dev;
 410}
 411
 412static noinline struct btrfs_fs_devices *find_fsid(
 413		const u8 *fsid, const u8 *metadata_fsid)
 414{
 415	struct btrfs_fs_devices *fs_devices;
 416
 417	ASSERT(fsid);
 418
 419	if (metadata_fsid) {
 420		/*
 421		 * Handle scanned device having completed its fsid change but
 422		 * belonging to a fs_devices that was created by first scanning
 423		 * a device which didn't have its fsid/metadata_uuid changed
 424		 * at all and the CHANGING_FSID_V2 flag set.
 425		 */
 426		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 427			if (fs_devices->fsid_change &&
 428			    memcmp(metadata_fsid, fs_devices->fsid,
 429				   BTRFS_FSID_SIZE) == 0 &&
 430			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
 431				   BTRFS_FSID_SIZE) == 0) {
 432				return fs_devices;
 433			}
 434		}
 435		/*
 436		 * Handle scanned device having completed its fsid change but
 437		 * belonging to a fs_devices that was created by a device that
 438		 * has an outdated pair of fsid/metadata_uuid and
 439		 * CHANGING_FSID_V2 flag set.
 440		 */
 441		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 442			if (fs_devices->fsid_change &&
 443			    memcmp(fs_devices->metadata_uuid,
 444				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
 445			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
 446				   BTRFS_FSID_SIZE) == 0) {
 447				return fs_devices;
 448			}
 449		}
 450	}
 451
 452	/* Handle non-split brain cases */
 453	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 454		if (metadata_fsid) {
 455			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
 456			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
 457				      BTRFS_FSID_SIZE) == 0)
 458				return fs_devices;
 459		} else {
 460			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 461				return fs_devices;
 462		}
 463	}
 464	return NULL;
 465}
 466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467static int
 468btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 469		      int flush, struct block_device **bdev,
 470		      struct buffer_head **bh)
 471{
 472	int ret;
 473
 474	*bdev = blkdev_get_by_path(device_path, flags, holder);
 475
 476	if (IS_ERR(*bdev)) {
 477		ret = PTR_ERR(*bdev);
 478		goto error;
 479	}
 480
 481	if (flush)
 482		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 483	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
 484	if (ret) {
 485		blkdev_put(*bdev, flags);
 486		goto error;
 487	}
 488	invalidate_bdev(*bdev);
 489	*bh = btrfs_read_dev_super(*bdev);
 490	if (IS_ERR(*bh)) {
 491		ret = PTR_ERR(*bh);
 492		blkdev_put(*bdev, flags);
 493		goto error;
 494	}
 495
 496	return 0;
 497
 498error:
 499	*bdev = NULL;
 500	*bh = NULL;
 501	return ret;
 502}
 503
 504static void requeue_list(struct btrfs_pending_bios *pending_bios,
 505			struct bio *head, struct bio *tail)
 506{
 507
 508	struct bio *old_head;
 509
 510	old_head = pending_bios->head;
 511	pending_bios->head = head;
 512	if (pending_bios->tail)
 513		tail->bi_next = old_head;
 514	else
 515		pending_bios->tail = tail;
 516}
 517
 518/*
 519 * we try to collect pending bios for a device so we don't get a large
 520 * number of procs sending bios down to the same device.  This greatly
 521 * improves the schedulers ability to collect and merge the bios.
 522 *
 523 * But, it also turns into a long list of bios to process and that is sure
 524 * to eventually make the worker thread block.  The solution here is to
 525 * make some progress and then put this work struct back at the end of
 526 * the list if the block device is congested.  This way, multiple devices
 527 * can make progress from a single worker thread.
 528 */
 529static noinline void run_scheduled_bios(struct btrfs_device *device)
 530{
 531	struct btrfs_fs_info *fs_info = device->fs_info;
 532	struct bio *pending;
 533	struct backing_dev_info *bdi;
 534	struct btrfs_pending_bios *pending_bios;
 535	struct bio *tail;
 536	struct bio *cur;
 537	int again = 0;
 538	unsigned long num_run;
 539	unsigned long batch_run = 0;
 540	unsigned long last_waited = 0;
 541	int force_reg = 0;
 542	int sync_pending = 0;
 543	struct blk_plug plug;
 544
 545	/*
 546	 * this function runs all the bios we've collected for
 547	 * a particular device.  We don't want to wander off to
 548	 * another device without first sending all of these down.
 549	 * So, setup a plug here and finish it off before we return
 550	 */
 551	blk_start_plug(&plug);
 552
 553	bdi = device->bdev->bd_bdi;
 554
 555loop:
 556	spin_lock(&device->io_lock);
 557
 558loop_lock:
 559	num_run = 0;
 560
 561	/* take all the bios off the list at once and process them
 562	 * later on (without the lock held).  But, remember the
 563	 * tail and other pointers so the bios can be properly reinserted
 564	 * into the list if we hit congestion
 565	 */
 566	if (!force_reg && device->pending_sync_bios.head) {
 567		pending_bios = &device->pending_sync_bios;
 568		force_reg = 1;
 569	} else {
 570		pending_bios = &device->pending_bios;
 571		force_reg = 0;
 572	}
 573
 574	pending = pending_bios->head;
 575	tail = pending_bios->tail;
 576	WARN_ON(pending && !tail);
 577
 578	/*
 579	 * if pending was null this time around, no bios need processing
 580	 * at all and we can stop.  Otherwise it'll loop back up again
 581	 * and do an additional check so no bios are missed.
 582	 *
 583	 * device->running_pending is used to synchronize with the
 584	 * schedule_bio code.
 585	 */
 586	if (device->pending_sync_bios.head == NULL &&
 587	    device->pending_bios.head == NULL) {
 588		again = 0;
 589		device->running_pending = 0;
 590	} else {
 591		again = 1;
 592		device->running_pending = 1;
 593	}
 594
 595	pending_bios->head = NULL;
 596	pending_bios->tail = NULL;
 597
 598	spin_unlock(&device->io_lock);
 599
 600	while (pending) {
 601
 602		rmb();
 603		/* we want to work on both lists, but do more bios on the
 604		 * sync list than the regular list
 605		 */
 606		if ((num_run > 32 &&
 607		    pending_bios != &device->pending_sync_bios &&
 608		    device->pending_sync_bios.head) ||
 609		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 610		    device->pending_bios.head)) {
 611			spin_lock(&device->io_lock);
 612			requeue_list(pending_bios, pending, tail);
 613			goto loop_lock;
 614		}
 615
 616		cur = pending;
 617		pending = pending->bi_next;
 618		cur->bi_next = NULL;
 619
 620		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
 621
 622		/*
 623		 * if we're doing the sync list, record that our
 624		 * plug has some sync requests on it
 625		 *
 626		 * If we're doing the regular list and there are
 627		 * sync requests sitting around, unplug before
 628		 * we add more
 629		 */
 630		if (pending_bios == &device->pending_sync_bios) {
 631			sync_pending = 1;
 632		} else if (sync_pending) {
 633			blk_finish_plug(&plug);
 634			blk_start_plug(&plug);
 635			sync_pending = 0;
 636		}
 637
 638		btrfsic_submit_bio(cur);
 639		num_run++;
 640		batch_run++;
 641
 642		cond_resched();
 643
 644		/*
 645		 * we made progress, there is more work to do and the bdi
 646		 * is now congested.  Back off and let other work structs
 647		 * run instead
 648		 */
 649		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 650		    fs_info->fs_devices->open_devices > 1) {
 651			struct io_context *ioc;
 652
 653			ioc = current->io_context;
 654
 655			/*
 656			 * the main goal here is that we don't want to
 657			 * block if we're going to be able to submit
 658			 * more requests without blocking.
 659			 *
 660			 * This code does two great things, it pokes into
 661			 * the elevator code from a filesystem _and_
 662			 * it makes assumptions about how batching works.
 663			 */
 664			if (ioc && ioc->nr_batch_requests > 0 &&
 665			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 666			    (last_waited == 0 ||
 667			     ioc->last_waited == last_waited)) {
 668				/*
 669				 * we want to go through our batch of
 670				 * requests and stop.  So, we copy out
 671				 * the ioc->last_waited time and test
 672				 * against it before looping
 673				 */
 674				last_waited = ioc->last_waited;
 675				cond_resched();
 676				continue;
 677			}
 678			spin_lock(&device->io_lock);
 679			requeue_list(pending_bios, pending, tail);
 680			device->running_pending = 1;
 681
 682			spin_unlock(&device->io_lock);
 683			btrfs_queue_work(fs_info->submit_workers,
 684					 &device->work);
 685			goto done;
 686		}
 687	}
 688
 689	cond_resched();
 690	if (again)
 691		goto loop;
 692
 693	spin_lock(&device->io_lock);
 694	if (device->pending_bios.head || device->pending_sync_bios.head)
 695		goto loop_lock;
 696	spin_unlock(&device->io_lock);
 697
 698done:
 699	blk_finish_plug(&plug);
 700}
 701
 702static void pending_bios_fn(struct btrfs_work *work)
 703{
 704	struct btrfs_device *device;
 705
 706	device = container_of(work, struct btrfs_device, work);
 707	run_scheduled_bios(device);
 708}
 709
 710static bool device_path_matched(const char *path, struct btrfs_device *device)
 711{
 712	int found;
 713
 714	rcu_read_lock();
 715	found = strcmp(rcu_str_deref(device->name), path);
 716	rcu_read_unlock();
 717
 718	return found == 0;
 719}
 720
 721/*
 722 *  Search and remove all stale (devices which are not mounted) devices.
 723 *  When both inputs are NULL, it will search and release all stale devices.
 724 *  path:	Optional. When provided will it release all unmounted devices
 725 *		matching this path only.
 726 *  skip_dev:	Optional. Will skip this device when searching for the stale
 727 *		devices.
 728 *  Return:	0 for success or if @path is NULL.
 729 * 		-EBUSY if @path is a mounted device.
 730 * 		-ENOENT if @path does not match any device in the list.
 731 */
 732static int btrfs_free_stale_devices(const char *path,
 733				     struct btrfs_device *skip_device)
 734{
 735	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 736	struct btrfs_device *device, *tmp_device;
 737	int ret = 0;
 738
 739	if (path)
 
 
 740		ret = -ENOENT;
 741
 742	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 743
 744		mutex_lock(&fs_devices->device_list_mutex);
 745		list_for_each_entry_safe(device, tmp_device,
 746					 &fs_devices->devices, dev_list) {
 747			if (skip_device && skip_device == device)
 748				continue;
 749			if (path && !device->name)
 750				continue;
 751			if (path && !device_path_matched(path, device))
 752				continue;
 753			if (fs_devices->opened) {
 754				/* for an already deleted device return 0 */
 755				if (path && ret != 0)
 756					ret = -EBUSY;
 757				break;
 758			}
 759
 760			/* delete the stale device */
 761			fs_devices->num_devices--;
 762			list_del(&device->dev_list);
 763			btrfs_free_device(device);
 764
 765			ret = 0;
 766			if (fs_devices->num_devices == 0)
 767				break;
 768		}
 769		mutex_unlock(&fs_devices->device_list_mutex);
 770
 771		if (fs_devices->num_devices == 0) {
 772			btrfs_sysfs_remove_fsid(fs_devices);
 773			list_del(&fs_devices->fs_list);
 774			free_fs_devices(fs_devices);
 775		}
 776	}
 777
 778	return ret;
 779}
 780
 
 
 
 
 
 781static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 782			struct btrfs_device *device, fmode_t flags,
 783			void *holder)
 784{
 785	struct request_queue *q;
 786	struct block_device *bdev;
 787	struct buffer_head *bh;
 788	struct btrfs_super_block *disk_super;
 789	u64 devid;
 790	int ret;
 791
 792	if (device->bdev)
 793		return -EINVAL;
 794	if (!device->name)
 795		return -EINVAL;
 796
 797	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 798				    &bdev, &bh);
 799	if (ret)
 800		return ret;
 801
 802	disk_super = (struct btrfs_super_block *)bh->b_data;
 803	devid = btrfs_stack_device_id(&disk_super->dev_item);
 804	if (devid != device->devid)
 805		goto error_brelse;
 806
 807	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 808		goto error_brelse;
 809
 810	device->generation = btrfs_super_generation(disk_super);
 811
 812	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 813		if (btrfs_super_incompat_flags(disk_super) &
 814		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 815			pr_err(
 816		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 817			goto error_brelse;
 818		}
 819
 820		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 821		fs_devices->seeding = 1;
 822	} else {
 823		if (bdev_read_only(bdev))
 824			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 825		else
 826			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 827	}
 828
 829	q = bdev_get_queue(bdev);
 830	if (!blk_queue_nonrot(q))
 831		fs_devices->rotating = 1;
 
 
 832
 833	device->bdev = bdev;
 834	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 835	device->mode = flags;
 836
 837	fs_devices->open_devices++;
 838	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 839	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 840		fs_devices->rw_devices++;
 841		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 842	}
 843	brelse(bh);
 844
 845	return 0;
 846
 847error_brelse:
 848	brelse(bh);
 849	blkdev_put(bdev, flags);
 850
 851	return -EINVAL;
 852}
 853
 854/*
 855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
 856 * being created with a disk that has already completed its fsid change.
 
 
 857 */
 858static struct btrfs_fs_devices *find_fsid_inprogress(
 859					struct btrfs_super_block *disk_super)
 860{
 861	struct btrfs_fs_devices *fs_devices;
 862
 863	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 864		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 865			   BTRFS_FSID_SIZE) != 0 &&
 866		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
 867			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
 868			return fs_devices;
 869		}
 870	}
 871
 872	return NULL;
 873}
 874
 875
 876static struct btrfs_fs_devices *find_fsid_changed(
 877					struct btrfs_super_block *disk_super)
 878{
 879	struct btrfs_fs_devices *fs_devices;
 880
 881	/*
 882	 * Handles the case where scanned device is part of an fs that had
 883	 * multiple successful changes of FSID but curently device didn't
 884	 * observe it. Meaning our fsid will be different than theirs.
 
 
 
 
 885	 */
 886	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 
 887		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
 888			   BTRFS_FSID_SIZE) != 0 &&
 889		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
 890			   BTRFS_FSID_SIZE) == 0 &&
 891		    memcmp(fs_devices->fsid, disk_super->fsid,
 892			   BTRFS_FSID_SIZE) != 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893			return fs_devices;
 894		}
 895	}
 896
 897	return NULL;
 898}
 899/*
 900 * Add new device to list of registered devices
 901 *
 902 * Returns:
 903 * device pointer which was just added or updated when successful
 904 * error pointer when failed
 905 */
 906static noinline struct btrfs_device *device_list_add(const char *path,
 907			   struct btrfs_super_block *disk_super,
 908			   bool *new_device_added)
 909{
 910	struct btrfs_device *device;
 911	struct btrfs_fs_devices *fs_devices = NULL;
 912	struct rcu_string *name;
 913	u64 found_transid = btrfs_super_generation(disk_super);
 914	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 
 
 915	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 916		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 917	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
 918					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
 919
 
 
 
 
 
 
 
 920	if (fsid_change_in_progress) {
 921		if (!has_metadata_uuid) {
 922			/*
 923			 * When we have an image which has CHANGING_FSID_V2 set
 924			 * it might belong to either a filesystem which has
 925			 * disks with completed fsid change or it might belong
 926			 * to fs with no UUID changes in effect, handle both.
 927			 */
 928			fs_devices = find_fsid_inprogress(disk_super);
 929			if (!fs_devices)
 930				fs_devices = find_fsid(disk_super->fsid, NULL);
 931		} else {
 932			fs_devices = find_fsid_changed(disk_super);
 933		}
 934	} else if (has_metadata_uuid) {
 935		fs_devices = find_fsid(disk_super->fsid,
 936				       disk_super->metadata_uuid);
 937	} else {
 938		fs_devices = find_fsid(disk_super->fsid, NULL);
 
 
 939	}
 940
 941
 942	if (!fs_devices) {
 943		if (has_metadata_uuid)
 944			fs_devices = alloc_fs_devices(disk_super->fsid,
 945						      disk_super->metadata_uuid);
 946		else
 947			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
 948
 949		if (IS_ERR(fs_devices))
 950			return ERR_CAST(fs_devices);
 951
 952		fs_devices->fsid_change = fsid_change_in_progress;
 953
 954		mutex_lock(&fs_devices->device_list_mutex);
 955		list_add(&fs_devices->fs_list, &fs_uuids);
 956
 957		device = NULL;
 958	} else {
 
 
 
 
 
 959		mutex_lock(&fs_devices->device_list_mutex);
 960		device = btrfs_find_device(fs_devices, devid,
 961				disk_super->dev_item.uuid, NULL, false);
 962
 963		/*
 964		 * If this disk has been pulled into an fs devices created by
 965		 * a device which had the CHANGING_FSID_V2 flag then replace the
 966		 * metadata_uuid/fsid values of the fs_devices.
 967		 */
 968		if (has_metadata_uuid && fs_devices->fsid_change &&
 969		    found_transid > fs_devices->latest_generation) {
 970			memcpy(fs_devices->fsid, disk_super->fsid,
 971					BTRFS_FSID_SIZE);
 972			memcpy(fs_devices->metadata_uuid,
 973					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 974
 975			fs_devices->fsid_change = false;
 976		}
 977	}
 978
 979	if (!device) {
 
 
 980		if (fs_devices->opened) {
 
 
 
 981			mutex_unlock(&fs_devices->device_list_mutex);
 982			return ERR_PTR(-EBUSY);
 983		}
 984
 
 985		device = btrfs_alloc_device(NULL, &devid,
 986					    disk_super->dev_item.uuid);
 
 987		if (IS_ERR(device)) {
 988			mutex_unlock(&fs_devices->device_list_mutex);
 989			/* we can safely leave the fs_devices entry around */
 990			return device;
 991		}
 992
 993		name = rcu_string_strdup(path, GFP_NOFS);
 994		if (!name) {
 995			btrfs_free_device(device);
 996			mutex_unlock(&fs_devices->device_list_mutex);
 997			return ERR_PTR(-ENOMEM);
 998		}
 999		rcu_assign_pointer(device->name, name);
1000
1001		list_add_rcu(&device->dev_list, &fs_devices->devices);
1002		fs_devices->num_devices++;
1003
1004		device->fs_devices = fs_devices;
1005		*new_device_added = true;
1006
1007		if (disk_super->label[0])
1008			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009				disk_super->label, devid, found_transid, path);
 
 
1010		else
1011			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012				disk_super->fsid, devid, found_transid, path);
 
 
1013
1014	} else if (!device->name || strcmp(device->name->str, path)) {
1015		/*
1016		 * When FS is already mounted.
1017		 * 1. If you are here and if the device->name is NULL that
1018		 *    means this device was missing at time of FS mount.
1019		 * 2. If you are here and if the device->name is different
1020		 *    from 'path' that means either
1021		 *      a. The same device disappeared and reappeared with
1022		 *         different name. or
1023		 *      b. The missing-disk-which-was-replaced, has
1024		 *         reappeared now.
1025		 *
1026		 * We must allow 1 and 2a above. But 2b would be a spurious
1027		 * and unintentional.
1028		 *
1029		 * Further in case of 1 and 2a above, the disk at 'path'
1030		 * would have missed some transaction when it was away and
1031		 * in case of 2a the stale bdev has to be updated as well.
1032		 * 2b must not be allowed at all time.
1033		 */
1034
1035		/*
1036		 * For now, we do allow update to btrfs_fs_device through the
1037		 * btrfs dev scan cli after FS has been mounted.  We're still
1038		 * tracking a problem where systems fail mount by subvolume id
1039		 * when we reject replacement on a mounted FS.
1040		 */
1041		if (!fs_devices->opened && found_transid < device->generation) {
1042			/*
1043			 * That is if the FS is _not_ mounted and if you
1044			 * are here, that means there is more than one
1045			 * disk with same uuid and devid.We keep the one
1046			 * with larger generation number or the last-in if
1047			 * generation are equal.
1048			 */
1049			mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
1050			return ERR_PTR(-EEXIST);
1051		}
1052
1053		/*
1054		 * We are going to replace the device path for a given devid,
1055		 * make sure it's the same device if the device is mounted
 
 
 
 
 
1056		 */
1057		if (device->bdev) {
1058			struct block_device *path_bdev;
1059
1060			path_bdev = lookup_bdev(path);
1061			if (IS_ERR(path_bdev)) {
1062				mutex_unlock(&fs_devices->device_list_mutex);
1063				return ERR_CAST(path_bdev);
1064			}
1065
1066			if (device->bdev != path_bdev) {
1067				bdput(path_bdev);
1068				mutex_unlock(&fs_devices->device_list_mutex);
1069				btrfs_warn_in_rcu(device->fs_info,
1070			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071					disk_super->fsid, devid,
1072					rcu_str_deref(device->name), path);
 
1073				return ERR_PTR(-EEXIST);
1074			}
1075			bdput(path_bdev);
1076			btrfs_info_in_rcu(device->fs_info,
1077				"device fsid %pU devid %llu moved old:%s new:%s",
1078				disk_super->fsid, devid,
1079				rcu_str_deref(device->name), path);
1080		}
1081
1082		name = rcu_string_strdup(path, GFP_NOFS);
1083		if (!name) {
1084			mutex_unlock(&fs_devices->device_list_mutex);
1085			return ERR_PTR(-ENOMEM);
1086		}
1087		rcu_string_free(device->name);
1088		rcu_assign_pointer(device->name, name);
1089		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1090			fs_devices->missing_devices--;
1091			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1092		}
 
1093	}
1094
1095	/*
1096	 * Unmount does not free the btrfs_device struct but would zero
1097	 * generation along with most of the other members. So just update
1098	 * it back. We need it to pick the disk with largest generation
1099	 * (as above).
1100	 */
1101	if (!fs_devices->opened) {
1102		device->generation = found_transid;
1103		fs_devices->latest_generation = max_t(u64, found_transid,
1104						fs_devices->latest_generation);
1105	}
1106
1107	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
1109	mutex_unlock(&fs_devices->device_list_mutex);
1110	return device;
1111}
1112
1113static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114{
1115	struct btrfs_fs_devices *fs_devices;
1116	struct btrfs_device *device;
1117	struct btrfs_device *orig_dev;
1118	int ret = 0;
1119
 
 
1120	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1121	if (IS_ERR(fs_devices))
1122		return fs_devices;
1123
1124	mutex_lock(&orig->device_list_mutex);
1125	fs_devices->total_devices = orig->total_devices;
1126
1127	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1128		struct rcu_string *name;
 
 
 
 
 
 
 
1129
1130		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131					    orig_dev->uuid);
1132		if (IS_ERR(device)) {
1133			ret = PTR_ERR(device);
1134			goto error;
1135		}
1136
1137		/*
1138		 * This is ok to do without rcu read locked because we hold the
1139		 * uuid mutex so nothing we touch in here is going to disappear.
1140		 */
1141		if (orig_dev->name) {
1142			name = rcu_string_strdup(orig_dev->name->str,
1143					GFP_KERNEL);
1144			if (!name) {
1145				btrfs_free_device(device);
1146				ret = -ENOMEM;
1147				goto error;
1148			}
1149			rcu_assign_pointer(device->name, name);
1150		}
1151
1152		list_add(&device->dev_list, &fs_devices->devices);
1153		device->fs_devices = fs_devices;
1154		fs_devices->num_devices++;
1155	}
1156	mutex_unlock(&orig->device_list_mutex);
1157	return fs_devices;
1158error:
1159	mutex_unlock(&orig->device_list_mutex);
1160	free_fs_devices(fs_devices);
1161	return ERR_PTR(ret);
1162}
1163
1164/*
1165 * After we have read the system tree and know devids belonging to
1166 * this filesystem, remove the device which does not belong there.
1167 */
1168void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1169{
1170	struct btrfs_device *device, *next;
1171	struct btrfs_device *latest_dev = NULL;
1172
1173	mutex_lock(&uuid_mutex);
1174again:
1175	/* This is the initialized path, it is safe to release the devices. */
1176	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1177		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178							&device->dev_state)) {
1179			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180			     &device->dev_state) &&
1181			     (!latest_dev ||
1182			      device->generation > latest_dev->generation)) {
1183				latest_dev = device;
 
 
1184			}
1185			continue;
1186		}
1187
1188		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189			/*
1190			 * In the first step, keep the device which has
1191			 * the correct fsid and the devid that is used
1192			 * for the dev_replace procedure.
1193			 * In the second step, the dev_replace state is
1194			 * read from the device tree and it is known
1195			 * whether the procedure is really active or
1196			 * not, which means whether this device is
1197			 * used or whether it should be removed.
1198			 */
1199			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200						  &device->dev_state)) {
1201				continue;
1202			}
1203		}
1204		if (device->bdev) {
1205			blkdev_put(device->bdev, device->mode);
1206			device->bdev = NULL;
1207			fs_devices->open_devices--;
1208		}
1209		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1210			list_del_init(&device->dev_alloc_list);
1211			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1212			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213				      &device->dev_state))
1214				fs_devices->rw_devices--;
1215		}
1216		list_del_init(&device->dev_list);
1217		fs_devices->num_devices--;
1218		btrfs_free_device(device);
1219	}
1220
1221	if (fs_devices->seed) {
1222		fs_devices = fs_devices->seed;
1223		goto again;
1224	}
 
 
 
 
 
 
 
 
 
 
 
 
1225
1226	fs_devices->latest_bdev = latest_dev->bdev;
1227
1228	mutex_unlock(&uuid_mutex);
1229}
1230
1231static void btrfs_close_bdev(struct btrfs_device *device)
1232{
1233	if (!device->bdev)
1234		return;
1235
1236	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1237		sync_blockdev(device->bdev);
1238		invalidate_bdev(device->bdev);
1239	}
1240
1241	blkdev_put(device->bdev, device->mode);
1242}
1243
1244static void btrfs_close_one_device(struct btrfs_device *device)
1245{
1246	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247	struct btrfs_device *new_device;
1248	struct rcu_string *name;
1249
1250	if (device->bdev)
1251		fs_devices->open_devices--;
1252
1253	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1254	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255		list_del_init(&device->dev_alloc_list);
1256		fs_devices->rw_devices--;
1257	}
1258
1259	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
 
 
 
 
1260		fs_devices->missing_devices--;
 
1261
1262	btrfs_close_bdev(device);
1263
1264	new_device = btrfs_alloc_device(NULL, &device->devid,
1265					device->uuid);
1266	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268	/* Safe because we are under uuid_mutex */
1269	if (device->name) {
1270		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271		BUG_ON(!name); /* -ENOMEM */
1272		rcu_assign_pointer(new_device->name, name);
1273	}
 
 
1274
1275	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276	new_device->fs_devices = device->fs_devices;
 
1277
1278	synchronize_rcu();
1279	btrfs_free_device(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280}
1281
1282static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1283{
1284	struct btrfs_device *device, *tmp;
1285
 
 
1286	if (--fs_devices->opened > 0)
1287		return 0;
1288
1289	mutex_lock(&fs_devices->device_list_mutex);
1290	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1291		btrfs_close_one_device(device);
1292	}
1293	mutex_unlock(&fs_devices->device_list_mutex);
1294
1295	WARN_ON(fs_devices->open_devices);
1296	WARN_ON(fs_devices->rw_devices);
1297	fs_devices->opened = 0;
1298	fs_devices->seeding = 0;
1299
1300	return 0;
1301}
1302
1303int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304{
1305	struct btrfs_fs_devices *seed_devices = NULL;
1306	int ret;
1307
1308	mutex_lock(&uuid_mutex);
1309	ret = close_fs_devices(fs_devices);
1310	if (!fs_devices->opened) {
1311		seed_devices = fs_devices->seed;
1312		fs_devices->seed = NULL;
 
 
 
 
 
 
 
 
 
 
1313	}
1314	mutex_unlock(&uuid_mutex);
1315
1316	while (seed_devices) {
1317		fs_devices = seed_devices;
1318		seed_devices = fs_devices->seed;
1319		close_fs_devices(fs_devices);
 
1320		free_fs_devices(fs_devices);
1321	}
1322	return ret;
1323}
1324
1325static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1326				fmode_t flags, void *holder)
1327{
1328	struct btrfs_device *device;
1329	struct btrfs_device *latest_dev = NULL;
1330	int ret = 0;
1331
1332	flags |= FMODE_EXCL;
1333
1334	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1335		/* Just open everything we can; ignore failures here */
1336		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1337			continue;
1338
1339		if (!latest_dev ||
1340		    device->generation > latest_dev->generation)
 
1341			latest_dev = device;
 
 
 
 
 
1342	}
1343	if (fs_devices->open_devices == 0) {
1344		ret = -EINVAL;
1345		goto out;
1346	}
1347	fs_devices->opened = 1;
1348	fs_devices->latest_bdev = latest_dev->bdev;
1349	fs_devices->total_rw_bytes = 0;
1350out:
1351	return ret;
 
 
1352}
1353
1354static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1355{
1356	struct btrfs_device *dev1, *dev2;
1357
1358	dev1 = list_entry(a, struct btrfs_device, dev_list);
1359	dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361	if (dev1->devid < dev2->devid)
1362		return -1;
1363	else if (dev1->devid > dev2->devid)
1364		return 1;
1365	return 0;
1366}
1367
1368int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1369		       fmode_t flags, void *holder)
1370{
1371	int ret;
1372
1373	lockdep_assert_held(&uuid_mutex);
 
 
 
 
 
 
 
1374
1375	mutex_lock(&fs_devices->device_list_mutex);
1376	if (fs_devices->opened) {
1377		fs_devices->opened++;
1378		ret = 0;
1379	} else {
1380		list_sort(NULL, &fs_devices->devices, devid_cmp);
1381		ret = open_fs_devices(fs_devices, flags, holder);
1382	}
1383	mutex_unlock(&fs_devices->device_list_mutex);
1384
1385	return ret;
1386}
1387
1388static void btrfs_release_disk_super(struct page *page)
1389{
1390	kunmap(page);
 
1391	put_page(page);
1392}
1393
1394static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395				 struct page **page,
1396				 struct btrfs_super_block **disk_super)
1397{
 
 
1398	void *p;
1399	pgoff_t index;
1400
1401	/* make sure our super fits in the device */
1402	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403		return 1;
1404
1405	/* make sure our super fits in the page */
1406	if (sizeof(**disk_super) > PAGE_SIZE)
1407		return 1;
1408
1409	/* make sure our super doesn't straddle pages on disk */
1410	index = bytenr >> PAGE_SHIFT;
1411	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412		return 1;
1413
1414	/* pull in the page with our super */
1415	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416				   index, GFP_KERNEL);
1417
1418	if (IS_ERR_OR_NULL(*page))
1419		return 1;
1420
1421	p = kmap(*page);
1422
1423	/* align our pointer to the offset of the super block */
1424	*disk_super = p + offset_in_page(bytenr);
1425
1426	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428		btrfs_release_disk_super(*page);
1429		return 1;
1430	}
1431
1432	if ((*disk_super)->label[0] &&
1433		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436	return 0;
1437}
1438
1439int btrfs_forget_devices(const char *path)
1440{
1441	int ret;
1442
1443	mutex_lock(&uuid_mutex);
1444	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445	mutex_unlock(&uuid_mutex);
1446
1447	return ret;
1448}
1449
1450/*
1451 * Look for a btrfs signature on a device. This may be called out of the mount path
1452 * and we are not allowed to call set_blocksize during the scan. The superblock
1453 * is read via pagecache
1454 */
1455struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456					   void *holder)
1457{
1458	struct btrfs_super_block *disk_super;
1459	bool new_device_added = false;
1460	struct btrfs_device *device = NULL;
1461	struct block_device *bdev;
1462	struct page *page;
1463	u64 bytenr;
1464
1465	lockdep_assert_held(&uuid_mutex);
1466
1467	/*
1468	 * we would like to check all the supers, but that would make
1469	 * a btrfs mount succeed after a mkfs from a different FS.
1470	 * So, we need to add a special mount option to scan for
1471	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472	 */
1473	bytenr = btrfs_sb_offset(0);
1474	flags |= FMODE_EXCL;
1475
1476	bdev = blkdev_get_by_path(path, flags, holder);
1477	if (IS_ERR(bdev))
1478		return ERR_CAST(bdev);
1479
1480	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1481		device = ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
1482		goto error_bdev_put;
1483	}
1484
1485	device = device_list_add(path, disk_super, &new_device_added);
1486	if (!IS_ERR(device)) {
1487		if (new_device_added)
1488			btrfs_free_stale_devices(path, device);
1489	}
1490
1491	btrfs_release_disk_super(page);
1492
1493error_bdev_put:
1494	blkdev_put(bdev, flags);
1495
1496	return device;
1497}
1498
1499/*
1500 * Try to find a chunk that intersects [start, start + len] range and when one
1501 * such is found, record the end of it in *start
1502 */
1503static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504				    u64 len)
1505{
1506	u64 physical_start, physical_end;
1507
1508	lockdep_assert_held(&device->fs_info->chunk_mutex);
1509
1510	if (!find_first_extent_bit(&device->alloc_state, *start,
1511				   &physical_start, &physical_end,
1512				   CHUNK_ALLOCATED, NULL)) {
1513
1514		if (in_range(physical_start, *start, len) ||
1515		    in_range(*start, physical_start,
1516			     physical_end - physical_start)) {
1517			*start = physical_end + 1;
1518			return true;
1519		}
1520	}
1521	return false;
1522}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524
1525/*
1526 * find_free_dev_extent_start - find free space in the specified device
 
1527 * @device:	  the device which we search the free space in
1528 * @num_bytes:	  the size of the free space that we need
1529 * @search_start: the position from which to begin the search
1530 * @start:	  store the start of the free space.
1531 * @len:	  the size of the free space. that we find, or the size
1532 *		  of the max free space if we don't find suitable free space
1533 *
1534 * this uses a pretty simple search, the expectation is that it is
1535 * called very infrequently and that a given device has a small number
1536 * of extents
1537 *
1538 * @start is used to store the start of the free space if we find. But if we
1539 * don't find suitable free space, it will be used to store the start position
1540 * of the max free space.
1541 *
1542 * @len is used to store the size of the free space that we find.
1543 * But if we don't find suitable free space, it is used to store the size of
1544 * the max free space.
1545 *
1546 * NOTE: This function will search *commit* root of device tree, and does extra
1547 * check to ensure dev extents are not double allocated.
1548 * This makes the function safe to allocate dev extents but may not report
1549 * correct usable device space, as device extent freed in current transaction
1550 * is not reported as avaiable.
1551 */
1552static int find_free_dev_extent_start(struct btrfs_device *device,
1553				u64 num_bytes, u64 search_start, u64 *start,
1554				u64 *len)
1555{
1556	struct btrfs_fs_info *fs_info = device->fs_info;
1557	struct btrfs_root *root = fs_info->dev_root;
1558	struct btrfs_key key;
1559	struct btrfs_dev_extent *dev_extent;
1560	struct btrfs_path *path;
1561	u64 hole_size;
1562	u64 max_hole_start;
1563	u64 max_hole_size;
1564	u64 extent_end;
1565	u64 search_end = device->total_bytes;
1566	int ret;
1567	int slot;
1568	struct extent_buffer *l;
1569
1570	/*
1571	 * We don't want to overwrite the superblock on the drive nor any area
1572	 * used by the boot loader (grub for example), so we make sure to start
1573	 * at an offset of at least 1MB.
1574	 */
1575	search_start = max_t(u64, search_start, SZ_1M);
1576
1577	path = btrfs_alloc_path();
1578	if (!path)
1579		return -ENOMEM;
1580
1581	max_hole_start = search_start;
1582	max_hole_size = 0;
1583
1584again:
1585	if (search_start >= search_end ||
1586		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587		ret = -ENOSPC;
1588		goto out;
1589	}
1590
1591	path->reada = READA_FORWARD;
1592	path->search_commit_root = 1;
1593	path->skip_locking = 1;
1594
1595	key.objectid = device->devid;
1596	key.offset = search_start;
1597	key.type = BTRFS_DEV_EXTENT_KEY;
1598
1599	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600	if (ret < 0)
1601		goto out;
1602	if (ret > 0) {
1603		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604		if (ret < 0)
1605			goto out;
1606	}
1607
1608	while (1) {
1609		l = path->nodes[0];
1610		slot = path->slots[0];
1611		if (slot >= btrfs_header_nritems(l)) {
1612			ret = btrfs_next_leaf(root, path);
1613			if (ret == 0)
1614				continue;
1615			if (ret < 0)
1616				goto out;
1617
1618			break;
1619		}
1620		btrfs_item_key_to_cpu(l, &key, slot);
1621
1622		if (key.objectid < device->devid)
1623			goto next;
1624
1625		if (key.objectid > device->devid)
1626			break;
1627
1628		if (key.type != BTRFS_DEV_EXTENT_KEY)
1629			goto next;
1630
 
 
 
1631		if (key.offset > search_start) {
1632			hole_size = key.offset - search_start;
1633
1634			/*
1635			 * Have to check before we set max_hole_start, otherwise
1636			 * we could end up sending back this offset anyway.
1637			 */
1638			if (contains_pending_extent(device, &search_start,
1639						    hole_size)) {
1640				if (key.offset >= search_start)
1641					hole_size = key.offset - search_start;
1642				else
1643					hole_size = 0;
1644			}
1645
1646			if (hole_size > max_hole_size) {
1647				max_hole_start = search_start;
1648				max_hole_size = hole_size;
1649			}
1650
1651			/*
1652			 * If this free space is greater than which we need,
1653			 * it must be the max free space that we have found
1654			 * until now, so max_hole_start must point to the start
1655			 * of this free space and the length of this free space
1656			 * is stored in max_hole_size. Thus, we return
1657			 * max_hole_start and max_hole_size and go back to the
1658			 * caller.
1659			 */
1660			if (hole_size >= num_bytes) {
1661				ret = 0;
1662				goto out;
1663			}
1664		}
1665
1666		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1667		extent_end = key.offset + btrfs_dev_extent_length(l,
1668								  dev_extent);
1669		if (extent_end > search_start)
1670			search_start = extent_end;
1671next:
1672		path->slots[0]++;
1673		cond_resched();
1674	}
1675
1676	/*
1677	 * At this point, search_start should be the end of
1678	 * allocated dev extents, and when shrinking the device,
1679	 * search_end may be smaller than search_start.
1680	 */
1681	if (search_end > search_start) {
1682		hole_size = search_end - search_start;
1683
1684		if (contains_pending_extent(device, &search_start, hole_size)) {
1685			btrfs_release_path(path);
1686			goto again;
1687		}
1688
1689		if (hole_size > max_hole_size) {
1690			max_hole_start = search_start;
1691			max_hole_size = hole_size;
1692		}
1693	}
1694
1695	/* See above. */
1696	if (max_hole_size < num_bytes)
1697		ret = -ENOSPC;
1698	else
1699		ret = 0;
1700
 
1701out:
1702	btrfs_free_path(path);
1703	*start = max_hole_start;
1704	if (len)
1705		*len = max_hole_size;
1706	return ret;
1707}
1708
1709int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1710			 u64 *start, u64 *len)
1711{
1712	/* FIXME use last free of some kind */
1713	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1714}
1715
1716static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1717			  struct btrfs_device *device,
1718			  u64 start, u64 *dev_extent_len)
1719{
1720	struct btrfs_fs_info *fs_info = device->fs_info;
1721	struct btrfs_root *root = fs_info->dev_root;
1722	int ret;
1723	struct btrfs_path *path;
1724	struct btrfs_key key;
1725	struct btrfs_key found_key;
1726	struct extent_buffer *leaf = NULL;
1727	struct btrfs_dev_extent *extent = NULL;
1728
1729	path = btrfs_alloc_path();
1730	if (!path)
1731		return -ENOMEM;
1732
1733	key.objectid = device->devid;
1734	key.offset = start;
1735	key.type = BTRFS_DEV_EXTENT_KEY;
1736again:
1737	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738	if (ret > 0) {
1739		ret = btrfs_previous_item(root, path, key.objectid,
1740					  BTRFS_DEV_EXTENT_KEY);
1741		if (ret)
1742			goto out;
1743		leaf = path->nodes[0];
1744		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745		extent = btrfs_item_ptr(leaf, path->slots[0],
1746					struct btrfs_dev_extent);
1747		BUG_ON(found_key.offset > start || found_key.offset +
1748		       btrfs_dev_extent_length(leaf, extent) < start);
1749		key = found_key;
1750		btrfs_release_path(path);
1751		goto again;
1752	} else if (ret == 0) {
1753		leaf = path->nodes[0];
1754		extent = btrfs_item_ptr(leaf, path->slots[0],
1755					struct btrfs_dev_extent);
1756	} else {
1757		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758		goto out;
1759	}
1760
1761	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763	ret = btrfs_del_item(trans, root, path);
1764	if (ret) {
1765		btrfs_handle_fs_error(fs_info, ret,
1766				      "Failed to remove dev extent item");
1767	} else {
1768		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769	}
1770out:
1771	btrfs_free_path(path);
1772	return ret;
1773}
1774
1775static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776				  struct btrfs_device *device,
1777				  u64 chunk_offset, u64 start, u64 num_bytes)
1778{
1779	int ret;
1780	struct btrfs_path *path;
1781	struct btrfs_fs_info *fs_info = device->fs_info;
1782	struct btrfs_root *root = fs_info->dev_root;
1783	struct btrfs_dev_extent *extent;
1784	struct extent_buffer *leaf;
1785	struct btrfs_key key;
1786
1787	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1788	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1789	path = btrfs_alloc_path();
1790	if (!path)
1791		return -ENOMEM;
1792
1793	key.objectid = device->devid;
1794	key.offset = start;
1795	key.type = BTRFS_DEV_EXTENT_KEY;
1796	ret = btrfs_insert_empty_item(trans, root, path, &key,
1797				      sizeof(*extent));
1798	if (ret)
1799		goto out;
1800
1801	leaf = path->nodes[0];
1802	extent = btrfs_item_ptr(leaf, path->slots[0],
1803				struct btrfs_dev_extent);
1804	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805					BTRFS_CHUNK_TREE_OBJECTID);
1806	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1808	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
1810	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811	btrfs_mark_buffer_dirty(leaf);
1812out:
1813	btrfs_free_path(path);
1814	return ret;
1815}
1816
1817static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818{
1819	struct extent_map_tree *em_tree;
1820	struct extent_map *em;
1821	struct rb_node *n;
1822	u64 ret = 0;
1823
1824	em_tree = &fs_info->mapping_tree;
1825	read_lock(&em_tree->lock);
1826	n = rb_last(&em_tree->map.rb_root);
1827	if (n) {
1828		em = rb_entry(n, struct extent_map, rb_node);
1829		ret = em->start + em->len;
1830	}
1831	read_unlock(&em_tree->lock);
1832
1833	return ret;
1834}
1835
1836static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837				    u64 *devid_ret)
1838{
1839	int ret;
1840	struct btrfs_key key;
1841	struct btrfs_key found_key;
1842	struct btrfs_path *path;
1843
1844	path = btrfs_alloc_path();
1845	if (!path)
1846		return -ENOMEM;
1847
1848	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849	key.type = BTRFS_DEV_ITEM_KEY;
1850	key.offset = (u64)-1;
1851
1852	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853	if (ret < 0)
1854		goto error;
1855
1856	if (ret == 0) {
1857		/* Corruption */
1858		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859		ret = -EUCLEAN;
1860		goto error;
1861	}
1862
1863	ret = btrfs_previous_item(fs_info->chunk_root, path,
1864				  BTRFS_DEV_ITEMS_OBJECTID,
1865				  BTRFS_DEV_ITEM_KEY);
1866	if (ret) {
1867		*devid_ret = 1;
1868	} else {
1869		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870				      path->slots[0]);
1871		*devid_ret = found_key.offset + 1;
1872	}
1873	ret = 0;
1874error:
1875	btrfs_free_path(path);
1876	return ret;
1877}
1878
1879/*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
1883static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1884			    struct btrfs_device *device)
1885{
1886	int ret;
1887	struct btrfs_path *path;
1888	struct btrfs_dev_item *dev_item;
1889	struct extent_buffer *leaf;
1890	struct btrfs_key key;
1891	unsigned long ptr;
1892
1893	path = btrfs_alloc_path();
1894	if (!path)
1895		return -ENOMEM;
1896
1897	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898	key.type = BTRFS_DEV_ITEM_KEY;
1899	key.offset = device->devid;
1900
 
1901	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902				      &key, sizeof(*dev_item));
 
1903	if (ret)
1904		goto out;
1905
1906	leaf = path->nodes[0];
1907	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909	btrfs_set_device_id(leaf, dev_item, device->devid);
1910	btrfs_set_device_generation(leaf, dev_item, 0);
1911	btrfs_set_device_type(leaf, dev_item, device->type);
1912	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1915	btrfs_set_device_total_bytes(leaf, dev_item,
1916				     btrfs_device_get_disk_total_bytes(device));
1917	btrfs_set_device_bytes_used(leaf, dev_item,
1918				    btrfs_device_get_bytes_used(device));
1919	btrfs_set_device_group(leaf, dev_item, 0);
1920	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1922	btrfs_set_device_start_offset(leaf, dev_item, 0);
1923
1924	ptr = btrfs_device_uuid(dev_item);
1925	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1926	ptr = btrfs_device_fsid(dev_item);
1927	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928			    ptr, BTRFS_FSID_SIZE);
1929	btrfs_mark_buffer_dirty(leaf);
1930
1931	ret = 0;
1932out:
1933	btrfs_free_path(path);
1934	return ret;
1935}
1936
1937/*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
 
 
1940 */
1941static void update_dev_time(const char *path_name)
1942{
1943	struct file *filp;
 
 
1944
1945	filp = filp_open(path_name, O_RDWR, 0);
1946	if (IS_ERR(filp))
1947		return;
1948	file_update_time(filp);
1949	filp_close(filp, NULL);
 
 
1950}
1951
1952static int btrfs_rm_dev_item(struct btrfs_device *device)
 
1953{
1954	struct btrfs_root *root = device->fs_info->chunk_root;
1955	int ret;
1956	struct btrfs_path *path;
1957	struct btrfs_key key;
1958	struct btrfs_trans_handle *trans;
1959
1960	path = btrfs_alloc_path();
1961	if (!path)
1962		return -ENOMEM;
1963
1964	trans = btrfs_start_transaction(root, 0);
1965	if (IS_ERR(trans)) {
1966		btrfs_free_path(path);
1967		return PTR_ERR(trans);
1968	}
1969	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970	key.type = BTRFS_DEV_ITEM_KEY;
1971	key.offset = device->devid;
1972
 
1973	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 
1974	if (ret) {
1975		if (ret > 0)
1976			ret = -ENOENT;
1977		btrfs_abort_transaction(trans, ret);
1978		btrfs_end_transaction(trans);
1979		goto out;
1980	}
1981
1982	ret = btrfs_del_item(trans, root, path);
1983	if (ret) {
1984		btrfs_abort_transaction(trans, ret);
1985		btrfs_end_transaction(trans);
1986	}
1987
1988out:
1989	btrfs_free_path(path);
1990	if (!ret)
1991		ret = btrfs_commit_transaction(trans);
1992	return ret;
1993}
1994
1995/*
1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997 * filesystem. It's up to the caller to adjust that number regarding eg. device
1998 * replace.
1999 */
2000static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001		u64 num_devices)
2002{
2003	u64 all_avail;
2004	unsigned seq;
2005	int i;
2006
2007	do {
2008		seq = read_seqbegin(&fs_info->profiles_lock);
2009
2010		all_avail = fs_info->avail_data_alloc_bits |
2011			    fs_info->avail_system_alloc_bits |
2012			    fs_info->avail_metadata_alloc_bits;
2013	} while (read_seqretry(&fs_info->profiles_lock, seq));
2014
2015	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2016		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2017			continue;
2018
2019		if (num_devices < btrfs_raid_array[i].devs_min) {
2020			int ret = btrfs_raid_array[i].mindev_error;
2021
2022			if (ret)
2023				return ret;
2024		}
2025	}
2026
2027	return 0;
2028}
2029
2030static struct btrfs_device * btrfs_find_next_active_device(
2031		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2032{
2033	struct btrfs_device *next_device;
2034
2035	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036		if (next_device != device &&
2037		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038		    && next_device->bdev)
2039			return next_device;
2040	}
2041
2042	return NULL;
2043}
2044
2045/*
2046 * Helper function to check if the given device is part of s_bdev / latest_bdev
2047 * and replace it with the provided or the next active device, in the context
2048 * where this function called, there should be always be another device (or
2049 * this_dev) which is active.
2050 */
2051void btrfs_assign_next_active_device(struct btrfs_device *device,
2052				     struct btrfs_device *this_dev)
2053{
2054	struct btrfs_fs_info *fs_info = device->fs_info;
2055	struct btrfs_device *next_device;
2056
2057	if (this_dev)
2058		next_device = this_dev;
2059	else
2060		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061								device);
2062	ASSERT(next_device);
2063
2064	if (fs_info->sb->s_bdev &&
2065			(fs_info->sb->s_bdev == device->bdev))
2066		fs_info->sb->s_bdev = next_device->bdev;
2067
2068	if (fs_info->fs_devices->latest_bdev == device->bdev)
2069		fs_info->fs_devices->latest_bdev = next_device->bdev;
2070}
2071
2072/*
2073 * Return btrfs_fs_devices::num_devices excluding the device that's being
2074 * currently replaced.
2075 */
2076static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077{
2078	u64 num_devices = fs_info->fs_devices->num_devices;
2079
2080	down_read(&fs_info->dev_replace.rwsem);
2081	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082		ASSERT(num_devices > 1);
2083		num_devices--;
2084	}
2085	up_read(&fs_info->dev_replace.rwsem);
2086
2087	return num_devices;
2088}
2089
2090int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091		u64 devid)
2092{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093	struct btrfs_device *device;
2094	struct btrfs_fs_devices *cur_devices;
2095	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096	u64 num_devices;
2097	int ret = 0;
2098
2099	mutex_lock(&uuid_mutex);
 
 
 
2100
 
 
 
 
 
2101	num_devices = btrfs_num_devices(fs_info);
2102
2103	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104	if (ret)
2105		goto out;
2106
2107	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109	if (IS_ERR(device)) {
2110		if (PTR_ERR(device) == -ENOENT &&
2111		    strcmp(device_path, "missing") == 0)
2112			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113		else
2114			ret = PTR_ERR(device);
2115		goto out;
2116	}
2117
2118	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119		btrfs_warn_in_rcu(fs_info,
2120		  "cannot remove device %s (devid %llu) due to active swapfile",
2121				  rcu_str_deref(device->name), device->devid);
2122		ret = -ETXTBSY;
2123		goto out;
2124	}
2125
2126	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2127		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2128		goto out;
2129	}
2130
2131	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132	    fs_info->fs_devices->rw_devices == 1) {
2133		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2134		goto out;
2135	}
2136
2137	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2138		mutex_lock(&fs_info->chunk_mutex);
2139		list_del_init(&device->dev_alloc_list);
2140		device->fs_devices->rw_devices--;
2141		mutex_unlock(&fs_info->chunk_mutex);
2142	}
2143
2144	mutex_unlock(&uuid_mutex);
2145	ret = btrfs_shrink_device(device, 0);
2146	mutex_lock(&uuid_mutex);
2147	if (ret)
2148		goto error_undo;
2149
2150	/*
2151	 * TODO: the superblock still includes this device in its num_devices
2152	 * counter although write_all_supers() is not locked out. This
2153	 * could give a filesystem state which requires a degraded mount.
2154	 */
2155	ret = btrfs_rm_dev_item(device);
2156	if (ret)
2157		goto error_undo;
 
 
 
 
 
 
 
 
 
 
 
 
2158
2159	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2160	btrfs_scrub_cancel_dev(device);
2161
2162	/*
2163	 * the device list mutex makes sure that we don't change
2164	 * the device list while someone else is writing out all
2165	 * the device supers. Whoever is writing all supers, should
2166	 * lock the device list mutex before getting the number of
2167	 * devices in the super block (super_copy). Conversely,
2168	 * whoever updates the number of devices in the super block
2169	 * (super_copy) should hold the device list mutex.
2170	 */
2171
2172	/*
2173	 * In normal cases the cur_devices == fs_devices. But in case
2174	 * of deleting a seed device, the cur_devices should point to
2175	 * its own fs_devices listed under the fs_devices->seed.
2176	 */
2177	cur_devices = device->fs_devices;
2178	mutex_lock(&fs_devices->device_list_mutex);
2179	list_del_rcu(&device->dev_list);
2180
2181	cur_devices->num_devices--;
2182	cur_devices->total_devices--;
2183	/* Update total_devices of the parent fs_devices if it's seed */
2184	if (cur_devices != fs_devices)
2185		fs_devices->total_devices--;
2186
2187	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2188		cur_devices->missing_devices--;
2189
2190	btrfs_assign_next_active_device(device, NULL);
2191
2192	if (device->bdev) {
2193		cur_devices->open_devices--;
2194		/* remove sysfs entry */
2195		btrfs_sysfs_rm_device_link(fs_devices, device);
2196	}
2197
2198	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2200	mutex_unlock(&fs_devices->device_list_mutex);
2201
2202	/*
2203	 * at this point, the device is zero sized and detached from
2204	 * the devices list.  All that's left is to zero out the old
2205	 * supers and free the device.
 
 
 
 
 
2206	 */
2207	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2208		btrfs_scratch_superblocks(device->bdev, device->name->str);
 
 
 
 
 
 
2209
2210	btrfs_close_bdev(device);
 
2211	synchronize_rcu();
2212	btrfs_free_device(device);
2213
2214	if (cur_devices->open_devices == 0) {
2215		while (fs_devices) {
2216			if (fs_devices->seed == cur_devices) {
2217				fs_devices->seed = cur_devices->seed;
2218				break;
2219			}
2220			fs_devices = fs_devices->seed;
2221		}
2222		cur_devices->seed = NULL;
2223		close_fs_devices(cur_devices);
 
2224		free_fs_devices(cur_devices);
2225	}
2226
2227out:
2228	mutex_unlock(&uuid_mutex);
2229	return ret;
2230
2231error_undo:
2232	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233		mutex_lock(&fs_info->chunk_mutex);
2234		list_add(&device->dev_alloc_list,
2235			 &fs_devices->alloc_list);
2236		device->fs_devices->rw_devices++;
2237		mutex_unlock(&fs_info->chunk_mutex);
2238	}
2239	goto out;
2240}
2241
2242void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243{
2244	struct btrfs_fs_devices *fs_devices;
2245
2246	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248	/*
2249	 * in case of fs with no seed, srcdev->fs_devices will point
2250	 * to fs_devices of fs_info. However when the dev being replaced is
2251	 * a seed dev it will point to the seed's local fs_devices. In short
2252	 * srcdev will have its correct fs_devices in both the cases.
2253	 */
2254	fs_devices = srcdev->fs_devices;
2255
2256	list_del_rcu(&srcdev->dev_list);
2257	list_del(&srcdev->dev_alloc_list);
2258	fs_devices->num_devices--;
2259	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260		fs_devices->missing_devices--;
2261
2262	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263		fs_devices->rw_devices--;
2264
2265	if (srcdev->bdev)
2266		fs_devices->open_devices--;
2267}
2268
2269void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270{
2271	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2272	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2273
2274	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2275		/* zero out the old super if it is writable */
2276		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277	}
2278
2279	btrfs_close_bdev(srcdev);
2280	synchronize_rcu();
2281	btrfs_free_device(srcdev);
2282
2283	/* if this is no devs we rather delete the fs_devices */
2284	if (!fs_devices->num_devices) {
2285		struct btrfs_fs_devices *tmp_fs_devices;
2286
2287		/*
2288		 * On a mounted FS, num_devices can't be zero unless it's a
2289		 * seed. In case of a seed device being replaced, the replace
2290		 * target added to the sprout FS, so there will be no more
2291		 * device left under the seed FS.
2292		 */
2293		ASSERT(fs_devices->seeding);
2294
2295		tmp_fs_devices = fs_info->fs_devices;
2296		while (tmp_fs_devices) {
2297			if (tmp_fs_devices->seed == fs_devices) {
2298				tmp_fs_devices->seed = fs_devices->seed;
2299				break;
2300			}
2301			tmp_fs_devices = tmp_fs_devices->seed;
2302		}
2303		fs_devices->seed = NULL;
2304		close_fs_devices(fs_devices);
2305		free_fs_devices(fs_devices);
2306	}
 
2307}
2308
2309void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2310{
2311	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2312
2313	WARN_ON(!tgtdev);
2314	mutex_lock(&fs_devices->device_list_mutex);
2315
2316	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2317
2318	if (tgtdev->bdev)
2319		fs_devices->open_devices--;
2320
2321	fs_devices->num_devices--;
2322
2323	btrfs_assign_next_active_device(tgtdev, NULL);
2324
2325	list_del_rcu(&tgtdev->dev_list);
2326
2327	mutex_unlock(&fs_devices->device_list_mutex);
2328
2329	/*
2330	 * The update_dev_time() with in btrfs_scratch_superblocks()
2331	 * may lead to a call to btrfs_show_devname() which will try
2332	 * to hold device_list_mutex. And here this device
2333	 * is already out of device list, so we don't have to hold
2334	 * the device_list_mutex lock.
2335	 */
2336	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2337
2338	btrfs_close_bdev(tgtdev);
2339	synchronize_rcu();
2340	btrfs_free_device(tgtdev);
2341}
2342
2343static struct btrfs_device *btrfs_find_device_by_path(
2344		struct btrfs_fs_info *fs_info, const char *device_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345{
2346	int ret = 0;
2347	struct btrfs_super_block *disk_super;
2348	u64 devid;
2349	u8 *dev_uuid;
2350	struct block_device *bdev;
2351	struct buffer_head *bh;
2352	struct btrfs_device *device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353
2354	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2355				    fs_info->bdev_holder, 0, &bdev, &bh);
2356	if (ret)
2357		return ERR_PTR(ret);
2358	disk_super = (struct btrfs_super_block *)bh->b_data;
2359	devid = btrfs_stack_device_id(&disk_super->dev_item);
2360	dev_uuid = disk_super->dev_item.uuid;
2361	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363					   disk_super->metadata_uuid, true);
2364	else
2365		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2366					   disk_super->fsid, true);
2367
2368	brelse(bh);
2369	if (!device)
2370		device = ERR_PTR(-ENOENT);
2371	blkdev_put(bdev, FMODE_READ);
2372	return device;
2373}
2374
2375/*
2376 * Lookup a device given by device id, or the path if the id is 0.
2377 */
 
 
 
 
 
 
 
 
 
 
2378struct btrfs_device *btrfs_find_device_by_devspec(
2379		struct btrfs_fs_info *fs_info, u64 devid,
2380		const char *device_path)
2381{
 
2382	struct btrfs_device *device;
 
2383
2384	if (devid) {
2385		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2386					   NULL, true);
2387		if (!device)
2388			return ERR_PTR(-ENOENT);
2389		return device;
2390	}
2391
2392	if (!device_path || !device_path[0])
2393		return ERR_PTR(-EINVAL);
2394
2395	if (strcmp(device_path, "missing") == 0) {
2396		/* Find first missing device */
2397		list_for_each_entry(device, &fs_info->fs_devices->devices,
2398				    dev_list) {
2399			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400				     &device->dev_state) && !device->bdev)
2401				return device;
2402		}
2403		return ERR_PTR(-ENOENT);
2404	}
2405
2406	return btrfs_find_device_by_path(fs_info, device_path);
2407}
2408
2409/*
2410 * does all the dirty work required for changing file system's UUID.
2411 */
2412static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2413{
2414	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415	struct btrfs_fs_devices *old_devices;
2416	struct btrfs_fs_devices *seed_devices;
2417	struct btrfs_super_block *disk_super = fs_info->super_copy;
2418	struct btrfs_device *device;
2419	u64 super_flags;
2420
2421	lockdep_assert_held(&uuid_mutex);
2422	if (!fs_devices->seeding)
2423		return -EINVAL;
2424
 
 
 
 
2425	seed_devices = alloc_fs_devices(NULL, NULL);
2426	if (IS_ERR(seed_devices))
2427		return PTR_ERR(seed_devices);
2428
 
 
 
 
 
 
2429	old_devices = clone_fs_devices(fs_devices);
2430	if (IS_ERR(old_devices)) {
2431		kfree(seed_devices);
2432		return PTR_ERR(old_devices);
2433	}
2434
2435	list_add(&old_devices->fs_list, &fs_uuids);
2436
2437	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438	seed_devices->opened = 1;
2439	INIT_LIST_HEAD(&seed_devices->devices);
2440	INIT_LIST_HEAD(&seed_devices->alloc_list);
2441	mutex_init(&seed_devices->device_list_mutex);
2442
2443	mutex_lock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2444	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445			      synchronize_rcu);
2446	list_for_each_entry(device, &seed_devices->devices, dev_list)
2447		device->fs_devices = seed_devices;
2448
2449	mutex_lock(&fs_info->chunk_mutex);
2450	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2451	mutex_unlock(&fs_info->chunk_mutex);
2452
2453	fs_devices->seeding = 0;
2454	fs_devices->num_devices = 0;
2455	fs_devices->open_devices = 0;
2456	fs_devices->missing_devices = 0;
2457	fs_devices->rotating = 0;
2458	fs_devices->seed = seed_devices;
2459
2460	generate_random_uuid(fs_devices->fsid);
2461	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2462	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2463	mutex_unlock(&fs_devices->device_list_mutex);
2464
2465	super_flags = btrfs_super_flags(disk_super) &
2466		      ~BTRFS_SUPER_FLAG_SEEDING;
2467	btrfs_set_super_flags(disk_super, super_flags);
2468
2469	return 0;
2470}
2471
2472/*
2473 * Store the expected generation for seed devices in device items.
2474 */
2475static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2476{
 
2477	struct btrfs_fs_info *fs_info = trans->fs_info;
2478	struct btrfs_root *root = fs_info->chunk_root;
2479	struct btrfs_path *path;
2480	struct extent_buffer *leaf;
2481	struct btrfs_dev_item *dev_item;
2482	struct btrfs_device *device;
2483	struct btrfs_key key;
2484	u8 fs_uuid[BTRFS_FSID_SIZE];
2485	u8 dev_uuid[BTRFS_UUID_SIZE];
2486	u64 devid;
2487	int ret;
2488
2489	path = btrfs_alloc_path();
2490	if (!path)
2491		return -ENOMEM;
2492
2493	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494	key.offset = 0;
2495	key.type = BTRFS_DEV_ITEM_KEY;
2496
2497	while (1) {
 
2498		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
2499		if (ret < 0)
2500			goto error;
2501
2502		leaf = path->nodes[0];
2503next_slot:
2504		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505			ret = btrfs_next_leaf(root, path);
2506			if (ret > 0)
2507				break;
2508			if (ret < 0)
2509				goto error;
2510			leaf = path->nodes[0];
2511			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2512			btrfs_release_path(path);
2513			continue;
2514		}
2515
2516		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518		    key.type != BTRFS_DEV_ITEM_KEY)
2519			break;
2520
2521		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522					  struct btrfs_dev_item);
2523		devid = btrfs_device_id(leaf, dev_item);
2524		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2525				   BTRFS_UUID_SIZE);
2526		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2527				   BTRFS_FSID_SIZE);
2528		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2529					   fs_uuid, true);
 
2530		BUG_ON(!device); /* Logic error */
2531
2532		if (device->fs_devices->seeding) {
2533			btrfs_set_device_generation(leaf, dev_item,
2534						    device->generation);
2535			btrfs_mark_buffer_dirty(leaf);
2536		}
2537
2538		path->slots[0]++;
2539		goto next_slot;
2540	}
2541	ret = 0;
2542error:
2543	btrfs_free_path(path);
2544	return ret;
2545}
2546
2547int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2548{
2549	struct btrfs_root *root = fs_info->dev_root;
2550	struct request_queue *q;
2551	struct btrfs_trans_handle *trans;
2552	struct btrfs_device *device;
2553	struct block_device *bdev;
2554	struct super_block *sb = fs_info->sb;
2555	struct rcu_string *name;
2556	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 
2557	u64 orig_super_total_bytes;
2558	u64 orig_super_num_devices;
2559	int seeding_dev = 0;
2560	int ret = 0;
2561	bool unlocked = false;
 
2562
2563	if (sb_rdonly(sb) && !fs_devices->seeding)
2564		return -EROFS;
2565
2566	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2567				  fs_info->bdev_holder);
2568	if (IS_ERR(bdev))
2569		return PTR_ERR(bdev);
2570
 
 
 
 
 
2571	if (fs_devices->seeding) {
2572		seeding_dev = 1;
2573		down_write(&sb->s_umount);
2574		mutex_lock(&uuid_mutex);
 
2575	}
2576
2577	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2578
2579	mutex_lock(&fs_devices->device_list_mutex);
2580	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2581		if (device->bdev == bdev) {
2582			ret = -EEXIST;
2583			mutex_unlock(
2584				&fs_devices->device_list_mutex);
2585			goto error;
2586		}
2587	}
2588	mutex_unlock(&fs_devices->device_list_mutex);
2589
2590	device = btrfs_alloc_device(fs_info, NULL, NULL);
2591	if (IS_ERR(device)) {
2592		/* we can safely leave the fs_devices entry around */
2593		ret = PTR_ERR(device);
2594		goto error;
2595	}
2596
2597	name = rcu_string_strdup(device_path, GFP_KERNEL);
2598	if (!name) {
2599		ret = -ENOMEM;
 
 
 
 
 
2600		goto error_free_device;
2601	}
2602	rcu_assign_pointer(device->name, name);
2603
2604	trans = btrfs_start_transaction(root, 0);
2605	if (IS_ERR(trans)) {
2606		ret = PTR_ERR(trans);
2607		goto error_free_device;
2608	}
2609
2610	q = bdev_get_queue(bdev);
2611	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2612	device->generation = trans->transid;
2613	device->io_width = fs_info->sectorsize;
2614	device->io_align = fs_info->sectorsize;
2615	device->sector_size = fs_info->sectorsize;
2616	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617					 fs_info->sectorsize);
2618	device->disk_total_bytes = device->total_bytes;
2619	device->commit_total_bytes = device->total_bytes;
2620	device->fs_info = fs_info;
2621	device->bdev = bdev;
2622	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2623	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2624	device->mode = FMODE_EXCL;
2625	device->dev_stats_valid = 1;
2626	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2627
2628	if (seeding_dev) {
2629		sb->s_flags &= ~SB_RDONLY;
2630		ret = btrfs_prepare_sprout(fs_info);
2631		if (ret) {
 
 
 
2632			btrfs_abort_transaction(trans, ret);
2633			goto error_trans;
2634		}
2635	}
2636
 
 
 
 
 
 
 
2637	device->fs_devices = fs_devices;
2638
2639	mutex_lock(&fs_devices->device_list_mutex);
2640	mutex_lock(&fs_info->chunk_mutex);
2641	list_add_rcu(&device->dev_list, &fs_devices->devices);
2642	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643	fs_devices->num_devices++;
2644	fs_devices->open_devices++;
2645	fs_devices->rw_devices++;
2646	fs_devices->total_devices++;
2647	fs_devices->total_rw_bytes += device->total_bytes;
2648
2649	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2650
2651	if (!blk_queue_nonrot(q))
2652		fs_devices->rotating = 1;
2653
2654	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2655	btrfs_set_super_total_bytes(fs_info->super_copy,
2656		round_down(orig_super_total_bytes + device->total_bytes,
2657			   fs_info->sectorsize));
2658
2659	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660	btrfs_set_super_num_devices(fs_info->super_copy,
2661				    orig_super_num_devices + 1);
2662
2663	/* add sysfs device entry */
2664	btrfs_sysfs_add_device_link(fs_devices, device);
2665
2666	/*
2667	 * we've got more storage, clear any full flags on the space
2668	 * infos
2669	 */
2670	btrfs_clear_space_info_full(fs_info);
2671
2672	mutex_unlock(&fs_info->chunk_mutex);
 
 
 
 
2673	mutex_unlock(&fs_devices->device_list_mutex);
2674
2675	if (seeding_dev) {
2676		mutex_lock(&fs_info->chunk_mutex);
2677		ret = init_first_rw_device(trans);
2678		mutex_unlock(&fs_info->chunk_mutex);
2679		if (ret) {
2680			btrfs_abort_transaction(trans, ret);
2681			goto error_sysfs;
2682		}
2683	}
2684
2685	ret = btrfs_add_dev_item(trans, device);
2686	if (ret) {
2687		btrfs_abort_transaction(trans, ret);
2688		goto error_sysfs;
2689	}
2690
2691	if (seeding_dev) {
2692		ret = btrfs_finish_sprout(trans);
2693		if (ret) {
2694			btrfs_abort_transaction(trans, ret);
2695			goto error_sysfs;
2696		}
2697
2698		btrfs_sysfs_update_sprout_fsid(fs_devices,
2699				fs_info->fs_devices->fsid);
 
 
 
2700	}
2701
2702	ret = btrfs_commit_transaction(trans);
2703
2704	if (seeding_dev) {
2705		mutex_unlock(&uuid_mutex);
2706		up_write(&sb->s_umount);
2707		unlocked = true;
2708
2709		if (ret) /* transaction commit */
2710			return ret;
2711
2712		ret = btrfs_relocate_sys_chunks(fs_info);
2713		if (ret < 0)
2714			btrfs_handle_fs_error(fs_info, ret,
2715				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716		trans = btrfs_attach_transaction(root);
2717		if (IS_ERR(trans)) {
2718			if (PTR_ERR(trans) == -ENOENT)
2719				return 0;
2720			ret = PTR_ERR(trans);
2721			trans = NULL;
2722			goto error_sysfs;
2723		}
2724		ret = btrfs_commit_transaction(trans);
2725	}
2726
2727	/* Update ctime/mtime for libblkid */
 
 
 
 
 
 
 
 
 
2728	update_dev_time(device_path);
 
2729	return ret;
2730
2731error_sysfs:
2732	btrfs_sysfs_rm_device_link(fs_devices, device);
2733	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734	mutex_lock(&fs_info->chunk_mutex);
2735	list_del_rcu(&device->dev_list);
2736	list_del(&device->dev_alloc_list);
2737	fs_info->fs_devices->num_devices--;
2738	fs_info->fs_devices->open_devices--;
2739	fs_info->fs_devices->rw_devices--;
2740	fs_info->fs_devices->total_devices--;
2741	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743	btrfs_set_super_total_bytes(fs_info->super_copy,
2744				    orig_super_total_bytes);
2745	btrfs_set_super_num_devices(fs_info->super_copy,
2746				    orig_super_num_devices);
2747	mutex_unlock(&fs_info->chunk_mutex);
2748	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749error_trans:
2750	if (seeding_dev)
2751		sb->s_flags |= SB_RDONLY;
2752	if (trans)
2753		btrfs_end_transaction(trans);
 
 
2754error_free_device:
2755	btrfs_free_device(device);
2756error:
2757	blkdev_put(bdev, FMODE_EXCL);
2758	if (seeding_dev && !unlocked) {
2759		mutex_unlock(&uuid_mutex);
2760		up_write(&sb->s_umount);
2761	}
2762	return ret;
2763}
2764
2765static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766					struct btrfs_device *device)
2767{
2768	int ret;
2769	struct btrfs_path *path;
2770	struct btrfs_root *root = device->fs_info->chunk_root;
2771	struct btrfs_dev_item *dev_item;
2772	struct extent_buffer *leaf;
2773	struct btrfs_key key;
2774
2775	path = btrfs_alloc_path();
2776	if (!path)
2777		return -ENOMEM;
2778
2779	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780	key.type = BTRFS_DEV_ITEM_KEY;
2781	key.offset = device->devid;
2782
2783	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784	if (ret < 0)
2785		goto out;
2786
2787	if (ret > 0) {
2788		ret = -ENOENT;
2789		goto out;
2790	}
2791
2792	leaf = path->nodes[0];
2793	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795	btrfs_set_device_id(leaf, dev_item, device->devid);
2796	btrfs_set_device_type(leaf, dev_item, device->type);
2797	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800	btrfs_set_device_total_bytes(leaf, dev_item,
2801				     btrfs_device_get_disk_total_bytes(device));
2802	btrfs_set_device_bytes_used(leaf, dev_item,
2803				    btrfs_device_get_bytes_used(device));
2804	btrfs_mark_buffer_dirty(leaf);
2805
2806out:
2807	btrfs_free_path(path);
2808	return ret;
2809}
2810
2811int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812		      struct btrfs_device *device, u64 new_size)
2813{
2814	struct btrfs_fs_info *fs_info = device->fs_info;
2815	struct btrfs_super_block *super_copy = fs_info->super_copy;
2816	u64 old_total;
2817	u64 diff;
 
2818
2819	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820		return -EACCES;
2821
2822	new_size = round_down(new_size, fs_info->sectorsize);
2823
2824	mutex_lock(&fs_info->chunk_mutex);
2825	old_total = btrfs_super_total_bytes(super_copy);
2826	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827
2828	if (new_size <= device->total_bytes ||
2829	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830		mutex_unlock(&fs_info->chunk_mutex);
2831		return -EINVAL;
2832	}
2833
2834	btrfs_set_super_total_bytes(super_copy,
2835			round_down(old_total + diff, fs_info->sectorsize));
2836	device->fs_devices->total_rw_bytes += diff;
2837
2838	btrfs_device_set_total_bytes(device, new_size);
2839	btrfs_device_set_disk_total_bytes(device, new_size);
2840	btrfs_clear_space_info_full(device->fs_info);
2841	if (list_empty(&device->post_commit_list))
2842		list_add_tail(&device->post_commit_list,
2843			      &trans->transaction->dev_update_list);
2844	mutex_unlock(&fs_info->chunk_mutex);
2845
2846	return btrfs_update_device(trans, device);
 
 
 
 
2847}
2848
2849static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850{
2851	struct btrfs_fs_info *fs_info = trans->fs_info;
2852	struct btrfs_root *root = fs_info->chunk_root;
2853	int ret;
2854	struct btrfs_path *path;
2855	struct btrfs_key key;
2856
2857	path = btrfs_alloc_path();
2858	if (!path)
2859		return -ENOMEM;
2860
2861	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862	key.offset = chunk_offset;
2863	key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866	if (ret < 0)
2867		goto out;
2868	else if (ret > 0) { /* Logic error or corruption */
2869		btrfs_handle_fs_error(fs_info, -ENOENT,
2870				      "Failed lookup while freeing chunk.");
2871		ret = -ENOENT;
2872		goto out;
2873	}
2874
2875	ret = btrfs_del_item(trans, root, path);
2876	if (ret < 0)
2877		btrfs_handle_fs_error(fs_info, ret,
2878				      "Failed to delete chunk item.");
2879out:
2880	btrfs_free_path(path);
2881	return ret;
2882}
2883
2884static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885{
2886	struct btrfs_super_block *super_copy = fs_info->super_copy;
2887	struct btrfs_disk_key *disk_key;
2888	struct btrfs_chunk *chunk;
2889	u8 *ptr;
2890	int ret = 0;
2891	u32 num_stripes;
2892	u32 array_size;
2893	u32 len = 0;
2894	u32 cur;
2895	struct btrfs_key key;
2896
2897	mutex_lock(&fs_info->chunk_mutex);
2898	array_size = btrfs_super_sys_array_size(super_copy);
2899
2900	ptr = super_copy->sys_chunk_array;
2901	cur = 0;
2902
2903	while (cur < array_size) {
2904		disk_key = (struct btrfs_disk_key *)ptr;
2905		btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907		len = sizeof(*disk_key);
2908
2909		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910			chunk = (struct btrfs_chunk *)(ptr + len);
2911			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912			len += btrfs_chunk_item_size(num_stripes);
2913		} else {
2914			ret = -EIO;
2915			break;
2916		}
2917		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918		    key.offset == chunk_offset) {
2919			memmove(ptr, ptr + len, array_size - (cur + len));
2920			array_size -= len;
2921			btrfs_set_super_sys_array_size(super_copy, array_size);
2922		} else {
2923			ptr += len;
2924			cur += len;
2925		}
2926	}
2927	mutex_unlock(&fs_info->chunk_mutex);
2928	return ret;
2929}
2930
2931/*
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2935 *
2936 * Return: Chunk mapping or ERR_PTR.
2937 */
2938struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939				       u64 logical, u64 length)
2940{
2941	struct extent_map_tree *em_tree;
2942	struct extent_map *em;
2943
2944	em_tree = &fs_info->mapping_tree;
2945	read_lock(&em_tree->lock);
2946	em = lookup_extent_mapping(em_tree, logical, length);
2947	read_unlock(&em_tree->lock);
2948
2949	if (!em) {
2950		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951			   logical, length);
2952		return ERR_PTR(-EINVAL);
2953	}
2954
2955	if (em->start > logical || em->start + em->len < logical) {
2956		btrfs_crit(fs_info,
2957			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958			   logical, length, em->start, em->start + em->len);
2959		free_extent_map(em);
2960		return ERR_PTR(-EINVAL);
2961	}
2962
2963	/* callers are responsible for dropping em's ref. */
2964	return em;
2965}
2966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968{
2969	struct btrfs_fs_info *fs_info = trans->fs_info;
2970	struct extent_map *em;
2971	struct map_lookup *map;
2972	u64 dev_extent_len = 0;
2973	int i, ret = 0;
2974	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975
2976	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977	if (IS_ERR(em)) {
2978		/*
2979		 * This is a logic error, but we don't want to just rely on the
2980		 * user having built with ASSERT enabled, so if ASSERT doesn't
2981		 * do anything we still error out.
2982		 */
2983		ASSERT(0);
2984		return PTR_ERR(em);
2985	}
2986	map = em->map_lookup;
2987	mutex_lock(&fs_info->chunk_mutex);
2988	check_system_chunk(trans, map->type);
2989	mutex_unlock(&fs_info->chunk_mutex);
2990
2991	/*
2992	 * Take the device list mutex to prevent races with the final phase of
2993	 * a device replace operation that replaces the device object associated
2994	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
 
 
 
 
 
2995	 */
2996	mutex_lock(&fs_devices->device_list_mutex);
2997	for (i = 0; i < map->num_stripes; i++) {
2998		struct btrfs_device *device = map->stripes[i].dev;
2999		ret = btrfs_free_dev_extent(trans, device,
3000					    map->stripes[i].physical,
3001					    &dev_extent_len);
3002		if (ret) {
3003			mutex_unlock(&fs_devices->device_list_mutex);
3004			btrfs_abort_transaction(trans, ret);
3005			goto out;
3006		}
3007
3008		if (device->bytes_used > 0) {
3009			mutex_lock(&fs_info->chunk_mutex);
3010			btrfs_device_set_bytes_used(device,
3011					device->bytes_used - dev_extent_len);
3012			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013			btrfs_clear_space_info_full(fs_info);
3014			mutex_unlock(&fs_info->chunk_mutex);
3015		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016
3017		ret = btrfs_update_device(trans, device);
3018		if (ret) {
3019			mutex_unlock(&fs_devices->device_list_mutex);
3020			btrfs_abort_transaction(trans, ret);
3021			goto out;
3022		}
3023	}
3024	mutex_unlock(&fs_devices->device_list_mutex);
3025
3026	ret = btrfs_free_chunk(trans, chunk_offset);
3027	if (ret) {
 
 
 
 
3028		btrfs_abort_transaction(trans, ret);
3029		goto out;
3030	}
3031
3032	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033
3034	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036		if (ret) {
3037			btrfs_abort_transaction(trans, ret);
3038			goto out;
3039		}
3040	}
3041
 
 
 
 
 
 
 
 
 
3042	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043	if (ret) {
3044		btrfs_abort_transaction(trans, ret);
3045		goto out;
3046	}
3047
3048out:
 
 
 
 
3049	/* once for us */
3050	free_extent_map(em);
3051	return ret;
3052}
3053
3054static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055{
3056	struct btrfs_root *root = fs_info->chunk_root;
3057	struct btrfs_trans_handle *trans;
 
 
3058	int ret;
3059
 
 
 
 
 
 
3060	/*
3061	 * Prevent races with automatic removal of unused block groups.
3062	 * After we relocate and before we remove the chunk with offset
3063	 * chunk_offset, automatic removal of the block group can kick in,
3064	 * resulting in a failure when calling btrfs_remove_chunk() below.
3065	 *
3066	 * Make sure to acquire this mutex before doing a tree search (dev
3067	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069	 * we release the path used to search the chunk/dev tree and before
3070	 * the current task acquires this mutex and calls us.
3071	 */
3072	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073
3074	/* step one, relocate all the extents inside this chunk */
3075	btrfs_scrub_pause(fs_info);
3076	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3077	btrfs_scrub_continue(fs_info);
3078	if (ret)
3079		return ret;
3080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082						     chunk_offset);
3083	if (IS_ERR(trans)) {
3084		ret = PTR_ERR(trans);
3085		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086		return ret;
3087	}
3088
3089	/*
3090	 * step two, delete the device extents and the
3091	 * chunk tree entries
3092	 */
3093	ret = btrfs_remove_chunk(trans, chunk_offset);
3094	btrfs_end_transaction(trans);
3095	return ret;
3096}
3097
3098static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3099{
3100	struct btrfs_root *chunk_root = fs_info->chunk_root;
3101	struct btrfs_path *path;
3102	struct extent_buffer *leaf;
3103	struct btrfs_chunk *chunk;
3104	struct btrfs_key key;
3105	struct btrfs_key found_key;
3106	u64 chunk_type;
3107	bool retried = false;
3108	int failed = 0;
3109	int ret;
3110
3111	path = btrfs_alloc_path();
3112	if (!path)
3113		return -ENOMEM;
3114
3115again:
3116	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117	key.offset = (u64)-1;
3118	key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120	while (1) {
3121		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3122		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3123		if (ret < 0) {
3124			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3125			goto error;
3126		}
3127		BUG_ON(ret == 0); /* Corruption */
3128
3129		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130					  key.type);
3131		if (ret)
3132			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3133		if (ret < 0)
3134			goto error;
3135		if (ret > 0)
3136			break;
3137
3138		leaf = path->nodes[0];
3139		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141		chunk = btrfs_item_ptr(leaf, path->slots[0],
3142				       struct btrfs_chunk);
3143		chunk_type = btrfs_chunk_type(leaf, chunk);
3144		btrfs_release_path(path);
3145
3146		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3147			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3148			if (ret == -ENOSPC)
3149				failed++;
3150			else
3151				BUG_ON(ret);
3152		}
3153		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3154
3155		if (found_key.offset == 0)
3156			break;
3157		key.offset = found_key.offset - 1;
3158	}
3159	ret = 0;
3160	if (failed && !retried) {
3161		failed = 0;
3162		retried = true;
3163		goto again;
3164	} else if (WARN_ON(failed && retried)) {
3165		ret = -ENOSPC;
3166	}
3167error:
3168	btrfs_free_path(path);
3169	return ret;
3170}
3171
3172/*
3173 * return 1 : allocate a data chunk successfully,
3174 * return <0: errors during allocating a data chunk,
3175 * return 0 : no need to allocate a data chunk.
3176 */
3177static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178				      u64 chunk_offset)
3179{
3180	struct btrfs_block_group_cache *cache;
3181	u64 bytes_used;
3182	u64 chunk_type;
3183
3184	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185	ASSERT(cache);
3186	chunk_type = cache->flags;
3187	btrfs_put_block_group(cache);
3188
3189	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190		spin_lock(&fs_info->data_sinfo->lock);
3191		bytes_used = fs_info->data_sinfo->bytes_used;
3192		spin_unlock(&fs_info->data_sinfo->lock);
3193
3194		if (!bytes_used) {
3195			struct btrfs_trans_handle *trans;
3196			int ret;
3197
3198			trans =	btrfs_join_transaction(fs_info->tree_root);
3199			if (IS_ERR(trans))
3200				return PTR_ERR(trans);
3201
3202			ret = btrfs_force_chunk_alloc(trans,
3203						      BTRFS_BLOCK_GROUP_DATA);
3204			btrfs_end_transaction(trans);
3205			if (ret < 0)
3206				return ret;
3207			return 1;
3208		}
3209	}
 
3210	return 0;
3211}
3212
3213static int insert_balance_item(struct btrfs_fs_info *fs_info,
3214			       struct btrfs_balance_control *bctl)
3215{
3216	struct btrfs_root *root = fs_info->tree_root;
3217	struct btrfs_trans_handle *trans;
3218	struct btrfs_balance_item *item;
3219	struct btrfs_disk_balance_args disk_bargs;
3220	struct btrfs_path *path;
3221	struct extent_buffer *leaf;
3222	struct btrfs_key key;
3223	int ret, err;
3224
3225	path = btrfs_alloc_path();
3226	if (!path)
3227		return -ENOMEM;
3228
3229	trans = btrfs_start_transaction(root, 0);
3230	if (IS_ERR(trans)) {
3231		btrfs_free_path(path);
3232		return PTR_ERR(trans);
3233	}
3234
3235	key.objectid = BTRFS_BALANCE_OBJECTID;
3236	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3237	key.offset = 0;
3238
3239	ret = btrfs_insert_empty_item(trans, root, path, &key,
3240				      sizeof(*item));
3241	if (ret)
3242		goto out;
3243
3244	leaf = path->nodes[0];
3245	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
3247	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3248
3249	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250	btrfs_set_balance_data(leaf, item, &disk_bargs);
3251	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256	btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258	btrfs_mark_buffer_dirty(leaf);
3259out:
3260	btrfs_free_path(path);
3261	err = btrfs_commit_transaction(trans);
3262	if (err && !ret)
3263		ret = err;
3264	return ret;
3265}
3266
3267static int del_balance_item(struct btrfs_fs_info *fs_info)
3268{
3269	struct btrfs_root *root = fs_info->tree_root;
3270	struct btrfs_trans_handle *trans;
3271	struct btrfs_path *path;
3272	struct btrfs_key key;
3273	int ret, err;
3274
3275	path = btrfs_alloc_path();
3276	if (!path)
3277		return -ENOMEM;
3278
3279	trans = btrfs_start_transaction(root, 0);
3280	if (IS_ERR(trans)) {
3281		btrfs_free_path(path);
3282		return PTR_ERR(trans);
3283	}
3284
3285	key.objectid = BTRFS_BALANCE_OBJECTID;
3286	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3287	key.offset = 0;
3288
3289	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290	if (ret < 0)
3291		goto out;
3292	if (ret > 0) {
3293		ret = -ENOENT;
3294		goto out;
3295	}
3296
3297	ret = btrfs_del_item(trans, root, path);
3298out:
3299	btrfs_free_path(path);
3300	err = btrfs_commit_transaction(trans);
3301	if (err && !ret)
3302		ret = err;
3303	return ret;
3304}
3305
3306/*
3307 * This is a heuristic used to reduce the number of chunks balanced on
3308 * resume after balance was interrupted.
3309 */
3310static void update_balance_args(struct btrfs_balance_control *bctl)
3311{
3312	/*
3313	 * Turn on soft mode for chunk types that were being converted.
3314	 */
3315	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322	/*
3323	 * Turn on usage filter if is not already used.  The idea is
3324	 * that chunks that we have already balanced should be
3325	 * reasonably full.  Don't do it for chunks that are being
3326	 * converted - that will keep us from relocating unconverted
3327	 * (albeit full) chunks.
3328	 */
3329	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3330	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3331	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333		bctl->data.usage = 90;
3334	}
3335	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3336	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3337	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339		bctl->sys.usage = 90;
3340	}
3341	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3342	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3343	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345		bctl->meta.usage = 90;
3346	}
3347}
3348
3349/*
3350 * Clear the balance status in fs_info and delete the balance item from disk.
3351 */
3352static void reset_balance_state(struct btrfs_fs_info *fs_info)
3353{
3354	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3355	int ret;
3356
3357	BUG_ON(!fs_info->balance_ctl);
3358
3359	spin_lock(&fs_info->balance_lock);
3360	fs_info->balance_ctl = NULL;
3361	spin_unlock(&fs_info->balance_lock);
3362
3363	kfree(bctl);
3364	ret = del_balance_item(fs_info);
3365	if (ret)
3366		btrfs_handle_fs_error(fs_info, ret, NULL);
3367}
3368
3369/*
3370 * Balance filters.  Return 1 if chunk should be filtered out
3371 * (should not be balanced).
3372 */
3373static int chunk_profiles_filter(u64 chunk_type,
3374				 struct btrfs_balance_args *bargs)
3375{
3376	chunk_type = chunk_to_extended(chunk_type) &
3377				BTRFS_EXTENDED_PROFILE_MASK;
3378
3379	if (bargs->profiles & chunk_type)
3380		return 0;
3381
3382	return 1;
3383}
3384
3385static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3386			      struct btrfs_balance_args *bargs)
3387{
3388	struct btrfs_block_group_cache *cache;
3389	u64 chunk_used;
3390	u64 user_thresh_min;
3391	u64 user_thresh_max;
3392	int ret = 1;
3393
3394	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395	chunk_used = btrfs_block_group_used(&cache->item);
3396
3397	if (bargs->usage_min == 0)
3398		user_thresh_min = 0;
3399	else
3400		user_thresh_min = div_factor_fine(cache->key.offset,
3401					bargs->usage_min);
3402
3403	if (bargs->usage_max == 0)
3404		user_thresh_max = 1;
3405	else if (bargs->usage_max > 100)
3406		user_thresh_max = cache->key.offset;
3407	else
3408		user_thresh_max = div_factor_fine(cache->key.offset,
3409					bargs->usage_max);
3410
3411	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412		ret = 0;
3413
3414	btrfs_put_block_group(cache);
3415	return ret;
3416}
3417
3418static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3419		u64 chunk_offset, struct btrfs_balance_args *bargs)
3420{
3421	struct btrfs_block_group_cache *cache;
3422	u64 chunk_used, user_thresh;
3423	int ret = 1;
3424
3425	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426	chunk_used = btrfs_block_group_used(&cache->item);
3427
3428	if (bargs->usage_min == 0)
3429		user_thresh = 1;
3430	else if (bargs->usage > 100)
3431		user_thresh = cache->key.offset;
3432	else
3433		user_thresh = div_factor_fine(cache->key.offset,
3434					      bargs->usage);
3435
3436	if (chunk_used < user_thresh)
3437		ret = 0;
3438
3439	btrfs_put_block_group(cache);
3440	return ret;
3441}
3442
3443static int chunk_devid_filter(struct extent_buffer *leaf,
3444			      struct btrfs_chunk *chunk,
3445			      struct btrfs_balance_args *bargs)
3446{
3447	struct btrfs_stripe *stripe;
3448	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449	int i;
3450
3451	for (i = 0; i < num_stripes; i++) {
3452		stripe = btrfs_stripe_nr(chunk, i);
3453		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454			return 0;
3455	}
3456
3457	return 1;
3458}
3459
3460static u64 calc_data_stripes(u64 type, int num_stripes)
3461{
3462	const int index = btrfs_bg_flags_to_raid_index(type);
3463	const int ncopies = btrfs_raid_array[index].ncopies;
3464	const int nparity = btrfs_raid_array[index].nparity;
3465
3466	if (nparity)
3467		return num_stripes - nparity;
3468	else
3469		return num_stripes / ncopies;
3470}
3471
3472/* [pstart, pend) */
3473static int chunk_drange_filter(struct extent_buffer *leaf,
3474			       struct btrfs_chunk *chunk,
3475			       struct btrfs_balance_args *bargs)
3476{
3477	struct btrfs_stripe *stripe;
3478	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479	u64 stripe_offset;
3480	u64 stripe_length;
3481	u64 type;
3482	int factor;
3483	int i;
3484
3485	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486		return 0;
3487
3488	type = btrfs_chunk_type(leaf, chunk);
3489	factor = calc_data_stripes(type, num_stripes);
3490
3491	for (i = 0; i < num_stripes; i++) {
3492		stripe = btrfs_stripe_nr(chunk, i);
3493		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494			continue;
3495
3496		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497		stripe_length = btrfs_chunk_length(leaf, chunk);
3498		stripe_length = div_u64(stripe_length, factor);
3499
3500		if (stripe_offset < bargs->pend &&
3501		    stripe_offset + stripe_length > bargs->pstart)
3502			return 0;
3503	}
3504
3505	return 1;
3506}
3507
3508/* [vstart, vend) */
3509static int chunk_vrange_filter(struct extent_buffer *leaf,
3510			       struct btrfs_chunk *chunk,
3511			       u64 chunk_offset,
3512			       struct btrfs_balance_args *bargs)
3513{
3514	if (chunk_offset < bargs->vend &&
3515	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516		/* at least part of the chunk is inside this vrange */
3517		return 0;
3518
3519	return 1;
3520}
3521
3522static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523			       struct btrfs_chunk *chunk,
3524			       struct btrfs_balance_args *bargs)
3525{
3526	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528	if (bargs->stripes_min <= num_stripes
3529			&& num_stripes <= bargs->stripes_max)
3530		return 0;
3531
3532	return 1;
3533}
3534
3535static int chunk_soft_convert_filter(u64 chunk_type,
3536				     struct btrfs_balance_args *bargs)
3537{
3538	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539		return 0;
3540
3541	chunk_type = chunk_to_extended(chunk_type) &
3542				BTRFS_EXTENDED_PROFILE_MASK;
3543
3544	if (bargs->target == chunk_type)
3545		return 1;
3546
3547	return 0;
3548}
3549
3550static int should_balance_chunk(struct extent_buffer *leaf,
3551				struct btrfs_chunk *chunk, u64 chunk_offset)
3552{
3553	struct btrfs_fs_info *fs_info = leaf->fs_info;
3554	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3555	struct btrfs_balance_args *bargs = NULL;
3556	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558	/* type filter */
3559	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561		return 0;
3562	}
3563
3564	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565		bargs = &bctl->data;
3566	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567		bargs = &bctl->sys;
3568	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569		bargs = &bctl->meta;
3570
3571	/* profiles filter */
3572	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573	    chunk_profiles_filter(chunk_type, bargs)) {
3574		return 0;
3575	}
3576
3577	/* usage filter */
3578	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3579	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3580		return 0;
3581	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3582	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3583		return 0;
3584	}
3585
3586	/* devid filter */
3587	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588	    chunk_devid_filter(leaf, chunk, bargs)) {
3589		return 0;
3590	}
3591
3592	/* drange filter, makes sense only with devid filter */
3593	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3594	    chunk_drange_filter(leaf, chunk, bargs)) {
3595		return 0;
3596	}
3597
3598	/* vrange filter */
3599	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601		return 0;
3602	}
3603
3604	/* stripes filter */
3605	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607		return 0;
3608	}
3609
3610	/* soft profile changing mode */
3611	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612	    chunk_soft_convert_filter(chunk_type, bargs)) {
3613		return 0;
3614	}
3615
3616	/*
3617	 * limited by count, must be the last filter
3618	 */
3619	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620		if (bargs->limit == 0)
3621			return 0;
3622		else
3623			bargs->limit--;
3624	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625		/*
3626		 * Same logic as the 'limit' filter; the minimum cannot be
3627		 * determined here because we do not have the global information
3628		 * about the count of all chunks that satisfy the filters.
3629		 */
3630		if (bargs->limit_max == 0)
3631			return 0;
3632		else
3633			bargs->limit_max--;
3634	}
3635
3636	return 1;
3637}
3638
3639static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3640{
3641	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3642	struct btrfs_root *chunk_root = fs_info->chunk_root;
3643	u64 chunk_type;
3644	struct btrfs_chunk *chunk;
3645	struct btrfs_path *path = NULL;
3646	struct btrfs_key key;
3647	struct btrfs_key found_key;
3648	struct extent_buffer *leaf;
3649	int slot;
3650	int ret;
3651	int enospc_errors = 0;
3652	bool counting = true;
3653	/* The single value limit and min/max limits use the same bytes in the */
3654	u64 limit_data = bctl->data.limit;
3655	u64 limit_meta = bctl->meta.limit;
3656	u64 limit_sys = bctl->sys.limit;
3657	u32 count_data = 0;
3658	u32 count_meta = 0;
3659	u32 count_sys = 0;
3660	int chunk_reserved = 0;
3661
3662	path = btrfs_alloc_path();
3663	if (!path) {
3664		ret = -ENOMEM;
3665		goto error;
3666	}
3667
3668	/* zero out stat counters */
3669	spin_lock(&fs_info->balance_lock);
3670	memset(&bctl->stat, 0, sizeof(bctl->stat));
3671	spin_unlock(&fs_info->balance_lock);
3672again:
3673	if (!counting) {
3674		/*
3675		 * The single value limit and min/max limits use the same bytes
3676		 * in the
3677		 */
3678		bctl->data.limit = limit_data;
3679		bctl->meta.limit = limit_meta;
3680		bctl->sys.limit = limit_sys;
3681	}
3682	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683	key.offset = (u64)-1;
3684	key.type = BTRFS_CHUNK_ITEM_KEY;
3685
3686	while (1) {
3687		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3688		    atomic_read(&fs_info->balance_cancel_req)) {
3689			ret = -ECANCELED;
3690			goto error;
3691		}
3692
3693		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3694		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3695		if (ret < 0) {
3696			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697			goto error;
3698		}
3699
3700		/*
3701		 * this shouldn't happen, it means the last relocate
3702		 * failed
3703		 */
3704		if (ret == 0)
3705			BUG(); /* FIXME break ? */
3706
3707		ret = btrfs_previous_item(chunk_root, path, 0,
3708					  BTRFS_CHUNK_ITEM_KEY);
3709		if (ret) {
3710			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3711			ret = 0;
3712			break;
3713		}
3714
3715		leaf = path->nodes[0];
3716		slot = path->slots[0];
3717		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3718
3719		if (found_key.objectid != key.objectid) {
3720			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721			break;
3722		}
3723
3724		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3725		chunk_type = btrfs_chunk_type(leaf, chunk);
3726
3727		if (!counting) {
3728			spin_lock(&fs_info->balance_lock);
3729			bctl->stat.considered++;
3730			spin_unlock(&fs_info->balance_lock);
3731		}
3732
3733		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3734
3735		btrfs_release_path(path);
3736		if (!ret) {
3737			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738			goto loop;
3739		}
3740
3741		if (counting) {
3742			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743			spin_lock(&fs_info->balance_lock);
3744			bctl->stat.expected++;
3745			spin_unlock(&fs_info->balance_lock);
3746
3747			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748				count_data++;
3749			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750				count_sys++;
3751			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752				count_meta++;
3753
3754			goto loop;
3755		}
3756
3757		/*
3758		 * Apply limit_min filter, no need to check if the LIMITS
3759		 * filter is used, limit_min is 0 by default
3760		 */
3761		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762					count_data < bctl->data.limit_min)
3763				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764					count_meta < bctl->meta.limit_min)
3765				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766					count_sys < bctl->sys.limit_min)) {
3767			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768			goto loop;
3769		}
3770
3771		if (!chunk_reserved) {
3772			/*
3773			 * We may be relocating the only data chunk we have,
3774			 * which could potentially end up with losing data's
3775			 * raid profile, so lets allocate an empty one in
3776			 * advance.
3777			 */
3778			ret = btrfs_may_alloc_data_chunk(fs_info,
3779							 found_key.offset);
3780			if (ret < 0) {
3781				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782				goto error;
3783			} else if (ret == 1) {
3784				chunk_reserved = 1;
3785			}
3786		}
3787
3788		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3789		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790		if (ret == -ENOSPC) {
3791			enospc_errors++;
3792		} else if (ret == -ETXTBSY) {
3793			btrfs_info(fs_info,
3794	   "skipping relocation of block group %llu due to active swapfile",
3795				   found_key.offset);
3796			ret = 0;
3797		} else if (ret) {
3798			goto error;
3799		} else {
3800			spin_lock(&fs_info->balance_lock);
3801			bctl->stat.completed++;
3802			spin_unlock(&fs_info->balance_lock);
3803		}
3804loop:
3805		if (found_key.offset == 0)
3806			break;
3807		key.offset = found_key.offset - 1;
3808	}
3809
3810	if (counting) {
3811		btrfs_release_path(path);
3812		counting = false;
3813		goto again;
3814	}
3815error:
3816	btrfs_free_path(path);
3817	if (enospc_errors) {
3818		btrfs_info(fs_info, "%d enospc errors during balance",
3819			   enospc_errors);
3820		if (!ret)
3821			ret = -ENOSPC;
3822	}
3823
3824	return ret;
3825}
3826
3827/**
3828 * alloc_profile_is_valid - see if a given profile is valid and reduced
3829 * @flags: profile to validate
3830 * @extended: if true @flags is treated as an extended profile
 
3831 */
3832static int alloc_profile_is_valid(u64 flags, int extended)
3833{
3834	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839	/* 1) check that all other bits are zeroed */
3840	if (flags & ~mask)
3841		return 0;
3842
3843	/* 2) see if profile is reduced */
3844	if (flags == 0)
3845		return !extended; /* "0" is valid for usual profiles */
3846
3847	/* true if exactly one bit set */
3848	/*
3849	 * Don't use is_power_of_2(unsigned long) because it won't work
3850	 * for the single profile (1ULL << 48) on 32-bit CPUs.
3851	 */
3852	return flags != 0 && (flags & (flags - 1)) == 0;
3853}
3854
3855static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3856{
3857	/* cancel requested || normal exit path */
3858	return atomic_read(&fs_info->balance_cancel_req) ||
3859		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3860		 atomic_read(&fs_info->balance_cancel_req) == 0);
3861}
3862
3863/* Non-zero return value signifies invalidity */
3864static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3865		u64 allowed)
3866{
3867	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3869		 (bctl_arg->target & ~allowed)));
 
 
 
 
 
 
 
 
 
 
 
 
3870}
3871
3872/*
3873 * Fill @buf with textual description of balance filter flags @bargs, up to
3874 * @size_buf including the terminating null. The output may be trimmed if it
3875 * does not fit into the provided buffer.
3876 */
3877static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3878				 u32 size_buf)
3879{
3880	int ret;
3881	u32 size_bp = size_buf;
3882	char *bp = buf;
3883	u64 flags = bargs->flags;
3884	char tmp_buf[128] = {'\0'};
3885
3886	if (!flags)
3887		return;
3888
3889#define CHECK_APPEND_NOARG(a)						\
3890	do {								\
3891		ret = snprintf(bp, size_bp, (a));			\
3892		if (ret < 0 || ret >= size_bp)				\
3893			goto out_overflow;				\
3894		size_bp -= ret;						\
3895		bp += ret;						\
3896	} while (0)
3897
3898#define CHECK_APPEND_1ARG(a, v1)					\
3899	do {								\
3900		ret = snprintf(bp, size_bp, (a), (v1));			\
3901		if (ret < 0 || ret >= size_bp)				\
3902			goto out_overflow;				\
3903		size_bp -= ret;						\
3904		bp += ret;						\
3905	} while (0)
3906
3907#define CHECK_APPEND_2ARG(a, v1, v2)					\
3908	do {								\
3909		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3910		if (ret < 0 || ret >= size_bp)				\
3911			goto out_overflow;				\
3912		size_bp -= ret;						\
3913		bp += ret;						\
3914	} while (0)
3915
3916	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3917		CHECK_APPEND_1ARG("convert=%s,",
3918				  btrfs_bg_type_to_raid_name(bargs->target));
3919
3920	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3921		CHECK_APPEND_NOARG("soft,");
3922
3923	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3924		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3925					    sizeof(tmp_buf));
3926		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3927	}
3928
3929	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3930		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3931
3932	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3933		CHECK_APPEND_2ARG("usage=%u..%u,",
3934				  bargs->usage_min, bargs->usage_max);
3935
3936	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3937		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3938
3939	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3940		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3941				  bargs->pstart, bargs->pend);
3942
3943	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3944		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3945				  bargs->vstart, bargs->vend);
3946
3947	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3948		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3949
3950	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3951		CHECK_APPEND_2ARG("limit=%u..%u,",
3952				bargs->limit_min, bargs->limit_max);
3953
3954	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3955		CHECK_APPEND_2ARG("stripes=%u..%u,",
3956				  bargs->stripes_min, bargs->stripes_max);
3957
3958#undef CHECK_APPEND_2ARG
3959#undef CHECK_APPEND_1ARG
3960#undef CHECK_APPEND_NOARG
3961
3962out_overflow:
3963
3964	if (size_bp < size_buf)
3965		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3966	else
3967		buf[0] = '\0';
3968}
3969
3970static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3971{
3972	u32 size_buf = 1024;
3973	char tmp_buf[192] = {'\0'};
3974	char *buf;
3975	char *bp;
3976	u32 size_bp = size_buf;
3977	int ret;
3978	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979
3980	buf = kzalloc(size_buf, GFP_KERNEL);
3981	if (!buf)
3982		return;
3983
3984	bp = buf;
3985
3986#define CHECK_APPEND_1ARG(a, v1)					\
3987	do {								\
3988		ret = snprintf(bp, size_bp, (a), (v1));			\
3989		if (ret < 0 || ret >= size_bp)				\
3990			goto out_overflow;				\
3991		size_bp -= ret;						\
3992		bp += ret;						\
3993	} while (0)
3994
3995	if (bctl->flags & BTRFS_BALANCE_FORCE)
3996		CHECK_APPEND_1ARG("%s", "-f ");
3997
3998	if (bctl->flags & BTRFS_BALANCE_DATA) {
3999		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4000		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4001	}
4002
4003	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4004		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4005		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4006	}
4007
4008	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4009		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4010		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4011	}
4012
4013#undef CHECK_APPEND_1ARG
4014
4015out_overflow:
4016
4017	if (size_bp < size_buf)
4018		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4019	btrfs_info(fs_info, "balance: %s %s",
4020		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4021		   "resume" : "start", buf);
4022
4023	kfree(buf);
4024}
4025
4026/*
4027 * Should be called with balance mutexe held
4028 */
4029int btrfs_balance(struct btrfs_fs_info *fs_info,
4030		  struct btrfs_balance_control *bctl,
4031		  struct btrfs_ioctl_balance_args *bargs)
4032{
4033	u64 meta_target, data_target;
4034	u64 allowed;
4035	int mixed = 0;
4036	int ret;
4037	u64 num_devices;
4038	unsigned seq;
4039	bool reducing_integrity;
4040	int i;
4041
4042	if (btrfs_fs_closing(fs_info) ||
4043	    atomic_read(&fs_info->balance_pause_req) ||
4044	    atomic_read(&fs_info->balance_cancel_req)) {
4045		ret = -EINVAL;
4046		goto out;
4047	}
4048
4049	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4050	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4051		mixed = 1;
4052
4053	/*
4054	 * In case of mixed groups both data and meta should be picked,
4055	 * and identical options should be given for both of them.
4056	 */
4057	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4058	if (mixed && (bctl->flags & allowed)) {
4059		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4060		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4061		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4062			btrfs_err(fs_info,
4063	  "balance: mixed groups data and metadata options must be the same");
4064			ret = -EINVAL;
4065			goto out;
4066		}
4067	}
4068
4069	num_devices = btrfs_num_devices(fs_info);
 
 
 
 
4070
4071	/*
4072	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073	 * special bit for it, to make it easier to distinguish.  Thus we need
4074	 * to set it manually, or balance would refuse the profile.
4075	 */
4076	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078		if (num_devices >= btrfs_raid_array[i].devs_min)
4079			allowed |= btrfs_raid_array[i].bg_flag;
4080
4081	if (validate_convert_profile(&bctl->data, allowed)) {
4082		btrfs_err(fs_info,
4083			  "balance: invalid convert data profile %s",
4084			  btrfs_bg_type_to_raid_name(bctl->data.target));
4085		ret = -EINVAL;
4086		goto out;
4087	}
4088	if (validate_convert_profile(&bctl->meta, allowed)) {
4089		btrfs_err(fs_info,
4090			  "balance: invalid convert metadata profile %s",
4091			  btrfs_bg_type_to_raid_name(bctl->meta.target));
4092		ret = -EINVAL;
4093		goto out;
4094	}
4095	if (validate_convert_profile(&bctl->sys, allowed)) {
4096		btrfs_err(fs_info,
4097			  "balance: invalid convert system profile %s",
4098			  btrfs_bg_type_to_raid_name(bctl->sys.target));
4099		ret = -EINVAL;
4100		goto out;
4101	}
4102
4103	/*
4104	 * Allow to reduce metadata or system integrity only if force set for
4105	 * profiles with redundancy (copies, parity)
4106	 */
4107	allowed = 0;
4108	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4109		if (btrfs_raid_array[i].ncopies >= 2 ||
4110		    btrfs_raid_array[i].tolerated_failures >= 1)
4111			allowed |= btrfs_raid_array[i].bg_flag;
4112	}
4113	do {
4114		seq = read_seqbegin(&fs_info->profiles_lock);
4115
4116		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4117		     (fs_info->avail_system_alloc_bits & allowed) &&
4118		     !(bctl->sys.target & allowed)) ||
4119		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4120		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4121		     !(bctl->meta.target & allowed)))
4122			reducing_integrity = true;
4123		else
4124			reducing_integrity = false;
4125
4126		/* if we're not converting, the target field is uninitialized */
4127		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4128			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4129		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4130			bctl->data.target : fs_info->avail_data_alloc_bits;
4131	} while (read_seqretry(&fs_info->profiles_lock, seq));
4132
4133	if (reducing_integrity) {
4134		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4135			btrfs_info(fs_info,
4136				   "balance: force reducing metadata integrity");
4137		} else {
4138			btrfs_err(fs_info,
4139	  "balance: reduces metadata integrity, use --force if you want this");
4140			ret = -EINVAL;
4141			goto out;
4142		}
4143	}
4144
4145	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4146		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4147		btrfs_warn(fs_info,
4148	"balance: metadata profile %s has lower redundancy than data profile %s",
4149				btrfs_bg_type_to_raid_name(meta_target),
4150				btrfs_bg_type_to_raid_name(data_target));
4151	}
4152
4153	if (fs_info->send_in_progress) {
4154		btrfs_warn_rl(fs_info,
4155"cannot run balance while send operations are in progress (%d in progress)",
4156			      fs_info->send_in_progress);
4157		ret = -EAGAIN;
4158		goto out;
4159	}
4160
4161	ret = insert_balance_item(fs_info, bctl);
4162	if (ret && ret != -EEXIST)
4163		goto out;
4164
4165	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4166		BUG_ON(ret == -EEXIST);
4167		BUG_ON(fs_info->balance_ctl);
4168		spin_lock(&fs_info->balance_lock);
4169		fs_info->balance_ctl = bctl;
4170		spin_unlock(&fs_info->balance_lock);
4171	} else {
4172		BUG_ON(ret != -EEXIST);
4173		spin_lock(&fs_info->balance_lock);
4174		update_balance_args(bctl);
4175		spin_unlock(&fs_info->balance_lock);
4176	}
4177
4178	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4179	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4180	describe_balance_start_or_resume(fs_info);
4181	mutex_unlock(&fs_info->balance_mutex);
4182
4183	ret = __btrfs_balance(fs_info);
4184
4185	mutex_lock(&fs_info->balance_mutex);
4186	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4187		btrfs_info(fs_info, "balance: paused");
4188	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4189		btrfs_info(fs_info, "balance: canceled");
4190	else
4191		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195	if (bargs) {
4196		memset(bargs, 0, sizeof(*bargs));
4197		btrfs_update_ioctl_balance_args(fs_info, bargs);
4198	}
4199
4200	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201	    balance_need_close(fs_info)) {
4202		reset_balance_state(fs_info);
4203		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4204	}
4205
4206	wake_up(&fs_info->balance_wait_q);
4207
4208	return ret;
4209out:
4210	if (bctl->flags & BTRFS_BALANCE_RESUME)
4211		reset_balance_state(fs_info);
4212	else
4213		kfree(bctl);
4214	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4215
4216	return ret;
4217}
4218
4219static int balance_kthread(void *data)
4220{
4221	struct btrfs_fs_info *fs_info = data;
4222	int ret = 0;
4223
 
4224	mutex_lock(&fs_info->balance_mutex);
4225	if (fs_info->balance_ctl)
4226		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227	mutex_unlock(&fs_info->balance_mutex);
 
4228
4229	return ret;
4230}
4231
4232int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233{
4234	struct task_struct *tsk;
4235
4236	mutex_lock(&fs_info->balance_mutex);
4237	if (!fs_info->balance_ctl) {
4238		mutex_unlock(&fs_info->balance_mutex);
4239		return 0;
4240	}
4241	mutex_unlock(&fs_info->balance_mutex);
4242
4243	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244		btrfs_info(fs_info, "balance: resume skipped");
4245		return 0;
4246	}
4247
 
 
 
 
4248	/*
4249	 * A ro->rw remount sequence should continue with the paused balance
4250	 * regardless of who pauses it, system or the user as of now, so set
4251	 * the resume flag.
4252	 */
4253	spin_lock(&fs_info->balance_lock);
4254	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255	spin_unlock(&fs_info->balance_lock);
4256
4257	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258	return PTR_ERR_OR_ZERO(tsk);
4259}
4260
4261int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262{
4263	struct btrfs_balance_control *bctl;
4264	struct btrfs_balance_item *item;
4265	struct btrfs_disk_balance_args disk_bargs;
4266	struct btrfs_path *path;
4267	struct extent_buffer *leaf;
4268	struct btrfs_key key;
4269	int ret;
4270
4271	path = btrfs_alloc_path();
4272	if (!path)
4273		return -ENOMEM;
4274
4275	key.objectid = BTRFS_BALANCE_OBJECTID;
4276	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277	key.offset = 0;
4278
4279	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280	if (ret < 0)
4281		goto out;
4282	if (ret > 0) { /* ret = -ENOENT; */
4283		ret = 0;
4284		goto out;
4285	}
4286
4287	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288	if (!bctl) {
4289		ret = -ENOMEM;
4290		goto out;
4291	}
4292
4293	leaf = path->nodes[0];
4294	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296	bctl->flags = btrfs_balance_flags(leaf, item);
4297	bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299	btrfs_balance_data(leaf, item, &disk_bargs);
4300	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301	btrfs_balance_meta(leaf, item, &disk_bargs);
4302	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303	btrfs_balance_sys(leaf, item, &disk_bargs);
4304	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306	/*
4307	 * This should never happen, as the paused balance state is recovered
4308	 * during mount without any chance of other exclusive ops to collide.
4309	 *
4310	 * This gives the exclusive op status to balance and keeps in paused
4311	 * state until user intervention (cancel or umount). If the ownership
4312	 * cannot be assigned, show a message but do not fail. The balance
4313	 * is in a paused state and must have fs_info::balance_ctl properly
4314	 * set up.
4315	 */
4316	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4317		btrfs_warn(fs_info,
4318	"balance: cannot set exclusive op status, resume manually");
4319
 
 
4320	mutex_lock(&fs_info->balance_mutex);
4321	BUG_ON(fs_info->balance_ctl);
4322	spin_lock(&fs_info->balance_lock);
4323	fs_info->balance_ctl = bctl;
4324	spin_unlock(&fs_info->balance_lock);
4325	mutex_unlock(&fs_info->balance_mutex);
4326out:
4327	btrfs_free_path(path);
4328	return ret;
4329}
4330
4331int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4332{
4333	int ret = 0;
4334
4335	mutex_lock(&fs_info->balance_mutex);
4336	if (!fs_info->balance_ctl) {
4337		mutex_unlock(&fs_info->balance_mutex);
4338		return -ENOTCONN;
4339	}
4340
4341	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4342		atomic_inc(&fs_info->balance_pause_req);
4343		mutex_unlock(&fs_info->balance_mutex);
4344
4345		wait_event(fs_info->balance_wait_q,
4346			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347
4348		mutex_lock(&fs_info->balance_mutex);
4349		/* we are good with balance_ctl ripped off from under us */
4350		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351		atomic_dec(&fs_info->balance_pause_req);
4352	} else {
4353		ret = -ENOTCONN;
4354	}
4355
4356	mutex_unlock(&fs_info->balance_mutex);
4357	return ret;
4358}
4359
4360int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4361{
4362	mutex_lock(&fs_info->balance_mutex);
4363	if (!fs_info->balance_ctl) {
4364		mutex_unlock(&fs_info->balance_mutex);
4365		return -ENOTCONN;
4366	}
4367
4368	/*
4369	 * A paused balance with the item stored on disk can be resumed at
4370	 * mount time if the mount is read-write. Otherwise it's still paused
4371	 * and we must not allow cancelling as it deletes the item.
4372	 */
4373	if (sb_rdonly(fs_info->sb)) {
4374		mutex_unlock(&fs_info->balance_mutex);
4375		return -EROFS;
4376	}
4377
4378	atomic_inc(&fs_info->balance_cancel_req);
4379	/*
4380	 * if we are running just wait and return, balance item is
4381	 * deleted in btrfs_balance in this case
4382	 */
4383	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4384		mutex_unlock(&fs_info->balance_mutex);
4385		wait_event(fs_info->balance_wait_q,
4386			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4387		mutex_lock(&fs_info->balance_mutex);
4388	} else {
4389		mutex_unlock(&fs_info->balance_mutex);
4390		/*
4391		 * Lock released to allow other waiters to continue, we'll
4392		 * reexamine the status again.
4393		 */
4394		mutex_lock(&fs_info->balance_mutex);
4395
4396		if (fs_info->balance_ctl) {
4397			reset_balance_state(fs_info);
4398			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4399			btrfs_info(fs_info, "balance: canceled");
4400		}
4401	}
4402
4403	BUG_ON(fs_info->balance_ctl ||
4404		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4405	atomic_dec(&fs_info->balance_cancel_req);
4406	mutex_unlock(&fs_info->balance_mutex);
4407	return 0;
4408}
4409
4410static int btrfs_uuid_scan_kthread(void *data)
4411{
4412	struct btrfs_fs_info *fs_info = data;
4413	struct btrfs_root *root = fs_info->tree_root;
4414	struct btrfs_key key;
4415	struct btrfs_path *path = NULL;
4416	int ret = 0;
4417	struct extent_buffer *eb;
4418	int slot;
4419	struct btrfs_root_item root_item;
4420	u32 item_size;
4421	struct btrfs_trans_handle *trans = NULL;
 
4422
4423	path = btrfs_alloc_path();
4424	if (!path) {
4425		ret = -ENOMEM;
4426		goto out;
4427	}
4428
4429	key.objectid = 0;
4430	key.type = BTRFS_ROOT_ITEM_KEY;
4431	key.offset = 0;
4432
4433	while (1) {
 
 
 
 
4434		ret = btrfs_search_forward(root, &key, path,
4435				BTRFS_OLDEST_GENERATION);
4436		if (ret) {
4437			if (ret > 0)
4438				ret = 0;
4439			break;
4440		}
4441
4442		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4443		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4444		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4445		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4446			goto skip;
4447
4448		eb = path->nodes[0];
4449		slot = path->slots[0];
4450		item_size = btrfs_item_size_nr(eb, slot);
4451		if (item_size < sizeof(root_item))
4452			goto skip;
4453
4454		read_extent_buffer(eb, &root_item,
4455				   btrfs_item_ptr_offset(eb, slot),
4456				   (int)sizeof(root_item));
4457		if (btrfs_root_refs(&root_item) == 0)
4458			goto skip;
4459
4460		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4461		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4462			if (trans)
4463				goto update_tree;
4464
4465			btrfs_release_path(path);
4466			/*
4467			 * 1 - subvol uuid item
4468			 * 1 - received_subvol uuid item
4469			 */
4470			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4471			if (IS_ERR(trans)) {
4472				ret = PTR_ERR(trans);
4473				break;
4474			}
4475			continue;
4476		} else {
4477			goto skip;
4478		}
4479update_tree:
 
4480		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4481			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4482						  BTRFS_UUID_KEY_SUBVOL,
4483						  key.objectid);
4484			if (ret < 0) {
4485				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4486					ret);
4487				break;
4488			}
4489		}
4490
4491		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4492			ret = btrfs_uuid_tree_add(trans,
4493						  root_item.received_uuid,
4494						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4495						  key.objectid);
4496			if (ret < 0) {
4497				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498					ret);
4499				break;
4500			}
4501		}
4502
4503skip:
 
4504		if (trans) {
4505			ret = btrfs_end_transaction(trans);
4506			trans = NULL;
4507			if (ret)
4508				break;
4509		}
4510
4511		btrfs_release_path(path);
4512		if (key.offset < (u64)-1) {
4513			key.offset++;
4514		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4515			key.offset = 0;
4516			key.type = BTRFS_ROOT_ITEM_KEY;
4517		} else if (key.objectid < (u64)-1) {
4518			key.offset = 0;
4519			key.type = BTRFS_ROOT_ITEM_KEY;
4520			key.objectid++;
4521		} else {
4522			break;
4523		}
4524		cond_resched();
4525	}
4526
4527out:
4528	btrfs_free_path(path);
4529	if (trans && !IS_ERR(trans))
4530		btrfs_end_transaction(trans);
4531	if (ret)
4532		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4533	else
4534		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4535	up(&fs_info->uuid_tree_rescan_sem);
4536	return 0;
4537}
4538
4539/*
4540 * Callback for btrfs_uuid_tree_iterate().
4541 * returns:
4542 * 0	check succeeded, the entry is not outdated.
4543 * < 0	if an error occurred.
4544 * > 0	if the check failed, which means the caller shall remove the entry.
4545 */
4546static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4547				       u8 *uuid, u8 type, u64 subid)
4548{
4549	struct btrfs_key key;
4550	int ret = 0;
4551	struct btrfs_root *subvol_root;
4552
4553	if (type != BTRFS_UUID_KEY_SUBVOL &&
4554	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4555		goto out;
4556
4557	key.objectid = subid;
4558	key.type = BTRFS_ROOT_ITEM_KEY;
4559	key.offset = (u64)-1;
4560	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4561	if (IS_ERR(subvol_root)) {
4562		ret = PTR_ERR(subvol_root);
4563		if (ret == -ENOENT)
4564			ret = 1;
4565		goto out;
4566	}
4567
4568	switch (type) {
4569	case BTRFS_UUID_KEY_SUBVOL:
4570		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4571			ret = 1;
4572		break;
4573	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4574		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4575			   BTRFS_UUID_SIZE))
4576			ret = 1;
4577		break;
4578	}
4579
4580out:
4581	return ret;
4582}
4583
4584static int btrfs_uuid_rescan_kthread(void *data)
4585{
4586	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4587	int ret;
4588
4589	/*
4590	 * 1st step is to iterate through the existing UUID tree and
4591	 * to delete all entries that contain outdated data.
4592	 * 2nd step is to add all missing entries to the UUID tree.
4593	 */
4594	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4595	if (ret < 0) {
4596		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4597		up(&fs_info->uuid_tree_rescan_sem);
4598		return ret;
4599	}
4600	return btrfs_uuid_scan_kthread(data);
4601}
4602
4603int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4604{
4605	struct btrfs_trans_handle *trans;
4606	struct btrfs_root *tree_root = fs_info->tree_root;
4607	struct btrfs_root *uuid_root;
4608	struct task_struct *task;
4609	int ret;
4610
4611	/*
4612	 * 1 - root node
4613	 * 1 - root item
4614	 */
4615	trans = btrfs_start_transaction(tree_root, 2);
4616	if (IS_ERR(trans))
4617		return PTR_ERR(trans);
4618
4619	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4620	if (IS_ERR(uuid_root)) {
4621		ret = PTR_ERR(uuid_root);
4622		btrfs_abort_transaction(trans, ret);
4623		btrfs_end_transaction(trans);
4624		return ret;
4625	}
4626
4627	fs_info->uuid_root = uuid_root;
4628
4629	ret = btrfs_commit_transaction(trans);
4630	if (ret)
4631		return ret;
4632
4633	down(&fs_info->uuid_tree_rescan_sem);
4634	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4635	if (IS_ERR(task)) {
4636		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4637		btrfs_warn(fs_info, "failed to start uuid_scan task");
4638		up(&fs_info->uuid_tree_rescan_sem);
4639		return PTR_ERR(task);
4640	}
4641
4642	return 0;
4643}
4644
4645int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4646{
4647	struct task_struct *task;
4648
4649	down(&fs_info->uuid_tree_rescan_sem);
4650	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4651	if (IS_ERR(task)) {
4652		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4653		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4654		up(&fs_info->uuid_tree_rescan_sem);
4655		return PTR_ERR(task);
4656	}
4657
4658	return 0;
4659}
4660
4661/*
4662 * shrinking a device means finding all of the device extents past
4663 * the new size, and then following the back refs to the chunks.
4664 * The chunk relocation code actually frees the device extent
4665 */
4666int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4667{
4668	struct btrfs_fs_info *fs_info = device->fs_info;
4669	struct btrfs_root *root = fs_info->dev_root;
4670	struct btrfs_trans_handle *trans;
4671	struct btrfs_dev_extent *dev_extent = NULL;
4672	struct btrfs_path *path;
4673	u64 length;
4674	u64 chunk_offset;
4675	int ret;
4676	int slot;
4677	int failed = 0;
4678	bool retried = false;
4679	struct extent_buffer *l;
4680	struct btrfs_key key;
4681	struct btrfs_super_block *super_copy = fs_info->super_copy;
4682	u64 old_total = btrfs_super_total_bytes(super_copy);
4683	u64 old_size = btrfs_device_get_total_bytes(device);
4684	u64 diff;
4685	u64 start;
4686
4687	new_size = round_down(new_size, fs_info->sectorsize);
4688	start = new_size;
4689	diff = round_down(old_size - new_size, fs_info->sectorsize);
4690
4691	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4692		return -EINVAL;
4693
4694	path = btrfs_alloc_path();
4695	if (!path)
4696		return -ENOMEM;
4697
4698	path->reada = READA_BACK;
4699
4700	trans = btrfs_start_transaction(root, 0);
4701	if (IS_ERR(trans)) {
4702		btrfs_free_path(path);
4703		return PTR_ERR(trans);
4704	}
4705
4706	mutex_lock(&fs_info->chunk_mutex);
4707
4708	btrfs_device_set_total_bytes(device, new_size);
4709	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4710		device->fs_devices->total_rw_bytes -= diff;
4711		atomic64_sub(diff, &fs_info->free_chunk_space);
4712	}
4713
4714	/*
4715	 * Once the device's size has been set to the new size, ensure all
4716	 * in-memory chunks are synced to disk so that the loop below sees them
4717	 * and relocates them accordingly.
4718	 */
4719	if (contains_pending_extent(device, &start, diff)) {
4720		mutex_unlock(&fs_info->chunk_mutex);
4721		ret = btrfs_commit_transaction(trans);
4722		if (ret)
4723			goto done;
4724	} else {
4725		mutex_unlock(&fs_info->chunk_mutex);
4726		btrfs_end_transaction(trans);
4727	}
4728
4729again:
4730	key.objectid = device->devid;
4731	key.offset = (u64)-1;
4732	key.type = BTRFS_DEV_EXTENT_KEY;
4733
4734	do {
4735		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4736		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4737		if (ret < 0) {
4738			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4739			goto done;
4740		}
4741
4742		ret = btrfs_previous_item(root, path, 0, key.type);
4743		if (ret)
4744			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4745		if (ret < 0)
4746			goto done;
4747		if (ret) {
 
 
 
4748			ret = 0;
4749			btrfs_release_path(path);
4750			break;
4751		}
4752
4753		l = path->nodes[0];
4754		slot = path->slots[0];
4755		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4756
4757		if (key.objectid != device->devid) {
4758			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4759			btrfs_release_path(path);
4760			break;
4761		}
4762
4763		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4764		length = btrfs_dev_extent_length(l, dev_extent);
4765
4766		if (key.offset + length <= new_size) {
4767			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4768			btrfs_release_path(path);
4769			break;
4770		}
4771
4772		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4773		btrfs_release_path(path);
4774
4775		/*
4776		 * We may be relocating the only data chunk we have,
4777		 * which could potentially end up with losing data's
4778		 * raid profile, so lets allocate an empty one in
4779		 * advance.
4780		 */
4781		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4782		if (ret < 0) {
4783			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4784			goto done;
4785		}
4786
4787		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4788		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4789		if (ret == -ENOSPC) {
4790			failed++;
4791		} else if (ret) {
4792			if (ret == -ETXTBSY) {
4793				btrfs_warn(fs_info,
4794		   "could not shrink block group %llu due to active swapfile",
4795					   chunk_offset);
4796			}
4797			goto done;
4798		}
4799	} while (key.offset-- > 0);
4800
4801	if (failed && !retried) {
4802		failed = 0;
4803		retried = true;
4804		goto again;
4805	} else if (failed && retried) {
4806		ret = -ENOSPC;
4807		goto done;
4808	}
4809
4810	/* Shrinking succeeded, else we would be at "done". */
4811	trans = btrfs_start_transaction(root, 0);
4812	if (IS_ERR(trans)) {
4813		ret = PTR_ERR(trans);
4814		goto done;
4815	}
4816
4817	mutex_lock(&fs_info->chunk_mutex);
 
 
 
 
4818	btrfs_device_set_disk_total_bytes(device, new_size);
4819	if (list_empty(&device->post_commit_list))
4820		list_add_tail(&device->post_commit_list,
4821			      &trans->transaction->dev_update_list);
4822
4823	WARN_ON(diff > old_total);
4824	btrfs_set_super_total_bytes(super_copy,
4825			round_down(old_total - diff, fs_info->sectorsize));
4826	mutex_unlock(&fs_info->chunk_mutex);
4827
 
4828	/* Now btrfs_update_device() will change the on-disk size. */
4829	ret = btrfs_update_device(trans, device);
 
4830	if (ret < 0) {
4831		btrfs_abort_transaction(trans, ret);
4832		btrfs_end_transaction(trans);
4833	} else {
4834		ret = btrfs_commit_transaction(trans);
4835	}
4836done:
4837	btrfs_free_path(path);
4838	if (ret) {
4839		mutex_lock(&fs_info->chunk_mutex);
4840		btrfs_device_set_total_bytes(device, old_size);
4841		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4842			device->fs_devices->total_rw_bytes += diff;
4843		atomic64_add(diff, &fs_info->free_chunk_space);
4844		mutex_unlock(&fs_info->chunk_mutex);
4845	}
4846	return ret;
4847}
4848
4849static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4850			   struct btrfs_key *key,
4851			   struct btrfs_chunk *chunk, int item_size)
4852{
4853	struct btrfs_super_block *super_copy = fs_info->super_copy;
4854	struct btrfs_disk_key disk_key;
4855	u32 array_size;
4856	u8 *ptr;
4857
4858	mutex_lock(&fs_info->chunk_mutex);
 
4859	array_size = btrfs_super_sys_array_size(super_copy);
4860	if (array_size + item_size + sizeof(disk_key)
4861			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4862		mutex_unlock(&fs_info->chunk_mutex);
4863		return -EFBIG;
4864	}
4865
4866	ptr = super_copy->sys_chunk_array + array_size;
4867	btrfs_cpu_key_to_disk(&disk_key, key);
4868	memcpy(ptr, &disk_key, sizeof(disk_key));
4869	ptr += sizeof(disk_key);
4870	memcpy(ptr, chunk, item_size);
4871	item_size += sizeof(disk_key);
4872	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4873	mutex_unlock(&fs_info->chunk_mutex);
4874
4875	return 0;
4876}
4877
4878/*
4879 * sort the devices in descending order by max_avail, total_avail
4880 */
4881static int btrfs_cmp_device_info(const void *a, const void *b)
4882{
4883	const struct btrfs_device_info *di_a = a;
4884	const struct btrfs_device_info *di_b = b;
4885
4886	if (di_a->max_avail > di_b->max_avail)
4887		return -1;
4888	if (di_a->max_avail < di_b->max_avail)
4889		return 1;
4890	if (di_a->total_avail > di_b->total_avail)
4891		return -1;
4892	if (di_a->total_avail < di_b->total_avail)
4893		return 1;
4894	return 0;
4895}
4896
4897static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4898{
4899	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4900		return;
4901
4902	btrfs_set_fs_incompat(info, RAID56);
4903}
4904
4905static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906			       u64 start, u64 type)
4907{
4908	struct btrfs_fs_info *info = trans->fs_info;
4909	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4910	struct btrfs_device *device;
4911	struct map_lookup *map = NULL;
4912	struct extent_map_tree *em_tree;
4913	struct extent_map *em;
4914	struct btrfs_device_info *devices_info = NULL;
4915	u64 total_avail;
4916	int num_stripes;	/* total number of stripes to allocate */
4917	int data_stripes;	/* number of stripes that count for
4918				   block group size */
4919	int sub_stripes;	/* sub_stripes info for map */
4920	int dev_stripes;	/* stripes per dev */
4921	int devs_max;		/* max devs to use */
4922	int devs_min;		/* min devs needed */
4923	int devs_increment;	/* ndevs has to be a multiple of this */
4924	int ncopies;		/* how many copies to data has */
4925	int nparity;		/* number of stripes worth of bytes to
4926				   store parity information */
4927	int ret;
 
 
 
 
 
 
 
 
 
4928	u64 max_stripe_size;
4929	u64 max_chunk_size;
 
4930	u64 stripe_size;
4931	u64 chunk_size;
4932	int ndevs;
4933	int i;
4934	int j;
4935	int index;
 
 
 
 
4936
4937	BUG_ON(!alloc_profile_is_valid(type, 0));
 
4938
4939	if (list_empty(&fs_devices->alloc_list)) {
4940		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4941			btrfs_debug(info, "%s: no writable device", __func__);
4942		return -ENOSPC;
4943	}
4944
4945	index = btrfs_bg_flags_to_raid_index(type);
 
4946
4947	sub_stripes = btrfs_raid_array[index].sub_stripes;
4948	dev_stripes = btrfs_raid_array[index].dev_stripes;
4949	devs_max = btrfs_raid_array[index].devs_max;
4950	if (!devs_max)
4951		devs_max = BTRFS_MAX_DEVS(info);
4952	devs_min = btrfs_raid_array[index].devs_min;
4953	devs_increment = btrfs_raid_array[index].devs_increment;
4954	ncopies = btrfs_raid_array[index].ncopies;
4955	nparity = btrfs_raid_array[index].nparity;
 
 
 
 
 
 
 
4956
 
4957	if (type & BTRFS_BLOCK_GROUP_DATA) {
4958		max_stripe_size = SZ_1G;
4959		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4960	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4961		/* for larger filesystems, use larger metadata chunks */
4962		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4963			max_stripe_size = SZ_1G;
4964		else
4965			max_stripe_size = SZ_256M;
4966		max_chunk_size = max_stripe_size;
4967	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4968		max_stripe_size = SZ_32M;
4969		max_chunk_size = 2 * max_stripe_size;
4970		devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4971	} else {
4972		btrfs_err(info, "invalid chunk type 0x%llx requested",
4973		       type);
4974		BUG();
4975	}
4976
4977	/* We don't want a chunk larger than 10% of writable space */
4978	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4979			     max_chunk_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4980
4981	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4982			       GFP_NOFS);
4983	if (!devices_info)
4984		return -ENOMEM;
 
 
 
 
 
 
 
 
4985
4986	/*
4987	 * in the first pass through the devices list, we gather information
4988	 * about the available holes on each device.
4989	 */
4990	ndevs = 0;
4991	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4992		u64 max_avail;
4993		u64 dev_offset;
4994
4995		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4996			WARN(1, KERN_ERR
4997			       "BTRFS: read-only device in alloc_list\n");
4998			continue;
4999		}
5000
5001		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5002					&device->dev_state) ||
5003		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5004			continue;
5005
5006		if (device->total_bytes > device->bytes_used)
5007			total_avail = device->total_bytes - device->bytes_used;
5008		else
5009			total_avail = 0;
5010
5011		/* If there is no space on this device, skip it. */
5012		if (total_avail == 0)
5013			continue;
5014
5015		ret = find_free_dev_extent(device,
5016					   max_stripe_size * dev_stripes,
5017					   &dev_offset, &max_avail);
5018		if (ret && ret != -ENOSPC)
5019			goto error;
5020
5021		if (ret == 0)
5022			max_avail = max_stripe_size * dev_stripes;
5023
5024		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5025			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5026				btrfs_debug(info,
5027			"%s: devid %llu has no free space, have=%llu want=%u",
5028					    __func__, device->devid, max_avail,
5029					    BTRFS_STRIPE_LEN * dev_stripes);
5030			continue;
5031		}
5032
5033		if (ndevs == fs_devices->rw_devices) {
5034			WARN(1, "%s: found more than %llu devices\n",
5035			     __func__, fs_devices->rw_devices);
5036			break;
5037		}
5038		devices_info[ndevs].dev_offset = dev_offset;
5039		devices_info[ndevs].max_avail = max_avail;
5040		devices_info[ndevs].total_avail = total_avail;
5041		devices_info[ndevs].dev = device;
5042		++ndevs;
5043	}
 
5044
5045	/*
5046	 * now sort the devices by hole size / available space
5047	 */
5048	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5049	     btrfs_cmp_device_info, NULL);
5050
5051	/* round down to number of usable stripes */
5052	ndevs = round_down(ndevs, devs_increment);
5053
5054	if (ndevs < devs_min) {
5055		ret = -ENOSPC;
5056		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5057			btrfs_debug(info,
5058	"%s: not enough devices with free space: have=%d minimum required=%d",
5059				    __func__, ndevs, devs_min);
5060		}
5061		goto error;
5062	}
5063
5064	ndevs = min(ndevs, devs_max);
5065
5066	/*
5067	 * The primary goal is to maximize the number of stripes, so use as
5068	 * many devices as possible, even if the stripes are not maximum sized.
5069	 *
5070	 * The DUP profile stores more than one stripe per device, the
5071	 * max_avail is the total size so we have to adjust.
5072	 */
5073	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5074	num_stripes = ndevs * dev_stripes;
 
5075
5076	/*
5077	 * this will have to be fixed for RAID1 and RAID10 over
5078	 * more drives
5079	 */
5080	data_stripes = (num_stripes - nparity) / ncopies;
5081
5082	/*
5083	 * Use the number of data stripes to figure out how big this chunk
5084	 * is really going to be in terms of logical address space,
5085	 * and compare that answer with the max chunk size. If it's higher,
5086	 * we try to reduce stripe_size.
5087	 */
5088	if (stripe_size * data_stripes > max_chunk_size) {
5089		/*
5090		 * Reduce stripe_size, round it up to a 16MB boundary again and
5091		 * then use it, unless it ends up being even bigger than the
5092		 * previous value we had already.
5093		 */
5094		stripe_size = min(round_up(div_u64(max_chunk_size,
5095						   data_stripes), SZ_16M),
5096				  stripe_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5097	}
5098
5099	/* align to BTRFS_STRIPE_LEN */
5100	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5101
5102	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5103	if (!map) {
5104		ret = -ENOMEM;
5105		goto error;
 
 
 
5106	}
5107	map->num_stripes = num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5108
5109	for (i = 0; i < ndevs; ++i) {
5110		for (j = 0; j < dev_stripes; ++j) {
5111			int s = i * dev_stripes + j;
5112			map->stripes[s].dev = devices_info[i].dev;
5113			map->stripes[s].physical = devices_info[i].dev_offset +
5114						   j * stripe_size;
5115		}
5116	}
5117	map->stripe_len = BTRFS_STRIPE_LEN;
5118	map->io_align = BTRFS_STRIPE_LEN;
5119	map->io_width = BTRFS_STRIPE_LEN;
5120	map->type = type;
5121	map->sub_stripes = sub_stripes;
5122
5123	chunk_size = stripe_size * data_stripes;
5124
5125	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5126
5127	em = alloc_extent_map();
5128	if (!em) {
5129		kfree(map);
5130		ret = -ENOMEM;
5131		goto error;
5132	}
5133	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5134	em->map_lookup = map;
5135	em->start = start;
5136	em->len = chunk_size;
5137	em->block_start = 0;
5138	em->block_len = em->len;
5139	em->orig_block_len = stripe_size;
5140
5141	em_tree = &info->mapping_tree;
5142	write_lock(&em_tree->lock);
5143	ret = add_extent_mapping(em_tree, em, 0);
5144	if (ret) {
5145		write_unlock(&em_tree->lock);
5146		free_extent_map(em);
5147		goto error;
5148	}
5149	write_unlock(&em_tree->lock);
5150
5151	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5152	if (ret)
5153		goto error_del_extent;
5154
5155	for (i = 0; i < map->num_stripes; i++) {
5156		struct btrfs_device *dev = map->stripes[i].dev;
5157
5158		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
 
5159		if (list_empty(&dev->post_commit_list))
5160			list_add_tail(&dev->post_commit_list,
5161				      &trans->transaction->dev_update_list);
5162	}
5163
5164	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
 
5165
5166	free_extent_map(em);
5167	check_raid56_incompat_flag(info, type);
 
5168
5169	kfree(devices_info);
5170	return 0;
5171
5172error_del_extent:
5173	write_lock(&em_tree->lock);
5174	remove_extent_mapping(em_tree, em);
5175	write_unlock(&em_tree->lock);
5176
5177	/* One for our allocation */
5178	free_extent_map(em);
5179	/* One for the tree reference */
5180	free_extent_map(em);
5181error:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5182	kfree(devices_info);
5183	return ret;
5184}
5185
5186int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5187			     u64 chunk_offset, u64 chunk_size)
 
 
 
 
 
 
 
 
5188{
5189	struct btrfs_fs_info *fs_info = trans->fs_info;
5190	struct btrfs_root *extent_root = fs_info->extent_root;
5191	struct btrfs_root *chunk_root = fs_info->chunk_root;
5192	struct btrfs_key key;
5193	struct btrfs_device *device;
5194	struct btrfs_chunk *chunk;
5195	struct btrfs_stripe *stripe;
5196	struct extent_map *em;
5197	struct map_lookup *map;
5198	size_t item_size;
5199	u64 dev_offset;
5200	u64 stripe_size;
5201	int i = 0;
5202	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5203
5204	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5205	if (IS_ERR(em))
5206		return PTR_ERR(em);
 
 
 
5207
5208	map = em->map_lookup;
5209	item_size = btrfs_chunk_item_size(map->num_stripes);
5210	stripe_size = em->orig_block_len;
5211
5212	chunk = kzalloc(item_size, GFP_NOFS);
5213	if (!chunk) {
5214		ret = -ENOMEM;
 
5215		goto out;
5216	}
5217
5218	/*
5219	 * Take the device list mutex to prevent races with the final phase of
5220	 * a device replace operation that replaces the device object associated
5221	 * with the map's stripes, because the device object's id can change
5222	 * at any time during that final phase of the device replace operation
5223	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5224	 */
5225	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5226	for (i = 0; i < map->num_stripes; i++) {
5227		device = map->stripes[i].dev;
5228		dev_offset = map->stripes[i].physical;
5229
5230		ret = btrfs_update_device(trans, device);
5231		if (ret)
5232			break;
5233		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5234					     dev_offset, stripe_size);
5235		if (ret)
5236			break;
5237	}
5238	if (ret) {
5239		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5240		goto out;
5241	}
5242
5243	stripe = &chunk->stripe;
5244	for (i = 0; i < map->num_stripes; i++) {
5245		device = map->stripes[i].dev;
5246		dev_offset = map->stripes[i].physical;
5247
5248		btrfs_set_stack_stripe_devid(stripe, device->devid);
5249		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5250		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5251		stripe++;
5252	}
5253	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5254
5255	btrfs_set_stack_chunk_length(chunk, chunk_size);
5256	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5257	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5258	btrfs_set_stack_chunk_type(chunk, map->type);
5259	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5260	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5261	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5262	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5263	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5264
5265	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5266	key.type = BTRFS_CHUNK_ITEM_KEY;
5267	key.offset = chunk_offset;
5268
5269	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5270	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5271		/*
5272		 * TODO: Cleanup of inserted chunk root in case of
5273		 * failure.
5274		 */
 
5275		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
 
 
5276	}
5277
5278out:
5279	kfree(chunk);
5280	free_extent_map(em);
5281	return ret;
5282}
5283
5284/*
5285 * Chunk allocation falls into two parts. The first part does work
5286 * that makes the new allocated chunk usable, but does not do any operation
5287 * that modifies the chunk tree. The second part does the work that
5288 * requires modifying the chunk tree. This division is important for the
5289 * bootstrap process of adding storage to a seed btrfs.
5290 */
5291int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5292{
5293	u64 chunk_offset;
5294
5295	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5296	chunk_offset = find_next_chunk(trans->fs_info);
5297	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5298}
5299
5300static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5301{
5302	struct btrfs_fs_info *fs_info = trans->fs_info;
5303	u64 chunk_offset;
5304	u64 sys_chunk_offset;
5305	u64 alloc_profile;
5306	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5307
5308	chunk_offset = find_next_chunk(fs_info);
5309	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5310	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5311	if (ret)
5312		return ret;
5313
5314	sys_chunk_offset = find_next_chunk(fs_info);
5315	alloc_profile = btrfs_system_alloc_profile(fs_info);
5316	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5317	return ret;
 
 
 
5318}
5319
5320static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5321{
5322	const int index = btrfs_bg_flags_to_raid_index(map->type);
5323
5324	return btrfs_raid_array[index].tolerated_failures;
5325}
5326
5327int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5328{
5329	struct extent_map *em;
5330	struct map_lookup *map;
5331	int readonly = 0;
5332	int miss_ndevs = 0;
5333	int i;
 
5334
5335	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5336	if (IS_ERR(em))
5337		return 1;
5338
5339	map = em->map_lookup;
5340	for (i = 0; i < map->num_stripes; i++) {
5341		if (test_bit(BTRFS_DEV_STATE_MISSING,
5342					&map->stripes[i].dev->dev_state)) {
5343			miss_ndevs++;
5344			continue;
5345		}
5346		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5347					&map->stripes[i].dev->dev_state)) {
5348			readonly = 1;
5349			goto end;
5350		}
5351	}
5352
5353	/*
5354	 * If the number of missing devices is larger than max errors,
5355	 * we can not write the data into that chunk successfully, so
5356	 * set it readonly.
5357	 */
5358	if (miss_ndevs > btrfs_chunk_max_errors(map))
5359		readonly = 1;
5360end:
5361	free_extent_map(em);
5362	return readonly;
5363}
5364
5365void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5366{
5367	struct extent_map *em;
5368
5369	while (1) {
5370		write_lock(&tree->lock);
5371		em = lookup_extent_mapping(tree, 0, (u64)-1);
5372		if (em)
5373			remove_extent_mapping(tree, em);
5374		write_unlock(&tree->lock);
5375		if (!em)
5376			break;
5377		/* once for us */
5378		free_extent_map(em);
5379		/* once for the tree */
5380		free_extent_map(em);
5381	}
5382}
5383
5384int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5385{
5386	struct extent_map *em;
5387	struct map_lookup *map;
5388	int ret;
 
5389
5390	em = btrfs_get_chunk_map(fs_info, logical, len);
5391	if (IS_ERR(em))
5392		/*
5393		 * We could return errors for these cases, but that could get
5394		 * ugly and we'd probably do the same thing which is just not do
5395		 * anything else and exit, so return 1 so the callers don't try
5396		 * to use other copies.
5397		 */
5398		return 1;
5399
5400	map = em->map_lookup;
5401	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5402		ret = map->num_stripes;
5403	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5404		ret = map->sub_stripes;
 
5405	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5406		ret = 2;
5407	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5408		/*
5409		 * There could be two corrupted data stripes, we need
5410		 * to loop retry in order to rebuild the correct data.
5411		 *
5412		 * Fail a stripe at a time on every retry except the
5413		 * stripe under reconstruction.
5414		 */
5415		ret = map->num_stripes;
5416	else
5417		ret = 1;
5418	free_extent_map(em);
5419
5420	down_read(&fs_info->dev_replace.rwsem);
5421	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5422	    fs_info->dev_replace.tgtdev)
5423		ret++;
5424	up_read(&fs_info->dev_replace.rwsem);
5425
5426	return ret;
5427}
5428
5429unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5430				    u64 logical)
5431{
5432	struct extent_map *em;
5433	struct map_lookup *map;
5434	unsigned long len = fs_info->sectorsize;
5435
 
 
 
5436	em = btrfs_get_chunk_map(fs_info, logical, len);
5437
5438	if (!WARN_ON(IS_ERR(em))) {
5439		map = em->map_lookup;
5440		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5441			len = map->stripe_len * nr_data_stripes(map);
5442		free_extent_map(em);
5443	}
5444	return len;
5445}
5446
5447int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5448{
5449	struct extent_map *em;
5450	struct map_lookup *map;
5451	int ret = 0;
5452
 
 
 
5453	em = btrfs_get_chunk_map(fs_info, logical, len);
5454
5455	if(!WARN_ON(IS_ERR(em))) {
5456		map = em->map_lookup;
5457		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5458			ret = 1;
5459		free_extent_map(em);
5460	}
5461	return ret;
5462}
5463
5464static int find_live_mirror(struct btrfs_fs_info *fs_info,
5465			    struct map_lookup *map, int first,
5466			    int dev_replace_is_ongoing)
5467{
5468	int i;
5469	int num_stripes;
5470	int preferred_mirror;
5471	int tolerance;
5472	struct btrfs_device *srcdev;
5473
5474	ASSERT((map->type &
5475		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5476
5477	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5478		num_stripes = map->sub_stripes;
5479	else
5480		num_stripes = map->num_stripes;
5481
5482	preferred_mirror = first + current->pid % num_stripes;
 
 
 
 
 
 
 
 
 
 
 
5483
5484	if (dev_replace_is_ongoing &&
5485	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5486	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5487		srcdev = fs_info->dev_replace.srcdev;
5488	else
5489		srcdev = NULL;
5490
5491	/*
5492	 * try to avoid the drive that is the source drive for a
5493	 * dev-replace procedure, only choose it if no other non-missing
5494	 * mirror is available
5495	 */
5496	for (tolerance = 0; tolerance < 2; tolerance++) {
5497		if (map->stripes[preferred_mirror].dev->bdev &&
5498		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5499			return preferred_mirror;
5500		for (i = first; i < first + num_stripes; i++) {
5501			if (map->stripes[i].dev->bdev &&
5502			    (tolerance || map->stripes[i].dev != srcdev))
5503				return i;
5504		}
5505	}
5506
5507	/* we couldn't find one that doesn't fail.  Just return something
5508	 * and the io error handling code will clean up eventually
5509	 */
5510	return preferred_mirror;
5511}
5512
5513static inline int parity_smaller(u64 a, u64 b)
5514{
5515	return a > b;
5516}
5517
5518/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5519static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5520{
5521	struct btrfs_bio_stripe s;
5522	int i;
5523	u64 l;
5524	int again = 1;
5525
5526	while (again) {
5527		again = 0;
5528		for (i = 0; i < num_stripes - 1; i++) {
5529			if (parity_smaller(bbio->raid_map[i],
5530					   bbio->raid_map[i+1])) {
5531				s = bbio->stripes[i];
5532				l = bbio->raid_map[i];
5533				bbio->stripes[i] = bbio->stripes[i+1];
5534				bbio->raid_map[i] = bbio->raid_map[i+1];
5535				bbio->stripes[i+1] = s;
5536				bbio->raid_map[i+1] = l;
5537
5538				again = 1;
5539			}
5540		}
5541	}
5542}
5543
5544static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5545{
5546	struct btrfs_bio *bbio = kzalloc(
5547		 /* the size of the btrfs_bio */
5548		sizeof(struct btrfs_bio) +
5549		/* plus the variable array for the stripes */
5550		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5551		/* plus the variable array for the tgt dev */
 
 
5552		sizeof(int) * (real_stripes) +
5553		/*
5554		 * plus the raid_map, which includes both the tgt dev
5555		 * and the stripes
5556		 */
5557		sizeof(u64) * (total_stripes),
5558		GFP_NOFS|__GFP_NOFAIL);
 
 
 
5559
5560	atomic_set(&bbio->error, 0);
5561	refcount_set(&bbio->refs, 1);
5562
5563	return bbio;
 
 
 
 
5564}
5565
5566void btrfs_get_bbio(struct btrfs_bio *bbio)
5567{
5568	WARN_ON(!refcount_read(&bbio->refs));
5569	refcount_inc(&bbio->refs);
5570}
5571
5572void btrfs_put_bbio(struct btrfs_bio *bbio)
5573{
5574	if (!bbio)
5575		return;
5576	if (refcount_dec_and_test(&bbio->refs))
5577		kfree(bbio);
5578}
5579
5580/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5581/*
5582 * Please note that, discard won't be sent to target device of device
5583 * replace.
5584 */
5585static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5586					 u64 logical, u64 length,
5587					 struct btrfs_bio **bbio_ret)
5588{
5589	struct extent_map *em;
5590	struct map_lookup *map;
5591	struct btrfs_bio *bbio;
 
5592	u64 offset;
5593	u64 stripe_nr;
5594	u64 stripe_nr_end;
5595	u64 stripe_end_offset;
5596	u64 stripe_cnt;
5597	u64 stripe_len;
5598	u64 stripe_offset;
5599	u64 num_stripes;
5600	u32 stripe_index;
5601	u32 factor = 0;
5602	u32 sub_stripes = 0;
5603	u64 stripes_per_dev = 0;
5604	u32 remaining_stripes = 0;
5605	u32 last_stripe = 0;
5606	int ret = 0;
5607	int i;
5608
5609	/* discard always return a bbio */
5610	ASSERT(bbio_ret);
5611
5612	em = btrfs_get_chunk_map(fs_info, logical, length);
5613	if (IS_ERR(em))
5614		return PTR_ERR(em);
5615
5616	map = em->map_lookup;
 
5617	/* we don't discard raid56 yet */
5618	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5619		ret = -EOPNOTSUPP;
5620		goto out;
5621	}
5622
5623	offset = logical - em->start;
5624	length = min_t(u64, em->len - offset, length);
 
5625
5626	stripe_len = map->stripe_len;
5627	/*
5628	 * stripe_nr counts the total number of stripes we have to stride
5629	 * to get to this block
5630	 */
5631	stripe_nr = div64_u64(offset, stripe_len);
5632
5633	/* stripe_offset is the offset of this block in its stripe */
5634	stripe_offset = offset - stripe_nr * stripe_len;
5635
5636	stripe_nr_end = round_up(offset + length, map->stripe_len);
5637	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5638	stripe_cnt = stripe_nr_end - stripe_nr;
5639	stripe_end_offset = stripe_nr_end * map->stripe_len -
5640			    (offset + length);
5641	/*
5642	 * after this, stripe_nr is the number of stripes on this
5643	 * device we have to walk to find the data, and stripe_index is
5644	 * the number of our device in the stripe array
5645	 */
5646	num_stripes = 1;
5647	stripe_index = 0;
5648	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5649			 BTRFS_BLOCK_GROUP_RAID10)) {
5650		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5651			sub_stripes = 1;
5652		else
5653			sub_stripes = map->sub_stripes;
5654
5655		factor = map->num_stripes / sub_stripes;
5656		num_stripes = min_t(u64, map->num_stripes,
5657				    sub_stripes * stripe_cnt);
5658		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5659		stripe_index *= sub_stripes;
5660		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5661					      &remaining_stripes);
5662		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5663		last_stripe *= sub_stripes;
5664	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5665				BTRFS_BLOCK_GROUP_DUP)) {
5666		num_stripes = map->num_stripes;
5667	} else {
5668		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5669					&stripe_index);
5670	}
5671
5672	bbio = alloc_btrfs_bio(num_stripes, 0);
5673	if (!bbio) {
5674		ret = -ENOMEM;
5675		goto out;
5676	}
5677
5678	for (i = 0; i < num_stripes; i++) {
5679		bbio->stripes[i].physical =
5680			map->stripes[stripe_index].physical +
5681			stripe_offset + stripe_nr * map->stripe_len;
5682		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5683
5684		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5685				 BTRFS_BLOCK_GROUP_RAID10)) {
5686			bbio->stripes[i].length = stripes_per_dev *
5687				map->stripe_len;
5688
5689			if (i / sub_stripes < remaining_stripes)
5690				bbio->stripes[i].length +=
5691					map->stripe_len;
5692
5693			/*
5694			 * Special for the first stripe and
5695			 * the last stripe:
5696			 *
5697			 * |-------|...|-------|
5698			 *     |----------|
5699			 *    off     end_off
5700			 */
5701			if (i < sub_stripes)
5702				bbio->stripes[i].length -=
5703					stripe_offset;
5704
5705			if (stripe_index >= last_stripe &&
5706			    stripe_index <= (last_stripe +
5707					     sub_stripes - 1))
5708				bbio->stripes[i].length -=
5709					stripe_end_offset;
5710
5711			if (i == sub_stripes - 1)
5712				stripe_offset = 0;
5713		} else {
5714			bbio->stripes[i].length = length;
5715		}
5716
5717		stripe_index++;
5718		if (stripe_index == map->num_stripes) {
5719			stripe_index = 0;
5720			stripe_nr++;
5721		}
5722	}
5723
5724	*bbio_ret = bbio;
5725	bbio->map_type = map->type;
5726	bbio->num_stripes = num_stripes;
5727out:
5728	free_extent_map(em);
5729	return ret;
 
 
 
5730}
5731
5732/*
5733 * In dev-replace case, for repair case (that's the only case where the mirror
5734 * is selected explicitly when calling btrfs_map_block), blocks left of the
5735 * left cursor can also be read from the target drive.
5736 *
5737 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5738 * array of stripes.
5739 * For READ, it also needs to be supported using the same mirror number.
5740 *
5741 * If the requested block is not left of the left cursor, EIO is returned. This
5742 * can happen because btrfs_num_copies() returns one more in the dev-replace
5743 * case.
5744 */
5745static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5746					 u64 logical, u64 length,
5747					 u64 srcdev_devid, int *mirror_num,
5748					 u64 *physical)
5749{
5750	struct btrfs_bio *bbio = NULL;
5751	int num_stripes;
5752	int index_srcdev = 0;
5753	int found = 0;
5754	u64 physical_of_found = 0;
5755	int i;
5756	int ret = 0;
5757
5758	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5759				logical, &length, &bbio, 0, 0);
5760	if (ret) {
5761		ASSERT(bbio == NULL);
5762		return ret;
5763	}
5764
5765	num_stripes = bbio->num_stripes;
5766	if (*mirror_num > num_stripes) {
5767		/*
5768		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5769		 * that means that the requested area is not left of the left
5770		 * cursor
5771		 */
5772		btrfs_put_bbio(bbio);
5773		return -EIO;
5774	}
5775
5776	/*
5777	 * process the rest of the function using the mirror_num of the source
5778	 * drive. Therefore look it up first.  At the end, patch the device
5779	 * pointer to the one of the target drive.
5780	 */
5781	for (i = 0; i < num_stripes; i++) {
5782		if (bbio->stripes[i].dev->devid != srcdev_devid)
5783			continue;
5784
5785		/*
5786		 * In case of DUP, in order to keep it simple, only add the
5787		 * mirror with the lowest physical address
5788		 */
5789		if (found &&
5790		    physical_of_found <= bbio->stripes[i].physical)
5791			continue;
5792
5793		index_srcdev = i;
5794		found = 1;
5795		physical_of_found = bbio->stripes[i].physical;
5796	}
5797
5798	btrfs_put_bbio(bbio);
5799
5800	ASSERT(found);
5801	if (!found)
5802		return -EIO;
5803
5804	*mirror_num = index_srcdev + 1;
5805	*physical = physical_of_found;
5806	return ret;
5807}
5808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5809static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5810				      struct btrfs_bio **bbio_ret,
5811				      struct btrfs_dev_replace *dev_replace,
 
5812				      int *num_stripes_ret, int *max_errors_ret)
5813{
5814	struct btrfs_bio *bbio = *bbio_ret;
5815	u64 srcdev_devid = dev_replace->srcdev->devid;
5816	int tgtdev_indexes = 0;
5817	int num_stripes = *num_stripes_ret;
5818	int max_errors = *max_errors_ret;
5819	int i;
5820
5821	if (op == BTRFS_MAP_WRITE) {
5822		int index_where_to_add;
5823
5824		/*
 
 
 
 
 
 
 
5825		 * duplicate the write operations while the dev replace
5826		 * procedure is running. Since the copying of the old disk to
5827		 * the new disk takes place at run time while the filesystem is
5828		 * mounted writable, the regular write operations to the old
5829		 * disk have to be duplicated to go to the new disk as well.
5830		 *
5831		 * Note that device->missing is handled by the caller, and that
5832		 * the write to the old disk is already set up in the stripes
5833		 * array.
5834		 */
5835		index_where_to_add = num_stripes;
5836		for (i = 0; i < num_stripes; i++) {
5837			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5838				/* write to new disk, too */
5839				struct btrfs_bio_stripe *new =
5840					bbio->stripes + index_where_to_add;
5841				struct btrfs_bio_stripe *old =
5842					bbio->stripes + i;
5843
5844				new->physical = old->physical;
5845				new->length = old->length;
5846				new->dev = dev_replace->tgtdev;
5847				bbio->tgtdev_map[i] = index_where_to_add;
5848				index_where_to_add++;
5849				max_errors++;
5850				tgtdev_indexes++;
5851			}
5852		}
5853		num_stripes = index_where_to_add;
5854	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5855		int index_srcdev = 0;
5856		int found = 0;
5857		u64 physical_of_found = 0;
5858
5859		/*
5860		 * During the dev-replace procedure, the target drive can also
5861		 * be used to read data in case it is needed to repair a corrupt
5862		 * block elsewhere. This is possible if the requested area is
5863		 * left of the left cursor. In this area, the target drive is a
5864		 * full copy of the source drive.
5865		 */
5866		for (i = 0; i < num_stripes; i++) {
5867			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5868				/*
5869				 * In case of DUP, in order to keep it simple,
5870				 * only add the mirror with the lowest physical
5871				 * address
5872				 */
5873				if (found &&
5874				    physical_of_found <=
5875				     bbio->stripes[i].physical)
5876					continue;
5877				index_srcdev = i;
5878				found = 1;
5879				physical_of_found = bbio->stripes[i].physical;
5880			}
5881		}
5882		if (found) {
5883			struct btrfs_bio_stripe *tgtdev_stripe =
5884				bbio->stripes + num_stripes;
5885
5886			tgtdev_stripe->physical = physical_of_found;
5887			tgtdev_stripe->length =
5888				bbio->stripes[index_srcdev].length;
5889			tgtdev_stripe->dev = dev_replace->tgtdev;
5890			bbio->tgtdev_map[index_srcdev] = num_stripes;
5891
5892			tgtdev_indexes++;
5893			num_stripes++;
5894		}
5895	}
5896
5897	*num_stripes_ret = num_stripes;
5898	*max_errors_ret = max_errors;
5899	bbio->num_tgtdevs = tgtdev_indexes;
5900	*bbio_ret = bbio;
5901}
5902
5903static bool need_full_stripe(enum btrfs_map_op op)
5904{
5905	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5906}
5907
5908/*
5909 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5910 *		       tuple. This information is used to calculate how big a
5911 *		       particular bio can get before it straddles a stripe.
5912 *
5913 * @fs_info - the filesystem
5914 * @logical - address that we want to figure out the geometry of
5915 * @len	    - the length of IO we are going to perform, starting at @logical
5916 * @op      - type of operation - write or read
5917 * @io_geom - pointer used to return values
5918 *
5919 * Returns < 0 in case a chunk for the given logical address cannot be found,
5920 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5921 */
5922int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5923			u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
 
5924{
5925	struct extent_map *em;
5926	struct map_lookup *map;
 
5927	u64 offset;
5928	u64 stripe_offset;
5929	u64 stripe_nr;
5930	u64 stripe_len;
5931	u64 raid56_full_stripe_start = (u64)-1;
5932	int data_stripes;
5933	int ret = 0;
5934
5935	ASSERT(op != BTRFS_MAP_DISCARD);
5936
5937	em = btrfs_get_chunk_map(fs_info, logical, len);
5938	if (IS_ERR(em))
5939		return PTR_ERR(em);
5940
5941	map = em->map_lookup;
5942	/* Offset of this logical address in the chunk */
5943	offset = logical - em->start;
5944	/* Len of a stripe in a chunk */
5945	stripe_len = map->stripe_len;
5946	/* Stripe wher this block falls in */
5947	stripe_nr = div64_u64(offset, stripe_len);
5948	/* Offset of stripe in the chunk */
5949	stripe_offset = stripe_nr * stripe_len;
5950	if (offset < stripe_offset) {
5951		btrfs_crit(fs_info,
5952"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5953			stripe_offset, offset, em->start, logical, stripe_len);
5954		ret = -EINVAL;
5955		goto out;
5956	}
5957
5958	/* stripe_offset is the offset of this block in its stripe */
5959	stripe_offset = offset - stripe_offset;
5960	data_stripes = nr_data_stripes(map);
5961
5962	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
 
5963		u64 max_len = stripe_len - stripe_offset;
5964
5965		/*
5966		 * In case of raid56, we need to know the stripe aligned start
5967		 */
5968		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5969			unsigned long full_stripe_len = stripe_len * data_stripes;
5970			raid56_full_stripe_start = offset;
5971
5972			/*
5973			 * Allow a write of a full stripe, but make sure we
5974			 * don't allow straddling of stripes
5975			 */
5976			raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5977					full_stripe_len);
5978			raid56_full_stripe_start *= full_stripe_len;
5979
5980			/*
5981			 * For writes to RAID[56], allow a full stripeset across
5982			 * all disks. For other RAID types and for RAID[56]
5983			 * reads, just allow a single stripe (on a single disk).
5984			 */
5985			if (op == BTRFS_MAP_WRITE) {
5986				max_len = stripe_len * data_stripes -
5987					  (offset - raid56_full_stripe_start);
5988			}
5989		}
5990		len = min_t(u64, em->len - offset, max_len);
5991	} else {
5992		len = em->len - offset;
5993	}
5994
5995	io_geom->len = len;
5996	io_geom->offset = offset;
5997	io_geom->stripe_len = stripe_len;
5998	io_geom->stripe_nr = stripe_nr;
5999	io_geom->stripe_offset = stripe_offset;
6000	io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6001
6002out:
6003	/* once for us */
6004	free_extent_map(em);
6005	return ret;
 
 
 
 
 
6006}
6007
6008static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6009			     enum btrfs_map_op op,
6010			     u64 logical, u64 *length,
6011			     struct btrfs_bio **bbio_ret,
6012			     int mirror_num, int need_raid_map)
6013{
6014	struct extent_map *em;
6015	struct map_lookup *map;
6016	u64 stripe_offset;
6017	u64 stripe_nr;
6018	u64 stripe_len;
6019	u32 stripe_index;
6020	int data_stripes;
6021	int i;
6022	int ret = 0;
 
6023	int num_stripes;
6024	int max_errors = 0;
6025	int tgtdev_indexes = 0;
6026	struct btrfs_bio *bbio = NULL;
6027	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6028	int dev_replace_is_ongoing = 0;
6029	int num_alloc_stripes;
6030	int patch_the_first_stripe_for_dev_replace = 0;
6031	u64 physical_to_patch_in_first_stripe = 0;
6032	u64 raid56_full_stripe_start = (u64)-1;
6033	struct btrfs_io_geometry geom;
6034
6035	ASSERT(bbio_ret);
 
6036
6037	if (op == BTRFS_MAP_DISCARD)
6038		return __btrfs_map_block_for_discard(fs_info, logical,
6039						     *length, bbio_ret);
6040
6041	ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6042	if (ret < 0)
6043		return ret;
6044
6045	em = btrfs_get_chunk_map(fs_info, logical, *length);
6046	ASSERT(!IS_ERR(em));
6047	map = em->map_lookup;
6048
6049	*length = geom.len;
6050	stripe_len = geom.stripe_len;
6051	stripe_nr = geom.stripe_nr;
6052	stripe_offset = geom.stripe_offset;
6053	raid56_full_stripe_start = geom.raid56_stripe_offset;
6054	data_stripes = nr_data_stripes(map);
6055
6056	down_read(&dev_replace->rwsem);
6057	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058	/*
6059	 * Hold the semaphore for read during the whole operation, write is
6060	 * requested at commit time but must wait.
6061	 */
6062	if (!dev_replace_is_ongoing)
6063		up_read(&dev_replace->rwsem);
6064
6065	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068						    dev_replace->srcdev->devid,
6069						    &mirror_num,
6070					    &physical_to_patch_in_first_stripe);
6071		if (ret)
6072			goto out;
6073		else
6074			patch_the_first_stripe_for_dev_replace = 1;
6075	} else if (mirror_num > map->num_stripes) {
6076		mirror_num = 0;
6077	}
6078
6079	num_stripes = 1;
6080	stripe_index = 0;
6081	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083				&stripe_index);
6084		if (!need_full_stripe(op))
6085			mirror_num = 1;
6086	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087		if (need_full_stripe(op))
6088			num_stripes = map->num_stripes;
6089		else if (mirror_num)
6090			stripe_index = mirror_num - 1;
6091		else {
6092			stripe_index = find_live_mirror(fs_info, map, 0,
6093					    dev_replace_is_ongoing);
6094			mirror_num = stripe_index + 1;
6095		}
6096
6097	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098		if (need_full_stripe(op)) {
6099			num_stripes = map->num_stripes;
6100		} else if (mirror_num) {
6101			stripe_index = mirror_num - 1;
6102		} else {
6103			mirror_num = 1;
6104		}
6105
6106	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107		u32 factor = map->num_stripes / map->sub_stripes;
6108
6109		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110		stripe_index *= map->sub_stripes;
6111
6112		if (need_full_stripe(op))
6113			num_stripes = map->sub_stripes;
6114		else if (mirror_num)
6115			stripe_index += mirror_num - 1;
6116		else {
6117			int old_stripe_index = stripe_index;
6118			stripe_index = find_live_mirror(fs_info, map,
6119					      stripe_index,
6120					      dev_replace_is_ongoing);
6121			mirror_num = stripe_index - old_stripe_index + 1;
6122		}
6123
6124	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 
6125		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126			/* push stripe_nr back to the start of the full stripe */
6127			stripe_nr = div64_u64(raid56_full_stripe_start,
6128					stripe_len * data_stripes);
6129
6130			/* RAID[56] write or recovery. Return all stripes */
6131			num_stripes = map->num_stripes;
6132			max_errors = nr_parity_stripes(map);
6133
6134			*length = map->stripe_len;
 
 
 
6135			stripe_index = 0;
6136			stripe_offset = 0;
6137		} else {
6138			/*
6139			 * Mirror #0 or #1 means the original data block.
6140			 * Mirror #2 is RAID5 parity block.
6141			 * Mirror #3 is RAID6 Q block.
6142			 */
6143			stripe_nr = div_u64_rem(stripe_nr,
6144					data_stripes, &stripe_index);
6145			if (mirror_num > 1)
6146				stripe_index = data_stripes + mirror_num - 2;
6147
6148			/* We distribute the parity blocks across stripes */
6149			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150					&stripe_index);
6151			if (!need_full_stripe(op) && mirror_num <= 1)
6152				mirror_num = 1;
6153		}
6154	} else {
6155		/*
6156		 * after this, stripe_nr is the number of stripes on this
6157		 * device we have to walk to find the data, and stripe_index is
6158		 * the number of our device in the stripe array
6159		 */
6160		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161				&stripe_index);
6162		mirror_num = stripe_index + 1;
6163	}
6164	if (stripe_index >= map->num_stripes) {
6165		btrfs_crit(fs_info,
6166			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167			   stripe_index, map->num_stripes);
6168		ret = -EINVAL;
6169		goto out;
6170	}
6171
6172	num_alloc_stripes = num_stripes;
6173	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174		if (op == BTRFS_MAP_WRITE)
6175			num_alloc_stripes <<= 1;
6176		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177			num_alloc_stripes++;
6178		tgtdev_indexes = num_stripes;
6179	}
6180
6181	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182	if (!bbio) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6183		ret = -ENOMEM;
6184		goto out;
6185	}
6186	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6187		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6188
6189	/* build raid_map */
 
 
 
 
 
 
6190	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6191	    (need_full_stripe(op) || mirror_num > 1)) {
6192		u64 tmp;
6193		unsigned rot;
6194
6195		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6196				 sizeof(struct btrfs_bio_stripe) *
6197				 num_alloc_stripes +
6198				 sizeof(int) * tgtdev_indexes);
6199
6200		/* Work out the disk rotation on this stripe-set */
6201		div_u64_rem(stripe_nr, num_stripes, &rot);
6202
6203		/* Fill in the logical address of each stripe */
6204		tmp = stripe_nr * data_stripes;
6205		for (i = 0; i < data_stripes; i++)
6206			bbio->raid_map[(i+rot) % num_stripes] =
6207				em->start + (tmp + i) * map->stripe_len;
6208
6209		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211			bbio->raid_map[(i+rot+1) % num_stripes] =
6212				RAID6_Q_STRIPE;
6213	}
6214
6215
6216	for (i = 0; i < num_stripes; i++) {
6217		bbio->stripes[i].physical =
6218			map->stripes[stripe_index].physical +
6219			stripe_offset +
6220			stripe_nr * map->stripe_len;
6221		bbio->stripes[i].dev =
6222			map->stripes[stripe_index].dev;
6223		stripe_index++;
6224	}
6225
6226	if (need_full_stripe(op))
6227		max_errors = btrfs_chunk_max_errors(map);
6228
6229	if (bbio->raid_map)
6230		sort_parity_stripes(bbio, num_stripes);
6231
6232	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6233	    need_full_stripe(op)) {
6234		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6235					  &max_errors);
6236	}
6237
6238	*bbio_ret = bbio;
6239	bbio->map_type = map->type;
6240	bbio->num_stripes = num_stripes;
6241	bbio->max_errors = max_errors;
6242	bbio->mirror_num = mirror_num;
6243
6244	/*
6245	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6246	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6247	 * available as a mirror
6248	 */
6249	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6250		WARN_ON(num_stripes > 1);
6251		bbio->stripes[0].dev = dev_replace->tgtdev;
6252		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6253		bbio->mirror_num = map->num_stripes + 1;
6254	}
6255out:
6256	if (dev_replace_is_ongoing) {
6257		lockdep_assert_held(&dev_replace->rwsem);
6258		/* Unlock and let waiting writers proceed */
6259		up_read(&dev_replace->rwsem);
6260	}
6261	free_extent_map(em);
6262	return ret;
6263}
6264
6265int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6266		      u64 logical, u64 *length,
6267		      struct btrfs_bio **bbio_ret, int mirror_num)
6268{
6269	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6270				 mirror_num, 0);
6271}
6272
6273/* For Scrub/replace */
6274int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275		     u64 logical, u64 *length,
6276		     struct btrfs_bio **bbio_ret)
6277{
6278	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
 
6279}
6280
6281int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6282		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6283{
6284	struct extent_map *em;
6285	struct map_lookup *map;
6286	u64 *buf;
6287	u64 bytenr;
6288	u64 length;
6289	u64 stripe_nr;
6290	u64 rmap_len;
6291	int i, j, nr = 0;
6292
6293	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6294	if (IS_ERR(em))
6295		return -EIO;
6296
6297	map = em->map_lookup;
6298	length = em->len;
6299	rmap_len = map->stripe_len;
6300
6301	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6302		length = div_u64(length, map->num_stripes / map->sub_stripes);
6303	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6304		length = div_u64(length, map->num_stripes);
6305	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6306		length = div_u64(length, nr_data_stripes(map));
6307		rmap_len = map->stripe_len * nr_data_stripes(map);
6308	}
6309
6310	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6311	BUG_ON(!buf); /* -ENOMEM */
6312
6313	for (i = 0; i < map->num_stripes; i++) {
6314		if (map->stripes[i].physical > physical ||
6315		    map->stripes[i].physical + length <= physical)
6316			continue;
6317
6318		stripe_nr = physical - map->stripes[i].physical;
6319		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6320
6321		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6322			stripe_nr = stripe_nr * map->num_stripes + i;
6323			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6324		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6325			stripe_nr = stripe_nr * map->num_stripes + i;
6326		} /* else if RAID[56], multiply by nr_data_stripes().
6327		   * Alternatively, just use rmap_len below instead of
6328		   * map->stripe_len */
6329
6330		bytenr = chunk_start + stripe_nr * rmap_len;
6331		WARN_ON(nr >= map->num_stripes);
6332		for (j = 0; j < nr; j++) {
6333			if (buf[j] == bytenr)
6334				break;
6335		}
6336		if (j == nr) {
6337			WARN_ON(nr >= map->num_stripes);
6338			buf[nr++] = bytenr;
6339		}
6340	}
6341
6342	*logical = buf;
6343	*naddrs = nr;
6344	*stripe_len = rmap_len;
6345
6346	free_extent_map(em);
6347	return 0;
6348}
6349
6350static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
 
6351{
6352	bio->bi_private = bbio->private;
6353	bio->bi_end_io = bbio->end_io;
6354	bio_endio(bio);
6355
6356	btrfs_put_bbio(bbio);
6357}
6358
6359static void btrfs_end_bio(struct bio *bio)
6360{
6361	struct btrfs_bio *bbio = bio->bi_private;
6362	int is_orig_bio = 0;
6363
6364	if (bio->bi_status) {
6365		atomic_inc(&bbio->error);
6366		if (bio->bi_status == BLK_STS_IOERR ||
6367		    bio->bi_status == BLK_STS_TARGET) {
6368			unsigned int stripe_index =
6369				btrfs_io_bio(bio)->stripe_index;
6370			struct btrfs_device *dev;
6371
6372			BUG_ON(stripe_index >= bbio->num_stripes);
6373			dev = bbio->stripes[stripe_index].dev;
6374			if (dev->bdev) {
6375				if (bio_op(bio) == REQ_OP_WRITE)
6376					btrfs_dev_stat_inc_and_print(dev,
6377						BTRFS_DEV_STAT_WRITE_ERRS);
6378				else if (!(bio->bi_opf & REQ_RAHEAD))
6379					btrfs_dev_stat_inc_and_print(dev,
6380						BTRFS_DEV_STAT_READ_ERRS);
6381				if (bio->bi_opf & REQ_PREFLUSH)
6382					btrfs_dev_stat_inc_and_print(dev,
6383						BTRFS_DEV_STAT_FLUSH_ERRS);
6384			}
6385		}
6386	}
6387
6388	if (bio == bbio->orig_bio)
6389		is_orig_bio = 1;
6390
6391	btrfs_bio_counter_dec(bbio->fs_info);
6392
6393	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394		if (!is_orig_bio) {
6395			bio_put(bio);
6396			bio = bbio->orig_bio;
6397		}
6398
6399		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6400		/* only send an error to the higher layers if it is
6401		 * beyond the tolerance of the btrfs bio
6402		 */
6403		if (atomic_read(&bbio->error) > bbio->max_errors) {
6404			bio->bi_status = BLK_STS_IOERR;
6405		} else {
6406			/*
6407			 * this bio is actually up to date, we didn't
6408			 * go over the max number of errors
6409			 */
6410			bio->bi_status = BLK_STS_OK;
6411		}
6412
6413		btrfs_end_bbio(bbio, bio);
6414	} else if (!is_orig_bio) {
6415		bio_put(bio);
6416	}
6417}
6418
6419/*
6420 * see run_scheduled_bios for a description of why bios are collected for
6421 * async submit.
6422 *
6423 * This will add one bio to the pending list for a device and make sure
6424 * the work struct is scheduled.
6425 */
6426static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6427					struct bio *bio)
6428{
6429	struct btrfs_fs_info *fs_info = device->fs_info;
6430	int should_queue = 1;
6431	struct btrfs_pending_bios *pending_bios;
6432
6433	/* don't bother with additional async steps for reads, right now */
6434	if (bio_op(bio) == REQ_OP_READ) {
6435		btrfsic_submit_bio(bio);
6436		return;
6437	}
6438
6439	WARN_ON(bio->bi_next);
6440	bio->bi_next = NULL;
6441
6442	spin_lock(&device->io_lock);
6443	if (op_is_sync(bio->bi_opf))
6444		pending_bios = &device->pending_sync_bios;
6445	else
6446		pending_bios = &device->pending_bios;
6447
6448	if (pending_bios->tail)
6449		pending_bios->tail->bi_next = bio;
6450
6451	pending_bios->tail = bio;
6452	if (!pending_bios->head)
6453		pending_bios->head = bio;
6454	if (device->running_pending)
6455		should_queue = 0;
6456
6457	spin_unlock(&device->io_lock);
6458
6459	if (should_queue)
6460		btrfs_queue_work(fs_info->submit_workers, &device->work);
6461}
6462
6463static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6464			      u64 physical, int dev_nr, int async)
6465{
6466	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6467	struct btrfs_fs_info *fs_info = bbio->fs_info;
6468
6469	bio->bi_private = bbio;
6470	btrfs_io_bio(bio)->stripe_index = dev_nr;
6471	bio->bi_end_io = btrfs_end_bio;
6472	bio->bi_iter.bi_sector = physical >> 9;
6473	btrfs_debug_in_rcu(fs_info,
6474	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6475		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6476		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6477		bio->bi_iter.bi_size);
6478	bio_set_dev(bio, dev->bdev);
6479
6480	btrfs_bio_counter_inc_noblocked(fs_info);
6481
6482	if (async)
6483		btrfs_schedule_bio(dev, bio);
6484	else
6485		btrfsic_submit_bio(bio);
6486}
6487
6488static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6489{
6490	atomic_inc(&bbio->error);
6491	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6492		/* Should be the original bio. */
6493		WARN_ON(bio != bbio->orig_bio);
6494
6495		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6496		bio->bi_iter.bi_sector = logical >> 9;
6497		if (atomic_read(&bbio->error) > bbio->max_errors)
6498			bio->bi_status = BLK_STS_IOERR;
6499		else
6500			bio->bi_status = BLK_STS_OK;
6501		btrfs_end_bbio(bbio, bio);
6502	}
6503}
6504
6505blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6506			   int mirror_num, int async_submit)
6507{
6508	struct btrfs_device *dev;
6509	struct bio *first_bio = bio;
6510	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6511	u64 length = 0;
6512	u64 map_length;
6513	int ret;
6514	int dev_nr;
6515	int total_devs;
6516	struct btrfs_bio *bbio = NULL;
6517
6518	length = bio->bi_iter.bi_size;
6519	map_length = length;
6520
6521	btrfs_bio_counter_inc_blocked(fs_info);
6522	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6523				&map_length, &bbio, mirror_num, 1);
6524	if (ret) {
6525		btrfs_bio_counter_dec(fs_info);
6526		return errno_to_blk_status(ret);
6527	}
6528
6529	total_devs = bbio->num_stripes;
6530	bbio->orig_bio = first_bio;
6531	bbio->private = first_bio->bi_private;
6532	bbio->end_io = first_bio->bi_end_io;
6533	bbio->fs_info = fs_info;
6534	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6535
6536	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6537	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6538		/* In this case, map_length has been set to the length of
6539		   a single stripe; not the whole write */
6540		if (bio_op(bio) == REQ_OP_WRITE) {
6541			ret = raid56_parity_write(fs_info, bio, bbio,
6542						  map_length);
6543		} else {
6544			ret = raid56_parity_recover(fs_info, bio, bbio,
6545						    map_length, mirror_num, 1);
6546		}
6547
6548		btrfs_bio_counter_dec(fs_info);
6549		return errno_to_blk_status(ret);
6550	}
6551
6552	if (map_length < length) {
6553		btrfs_crit(fs_info,
6554			   "mapping failed logical %llu bio len %llu len %llu",
6555			   logical, length, map_length);
6556		BUG();
6557	}
6558
6559	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6560		dev = bbio->stripes[dev_nr].dev;
6561		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6562						   &dev->dev_state) ||
6563		    (bio_op(first_bio) == REQ_OP_WRITE &&
6564		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6565			bbio_error(bbio, first_bio, logical);
6566			continue;
 
 
 
6567		}
6568
6569		if (dev_nr < total_devs - 1)
6570			bio = btrfs_bio_clone(first_bio);
6571		else
6572			bio = first_bio;
6573
6574		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6575				  dev_nr, async_submit);
6576	}
6577	btrfs_bio_counter_dec(fs_info);
6578	return BLK_STS_OK;
6579}
6580
6581/*
6582 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6583 * return NULL.
6584 *
6585 * If devid and uuid are both specified, the match must be exact, otherwise
6586 * only devid is used.
6587 *
6588 * If @seed is true, traverse through the seed devices.
6589 */
6590struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6591				       u64 devid, u8 *uuid, u8 *fsid,
6592				       bool seed)
6593{
6594	struct btrfs_device *device;
6595
6596	while (fs_devices) {
6597		if (!fsid ||
6598		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6599			list_for_each_entry(device, &fs_devices->devices,
6600					    dev_list) {
6601				if (device->devid == devid &&
6602				    (!uuid || memcmp(device->uuid, uuid,
6603						     BTRFS_UUID_SIZE) == 0))
6604					return device;
6605			}
6606		}
6607		if (seed)
6608			fs_devices = fs_devices->seed;
6609		else
6610			return NULL;
6611	}
6612	return NULL;
6613}
6614
6615static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6616					    u64 devid, u8 *dev_uuid)
6617{
6618	struct btrfs_device *device;
 
6619
6620	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
 
 
 
 
 
 
 
 
 
6621	if (IS_ERR(device))
6622		return device;
6623
6624	list_add(&device->dev_list, &fs_devices->devices);
6625	device->fs_devices = fs_devices;
6626	fs_devices->num_devices++;
6627
6628	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6629	fs_devices->missing_devices++;
6630
6631	return device;
6632}
6633
6634/**
6635 * btrfs_alloc_device - allocate struct btrfs_device
 
6636 * @fs_info:	used only for generating a new devid, can be NULL if
6637 *		devid is provided (i.e. @devid != NULL).
6638 * @devid:	a pointer to devid for this device.  If NULL a new devid
6639 *		is generated.
6640 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6641 *		is generated.
 
6642 *
6643 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6644 * on error.  Returned struct is not linked onto any lists and must be
6645 * destroyed with btrfs_free_device.
6646 */
6647struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6648					const u64 *devid,
6649					const u8 *uuid)
6650{
6651	struct btrfs_device *dev;
6652	u64 tmp;
6653
6654	if (WARN_ON(!devid && !fs_info))
6655		return ERR_PTR(-EINVAL);
6656
6657	dev = __alloc_device();
6658	if (IS_ERR(dev))
6659		return dev;
 
 
 
 
 
 
 
 
6660
6661	if (devid)
6662		tmp = *devid;
6663	else {
6664		int ret;
6665
6666		ret = find_next_devid(fs_info, &tmp);
6667		if (ret) {
6668			btrfs_free_device(dev);
6669			return ERR_PTR(ret);
6670		}
6671	}
6672	dev->devid = tmp;
6673
6674	if (uuid)
6675		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6676	else
6677		generate_random_uuid(dev->uuid);
6678
6679	btrfs_init_work(&dev->work, btrfs_submit_helper,
6680			pending_bios_fn, NULL, NULL);
 
 
 
 
 
 
 
 
6681
6682	return dev;
6683}
6684
6685static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6686					u64 devid, u8 *uuid, bool error)
6687{
6688	if (error)
6689		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6690			      devid, uuid);
6691	else
6692		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6693			      devid, uuid);
6694}
6695
6696static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6697{
6698	int index = btrfs_bg_flags_to_raid_index(type);
6699	int ncopies = btrfs_raid_array[index].ncopies;
6700	int data_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6701
6702	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6703	case BTRFS_BLOCK_GROUP_RAID5:
6704		data_stripes = num_stripes - 1;
6705		break;
6706	case BTRFS_BLOCK_GROUP_RAID6:
6707		data_stripes = num_stripes - 2;
6708		break;
6709	default:
6710		data_stripes = num_stripes / ncopies;
6711		break;
6712	}
6713	return div_u64(chunk_len, data_stripes);
 
 
6714}
6715
6716static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6717			  struct btrfs_chunk *chunk)
6718{
 
6719	struct btrfs_fs_info *fs_info = leaf->fs_info;
6720	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6721	struct map_lookup *map;
6722	struct extent_map *em;
6723	u64 logical;
6724	u64 length;
6725	u64 devid;
 
6726	u8 uuid[BTRFS_UUID_SIZE];
 
6727	int num_stripes;
6728	int ret;
6729	int i;
6730
6731	logical = key->offset;
6732	length = btrfs_chunk_length(leaf, chunk);
 
 
6733	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6734
 
 
 
 
 
 
 
6735	/*
6736	 * Only need to verify chunk item if we're reading from sys chunk array,
6737	 * as chunk item in tree block is already verified by tree-checker.
6738	 */
6739	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6740		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6741		if (ret)
6742			return ret;
6743	}
6744
6745	read_lock(&map_tree->lock);
6746	em = lookup_extent_mapping(map_tree, logical, 1);
6747	read_unlock(&map_tree->lock);
6748
6749	/* already mapped? */
6750	if (em && em->start <= logical && em->start + em->len > logical) {
6751		free_extent_map(em);
6752		return 0;
6753	} else if (em) {
6754		free_extent_map(em);
6755	}
6756
6757	em = alloc_extent_map();
6758	if (!em)
6759		return -ENOMEM;
6760	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6761	if (!map) {
6762		free_extent_map(em);
6763		return -ENOMEM;
6764	}
6765
6766	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6767	em->map_lookup = map;
6768	em->start = logical;
6769	em->len = length;
6770	em->orig_start = 0;
6771	em->block_start = 0;
6772	em->block_len = em->len;
6773
6774	map->num_stripes = num_stripes;
6775	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6776	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6777	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6778	map->type = btrfs_chunk_type(leaf, chunk);
6779	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 
 
 
 
 
 
 
 
6780	map->verified_stripes = 0;
6781	em->orig_block_len = calc_stripe_length(map->type, em->len,
6782						map->num_stripes);
6783	for (i = 0; i < num_stripes; i++) {
6784		map->stripes[i].physical =
6785			btrfs_stripe_offset_nr(leaf, chunk, i);
6786		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 
6787		read_extent_buffer(leaf, uuid, (unsigned long)
6788				   btrfs_stripe_dev_uuid_nr(chunk, i),
6789				   BTRFS_UUID_SIZE);
6790		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6791							devid, uuid, NULL, true);
6792		if (!map->stripes[i].dev &&
6793		    !btrfs_test_opt(fs_info, DEGRADED)) {
6794			free_extent_map(em);
6795			btrfs_report_missing_device(fs_info, devid, uuid, true);
6796			return -ENOENT;
6797		}
6798		if (!map->stripes[i].dev) {
6799			map->stripes[i].dev =
6800				add_missing_dev(fs_info->fs_devices, devid,
6801						uuid);
6802			if (IS_ERR(map->stripes[i].dev)) {
 
6803				free_extent_map(em);
6804				btrfs_err(fs_info,
6805					"failed to init missing dev %llu: %ld",
6806					devid, PTR_ERR(map->stripes[i].dev));
6807				return PTR_ERR(map->stripes[i].dev);
6808			}
6809			btrfs_report_missing_device(fs_info, devid, uuid, false);
6810		}
 
6811		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6812				&(map->stripes[i].dev->dev_state));
6813
6814	}
6815
6816	write_lock(&map_tree->lock);
6817	ret = add_extent_mapping(map_tree, em, 0);
6818	write_unlock(&map_tree->lock);
6819	if (ret < 0) {
6820		btrfs_err(fs_info,
6821			  "failed to add chunk map, start=%llu len=%llu: %d",
6822			  em->start, em->len, ret);
6823	}
6824	free_extent_map(em);
6825
6826	return ret;
6827}
6828
6829static void fill_device_from_item(struct extent_buffer *leaf,
6830				 struct btrfs_dev_item *dev_item,
6831				 struct btrfs_device *device)
6832{
6833	unsigned long ptr;
6834
6835	device->devid = btrfs_device_id(leaf, dev_item);
6836	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6837	device->total_bytes = device->disk_total_bytes;
6838	device->commit_total_bytes = device->disk_total_bytes;
6839	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6840	device->commit_bytes_used = device->bytes_used;
6841	device->type = btrfs_device_type(leaf, dev_item);
6842	device->io_align = btrfs_device_io_align(leaf, dev_item);
6843	device->io_width = btrfs_device_io_width(leaf, dev_item);
6844	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6845	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6846	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6847
6848	ptr = btrfs_device_uuid(dev_item);
6849	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6850}
6851
6852static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6853						  u8 *fsid)
6854{
6855	struct btrfs_fs_devices *fs_devices;
6856	int ret;
6857
6858	lockdep_assert_held(&uuid_mutex);
6859	ASSERT(fsid);
6860
6861	fs_devices = fs_info->fs_devices->seed;
6862	while (fs_devices) {
6863		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6864			return fs_devices;
6865
6866		fs_devices = fs_devices->seed;
6867	}
6868
6869	fs_devices = find_fsid(fsid, NULL);
6870	if (!fs_devices) {
6871		if (!btrfs_test_opt(fs_info, DEGRADED))
6872			return ERR_PTR(-ENOENT);
6873
6874		fs_devices = alloc_fs_devices(fsid, NULL);
6875		if (IS_ERR(fs_devices))
6876			return fs_devices;
6877
6878		fs_devices->seeding = 1;
6879		fs_devices->opened = 1;
6880		return fs_devices;
6881	}
6882
 
 
 
 
6883	fs_devices = clone_fs_devices(fs_devices);
6884	if (IS_ERR(fs_devices))
6885		return fs_devices;
6886
6887	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6888	if (ret) {
6889		free_fs_devices(fs_devices);
6890		fs_devices = ERR_PTR(ret);
6891		goto out;
6892	}
6893
6894	if (!fs_devices->seeding) {
6895		close_fs_devices(fs_devices);
6896		free_fs_devices(fs_devices);
6897		fs_devices = ERR_PTR(-EINVAL);
6898		goto out;
6899	}
6900
6901	fs_devices->seed = fs_info->fs_devices->seed;
6902	fs_info->fs_devices->seed = fs_devices;
6903out:
6904	return fs_devices;
6905}
6906
6907static int read_one_dev(struct extent_buffer *leaf,
6908			struct btrfs_dev_item *dev_item)
6909{
 
6910	struct btrfs_fs_info *fs_info = leaf->fs_info;
6911	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6912	struct btrfs_device *device;
6913	u64 devid;
6914	int ret;
6915	u8 fs_uuid[BTRFS_FSID_SIZE];
6916	u8 dev_uuid[BTRFS_UUID_SIZE];
6917
6918	devid = btrfs_device_id(leaf, dev_item);
 
6919	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6920			   BTRFS_UUID_SIZE);
6921	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6922			   BTRFS_FSID_SIZE);
 
 
6923
6924	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6925		fs_devices = open_seed_devices(fs_info, fs_uuid);
6926		if (IS_ERR(fs_devices))
6927			return PTR_ERR(fs_devices);
6928	}
6929
6930	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6931				   fs_uuid, true);
6932	if (!device) {
6933		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6934			btrfs_report_missing_device(fs_info, devid,
6935							dev_uuid, true);
6936			return -ENOENT;
6937		}
6938
6939		device = add_missing_dev(fs_devices, devid, dev_uuid);
6940		if (IS_ERR(device)) {
6941			btrfs_err(fs_info,
6942				"failed to add missing dev %llu: %ld",
6943				devid, PTR_ERR(device));
6944			return PTR_ERR(device);
6945		}
6946		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6947	} else {
6948		if (!device->bdev) {
6949			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6950				btrfs_report_missing_device(fs_info,
6951						devid, dev_uuid, true);
6952				return -ENOENT;
6953			}
6954			btrfs_report_missing_device(fs_info, devid,
6955							dev_uuid, false);
6956		}
6957
6958		if (!device->bdev &&
6959		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6960			/*
6961			 * this happens when a device that was properly setup
6962			 * in the device info lists suddenly goes bad.
6963			 * device->bdev is NULL, and so we have to set
6964			 * device->missing to one here
6965			 */
6966			device->fs_devices->missing_devices++;
6967			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6968		}
6969
6970		/* Move the device to its own fs_devices */
6971		if (device->fs_devices != fs_devices) {
6972			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6973							&device->dev_state));
6974
6975			list_move(&device->dev_list, &fs_devices->devices);
6976			device->fs_devices->num_devices--;
6977			fs_devices->num_devices++;
6978
6979			device->fs_devices->missing_devices--;
6980			fs_devices->missing_devices++;
6981
6982			device->fs_devices = fs_devices;
6983		}
6984	}
6985
6986	if (device->fs_devices != fs_info->fs_devices) {
6987		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6988		if (device->generation !=
6989		    btrfs_device_generation(leaf, dev_item))
6990			return -EINVAL;
6991	}
6992
6993	fill_device_from_item(leaf, dev_item, device);
 
 
 
 
 
 
 
 
 
 
6994	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6995	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6996	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6997		device->fs_devices->total_rw_bytes += device->total_bytes;
6998		atomic64_add(device->total_bytes - device->bytes_used,
6999				&fs_info->free_chunk_space);
7000	}
7001	ret = 0;
7002	return ret;
7003}
7004
7005int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7006{
7007	struct btrfs_root *root = fs_info->tree_root;
7008	struct btrfs_super_block *super_copy = fs_info->super_copy;
7009	struct extent_buffer *sb;
7010	struct btrfs_disk_key *disk_key;
7011	struct btrfs_chunk *chunk;
7012	u8 *array_ptr;
7013	unsigned long sb_array_offset;
7014	int ret = 0;
7015	u32 num_stripes;
7016	u32 array_size;
7017	u32 len = 0;
7018	u32 cur_offset;
7019	u64 type;
7020	struct btrfs_key key;
7021
7022	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
 
7023	/*
7024	 * This will create extent buffer of nodesize, superblock size is
7025	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7026	 * overallocate but we can keep it as-is, only the first page is used.
7027	 */
7028	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7029	if (IS_ERR(sb))
7030		return PTR_ERR(sb);
7031	set_extent_buffer_uptodate(sb);
7032	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7033	/*
7034	 * The sb extent buffer is artificial and just used to read the system array.
7035	 * set_extent_buffer_uptodate() call does not properly mark all it's
7036	 * pages up-to-date when the page is larger: extent does not cover the
7037	 * whole page and consequently check_page_uptodate does not find all
7038	 * the page's extents up-to-date (the hole beyond sb),
7039	 * write_extent_buffer then triggers a WARN_ON.
7040	 *
7041	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7042	 * but sb spans only this function. Add an explicit SetPageUptodate call
7043	 * to silence the warning eg. on PowerPC 64.
7044	 */
7045	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7046		SetPageUptodate(sb->pages[0]);
7047
7048	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7049	array_size = btrfs_super_sys_array_size(super_copy);
7050
7051	array_ptr = super_copy->sys_chunk_array;
7052	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7053	cur_offset = 0;
7054
7055	while (cur_offset < array_size) {
7056		disk_key = (struct btrfs_disk_key *)array_ptr;
7057		len = sizeof(*disk_key);
7058		if (cur_offset + len > array_size)
7059			goto out_short_read;
7060
7061		btrfs_disk_key_to_cpu(&key, disk_key);
7062
7063		array_ptr += len;
7064		sb_array_offset += len;
7065		cur_offset += len;
7066
7067		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7068			chunk = (struct btrfs_chunk *)sb_array_offset;
7069			/*
7070			 * At least one btrfs_chunk with one stripe must be
7071			 * present, exact stripe count check comes afterwards
7072			 */
7073			len = btrfs_chunk_item_size(1);
7074			if (cur_offset + len > array_size)
7075				goto out_short_read;
7076
7077			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7078			if (!num_stripes) {
7079				btrfs_err(fs_info,
7080					"invalid number of stripes %u in sys_array at offset %u",
7081					num_stripes, cur_offset);
7082				ret = -EIO;
7083				break;
7084			}
7085
7086			type = btrfs_chunk_type(sb, chunk);
7087			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7088				btrfs_err(fs_info,
7089			    "invalid chunk type %llu in sys_array at offset %u",
7090					type, cur_offset);
7091				ret = -EIO;
7092				break;
7093			}
7094
7095			len = btrfs_chunk_item_size(num_stripes);
7096			if (cur_offset + len > array_size)
7097				goto out_short_read;
7098
7099			ret = read_one_chunk(&key, sb, chunk);
7100			if (ret)
7101				break;
7102		} else {
7103			btrfs_err(fs_info,
7104			    "unexpected item type %u in sys_array at offset %u",
7105				  (u32)key.type, cur_offset);
7106			ret = -EIO;
7107			break;
7108		}
 
 
 
 
 
 
 
 
 
7109		array_ptr += len;
7110		sb_array_offset += len;
7111		cur_offset += len;
7112	}
7113	clear_extent_buffer_uptodate(sb);
7114	free_extent_buffer_stale(sb);
7115	return ret;
7116
7117out_short_read:
7118	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7119			len, cur_offset);
7120	clear_extent_buffer_uptodate(sb);
7121	free_extent_buffer_stale(sb);
7122	return -EIO;
7123}
7124
7125/*
7126 * Check if all chunks in the fs are OK for read-write degraded mount
7127 *
7128 * If the @failing_dev is specified, it's accounted as missing.
7129 *
7130 * Return true if all chunks meet the minimal RW mount requirements.
7131 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7132 */
7133bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7134					struct btrfs_device *failing_dev)
7135{
7136	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7137	struct extent_map *em;
7138	u64 next_start = 0;
7139	bool ret = true;
7140
7141	read_lock(&map_tree->lock);
7142	em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7143	read_unlock(&map_tree->lock);
7144	/* No chunk at all? Return false anyway */
7145	if (!em) {
7146		ret = false;
7147		goto out;
7148	}
7149	while (em) {
7150		struct map_lookup *map;
7151		int missing = 0;
7152		int max_tolerated;
7153		int i;
7154
7155		map = em->map_lookup;
7156		max_tolerated =
7157			btrfs_get_num_tolerated_disk_barrier_failures(
7158					map->type);
7159		for (i = 0; i < map->num_stripes; i++) {
7160			struct btrfs_device *dev = map->stripes[i].dev;
7161
7162			if (!dev || !dev->bdev ||
7163			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7164			    dev->last_flush_error)
7165				missing++;
7166			else if (failing_dev && failing_dev == dev)
7167				missing++;
7168		}
7169		if (missing > max_tolerated) {
7170			if (!failing_dev)
7171				btrfs_warn(fs_info,
7172	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7173				   em->start, missing, max_tolerated);
7174			free_extent_map(em);
7175			ret = false;
7176			goto out;
7177		}
7178		next_start = extent_map_end(em);
7179		free_extent_map(em);
7180
7181		read_lock(&map_tree->lock);
7182		em = lookup_extent_mapping(map_tree, next_start,
7183					   (u64)(-1) - next_start);
7184		read_unlock(&map_tree->lock);
7185	}
7186out:
7187	return ret;
7188}
7189
 
 
 
 
 
 
 
 
 
7190int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7191{
7192	struct btrfs_root *root = fs_info->chunk_root;
7193	struct btrfs_path *path;
7194	struct extent_buffer *leaf;
7195	struct btrfs_key key;
7196	struct btrfs_key found_key;
7197	int ret;
7198	int slot;
 
7199	u64 total_dev = 0;
 
7200
7201	path = btrfs_alloc_path();
7202	if (!path)
7203		return -ENOMEM;
7204
7205	/*
7206	 * uuid_mutex is needed only if we are mounting a sprout FS
7207	 * otherwise we don't need it.
7208	 */
7209	mutex_lock(&uuid_mutex);
7210	mutex_lock(&fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7211
7212	/*
7213	 * Read all device items, and then all the chunk items. All
7214	 * device items are found before any chunk item (their object id
7215	 * is smaller than the lowest possible object id for a chunk
7216	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7217	 */
7218	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7219	key.offset = 0;
7220	key.type = 0;
7221	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7222	if (ret < 0)
7223		goto error;
7224	while (1) {
7225		leaf = path->nodes[0];
7226		slot = path->slots[0];
7227		if (slot >= btrfs_header_nritems(leaf)) {
7228			ret = btrfs_next_leaf(root, path);
7229			if (ret == 0)
7230				continue;
7231			if (ret < 0)
7232				goto error;
7233			break;
7234		}
7235		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7236		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7237			struct btrfs_dev_item *dev_item;
7238			dev_item = btrfs_item_ptr(leaf, slot,
7239						  struct btrfs_dev_item);
7240			ret = read_one_dev(leaf, dev_item);
7241			if (ret)
7242				goto error;
7243			total_dev++;
7244		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7245			struct btrfs_chunk *chunk;
 
 
 
 
 
 
 
 
 
7246			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7247			ret = read_one_chunk(&found_key, leaf, chunk);
7248			if (ret)
7249				goto error;
7250		}
7251		path->slots[0]++;
 
 
 
 
7252	}
7253
7254	/*
7255	 * After loading chunk tree, we've got all device information,
7256	 * do another round of validation checks.
7257	 */
7258	if (total_dev != fs_info->fs_devices->total_devices) {
7259		btrfs_err(fs_info,
7260	   "super_num_devices %llu mismatch with num_devices %llu found here",
7261			  btrfs_super_num_devices(fs_info->super_copy),
7262			  total_dev);
7263		ret = -EINVAL;
7264		goto error;
7265	}
7266	if (btrfs_super_total_bytes(fs_info->super_copy) <
7267	    fs_info->fs_devices->total_rw_bytes) {
7268		btrfs_err(fs_info,
7269	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7270			  btrfs_super_total_bytes(fs_info->super_copy),
7271			  fs_info->fs_devices->total_rw_bytes);
7272		ret = -EINVAL;
7273		goto error;
7274	}
7275	ret = 0;
7276error:
7277	mutex_unlock(&fs_info->chunk_mutex);
7278	mutex_unlock(&uuid_mutex);
7279
7280	btrfs_free_path(path);
7281	return ret;
7282}
7283
7284void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7285{
7286	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287	struct btrfs_device *device;
 
 
 
7288
7289	while (fs_devices) {
7290		mutex_lock(&fs_devices->device_list_mutex);
7291		list_for_each_entry(device, &fs_devices->devices, dev_list)
 
 
 
7292			device->fs_info = fs_info;
7293		mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
7294
7295		fs_devices = fs_devices->seed;
7296	}
 
 
 
7297}
7298
7299static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7300				 const struct btrfs_dev_stats_item *ptr,
7301				 int index)
7302{
7303	u64 val;
7304
7305	read_extent_buffer(eb, &val,
7306			   offsetof(struct btrfs_dev_stats_item, values) +
7307			    ((unsigned long)ptr) + (index * sizeof(u64)),
7308			   sizeof(val));
7309	return val;
7310}
7311
7312static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7313				      struct btrfs_dev_stats_item *ptr,
7314				      int index, u64 val)
7315{
7316	write_extent_buffer(eb, &val,
7317			    offsetof(struct btrfs_dev_stats_item, values) +
7318			     ((unsigned long)ptr) + (index * sizeof(u64)),
7319			    sizeof(val));
7320}
7321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7322int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7323{
7324	struct btrfs_key key;
7325	struct btrfs_root *dev_root = fs_info->dev_root;
7326	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7327	struct extent_buffer *eb;
7328	int slot;
7329	int ret = 0;
7330	struct btrfs_device *device;
7331	struct btrfs_path *path = NULL;
7332	int i;
7333
7334	path = btrfs_alloc_path();
7335	if (!path)
7336		return -ENOMEM;
7337
7338	mutex_lock(&fs_devices->device_list_mutex);
7339	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7340		int item_size;
7341		struct btrfs_dev_stats_item *ptr;
7342
7343		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7344		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7345		key.offset = device->devid;
7346		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7347		if (ret) {
7348			for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7349				btrfs_dev_stat_set(device, i, 0);
7350			device->dev_stats_valid = 1;
7351			btrfs_release_path(path);
7352			continue;
7353		}
7354		slot = path->slots[0];
7355		eb = path->nodes[0];
7356		item_size = btrfs_item_size_nr(eb, slot);
7357
7358		ptr = btrfs_item_ptr(eb, slot,
7359				     struct btrfs_dev_stats_item);
7360
7361		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7362			if (item_size >= (1 + i) * sizeof(__le64))
7363				btrfs_dev_stat_set(device, i,
7364					btrfs_dev_stats_value(eb, ptr, i));
7365			else
7366				btrfs_dev_stat_set(device, i, 0);
7367		}
7368
7369		device->dev_stats_valid = 1;
7370		btrfs_dev_stat_print_on_load(device);
7371		btrfs_release_path(path);
7372	}
 
7373	mutex_unlock(&fs_devices->device_list_mutex);
7374
7375	btrfs_free_path(path);
7376	return ret < 0 ? ret : 0;
7377}
7378
7379static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7380				struct btrfs_device *device)
7381{
7382	struct btrfs_fs_info *fs_info = trans->fs_info;
7383	struct btrfs_root *dev_root = fs_info->dev_root;
7384	struct btrfs_path *path;
7385	struct btrfs_key key;
7386	struct extent_buffer *eb;
7387	struct btrfs_dev_stats_item *ptr;
7388	int ret;
7389	int i;
7390
7391	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7392	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7393	key.offset = device->devid;
7394
7395	path = btrfs_alloc_path();
7396	if (!path)
7397		return -ENOMEM;
7398	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7399	if (ret < 0) {
7400		btrfs_warn_in_rcu(fs_info,
7401			"error %d while searching for dev_stats item for device %s",
7402			      ret, rcu_str_deref(device->name));
7403		goto out;
7404	}
7405
7406	if (ret == 0 &&
7407	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7408		/* need to delete old one and insert a new one */
7409		ret = btrfs_del_item(trans, dev_root, path);
7410		if (ret != 0) {
7411			btrfs_warn_in_rcu(fs_info,
7412				"delete too small dev_stats item for device %s failed %d",
7413				      rcu_str_deref(device->name), ret);
7414			goto out;
7415		}
7416		ret = 1;
7417	}
7418
7419	if (ret == 1) {
7420		/* need to insert a new item */
7421		btrfs_release_path(path);
7422		ret = btrfs_insert_empty_item(trans, dev_root, path,
7423					      &key, sizeof(*ptr));
7424		if (ret < 0) {
7425			btrfs_warn_in_rcu(fs_info,
7426				"insert dev_stats item for device %s failed %d",
7427				rcu_str_deref(device->name), ret);
7428			goto out;
7429		}
7430	}
7431
7432	eb = path->nodes[0];
7433	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7434	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7435		btrfs_set_dev_stats_value(eb, ptr, i,
7436					  btrfs_dev_stat_read(device, i));
7437	btrfs_mark_buffer_dirty(eb);
7438
7439out:
7440	btrfs_free_path(path);
7441	return ret;
7442}
7443
7444/*
7445 * called from commit_transaction. Writes all changed device stats to disk.
7446 */
7447int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7448{
7449	struct btrfs_fs_info *fs_info = trans->fs_info;
7450	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7451	struct btrfs_device *device;
7452	int stats_cnt;
7453	int ret = 0;
7454
7455	mutex_lock(&fs_devices->device_list_mutex);
7456	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7457		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7458		if (!device->dev_stats_valid || stats_cnt == 0)
7459			continue;
7460
7461
7462		/*
7463		 * There is a LOAD-LOAD control dependency between the value of
7464		 * dev_stats_ccnt and updating the on-disk values which requires
7465		 * reading the in-memory counters. Such control dependencies
7466		 * require explicit read memory barriers.
7467		 *
7468		 * This memory barriers pairs with smp_mb__before_atomic in
7469		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7470		 * barrier implied by atomic_xchg in
7471		 * btrfs_dev_stats_read_and_reset
7472		 */
7473		smp_rmb();
7474
7475		ret = update_dev_stat_item(trans, device);
7476		if (!ret)
7477			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7478	}
7479	mutex_unlock(&fs_devices->device_list_mutex);
7480
7481	return ret;
7482}
7483
7484void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7485{
7486	btrfs_dev_stat_inc(dev, index);
7487	btrfs_dev_stat_print_on_error(dev);
7488}
7489
7490static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7491{
7492	if (!dev->dev_stats_valid)
7493		return;
7494	btrfs_err_rl_in_rcu(dev->fs_info,
7495		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7496			   rcu_str_deref(dev->name),
7497			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7498			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7499			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7500			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7501			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7502}
7503
7504static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7505{
7506	int i;
7507
7508	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7509		if (btrfs_dev_stat_read(dev, i) != 0)
7510			break;
7511	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7512		return; /* all values == 0, suppress message */
7513
7514	btrfs_info_in_rcu(dev->fs_info,
7515		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7516	       rcu_str_deref(dev->name),
7517	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7518	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7519	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7520	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7521	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7522}
7523
7524int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7525			struct btrfs_ioctl_get_dev_stats *stats)
7526{
 
7527	struct btrfs_device *dev;
7528	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7529	int i;
7530
7531	mutex_lock(&fs_devices->device_list_mutex);
7532	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7533				true);
7534	mutex_unlock(&fs_devices->device_list_mutex);
7535
7536	if (!dev) {
7537		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7538		return -ENODEV;
7539	} else if (!dev->dev_stats_valid) {
7540		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7541		return -ENODEV;
7542	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7543		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7544			if (stats->nr_items > i)
7545				stats->values[i] =
7546					btrfs_dev_stat_read_and_reset(dev, i);
7547			else
7548				btrfs_dev_stat_set(dev, i, 0);
7549		}
 
 
7550	} else {
7551		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7552			if (stats->nr_items > i)
7553				stats->values[i] = btrfs_dev_stat_read(dev, i);
7554	}
7555	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7556		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7557	return 0;
7558}
7559
7560void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7561{
7562	struct buffer_head *bh;
7563	struct btrfs_super_block *disk_super;
7564	int copy_num;
7565
7566	if (!bdev)
7567		return;
7568
7569	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7570		copy_num++) {
7571
7572		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7573			continue;
7574
7575		disk_super = (struct btrfs_super_block *)bh->b_data;
7576
7577		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7578		set_buffer_dirty(bh);
7579		sync_dirty_buffer(bh);
7580		brelse(bh);
7581	}
7582
7583	/* Notify udev that device has changed */
7584	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7585
7586	/* Update ctime/mtime for device path for libblkid */
7587	update_dev_time(device_path);
7588}
7589
7590/*
7591 * Update the size and bytes used for each device where it changed.  This is
7592 * delayed since we would otherwise get errors while writing out the
7593 * superblocks.
7594 *
7595 * Must be invoked during transaction commit.
7596 */
7597void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7598{
7599	struct btrfs_device *curr, *next;
7600
7601	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7602
7603	if (list_empty(&trans->dev_update_list))
7604		return;
7605
7606	/*
7607	 * We don't need the device_list_mutex here.  This list is owned by the
7608	 * transaction and the transaction must complete before the device is
7609	 * released.
7610	 */
7611	mutex_lock(&trans->fs_info->chunk_mutex);
7612	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7613				 post_commit_list) {
7614		list_del_init(&curr->post_commit_list);
7615		curr->commit_total_bytes = curr->disk_total_bytes;
7616		curr->commit_bytes_used = curr->bytes_used;
7617	}
7618	mutex_unlock(&trans->fs_info->chunk_mutex);
7619}
7620
7621void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7622{
7623	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7624	while (fs_devices) {
7625		fs_devices->fs_info = fs_info;
7626		fs_devices = fs_devices->seed;
7627	}
7628}
7629
7630void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7631{
7632	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7633	while (fs_devices) {
7634		fs_devices->fs_info = NULL;
7635		fs_devices = fs_devices->seed;
7636	}
7637}
7638
7639/*
7640 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7641 */
7642int btrfs_bg_type_to_factor(u64 flags)
7643{
7644	const int index = btrfs_bg_flags_to_raid_index(flags);
7645
7646	return btrfs_raid_array[index].ncopies;
7647}
7648
7649
7650
7651static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7652				 u64 chunk_offset, u64 devid,
7653				 u64 physical_offset, u64 physical_len)
7654{
 
7655	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7656	struct extent_map *em;
7657	struct map_lookup *map;
7658	struct btrfs_device *dev;
7659	u64 stripe_len;
7660	bool found = false;
7661	int ret = 0;
7662	int i;
7663
7664	read_lock(&em_tree->lock);
7665	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7666	read_unlock(&em_tree->lock);
7667
7668	if (!em) {
7669		btrfs_err(fs_info,
7670"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7671			  physical_offset, devid);
7672		ret = -EUCLEAN;
7673		goto out;
7674	}
7675
7676	map = em->map_lookup;
7677	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7678	if (physical_len != stripe_len) {
7679		btrfs_err(fs_info,
7680"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7681			  physical_offset, devid, em->start, physical_len,
7682			  stripe_len);
7683		ret = -EUCLEAN;
7684		goto out;
7685	}
7686
 
 
 
 
 
 
 
 
 
 
7687	for (i = 0; i < map->num_stripes; i++) {
7688		if (map->stripes[i].dev->devid == devid &&
7689		    map->stripes[i].physical == physical_offset) {
7690			found = true;
7691			if (map->verified_stripes >= map->num_stripes) {
7692				btrfs_err(fs_info,
7693				"too many dev extents for chunk %llu found",
7694					  em->start);
7695				ret = -EUCLEAN;
7696				goto out;
7697			}
7698			map->verified_stripes++;
7699			break;
7700		}
7701	}
7702	if (!found) {
7703		btrfs_err(fs_info,
7704	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7705			physical_offset, devid);
7706		ret = -EUCLEAN;
7707	}
7708
7709	/* Make sure no dev extent is beyond device bondary */
7710	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7711	if (!dev) {
7712		btrfs_err(fs_info, "failed to find devid %llu", devid);
7713		ret = -EUCLEAN;
7714		goto out;
7715	}
7716
7717	/* It's possible this device is a dummy for seed device */
7718	if (dev->disk_total_bytes == 0) {
7719		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7720					NULL, false);
7721		if (!dev) {
7722			btrfs_err(fs_info, "failed to find seed devid %llu",
7723				  devid);
7724			ret = -EUCLEAN;
7725			goto out;
7726		}
7727	}
7728
7729	if (physical_offset + physical_len > dev->disk_total_bytes) {
7730		btrfs_err(fs_info,
7731"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7732			  devid, physical_offset, physical_len,
7733			  dev->disk_total_bytes);
7734		ret = -EUCLEAN;
7735		goto out;
7736	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7737out:
7738	free_extent_map(em);
7739	return ret;
7740}
7741
7742static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7743{
7744	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7745	struct extent_map *em;
7746	struct rb_node *node;
7747	int ret = 0;
7748
7749	read_lock(&em_tree->lock);
7750	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7751		em = rb_entry(node, struct extent_map, rb_node);
7752		if (em->map_lookup->num_stripes !=
7753		    em->map_lookup->verified_stripes) {
7754			btrfs_err(fs_info,
7755			"chunk %llu has missing dev extent, have %d expect %d",
7756				  em->start, em->map_lookup->verified_stripes,
7757				  em->map_lookup->num_stripes);
7758			ret = -EUCLEAN;
7759			goto out;
7760		}
7761	}
7762out:
7763	read_unlock(&em_tree->lock);
7764	return ret;
7765}
7766
7767/*
7768 * Ensure that all dev extents are mapped to correct chunk, otherwise
7769 * later chunk allocation/free would cause unexpected behavior.
7770 *
7771 * NOTE: This will iterate through the whole device tree, which should be of
7772 * the same size level as the chunk tree.  This slightly increases mount time.
7773 */
7774int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7775{
7776	struct btrfs_path *path;
7777	struct btrfs_root *root = fs_info->dev_root;
7778	struct btrfs_key key;
7779	u64 prev_devid = 0;
7780	u64 prev_dev_ext_end = 0;
7781	int ret = 0;
7782
 
 
 
 
 
 
 
 
 
 
 
 
 
7783	key.objectid = 1;
7784	key.type = BTRFS_DEV_EXTENT_KEY;
7785	key.offset = 0;
7786
7787	path = btrfs_alloc_path();
7788	if (!path)
7789		return -ENOMEM;
7790
7791	path->reada = READA_FORWARD;
7792	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7793	if (ret < 0)
7794		goto out;
7795
7796	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7797		ret = btrfs_next_item(root, path);
7798		if (ret < 0)
7799			goto out;
7800		/* No dev extents at all? Not good */
7801		if (ret > 0) {
7802			ret = -EUCLEAN;
7803			goto out;
7804		}
7805	}
7806	while (1) {
7807		struct extent_buffer *leaf = path->nodes[0];
7808		struct btrfs_dev_extent *dext;
7809		int slot = path->slots[0];
7810		u64 chunk_offset;
7811		u64 physical_offset;
7812		u64 physical_len;
7813		u64 devid;
7814
7815		btrfs_item_key_to_cpu(leaf, &key, slot);
7816		if (key.type != BTRFS_DEV_EXTENT_KEY)
7817			break;
7818		devid = key.objectid;
7819		physical_offset = key.offset;
7820
7821		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7822		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7823		physical_len = btrfs_dev_extent_length(leaf, dext);
7824
7825		/* Check if this dev extent overlaps with the previous one */
7826		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7827			btrfs_err(fs_info,
7828"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7829				  devid, physical_offset, prev_dev_ext_end);
7830			ret = -EUCLEAN;
7831			goto out;
7832		}
7833
7834		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7835					    physical_offset, physical_len);
7836		if (ret < 0)
7837			goto out;
7838		prev_devid = devid;
7839		prev_dev_ext_end = physical_offset + physical_len;
7840
7841		ret = btrfs_next_item(root, path);
7842		if (ret < 0)
7843			goto out;
7844		if (ret > 0) {
7845			ret = 0;
7846			break;
7847		}
7848	}
7849
7850	/* Ensure all chunks have corresponding dev extents */
7851	ret = verify_chunk_dev_extent_mapping(fs_info);
7852out:
7853	btrfs_free_path(path);
7854	return ret;
7855}
7856
7857/*
7858 * Check whether the given block group or device is pinned by any inode being
7859 * used as a swapfile.
7860 */
7861bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7862{
7863	struct btrfs_swapfile_pin *sp;
7864	struct rb_node *node;
7865
7866	spin_lock(&fs_info->swapfile_pins_lock);
7867	node = fs_info->swapfile_pins.rb_node;
7868	while (node) {
7869		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7870		if (ptr < sp->ptr)
7871			node = node->rb_left;
7872		else if (ptr > sp->ptr)
7873			node = node->rb_right;
7874		else
7875			break;
7876	}
7877	spin_unlock(&fs_info->swapfile_pins_lock);
7878	return node != NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7879}