Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161};
162
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175}
176
177const char *btrfs_bg_type_to_raid_name(u64 flags)
178{
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185}
186
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
248static int init_first_rw_device(struct btrfs_trans_handle *trans);
249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352DEFINE_MUTEX(uuid_mutex);
353static LIST_HEAD(fs_uuids);
354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355{
356 return &fs_uuids;
357}
358
359/*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
368static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370{
371 struct btrfs_fs_devices *fs_devs;
372
373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
381 INIT_LIST_HEAD(&fs_devs->fs_list);
382 INIT_LIST_HEAD(&fs_devs->seed_list);
383 if (fsid)
384 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
385
386 if (metadata_fsid)
387 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
388 else if (fsid)
389 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
390
391 return fs_devs;
392}
393
394void btrfs_free_device(struct btrfs_device *device)
395{
396 WARN_ON(!list_empty(&device->post_commit_list));
397 rcu_string_free(device->name);
398 extent_io_tree_release(&device->alloc_state);
399 btrfs_destroy_dev_zone_info(device);
400 kfree(device);
401}
402
403static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
404{
405 struct btrfs_device *device;
406
407 WARN_ON(fs_devices->opened);
408 while (!list_empty(&fs_devices->devices)) {
409 device = list_entry(fs_devices->devices.next,
410 struct btrfs_device, dev_list);
411 list_del(&device->dev_list);
412 btrfs_free_device(device);
413 }
414 kfree(fs_devices);
415}
416
417void __exit btrfs_cleanup_fs_uuids(void)
418{
419 struct btrfs_fs_devices *fs_devices;
420
421 while (!list_empty(&fs_uuids)) {
422 fs_devices = list_entry(fs_uuids.next,
423 struct btrfs_fs_devices, fs_list);
424 list_del(&fs_devices->fs_list);
425 free_fs_devices(fs_devices);
426 }
427}
428
429static noinline struct btrfs_fs_devices *find_fsid(
430 const u8 *fsid, const u8 *metadata_fsid)
431{
432 struct btrfs_fs_devices *fs_devices;
433
434 ASSERT(fsid);
435
436 /* Handle non-split brain cases */
437 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
438 if (metadata_fsid) {
439 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
440 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0)
442 return fs_devices;
443 } else {
444 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
445 return fs_devices;
446 }
447 }
448 return NULL;
449}
450
451static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
452 struct btrfs_super_block *disk_super)
453{
454
455 struct btrfs_fs_devices *fs_devices;
456
457 /*
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by first scanning
460 * a device which didn't have its fsid/metadata_uuid changed
461 * at all and the CHANGING_FSID_V2 flag set.
462 */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (fs_devices->fsid_change &&
465 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
466 BTRFS_FSID_SIZE) == 0 &&
467 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
468 BTRFS_FSID_SIZE) == 0) {
469 return fs_devices;
470 }
471 }
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by a device that
475 * has an outdated pair of fsid/metadata_uuid and
476 * CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(fs_devices->metadata_uuid,
481 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
482 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487
488 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
489}
490
491
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
495 struct btrfs_super_block **disk_super)
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
503 goto error;
504 }
505
506 if (flush)
507 sync_blockdev(*bdev);
508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
514 *disk_super = btrfs_read_dev_super(*bdev);
515 if (IS_ERR(*disk_super)) {
516 ret = PTR_ERR(*disk_super);
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
525 return ret;
526}
527
528/*
529 * Search and remove all stale devices (which are not mounted). When both
530 * inputs are NULL, it will search and release all stale devices.
531 *
532 * @devt: Optional. When provided will it release all unmounted devices
533 * matching this devt only.
534 * @skip_device: Optional. Will skip this device when searching for the stale
535 * devices.
536 *
537 * Return: 0 for success or if @devt is 0.
538 * -EBUSY if @devt is a mounted device.
539 * -ENOENT if @devt does not match any device in the list.
540 */
541static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
542{
543 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
544 struct btrfs_device *device, *tmp_device;
545 int ret = 0;
546
547 lockdep_assert_held(&uuid_mutex);
548
549 if (devt)
550 ret = -ENOENT;
551
552 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
553
554 mutex_lock(&fs_devices->device_list_mutex);
555 list_for_each_entry_safe(device, tmp_device,
556 &fs_devices->devices, dev_list) {
557 if (skip_device && skip_device == device)
558 continue;
559 if (devt && devt != device->devt)
560 continue;
561 if (fs_devices->opened) {
562 /* for an already deleted device return 0 */
563 if (devt && ret != 0)
564 ret = -EBUSY;
565 break;
566 }
567
568 /* delete the stale device */
569 fs_devices->num_devices--;
570 list_del(&device->dev_list);
571 btrfs_free_device(device);
572
573 ret = 0;
574 }
575 mutex_unlock(&fs_devices->device_list_mutex);
576
577 if (fs_devices->num_devices == 0) {
578 btrfs_sysfs_remove_fsid(fs_devices);
579 list_del(&fs_devices->fs_list);
580 free_fs_devices(fs_devices);
581 }
582 }
583
584 return ret;
585}
586
587/*
588 * This is only used on mount, and we are protected from competing things
589 * messing with our fs_devices by the uuid_mutex, thus we do not need the
590 * fs_devices->device_list_mutex here.
591 */
592static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
593 struct btrfs_device *device, fmode_t flags,
594 void *holder)
595{
596 struct block_device *bdev;
597 struct btrfs_super_block *disk_super;
598 u64 devid;
599 int ret;
600
601 if (device->bdev)
602 return -EINVAL;
603 if (!device->name)
604 return -EINVAL;
605
606 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
607 &bdev, &disk_super);
608 if (ret)
609 return ret;
610
611 devid = btrfs_stack_device_id(&disk_super->dev_item);
612 if (devid != device->devid)
613 goto error_free_page;
614
615 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
616 goto error_free_page;
617
618 device->generation = btrfs_super_generation(disk_super);
619
620 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
621 if (btrfs_super_incompat_flags(disk_super) &
622 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
623 pr_err(
624 "BTRFS: Invalid seeding and uuid-changed device detected\n");
625 goto error_free_page;
626 }
627
628 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
629 fs_devices->seeding = true;
630 } else {
631 if (bdev_read_only(bdev))
632 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
633 else
634 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
635 }
636
637 if (!bdev_nonrot(bdev))
638 fs_devices->rotating = true;
639
640 if (bdev_max_discard_sectors(bdev))
641 fs_devices->discardable = true;
642
643 device->bdev = bdev;
644 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
645 device->mode = flags;
646
647 fs_devices->open_devices++;
648 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
649 device->devid != BTRFS_DEV_REPLACE_DEVID) {
650 fs_devices->rw_devices++;
651 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
652 }
653 btrfs_release_disk_super(disk_super);
654
655 return 0;
656
657error_free_page:
658 btrfs_release_disk_super(disk_super);
659 blkdev_put(bdev, flags);
660
661 return -EINVAL;
662}
663
664/*
665 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
666 * being created with a disk that has already completed its fsid change. Such
667 * disk can belong to an fs which has its FSID changed or to one which doesn't.
668 * Handle both cases here.
669 */
670static struct btrfs_fs_devices *find_fsid_inprogress(
671 struct btrfs_super_block *disk_super)
672{
673 struct btrfs_fs_devices *fs_devices;
674
675 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
676 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
677 BTRFS_FSID_SIZE) != 0 &&
678 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
679 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
680 return fs_devices;
681 }
682 }
683
684 return find_fsid(disk_super->fsid, NULL);
685}
686
687
688static struct btrfs_fs_devices *find_fsid_changed(
689 struct btrfs_super_block *disk_super)
690{
691 struct btrfs_fs_devices *fs_devices;
692
693 /*
694 * Handles the case where scanned device is part of an fs that had
695 * multiple successful changes of FSID but currently device didn't
696 * observe it. Meaning our fsid will be different than theirs. We need
697 * to handle two subcases :
698 * 1 - The fs still continues to have different METADATA/FSID uuids.
699 * 2 - The fs is switched back to its original FSID (METADATA/FSID
700 * are equal).
701 */
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 /* Changed UUIDs */
704 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
705 BTRFS_FSID_SIZE) != 0 &&
706 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
707 BTRFS_FSID_SIZE) == 0 &&
708 memcmp(fs_devices->fsid, disk_super->fsid,
709 BTRFS_FSID_SIZE) != 0)
710 return fs_devices;
711
712 /* Unchanged UUIDs */
713 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
714 BTRFS_FSID_SIZE) == 0 &&
715 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
716 BTRFS_FSID_SIZE) == 0)
717 return fs_devices;
718 }
719
720 return NULL;
721}
722
723static struct btrfs_fs_devices *find_fsid_reverted_metadata(
724 struct btrfs_super_block *disk_super)
725{
726 struct btrfs_fs_devices *fs_devices;
727
728 /*
729 * Handle the case where the scanned device is part of an fs whose last
730 * metadata UUID change reverted it to the original FSID. At the same
731 * time * fs_devices was first created by another constitutent device
732 * which didn't fully observe the operation. This results in an
733 * btrfs_fs_devices created with metadata/fsid different AND
734 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
735 * fs_devices equal to the FSID of the disk.
736 */
737 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
738 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
739 BTRFS_FSID_SIZE) != 0 &&
740 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 fs_devices->fsid_change)
743 return fs_devices;
744 }
745
746 return NULL;
747}
748/*
749 * Add new device to list of registered devices
750 *
751 * Returns:
752 * device pointer which was just added or updated when successful
753 * error pointer when failed
754 */
755static noinline struct btrfs_device *device_list_add(const char *path,
756 struct btrfs_super_block *disk_super,
757 bool *new_device_added)
758{
759 struct btrfs_device *device;
760 struct btrfs_fs_devices *fs_devices = NULL;
761 struct rcu_string *name;
762 u64 found_transid = btrfs_super_generation(disk_super);
763 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
764 dev_t path_devt;
765 int error;
766 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
767 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
768 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
769 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
770
771 error = lookup_bdev(path, &path_devt);
772 if (error) {
773 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
774 path, error);
775 return ERR_PTR(error);
776 }
777
778 if (fsid_change_in_progress) {
779 if (!has_metadata_uuid)
780 fs_devices = find_fsid_inprogress(disk_super);
781 else
782 fs_devices = find_fsid_changed(disk_super);
783 } else if (has_metadata_uuid) {
784 fs_devices = find_fsid_with_metadata_uuid(disk_super);
785 } else {
786 fs_devices = find_fsid_reverted_metadata(disk_super);
787 if (!fs_devices)
788 fs_devices = find_fsid(disk_super->fsid, NULL);
789 }
790
791
792 if (!fs_devices) {
793 if (has_metadata_uuid)
794 fs_devices = alloc_fs_devices(disk_super->fsid,
795 disk_super->metadata_uuid);
796 else
797 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
798
799 if (IS_ERR(fs_devices))
800 return ERR_CAST(fs_devices);
801
802 fs_devices->fsid_change = fsid_change_in_progress;
803
804 mutex_lock(&fs_devices->device_list_mutex);
805 list_add(&fs_devices->fs_list, &fs_uuids);
806
807 device = NULL;
808 } else {
809 struct btrfs_dev_lookup_args args = {
810 .devid = devid,
811 .uuid = disk_super->dev_item.uuid,
812 };
813
814 mutex_lock(&fs_devices->device_list_mutex);
815 device = btrfs_find_device(fs_devices, &args);
816
817 /*
818 * If this disk has been pulled into an fs devices created by
819 * a device which had the CHANGING_FSID_V2 flag then replace the
820 * metadata_uuid/fsid values of the fs_devices.
821 */
822 if (fs_devices->fsid_change &&
823 found_transid > fs_devices->latest_generation) {
824 memcpy(fs_devices->fsid, disk_super->fsid,
825 BTRFS_FSID_SIZE);
826
827 if (has_metadata_uuid)
828 memcpy(fs_devices->metadata_uuid,
829 disk_super->metadata_uuid,
830 BTRFS_FSID_SIZE);
831 else
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->fsid, BTRFS_FSID_SIZE);
834
835 fs_devices->fsid_change = false;
836 }
837 }
838
839 if (!device) {
840 unsigned int nofs_flag;
841
842 if (fs_devices->opened) {
843 btrfs_err(NULL,
844 "device %s belongs to fsid %pU, and the fs is already mounted",
845 path, fs_devices->fsid);
846 mutex_unlock(&fs_devices->device_list_mutex);
847 return ERR_PTR(-EBUSY);
848 }
849
850 nofs_flag = memalloc_nofs_save();
851 device = btrfs_alloc_device(NULL, &devid,
852 disk_super->dev_item.uuid, path);
853 memalloc_nofs_restore(nofs_flag);
854 if (IS_ERR(device)) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 /* we can safely leave the fs_devices entry around */
857 return device;
858 }
859
860 device->devt = path_devt;
861
862 list_add_rcu(&device->dev_list, &fs_devices->devices);
863 fs_devices->num_devices++;
864
865 device->fs_devices = fs_devices;
866 *new_device_added = true;
867
868 if (disk_super->label[0])
869 pr_info(
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super->label, devid, found_transid, path,
872 current->comm, task_pid_nr(current));
873 else
874 pr_info(
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super->fsid, devid, found_transid, path,
877 current->comm, task_pid_nr(current));
878
879 } else if (!device->name || strcmp(device->name->str, path)) {
880 /*
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
887 * different name. or
888 * b. The missing-disk-which-was-replaced, has
889 * reappeared now.
890 *
891 * We must allow 1 and 2a above. But 2b would be a spurious
892 * and unintentional.
893 *
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
898 */
899
900 /*
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
905 */
906 if (!fs_devices->opened && found_transid < device->generation) {
907 /*
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
913 */
914 mutex_unlock(&fs_devices->device_list_mutex);
915 btrfs_err(NULL,
916"device %s already registered with a higher generation, found %llu expect %llu",
917 path, found_transid, device->generation);
918 return ERR_PTR(-EEXIST);
919 }
920
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
929 */
930 if (device->bdev) {
931 if (device->devt != path_devt) {
932 mutex_unlock(&fs_devices->device_list_mutex);
933 btrfs_warn_in_rcu(NULL,
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
938 return ERR_PTR(-EEXIST);
939 }
940 btrfs_info_in_rcu(NULL,
941 "devid %llu device path %s changed to %s scanned by %s (%d)",
942 devid, btrfs_dev_name(device),
943 path, current->comm,
944 task_pid_nr(current));
945 }
946
947 name = rcu_string_strdup(path, GFP_NOFS);
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 return ERR_PTR(-ENOMEM);
951 }
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
955 fs_devices->missing_devices--;
956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
957 }
958 device->devt = path_devt;
959 }
960
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
967 if (!fs_devices->opened) {
968 device->generation = found_transid;
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
972
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
975 mutex_unlock(&fs_devices->device_list_mutex);
976 return device;
977}
978
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
984 int ret = 0;
985
986 lockdep_assert_held(&uuid_mutex);
987
988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 if (IS_ERR(fs_devices))
990 return fs_devices;
991
992 fs_devices->total_devices = orig->total_devices;
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
995 const char *dev_path = NULL;
996
997 /*
998 * This is ok to do without RCU read locked because we hold the
999 * uuid mutex so nothing we touch in here is going to disappear.
1000 */
1001 if (orig_dev->name)
1002 dev_path = orig_dev->name->str;
1003
1004 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1005 orig_dev->uuid, dev_path);
1006 if (IS_ERR(device)) {
1007 ret = PTR_ERR(device);
1008 goto error;
1009 }
1010
1011 if (orig_dev->zone_info) {
1012 struct btrfs_zoned_device_info *zone_info;
1013
1014 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1015 if (!zone_info) {
1016 btrfs_free_device(device);
1017 ret = -ENOMEM;
1018 goto error;
1019 }
1020 device->zone_info = zone_info;
1021 }
1022
1023 list_add(&device->dev_list, &fs_devices->devices);
1024 device->fs_devices = fs_devices;
1025 fs_devices->num_devices++;
1026 }
1027 return fs_devices;
1028error:
1029 free_fs_devices(fs_devices);
1030 return ERR_PTR(ret);
1031}
1032
1033static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1034 struct btrfs_device **latest_dev)
1035{
1036 struct btrfs_device *device, *next;
1037
1038 /* This is the initialized path, it is safe to release the devices. */
1039 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1041 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1042 &device->dev_state) &&
1043 !test_bit(BTRFS_DEV_STATE_MISSING,
1044 &device->dev_state) &&
1045 (!*latest_dev ||
1046 device->generation > (*latest_dev)->generation)) {
1047 *latest_dev = device;
1048 }
1049 continue;
1050 }
1051
1052 /*
1053 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1054 * in btrfs_init_dev_replace() so just continue.
1055 */
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1057 continue;
1058
1059 if (device->bdev) {
1060 blkdev_put(device->bdev, device->mode);
1061 device->bdev = NULL;
1062 fs_devices->open_devices--;
1063 }
1064 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1065 list_del_init(&device->dev_alloc_list);
1066 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1067 fs_devices->rw_devices--;
1068 }
1069 list_del_init(&device->dev_list);
1070 fs_devices->num_devices--;
1071 btrfs_free_device(device);
1072 }
1073
1074}
1075
1076/*
1077 * After we have read the system tree and know devids belonging to this
1078 * filesystem, remove the device which does not belong there.
1079 */
1080void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1081{
1082 struct btrfs_device *latest_dev = NULL;
1083 struct btrfs_fs_devices *seed_dev;
1084
1085 mutex_lock(&uuid_mutex);
1086 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1087
1088 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1089 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1090
1091 fs_devices->latest_dev = latest_dev;
1092
1093 mutex_unlock(&uuid_mutex);
1094}
1095
1096static void btrfs_close_bdev(struct btrfs_device *device)
1097{
1098 if (!device->bdev)
1099 return;
1100
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1102 sync_blockdev(device->bdev);
1103 invalidate_bdev(device->bdev);
1104 }
1105
1106 blkdev_put(device->bdev, device->mode);
1107}
1108
1109static void btrfs_close_one_device(struct btrfs_device *device)
1110{
1111 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1112
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1114 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1115 list_del_init(&device->dev_alloc_list);
1116 fs_devices->rw_devices--;
1117 }
1118
1119 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1120 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1121
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1123 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1124 fs_devices->missing_devices--;
1125 }
1126
1127 btrfs_close_bdev(device);
1128 if (device->bdev) {
1129 fs_devices->open_devices--;
1130 device->bdev = NULL;
1131 }
1132 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1133 btrfs_destroy_dev_zone_info(device);
1134
1135 device->fs_info = NULL;
1136 atomic_set(&device->dev_stats_ccnt, 0);
1137 extent_io_tree_release(&device->alloc_state);
1138
1139 /*
1140 * Reset the flush error record. We might have a transient flush error
1141 * in this mount, and if so we aborted the current transaction and set
1142 * the fs to an error state, guaranteeing no super blocks can be further
1143 * committed. However that error might be transient and if we unmount the
1144 * filesystem and mount it again, we should allow the mount to succeed
1145 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1146 * filesystem again we still get flush errors, then we will again abort
1147 * any transaction and set the error state, guaranteeing no commits of
1148 * unsafe super blocks.
1149 */
1150 device->last_flush_error = 0;
1151
1152 /* Verify the device is back in a pristine state */
1153 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1154 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1155 ASSERT(list_empty(&device->dev_alloc_list));
1156 ASSERT(list_empty(&device->post_commit_list));
1157}
1158
1159static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1160{
1161 struct btrfs_device *device, *tmp;
1162
1163 lockdep_assert_held(&uuid_mutex);
1164
1165 if (--fs_devices->opened > 0)
1166 return;
1167
1168 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1169 btrfs_close_one_device(device);
1170
1171 WARN_ON(fs_devices->open_devices);
1172 WARN_ON(fs_devices->rw_devices);
1173 fs_devices->opened = 0;
1174 fs_devices->seeding = false;
1175 fs_devices->fs_info = NULL;
1176}
1177
1178void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1179{
1180 LIST_HEAD(list);
1181 struct btrfs_fs_devices *tmp;
1182
1183 mutex_lock(&uuid_mutex);
1184 close_fs_devices(fs_devices);
1185 if (!fs_devices->opened) {
1186 list_splice_init(&fs_devices->seed_list, &list);
1187
1188 /*
1189 * If the struct btrfs_fs_devices is not assembled with any
1190 * other device, it can be re-initialized during the next mount
1191 * without the needing device-scan step. Therefore, it can be
1192 * fully freed.
1193 */
1194 if (fs_devices->num_devices == 1) {
1195 list_del(&fs_devices->fs_list);
1196 free_fs_devices(fs_devices);
1197 }
1198 }
1199
1200
1201 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1202 close_fs_devices(fs_devices);
1203 list_del(&fs_devices->seed_list);
1204 free_fs_devices(fs_devices);
1205 }
1206 mutex_unlock(&uuid_mutex);
1207}
1208
1209static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1210 fmode_t flags, void *holder)
1211{
1212 struct btrfs_device *device;
1213 struct btrfs_device *latest_dev = NULL;
1214 struct btrfs_device *tmp_device;
1215
1216 flags |= FMODE_EXCL;
1217
1218 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1219 dev_list) {
1220 int ret;
1221
1222 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1223 if (ret == 0 &&
1224 (!latest_dev || device->generation > latest_dev->generation)) {
1225 latest_dev = device;
1226 } else if (ret == -ENODATA) {
1227 fs_devices->num_devices--;
1228 list_del(&device->dev_list);
1229 btrfs_free_device(device);
1230 }
1231 }
1232 if (fs_devices->open_devices == 0)
1233 return -EINVAL;
1234
1235 fs_devices->opened = 1;
1236 fs_devices->latest_dev = latest_dev;
1237 fs_devices->total_rw_bytes = 0;
1238 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1239 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1240
1241 return 0;
1242}
1243
1244static int devid_cmp(void *priv, const struct list_head *a,
1245 const struct list_head *b)
1246{
1247 const struct btrfs_device *dev1, *dev2;
1248
1249 dev1 = list_entry(a, struct btrfs_device, dev_list);
1250 dev2 = list_entry(b, struct btrfs_device, dev_list);
1251
1252 if (dev1->devid < dev2->devid)
1253 return -1;
1254 else if (dev1->devid > dev2->devid)
1255 return 1;
1256 return 0;
1257}
1258
1259int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1260 fmode_t flags, void *holder)
1261{
1262 int ret;
1263
1264 lockdep_assert_held(&uuid_mutex);
1265 /*
1266 * The device_list_mutex cannot be taken here in case opening the
1267 * underlying device takes further locks like open_mutex.
1268 *
1269 * We also don't need the lock here as this is called during mount and
1270 * exclusion is provided by uuid_mutex
1271 */
1272
1273 if (fs_devices->opened) {
1274 fs_devices->opened++;
1275 ret = 0;
1276 } else {
1277 list_sort(NULL, &fs_devices->devices, devid_cmp);
1278 ret = open_fs_devices(fs_devices, flags, holder);
1279 }
1280
1281 return ret;
1282}
1283
1284void btrfs_release_disk_super(struct btrfs_super_block *super)
1285{
1286 struct page *page = virt_to_page(super);
1287
1288 put_page(page);
1289}
1290
1291static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1292 u64 bytenr, u64 bytenr_orig)
1293{
1294 struct btrfs_super_block *disk_super;
1295 struct page *page;
1296 void *p;
1297 pgoff_t index;
1298
1299 /* make sure our super fits in the device */
1300 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1301 return ERR_PTR(-EINVAL);
1302
1303 /* make sure our super fits in the page */
1304 if (sizeof(*disk_super) > PAGE_SIZE)
1305 return ERR_PTR(-EINVAL);
1306
1307 /* make sure our super doesn't straddle pages on disk */
1308 index = bytenr >> PAGE_SHIFT;
1309 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1310 return ERR_PTR(-EINVAL);
1311
1312 /* pull in the page with our super */
1313 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1314
1315 if (IS_ERR(page))
1316 return ERR_CAST(page);
1317
1318 p = page_address(page);
1319
1320 /* align our pointer to the offset of the super block */
1321 disk_super = p + offset_in_page(bytenr);
1322
1323 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1324 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1325 btrfs_release_disk_super(p);
1326 return ERR_PTR(-EINVAL);
1327 }
1328
1329 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1330 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1331
1332 return disk_super;
1333}
1334
1335int btrfs_forget_devices(dev_t devt)
1336{
1337 int ret;
1338
1339 mutex_lock(&uuid_mutex);
1340 ret = btrfs_free_stale_devices(devt, NULL);
1341 mutex_unlock(&uuid_mutex);
1342
1343 return ret;
1344}
1345
1346/*
1347 * Look for a btrfs signature on a device. This may be called out of the mount path
1348 * and we are not allowed to call set_blocksize during the scan. The superblock
1349 * is read via pagecache
1350 */
1351struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1352 void *holder)
1353{
1354 struct btrfs_super_block *disk_super;
1355 bool new_device_added = false;
1356 struct btrfs_device *device = NULL;
1357 struct block_device *bdev;
1358 u64 bytenr, bytenr_orig;
1359 int ret;
1360
1361 lockdep_assert_held(&uuid_mutex);
1362
1363 /*
1364 * we would like to check all the supers, but that would make
1365 * a btrfs mount succeed after a mkfs from a different FS.
1366 * So, we need to add a special mount option to scan for
1367 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1368 */
1369 flags |= FMODE_EXCL;
1370
1371 bdev = blkdev_get_by_path(path, flags, holder);
1372 if (IS_ERR(bdev))
1373 return ERR_CAST(bdev);
1374
1375 bytenr_orig = btrfs_sb_offset(0);
1376 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1377 if (ret) {
1378 device = ERR_PTR(ret);
1379 goto error_bdev_put;
1380 }
1381
1382 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1383 if (IS_ERR(disk_super)) {
1384 device = ERR_CAST(disk_super);
1385 goto error_bdev_put;
1386 }
1387
1388 device = device_list_add(path, disk_super, &new_device_added);
1389 if (!IS_ERR(device) && new_device_added)
1390 btrfs_free_stale_devices(device->devt, device);
1391
1392 btrfs_release_disk_super(disk_super);
1393
1394error_bdev_put:
1395 blkdev_put(bdev, flags);
1396
1397 return device;
1398}
1399
1400/*
1401 * Try to find a chunk that intersects [start, start + len] range and when one
1402 * such is found, record the end of it in *start
1403 */
1404static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1405 u64 len)
1406{
1407 u64 physical_start, physical_end;
1408
1409 lockdep_assert_held(&device->fs_info->chunk_mutex);
1410
1411 if (!find_first_extent_bit(&device->alloc_state, *start,
1412 &physical_start, &physical_end,
1413 CHUNK_ALLOCATED, NULL)) {
1414
1415 if (in_range(physical_start, *start, len) ||
1416 in_range(*start, physical_start,
1417 physical_end - physical_start)) {
1418 *start = physical_end + 1;
1419 return true;
1420 }
1421 }
1422 return false;
1423}
1424
1425static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1426{
1427 switch (device->fs_devices->chunk_alloc_policy) {
1428 case BTRFS_CHUNK_ALLOC_REGULAR:
1429 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
1430 case BTRFS_CHUNK_ALLOC_ZONED:
1431 /*
1432 * We don't care about the starting region like regular
1433 * allocator, because we anyway use/reserve the first two zones
1434 * for superblock logging.
1435 */
1436 return ALIGN(start, device->zone_info->zone_size);
1437 default:
1438 BUG();
1439 }
1440}
1441
1442static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1443 u64 *hole_start, u64 *hole_size,
1444 u64 num_bytes)
1445{
1446 u64 zone_size = device->zone_info->zone_size;
1447 u64 pos;
1448 int ret;
1449 bool changed = false;
1450
1451 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1452
1453 while (*hole_size > 0) {
1454 pos = btrfs_find_allocatable_zones(device, *hole_start,
1455 *hole_start + *hole_size,
1456 num_bytes);
1457 if (pos != *hole_start) {
1458 *hole_size = *hole_start + *hole_size - pos;
1459 *hole_start = pos;
1460 changed = true;
1461 if (*hole_size < num_bytes)
1462 break;
1463 }
1464
1465 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1466
1467 /* Range is ensured to be empty */
1468 if (!ret)
1469 return changed;
1470
1471 /* Given hole range was invalid (outside of device) */
1472 if (ret == -ERANGE) {
1473 *hole_start += *hole_size;
1474 *hole_size = 0;
1475 return true;
1476 }
1477
1478 *hole_start += zone_size;
1479 *hole_size -= zone_size;
1480 changed = true;
1481 }
1482
1483 return changed;
1484}
1485
1486/*
1487 * Check if specified hole is suitable for allocation.
1488 *
1489 * @device: the device which we have the hole
1490 * @hole_start: starting position of the hole
1491 * @hole_size: the size of the hole
1492 * @num_bytes: the size of the free space that we need
1493 *
1494 * This function may modify @hole_start and @hole_size to reflect the suitable
1495 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1496 */
1497static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1498 u64 *hole_size, u64 num_bytes)
1499{
1500 bool changed = false;
1501 u64 hole_end = *hole_start + *hole_size;
1502
1503 for (;;) {
1504 /*
1505 * Check before we set max_hole_start, otherwise we could end up
1506 * sending back this offset anyway.
1507 */
1508 if (contains_pending_extent(device, hole_start, *hole_size)) {
1509 if (hole_end >= *hole_start)
1510 *hole_size = hole_end - *hole_start;
1511 else
1512 *hole_size = 0;
1513 changed = true;
1514 }
1515
1516 switch (device->fs_devices->chunk_alloc_policy) {
1517 case BTRFS_CHUNK_ALLOC_REGULAR:
1518 /* No extra check */
1519 break;
1520 case BTRFS_CHUNK_ALLOC_ZONED:
1521 if (dev_extent_hole_check_zoned(device, hole_start,
1522 hole_size, num_bytes)) {
1523 changed = true;
1524 /*
1525 * The changed hole can contain pending extent.
1526 * Loop again to check that.
1527 */
1528 continue;
1529 }
1530 break;
1531 default:
1532 BUG();
1533 }
1534
1535 break;
1536 }
1537
1538 return changed;
1539}
1540
1541/*
1542 * Find free space in the specified device.
1543 *
1544 * @device: the device which we search the free space in
1545 * @num_bytes: the size of the free space that we need
1546 * @search_start: the position from which to begin the search
1547 * @start: store the start of the free space.
1548 * @len: the size of the free space. that we find, or the size
1549 * of the max free space if we don't find suitable free space
1550 *
1551 * This does a pretty simple search, the expectation is that it is called very
1552 * infrequently and that a given device has a small number of extents.
1553 *
1554 * @start is used to store the start of the free space if we find. But if we
1555 * don't find suitable free space, it will be used to store the start position
1556 * of the max free space.
1557 *
1558 * @len is used to store the size of the free space that we find.
1559 * But if we don't find suitable free space, it is used to store the size of
1560 * the max free space.
1561 *
1562 * NOTE: This function will search *commit* root of device tree, and does extra
1563 * check to ensure dev extents are not double allocated.
1564 * This makes the function safe to allocate dev extents but may not report
1565 * correct usable device space, as device extent freed in current transaction
1566 * is not reported as available.
1567 */
1568static int find_free_dev_extent_start(struct btrfs_device *device,
1569 u64 num_bytes, u64 search_start, u64 *start,
1570 u64 *len)
1571{
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_key key;
1575 struct btrfs_dev_extent *dev_extent;
1576 struct btrfs_path *path;
1577 u64 hole_size;
1578 u64 max_hole_start;
1579 u64 max_hole_size;
1580 u64 extent_end;
1581 u64 search_end = device->total_bytes;
1582 int ret;
1583 int slot;
1584 struct extent_buffer *l;
1585
1586 search_start = dev_extent_search_start(device, search_start);
1587
1588 WARN_ON(device->zone_info &&
1589 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1590
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1594
1595 max_hole_start = search_start;
1596 max_hole_size = 0;
1597
1598again:
1599 if (search_start >= search_end ||
1600 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1601 ret = -ENOSPC;
1602 goto out;
1603 }
1604
1605 path->reada = READA_FORWARD;
1606 path->search_commit_root = 1;
1607 path->skip_locking = 1;
1608
1609 key.objectid = device->devid;
1610 key.offset = search_start;
1611 key.type = BTRFS_DEV_EXTENT_KEY;
1612
1613 ret = btrfs_search_backwards(root, &key, path);
1614 if (ret < 0)
1615 goto out;
1616
1617 while (search_start < search_end) {
1618 l = path->nodes[0];
1619 slot = path->slots[0];
1620 if (slot >= btrfs_header_nritems(l)) {
1621 ret = btrfs_next_leaf(root, path);
1622 if (ret == 0)
1623 continue;
1624 if (ret < 0)
1625 goto out;
1626
1627 break;
1628 }
1629 btrfs_item_key_to_cpu(l, &key, slot);
1630
1631 if (key.objectid < device->devid)
1632 goto next;
1633
1634 if (key.objectid > device->devid)
1635 break;
1636
1637 if (key.type != BTRFS_DEV_EXTENT_KEY)
1638 goto next;
1639
1640 if (key.offset > search_end)
1641 break;
1642
1643 if (key.offset > search_start) {
1644 hole_size = key.offset - search_start;
1645 dev_extent_hole_check(device, &search_start, &hole_size,
1646 num_bytes);
1647
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
1652
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
1665 }
1666 }
1667
1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
1673next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
1677
1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
1683 if (search_end > search_start) {
1684 hole_size = search_end - search_start;
1685 if (dev_extent_hole_check(device, &search_start, &hole_size,
1686 num_bytes)) {
1687 btrfs_release_path(path);
1688 goto again;
1689 }
1690
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
1695 }
1696
1697 /* See above. */
1698 if (max_hole_size < num_bytes)
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
1703 ASSERT(max_hole_start + max_hole_size <= search_end);
1704out:
1705 btrfs_free_path(path);
1706 *start = max_hole_start;
1707 if (len)
1708 *len = max_hole_size;
1709 return ret;
1710}
1711
1712int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1713 u64 *start, u64 *len)
1714{
1715 /* FIXME use last free of some kind */
1716 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1717}
1718
1719static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1720 struct btrfs_device *device,
1721 u64 start, u64 *dev_extent_len)
1722{
1723 struct btrfs_fs_info *fs_info = device->fs_info;
1724 struct btrfs_root *root = fs_info->dev_root;
1725 int ret;
1726 struct btrfs_path *path;
1727 struct btrfs_key key;
1728 struct btrfs_key found_key;
1729 struct extent_buffer *leaf = NULL;
1730 struct btrfs_dev_extent *extent = NULL;
1731
1732 path = btrfs_alloc_path();
1733 if (!path)
1734 return -ENOMEM;
1735
1736 key.objectid = device->devid;
1737 key.offset = start;
1738 key.type = BTRFS_DEV_EXTENT_KEY;
1739again:
1740 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1741 if (ret > 0) {
1742 ret = btrfs_previous_item(root, path, key.objectid,
1743 BTRFS_DEV_EXTENT_KEY);
1744 if (ret)
1745 goto out;
1746 leaf = path->nodes[0];
1747 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1748 extent = btrfs_item_ptr(leaf, path->slots[0],
1749 struct btrfs_dev_extent);
1750 BUG_ON(found_key.offset > start || found_key.offset +
1751 btrfs_dev_extent_length(leaf, extent) < start);
1752 key = found_key;
1753 btrfs_release_path(path);
1754 goto again;
1755 } else if (ret == 0) {
1756 leaf = path->nodes[0];
1757 extent = btrfs_item_ptr(leaf, path->slots[0],
1758 struct btrfs_dev_extent);
1759 } else {
1760 goto out;
1761 }
1762
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret == 0)
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768out:
1769 btrfs_free_path(path);
1770 return ret;
1771}
1772
1773static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1774{
1775 struct extent_map_tree *em_tree;
1776 struct extent_map *em;
1777 struct rb_node *n;
1778 u64 ret = 0;
1779
1780 em_tree = &fs_info->mapping_tree;
1781 read_lock(&em_tree->lock);
1782 n = rb_last(&em_tree->map.rb_root);
1783 if (n) {
1784 em = rb_entry(n, struct extent_map, rb_node);
1785 ret = em->start + em->len;
1786 }
1787 read_unlock(&em_tree->lock);
1788
1789 return ret;
1790}
1791
1792static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1793 u64 *devid_ret)
1794{
1795 int ret;
1796 struct btrfs_key key;
1797 struct btrfs_key found_key;
1798 struct btrfs_path *path;
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1805 key.type = BTRFS_DEV_ITEM_KEY;
1806 key.offset = (u64)-1;
1807
1808 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1809 if (ret < 0)
1810 goto error;
1811
1812 if (ret == 0) {
1813 /* Corruption */
1814 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1815 ret = -EUCLEAN;
1816 goto error;
1817 }
1818
1819 ret = btrfs_previous_item(fs_info->chunk_root, path,
1820 BTRFS_DEV_ITEMS_OBJECTID,
1821 BTRFS_DEV_ITEM_KEY);
1822 if (ret) {
1823 *devid_ret = 1;
1824 } else {
1825 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1826 path->slots[0]);
1827 *devid_ret = found_key.offset + 1;
1828 }
1829 ret = 0;
1830error:
1831 btrfs_free_path(path);
1832 return ret;
1833}
1834
1835/*
1836 * the device information is stored in the chunk root
1837 * the btrfs_device struct should be fully filled in
1838 */
1839static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1840 struct btrfs_device *device)
1841{
1842 int ret;
1843 struct btrfs_path *path;
1844 struct btrfs_dev_item *dev_item;
1845 struct extent_buffer *leaf;
1846 struct btrfs_key key;
1847 unsigned long ptr;
1848
1849 path = btrfs_alloc_path();
1850 if (!path)
1851 return -ENOMEM;
1852
1853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1854 key.type = BTRFS_DEV_ITEM_KEY;
1855 key.offset = device->devid;
1856
1857 btrfs_reserve_chunk_metadata(trans, true);
1858 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1859 &key, sizeof(*dev_item));
1860 btrfs_trans_release_chunk_metadata(trans);
1861 if (ret)
1862 goto out;
1863
1864 leaf = path->nodes[0];
1865 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1866
1867 btrfs_set_device_id(leaf, dev_item, device->devid);
1868 btrfs_set_device_generation(leaf, dev_item, 0);
1869 btrfs_set_device_type(leaf, dev_item, device->type);
1870 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1871 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1872 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1873 btrfs_set_device_total_bytes(leaf, dev_item,
1874 btrfs_device_get_disk_total_bytes(device));
1875 btrfs_set_device_bytes_used(leaf, dev_item,
1876 btrfs_device_get_bytes_used(device));
1877 btrfs_set_device_group(leaf, dev_item, 0);
1878 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1879 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1880 btrfs_set_device_start_offset(leaf, dev_item, 0);
1881
1882 ptr = btrfs_device_uuid(dev_item);
1883 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1884 ptr = btrfs_device_fsid(dev_item);
1885 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1886 ptr, BTRFS_FSID_SIZE);
1887 btrfs_mark_buffer_dirty(leaf);
1888
1889 ret = 0;
1890out:
1891 btrfs_free_path(path);
1892 return ret;
1893}
1894
1895/*
1896 * Function to update ctime/mtime for a given device path.
1897 * Mainly used for ctime/mtime based probe like libblkid.
1898 *
1899 * We don't care about errors here, this is just to be kind to userspace.
1900 */
1901static void update_dev_time(const char *device_path)
1902{
1903 struct path path;
1904 struct timespec64 now;
1905 int ret;
1906
1907 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1908 if (ret)
1909 return;
1910
1911 now = current_time(d_inode(path.dentry));
1912 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1913 path_put(&path);
1914}
1915
1916static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1917 struct btrfs_device *device)
1918{
1919 struct btrfs_root *root = device->fs_info->chunk_root;
1920 int ret;
1921 struct btrfs_path *path;
1922 struct btrfs_key key;
1923
1924 path = btrfs_alloc_path();
1925 if (!path)
1926 return -ENOMEM;
1927
1928 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1929 key.type = BTRFS_DEV_ITEM_KEY;
1930 key.offset = device->devid;
1931
1932 btrfs_reserve_chunk_metadata(trans, false);
1933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1934 btrfs_trans_release_chunk_metadata(trans);
1935 if (ret) {
1936 if (ret > 0)
1937 ret = -ENOENT;
1938 goto out;
1939 }
1940
1941 ret = btrfs_del_item(trans, root, path);
1942out:
1943 btrfs_free_path(path);
1944 return ret;
1945}
1946
1947/*
1948 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1949 * filesystem. It's up to the caller to adjust that number regarding eg. device
1950 * replace.
1951 */
1952static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1953 u64 num_devices)
1954{
1955 u64 all_avail;
1956 unsigned seq;
1957 int i;
1958
1959 do {
1960 seq = read_seqbegin(&fs_info->profiles_lock);
1961
1962 all_avail = fs_info->avail_data_alloc_bits |
1963 fs_info->avail_system_alloc_bits |
1964 fs_info->avail_metadata_alloc_bits;
1965 } while (read_seqretry(&fs_info->profiles_lock, seq));
1966
1967 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1968 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1969 continue;
1970
1971 if (num_devices < btrfs_raid_array[i].devs_min)
1972 return btrfs_raid_array[i].mindev_error;
1973 }
1974
1975 return 0;
1976}
1977
1978static struct btrfs_device * btrfs_find_next_active_device(
1979 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1980{
1981 struct btrfs_device *next_device;
1982
1983 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1984 if (next_device != device &&
1985 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1986 && next_device->bdev)
1987 return next_device;
1988 }
1989
1990 return NULL;
1991}
1992
1993/*
1994 * Helper function to check if the given device is part of s_bdev / latest_dev
1995 * and replace it with the provided or the next active device, in the context
1996 * where this function called, there should be always be another device (or
1997 * this_dev) which is active.
1998 */
1999void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2000 struct btrfs_device *next_device)
2001{
2002 struct btrfs_fs_info *fs_info = device->fs_info;
2003
2004 if (!next_device)
2005 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2006 device);
2007 ASSERT(next_device);
2008
2009 if (fs_info->sb->s_bdev &&
2010 (fs_info->sb->s_bdev == device->bdev))
2011 fs_info->sb->s_bdev = next_device->bdev;
2012
2013 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2014 fs_info->fs_devices->latest_dev = next_device;
2015}
2016
2017/*
2018 * Return btrfs_fs_devices::num_devices excluding the device that's being
2019 * currently replaced.
2020 */
2021static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2022{
2023 u64 num_devices = fs_info->fs_devices->num_devices;
2024
2025 down_read(&fs_info->dev_replace.rwsem);
2026 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2027 ASSERT(num_devices > 1);
2028 num_devices--;
2029 }
2030 up_read(&fs_info->dev_replace.rwsem);
2031
2032 return num_devices;
2033}
2034
2035static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev, int copy_num)
2037{
2038 struct btrfs_super_block *disk_super;
2039 const size_t len = sizeof(disk_super->magic);
2040 const u64 bytenr = btrfs_sb_offset(copy_num);
2041 int ret;
2042
2043 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2044 if (IS_ERR(disk_super))
2045 return;
2046
2047 memset(&disk_super->magic, 0, len);
2048 folio_mark_dirty(virt_to_folio(disk_super));
2049 btrfs_release_disk_super(disk_super);
2050
2051 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2052 if (ret)
2053 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2054 copy_num, ret);
2055}
2056
2057void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
2060{
2061 int copy_num;
2062
2063 if (!bdev)
2064 return;
2065
2066 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2067 if (bdev_is_zoned(bdev))
2068 btrfs_reset_sb_log_zones(bdev, copy_num);
2069 else
2070 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2071 }
2072
2073 /* Notify udev that device has changed */
2074 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2075
2076 /* Update ctime/mtime for device path for libblkid */
2077 update_dev_time(device_path);
2078}
2079
2080int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2081 struct btrfs_dev_lookup_args *args,
2082 struct block_device **bdev, fmode_t *mode)
2083{
2084 struct btrfs_trans_handle *trans;
2085 struct btrfs_device *device;
2086 struct btrfs_fs_devices *cur_devices;
2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 u64 num_devices;
2089 int ret = 0;
2090
2091 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2092 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2093 return -EINVAL;
2094 }
2095
2096 /*
2097 * The device list in fs_devices is accessed without locks (neither
2098 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2099 * filesystem and another device rm cannot run.
2100 */
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 return ret;
2106
2107 device = btrfs_find_device(fs_info->fs_devices, args);
2108 if (!device) {
2109 if (args->missing)
2110 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2111 else
2112 ret = -ENOENT;
2113 return ret;
2114 }
2115
2116 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2117 btrfs_warn_in_rcu(fs_info,
2118 "cannot remove device %s (devid %llu) due to active swapfile",
2119 btrfs_dev_name(device), device->devid);
2120 return -ETXTBSY;
2121 }
2122
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2124 return BTRFS_ERROR_DEV_TGT_REPLACE;
2125
2126 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2127 fs_info->fs_devices->rw_devices == 1)
2128 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129
2130 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2131 mutex_lock(&fs_info->chunk_mutex);
2132 list_del_init(&device->dev_alloc_list);
2133 device->fs_devices->rw_devices--;
2134 mutex_unlock(&fs_info->chunk_mutex);
2135 }
2136
2137 ret = btrfs_shrink_device(device, 0);
2138 if (ret)
2139 goto error_undo;
2140
2141 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2142 if (IS_ERR(trans)) {
2143 ret = PTR_ERR(trans);
2144 goto error_undo;
2145 }
2146
2147 ret = btrfs_rm_dev_item(trans, device);
2148 if (ret) {
2149 /* Any error in dev item removal is critical */
2150 btrfs_crit(fs_info,
2151 "failed to remove device item for devid %llu: %d",
2152 device->devid, ret);
2153 btrfs_abort_transaction(trans, ret);
2154 btrfs_end_transaction(trans);
2155 return ret;
2156 }
2157
2158 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2159 btrfs_scrub_cancel_dev(device);
2160
2161 /*
2162 * the device list mutex makes sure that we don't change
2163 * the device list while someone else is writing out all
2164 * the device supers. Whoever is writing all supers, should
2165 * lock the device list mutex before getting the number of
2166 * devices in the super block (super_copy). Conversely,
2167 * whoever updates the number of devices in the super block
2168 * (super_copy) should hold the device list mutex.
2169 */
2170
2171 /*
2172 * In normal cases the cur_devices == fs_devices. But in case
2173 * of deleting a seed device, the cur_devices should point to
2174 * its own fs_devices listed under the fs_devices->seed_list.
2175 */
2176 cur_devices = device->fs_devices;
2177 mutex_lock(&fs_devices->device_list_mutex);
2178 list_del_rcu(&device->dev_list);
2179
2180 cur_devices->num_devices--;
2181 cur_devices->total_devices--;
2182 /* Update total_devices of the parent fs_devices if it's seed */
2183 if (cur_devices != fs_devices)
2184 fs_devices->total_devices--;
2185
2186 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2187 cur_devices->missing_devices--;
2188
2189 btrfs_assign_next_active_device(device, NULL);
2190
2191 if (device->bdev) {
2192 cur_devices->open_devices--;
2193 /* remove sysfs entry */
2194 btrfs_sysfs_remove_device(device);
2195 }
2196
2197 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2198 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2199 mutex_unlock(&fs_devices->device_list_mutex);
2200
2201 /*
2202 * At this point, the device is zero sized and detached from the
2203 * devices list. All that's left is to zero out the old supers and
2204 * free the device.
2205 *
2206 * We cannot call btrfs_close_bdev() here because we're holding the sb
2207 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2208 * block device and it's dependencies. Instead just flush the device
2209 * and let the caller do the final blkdev_put.
2210 */
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 btrfs_scratch_superblocks(fs_info, device->bdev,
2213 device->name->str);
2214 if (device->bdev) {
2215 sync_blockdev(device->bdev);
2216 invalidate_bdev(device->bdev);
2217 }
2218 }
2219
2220 *bdev = device->bdev;
2221 *mode = device->mode;
2222 synchronize_rcu();
2223 btrfs_free_device(device);
2224
2225 /*
2226 * This can happen if cur_devices is the private seed devices list. We
2227 * cannot call close_fs_devices() here because it expects the uuid_mutex
2228 * to be held, but in fact we don't need that for the private
2229 * seed_devices, we can simply decrement cur_devices->opened and then
2230 * remove it from our list and free the fs_devices.
2231 */
2232 if (cur_devices->num_devices == 0) {
2233 list_del_init(&cur_devices->seed_list);
2234 ASSERT(cur_devices->opened == 1);
2235 cur_devices->opened--;
2236 free_fs_devices(cur_devices);
2237 }
2238
2239 ret = btrfs_commit_transaction(trans);
2240
2241 return ret;
2242
2243error_undo:
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 mutex_lock(&fs_info->chunk_mutex);
2246 list_add(&device->dev_alloc_list,
2247 &fs_devices->alloc_list);
2248 device->fs_devices->rw_devices++;
2249 mutex_unlock(&fs_info->chunk_mutex);
2250 }
2251 return ret;
2252}
2253
2254void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2255{
2256 struct btrfs_fs_devices *fs_devices;
2257
2258 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2259
2260 /*
2261 * in case of fs with no seed, srcdev->fs_devices will point
2262 * to fs_devices of fs_info. However when the dev being replaced is
2263 * a seed dev it will point to the seed's local fs_devices. In short
2264 * srcdev will have its correct fs_devices in both the cases.
2265 */
2266 fs_devices = srcdev->fs_devices;
2267
2268 list_del_rcu(&srcdev->dev_list);
2269 list_del(&srcdev->dev_alloc_list);
2270 fs_devices->num_devices--;
2271 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2272 fs_devices->missing_devices--;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2275 fs_devices->rw_devices--;
2276
2277 if (srcdev->bdev)
2278 fs_devices->open_devices--;
2279}
2280
2281void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2282{
2283 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2284
2285 mutex_lock(&uuid_mutex);
2286
2287 btrfs_close_bdev(srcdev);
2288 synchronize_rcu();
2289 btrfs_free_device(srcdev);
2290
2291 /* if this is no devs we rather delete the fs_devices */
2292 if (!fs_devices->num_devices) {
2293 /*
2294 * On a mounted FS, num_devices can't be zero unless it's a
2295 * seed. In case of a seed device being replaced, the replace
2296 * target added to the sprout FS, so there will be no more
2297 * device left under the seed FS.
2298 */
2299 ASSERT(fs_devices->seeding);
2300
2301 list_del_init(&fs_devices->seed_list);
2302 close_fs_devices(fs_devices);
2303 free_fs_devices(fs_devices);
2304 }
2305 mutex_unlock(&uuid_mutex);
2306}
2307
2308void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2309{
2310 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2311
2312 mutex_lock(&fs_devices->device_list_mutex);
2313
2314 btrfs_sysfs_remove_device(tgtdev);
2315
2316 if (tgtdev->bdev)
2317 fs_devices->open_devices--;
2318
2319 fs_devices->num_devices--;
2320
2321 btrfs_assign_next_active_device(tgtdev, NULL);
2322
2323 list_del_rcu(&tgtdev->dev_list);
2324
2325 mutex_unlock(&fs_devices->device_list_mutex);
2326
2327 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2328 tgtdev->name->str);
2329
2330 btrfs_close_bdev(tgtdev);
2331 synchronize_rcu();
2332 btrfs_free_device(tgtdev);
2333}
2334
2335/*
2336 * Populate args from device at path.
2337 *
2338 * @fs_info: the filesystem
2339 * @args: the args to populate
2340 * @path: the path to the device
2341 *
2342 * This will read the super block of the device at @path and populate @args with
2343 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2344 * lookup a device to operate on, but need to do it before we take any locks.
2345 * This properly handles the special case of "missing" that a user may pass in,
2346 * and does some basic sanity checks. The caller must make sure that @path is
2347 * properly NUL terminated before calling in, and must call
2348 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2349 * uuid buffers.
2350 *
2351 * Return: 0 for success, -errno for failure
2352 */
2353int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2354 struct btrfs_dev_lookup_args *args,
2355 const char *path)
2356{
2357 struct btrfs_super_block *disk_super;
2358 struct block_device *bdev;
2359 int ret;
2360
2361 if (!path || !path[0])
2362 return -EINVAL;
2363 if (!strcmp(path, "missing")) {
2364 args->missing = true;
2365 return 0;
2366 }
2367
2368 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2369 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2370 if (!args->uuid || !args->fsid) {
2371 btrfs_put_dev_args_from_path(args);
2372 return -ENOMEM;
2373 }
2374
2375 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2376 &bdev, &disk_super);
2377 if (ret) {
2378 btrfs_put_dev_args_from_path(args);
2379 return ret;
2380 }
2381
2382 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2383 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2385 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2386 else
2387 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2388 btrfs_release_disk_super(disk_super);
2389 blkdev_put(bdev, FMODE_READ);
2390 return 0;
2391}
2392
2393/*
2394 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2395 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2396 * that don't need to be freed.
2397 */
2398void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2399{
2400 kfree(args->uuid);
2401 kfree(args->fsid);
2402 args->uuid = NULL;
2403 args->fsid = NULL;
2404}
2405
2406struct btrfs_device *btrfs_find_device_by_devspec(
2407 struct btrfs_fs_info *fs_info, u64 devid,
2408 const char *device_path)
2409{
2410 BTRFS_DEV_LOOKUP_ARGS(args);
2411 struct btrfs_device *device;
2412 int ret;
2413
2414 if (devid) {
2415 args.devid = devid;
2416 device = btrfs_find_device(fs_info->fs_devices, &args);
2417 if (!device)
2418 return ERR_PTR(-ENOENT);
2419 return device;
2420 }
2421
2422 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2423 if (ret)
2424 return ERR_PTR(ret);
2425 device = btrfs_find_device(fs_info->fs_devices, &args);
2426 btrfs_put_dev_args_from_path(&args);
2427 if (!device)
2428 return ERR_PTR(-ENOENT);
2429 return device;
2430}
2431
2432static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2433{
2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2435 struct btrfs_fs_devices *old_devices;
2436 struct btrfs_fs_devices *seed_devices;
2437
2438 lockdep_assert_held(&uuid_mutex);
2439 if (!fs_devices->seeding)
2440 return ERR_PTR(-EINVAL);
2441
2442 /*
2443 * Private copy of the seed devices, anchored at
2444 * fs_info->fs_devices->seed_list
2445 */
2446 seed_devices = alloc_fs_devices(NULL, NULL);
2447 if (IS_ERR(seed_devices))
2448 return seed_devices;
2449
2450 /*
2451 * It's necessary to retain a copy of the original seed fs_devices in
2452 * fs_uuids so that filesystems which have been seeded can successfully
2453 * reference the seed device from open_seed_devices. This also supports
2454 * multiple fs seed.
2455 */
2456 old_devices = clone_fs_devices(fs_devices);
2457 if (IS_ERR(old_devices)) {
2458 kfree(seed_devices);
2459 return old_devices;
2460 }
2461
2462 list_add(&old_devices->fs_list, &fs_uuids);
2463
2464 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2465 seed_devices->opened = 1;
2466 INIT_LIST_HEAD(&seed_devices->devices);
2467 INIT_LIST_HEAD(&seed_devices->alloc_list);
2468 mutex_init(&seed_devices->device_list_mutex);
2469
2470 return seed_devices;
2471}
2472
2473/*
2474 * Splice seed devices into the sprout fs_devices.
2475 * Generate a new fsid for the sprouted read-write filesystem.
2476 */
2477static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2478 struct btrfs_fs_devices *seed_devices)
2479{
2480 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2481 struct btrfs_super_block *disk_super = fs_info->super_copy;
2482 struct btrfs_device *device;
2483 u64 super_flags;
2484
2485 /*
2486 * We are updating the fsid, the thread leading to device_list_add()
2487 * could race, so uuid_mutex is needed.
2488 */
2489 lockdep_assert_held(&uuid_mutex);
2490
2491 /*
2492 * The threads listed below may traverse dev_list but can do that without
2493 * device_list_mutex:
2494 * - All device ops and balance - as we are in btrfs_exclop_start.
2495 * - Various dev_list readers - are using RCU.
2496 * - btrfs_ioctl_fitrim() - is using RCU.
2497 *
2498 * For-read threads as below are using device_list_mutex:
2499 * - Readonly scrub btrfs_scrub_dev()
2500 * - Readonly scrub btrfs_scrub_progress()
2501 * - btrfs_get_dev_stats()
2502 */
2503 lockdep_assert_held(&fs_devices->device_list_mutex);
2504
2505 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2506 synchronize_rcu);
2507 list_for_each_entry(device, &seed_devices->devices, dev_list)
2508 device->fs_devices = seed_devices;
2509
2510 fs_devices->seeding = false;
2511 fs_devices->num_devices = 0;
2512 fs_devices->open_devices = 0;
2513 fs_devices->missing_devices = 0;
2514 fs_devices->rotating = false;
2515 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2516
2517 generate_random_uuid(fs_devices->fsid);
2518 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2519 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2520
2521 super_flags = btrfs_super_flags(disk_super) &
2522 ~BTRFS_SUPER_FLAG_SEEDING;
2523 btrfs_set_super_flags(disk_super, super_flags);
2524}
2525
2526/*
2527 * Store the expected generation for seed devices in device items.
2528 */
2529static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2530{
2531 BTRFS_DEV_LOOKUP_ARGS(args);
2532 struct btrfs_fs_info *fs_info = trans->fs_info;
2533 struct btrfs_root *root = fs_info->chunk_root;
2534 struct btrfs_path *path;
2535 struct extent_buffer *leaf;
2536 struct btrfs_dev_item *dev_item;
2537 struct btrfs_device *device;
2538 struct btrfs_key key;
2539 u8 fs_uuid[BTRFS_FSID_SIZE];
2540 u8 dev_uuid[BTRFS_UUID_SIZE];
2541 int ret;
2542
2543 path = btrfs_alloc_path();
2544 if (!path)
2545 return -ENOMEM;
2546
2547 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2548 key.offset = 0;
2549 key.type = BTRFS_DEV_ITEM_KEY;
2550
2551 while (1) {
2552 btrfs_reserve_chunk_metadata(trans, false);
2553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2554 btrfs_trans_release_chunk_metadata(trans);
2555 if (ret < 0)
2556 goto error;
2557
2558 leaf = path->nodes[0];
2559next_slot:
2560 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2561 ret = btrfs_next_leaf(root, path);
2562 if (ret > 0)
2563 break;
2564 if (ret < 0)
2565 goto error;
2566 leaf = path->nodes[0];
2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2568 btrfs_release_path(path);
2569 continue;
2570 }
2571
2572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2573 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2574 key.type != BTRFS_DEV_ITEM_KEY)
2575 break;
2576
2577 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2578 struct btrfs_dev_item);
2579 args.devid = btrfs_device_id(leaf, dev_item);
2580 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2581 BTRFS_UUID_SIZE);
2582 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2583 BTRFS_FSID_SIZE);
2584 args.uuid = dev_uuid;
2585 args.fsid = fs_uuid;
2586 device = btrfs_find_device(fs_info->fs_devices, &args);
2587 BUG_ON(!device); /* Logic error */
2588
2589 if (device->fs_devices->seeding) {
2590 btrfs_set_device_generation(leaf, dev_item,
2591 device->generation);
2592 btrfs_mark_buffer_dirty(leaf);
2593 }
2594
2595 path->slots[0]++;
2596 goto next_slot;
2597 }
2598 ret = 0;
2599error:
2600 btrfs_free_path(path);
2601 return ret;
2602}
2603
2604int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2605{
2606 struct btrfs_root *root = fs_info->dev_root;
2607 struct btrfs_trans_handle *trans;
2608 struct btrfs_device *device;
2609 struct block_device *bdev;
2610 struct super_block *sb = fs_info->sb;
2611 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2612 struct btrfs_fs_devices *seed_devices;
2613 u64 orig_super_total_bytes;
2614 u64 orig_super_num_devices;
2615 int ret = 0;
2616 bool seeding_dev = false;
2617 bool locked = false;
2618
2619 if (sb_rdonly(sb) && !fs_devices->seeding)
2620 return -EROFS;
2621
2622 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2623 fs_info->bdev_holder);
2624 if (IS_ERR(bdev))
2625 return PTR_ERR(bdev);
2626
2627 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2628 ret = -EINVAL;
2629 goto error;
2630 }
2631
2632 if (fs_devices->seeding) {
2633 seeding_dev = true;
2634 down_write(&sb->s_umount);
2635 mutex_lock(&uuid_mutex);
2636 locked = true;
2637 }
2638
2639 sync_blockdev(bdev);
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2643 if (device->bdev == bdev) {
2644 ret = -EEXIST;
2645 rcu_read_unlock();
2646 goto error;
2647 }
2648 }
2649 rcu_read_unlock();
2650
2651 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2652 if (IS_ERR(device)) {
2653 /* we can safely leave the fs_devices entry around */
2654 ret = PTR_ERR(device);
2655 goto error;
2656 }
2657
2658 device->fs_info = fs_info;
2659 device->bdev = bdev;
2660 ret = lookup_bdev(device_path, &device->devt);
2661 if (ret)
2662 goto error_free_device;
2663
2664 ret = btrfs_get_dev_zone_info(device, false);
2665 if (ret)
2666 goto error_free_device;
2667
2668 trans = btrfs_start_transaction(root, 0);
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 goto error_free_zone;
2672 }
2673
2674 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2675 device->generation = trans->transid;
2676 device->io_width = fs_info->sectorsize;
2677 device->io_align = fs_info->sectorsize;
2678 device->sector_size = fs_info->sectorsize;
2679 device->total_bytes =
2680 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2681 device->disk_total_bytes = device->total_bytes;
2682 device->commit_total_bytes = device->total_bytes;
2683 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2684 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2685 device->mode = FMODE_EXCL;
2686 device->dev_stats_valid = 1;
2687 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2688
2689 if (seeding_dev) {
2690 btrfs_clear_sb_rdonly(sb);
2691
2692 /* GFP_KERNEL allocation must not be under device_list_mutex */
2693 seed_devices = btrfs_init_sprout(fs_info);
2694 if (IS_ERR(seed_devices)) {
2695 ret = PTR_ERR(seed_devices);
2696 btrfs_abort_transaction(trans, ret);
2697 goto error_trans;
2698 }
2699 }
2700
2701 mutex_lock(&fs_devices->device_list_mutex);
2702 if (seeding_dev) {
2703 btrfs_setup_sprout(fs_info, seed_devices);
2704 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2705 device);
2706 }
2707
2708 device->fs_devices = fs_devices;
2709
2710 mutex_lock(&fs_info->chunk_mutex);
2711 list_add_rcu(&device->dev_list, &fs_devices->devices);
2712 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2713 fs_devices->num_devices++;
2714 fs_devices->open_devices++;
2715 fs_devices->rw_devices++;
2716 fs_devices->total_devices++;
2717 fs_devices->total_rw_bytes += device->total_bytes;
2718
2719 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2720
2721 if (!bdev_nonrot(bdev))
2722 fs_devices->rotating = true;
2723
2724 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2725 btrfs_set_super_total_bytes(fs_info->super_copy,
2726 round_down(orig_super_total_bytes + device->total_bytes,
2727 fs_info->sectorsize));
2728
2729 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2730 btrfs_set_super_num_devices(fs_info->super_copy,
2731 orig_super_num_devices + 1);
2732
2733 /*
2734 * we've got more storage, clear any full flags on the space
2735 * infos
2736 */
2737 btrfs_clear_space_info_full(fs_info);
2738
2739 mutex_unlock(&fs_info->chunk_mutex);
2740
2741 /* Add sysfs device entry */
2742 btrfs_sysfs_add_device(device);
2743
2744 mutex_unlock(&fs_devices->device_list_mutex);
2745
2746 if (seeding_dev) {
2747 mutex_lock(&fs_info->chunk_mutex);
2748 ret = init_first_rw_device(trans);
2749 mutex_unlock(&fs_info->chunk_mutex);
2750 if (ret) {
2751 btrfs_abort_transaction(trans, ret);
2752 goto error_sysfs;
2753 }
2754 }
2755
2756 ret = btrfs_add_dev_item(trans, device);
2757 if (ret) {
2758 btrfs_abort_transaction(trans, ret);
2759 goto error_sysfs;
2760 }
2761
2762 if (seeding_dev) {
2763 ret = btrfs_finish_sprout(trans);
2764 if (ret) {
2765 btrfs_abort_transaction(trans, ret);
2766 goto error_sysfs;
2767 }
2768
2769 /*
2770 * fs_devices now represents the newly sprouted filesystem and
2771 * its fsid has been changed by btrfs_sprout_splice().
2772 */
2773 btrfs_sysfs_update_sprout_fsid(fs_devices);
2774 }
2775
2776 ret = btrfs_commit_transaction(trans);
2777
2778 if (seeding_dev) {
2779 mutex_unlock(&uuid_mutex);
2780 up_write(&sb->s_umount);
2781 locked = false;
2782
2783 if (ret) /* transaction commit */
2784 return ret;
2785
2786 ret = btrfs_relocate_sys_chunks(fs_info);
2787 if (ret < 0)
2788 btrfs_handle_fs_error(fs_info, ret,
2789 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2790 trans = btrfs_attach_transaction(root);
2791 if (IS_ERR(trans)) {
2792 if (PTR_ERR(trans) == -ENOENT)
2793 return 0;
2794 ret = PTR_ERR(trans);
2795 trans = NULL;
2796 goto error_sysfs;
2797 }
2798 ret = btrfs_commit_transaction(trans);
2799 }
2800
2801 /*
2802 * Now that we have written a new super block to this device, check all
2803 * other fs_devices list if device_path alienates any other scanned
2804 * device.
2805 * We can ignore the return value as it typically returns -EINVAL and
2806 * only succeeds if the device was an alien.
2807 */
2808 btrfs_forget_devices(device->devt);
2809
2810 /* Update ctime/mtime for blkid or udev */
2811 update_dev_time(device_path);
2812
2813 return ret;
2814
2815error_sysfs:
2816 btrfs_sysfs_remove_device(device);
2817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2818 mutex_lock(&fs_info->chunk_mutex);
2819 list_del_rcu(&device->dev_list);
2820 list_del(&device->dev_alloc_list);
2821 fs_info->fs_devices->num_devices--;
2822 fs_info->fs_devices->open_devices--;
2823 fs_info->fs_devices->rw_devices--;
2824 fs_info->fs_devices->total_devices--;
2825 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2826 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2827 btrfs_set_super_total_bytes(fs_info->super_copy,
2828 orig_super_total_bytes);
2829 btrfs_set_super_num_devices(fs_info->super_copy,
2830 orig_super_num_devices);
2831 mutex_unlock(&fs_info->chunk_mutex);
2832 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2833error_trans:
2834 if (seeding_dev)
2835 btrfs_set_sb_rdonly(sb);
2836 if (trans)
2837 btrfs_end_transaction(trans);
2838error_free_zone:
2839 btrfs_destroy_dev_zone_info(device);
2840error_free_device:
2841 btrfs_free_device(device);
2842error:
2843 blkdev_put(bdev, FMODE_EXCL);
2844 if (locked) {
2845 mutex_unlock(&uuid_mutex);
2846 up_write(&sb->s_umount);
2847 }
2848 return ret;
2849}
2850
2851static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2852 struct btrfs_device *device)
2853{
2854 int ret;
2855 struct btrfs_path *path;
2856 struct btrfs_root *root = device->fs_info->chunk_root;
2857 struct btrfs_dev_item *dev_item;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860
2861 path = btrfs_alloc_path();
2862 if (!path)
2863 return -ENOMEM;
2864
2865 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2866 key.type = BTRFS_DEV_ITEM_KEY;
2867 key.offset = device->devid;
2868
2869 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2870 if (ret < 0)
2871 goto out;
2872
2873 if (ret > 0) {
2874 ret = -ENOENT;
2875 goto out;
2876 }
2877
2878 leaf = path->nodes[0];
2879 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2880
2881 btrfs_set_device_id(leaf, dev_item, device->devid);
2882 btrfs_set_device_type(leaf, dev_item, device->type);
2883 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2884 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2885 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2886 btrfs_set_device_total_bytes(leaf, dev_item,
2887 btrfs_device_get_disk_total_bytes(device));
2888 btrfs_set_device_bytes_used(leaf, dev_item,
2889 btrfs_device_get_bytes_used(device));
2890 btrfs_mark_buffer_dirty(leaf);
2891
2892out:
2893 btrfs_free_path(path);
2894 return ret;
2895}
2896
2897int btrfs_grow_device(struct btrfs_trans_handle *trans,
2898 struct btrfs_device *device, u64 new_size)
2899{
2900 struct btrfs_fs_info *fs_info = device->fs_info;
2901 struct btrfs_super_block *super_copy = fs_info->super_copy;
2902 u64 old_total;
2903 u64 diff;
2904 int ret;
2905
2906 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2907 return -EACCES;
2908
2909 new_size = round_down(new_size, fs_info->sectorsize);
2910
2911 mutex_lock(&fs_info->chunk_mutex);
2912 old_total = btrfs_super_total_bytes(super_copy);
2913 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2914
2915 if (new_size <= device->total_bytes ||
2916 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2917 mutex_unlock(&fs_info->chunk_mutex);
2918 return -EINVAL;
2919 }
2920
2921 btrfs_set_super_total_bytes(super_copy,
2922 round_down(old_total + diff, fs_info->sectorsize));
2923 device->fs_devices->total_rw_bytes += diff;
2924
2925 btrfs_device_set_total_bytes(device, new_size);
2926 btrfs_device_set_disk_total_bytes(device, new_size);
2927 btrfs_clear_space_info_full(device->fs_info);
2928 if (list_empty(&device->post_commit_list))
2929 list_add_tail(&device->post_commit_list,
2930 &trans->transaction->dev_update_list);
2931 mutex_unlock(&fs_info->chunk_mutex);
2932
2933 btrfs_reserve_chunk_metadata(trans, false);
2934 ret = btrfs_update_device(trans, device);
2935 btrfs_trans_release_chunk_metadata(trans);
2936
2937 return ret;
2938}
2939
2940static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2941{
2942 struct btrfs_fs_info *fs_info = trans->fs_info;
2943 struct btrfs_root *root = fs_info->chunk_root;
2944 int ret;
2945 struct btrfs_path *path;
2946 struct btrfs_key key;
2947
2948 path = btrfs_alloc_path();
2949 if (!path)
2950 return -ENOMEM;
2951
2952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2953 key.offset = chunk_offset;
2954 key.type = BTRFS_CHUNK_ITEM_KEY;
2955
2956 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2957 if (ret < 0)
2958 goto out;
2959 else if (ret > 0) { /* Logic error or corruption */
2960 btrfs_handle_fs_error(fs_info, -ENOENT,
2961 "Failed lookup while freeing chunk.");
2962 ret = -ENOENT;
2963 goto out;
2964 }
2965
2966 ret = btrfs_del_item(trans, root, path);
2967 if (ret < 0)
2968 btrfs_handle_fs_error(fs_info, ret,
2969 "Failed to delete chunk item.");
2970out:
2971 btrfs_free_path(path);
2972 return ret;
2973}
2974
2975static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976{
2977 struct btrfs_super_block *super_copy = fs_info->super_copy;
2978 struct btrfs_disk_key *disk_key;
2979 struct btrfs_chunk *chunk;
2980 u8 *ptr;
2981 int ret = 0;
2982 u32 num_stripes;
2983 u32 array_size;
2984 u32 len = 0;
2985 u32 cur;
2986 struct btrfs_key key;
2987
2988 lockdep_assert_held(&fs_info->chunk_mutex);
2989 array_size = btrfs_super_sys_array_size(super_copy);
2990
2991 ptr = super_copy->sys_chunk_array;
2992 cur = 0;
2993
2994 while (cur < array_size) {
2995 disk_key = (struct btrfs_disk_key *)ptr;
2996 btrfs_disk_key_to_cpu(&key, disk_key);
2997
2998 len = sizeof(*disk_key);
2999
3000 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3001 chunk = (struct btrfs_chunk *)(ptr + len);
3002 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3003 len += btrfs_chunk_item_size(num_stripes);
3004 } else {
3005 ret = -EIO;
3006 break;
3007 }
3008 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3009 key.offset == chunk_offset) {
3010 memmove(ptr, ptr + len, array_size - (cur + len));
3011 array_size -= len;
3012 btrfs_set_super_sys_array_size(super_copy, array_size);
3013 } else {
3014 ptr += len;
3015 cur += len;
3016 }
3017 }
3018 return ret;
3019}
3020
3021/*
3022 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3023 * @logical: Logical block offset in bytes.
3024 * @length: Length of extent in bytes.
3025 *
3026 * Return: Chunk mapping or ERR_PTR.
3027 */
3028struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3029 u64 logical, u64 length)
3030{
3031 struct extent_map_tree *em_tree;
3032 struct extent_map *em;
3033
3034 em_tree = &fs_info->mapping_tree;
3035 read_lock(&em_tree->lock);
3036 em = lookup_extent_mapping(em_tree, logical, length);
3037 read_unlock(&em_tree->lock);
3038
3039 if (!em) {
3040 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3041 logical, length);
3042 return ERR_PTR(-EINVAL);
3043 }
3044
3045 if (em->start > logical || em->start + em->len < logical) {
3046 btrfs_crit(fs_info,
3047 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3048 logical, length, em->start, em->start + em->len);
3049 free_extent_map(em);
3050 return ERR_PTR(-EINVAL);
3051 }
3052
3053 /* callers are responsible for dropping em's ref. */
3054 return em;
3055}
3056
3057static int remove_chunk_item(struct btrfs_trans_handle *trans,
3058 struct map_lookup *map, u64 chunk_offset)
3059{
3060 int i;
3061
3062 /*
3063 * Removing chunk items and updating the device items in the chunks btree
3064 * requires holding the chunk_mutex.
3065 * See the comment at btrfs_chunk_alloc() for the details.
3066 */
3067 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3068
3069 for (i = 0; i < map->num_stripes; i++) {
3070 int ret;
3071
3072 ret = btrfs_update_device(trans, map->stripes[i].dev);
3073 if (ret)
3074 return ret;
3075 }
3076
3077 return btrfs_free_chunk(trans, chunk_offset);
3078}
3079
3080int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3081{
3082 struct btrfs_fs_info *fs_info = trans->fs_info;
3083 struct extent_map *em;
3084 struct map_lookup *map;
3085 u64 dev_extent_len = 0;
3086 int i, ret = 0;
3087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3088
3089 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3090 if (IS_ERR(em)) {
3091 /*
3092 * This is a logic error, but we don't want to just rely on the
3093 * user having built with ASSERT enabled, so if ASSERT doesn't
3094 * do anything we still error out.
3095 */
3096 ASSERT(0);
3097 return PTR_ERR(em);
3098 }
3099 map = em->map_lookup;
3100
3101 /*
3102 * First delete the device extent items from the devices btree.
3103 * We take the device_list_mutex to avoid racing with the finishing phase
3104 * of a device replace operation. See the comment below before acquiring
3105 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3106 * because that can result in a deadlock when deleting the device extent
3107 * items from the devices btree - COWing an extent buffer from the btree
3108 * may result in allocating a new metadata chunk, which would attempt to
3109 * lock again fs_info->chunk_mutex.
3110 */
3111 mutex_lock(&fs_devices->device_list_mutex);
3112 for (i = 0; i < map->num_stripes; i++) {
3113 struct btrfs_device *device = map->stripes[i].dev;
3114 ret = btrfs_free_dev_extent(trans, device,
3115 map->stripes[i].physical,
3116 &dev_extent_len);
3117 if (ret) {
3118 mutex_unlock(&fs_devices->device_list_mutex);
3119 btrfs_abort_transaction(trans, ret);
3120 goto out;
3121 }
3122
3123 if (device->bytes_used > 0) {
3124 mutex_lock(&fs_info->chunk_mutex);
3125 btrfs_device_set_bytes_used(device,
3126 device->bytes_used - dev_extent_len);
3127 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3128 btrfs_clear_space_info_full(fs_info);
3129 mutex_unlock(&fs_info->chunk_mutex);
3130 }
3131 }
3132 mutex_unlock(&fs_devices->device_list_mutex);
3133
3134 /*
3135 * We acquire fs_info->chunk_mutex for 2 reasons:
3136 *
3137 * 1) Just like with the first phase of the chunk allocation, we must
3138 * reserve system space, do all chunk btree updates and deletions, and
3139 * update the system chunk array in the superblock while holding this
3140 * mutex. This is for similar reasons as explained on the comment at
3141 * the top of btrfs_chunk_alloc();
3142 *
3143 * 2) Prevent races with the final phase of a device replace operation
3144 * that replaces the device object associated with the map's stripes,
3145 * because the device object's id can change at any time during that
3146 * final phase of the device replace operation
3147 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3148 * replaced device and then see it with an ID of
3149 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3150 * the device item, which does not exists on the chunk btree.
3151 * The finishing phase of device replace acquires both the
3152 * device_list_mutex and the chunk_mutex, in that order, so we are
3153 * safe by just acquiring the chunk_mutex.
3154 */
3155 trans->removing_chunk = true;
3156 mutex_lock(&fs_info->chunk_mutex);
3157
3158 check_system_chunk(trans, map->type);
3159
3160 ret = remove_chunk_item(trans, map, chunk_offset);
3161 /*
3162 * Normally we should not get -ENOSPC since we reserved space before
3163 * through the call to check_system_chunk().
3164 *
3165 * Despite our system space_info having enough free space, we may not
3166 * be able to allocate extents from its block groups, because all have
3167 * an incompatible profile, which will force us to allocate a new system
3168 * block group with the right profile, or right after we called
3169 * check_system_space() above, a scrub turned the only system block group
3170 * with enough free space into RO mode.
3171 * This is explained with more detail at do_chunk_alloc().
3172 *
3173 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3174 */
3175 if (ret == -ENOSPC) {
3176 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3177 struct btrfs_block_group *sys_bg;
3178
3179 sys_bg = btrfs_create_chunk(trans, sys_flags);
3180 if (IS_ERR(sys_bg)) {
3181 ret = PTR_ERR(sys_bg);
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185
3186 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3187 if (ret) {
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
3190 }
3191
3192 ret = remove_chunk_item(trans, map, chunk_offset);
3193 if (ret) {
3194 btrfs_abort_transaction(trans, ret);
3195 goto out;
3196 }
3197 } else if (ret) {
3198 btrfs_abort_transaction(trans, ret);
3199 goto out;
3200 }
3201
3202 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3203
3204 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3205 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210 }
3211
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214
3215 /*
3216 * We are done with chunk btree updates and deletions, so release the
3217 * system space we previously reserved (with check_system_chunk()).
3218 */
3219 btrfs_trans_release_chunk_metadata(trans);
3220
3221 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3222 if (ret) {
3223 btrfs_abort_transaction(trans, ret);
3224 goto out;
3225 }
3226
3227out:
3228 if (trans->removing_chunk) {
3229 mutex_unlock(&fs_info->chunk_mutex);
3230 trans->removing_chunk = false;
3231 }
3232 /* once for us */
3233 free_extent_map(em);
3234 return ret;
3235}
3236
3237int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3238{
3239 struct btrfs_root *root = fs_info->chunk_root;
3240 struct btrfs_trans_handle *trans;
3241 struct btrfs_block_group *block_group;
3242 u64 length;
3243 int ret;
3244
3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3246 btrfs_err(fs_info,
3247 "relocate: not supported on extent tree v2 yet");
3248 return -EINVAL;
3249 }
3250
3251 /*
3252 * Prevent races with automatic removal of unused block groups.
3253 * After we relocate and before we remove the chunk with offset
3254 * chunk_offset, automatic removal of the block group can kick in,
3255 * resulting in a failure when calling btrfs_remove_chunk() below.
3256 *
3257 * Make sure to acquire this mutex before doing a tree search (dev
3258 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3259 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3260 * we release the path used to search the chunk/dev tree and before
3261 * the current task acquires this mutex and calls us.
3262 */
3263 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3264
3265 /* step one, relocate all the extents inside this chunk */
3266 btrfs_scrub_pause(fs_info);
3267 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3268 btrfs_scrub_continue(fs_info);
3269 if (ret)
3270 return ret;
3271
3272 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3273 if (!block_group)
3274 return -ENOENT;
3275 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3276 length = block_group->length;
3277 btrfs_put_block_group(block_group);
3278
3279 /*
3280 * On a zoned file system, discard the whole block group, this will
3281 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3282 * resetting the zone fails, don't treat it as a fatal problem from the
3283 * filesystem's point of view.
3284 */
3285 if (btrfs_is_zoned(fs_info)) {
3286 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3287 if (ret)
3288 btrfs_info(fs_info,
3289 "failed to reset zone %llu after relocation",
3290 chunk_offset);
3291 }
3292
3293 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3294 chunk_offset);
3295 if (IS_ERR(trans)) {
3296 ret = PTR_ERR(trans);
3297 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3298 return ret;
3299 }
3300
3301 /*
3302 * step two, delete the device extents and the
3303 * chunk tree entries
3304 */
3305 ret = btrfs_remove_chunk(trans, chunk_offset);
3306 btrfs_end_transaction(trans);
3307 return ret;
3308}
3309
3310static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3311{
3312 struct btrfs_root *chunk_root = fs_info->chunk_root;
3313 struct btrfs_path *path;
3314 struct extent_buffer *leaf;
3315 struct btrfs_chunk *chunk;
3316 struct btrfs_key key;
3317 struct btrfs_key found_key;
3318 u64 chunk_type;
3319 bool retried = false;
3320 int failed = 0;
3321 int ret;
3322
3323 path = btrfs_alloc_path();
3324 if (!path)
3325 return -ENOMEM;
3326
3327again:
3328 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3329 key.offset = (u64)-1;
3330 key.type = BTRFS_CHUNK_ITEM_KEY;
3331
3332 while (1) {
3333 mutex_lock(&fs_info->reclaim_bgs_lock);
3334 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3335 if (ret < 0) {
3336 mutex_unlock(&fs_info->reclaim_bgs_lock);
3337 goto error;
3338 }
3339 BUG_ON(ret == 0); /* Corruption */
3340
3341 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3342 key.type);
3343 if (ret)
3344 mutex_unlock(&fs_info->reclaim_bgs_lock);
3345 if (ret < 0)
3346 goto error;
3347 if (ret > 0)
3348 break;
3349
3350 leaf = path->nodes[0];
3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352
3353 chunk = btrfs_item_ptr(leaf, path->slots[0],
3354 struct btrfs_chunk);
3355 chunk_type = btrfs_chunk_type(leaf, chunk);
3356 btrfs_release_path(path);
3357
3358 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3359 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3360 if (ret == -ENOSPC)
3361 failed++;
3362 else
3363 BUG_ON(ret);
3364 }
3365 mutex_unlock(&fs_info->reclaim_bgs_lock);
3366
3367 if (found_key.offset == 0)
3368 break;
3369 key.offset = found_key.offset - 1;
3370 }
3371 ret = 0;
3372 if (failed && !retried) {
3373 failed = 0;
3374 retried = true;
3375 goto again;
3376 } else if (WARN_ON(failed && retried)) {
3377 ret = -ENOSPC;
3378 }
3379error:
3380 btrfs_free_path(path);
3381 return ret;
3382}
3383
3384/*
3385 * return 1 : allocate a data chunk successfully,
3386 * return <0: errors during allocating a data chunk,
3387 * return 0 : no need to allocate a data chunk.
3388 */
3389static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3390 u64 chunk_offset)
3391{
3392 struct btrfs_block_group *cache;
3393 u64 bytes_used;
3394 u64 chunk_type;
3395
3396 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3397 ASSERT(cache);
3398 chunk_type = cache->flags;
3399 btrfs_put_block_group(cache);
3400
3401 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3402 return 0;
3403
3404 spin_lock(&fs_info->data_sinfo->lock);
3405 bytes_used = fs_info->data_sinfo->bytes_used;
3406 spin_unlock(&fs_info->data_sinfo->lock);
3407
3408 if (!bytes_used) {
3409 struct btrfs_trans_handle *trans;
3410 int ret;
3411
3412 trans = btrfs_join_transaction(fs_info->tree_root);
3413 if (IS_ERR(trans))
3414 return PTR_ERR(trans);
3415
3416 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3417 btrfs_end_transaction(trans);
3418 if (ret < 0)
3419 return ret;
3420 return 1;
3421 }
3422
3423 return 0;
3424}
3425
3426static int insert_balance_item(struct btrfs_fs_info *fs_info,
3427 struct btrfs_balance_control *bctl)
3428{
3429 struct btrfs_root *root = fs_info->tree_root;
3430 struct btrfs_trans_handle *trans;
3431 struct btrfs_balance_item *item;
3432 struct btrfs_disk_balance_args disk_bargs;
3433 struct btrfs_path *path;
3434 struct extent_buffer *leaf;
3435 struct btrfs_key key;
3436 int ret, err;
3437
3438 path = btrfs_alloc_path();
3439 if (!path)
3440 return -ENOMEM;
3441
3442 trans = btrfs_start_transaction(root, 0);
3443 if (IS_ERR(trans)) {
3444 btrfs_free_path(path);
3445 return PTR_ERR(trans);
3446 }
3447
3448 key.objectid = BTRFS_BALANCE_OBJECTID;
3449 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3450 key.offset = 0;
3451
3452 ret = btrfs_insert_empty_item(trans, root, path, &key,
3453 sizeof(*item));
3454 if (ret)
3455 goto out;
3456
3457 leaf = path->nodes[0];
3458 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3459
3460 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3461
3462 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3463 btrfs_set_balance_data(leaf, item, &disk_bargs);
3464 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3465 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3466 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3467 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3468
3469 btrfs_set_balance_flags(leaf, item, bctl->flags);
3470
3471 btrfs_mark_buffer_dirty(leaf);
3472out:
3473 btrfs_free_path(path);
3474 err = btrfs_commit_transaction(trans);
3475 if (err && !ret)
3476 ret = err;
3477 return ret;
3478}
3479
3480static int del_balance_item(struct btrfs_fs_info *fs_info)
3481{
3482 struct btrfs_root *root = fs_info->tree_root;
3483 struct btrfs_trans_handle *trans;
3484 struct btrfs_path *path;
3485 struct btrfs_key key;
3486 int ret, err;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3493 if (IS_ERR(trans)) {
3494 btrfs_free_path(path);
3495 return PTR_ERR(trans);
3496 }
3497
3498 key.objectid = BTRFS_BALANCE_OBJECTID;
3499 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3500 key.offset = 0;
3501
3502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3503 if (ret < 0)
3504 goto out;
3505 if (ret > 0) {
3506 ret = -ENOENT;
3507 goto out;
3508 }
3509
3510 ret = btrfs_del_item(trans, root, path);
3511out:
3512 btrfs_free_path(path);
3513 err = btrfs_commit_transaction(trans);
3514 if (err && !ret)
3515 ret = err;
3516 return ret;
3517}
3518
3519/*
3520 * This is a heuristic used to reduce the number of chunks balanced on
3521 * resume after balance was interrupted.
3522 */
3523static void update_balance_args(struct btrfs_balance_control *bctl)
3524{
3525 /*
3526 * Turn on soft mode for chunk types that were being converted.
3527 */
3528 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3529 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3530 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3531 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3532 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3534
3535 /*
3536 * Turn on usage filter if is not already used. The idea is
3537 * that chunks that we have already balanced should be
3538 * reasonably full. Don't do it for chunks that are being
3539 * converted - that will keep us from relocating unconverted
3540 * (albeit full) chunks.
3541 */
3542 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3543 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3544 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->data.usage = 90;
3547 }
3548 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3549 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3550 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3551 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3552 bctl->sys.usage = 90;
3553 }
3554 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3555 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3556 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3557 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3558 bctl->meta.usage = 90;
3559 }
3560}
3561
3562/*
3563 * Clear the balance status in fs_info and delete the balance item from disk.
3564 */
3565static void reset_balance_state(struct btrfs_fs_info *fs_info)
3566{
3567 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3568 int ret;
3569
3570 BUG_ON(!fs_info->balance_ctl);
3571
3572 spin_lock(&fs_info->balance_lock);
3573 fs_info->balance_ctl = NULL;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 kfree(bctl);
3577 ret = del_balance_item(fs_info);
3578 if (ret)
3579 btrfs_handle_fs_error(fs_info, ret, NULL);
3580}
3581
3582/*
3583 * Balance filters. Return 1 if chunk should be filtered out
3584 * (should not be balanced).
3585 */
3586static int chunk_profiles_filter(u64 chunk_type,
3587 struct btrfs_balance_args *bargs)
3588{
3589 chunk_type = chunk_to_extended(chunk_type) &
3590 BTRFS_EXTENDED_PROFILE_MASK;
3591
3592 if (bargs->profiles & chunk_type)
3593 return 0;
3594
3595 return 1;
3596}
3597
3598static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3599 struct btrfs_balance_args *bargs)
3600{
3601 struct btrfs_block_group *cache;
3602 u64 chunk_used;
3603 u64 user_thresh_min;
3604 u64 user_thresh_max;
3605 int ret = 1;
3606
3607 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3608 chunk_used = cache->used;
3609
3610 if (bargs->usage_min == 0)
3611 user_thresh_min = 0;
3612 else
3613 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3614
3615 if (bargs->usage_max == 0)
3616 user_thresh_max = 1;
3617 else if (bargs->usage_max > 100)
3618 user_thresh_max = cache->length;
3619 else
3620 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3621
3622 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
3629static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3630 u64 chunk_offset, struct btrfs_balance_args *bargs)
3631{
3632 struct btrfs_block_group *cache;
3633 u64 chunk_used, user_thresh;
3634 int ret = 1;
3635
3636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3637 chunk_used = cache->used;
3638
3639 if (bargs->usage_min == 0)
3640 user_thresh = 1;
3641 else if (bargs->usage > 100)
3642 user_thresh = cache->length;
3643 else
3644 user_thresh = mult_perc(cache->length, bargs->usage);
3645
3646 if (chunk_used < user_thresh)
3647 ret = 0;
3648
3649 btrfs_put_block_group(cache);
3650 return ret;
3651}
3652
3653static int chunk_devid_filter(struct extent_buffer *leaf,
3654 struct btrfs_chunk *chunk,
3655 struct btrfs_balance_args *bargs)
3656{
3657 struct btrfs_stripe *stripe;
3658 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3659 int i;
3660
3661 for (i = 0; i < num_stripes; i++) {
3662 stripe = btrfs_stripe_nr(chunk, i);
3663 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3664 return 0;
3665 }
3666
3667 return 1;
3668}
3669
3670static u64 calc_data_stripes(u64 type, int num_stripes)
3671{
3672 const int index = btrfs_bg_flags_to_raid_index(type);
3673 const int ncopies = btrfs_raid_array[index].ncopies;
3674 const int nparity = btrfs_raid_array[index].nparity;
3675
3676 return (num_stripes - nparity) / ncopies;
3677}
3678
3679/* [pstart, pend) */
3680static int chunk_drange_filter(struct extent_buffer *leaf,
3681 struct btrfs_chunk *chunk,
3682 struct btrfs_balance_args *bargs)
3683{
3684 struct btrfs_stripe *stripe;
3685 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686 u64 stripe_offset;
3687 u64 stripe_length;
3688 u64 type;
3689 int factor;
3690 int i;
3691
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3693 return 0;
3694
3695 type = btrfs_chunk_type(leaf, chunk);
3696 factor = calc_data_stripes(type, num_stripes);
3697
3698 for (i = 0; i < num_stripes; i++) {
3699 stripe = btrfs_stripe_nr(chunk, i);
3700 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3701 continue;
3702
3703 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3704 stripe_length = btrfs_chunk_length(leaf, chunk);
3705 stripe_length = div_u64(stripe_length, factor);
3706
3707 if (stripe_offset < bargs->pend &&
3708 stripe_offset + stripe_length > bargs->pstart)
3709 return 0;
3710 }
3711
3712 return 1;
3713}
3714
3715/* [vstart, vend) */
3716static int chunk_vrange_filter(struct extent_buffer *leaf,
3717 struct btrfs_chunk *chunk,
3718 u64 chunk_offset,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (chunk_offset < bargs->vend &&
3722 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3723 /* at least part of the chunk is inside this vrange */
3724 return 0;
3725
3726 return 1;
3727}
3728
3729static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3730 struct btrfs_chunk *chunk,
3731 struct btrfs_balance_args *bargs)
3732{
3733 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3734
3735 if (bargs->stripes_min <= num_stripes
3736 && num_stripes <= bargs->stripes_max)
3737 return 0;
3738
3739 return 1;
3740}
3741
3742static int chunk_soft_convert_filter(u64 chunk_type,
3743 struct btrfs_balance_args *bargs)
3744{
3745 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3746 return 0;
3747
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->target == chunk_type)
3752 return 1;
3753
3754 return 0;
3755}
3756
3757static int should_balance_chunk(struct extent_buffer *leaf,
3758 struct btrfs_chunk *chunk, u64 chunk_offset)
3759{
3760 struct btrfs_fs_info *fs_info = leaf->fs_info;
3761 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3762 struct btrfs_balance_args *bargs = NULL;
3763 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3764
3765 /* type filter */
3766 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3767 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3768 return 0;
3769 }
3770
3771 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3772 bargs = &bctl->data;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3774 bargs = &bctl->sys;
3775 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3776 bargs = &bctl->meta;
3777
3778 /* profiles filter */
3779 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3780 chunk_profiles_filter(chunk_type, bargs)) {
3781 return 0;
3782 }
3783
3784 /* usage filter */
3785 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3786 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3787 return 0;
3788 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3790 return 0;
3791 }
3792
3793 /* devid filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3795 chunk_devid_filter(leaf, chunk, bargs)) {
3796 return 0;
3797 }
3798
3799 /* drange filter, makes sense only with devid filter */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3801 chunk_drange_filter(leaf, chunk, bargs)) {
3802 return 0;
3803 }
3804
3805 /* vrange filter */
3806 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3807 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3808 return 0;
3809 }
3810
3811 /* stripes filter */
3812 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3813 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3814 return 0;
3815 }
3816
3817 /* soft profile changing mode */
3818 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3819 chunk_soft_convert_filter(chunk_type, bargs)) {
3820 return 0;
3821 }
3822
3823 /*
3824 * limited by count, must be the last filter
3825 */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3827 if (bargs->limit == 0)
3828 return 0;
3829 else
3830 bargs->limit--;
3831 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3832 /*
3833 * Same logic as the 'limit' filter; the minimum cannot be
3834 * determined here because we do not have the global information
3835 * about the count of all chunks that satisfy the filters.
3836 */
3837 if (bargs->limit_max == 0)
3838 return 0;
3839 else
3840 bargs->limit_max--;
3841 }
3842
3843 return 1;
3844}
3845
3846static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3847{
3848 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3849 struct btrfs_root *chunk_root = fs_info->chunk_root;
3850 u64 chunk_type;
3851 struct btrfs_chunk *chunk;
3852 struct btrfs_path *path = NULL;
3853 struct btrfs_key key;
3854 struct btrfs_key found_key;
3855 struct extent_buffer *leaf;
3856 int slot;
3857 int ret;
3858 int enospc_errors = 0;
3859 bool counting = true;
3860 /* The single value limit and min/max limits use the same bytes in the */
3861 u64 limit_data = bctl->data.limit;
3862 u64 limit_meta = bctl->meta.limit;
3863 u64 limit_sys = bctl->sys.limit;
3864 u32 count_data = 0;
3865 u32 count_meta = 0;
3866 u32 count_sys = 0;
3867 int chunk_reserved = 0;
3868
3869 path = btrfs_alloc_path();
3870 if (!path) {
3871 ret = -ENOMEM;
3872 goto error;
3873 }
3874
3875 /* zero out stat counters */
3876 spin_lock(&fs_info->balance_lock);
3877 memset(&bctl->stat, 0, sizeof(bctl->stat));
3878 spin_unlock(&fs_info->balance_lock);
3879again:
3880 if (!counting) {
3881 /*
3882 * The single value limit and min/max limits use the same bytes
3883 * in the
3884 */
3885 bctl->data.limit = limit_data;
3886 bctl->meta.limit = limit_meta;
3887 bctl->sys.limit = limit_sys;
3888 }
3889 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3890 key.offset = (u64)-1;
3891 key.type = BTRFS_CHUNK_ITEM_KEY;
3892
3893 while (1) {
3894 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3895 atomic_read(&fs_info->balance_cancel_req)) {
3896 ret = -ECANCELED;
3897 goto error;
3898 }
3899
3900 mutex_lock(&fs_info->reclaim_bgs_lock);
3901 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3902 if (ret < 0) {
3903 mutex_unlock(&fs_info->reclaim_bgs_lock);
3904 goto error;
3905 }
3906
3907 /*
3908 * this shouldn't happen, it means the last relocate
3909 * failed
3910 */
3911 if (ret == 0)
3912 BUG(); /* FIXME break ? */
3913
3914 ret = btrfs_previous_item(chunk_root, path, 0,
3915 BTRFS_CHUNK_ITEM_KEY);
3916 if (ret) {
3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
3918 ret = 0;
3919 break;
3920 }
3921
3922 leaf = path->nodes[0];
3923 slot = path->slots[0];
3924 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3925
3926 if (found_key.objectid != key.objectid) {
3927 mutex_unlock(&fs_info->reclaim_bgs_lock);
3928 break;
3929 }
3930
3931 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3932 chunk_type = btrfs_chunk_type(leaf, chunk);
3933
3934 if (!counting) {
3935 spin_lock(&fs_info->balance_lock);
3936 bctl->stat.considered++;
3937 spin_unlock(&fs_info->balance_lock);
3938 }
3939
3940 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3941
3942 btrfs_release_path(path);
3943 if (!ret) {
3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
3945 goto loop;
3946 }
3947
3948 if (counting) {
3949 mutex_unlock(&fs_info->reclaim_bgs_lock);
3950 spin_lock(&fs_info->balance_lock);
3951 bctl->stat.expected++;
3952 spin_unlock(&fs_info->balance_lock);
3953
3954 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3955 count_data++;
3956 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3957 count_sys++;
3958 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3959 count_meta++;
3960
3961 goto loop;
3962 }
3963
3964 /*
3965 * Apply limit_min filter, no need to check if the LIMITS
3966 * filter is used, limit_min is 0 by default
3967 */
3968 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3969 count_data < bctl->data.limit_min)
3970 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3971 count_meta < bctl->meta.limit_min)
3972 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3973 count_sys < bctl->sys.limit_min)) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 goto loop;
3976 }
3977
3978 if (!chunk_reserved) {
3979 /*
3980 * We may be relocating the only data chunk we have,
3981 * which could potentially end up with losing data's
3982 * raid profile, so lets allocate an empty one in
3983 * advance.
3984 */
3985 ret = btrfs_may_alloc_data_chunk(fs_info,
3986 found_key.offset);
3987 if (ret < 0) {
3988 mutex_unlock(&fs_info->reclaim_bgs_lock);
3989 goto error;
3990 } else if (ret == 1) {
3991 chunk_reserved = 1;
3992 }
3993 }
3994
3995 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3996 mutex_unlock(&fs_info->reclaim_bgs_lock);
3997 if (ret == -ENOSPC) {
3998 enospc_errors++;
3999 } else if (ret == -ETXTBSY) {
4000 btrfs_info(fs_info,
4001 "skipping relocation of block group %llu due to active swapfile",
4002 found_key.offset);
4003 ret = 0;
4004 } else if (ret) {
4005 goto error;
4006 } else {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.completed++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
4011loop:
4012 if (found_key.offset == 0)
4013 break;
4014 key.offset = found_key.offset - 1;
4015 }
4016
4017 if (counting) {
4018 btrfs_release_path(path);
4019 counting = false;
4020 goto again;
4021 }
4022error:
4023 btrfs_free_path(path);
4024 if (enospc_errors) {
4025 btrfs_info(fs_info, "%d enospc errors during balance",
4026 enospc_errors);
4027 if (!ret)
4028 ret = -ENOSPC;
4029 }
4030
4031 return ret;
4032}
4033
4034/*
4035 * See if a given profile is valid and reduced.
4036 *
4037 * @flags: profile to validate
4038 * @extended: if true @flags is treated as an extended profile
4039 */
4040static int alloc_profile_is_valid(u64 flags, int extended)
4041{
4042 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4043 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4044
4045 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4046
4047 /* 1) check that all other bits are zeroed */
4048 if (flags & ~mask)
4049 return 0;
4050
4051 /* 2) see if profile is reduced */
4052 if (flags == 0)
4053 return !extended; /* "0" is valid for usual profiles */
4054
4055 return has_single_bit_set(flags);
4056}
4057
4058static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4059{
4060 /* cancel requested || normal exit path */
4061 return atomic_read(&fs_info->balance_cancel_req) ||
4062 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4063 atomic_read(&fs_info->balance_cancel_req) == 0);
4064}
4065
4066/*
4067 * Validate target profile against allowed profiles and return true if it's OK.
4068 * Otherwise print the error message and return false.
4069 */
4070static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4071 const struct btrfs_balance_args *bargs,
4072 u64 allowed, const char *type)
4073{
4074 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4075 return true;
4076
4077 /* Profile is valid and does not have bits outside of the allowed set */
4078 if (alloc_profile_is_valid(bargs->target, 1) &&
4079 (bargs->target & ~allowed) == 0)
4080 return true;
4081
4082 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4083 type, btrfs_bg_type_to_raid_name(bargs->target));
4084 return false;
4085}
4086
4087/*
4088 * Fill @buf with textual description of balance filter flags @bargs, up to
4089 * @size_buf including the terminating null. The output may be trimmed if it
4090 * does not fit into the provided buffer.
4091 */
4092static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4093 u32 size_buf)
4094{
4095 int ret;
4096 u32 size_bp = size_buf;
4097 char *bp = buf;
4098 u64 flags = bargs->flags;
4099 char tmp_buf[128] = {'\0'};
4100
4101 if (!flags)
4102 return;
4103
4104#define CHECK_APPEND_NOARG(a) \
4105 do { \
4106 ret = snprintf(bp, size_bp, (a)); \
4107 if (ret < 0 || ret >= size_bp) \
4108 goto out_overflow; \
4109 size_bp -= ret; \
4110 bp += ret; \
4111 } while (0)
4112
4113#define CHECK_APPEND_1ARG(a, v1) \
4114 do { \
4115 ret = snprintf(bp, size_bp, (a), (v1)); \
4116 if (ret < 0 || ret >= size_bp) \
4117 goto out_overflow; \
4118 size_bp -= ret; \
4119 bp += ret; \
4120 } while (0)
4121
4122#define CHECK_APPEND_2ARG(a, v1, v2) \
4123 do { \
4124 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4125 if (ret < 0 || ret >= size_bp) \
4126 goto out_overflow; \
4127 size_bp -= ret; \
4128 bp += ret; \
4129 } while (0)
4130
4131 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4132 CHECK_APPEND_1ARG("convert=%s,",
4133 btrfs_bg_type_to_raid_name(bargs->target));
4134
4135 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4136 CHECK_APPEND_NOARG("soft,");
4137
4138 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4139 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4140 sizeof(tmp_buf));
4141 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4142 }
4143
4144 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4145 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4148 CHECK_APPEND_2ARG("usage=%u..%u,",
4149 bargs->usage_min, bargs->usage_max);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4152 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4155 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4156 bargs->pstart, bargs->pend);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4159 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4160 bargs->vstart, bargs->vend);
4161
4162 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4163 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4164
4165 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4166 CHECK_APPEND_2ARG("limit=%u..%u,",
4167 bargs->limit_min, bargs->limit_max);
4168
4169 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4170 CHECK_APPEND_2ARG("stripes=%u..%u,",
4171 bargs->stripes_min, bargs->stripes_max);
4172
4173#undef CHECK_APPEND_2ARG
4174#undef CHECK_APPEND_1ARG
4175#undef CHECK_APPEND_NOARG
4176
4177out_overflow:
4178
4179 if (size_bp < size_buf)
4180 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4181 else
4182 buf[0] = '\0';
4183}
4184
4185static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4186{
4187 u32 size_buf = 1024;
4188 char tmp_buf[192] = {'\0'};
4189 char *buf;
4190 char *bp;
4191 u32 size_bp = size_buf;
4192 int ret;
4193 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4194
4195 buf = kzalloc(size_buf, GFP_KERNEL);
4196 if (!buf)
4197 return;
4198
4199 bp = buf;
4200
4201#define CHECK_APPEND_1ARG(a, v1) \
4202 do { \
4203 ret = snprintf(bp, size_bp, (a), (v1)); \
4204 if (ret < 0 || ret >= size_bp) \
4205 goto out_overflow; \
4206 size_bp -= ret; \
4207 bp += ret; \
4208 } while (0)
4209
4210 if (bctl->flags & BTRFS_BALANCE_FORCE)
4211 CHECK_APPEND_1ARG("%s", "-f ");
4212
4213 if (bctl->flags & BTRFS_BALANCE_DATA) {
4214 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4215 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4216 }
4217
4218 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4219 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4220 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4221 }
4222
4223 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4224 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4225 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4226 }
4227
4228#undef CHECK_APPEND_1ARG
4229
4230out_overflow:
4231
4232 if (size_bp < size_buf)
4233 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4234 btrfs_info(fs_info, "balance: %s %s",
4235 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4236 "resume" : "start", buf);
4237
4238 kfree(buf);
4239}
4240
4241/*
4242 * Should be called with balance mutexe held
4243 */
4244int btrfs_balance(struct btrfs_fs_info *fs_info,
4245 struct btrfs_balance_control *bctl,
4246 struct btrfs_ioctl_balance_args *bargs)
4247{
4248 u64 meta_target, data_target;
4249 u64 allowed;
4250 int mixed = 0;
4251 int ret;
4252 u64 num_devices;
4253 unsigned seq;
4254 bool reducing_redundancy;
4255 int i;
4256
4257 if (btrfs_fs_closing(fs_info) ||
4258 atomic_read(&fs_info->balance_pause_req) ||
4259 btrfs_should_cancel_balance(fs_info)) {
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263
4264 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4265 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4266 mixed = 1;
4267
4268 /*
4269 * In case of mixed groups both data and meta should be picked,
4270 * and identical options should be given for both of them.
4271 */
4272 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4273 if (mixed && (bctl->flags & allowed)) {
4274 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4275 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4276 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4277 btrfs_err(fs_info,
4278 "balance: mixed groups data and metadata options must be the same");
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282 }
4283
4284 /*
4285 * rw_devices will not change at the moment, device add/delete/replace
4286 * are exclusive
4287 */
4288 num_devices = fs_info->fs_devices->rw_devices;
4289
4290 /*
4291 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4292 * special bit for it, to make it easier to distinguish. Thus we need
4293 * to set it manually, or balance would refuse the profile.
4294 */
4295 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4296 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4297 if (num_devices >= btrfs_raid_array[i].devs_min)
4298 allowed |= btrfs_raid_array[i].bg_flag;
4299
4300 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4301 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4302 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4303 ret = -EINVAL;
4304 goto out;
4305 }
4306
4307 /*
4308 * Allow to reduce metadata or system integrity only if force set for
4309 * profiles with redundancy (copies, parity)
4310 */
4311 allowed = 0;
4312 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4313 if (btrfs_raid_array[i].ncopies >= 2 ||
4314 btrfs_raid_array[i].tolerated_failures >= 1)
4315 allowed |= btrfs_raid_array[i].bg_flag;
4316 }
4317 do {
4318 seq = read_seqbegin(&fs_info->profiles_lock);
4319
4320 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4321 (fs_info->avail_system_alloc_bits & allowed) &&
4322 !(bctl->sys.target & allowed)) ||
4323 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4324 (fs_info->avail_metadata_alloc_bits & allowed) &&
4325 !(bctl->meta.target & allowed)))
4326 reducing_redundancy = true;
4327 else
4328 reducing_redundancy = false;
4329
4330 /* if we're not converting, the target field is uninitialized */
4331 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4332 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4333 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4334 bctl->data.target : fs_info->avail_data_alloc_bits;
4335 } while (read_seqretry(&fs_info->profiles_lock, seq));
4336
4337 if (reducing_redundancy) {
4338 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4339 btrfs_info(fs_info,
4340 "balance: force reducing metadata redundancy");
4341 } else {
4342 btrfs_err(fs_info,
4343 "balance: reduces metadata redundancy, use --force if you want this");
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4350 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4351 btrfs_warn(fs_info,
4352 "balance: metadata profile %s has lower redundancy than data profile %s",
4353 btrfs_bg_type_to_raid_name(meta_target),
4354 btrfs_bg_type_to_raid_name(data_target));
4355 }
4356
4357 ret = insert_balance_item(fs_info, bctl);
4358 if (ret && ret != -EEXIST)
4359 goto out;
4360
4361 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4362 BUG_ON(ret == -EEXIST);
4363 BUG_ON(fs_info->balance_ctl);
4364 spin_lock(&fs_info->balance_lock);
4365 fs_info->balance_ctl = bctl;
4366 spin_unlock(&fs_info->balance_lock);
4367 } else {
4368 BUG_ON(ret != -EEXIST);
4369 spin_lock(&fs_info->balance_lock);
4370 update_balance_args(bctl);
4371 spin_unlock(&fs_info->balance_lock);
4372 }
4373
4374 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4375 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4376 describe_balance_start_or_resume(fs_info);
4377 mutex_unlock(&fs_info->balance_mutex);
4378
4379 ret = __btrfs_balance(fs_info);
4380
4381 mutex_lock(&fs_info->balance_mutex);
4382 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4383 btrfs_info(fs_info, "balance: paused");
4384 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4385 }
4386 /*
4387 * Balance can be canceled by:
4388 *
4389 * - Regular cancel request
4390 * Then ret == -ECANCELED and balance_cancel_req > 0
4391 *
4392 * - Fatal signal to "btrfs" process
4393 * Either the signal caught by wait_reserve_ticket() and callers
4394 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4395 * got -ECANCELED.
4396 * Either way, in this case balance_cancel_req = 0, and
4397 * ret == -EINTR or ret == -ECANCELED.
4398 *
4399 * So here we only check the return value to catch canceled balance.
4400 */
4401 else if (ret == -ECANCELED || ret == -EINTR)
4402 btrfs_info(fs_info, "balance: canceled");
4403 else
4404 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4405
4406 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4407
4408 if (bargs) {
4409 memset(bargs, 0, sizeof(*bargs));
4410 btrfs_update_ioctl_balance_args(fs_info, bargs);
4411 }
4412
4413 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4414 balance_need_close(fs_info)) {
4415 reset_balance_state(fs_info);
4416 btrfs_exclop_finish(fs_info);
4417 }
4418
4419 wake_up(&fs_info->balance_wait_q);
4420
4421 return ret;
4422out:
4423 if (bctl->flags & BTRFS_BALANCE_RESUME)
4424 reset_balance_state(fs_info);
4425 else
4426 kfree(bctl);
4427 btrfs_exclop_finish(fs_info);
4428
4429 return ret;
4430}
4431
4432static int balance_kthread(void *data)
4433{
4434 struct btrfs_fs_info *fs_info = data;
4435 int ret = 0;
4436
4437 sb_start_write(fs_info->sb);
4438 mutex_lock(&fs_info->balance_mutex);
4439 if (fs_info->balance_ctl)
4440 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4441 mutex_unlock(&fs_info->balance_mutex);
4442 sb_end_write(fs_info->sb);
4443
4444 return ret;
4445}
4446
4447int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4448{
4449 struct task_struct *tsk;
4450
4451 mutex_lock(&fs_info->balance_mutex);
4452 if (!fs_info->balance_ctl) {
4453 mutex_unlock(&fs_info->balance_mutex);
4454 return 0;
4455 }
4456 mutex_unlock(&fs_info->balance_mutex);
4457
4458 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4459 btrfs_info(fs_info, "balance: resume skipped");
4460 return 0;
4461 }
4462
4463 spin_lock(&fs_info->super_lock);
4464 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4465 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4466 spin_unlock(&fs_info->super_lock);
4467 /*
4468 * A ro->rw remount sequence should continue with the paused balance
4469 * regardless of who pauses it, system or the user as of now, so set
4470 * the resume flag.
4471 */
4472 spin_lock(&fs_info->balance_lock);
4473 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4474 spin_unlock(&fs_info->balance_lock);
4475
4476 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4477 return PTR_ERR_OR_ZERO(tsk);
4478}
4479
4480int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4481{
4482 struct btrfs_balance_control *bctl;
4483 struct btrfs_balance_item *item;
4484 struct btrfs_disk_balance_args disk_bargs;
4485 struct btrfs_path *path;
4486 struct extent_buffer *leaf;
4487 struct btrfs_key key;
4488 int ret;
4489
4490 path = btrfs_alloc_path();
4491 if (!path)
4492 return -ENOMEM;
4493
4494 key.objectid = BTRFS_BALANCE_OBJECTID;
4495 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4496 key.offset = 0;
4497
4498 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4499 if (ret < 0)
4500 goto out;
4501 if (ret > 0) { /* ret = -ENOENT; */
4502 ret = 0;
4503 goto out;
4504 }
4505
4506 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4507 if (!bctl) {
4508 ret = -ENOMEM;
4509 goto out;
4510 }
4511
4512 leaf = path->nodes[0];
4513 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4514
4515 bctl->flags = btrfs_balance_flags(leaf, item);
4516 bctl->flags |= BTRFS_BALANCE_RESUME;
4517
4518 btrfs_balance_data(leaf, item, &disk_bargs);
4519 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4520 btrfs_balance_meta(leaf, item, &disk_bargs);
4521 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4522 btrfs_balance_sys(leaf, item, &disk_bargs);
4523 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4524
4525 /*
4526 * This should never happen, as the paused balance state is recovered
4527 * during mount without any chance of other exclusive ops to collide.
4528 *
4529 * This gives the exclusive op status to balance and keeps in paused
4530 * state until user intervention (cancel or umount). If the ownership
4531 * cannot be assigned, show a message but do not fail. The balance
4532 * is in a paused state and must have fs_info::balance_ctl properly
4533 * set up.
4534 */
4535 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4536 btrfs_warn(fs_info,
4537 "balance: cannot set exclusive op status, resume manually");
4538
4539 btrfs_release_path(path);
4540
4541 mutex_lock(&fs_info->balance_mutex);
4542 BUG_ON(fs_info->balance_ctl);
4543 spin_lock(&fs_info->balance_lock);
4544 fs_info->balance_ctl = bctl;
4545 spin_unlock(&fs_info->balance_lock);
4546 mutex_unlock(&fs_info->balance_mutex);
4547out:
4548 btrfs_free_path(path);
4549 return ret;
4550}
4551
4552int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4553{
4554 int ret = 0;
4555
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
4562 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4563 atomic_inc(&fs_info->balance_pause_req);
4564 mutex_unlock(&fs_info->balance_mutex);
4565
4566 wait_event(fs_info->balance_wait_q,
4567 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4568
4569 mutex_lock(&fs_info->balance_mutex);
4570 /* we are good with balance_ctl ripped off from under us */
4571 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4572 atomic_dec(&fs_info->balance_pause_req);
4573 } else {
4574 ret = -ENOTCONN;
4575 }
4576
4577 mutex_unlock(&fs_info->balance_mutex);
4578 return ret;
4579}
4580
4581int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4582{
4583 mutex_lock(&fs_info->balance_mutex);
4584 if (!fs_info->balance_ctl) {
4585 mutex_unlock(&fs_info->balance_mutex);
4586 return -ENOTCONN;
4587 }
4588
4589 /*
4590 * A paused balance with the item stored on disk can be resumed at
4591 * mount time if the mount is read-write. Otherwise it's still paused
4592 * and we must not allow cancelling as it deletes the item.
4593 */
4594 if (sb_rdonly(fs_info->sb)) {
4595 mutex_unlock(&fs_info->balance_mutex);
4596 return -EROFS;
4597 }
4598
4599 atomic_inc(&fs_info->balance_cancel_req);
4600 /*
4601 * if we are running just wait and return, balance item is
4602 * deleted in btrfs_balance in this case
4603 */
4604 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4605 mutex_unlock(&fs_info->balance_mutex);
4606 wait_event(fs_info->balance_wait_q,
4607 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4608 mutex_lock(&fs_info->balance_mutex);
4609 } else {
4610 mutex_unlock(&fs_info->balance_mutex);
4611 /*
4612 * Lock released to allow other waiters to continue, we'll
4613 * reexamine the status again.
4614 */
4615 mutex_lock(&fs_info->balance_mutex);
4616
4617 if (fs_info->balance_ctl) {
4618 reset_balance_state(fs_info);
4619 btrfs_exclop_finish(fs_info);
4620 btrfs_info(fs_info, "balance: canceled");
4621 }
4622 }
4623
4624 BUG_ON(fs_info->balance_ctl ||
4625 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4626 atomic_dec(&fs_info->balance_cancel_req);
4627 mutex_unlock(&fs_info->balance_mutex);
4628 return 0;
4629}
4630
4631int btrfs_uuid_scan_kthread(void *data)
4632{
4633 struct btrfs_fs_info *fs_info = data;
4634 struct btrfs_root *root = fs_info->tree_root;
4635 struct btrfs_key key;
4636 struct btrfs_path *path = NULL;
4637 int ret = 0;
4638 struct extent_buffer *eb;
4639 int slot;
4640 struct btrfs_root_item root_item;
4641 u32 item_size;
4642 struct btrfs_trans_handle *trans = NULL;
4643 bool closing = false;
4644
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 ret = -ENOMEM;
4648 goto out;
4649 }
4650
4651 key.objectid = 0;
4652 key.type = BTRFS_ROOT_ITEM_KEY;
4653 key.offset = 0;
4654
4655 while (1) {
4656 if (btrfs_fs_closing(fs_info)) {
4657 closing = true;
4658 break;
4659 }
4660 ret = btrfs_search_forward(root, &key, path,
4661 BTRFS_OLDEST_GENERATION);
4662 if (ret) {
4663 if (ret > 0)
4664 ret = 0;
4665 break;
4666 }
4667
4668 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4669 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4670 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4671 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4672 goto skip;
4673
4674 eb = path->nodes[0];
4675 slot = path->slots[0];
4676 item_size = btrfs_item_size(eb, slot);
4677 if (item_size < sizeof(root_item))
4678 goto skip;
4679
4680 read_extent_buffer(eb, &root_item,
4681 btrfs_item_ptr_offset(eb, slot),
4682 (int)sizeof(root_item));
4683 if (btrfs_root_refs(&root_item) == 0)
4684 goto skip;
4685
4686 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4687 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4688 if (trans)
4689 goto update_tree;
4690
4691 btrfs_release_path(path);
4692 /*
4693 * 1 - subvol uuid item
4694 * 1 - received_subvol uuid item
4695 */
4696 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4697 if (IS_ERR(trans)) {
4698 ret = PTR_ERR(trans);
4699 break;
4700 }
4701 continue;
4702 } else {
4703 goto skip;
4704 }
4705update_tree:
4706 btrfs_release_path(path);
4707 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4708 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4709 BTRFS_UUID_KEY_SUBVOL,
4710 key.objectid);
4711 if (ret < 0) {
4712 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4713 ret);
4714 break;
4715 }
4716 }
4717
4718 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4719 ret = btrfs_uuid_tree_add(trans,
4720 root_item.received_uuid,
4721 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4722 key.objectid);
4723 if (ret < 0) {
4724 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4725 ret);
4726 break;
4727 }
4728 }
4729
4730skip:
4731 btrfs_release_path(path);
4732 if (trans) {
4733 ret = btrfs_end_transaction(trans);
4734 trans = NULL;
4735 if (ret)
4736 break;
4737 }
4738
4739 if (key.offset < (u64)-1) {
4740 key.offset++;
4741 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4742 key.offset = 0;
4743 key.type = BTRFS_ROOT_ITEM_KEY;
4744 } else if (key.objectid < (u64)-1) {
4745 key.offset = 0;
4746 key.type = BTRFS_ROOT_ITEM_KEY;
4747 key.objectid++;
4748 } else {
4749 break;
4750 }
4751 cond_resched();
4752 }
4753
4754out:
4755 btrfs_free_path(path);
4756 if (trans && !IS_ERR(trans))
4757 btrfs_end_transaction(trans);
4758 if (ret)
4759 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4760 else if (!closing)
4761 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4762 up(&fs_info->uuid_tree_rescan_sem);
4763 return 0;
4764}
4765
4766int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4767{
4768 struct btrfs_trans_handle *trans;
4769 struct btrfs_root *tree_root = fs_info->tree_root;
4770 struct btrfs_root *uuid_root;
4771 struct task_struct *task;
4772 int ret;
4773
4774 /*
4775 * 1 - root node
4776 * 1 - root item
4777 */
4778 trans = btrfs_start_transaction(tree_root, 2);
4779 if (IS_ERR(trans))
4780 return PTR_ERR(trans);
4781
4782 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4783 if (IS_ERR(uuid_root)) {
4784 ret = PTR_ERR(uuid_root);
4785 btrfs_abort_transaction(trans, ret);
4786 btrfs_end_transaction(trans);
4787 return ret;
4788 }
4789
4790 fs_info->uuid_root = uuid_root;
4791
4792 ret = btrfs_commit_transaction(trans);
4793 if (ret)
4794 return ret;
4795
4796 down(&fs_info->uuid_tree_rescan_sem);
4797 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4798 if (IS_ERR(task)) {
4799 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4800 btrfs_warn(fs_info, "failed to start uuid_scan task");
4801 up(&fs_info->uuid_tree_rescan_sem);
4802 return PTR_ERR(task);
4803 }
4804
4805 return 0;
4806}
4807
4808/*
4809 * shrinking a device means finding all of the device extents past
4810 * the new size, and then following the back refs to the chunks.
4811 * The chunk relocation code actually frees the device extent
4812 */
4813int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4814{
4815 struct btrfs_fs_info *fs_info = device->fs_info;
4816 struct btrfs_root *root = fs_info->dev_root;
4817 struct btrfs_trans_handle *trans;
4818 struct btrfs_dev_extent *dev_extent = NULL;
4819 struct btrfs_path *path;
4820 u64 length;
4821 u64 chunk_offset;
4822 int ret;
4823 int slot;
4824 int failed = 0;
4825 bool retried = false;
4826 struct extent_buffer *l;
4827 struct btrfs_key key;
4828 struct btrfs_super_block *super_copy = fs_info->super_copy;
4829 u64 old_total = btrfs_super_total_bytes(super_copy);
4830 u64 old_size = btrfs_device_get_total_bytes(device);
4831 u64 diff;
4832 u64 start;
4833
4834 new_size = round_down(new_size, fs_info->sectorsize);
4835 start = new_size;
4836 diff = round_down(old_size - new_size, fs_info->sectorsize);
4837
4838 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4839 return -EINVAL;
4840
4841 path = btrfs_alloc_path();
4842 if (!path)
4843 return -ENOMEM;
4844
4845 path->reada = READA_BACK;
4846
4847 trans = btrfs_start_transaction(root, 0);
4848 if (IS_ERR(trans)) {
4849 btrfs_free_path(path);
4850 return PTR_ERR(trans);
4851 }
4852
4853 mutex_lock(&fs_info->chunk_mutex);
4854
4855 btrfs_device_set_total_bytes(device, new_size);
4856 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4857 device->fs_devices->total_rw_bytes -= diff;
4858 atomic64_sub(diff, &fs_info->free_chunk_space);
4859 }
4860
4861 /*
4862 * Once the device's size has been set to the new size, ensure all
4863 * in-memory chunks are synced to disk so that the loop below sees them
4864 * and relocates them accordingly.
4865 */
4866 if (contains_pending_extent(device, &start, diff)) {
4867 mutex_unlock(&fs_info->chunk_mutex);
4868 ret = btrfs_commit_transaction(trans);
4869 if (ret)
4870 goto done;
4871 } else {
4872 mutex_unlock(&fs_info->chunk_mutex);
4873 btrfs_end_transaction(trans);
4874 }
4875
4876again:
4877 key.objectid = device->devid;
4878 key.offset = (u64)-1;
4879 key.type = BTRFS_DEV_EXTENT_KEY;
4880
4881 do {
4882 mutex_lock(&fs_info->reclaim_bgs_lock);
4883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4884 if (ret < 0) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 goto done;
4887 }
4888
4889 ret = btrfs_previous_item(root, path, 0, key.type);
4890 if (ret) {
4891 mutex_unlock(&fs_info->reclaim_bgs_lock);
4892 if (ret < 0)
4893 goto done;
4894 ret = 0;
4895 btrfs_release_path(path);
4896 break;
4897 }
4898
4899 l = path->nodes[0];
4900 slot = path->slots[0];
4901 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4902
4903 if (key.objectid != device->devid) {
4904 mutex_unlock(&fs_info->reclaim_bgs_lock);
4905 btrfs_release_path(path);
4906 break;
4907 }
4908
4909 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4910 length = btrfs_dev_extent_length(l, dev_extent);
4911
4912 if (key.offset + length <= new_size) {
4913 mutex_unlock(&fs_info->reclaim_bgs_lock);
4914 btrfs_release_path(path);
4915 break;
4916 }
4917
4918 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4919 btrfs_release_path(path);
4920
4921 /*
4922 * We may be relocating the only data chunk we have,
4923 * which could potentially end up with losing data's
4924 * raid profile, so lets allocate an empty one in
4925 * advance.
4926 */
4927 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4928 if (ret < 0) {
4929 mutex_unlock(&fs_info->reclaim_bgs_lock);
4930 goto done;
4931 }
4932
4933 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4934 mutex_unlock(&fs_info->reclaim_bgs_lock);
4935 if (ret == -ENOSPC) {
4936 failed++;
4937 } else if (ret) {
4938 if (ret == -ETXTBSY) {
4939 btrfs_warn(fs_info,
4940 "could not shrink block group %llu due to active swapfile",
4941 chunk_offset);
4942 }
4943 goto done;
4944 }
4945 } while (key.offset-- > 0);
4946
4947 if (failed && !retried) {
4948 failed = 0;
4949 retried = true;
4950 goto again;
4951 } else if (failed && retried) {
4952 ret = -ENOSPC;
4953 goto done;
4954 }
4955
4956 /* Shrinking succeeded, else we would be at "done". */
4957 trans = btrfs_start_transaction(root, 0);
4958 if (IS_ERR(trans)) {
4959 ret = PTR_ERR(trans);
4960 goto done;
4961 }
4962
4963 mutex_lock(&fs_info->chunk_mutex);
4964 /* Clear all state bits beyond the shrunk device size */
4965 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4966 CHUNK_STATE_MASK);
4967
4968 btrfs_device_set_disk_total_bytes(device, new_size);
4969 if (list_empty(&device->post_commit_list))
4970 list_add_tail(&device->post_commit_list,
4971 &trans->transaction->dev_update_list);
4972
4973 WARN_ON(diff > old_total);
4974 btrfs_set_super_total_bytes(super_copy,
4975 round_down(old_total - diff, fs_info->sectorsize));
4976 mutex_unlock(&fs_info->chunk_mutex);
4977
4978 btrfs_reserve_chunk_metadata(trans, false);
4979 /* Now btrfs_update_device() will change the on-disk size. */
4980 ret = btrfs_update_device(trans, device);
4981 btrfs_trans_release_chunk_metadata(trans);
4982 if (ret < 0) {
4983 btrfs_abort_transaction(trans, ret);
4984 btrfs_end_transaction(trans);
4985 } else {
4986 ret = btrfs_commit_transaction(trans);
4987 }
4988done:
4989 btrfs_free_path(path);
4990 if (ret) {
4991 mutex_lock(&fs_info->chunk_mutex);
4992 btrfs_device_set_total_bytes(device, old_size);
4993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4994 device->fs_devices->total_rw_bytes += diff;
4995 atomic64_add(diff, &fs_info->free_chunk_space);
4996 mutex_unlock(&fs_info->chunk_mutex);
4997 }
4998 return ret;
4999}
5000
5001static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5002 struct btrfs_key *key,
5003 struct btrfs_chunk *chunk, int item_size)
5004{
5005 struct btrfs_super_block *super_copy = fs_info->super_copy;
5006 struct btrfs_disk_key disk_key;
5007 u32 array_size;
5008 u8 *ptr;
5009
5010 lockdep_assert_held(&fs_info->chunk_mutex);
5011
5012 array_size = btrfs_super_sys_array_size(super_copy);
5013 if (array_size + item_size + sizeof(disk_key)
5014 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5015 return -EFBIG;
5016
5017 ptr = super_copy->sys_chunk_array + array_size;
5018 btrfs_cpu_key_to_disk(&disk_key, key);
5019 memcpy(ptr, &disk_key, sizeof(disk_key));
5020 ptr += sizeof(disk_key);
5021 memcpy(ptr, chunk, item_size);
5022 item_size += sizeof(disk_key);
5023 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5024
5025 return 0;
5026}
5027
5028/*
5029 * sort the devices in descending order by max_avail, total_avail
5030 */
5031static int btrfs_cmp_device_info(const void *a, const void *b)
5032{
5033 const struct btrfs_device_info *di_a = a;
5034 const struct btrfs_device_info *di_b = b;
5035
5036 if (di_a->max_avail > di_b->max_avail)
5037 return -1;
5038 if (di_a->max_avail < di_b->max_avail)
5039 return 1;
5040 if (di_a->total_avail > di_b->total_avail)
5041 return -1;
5042 if (di_a->total_avail < di_b->total_avail)
5043 return 1;
5044 return 0;
5045}
5046
5047static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5048{
5049 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5050 return;
5051
5052 btrfs_set_fs_incompat(info, RAID56);
5053}
5054
5055static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5056{
5057 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5058 return;
5059
5060 btrfs_set_fs_incompat(info, RAID1C34);
5061}
5062
5063/*
5064 * Structure used internally for btrfs_create_chunk() function.
5065 * Wraps needed parameters.
5066 */
5067struct alloc_chunk_ctl {
5068 u64 start;
5069 u64 type;
5070 /* Total number of stripes to allocate */
5071 int num_stripes;
5072 /* sub_stripes info for map */
5073 int sub_stripes;
5074 /* Stripes per device */
5075 int dev_stripes;
5076 /* Maximum number of devices to use */
5077 int devs_max;
5078 /* Minimum number of devices to use */
5079 int devs_min;
5080 /* ndevs has to be a multiple of this */
5081 int devs_increment;
5082 /* Number of copies */
5083 int ncopies;
5084 /* Number of stripes worth of bytes to store parity information */
5085 int nparity;
5086 u64 max_stripe_size;
5087 u64 max_chunk_size;
5088 u64 dev_extent_min;
5089 u64 stripe_size;
5090 u64 chunk_size;
5091 int ndevs;
5092};
5093
5094static void init_alloc_chunk_ctl_policy_regular(
5095 struct btrfs_fs_devices *fs_devices,
5096 struct alloc_chunk_ctl *ctl)
5097{
5098 struct btrfs_space_info *space_info;
5099
5100 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5101 ASSERT(space_info);
5102
5103 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5104 ctl->max_stripe_size = ctl->max_chunk_size;
5105
5106 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5107 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5108
5109 /* We don't want a chunk larger than 10% of writable space */
5110 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5111 ctl->max_chunk_size);
5112 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5113}
5114
5115static void init_alloc_chunk_ctl_policy_zoned(
5116 struct btrfs_fs_devices *fs_devices,
5117 struct alloc_chunk_ctl *ctl)
5118{
5119 u64 zone_size = fs_devices->fs_info->zone_size;
5120 u64 limit;
5121 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5122 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5123 u64 min_chunk_size = min_data_stripes * zone_size;
5124 u64 type = ctl->type;
5125
5126 ctl->max_stripe_size = zone_size;
5127 if (type & BTRFS_BLOCK_GROUP_DATA) {
5128 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5129 zone_size);
5130 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5131 ctl->max_chunk_size = ctl->max_stripe_size;
5132 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5133 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5134 ctl->devs_max = min_t(int, ctl->devs_max,
5135 BTRFS_MAX_DEVS_SYS_CHUNK);
5136 } else {
5137 BUG();
5138 }
5139
5140 /* We don't want a chunk larger than 10% of writable space */
5141 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5142 zone_size),
5143 min_chunk_size);
5144 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5145 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5146}
5147
5148static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5149 struct alloc_chunk_ctl *ctl)
5150{
5151 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5152
5153 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5154 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5155 ctl->devs_max = btrfs_raid_array[index].devs_max;
5156 if (!ctl->devs_max)
5157 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5158 ctl->devs_min = btrfs_raid_array[index].devs_min;
5159 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5160 ctl->ncopies = btrfs_raid_array[index].ncopies;
5161 ctl->nparity = btrfs_raid_array[index].nparity;
5162 ctl->ndevs = 0;
5163
5164 switch (fs_devices->chunk_alloc_policy) {
5165 case BTRFS_CHUNK_ALLOC_REGULAR:
5166 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5167 break;
5168 case BTRFS_CHUNK_ALLOC_ZONED:
5169 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5170 break;
5171 default:
5172 BUG();
5173 }
5174}
5175
5176static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl,
5178 struct btrfs_device_info *devices_info)
5179{
5180 struct btrfs_fs_info *info = fs_devices->fs_info;
5181 struct btrfs_device *device;
5182 u64 total_avail;
5183 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5184 int ret;
5185 int ndevs = 0;
5186 u64 max_avail;
5187 u64 dev_offset;
5188
5189 /*
5190 * in the first pass through the devices list, we gather information
5191 * about the available holes on each device.
5192 */
5193 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5194 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5195 WARN(1, KERN_ERR
5196 "BTRFS: read-only device in alloc_list\n");
5197 continue;
5198 }
5199
5200 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5201 &device->dev_state) ||
5202 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5203 continue;
5204
5205 if (device->total_bytes > device->bytes_used)
5206 total_avail = device->total_bytes - device->bytes_used;
5207 else
5208 total_avail = 0;
5209
5210 /* If there is no space on this device, skip it. */
5211 if (total_avail < ctl->dev_extent_min)
5212 continue;
5213
5214 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5215 &max_avail);
5216 if (ret && ret != -ENOSPC)
5217 return ret;
5218
5219 if (ret == 0)
5220 max_avail = dev_extent_want;
5221
5222 if (max_avail < ctl->dev_extent_min) {
5223 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5224 btrfs_debug(info,
5225 "%s: devid %llu has no free space, have=%llu want=%llu",
5226 __func__, device->devid, max_avail,
5227 ctl->dev_extent_min);
5228 continue;
5229 }
5230
5231 if (ndevs == fs_devices->rw_devices) {
5232 WARN(1, "%s: found more than %llu devices\n",
5233 __func__, fs_devices->rw_devices);
5234 break;
5235 }
5236 devices_info[ndevs].dev_offset = dev_offset;
5237 devices_info[ndevs].max_avail = max_avail;
5238 devices_info[ndevs].total_avail = total_avail;
5239 devices_info[ndevs].dev = device;
5240 ++ndevs;
5241 }
5242 ctl->ndevs = ndevs;
5243
5244 /*
5245 * now sort the devices by hole size / available space
5246 */
5247 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5248 btrfs_cmp_device_info, NULL);
5249
5250 return 0;
5251}
5252
5253static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5254 struct btrfs_device_info *devices_info)
5255{
5256 /* Number of stripes that count for block group size */
5257 int data_stripes;
5258
5259 /*
5260 * The primary goal is to maximize the number of stripes, so use as
5261 * many devices as possible, even if the stripes are not maximum sized.
5262 *
5263 * The DUP profile stores more than one stripe per device, the
5264 * max_avail is the total size so we have to adjust.
5265 */
5266 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5267 ctl->dev_stripes);
5268 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5269
5270 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5271 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272
5273 /*
5274 * Use the number of data stripes to figure out how big this chunk is
5275 * really going to be in terms of logical address space, and compare
5276 * that answer with the max chunk size. If it's higher, we try to
5277 * reduce stripe_size.
5278 */
5279 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5280 /*
5281 * Reduce stripe_size, round it up to a 16MB boundary again and
5282 * then use it, unless it ends up being even bigger than the
5283 * previous value we had already.
5284 */
5285 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5286 data_stripes), SZ_16M),
5287 ctl->stripe_size);
5288 }
5289
5290 /* Stripe size should not go beyond 1G. */
5291 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5292
5293 /* Align to BTRFS_STRIPE_LEN */
5294 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5295 ctl->chunk_size = ctl->stripe_size * data_stripes;
5296
5297 return 0;
5298}
5299
5300static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5301 struct btrfs_device_info *devices_info)
5302{
5303 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5304 /* Number of stripes that count for block group size */
5305 int data_stripes;
5306
5307 /*
5308 * It should hold because:
5309 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5310 */
5311 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5312
5313 ctl->stripe_size = zone_size;
5314 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5315 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5316
5317 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5318 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5319 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5320 ctl->stripe_size) + ctl->nparity,
5321 ctl->dev_stripes);
5322 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5323 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5324 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5325 }
5326
5327 ctl->chunk_size = ctl->stripe_size * data_stripes;
5328
5329 return 0;
5330}
5331
5332static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5333 struct alloc_chunk_ctl *ctl,
5334 struct btrfs_device_info *devices_info)
5335{
5336 struct btrfs_fs_info *info = fs_devices->fs_info;
5337
5338 /*
5339 * Round down to number of usable stripes, devs_increment can be any
5340 * number so we can't use round_down() that requires power of 2, while
5341 * rounddown is safe.
5342 */
5343 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5344
5345 if (ctl->ndevs < ctl->devs_min) {
5346 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5347 btrfs_debug(info,
5348 "%s: not enough devices with free space: have=%d minimum required=%d",
5349 __func__, ctl->ndevs, ctl->devs_min);
5350 }
5351 return -ENOSPC;
5352 }
5353
5354 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5355
5356 switch (fs_devices->chunk_alloc_policy) {
5357 case BTRFS_CHUNK_ALLOC_REGULAR:
5358 return decide_stripe_size_regular(ctl, devices_info);
5359 case BTRFS_CHUNK_ALLOC_ZONED:
5360 return decide_stripe_size_zoned(ctl, devices_info);
5361 default:
5362 BUG();
5363 }
5364}
5365
5366static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369{
5370 struct btrfs_fs_info *info = trans->fs_info;
5371 struct map_lookup *map = NULL;
5372 struct extent_map_tree *em_tree;
5373 struct btrfs_block_group *block_group;
5374 struct extent_map *em;
5375 u64 start = ctl->start;
5376 u64 type = ctl->type;
5377 int ret;
5378 int i;
5379 int j;
5380
5381 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5382 if (!map)
5383 return ERR_PTR(-ENOMEM);
5384 map->num_stripes = ctl->num_stripes;
5385
5386 for (i = 0; i < ctl->ndevs; ++i) {
5387 for (j = 0; j < ctl->dev_stripes; ++j) {
5388 int s = i * ctl->dev_stripes + j;
5389 map->stripes[s].dev = devices_info[i].dev;
5390 map->stripes[s].physical = devices_info[i].dev_offset +
5391 j * ctl->stripe_size;
5392 }
5393 }
5394 map->stripe_len = BTRFS_STRIPE_LEN;
5395 map->io_align = BTRFS_STRIPE_LEN;
5396 map->io_width = BTRFS_STRIPE_LEN;
5397 map->type = type;
5398 map->sub_stripes = ctl->sub_stripes;
5399
5400 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5401
5402 em = alloc_extent_map();
5403 if (!em) {
5404 kfree(map);
5405 return ERR_PTR(-ENOMEM);
5406 }
5407 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5408 em->map_lookup = map;
5409 em->start = start;
5410 em->len = ctl->chunk_size;
5411 em->block_start = 0;
5412 em->block_len = em->len;
5413 em->orig_block_len = ctl->stripe_size;
5414
5415 em_tree = &info->mapping_tree;
5416 write_lock(&em_tree->lock);
5417 ret = add_extent_mapping(em_tree, em, 0);
5418 if (ret) {
5419 write_unlock(&em_tree->lock);
5420 free_extent_map(em);
5421 return ERR_PTR(ret);
5422 }
5423 write_unlock(&em_tree->lock);
5424
5425 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5426 if (IS_ERR(block_group))
5427 goto error_del_extent;
5428
5429 for (i = 0; i < map->num_stripes; i++) {
5430 struct btrfs_device *dev = map->stripes[i].dev;
5431
5432 btrfs_device_set_bytes_used(dev,
5433 dev->bytes_used + ctl->stripe_size);
5434 if (list_empty(&dev->post_commit_list))
5435 list_add_tail(&dev->post_commit_list,
5436 &trans->transaction->dev_update_list);
5437 }
5438
5439 atomic64_sub(ctl->stripe_size * map->num_stripes,
5440 &info->free_chunk_space);
5441
5442 free_extent_map(em);
5443 check_raid56_incompat_flag(info, type);
5444 check_raid1c34_incompat_flag(info, type);
5445
5446 return block_group;
5447
5448error_del_extent:
5449 write_lock(&em_tree->lock);
5450 remove_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452
5453 /* One for our allocation */
5454 free_extent_map(em);
5455 /* One for the tree reference */
5456 free_extent_map(em);
5457
5458 return block_group;
5459}
5460
5461struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5462 u64 type)
5463{
5464 struct btrfs_fs_info *info = trans->fs_info;
5465 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5466 struct btrfs_device_info *devices_info = NULL;
5467 struct alloc_chunk_ctl ctl;
5468 struct btrfs_block_group *block_group;
5469 int ret;
5470
5471 lockdep_assert_held(&info->chunk_mutex);
5472
5473 if (!alloc_profile_is_valid(type, 0)) {
5474 ASSERT(0);
5475 return ERR_PTR(-EINVAL);
5476 }
5477
5478 if (list_empty(&fs_devices->alloc_list)) {
5479 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5480 btrfs_debug(info, "%s: no writable device", __func__);
5481 return ERR_PTR(-ENOSPC);
5482 }
5483
5484 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5485 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5486 ASSERT(0);
5487 return ERR_PTR(-EINVAL);
5488 }
5489
5490 ctl.start = find_next_chunk(info);
5491 ctl.type = type;
5492 init_alloc_chunk_ctl(fs_devices, &ctl);
5493
5494 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5495 GFP_NOFS);
5496 if (!devices_info)
5497 return ERR_PTR(-ENOMEM);
5498
5499 ret = gather_device_info(fs_devices, &ctl, devices_info);
5500 if (ret < 0) {
5501 block_group = ERR_PTR(ret);
5502 goto out;
5503 }
5504
5505 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5506 if (ret < 0) {
5507 block_group = ERR_PTR(ret);
5508 goto out;
5509 }
5510
5511 block_group = create_chunk(trans, &ctl, devices_info);
5512
5513out:
5514 kfree(devices_info);
5515 return block_group;
5516}
5517
5518/*
5519 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5520 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5521 * chunks.
5522 *
5523 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5524 * phases.
5525 */
5526int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5527 struct btrfs_block_group *bg)
5528{
5529 struct btrfs_fs_info *fs_info = trans->fs_info;
5530 struct btrfs_root *chunk_root = fs_info->chunk_root;
5531 struct btrfs_key key;
5532 struct btrfs_chunk *chunk;
5533 struct btrfs_stripe *stripe;
5534 struct extent_map *em;
5535 struct map_lookup *map;
5536 size_t item_size;
5537 int i;
5538 int ret;
5539
5540 /*
5541 * We take the chunk_mutex for 2 reasons:
5542 *
5543 * 1) Updates and insertions in the chunk btree must be done while holding
5544 * the chunk_mutex, as well as updating the system chunk array in the
5545 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5546 * details;
5547 *
5548 * 2) To prevent races with the final phase of a device replace operation
5549 * that replaces the device object associated with the map's stripes,
5550 * because the device object's id can change at any time during that
5551 * final phase of the device replace operation
5552 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5553 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5554 * which would cause a failure when updating the device item, which does
5555 * not exists, or persisting a stripe of the chunk item with such ID.
5556 * Here we can't use the device_list_mutex because our caller already
5557 * has locked the chunk_mutex, and the final phase of device replace
5558 * acquires both mutexes - first the device_list_mutex and then the
5559 * chunk_mutex. Using any of those two mutexes protects us from a
5560 * concurrent device replace.
5561 */
5562 lockdep_assert_held(&fs_info->chunk_mutex);
5563
5564 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5565 if (IS_ERR(em)) {
5566 ret = PTR_ERR(em);
5567 btrfs_abort_transaction(trans, ret);
5568 return ret;
5569 }
5570
5571 map = em->map_lookup;
5572 item_size = btrfs_chunk_item_size(map->num_stripes);
5573
5574 chunk = kzalloc(item_size, GFP_NOFS);
5575 if (!chunk) {
5576 ret = -ENOMEM;
5577 btrfs_abort_transaction(trans, ret);
5578 goto out;
5579 }
5580
5581 for (i = 0; i < map->num_stripes; i++) {
5582 struct btrfs_device *device = map->stripes[i].dev;
5583
5584 ret = btrfs_update_device(trans, device);
5585 if (ret)
5586 goto out;
5587 }
5588
5589 stripe = &chunk->stripe;
5590 for (i = 0; i < map->num_stripes; i++) {
5591 struct btrfs_device *device = map->stripes[i].dev;
5592 const u64 dev_offset = map->stripes[i].physical;
5593
5594 btrfs_set_stack_stripe_devid(stripe, device->devid);
5595 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5596 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5597 stripe++;
5598 }
5599
5600 btrfs_set_stack_chunk_length(chunk, bg->length);
5601 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5602 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5603 btrfs_set_stack_chunk_type(chunk, map->type);
5604 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5605 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5606 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5607 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5608 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5609
5610 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5611 key.type = BTRFS_CHUNK_ITEM_KEY;
5612 key.offset = bg->start;
5613
5614 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5615 if (ret)
5616 goto out;
5617
5618 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5619
5620 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5621 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5622 if (ret)
5623 goto out;
5624 }
5625
5626out:
5627 kfree(chunk);
5628 free_extent_map(em);
5629 return ret;
5630}
5631
5632static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5633{
5634 struct btrfs_fs_info *fs_info = trans->fs_info;
5635 u64 alloc_profile;
5636 struct btrfs_block_group *meta_bg;
5637 struct btrfs_block_group *sys_bg;
5638
5639 /*
5640 * When adding a new device for sprouting, the seed device is read-only
5641 * so we must first allocate a metadata and a system chunk. But before
5642 * adding the block group items to the extent, device and chunk btrees,
5643 * we must first:
5644 *
5645 * 1) Create both chunks without doing any changes to the btrees, as
5646 * otherwise we would get -ENOSPC since the block groups from the
5647 * seed device are read-only;
5648 *
5649 * 2) Add the device item for the new sprout device - finishing the setup
5650 * of a new block group requires updating the device item in the chunk
5651 * btree, so it must exist when we attempt to do it. The previous step
5652 * ensures this does not fail with -ENOSPC.
5653 *
5654 * After that we can add the block group items to their btrees:
5655 * update existing device item in the chunk btree, add a new block group
5656 * item to the extent btree, add a new chunk item to the chunk btree and
5657 * finally add the new device extent items to the devices btree.
5658 */
5659
5660 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5661 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5662 if (IS_ERR(meta_bg))
5663 return PTR_ERR(meta_bg);
5664
5665 alloc_profile = btrfs_system_alloc_profile(fs_info);
5666 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5667 if (IS_ERR(sys_bg))
5668 return PTR_ERR(sys_bg);
5669
5670 return 0;
5671}
5672
5673static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5674{
5675 const int index = btrfs_bg_flags_to_raid_index(map->type);
5676
5677 return btrfs_raid_array[index].tolerated_failures;
5678}
5679
5680bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5681{
5682 struct extent_map *em;
5683 struct map_lookup *map;
5684 int miss_ndevs = 0;
5685 int i;
5686 bool ret = true;
5687
5688 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5689 if (IS_ERR(em))
5690 return false;
5691
5692 map = em->map_lookup;
5693 for (i = 0; i < map->num_stripes; i++) {
5694 if (test_bit(BTRFS_DEV_STATE_MISSING,
5695 &map->stripes[i].dev->dev_state)) {
5696 miss_ndevs++;
5697 continue;
5698 }
5699 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5700 &map->stripes[i].dev->dev_state)) {
5701 ret = false;
5702 goto end;
5703 }
5704 }
5705
5706 /*
5707 * If the number of missing devices is larger than max errors, we can
5708 * not write the data into that chunk successfully.
5709 */
5710 if (miss_ndevs > btrfs_chunk_max_errors(map))
5711 ret = false;
5712end:
5713 free_extent_map(em);
5714 return ret;
5715}
5716
5717void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718{
5719 struct extent_map *em;
5720
5721 while (1) {
5722 write_lock(&tree->lock);
5723 em = lookup_extent_mapping(tree, 0, (u64)-1);
5724 if (em)
5725 remove_extent_mapping(tree, em);
5726 write_unlock(&tree->lock);
5727 if (!em)
5728 break;
5729 /* once for us */
5730 free_extent_map(em);
5731 /* once for the tree */
5732 free_extent_map(em);
5733 }
5734}
5735
5736int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737{
5738 struct extent_map *em;
5739 struct map_lookup *map;
5740 enum btrfs_raid_types index;
5741 int ret = 1;
5742
5743 em = btrfs_get_chunk_map(fs_info, logical, len);
5744 if (IS_ERR(em))
5745 /*
5746 * We could return errors for these cases, but that could get
5747 * ugly and we'd probably do the same thing which is just not do
5748 * anything else and exit, so return 1 so the callers don't try
5749 * to use other copies.
5750 */
5751 return 1;
5752
5753 map = em->map_lookup;
5754 index = btrfs_bg_flags_to_raid_index(map->type);
5755
5756 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5757 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5758 ret = btrfs_raid_array[index].ncopies;
5759 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5760 ret = 2;
5761 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5762 /*
5763 * There could be two corrupted data stripes, we need
5764 * to loop retry in order to rebuild the correct data.
5765 *
5766 * Fail a stripe at a time on every retry except the
5767 * stripe under reconstruction.
5768 */
5769 ret = map->num_stripes;
5770 free_extent_map(em);
5771
5772 down_read(&fs_info->dev_replace.rwsem);
5773 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774 fs_info->dev_replace.tgtdev)
5775 ret++;
5776 up_read(&fs_info->dev_replace.rwsem);
5777
5778 return ret;
5779}
5780
5781unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782 u64 logical)
5783{
5784 struct extent_map *em;
5785 struct map_lookup *map;
5786 unsigned long len = fs_info->sectorsize;
5787
5788 if (!btrfs_fs_incompat(fs_info, RAID56))
5789 return len;
5790
5791 em = btrfs_get_chunk_map(fs_info, logical, len);
5792
5793 if (!WARN_ON(IS_ERR(em))) {
5794 map = em->map_lookup;
5795 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5796 len = map->stripe_len * nr_data_stripes(map);
5797 free_extent_map(em);
5798 }
5799 return len;
5800}
5801
5802int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5803{
5804 struct extent_map *em;
5805 struct map_lookup *map;
5806 int ret = 0;
5807
5808 if (!btrfs_fs_incompat(fs_info, RAID56))
5809 return 0;
5810
5811 em = btrfs_get_chunk_map(fs_info, logical, len);
5812
5813 if(!WARN_ON(IS_ERR(em))) {
5814 map = em->map_lookup;
5815 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5816 ret = 1;
5817 free_extent_map(em);
5818 }
5819 return ret;
5820}
5821
5822static int find_live_mirror(struct btrfs_fs_info *fs_info,
5823 struct map_lookup *map, int first,
5824 int dev_replace_is_ongoing)
5825{
5826 int i;
5827 int num_stripes;
5828 int preferred_mirror;
5829 int tolerance;
5830 struct btrfs_device *srcdev;
5831
5832 ASSERT((map->type &
5833 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5834
5835 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5836 num_stripes = map->sub_stripes;
5837 else
5838 num_stripes = map->num_stripes;
5839
5840 switch (fs_info->fs_devices->read_policy) {
5841 default:
5842 /* Shouldn't happen, just warn and use pid instead of failing */
5843 btrfs_warn_rl(fs_info,
5844 "unknown read_policy type %u, reset to pid",
5845 fs_info->fs_devices->read_policy);
5846 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5847 fallthrough;
5848 case BTRFS_READ_POLICY_PID:
5849 preferred_mirror = first + (current->pid % num_stripes);
5850 break;
5851 }
5852
5853 if (dev_replace_is_ongoing &&
5854 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5855 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5856 srcdev = fs_info->dev_replace.srcdev;
5857 else
5858 srcdev = NULL;
5859
5860 /*
5861 * try to avoid the drive that is the source drive for a
5862 * dev-replace procedure, only choose it if no other non-missing
5863 * mirror is available
5864 */
5865 for (tolerance = 0; tolerance < 2; tolerance++) {
5866 if (map->stripes[preferred_mirror].dev->bdev &&
5867 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5868 return preferred_mirror;
5869 for (i = first; i < first + num_stripes; i++) {
5870 if (map->stripes[i].dev->bdev &&
5871 (tolerance || map->stripes[i].dev != srcdev))
5872 return i;
5873 }
5874 }
5875
5876 /* we couldn't find one that doesn't fail. Just return something
5877 * and the io error handling code will clean up eventually
5878 */
5879 return preferred_mirror;
5880}
5881
5882/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5883static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
5884{
5885 int i;
5886 int again = 1;
5887
5888 while (again) {
5889 again = 0;
5890 for (i = 0; i < num_stripes - 1; i++) {
5891 /* Swap if parity is on a smaller index */
5892 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5893 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5894 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
5895 again = 1;
5896 }
5897 }
5898 }
5899}
5900
5901static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5902 int total_stripes,
5903 int real_stripes)
5904{
5905 struct btrfs_io_context *bioc = kzalloc(
5906 /* The size of btrfs_io_context */
5907 sizeof(struct btrfs_io_context) +
5908 /* Plus the variable array for the stripes */
5909 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5910 /* Plus the variable array for the tgt dev */
5911 sizeof(int) * (real_stripes) +
5912 /*
5913 * Plus the raid_map, which includes both the tgt dev
5914 * and the stripes.
5915 */
5916 sizeof(u64) * (total_stripes),
5917 GFP_NOFS);
5918
5919 if (!bioc)
5920 return NULL;
5921
5922 refcount_set(&bioc->refs, 1);
5923
5924 bioc->fs_info = fs_info;
5925 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5926 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
5927
5928 return bioc;
5929}
5930
5931void btrfs_get_bioc(struct btrfs_io_context *bioc)
5932{
5933 WARN_ON(!refcount_read(&bioc->refs));
5934 refcount_inc(&bioc->refs);
5935}
5936
5937void btrfs_put_bioc(struct btrfs_io_context *bioc)
5938{
5939 if (!bioc)
5940 return;
5941 if (refcount_dec_and_test(&bioc->refs))
5942 kfree(bioc);
5943}
5944
5945/*
5946 * Please note that, discard won't be sent to target device of device
5947 * replace.
5948 */
5949struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5950 u64 logical, u64 *length_ret,
5951 u32 *num_stripes)
5952{
5953 struct extent_map *em;
5954 struct map_lookup *map;
5955 struct btrfs_discard_stripe *stripes;
5956 u64 length = *length_ret;
5957 u64 offset;
5958 u64 stripe_nr;
5959 u64 stripe_nr_end;
5960 u64 stripe_end_offset;
5961 u64 stripe_cnt;
5962 u64 stripe_len;
5963 u64 stripe_offset;
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
5967 u64 stripes_per_dev = 0;
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
5970 int ret;
5971 int i;
5972
5973 em = btrfs_get_chunk_map(fs_info, logical, length);
5974 if (IS_ERR(em))
5975 return ERR_CAST(em);
5976
5977 map = em->map_lookup;
5978
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
5982 goto out_free_map;
5983}
5984
5985 offset = logical - em->start;
5986 length = min_t(u64, em->start + em->len - logical, length);
5987 *length_ret = length;
5988
5989 stripe_len = map->stripe_len;
5990 /*
5991 * stripe_nr counts the total number of stripes we have to stride
5992 * to get to this block
5993 */
5994 stripe_nr = div64_u64(offset, stripe_len);
5995
5996 /* stripe_offset is the offset of this block in its stripe */
5997 stripe_offset = offset - stripe_nr * stripe_len;
5998
5999 stripe_nr_end = round_up(offset + length, map->stripe_len);
6000 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6001 stripe_cnt = stripe_nr_end - stripe_nr;
6002 stripe_end_offset = stripe_nr_end * map->stripe_len -
6003 (offset + length);
6004 /*
6005 * after this, stripe_nr is the number of stripes on this
6006 * device we have to walk to find the data, and stripe_index is
6007 * the number of our device in the stripe array
6008 */
6009 *num_stripes = 1;
6010 stripe_index = 0;
6011 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6012 BTRFS_BLOCK_GROUP_RAID10)) {
6013 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014 sub_stripes = 1;
6015 else
6016 sub_stripes = map->sub_stripes;
6017
6018 factor = map->num_stripes / sub_stripes;
6019 *num_stripes = min_t(u64, map->num_stripes,
6020 sub_stripes * stripe_cnt);
6021 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6022 stripe_index *= sub_stripes;
6023 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6024 &remaining_stripes);
6025 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6026 last_stripe *= sub_stripes;
6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6028 BTRFS_BLOCK_GROUP_DUP)) {
6029 *num_stripes = map->num_stripes;
6030 } else {
6031 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6032 &stripe_index);
6033 }
6034
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
6037 ret = -ENOMEM;
6038 goto out_free_map;
6039 }
6040
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
6043 map->stripes[stripe_index].physical +
6044 stripe_offset + stripe_nr * map->stripe_len;
6045 stripes[i].dev = map->stripes[stripe_index].dev;
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
6049 stripes[i].length = stripes_per_dev * map->stripe_len;
6050
6051 if (i / sub_stripes < remaining_stripes)
6052 stripes[i].length += map->stripe_len;
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
6063 stripes[i].length -= stripe_offset;
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
6068 stripes[i].length -= stripe_end_offset;
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
6073 stripes[i].length = length;
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
6083 free_extent_map(em);
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
6088}
6089
6090/*
6091 * In dev-replace case, for repair case (that's the only case where the mirror
6092 * is selected explicitly when calling btrfs_map_block), blocks left of the
6093 * left cursor can also be read from the target drive.
6094 *
6095 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6096 * array of stripes.
6097 * For READ, it also needs to be supported using the same mirror number.
6098 *
6099 * If the requested block is not left of the left cursor, EIO is returned. This
6100 * can happen because btrfs_num_copies() returns one more in the dev-replace
6101 * case.
6102 */
6103static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6104 u64 logical, u64 length,
6105 u64 srcdev_devid, int *mirror_num,
6106 u64 *physical)
6107{
6108 struct btrfs_io_context *bioc = NULL;
6109 int num_stripes;
6110 int index_srcdev = 0;
6111 int found = 0;
6112 u64 physical_of_found = 0;
6113 int i;
6114 int ret = 0;
6115
6116 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6117 logical, &length, &bioc, NULL, NULL, 0);
6118 if (ret) {
6119 ASSERT(bioc == NULL);
6120 return ret;
6121 }
6122
6123 num_stripes = bioc->num_stripes;
6124 if (*mirror_num > num_stripes) {
6125 /*
6126 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6127 * that means that the requested area is not left of the left
6128 * cursor
6129 */
6130 btrfs_put_bioc(bioc);
6131 return -EIO;
6132 }
6133
6134 /*
6135 * process the rest of the function using the mirror_num of the source
6136 * drive. Therefore look it up first. At the end, patch the device
6137 * pointer to the one of the target drive.
6138 */
6139 for (i = 0; i < num_stripes; i++) {
6140 if (bioc->stripes[i].dev->devid != srcdev_devid)
6141 continue;
6142
6143 /*
6144 * In case of DUP, in order to keep it simple, only add the
6145 * mirror with the lowest physical address
6146 */
6147 if (found &&
6148 physical_of_found <= bioc->stripes[i].physical)
6149 continue;
6150
6151 index_srcdev = i;
6152 found = 1;
6153 physical_of_found = bioc->stripes[i].physical;
6154 }
6155
6156 btrfs_put_bioc(bioc);
6157
6158 ASSERT(found);
6159 if (!found)
6160 return -EIO;
6161
6162 *mirror_num = index_srcdev + 1;
6163 *physical = physical_of_found;
6164 return ret;
6165}
6166
6167static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6168{
6169 struct btrfs_block_group *cache;
6170 bool ret;
6171
6172 /* Non zoned filesystem does not use "to_copy" flag */
6173 if (!btrfs_is_zoned(fs_info))
6174 return false;
6175
6176 cache = btrfs_lookup_block_group(fs_info, logical);
6177
6178 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6179
6180 btrfs_put_block_group(cache);
6181 return ret;
6182}
6183
6184static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185 struct btrfs_io_context **bioc_ret,
6186 struct btrfs_dev_replace *dev_replace,
6187 u64 logical,
6188 int *num_stripes_ret, int *max_errors_ret)
6189{
6190 struct btrfs_io_context *bioc = *bioc_ret;
6191 u64 srcdev_devid = dev_replace->srcdev->devid;
6192 int tgtdev_indexes = 0;
6193 int num_stripes = *num_stripes_ret;
6194 int max_errors = *max_errors_ret;
6195 int i;
6196
6197 if (op == BTRFS_MAP_WRITE) {
6198 int index_where_to_add;
6199
6200 /*
6201 * A block group which have "to_copy" set will eventually
6202 * copied by dev-replace process. We can avoid cloning IO here.
6203 */
6204 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205 return;
6206
6207 /*
6208 * duplicate the write operations while the dev replace
6209 * procedure is running. Since the copying of the old disk to
6210 * the new disk takes place at run time while the filesystem is
6211 * mounted writable, the regular write operations to the old
6212 * disk have to be duplicated to go to the new disk as well.
6213 *
6214 * Note that device->missing is handled by the caller, and that
6215 * the write to the old disk is already set up in the stripes
6216 * array.
6217 */
6218 index_where_to_add = num_stripes;
6219 for (i = 0; i < num_stripes; i++) {
6220 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6221 /* write to new disk, too */
6222 struct btrfs_io_stripe *new =
6223 bioc->stripes + index_where_to_add;
6224 struct btrfs_io_stripe *old =
6225 bioc->stripes + i;
6226
6227 new->physical = old->physical;
6228 new->dev = dev_replace->tgtdev;
6229 bioc->tgtdev_map[i] = index_where_to_add;
6230 index_where_to_add++;
6231 max_errors++;
6232 tgtdev_indexes++;
6233 }
6234 }
6235 num_stripes = index_where_to_add;
6236 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6237 int index_srcdev = 0;
6238 int found = 0;
6239 u64 physical_of_found = 0;
6240
6241 /*
6242 * During the dev-replace procedure, the target drive can also
6243 * be used to read data in case it is needed to repair a corrupt
6244 * block elsewhere. This is possible if the requested area is
6245 * left of the left cursor. In this area, the target drive is a
6246 * full copy of the source drive.
6247 */
6248 for (i = 0; i < num_stripes; i++) {
6249 if (bioc->stripes[i].dev->devid == srcdev_devid) {
6250 /*
6251 * In case of DUP, in order to keep it simple,
6252 * only add the mirror with the lowest physical
6253 * address
6254 */
6255 if (found &&
6256 physical_of_found <= bioc->stripes[i].physical)
6257 continue;
6258 index_srcdev = i;
6259 found = 1;
6260 physical_of_found = bioc->stripes[i].physical;
6261 }
6262 }
6263 if (found) {
6264 struct btrfs_io_stripe *tgtdev_stripe =
6265 bioc->stripes + num_stripes;
6266
6267 tgtdev_stripe->physical = physical_of_found;
6268 tgtdev_stripe->dev = dev_replace->tgtdev;
6269 bioc->tgtdev_map[index_srcdev] = num_stripes;
6270
6271 tgtdev_indexes++;
6272 num_stripes++;
6273 }
6274 }
6275
6276 *num_stripes_ret = num_stripes;
6277 *max_errors_ret = max_errors;
6278 bioc->num_tgtdevs = tgtdev_indexes;
6279 *bioc_ret = bioc;
6280}
6281
6282static bool need_full_stripe(enum btrfs_map_op op)
6283{
6284 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6285}
6286
6287/*
6288 * Calculate the geometry of a particular (address, len) tuple. This
6289 * information is used to calculate how big a particular bio can get before it
6290 * straddles a stripe.
6291 *
6292 * @fs_info: the filesystem
6293 * @em: mapping containing the logical extent
6294 * @op: type of operation - write or read
6295 * @logical: address that we want to figure out the geometry of
6296 * @io_geom: pointer used to return values
6297 *
6298 * Returns < 0 in case a chunk for the given logical address cannot be found,
6299 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6300 */
6301int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6302 enum btrfs_map_op op, u64 logical,
6303 struct btrfs_io_geometry *io_geom)
6304{
6305 struct map_lookup *map;
6306 u64 len;
6307 u64 offset;
6308 u64 stripe_offset;
6309 u64 stripe_nr;
6310 u32 stripe_len;
6311 u64 raid56_full_stripe_start = (u64)-1;
6312 int data_stripes;
6313
6314 ASSERT(op != BTRFS_MAP_DISCARD);
6315
6316 map = em->map_lookup;
6317 /* Offset of this logical address in the chunk */
6318 offset = logical - em->start;
6319 /* Len of a stripe in a chunk */
6320 stripe_len = map->stripe_len;
6321 /*
6322 * Stripe_nr is where this block falls in
6323 * stripe_offset is the offset of this block in its stripe.
6324 */
6325 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6326 ASSERT(stripe_offset < U32_MAX);
6327
6328 data_stripes = nr_data_stripes(map);
6329
6330 /* Only stripe based profiles needs to check against stripe length. */
6331 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
6332 u64 max_len = stripe_len - stripe_offset;
6333
6334 /*
6335 * In case of raid56, we need to know the stripe aligned start
6336 */
6337 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6338 unsigned long full_stripe_len = stripe_len * data_stripes;
6339 raid56_full_stripe_start = offset;
6340
6341 /*
6342 * Allow a write of a full stripe, but make sure we
6343 * don't allow straddling of stripes
6344 */
6345 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6346 full_stripe_len);
6347 raid56_full_stripe_start *= full_stripe_len;
6348
6349 /*
6350 * For writes to RAID[56], allow a full stripeset across
6351 * all disks. For other RAID types and for RAID[56]
6352 * reads, just allow a single stripe (on a single disk).
6353 */
6354 if (op == BTRFS_MAP_WRITE) {
6355 max_len = stripe_len * data_stripes -
6356 (offset - raid56_full_stripe_start);
6357 }
6358 }
6359 len = min_t(u64, em->len - offset, max_len);
6360 } else {
6361 len = em->len - offset;
6362 }
6363
6364 io_geom->len = len;
6365 io_geom->offset = offset;
6366 io_geom->stripe_len = stripe_len;
6367 io_geom->stripe_nr = stripe_nr;
6368 io_geom->stripe_offset = stripe_offset;
6369 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6370
6371 return 0;
6372}
6373
6374static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6375 u32 stripe_index, u64 stripe_offset, u64 stripe_nr)
6376{
6377 dst->dev = map->stripes[stripe_index].dev;
6378 dst->physical = map->stripes[stripe_index].physical +
6379 stripe_offset + stripe_nr * map->stripe_len;
6380}
6381
6382int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6383 u64 logical, u64 *length,
6384 struct btrfs_io_context **bioc_ret,
6385 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6386 int need_raid_map)
6387{
6388 struct extent_map *em;
6389 struct map_lookup *map;
6390 u64 stripe_offset;
6391 u64 stripe_nr;
6392 u64 stripe_len;
6393 u32 stripe_index;
6394 int data_stripes;
6395 int i;
6396 int ret = 0;
6397 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6398 int num_stripes;
6399 int max_errors = 0;
6400 int tgtdev_indexes = 0;
6401 struct btrfs_io_context *bioc = NULL;
6402 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403 int dev_replace_is_ongoing = 0;
6404 int num_alloc_stripes;
6405 int patch_the_first_stripe_for_dev_replace = 0;
6406 u64 physical_to_patch_in_first_stripe = 0;
6407 u64 raid56_full_stripe_start = (u64)-1;
6408 struct btrfs_io_geometry geom;
6409
6410 ASSERT(bioc_ret);
6411 ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413 em = btrfs_get_chunk_map(fs_info, logical, *length);
6414 ASSERT(!IS_ERR(em));
6415
6416 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417 if (ret < 0)
6418 return ret;
6419
6420 map = em->map_lookup;
6421
6422 *length = geom.len;
6423 stripe_len = geom.stripe_len;
6424 stripe_nr = geom.stripe_nr;
6425 stripe_offset = geom.stripe_offset;
6426 raid56_full_stripe_start = geom.raid56_stripe_offset;
6427 data_stripes = nr_data_stripes(map);
6428
6429 down_read(&dev_replace->rwsem);
6430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431 /*
6432 * Hold the semaphore for read during the whole operation, write is
6433 * requested at commit time but must wait.
6434 */
6435 if (!dev_replace_is_ongoing)
6436 up_read(&dev_replace->rwsem);
6437
6438 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441 dev_replace->srcdev->devid,
6442 &mirror_num,
6443 &physical_to_patch_in_first_stripe);
6444 if (ret)
6445 goto out;
6446 else
6447 patch_the_first_stripe_for_dev_replace = 1;
6448 } else if (mirror_num > map->num_stripes) {
6449 mirror_num = 0;
6450 }
6451
6452 num_stripes = 1;
6453 stripe_index = 0;
6454 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456 &stripe_index);
6457 if (!need_full_stripe(op))
6458 mirror_num = 1;
6459 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460 if (need_full_stripe(op))
6461 num_stripes = map->num_stripes;
6462 else if (mirror_num)
6463 stripe_index = mirror_num - 1;
6464 else {
6465 stripe_index = find_live_mirror(fs_info, map, 0,
6466 dev_replace_is_ongoing);
6467 mirror_num = stripe_index + 1;
6468 }
6469
6470 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471 if (need_full_stripe(op)) {
6472 num_stripes = map->num_stripes;
6473 } else if (mirror_num) {
6474 stripe_index = mirror_num - 1;
6475 } else {
6476 mirror_num = 1;
6477 }
6478
6479 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483 stripe_index *= map->sub_stripes;
6484
6485 if (need_full_stripe(op))
6486 num_stripes = map->sub_stripes;
6487 else if (mirror_num)
6488 stripe_index += mirror_num - 1;
6489 else {
6490 int old_stripe_index = stripe_index;
6491 stripe_index = find_live_mirror(fs_info, map,
6492 stripe_index,
6493 dev_replace_is_ongoing);
6494 mirror_num = stripe_index - old_stripe_index + 1;
6495 }
6496
6497 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN);
6499 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6500 /* push stripe_nr back to the start of the full stripe */
6501 stripe_nr = div64_u64(raid56_full_stripe_start,
6502 stripe_len * data_stripes);
6503
6504 /* RAID[56] write or recovery. Return all stripes */
6505 num_stripes = map->num_stripes;
6506 max_errors = btrfs_chunk_max_errors(map);
6507
6508 /* Return the length to the full stripe end */
6509 *length = min(logical + *length,
6510 raid56_full_stripe_start + em->start +
6511 data_stripes * stripe_len) - logical;
6512 stripe_index = 0;
6513 stripe_offset = 0;
6514 } else {
6515 /*
6516 * Mirror #0 or #1 means the original data block.
6517 * Mirror #2 is RAID5 parity block.
6518 * Mirror #3 is RAID6 Q block.
6519 */
6520 stripe_nr = div_u64_rem(stripe_nr,
6521 data_stripes, &stripe_index);
6522 if (mirror_num > 1)
6523 stripe_index = data_stripes + mirror_num - 2;
6524
6525 /* We distribute the parity blocks across stripes */
6526 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6527 &stripe_index);
6528 if (!need_full_stripe(op) && mirror_num <= 1)
6529 mirror_num = 1;
6530 }
6531 } else {
6532 /*
6533 * after this, stripe_nr is the number of stripes on this
6534 * device we have to walk to find the data, and stripe_index is
6535 * the number of our device in the stripe array
6536 */
6537 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6538 &stripe_index);
6539 mirror_num = stripe_index + 1;
6540 }
6541 if (stripe_index >= map->num_stripes) {
6542 btrfs_crit(fs_info,
6543 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6544 stripe_index, map->num_stripes);
6545 ret = -EINVAL;
6546 goto out;
6547 }
6548
6549 num_alloc_stripes = num_stripes;
6550 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6551 if (op == BTRFS_MAP_WRITE)
6552 num_alloc_stripes <<= 1;
6553 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6554 num_alloc_stripes++;
6555 tgtdev_indexes = num_stripes;
6556 }
6557
6558 /*
6559 * If this I/O maps to a single device, try to return the device and
6560 * physical block information on the stack instead of allocating an
6561 * I/O context structure.
6562 */
6563 if (smap && num_alloc_stripes == 1 &&
6564 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) &&
6565 (!need_full_stripe(op) || !dev_replace_is_ongoing ||
6566 !dev_replace->tgtdev)) {
6567 if (patch_the_first_stripe_for_dev_replace) {
6568 smap->dev = dev_replace->tgtdev;
6569 smap->physical = physical_to_patch_in_first_stripe;
6570 *mirror_num_ret = map->num_stripes + 1;
6571 } else {
6572 set_io_stripe(smap, map, stripe_index, stripe_offset,
6573 stripe_nr);
6574 *mirror_num_ret = mirror_num;
6575 }
6576 *bioc_ret = NULL;
6577 ret = 0;
6578 goto out;
6579 }
6580
6581 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
6582 if (!bioc) {
6583 ret = -ENOMEM;
6584 goto out;
6585 }
6586
6587 for (i = 0; i < num_stripes; i++) {
6588 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset,
6589 stripe_nr);
6590 stripe_index++;
6591 }
6592
6593 /* Build raid_map */
6594 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6595 (need_full_stripe(op) || mirror_num > 1)) {
6596 u64 tmp;
6597 unsigned rot;
6598
6599 /* Work out the disk rotation on this stripe-set */
6600 div_u64_rem(stripe_nr, num_stripes, &rot);
6601
6602 /* Fill in the logical address of each stripe */
6603 tmp = stripe_nr * data_stripes;
6604 for (i = 0; i < data_stripes; i++)
6605 bioc->raid_map[(i + rot) % num_stripes] =
6606 em->start + (tmp + i) * map->stripe_len;
6607
6608 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
6609 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6610 bioc->raid_map[(i + rot + 1) % num_stripes] =
6611 RAID6_Q_STRIPE;
6612
6613 sort_parity_stripes(bioc, num_stripes);
6614 }
6615
6616 if (need_full_stripe(op))
6617 max_errors = btrfs_chunk_max_errors(map);
6618
6619 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6620 need_full_stripe(op)) {
6621 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6622 &num_stripes, &max_errors);
6623 }
6624
6625 *bioc_ret = bioc;
6626 bioc->map_type = map->type;
6627 bioc->num_stripes = num_stripes;
6628 bioc->max_errors = max_errors;
6629 bioc->mirror_num = mirror_num;
6630
6631 /*
6632 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6633 * mirror_num == num_stripes + 1 && dev_replace target drive is
6634 * available as a mirror
6635 */
6636 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6637 WARN_ON(num_stripes > 1);
6638 bioc->stripes[0].dev = dev_replace->tgtdev;
6639 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6640 bioc->mirror_num = map->num_stripes + 1;
6641 }
6642out:
6643 if (dev_replace_is_ongoing) {
6644 lockdep_assert_held(&dev_replace->rwsem);
6645 /* Unlock and let waiting writers proceed */
6646 up_read(&dev_replace->rwsem);
6647 }
6648 free_extent_map(em);
6649 return ret;
6650}
6651
6652int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6653 u64 logical, u64 *length,
6654 struct btrfs_io_context **bioc_ret, int mirror_num)
6655{
6656 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6657 NULL, &mirror_num, 0);
6658}
6659
6660/* For Scrub/replace */
6661int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6662 u64 logical, u64 *length,
6663 struct btrfs_io_context **bioc_ret)
6664{
6665 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
6666 NULL, NULL, 1);
6667}
6668
6669static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6670 const struct btrfs_fs_devices *fs_devices)
6671{
6672 if (args->fsid == NULL)
6673 return true;
6674 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6675 return true;
6676 return false;
6677}
6678
6679static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6680 const struct btrfs_device *device)
6681{
6682 if (args->missing) {
6683 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6684 !device->bdev)
6685 return true;
6686 return false;
6687 }
6688
6689 if (device->devid != args->devid)
6690 return false;
6691 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6692 return false;
6693 return true;
6694}
6695
6696/*
6697 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6698 * return NULL.
6699 *
6700 * If devid and uuid are both specified, the match must be exact, otherwise
6701 * only devid is used.
6702 */
6703struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6704 const struct btrfs_dev_lookup_args *args)
6705{
6706 struct btrfs_device *device;
6707 struct btrfs_fs_devices *seed_devs;
6708
6709 if (dev_args_match_fs_devices(args, fs_devices)) {
6710 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6711 if (dev_args_match_device(args, device))
6712 return device;
6713 }
6714 }
6715
6716 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6717 if (!dev_args_match_fs_devices(args, seed_devs))
6718 continue;
6719 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6720 if (dev_args_match_device(args, device))
6721 return device;
6722 }
6723 }
6724
6725 return NULL;
6726}
6727
6728static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6729 u64 devid, u8 *dev_uuid)
6730{
6731 struct btrfs_device *device;
6732 unsigned int nofs_flag;
6733
6734 /*
6735 * We call this under the chunk_mutex, so we want to use NOFS for this
6736 * allocation, however we don't want to change btrfs_alloc_device() to
6737 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6738 * places.
6739 */
6740
6741 nofs_flag = memalloc_nofs_save();
6742 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6743 memalloc_nofs_restore(nofs_flag);
6744 if (IS_ERR(device))
6745 return device;
6746
6747 list_add(&device->dev_list, &fs_devices->devices);
6748 device->fs_devices = fs_devices;
6749 fs_devices->num_devices++;
6750
6751 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6752 fs_devices->missing_devices++;
6753
6754 return device;
6755}
6756
6757/*
6758 * Allocate new device struct, set up devid and UUID.
6759 *
6760 * @fs_info: used only for generating a new devid, can be NULL if
6761 * devid is provided (i.e. @devid != NULL).
6762 * @devid: a pointer to devid for this device. If NULL a new devid
6763 * is generated.
6764 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6765 * is generated.
6766 * @path: a pointer to device path if available, NULL otherwise.
6767 *
6768 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6769 * on error. Returned struct is not linked onto any lists and must be
6770 * destroyed with btrfs_free_device.
6771 */
6772struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6773 const u64 *devid, const u8 *uuid,
6774 const char *path)
6775{
6776 struct btrfs_device *dev;
6777 u64 tmp;
6778
6779 if (WARN_ON(!devid && !fs_info))
6780 return ERR_PTR(-EINVAL);
6781
6782 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6783 if (!dev)
6784 return ERR_PTR(-ENOMEM);
6785
6786 INIT_LIST_HEAD(&dev->dev_list);
6787 INIT_LIST_HEAD(&dev->dev_alloc_list);
6788 INIT_LIST_HEAD(&dev->post_commit_list);
6789
6790 atomic_set(&dev->dev_stats_ccnt, 0);
6791 btrfs_device_data_ordered_init(dev);
6792 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6793
6794 if (devid)
6795 tmp = *devid;
6796 else {
6797 int ret;
6798
6799 ret = find_next_devid(fs_info, &tmp);
6800 if (ret) {
6801 btrfs_free_device(dev);
6802 return ERR_PTR(ret);
6803 }
6804 }
6805 dev->devid = tmp;
6806
6807 if (uuid)
6808 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6809 else
6810 generate_random_uuid(dev->uuid);
6811
6812 if (path) {
6813 struct rcu_string *name;
6814
6815 name = rcu_string_strdup(path, GFP_KERNEL);
6816 if (!name) {
6817 btrfs_free_device(dev);
6818 return ERR_PTR(-ENOMEM);
6819 }
6820 rcu_assign_pointer(dev->name, name);
6821 }
6822
6823 return dev;
6824}
6825
6826static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6827 u64 devid, u8 *uuid, bool error)
6828{
6829 if (error)
6830 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6831 devid, uuid);
6832 else
6833 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6834 devid, uuid);
6835}
6836
6837u64 btrfs_calc_stripe_length(const struct extent_map *em)
6838{
6839 const struct map_lookup *map = em->map_lookup;
6840 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6841
6842 return div_u64(em->len, data_stripes);
6843}
6844
6845#if BITS_PER_LONG == 32
6846/*
6847 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6848 * can't be accessed on 32bit systems.
6849 *
6850 * This function do mount time check to reject the fs if it already has
6851 * metadata chunk beyond that limit.
6852 */
6853static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6854 u64 logical, u64 length, u64 type)
6855{
6856 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6857 return 0;
6858
6859 if (logical + length < MAX_LFS_FILESIZE)
6860 return 0;
6861
6862 btrfs_err_32bit_limit(fs_info);
6863 return -EOVERFLOW;
6864}
6865
6866/*
6867 * This is to give early warning for any metadata chunk reaching
6868 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6869 * Although we can still access the metadata, it's not going to be possible
6870 * once the limit is reached.
6871 */
6872static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6873 u64 logical, u64 length, u64 type)
6874{
6875 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6876 return;
6877
6878 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6879 return;
6880
6881 btrfs_warn_32bit_limit(fs_info);
6882}
6883#endif
6884
6885static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6886 u64 devid, u8 *uuid)
6887{
6888 struct btrfs_device *dev;
6889
6890 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6891 btrfs_report_missing_device(fs_info, devid, uuid, true);
6892 return ERR_PTR(-ENOENT);
6893 }
6894
6895 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6896 if (IS_ERR(dev)) {
6897 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6898 devid, PTR_ERR(dev));
6899 return dev;
6900 }
6901 btrfs_report_missing_device(fs_info, devid, uuid, false);
6902
6903 return dev;
6904}
6905
6906static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6907 struct btrfs_chunk *chunk)
6908{
6909 BTRFS_DEV_LOOKUP_ARGS(args);
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
6916 u64 devid;
6917 u64 type;
6918 u8 uuid[BTRFS_UUID_SIZE];
6919 int index;
6920 int num_stripes;
6921 int ret;
6922 int i;
6923
6924 logical = key->offset;
6925 length = btrfs_chunk_length(leaf, chunk);
6926 type = btrfs_chunk_type(leaf, chunk);
6927 index = btrfs_bg_flags_to_raid_index(type);
6928 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6929
6930#if BITS_PER_LONG == 32
6931 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6932 if (ret < 0)
6933 return ret;
6934 warn_32bit_meta_chunk(fs_info, logical, length, type);
6935#endif
6936
6937 /*
6938 * Only need to verify chunk item if we're reading from sys chunk array,
6939 * as chunk item in tree block is already verified by tree-checker.
6940 */
6941 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6942 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6943 if (ret)
6944 return ret;
6945 }
6946
6947 read_lock(&map_tree->lock);
6948 em = lookup_extent_mapping(map_tree, logical, 1);
6949 read_unlock(&map_tree->lock);
6950
6951 /* already mapped? */
6952 if (em && em->start <= logical && em->start + em->len > logical) {
6953 free_extent_map(em);
6954 return 0;
6955 } else if (em) {
6956 free_extent_map(em);
6957 }
6958
6959 em = alloc_extent_map();
6960 if (!em)
6961 return -ENOMEM;
6962 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6963 if (!map) {
6964 free_extent_map(em);
6965 return -ENOMEM;
6966 }
6967
6968 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6969 em->map_lookup = map;
6970 em->start = logical;
6971 em->len = length;
6972 em->orig_start = 0;
6973 em->block_start = 0;
6974 em->block_len = em->len;
6975
6976 map->num_stripes = num_stripes;
6977 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6978 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6979 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6980 map->type = type;
6981 /*
6982 * We can't use the sub_stripes value, as for profiles other than
6983 * RAID10, they may have 0 as sub_stripes for filesystems created by
6984 * older mkfs (<v5.4).
6985 * In that case, it can cause divide-by-zero errors later.
6986 * Since currently sub_stripes is fixed for each profile, let's
6987 * use the trusted value instead.
6988 */
6989 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6990 map->verified_stripes = 0;
6991 em->orig_block_len = btrfs_calc_stripe_length(em);
6992 for (i = 0; i < num_stripes; i++) {
6993 map->stripes[i].physical =
6994 btrfs_stripe_offset_nr(leaf, chunk, i);
6995 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6996 args.devid = devid;
6997 read_extent_buffer(leaf, uuid, (unsigned long)
6998 btrfs_stripe_dev_uuid_nr(chunk, i),
6999 BTRFS_UUID_SIZE);
7000 args.uuid = uuid;
7001 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7002 if (!map->stripes[i].dev) {
7003 map->stripes[i].dev = handle_missing_device(fs_info,
7004 devid, uuid);
7005 if (IS_ERR(map->stripes[i].dev)) {
7006 ret = PTR_ERR(map->stripes[i].dev);
7007 free_extent_map(em);
7008 return ret;
7009 }
7010 }
7011
7012 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7013 &(map->stripes[i].dev->dev_state));
7014 }
7015
7016 write_lock(&map_tree->lock);
7017 ret = add_extent_mapping(map_tree, em, 0);
7018 write_unlock(&map_tree->lock);
7019 if (ret < 0) {
7020 btrfs_err(fs_info,
7021 "failed to add chunk map, start=%llu len=%llu: %d",
7022 em->start, em->len, ret);
7023 }
7024 free_extent_map(em);
7025
7026 return ret;
7027}
7028
7029static void fill_device_from_item(struct extent_buffer *leaf,
7030 struct btrfs_dev_item *dev_item,
7031 struct btrfs_device *device)
7032{
7033 unsigned long ptr;
7034
7035 device->devid = btrfs_device_id(leaf, dev_item);
7036 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7037 device->total_bytes = device->disk_total_bytes;
7038 device->commit_total_bytes = device->disk_total_bytes;
7039 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7040 device->commit_bytes_used = device->bytes_used;
7041 device->type = btrfs_device_type(leaf, dev_item);
7042 device->io_align = btrfs_device_io_align(leaf, dev_item);
7043 device->io_width = btrfs_device_io_width(leaf, dev_item);
7044 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7045 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7046 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7047
7048 ptr = btrfs_device_uuid(dev_item);
7049 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7050}
7051
7052static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7053 u8 *fsid)
7054{
7055 struct btrfs_fs_devices *fs_devices;
7056 int ret;
7057
7058 lockdep_assert_held(&uuid_mutex);
7059 ASSERT(fsid);
7060
7061 /* This will match only for multi-device seed fs */
7062 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7063 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7064 return fs_devices;
7065
7066
7067 fs_devices = find_fsid(fsid, NULL);
7068 if (!fs_devices) {
7069 if (!btrfs_test_opt(fs_info, DEGRADED))
7070 return ERR_PTR(-ENOENT);
7071
7072 fs_devices = alloc_fs_devices(fsid, NULL);
7073 if (IS_ERR(fs_devices))
7074 return fs_devices;
7075
7076 fs_devices->seeding = true;
7077 fs_devices->opened = 1;
7078 return fs_devices;
7079 }
7080
7081 /*
7082 * Upon first call for a seed fs fsid, just create a private copy of the
7083 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7084 */
7085 fs_devices = clone_fs_devices(fs_devices);
7086 if (IS_ERR(fs_devices))
7087 return fs_devices;
7088
7089 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7090 if (ret) {
7091 free_fs_devices(fs_devices);
7092 return ERR_PTR(ret);
7093 }
7094
7095 if (!fs_devices->seeding) {
7096 close_fs_devices(fs_devices);
7097 free_fs_devices(fs_devices);
7098 return ERR_PTR(-EINVAL);
7099 }
7100
7101 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7102
7103 return fs_devices;
7104}
7105
7106static int read_one_dev(struct extent_buffer *leaf,
7107 struct btrfs_dev_item *dev_item)
7108{
7109 BTRFS_DEV_LOOKUP_ARGS(args);
7110 struct btrfs_fs_info *fs_info = leaf->fs_info;
7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112 struct btrfs_device *device;
7113 u64 devid;
7114 int ret;
7115 u8 fs_uuid[BTRFS_FSID_SIZE];
7116 u8 dev_uuid[BTRFS_UUID_SIZE];
7117
7118 devid = btrfs_device_id(leaf, dev_item);
7119 args.devid = devid;
7120 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7121 BTRFS_UUID_SIZE);
7122 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7123 BTRFS_FSID_SIZE);
7124 args.uuid = dev_uuid;
7125 args.fsid = fs_uuid;
7126
7127 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7128 fs_devices = open_seed_devices(fs_info, fs_uuid);
7129 if (IS_ERR(fs_devices))
7130 return PTR_ERR(fs_devices);
7131 }
7132
7133 device = btrfs_find_device(fs_info->fs_devices, &args);
7134 if (!device) {
7135 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7136 btrfs_report_missing_device(fs_info, devid,
7137 dev_uuid, true);
7138 return -ENOENT;
7139 }
7140
7141 device = add_missing_dev(fs_devices, devid, dev_uuid);
7142 if (IS_ERR(device)) {
7143 btrfs_err(fs_info,
7144 "failed to add missing dev %llu: %ld",
7145 devid, PTR_ERR(device));
7146 return PTR_ERR(device);
7147 }
7148 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7149 } else {
7150 if (!device->bdev) {
7151 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7152 btrfs_report_missing_device(fs_info,
7153 devid, dev_uuid, true);
7154 return -ENOENT;
7155 }
7156 btrfs_report_missing_device(fs_info, devid,
7157 dev_uuid, false);
7158 }
7159
7160 if (!device->bdev &&
7161 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7162 /*
7163 * this happens when a device that was properly setup
7164 * in the device info lists suddenly goes bad.
7165 * device->bdev is NULL, and so we have to set
7166 * device->missing to one here
7167 */
7168 device->fs_devices->missing_devices++;
7169 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7170 }
7171
7172 /* Move the device to its own fs_devices */
7173 if (device->fs_devices != fs_devices) {
7174 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7175 &device->dev_state));
7176
7177 list_move(&device->dev_list, &fs_devices->devices);
7178 device->fs_devices->num_devices--;
7179 fs_devices->num_devices++;
7180
7181 device->fs_devices->missing_devices--;
7182 fs_devices->missing_devices++;
7183
7184 device->fs_devices = fs_devices;
7185 }
7186 }
7187
7188 if (device->fs_devices != fs_info->fs_devices) {
7189 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7190 if (device->generation !=
7191 btrfs_device_generation(leaf, dev_item))
7192 return -EINVAL;
7193 }
7194
7195 fill_device_from_item(leaf, dev_item, device);
7196 if (device->bdev) {
7197 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7198
7199 if (device->total_bytes > max_total_bytes) {
7200 btrfs_err(fs_info,
7201 "device total_bytes should be at most %llu but found %llu",
7202 max_total_bytes, device->total_bytes);
7203 return -EINVAL;
7204 }
7205 }
7206 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7208 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7209 device->fs_devices->total_rw_bytes += device->total_bytes;
7210 atomic64_add(device->total_bytes - device->bytes_used,
7211 &fs_info->free_chunk_space);
7212 }
7213 ret = 0;
7214 return ret;
7215}
7216
7217int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7218{
7219 struct btrfs_super_block *super_copy = fs_info->super_copy;
7220 struct extent_buffer *sb;
7221 struct btrfs_disk_key *disk_key;
7222 struct btrfs_chunk *chunk;
7223 u8 *array_ptr;
7224 unsigned long sb_array_offset;
7225 int ret = 0;
7226 u32 num_stripes;
7227 u32 array_size;
7228 u32 len = 0;
7229 u32 cur_offset;
7230 u64 type;
7231 struct btrfs_key key;
7232
7233 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7234
7235 /*
7236 * We allocated a dummy extent, just to use extent buffer accessors.
7237 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7238 * that's fine, we will not go beyond system chunk array anyway.
7239 */
7240 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7241 if (!sb)
7242 return -ENOMEM;
7243 set_extent_buffer_uptodate(sb);
7244
7245 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7246 array_size = btrfs_super_sys_array_size(super_copy);
7247
7248 array_ptr = super_copy->sys_chunk_array;
7249 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7250 cur_offset = 0;
7251
7252 while (cur_offset < array_size) {
7253 disk_key = (struct btrfs_disk_key *)array_ptr;
7254 len = sizeof(*disk_key);
7255 if (cur_offset + len > array_size)
7256 goto out_short_read;
7257
7258 btrfs_disk_key_to_cpu(&key, disk_key);
7259
7260 array_ptr += len;
7261 sb_array_offset += len;
7262 cur_offset += len;
7263
7264 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7265 btrfs_err(fs_info,
7266 "unexpected item type %u in sys_array at offset %u",
7267 (u32)key.type, cur_offset);
7268 ret = -EIO;
7269 break;
7270 }
7271
7272 chunk = (struct btrfs_chunk *)sb_array_offset;
7273 /*
7274 * At least one btrfs_chunk with one stripe must be present,
7275 * exact stripe count check comes afterwards
7276 */
7277 len = btrfs_chunk_item_size(1);
7278 if (cur_offset + len > array_size)
7279 goto out_short_read;
7280
7281 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7282 if (!num_stripes) {
7283 btrfs_err(fs_info,
7284 "invalid number of stripes %u in sys_array at offset %u",
7285 num_stripes, cur_offset);
7286 ret = -EIO;
7287 break;
7288 }
7289
7290 type = btrfs_chunk_type(sb, chunk);
7291 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7292 btrfs_err(fs_info,
7293 "invalid chunk type %llu in sys_array at offset %u",
7294 type, cur_offset);
7295 ret = -EIO;
7296 break;
7297 }
7298
7299 len = btrfs_chunk_item_size(num_stripes);
7300 if (cur_offset + len > array_size)
7301 goto out_short_read;
7302
7303 ret = read_one_chunk(&key, sb, chunk);
7304 if (ret)
7305 break;
7306
7307 array_ptr += len;
7308 sb_array_offset += len;
7309 cur_offset += len;
7310 }
7311 clear_extent_buffer_uptodate(sb);
7312 free_extent_buffer_stale(sb);
7313 return ret;
7314
7315out_short_read:
7316 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7317 len, cur_offset);
7318 clear_extent_buffer_uptodate(sb);
7319 free_extent_buffer_stale(sb);
7320 return -EIO;
7321}
7322
7323/*
7324 * Check if all chunks in the fs are OK for read-write degraded mount
7325 *
7326 * If the @failing_dev is specified, it's accounted as missing.
7327 *
7328 * Return true if all chunks meet the minimal RW mount requirements.
7329 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7330 */
7331bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7332 struct btrfs_device *failing_dev)
7333{
7334 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7335 struct extent_map *em;
7336 u64 next_start = 0;
7337 bool ret = true;
7338
7339 read_lock(&map_tree->lock);
7340 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7341 read_unlock(&map_tree->lock);
7342 /* No chunk at all? Return false anyway */
7343 if (!em) {
7344 ret = false;
7345 goto out;
7346 }
7347 while (em) {
7348 struct map_lookup *map;
7349 int missing = 0;
7350 int max_tolerated;
7351 int i;
7352
7353 map = em->map_lookup;
7354 max_tolerated =
7355 btrfs_get_num_tolerated_disk_barrier_failures(
7356 map->type);
7357 for (i = 0; i < map->num_stripes; i++) {
7358 struct btrfs_device *dev = map->stripes[i].dev;
7359
7360 if (!dev || !dev->bdev ||
7361 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7362 dev->last_flush_error)
7363 missing++;
7364 else if (failing_dev && failing_dev == dev)
7365 missing++;
7366 }
7367 if (missing > max_tolerated) {
7368 if (!failing_dev)
7369 btrfs_warn(fs_info,
7370 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7371 em->start, missing, max_tolerated);
7372 free_extent_map(em);
7373 ret = false;
7374 goto out;
7375 }
7376 next_start = extent_map_end(em);
7377 free_extent_map(em);
7378
7379 read_lock(&map_tree->lock);
7380 em = lookup_extent_mapping(map_tree, next_start,
7381 (u64)(-1) - next_start);
7382 read_unlock(&map_tree->lock);
7383 }
7384out:
7385 return ret;
7386}
7387
7388static void readahead_tree_node_children(struct extent_buffer *node)
7389{
7390 int i;
7391 const int nr_items = btrfs_header_nritems(node);
7392
7393 for (i = 0; i < nr_items; i++)
7394 btrfs_readahead_node_child(node, i);
7395}
7396
7397int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7398{
7399 struct btrfs_root *root = fs_info->chunk_root;
7400 struct btrfs_path *path;
7401 struct extent_buffer *leaf;
7402 struct btrfs_key key;
7403 struct btrfs_key found_key;
7404 int ret;
7405 int slot;
7406 int iter_ret = 0;
7407 u64 total_dev = 0;
7408 u64 last_ra_node = 0;
7409
7410 path = btrfs_alloc_path();
7411 if (!path)
7412 return -ENOMEM;
7413
7414 /*
7415 * uuid_mutex is needed only if we are mounting a sprout FS
7416 * otherwise we don't need it.
7417 */
7418 mutex_lock(&uuid_mutex);
7419
7420 /*
7421 * It is possible for mount and umount to race in such a way that
7422 * we execute this code path, but open_fs_devices failed to clear
7423 * total_rw_bytes. We certainly want it cleared before reading the
7424 * device items, so clear it here.
7425 */
7426 fs_info->fs_devices->total_rw_bytes = 0;
7427
7428 /*
7429 * Lockdep complains about possible circular locking dependency between
7430 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7431 * used for freeze procection of a fs (struct super_block.s_writers),
7432 * which we take when starting a transaction, and extent buffers of the
7433 * chunk tree if we call read_one_dev() while holding a lock on an
7434 * extent buffer of the chunk tree. Since we are mounting the filesystem
7435 * and at this point there can't be any concurrent task modifying the
7436 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7437 */
7438 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7439 path->skip_locking = 1;
7440
7441 /*
7442 * Read all device items, and then all the chunk items. All
7443 * device items are found before any chunk item (their object id
7444 * is smaller than the lowest possible object id for a chunk
7445 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7446 */
7447 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7448 key.offset = 0;
7449 key.type = 0;
7450 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7451 struct extent_buffer *node = path->nodes[1];
7452
7453 leaf = path->nodes[0];
7454 slot = path->slots[0];
7455
7456 if (node) {
7457 if (last_ra_node != node->start) {
7458 readahead_tree_node_children(node);
7459 last_ra_node = node->start;
7460 }
7461 }
7462 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7463 struct btrfs_dev_item *dev_item;
7464 dev_item = btrfs_item_ptr(leaf, slot,
7465 struct btrfs_dev_item);
7466 ret = read_one_dev(leaf, dev_item);
7467 if (ret)
7468 goto error;
7469 total_dev++;
7470 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7471 struct btrfs_chunk *chunk;
7472
7473 /*
7474 * We are only called at mount time, so no need to take
7475 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7476 * we always lock first fs_info->chunk_mutex before
7477 * acquiring any locks on the chunk tree. This is a
7478 * requirement for chunk allocation, see the comment on
7479 * top of btrfs_chunk_alloc() for details.
7480 */
7481 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7482 ret = read_one_chunk(&found_key, leaf, chunk);
7483 if (ret)
7484 goto error;
7485 }
7486 }
7487 /* Catch error found during iteration */
7488 if (iter_ret < 0) {
7489 ret = iter_ret;
7490 goto error;
7491 }
7492
7493 /*
7494 * After loading chunk tree, we've got all device information,
7495 * do another round of validation checks.
7496 */
7497 if (total_dev != fs_info->fs_devices->total_devices) {
7498 btrfs_warn(fs_info,
7499"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7500 btrfs_super_num_devices(fs_info->super_copy),
7501 total_dev);
7502 fs_info->fs_devices->total_devices = total_dev;
7503 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7504 }
7505 if (btrfs_super_total_bytes(fs_info->super_copy) <
7506 fs_info->fs_devices->total_rw_bytes) {
7507 btrfs_err(fs_info,
7508 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7509 btrfs_super_total_bytes(fs_info->super_copy),
7510 fs_info->fs_devices->total_rw_bytes);
7511 ret = -EINVAL;
7512 goto error;
7513 }
7514 ret = 0;
7515error:
7516 mutex_unlock(&uuid_mutex);
7517
7518 btrfs_free_path(path);
7519 return ret;
7520}
7521
7522int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7523{
7524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7525 struct btrfs_device *device;
7526 int ret = 0;
7527
7528 fs_devices->fs_info = fs_info;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
7531 list_for_each_entry(device, &fs_devices->devices, dev_list)
7532 device->fs_info = fs_info;
7533
7534 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7535 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7536 device->fs_info = fs_info;
7537 ret = btrfs_get_dev_zone_info(device, false);
7538 if (ret)
7539 break;
7540 }
7541
7542 seed_devs->fs_info = fs_info;
7543 }
7544 mutex_unlock(&fs_devices->device_list_mutex);
7545
7546 return ret;
7547}
7548
7549static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7550 const struct btrfs_dev_stats_item *ptr,
7551 int index)
7552{
7553 u64 val;
7554
7555 read_extent_buffer(eb, &val,
7556 offsetof(struct btrfs_dev_stats_item, values) +
7557 ((unsigned long)ptr) + (index * sizeof(u64)),
7558 sizeof(val));
7559 return val;
7560}
7561
7562static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7563 struct btrfs_dev_stats_item *ptr,
7564 int index, u64 val)
7565{
7566 write_extent_buffer(eb, &val,
7567 offsetof(struct btrfs_dev_stats_item, values) +
7568 ((unsigned long)ptr) + (index * sizeof(u64)),
7569 sizeof(val));
7570}
7571
7572static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7573 struct btrfs_path *path)
7574{
7575 struct btrfs_dev_stats_item *ptr;
7576 struct extent_buffer *eb;
7577 struct btrfs_key key;
7578 int item_size;
7579 int i, ret, slot;
7580
7581 if (!device->fs_info->dev_root)
7582 return 0;
7583
7584 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7585 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7586 key.offset = device->devid;
7587 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7588 if (ret) {
7589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7590 btrfs_dev_stat_set(device, i, 0);
7591 device->dev_stats_valid = 1;
7592 btrfs_release_path(path);
7593 return ret < 0 ? ret : 0;
7594 }
7595 slot = path->slots[0];
7596 eb = path->nodes[0];
7597 item_size = btrfs_item_size(eb, slot);
7598
7599 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7600
7601 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7602 if (item_size >= (1 + i) * sizeof(__le64))
7603 btrfs_dev_stat_set(device, i,
7604 btrfs_dev_stats_value(eb, ptr, i));
7605 else
7606 btrfs_dev_stat_set(device, i, 0);
7607 }
7608
7609 device->dev_stats_valid = 1;
7610 btrfs_dev_stat_print_on_load(device);
7611 btrfs_release_path(path);
7612
7613 return 0;
7614}
7615
7616int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7617{
7618 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7619 struct btrfs_device *device;
7620 struct btrfs_path *path = NULL;
7621 int ret = 0;
7622
7623 path = btrfs_alloc_path();
7624 if (!path)
7625 return -ENOMEM;
7626
7627 mutex_lock(&fs_devices->device_list_mutex);
7628 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7629 ret = btrfs_device_init_dev_stats(device, path);
7630 if (ret)
7631 goto out;
7632 }
7633 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7634 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7635 ret = btrfs_device_init_dev_stats(device, path);
7636 if (ret)
7637 goto out;
7638 }
7639 }
7640out:
7641 mutex_unlock(&fs_devices->device_list_mutex);
7642
7643 btrfs_free_path(path);
7644 return ret;
7645}
7646
7647static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7648 struct btrfs_device *device)
7649{
7650 struct btrfs_fs_info *fs_info = trans->fs_info;
7651 struct btrfs_root *dev_root = fs_info->dev_root;
7652 struct btrfs_path *path;
7653 struct btrfs_key key;
7654 struct extent_buffer *eb;
7655 struct btrfs_dev_stats_item *ptr;
7656 int ret;
7657 int i;
7658
7659 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7660 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7661 key.offset = device->devid;
7662
7663 path = btrfs_alloc_path();
7664 if (!path)
7665 return -ENOMEM;
7666 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7667 if (ret < 0) {
7668 btrfs_warn_in_rcu(fs_info,
7669 "error %d while searching for dev_stats item for device %s",
7670 ret, btrfs_dev_name(device));
7671 goto out;
7672 }
7673
7674 if (ret == 0 &&
7675 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7676 /* need to delete old one and insert a new one */
7677 ret = btrfs_del_item(trans, dev_root, path);
7678 if (ret != 0) {
7679 btrfs_warn_in_rcu(fs_info,
7680 "delete too small dev_stats item for device %s failed %d",
7681 btrfs_dev_name(device), ret);
7682 goto out;
7683 }
7684 ret = 1;
7685 }
7686
7687 if (ret == 1) {
7688 /* need to insert a new item */
7689 btrfs_release_path(path);
7690 ret = btrfs_insert_empty_item(trans, dev_root, path,
7691 &key, sizeof(*ptr));
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "insert dev_stats item for device %s failed %d",
7695 btrfs_dev_name(device), ret);
7696 goto out;
7697 }
7698 }
7699
7700 eb = path->nodes[0];
7701 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7703 btrfs_set_dev_stats_value(eb, ptr, i,
7704 btrfs_dev_stat_read(device, i));
7705 btrfs_mark_buffer_dirty(eb);
7706
7707out:
7708 btrfs_free_path(path);
7709 return ret;
7710}
7711
7712/*
7713 * called from commit_transaction. Writes all changed device stats to disk.
7714 */
7715int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7716{
7717 struct btrfs_fs_info *fs_info = trans->fs_info;
7718 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7719 struct btrfs_device *device;
7720 int stats_cnt;
7721 int ret = 0;
7722
7723 mutex_lock(&fs_devices->device_list_mutex);
7724 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7725 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7726 if (!device->dev_stats_valid || stats_cnt == 0)
7727 continue;
7728
7729
7730 /*
7731 * There is a LOAD-LOAD control dependency between the value of
7732 * dev_stats_ccnt and updating the on-disk values which requires
7733 * reading the in-memory counters. Such control dependencies
7734 * require explicit read memory barriers.
7735 *
7736 * This memory barriers pairs with smp_mb__before_atomic in
7737 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7738 * barrier implied by atomic_xchg in
7739 * btrfs_dev_stats_read_and_reset
7740 */
7741 smp_rmb();
7742
7743 ret = update_dev_stat_item(trans, device);
7744 if (!ret)
7745 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7746 }
7747 mutex_unlock(&fs_devices->device_list_mutex);
7748
7749 return ret;
7750}
7751
7752void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7753{
7754 btrfs_dev_stat_inc(dev, index);
7755
7756 if (!dev->dev_stats_valid)
7757 return;
7758 btrfs_err_rl_in_rcu(dev->fs_info,
7759 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7760 btrfs_dev_name(dev),
7761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7762 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7763 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7764 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7765 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7766}
7767
7768static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7769{
7770 int i;
7771
7772 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7773 if (btrfs_dev_stat_read(dev, i) != 0)
7774 break;
7775 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7776 return; /* all values == 0, suppress message */
7777
7778 btrfs_info_in_rcu(dev->fs_info,
7779 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7780 btrfs_dev_name(dev),
7781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7782 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7783 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7784 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7785 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7786}
7787
7788int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7789 struct btrfs_ioctl_get_dev_stats *stats)
7790{
7791 BTRFS_DEV_LOOKUP_ARGS(args);
7792 struct btrfs_device *dev;
7793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7794 int i;
7795
7796 mutex_lock(&fs_devices->device_list_mutex);
7797 args.devid = stats->devid;
7798 dev = btrfs_find_device(fs_info->fs_devices, &args);
7799 mutex_unlock(&fs_devices->device_list_mutex);
7800
7801 if (!dev) {
7802 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7803 return -ENODEV;
7804 } else if (!dev->dev_stats_valid) {
7805 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7806 return -ENODEV;
7807 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7808 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7809 if (stats->nr_items > i)
7810 stats->values[i] =
7811 btrfs_dev_stat_read_and_reset(dev, i);
7812 else
7813 btrfs_dev_stat_set(dev, i, 0);
7814 }
7815 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7816 current->comm, task_pid_nr(current));
7817 } else {
7818 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7819 if (stats->nr_items > i)
7820 stats->values[i] = btrfs_dev_stat_read(dev, i);
7821 }
7822 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7823 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7824 return 0;
7825}
7826
7827/*
7828 * Update the size and bytes used for each device where it changed. This is
7829 * delayed since we would otherwise get errors while writing out the
7830 * superblocks.
7831 *
7832 * Must be invoked during transaction commit.
7833 */
7834void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7835{
7836 struct btrfs_device *curr, *next;
7837
7838 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7839
7840 if (list_empty(&trans->dev_update_list))
7841 return;
7842
7843 /*
7844 * We don't need the device_list_mutex here. This list is owned by the
7845 * transaction and the transaction must complete before the device is
7846 * released.
7847 */
7848 mutex_lock(&trans->fs_info->chunk_mutex);
7849 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7850 post_commit_list) {
7851 list_del_init(&curr->post_commit_list);
7852 curr->commit_total_bytes = curr->disk_total_bytes;
7853 curr->commit_bytes_used = curr->bytes_used;
7854 }
7855 mutex_unlock(&trans->fs_info->chunk_mutex);
7856}
7857
7858/*
7859 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7860 */
7861int btrfs_bg_type_to_factor(u64 flags)
7862{
7863 const int index = btrfs_bg_flags_to_raid_index(flags);
7864
7865 return btrfs_raid_array[index].ncopies;
7866}
7867
7868
7869
7870static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7871 u64 chunk_offset, u64 devid,
7872 u64 physical_offset, u64 physical_len)
7873{
7874 struct btrfs_dev_lookup_args args = { .devid = devid };
7875 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7876 struct extent_map *em;
7877 struct map_lookup *map;
7878 struct btrfs_device *dev;
7879 u64 stripe_len;
7880 bool found = false;
7881 int ret = 0;
7882 int i;
7883
7884 read_lock(&em_tree->lock);
7885 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7886 read_unlock(&em_tree->lock);
7887
7888 if (!em) {
7889 btrfs_err(fs_info,
7890"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7891 physical_offset, devid);
7892 ret = -EUCLEAN;
7893 goto out;
7894 }
7895
7896 map = em->map_lookup;
7897 stripe_len = btrfs_calc_stripe_length(em);
7898 if (physical_len != stripe_len) {
7899 btrfs_err(fs_info,
7900"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7901 physical_offset, devid, em->start, physical_len,
7902 stripe_len);
7903 ret = -EUCLEAN;
7904 goto out;
7905 }
7906
7907 /*
7908 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7909 * space. Although kernel can handle it without problem, better to warn
7910 * the users.
7911 */
7912 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7913 btrfs_warn(fs_info,
7914 "devid %llu physical %llu len %llu inside the reserved space",
7915 devid, physical_offset, physical_len);
7916
7917 for (i = 0; i < map->num_stripes; i++) {
7918 if (map->stripes[i].dev->devid == devid &&
7919 map->stripes[i].physical == physical_offset) {
7920 found = true;
7921 if (map->verified_stripes >= map->num_stripes) {
7922 btrfs_err(fs_info,
7923 "too many dev extents for chunk %llu found",
7924 em->start);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 map->verified_stripes++;
7929 break;
7930 }
7931 }
7932 if (!found) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 }
7938
7939 /* Make sure no dev extent is beyond device boundary */
7940 dev = btrfs_find_device(fs_info->fs_devices, &args);
7941 if (!dev) {
7942 btrfs_err(fs_info, "failed to find devid %llu", devid);
7943 ret = -EUCLEAN;
7944 goto out;
7945 }
7946
7947 if (physical_offset + physical_len > dev->disk_total_bytes) {
7948 btrfs_err(fs_info,
7949"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7950 devid, physical_offset, physical_len,
7951 dev->disk_total_bytes);
7952 ret = -EUCLEAN;
7953 goto out;
7954 }
7955
7956 if (dev->zone_info) {
7957 u64 zone_size = dev->zone_info->zone_size;
7958
7959 if (!IS_ALIGNED(physical_offset, zone_size) ||
7960 !IS_ALIGNED(physical_len, zone_size)) {
7961 btrfs_err(fs_info,
7962"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7963 devid, physical_offset, physical_len);
7964 ret = -EUCLEAN;
7965 goto out;
7966 }
7967 }
7968
7969out:
7970 free_extent_map(em);
7971 return ret;
7972}
7973
7974static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7975{
7976 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7977 struct extent_map *em;
7978 struct rb_node *node;
7979 int ret = 0;
7980
7981 read_lock(&em_tree->lock);
7982 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7983 em = rb_entry(node, struct extent_map, rb_node);
7984 if (em->map_lookup->num_stripes !=
7985 em->map_lookup->verified_stripes) {
7986 btrfs_err(fs_info,
7987 "chunk %llu has missing dev extent, have %d expect %d",
7988 em->start, em->map_lookup->verified_stripes,
7989 em->map_lookup->num_stripes);
7990 ret = -EUCLEAN;
7991 goto out;
7992 }
7993 }
7994out:
7995 read_unlock(&em_tree->lock);
7996 return ret;
7997}
7998
7999/*
8000 * Ensure that all dev extents are mapped to correct chunk, otherwise
8001 * later chunk allocation/free would cause unexpected behavior.
8002 *
8003 * NOTE: This will iterate through the whole device tree, which should be of
8004 * the same size level as the chunk tree. This slightly increases mount time.
8005 */
8006int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8007{
8008 struct btrfs_path *path;
8009 struct btrfs_root *root = fs_info->dev_root;
8010 struct btrfs_key key;
8011 u64 prev_devid = 0;
8012 u64 prev_dev_ext_end = 0;
8013 int ret = 0;
8014
8015 /*
8016 * We don't have a dev_root because we mounted with ignorebadroots and
8017 * failed to load the root, so we want to skip the verification in this
8018 * case for sure.
8019 *
8020 * However if the dev root is fine, but the tree itself is corrupted
8021 * we'd still fail to mount. This verification is only to make sure
8022 * writes can happen safely, so instead just bypass this check
8023 * completely in the case of IGNOREBADROOTS.
8024 */
8025 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8026 return 0;
8027
8028 key.objectid = 1;
8029 key.type = BTRFS_DEV_EXTENT_KEY;
8030 key.offset = 0;
8031
8032 path = btrfs_alloc_path();
8033 if (!path)
8034 return -ENOMEM;
8035
8036 path->reada = READA_FORWARD;
8037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8038 if (ret < 0)
8039 goto out;
8040
8041 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8042 ret = btrfs_next_leaf(root, path);
8043 if (ret < 0)
8044 goto out;
8045 /* No dev extents at all? Not good */
8046 if (ret > 0) {
8047 ret = -EUCLEAN;
8048 goto out;
8049 }
8050 }
8051 while (1) {
8052 struct extent_buffer *leaf = path->nodes[0];
8053 struct btrfs_dev_extent *dext;
8054 int slot = path->slots[0];
8055 u64 chunk_offset;
8056 u64 physical_offset;
8057 u64 physical_len;
8058 u64 devid;
8059
8060 btrfs_item_key_to_cpu(leaf, &key, slot);
8061 if (key.type != BTRFS_DEV_EXTENT_KEY)
8062 break;
8063 devid = key.objectid;
8064 physical_offset = key.offset;
8065
8066 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8067 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8068 physical_len = btrfs_dev_extent_length(leaf, dext);
8069
8070 /* Check if this dev extent overlaps with the previous one */
8071 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8072 btrfs_err(fs_info,
8073"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8074 devid, physical_offset, prev_dev_ext_end);
8075 ret = -EUCLEAN;
8076 goto out;
8077 }
8078
8079 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8080 physical_offset, physical_len);
8081 if (ret < 0)
8082 goto out;
8083 prev_devid = devid;
8084 prev_dev_ext_end = physical_offset + physical_len;
8085
8086 ret = btrfs_next_item(root, path);
8087 if (ret < 0)
8088 goto out;
8089 if (ret > 0) {
8090 ret = 0;
8091 break;
8092 }
8093 }
8094
8095 /* Ensure all chunks have corresponding dev extents */
8096 ret = verify_chunk_dev_extent_mapping(fs_info);
8097out:
8098 btrfs_free_path(path);
8099 return ret;
8100}
8101
8102/*
8103 * Check whether the given block group or device is pinned by any inode being
8104 * used as a swapfile.
8105 */
8106bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8107{
8108 struct btrfs_swapfile_pin *sp;
8109 struct rb_node *node;
8110
8111 spin_lock(&fs_info->swapfile_pins_lock);
8112 node = fs_info->swapfile_pins.rb_node;
8113 while (node) {
8114 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8115 if (ptr < sp->ptr)
8116 node = node->rb_left;
8117 else if (ptr > sp->ptr)
8118 node = node->rb_right;
8119 else
8120 break;
8121 }
8122 spin_unlock(&fs_info->swapfile_pins_lock);
8123 return node != NULL;
8124}
8125
8126static int relocating_repair_kthread(void *data)
8127{
8128 struct btrfs_block_group *cache = data;
8129 struct btrfs_fs_info *fs_info = cache->fs_info;
8130 u64 target;
8131 int ret = 0;
8132
8133 target = cache->start;
8134 btrfs_put_block_group(cache);
8135
8136 sb_start_write(fs_info->sb);
8137 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8138 btrfs_info(fs_info,
8139 "zoned: skip relocating block group %llu to repair: EBUSY",
8140 target);
8141 sb_end_write(fs_info->sb);
8142 return -EBUSY;
8143 }
8144
8145 mutex_lock(&fs_info->reclaim_bgs_lock);
8146
8147 /* Ensure block group still exists */
8148 cache = btrfs_lookup_block_group(fs_info, target);
8149 if (!cache)
8150 goto out;
8151
8152 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8153 goto out;
8154
8155 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8156 if (ret < 0)
8157 goto out;
8158
8159 btrfs_info(fs_info,
8160 "zoned: relocating block group %llu to repair IO failure",
8161 target);
8162 ret = btrfs_relocate_chunk(fs_info, target);
8163
8164out:
8165 if (cache)
8166 btrfs_put_block_group(cache);
8167 mutex_unlock(&fs_info->reclaim_bgs_lock);
8168 btrfs_exclop_finish(fs_info);
8169 sb_end_write(fs_info->sb);
8170
8171 return ret;
8172}
8173
8174bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8175{
8176 struct btrfs_block_group *cache;
8177
8178 if (!btrfs_is_zoned(fs_info))
8179 return false;
8180
8181 /* Do not attempt to repair in degraded state */
8182 if (btrfs_test_opt(fs_info, DEGRADED))
8183 return true;
8184
8185 cache = btrfs_lookup_block_group(fs_info, logical);
8186 if (!cache)
8187 return true;
8188
8189 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8190 btrfs_put_block_group(cache);
8191 return true;
8192 }
8193
8194 kthread_run(relocating_repair_kthread, cache,
8195 "btrfs-relocating-repair");
8196
8197 return true;
8198}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/bio.h>
8#include <linux/slab.h>
9#include <linux/buffer_head.h>
10#include <linux/blkdev.h>
11#include <linux/ratelimit.h>
12#include <linux/kthread.h>
13#include <linux/raid/pq.h>
14#include <linux/semaphore.h>
15#include <linux/uuid.h>
16#include <linux/list_sort.h>
17#include "misc.h"
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
24#include "raid56.h"
25#include "async-thread.h"
26#include "check-integrity.h"
27#include "rcu-string.h"
28#include "dev-replace.h"
29#include "sysfs.h"
30#include "tree-checker.h"
31#include "space-info.h"
32#include "block-group.h"
33
34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
40 .tolerated_failures = 1,
41 .devs_increment = 2,
42 .ncopies = 2,
43 .nparity = 0,
44 .raid_name = "raid10",
45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
53 .tolerated_failures = 1,
54 .devs_increment = 2,
55 .ncopies = 2,
56 .nparity = 0,
57 .raid_name = "raid1",
58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
60 },
61 [BTRFS_RAID_DUP] = {
62 .sub_stripes = 1,
63 .dev_stripes = 2,
64 .devs_max = 1,
65 .devs_min = 1,
66 .tolerated_failures = 0,
67 .devs_increment = 1,
68 .ncopies = 2,
69 .nparity = 0,
70 .raid_name = "dup",
71 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
72 .mindev_error = 0,
73 },
74 [BTRFS_RAID_RAID0] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 0,
78 .devs_min = 2,
79 .tolerated_failures = 0,
80 .devs_increment = 1,
81 .ncopies = 1,
82 .nparity = 0,
83 .raid_name = "raid0",
84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
85 .mindev_error = 0,
86 },
87 [BTRFS_RAID_SINGLE] = {
88 .sub_stripes = 1,
89 .dev_stripes = 1,
90 .devs_max = 1,
91 .devs_min = 1,
92 .tolerated_failures = 0,
93 .devs_increment = 1,
94 .ncopies = 1,
95 .nparity = 0,
96 .raid_name = "single",
97 .bg_flag = 0,
98 .mindev_error = 0,
99 },
100 [BTRFS_RAID_RAID5] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
105 .tolerated_failures = 1,
106 .devs_increment = 1,
107 .ncopies = 1,
108 .nparity = 1,
109 .raid_name = "raid5",
110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
112 },
113 [BTRFS_RAID_RAID6] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 0,
117 .devs_min = 3,
118 .tolerated_failures = 2,
119 .devs_increment = 1,
120 .ncopies = 1,
121 .nparity = 2,
122 .raid_name = "raid6",
123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
125 },
126};
127
128const char *btrfs_bg_type_to_raid_name(u64 flags)
129{
130 const int index = btrfs_bg_flags_to_raid_index(flags);
131
132 if (index >= BTRFS_NR_RAID_TYPES)
133 return NULL;
134
135 return btrfs_raid_array[index].raid_name;
136}
137
138/*
139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
140 * bytes including terminating null byte.
141 */
142void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143{
144 int i;
145 int ret;
146 char *bp = buf;
147 u64 flags = bg_flags;
148 u32 size_bp = size_buf;
149
150 if (!flags) {
151 strcpy(bp, "NONE");
152 return;
153 }
154
155#define DESCRIBE_FLAG(flag, desc) \
156 do { \
157 if (flags & (flag)) { \
158 ret = snprintf(bp, size_bp, "%s|", (desc)); \
159 if (ret < 0 || ret >= size_bp) \
160 goto out_overflow; \
161 size_bp -= ret; \
162 bp += ret; \
163 flags &= ~(flag); \
164 } \
165 } while (0)
166
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174 btrfs_raid_array[i].raid_name);
175#undef DESCRIBE_FLAG
176
177 if (flags) {
178 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179 size_bp -= ret;
180 }
181
182 if (size_bp < size_buf)
183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185 /*
186 * The text is trimmed, it's up to the caller to provide sufficiently
187 * large buffer
188 */
189out_overflow:;
190}
191
192static int init_first_rw_device(struct btrfs_trans_handle *trans);
193static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
194static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
201
202/*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
218 * seeding, structure cloning, opening/closing devices at mount/umount time
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
296 */
297
298DEFINE_MUTEX(uuid_mutex);
299static LIST_HEAD(fs_uuids);
300struct list_head *btrfs_get_fs_uuids(void)
301{
302 return &fs_uuids;
303}
304
305/*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
314static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
316{
317 struct btrfs_fs_devices *fs_devs;
318
319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
327 INIT_LIST_HEAD(&fs_devs->fs_list);
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336 return fs_devs;
337}
338
339void btrfs_free_device(struct btrfs_device *device)
340{
341 WARN_ON(!list_empty(&device->post_commit_list));
342 rcu_string_free(device->name);
343 extent_io_tree_release(&device->alloc_state);
344 bio_put(device->flush_bio);
345 kfree(device);
346}
347
348static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349{
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
356 btrfs_free_device(device);
357 }
358 kfree(fs_devices);
359}
360
361void __exit btrfs_cleanup_fs_uuids(void)
362{
363 struct btrfs_fs_devices *fs_devices;
364
365 while (!list_empty(&fs_uuids)) {
366 fs_devices = list_entry(fs_uuids.next,
367 struct btrfs_fs_devices, fs_list);
368 list_del(&fs_devices->fs_list);
369 free_fs_devices(fs_devices);
370 }
371}
372
373/*
374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375 * Returned struct is not linked onto any lists and must be destroyed using
376 * btrfs_free_device.
377 */
378static struct btrfs_device *__alloc_device(void)
379{
380 struct btrfs_device *dev;
381
382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
383 if (!dev)
384 return ERR_PTR(-ENOMEM);
385
386 /*
387 * Preallocate a bio that's always going to be used for flushing device
388 * barriers and matches the device lifespan
389 */
390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391 if (!dev->flush_bio) {
392 kfree(dev);
393 return ERR_PTR(-ENOMEM);
394 }
395
396 INIT_LIST_HEAD(&dev->dev_list);
397 INIT_LIST_HEAD(&dev->dev_alloc_list);
398 INIT_LIST_HEAD(&dev->post_commit_list);
399
400 spin_lock_init(&dev->io_lock);
401
402 atomic_set(&dev->reada_in_flight, 0);
403 atomic_set(&dev->dev_stats_ccnt, 0);
404 btrfs_device_data_ordered_init(dev);
405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
408
409 return dev;
410}
411
412static noinline struct btrfs_fs_devices *find_fsid(
413 const u8 *fsid, const u8 *metadata_fsid)
414{
415 struct btrfs_fs_devices *fs_devices;
416
417 ASSERT(fsid);
418
419 if (metadata_fsid) {
420 /*
421 * Handle scanned device having completed its fsid change but
422 * belonging to a fs_devices that was created by first scanning
423 * a device which didn't have its fsid/metadata_uuid changed
424 * at all and the CHANGING_FSID_V2 flag set.
425 */
426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
427 if (fs_devices->fsid_change &&
428 memcmp(metadata_fsid, fs_devices->fsid,
429 BTRFS_FSID_SIZE) == 0 &&
430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
431 BTRFS_FSID_SIZE) == 0) {
432 return fs_devices;
433 }
434 }
435 /*
436 * Handle scanned device having completed its fsid change but
437 * belonging to a fs_devices that was created by a device that
438 * has an outdated pair of fsid/metadata_uuid and
439 * CHANGING_FSID_V2 flag set.
440 */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (fs_devices->fsid_change &&
443 memcmp(fs_devices->metadata_uuid,
444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
445 memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0) {
447 return fs_devices;
448 }
449 }
450 }
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
469 int flush, struct block_device **bdev,
470 struct buffer_head **bh)
471{
472 int ret;
473
474 *bdev = blkdev_get_by_path(device_path, flags, holder);
475
476 if (IS_ERR(*bdev)) {
477 ret = PTR_ERR(*bdev);
478 goto error;
479 }
480
481 if (flush)
482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
484 if (ret) {
485 blkdev_put(*bdev, flags);
486 goto error;
487 }
488 invalidate_bdev(*bdev);
489 *bh = btrfs_read_dev_super(*bdev);
490 if (IS_ERR(*bh)) {
491 ret = PTR_ERR(*bh);
492 blkdev_put(*bdev, flags);
493 goto error;
494 }
495
496 return 0;
497
498error:
499 *bdev = NULL;
500 *bh = NULL;
501 return ret;
502}
503
504static void requeue_list(struct btrfs_pending_bios *pending_bios,
505 struct bio *head, struct bio *tail)
506{
507
508 struct bio *old_head;
509
510 old_head = pending_bios->head;
511 pending_bios->head = head;
512 if (pending_bios->tail)
513 tail->bi_next = old_head;
514 else
515 pending_bios->tail = tail;
516}
517
518/*
519 * we try to collect pending bios for a device so we don't get a large
520 * number of procs sending bios down to the same device. This greatly
521 * improves the schedulers ability to collect and merge the bios.
522 *
523 * But, it also turns into a long list of bios to process and that is sure
524 * to eventually make the worker thread block. The solution here is to
525 * make some progress and then put this work struct back at the end of
526 * the list if the block device is congested. This way, multiple devices
527 * can make progress from a single worker thread.
528 */
529static noinline void run_scheduled_bios(struct btrfs_device *device)
530{
531 struct btrfs_fs_info *fs_info = device->fs_info;
532 struct bio *pending;
533 struct backing_dev_info *bdi;
534 struct btrfs_pending_bios *pending_bios;
535 struct bio *tail;
536 struct bio *cur;
537 int again = 0;
538 unsigned long num_run;
539 unsigned long batch_run = 0;
540 unsigned long last_waited = 0;
541 int force_reg = 0;
542 int sync_pending = 0;
543 struct blk_plug plug;
544
545 /*
546 * this function runs all the bios we've collected for
547 * a particular device. We don't want to wander off to
548 * another device without first sending all of these down.
549 * So, setup a plug here and finish it off before we return
550 */
551 blk_start_plug(&plug);
552
553 bdi = device->bdev->bd_bdi;
554
555loop:
556 spin_lock(&device->io_lock);
557
558loop_lock:
559 num_run = 0;
560
561 /* take all the bios off the list at once and process them
562 * later on (without the lock held). But, remember the
563 * tail and other pointers so the bios can be properly reinserted
564 * into the list if we hit congestion
565 */
566 if (!force_reg && device->pending_sync_bios.head) {
567 pending_bios = &device->pending_sync_bios;
568 force_reg = 1;
569 } else {
570 pending_bios = &device->pending_bios;
571 force_reg = 0;
572 }
573
574 pending = pending_bios->head;
575 tail = pending_bios->tail;
576 WARN_ON(pending && !tail);
577
578 /*
579 * if pending was null this time around, no bios need processing
580 * at all and we can stop. Otherwise it'll loop back up again
581 * and do an additional check so no bios are missed.
582 *
583 * device->running_pending is used to synchronize with the
584 * schedule_bio code.
585 */
586 if (device->pending_sync_bios.head == NULL &&
587 device->pending_bios.head == NULL) {
588 again = 0;
589 device->running_pending = 0;
590 } else {
591 again = 1;
592 device->running_pending = 1;
593 }
594
595 pending_bios->head = NULL;
596 pending_bios->tail = NULL;
597
598 spin_unlock(&device->io_lock);
599
600 while (pending) {
601
602 rmb();
603 /* we want to work on both lists, but do more bios on the
604 * sync list than the regular list
605 */
606 if ((num_run > 32 &&
607 pending_bios != &device->pending_sync_bios &&
608 device->pending_sync_bios.head) ||
609 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
610 device->pending_bios.head)) {
611 spin_lock(&device->io_lock);
612 requeue_list(pending_bios, pending, tail);
613 goto loop_lock;
614 }
615
616 cur = pending;
617 pending = pending->bi_next;
618 cur->bi_next = NULL;
619
620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
621
622 /*
623 * if we're doing the sync list, record that our
624 * plug has some sync requests on it
625 *
626 * If we're doing the regular list and there are
627 * sync requests sitting around, unplug before
628 * we add more
629 */
630 if (pending_bios == &device->pending_sync_bios) {
631 sync_pending = 1;
632 } else if (sync_pending) {
633 blk_finish_plug(&plug);
634 blk_start_plug(&plug);
635 sync_pending = 0;
636 }
637
638 btrfsic_submit_bio(cur);
639 num_run++;
640 batch_run++;
641
642 cond_resched();
643
644 /*
645 * we made progress, there is more work to do and the bdi
646 * is now congested. Back off and let other work structs
647 * run instead
648 */
649 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
650 fs_info->fs_devices->open_devices > 1) {
651 struct io_context *ioc;
652
653 ioc = current->io_context;
654
655 /*
656 * the main goal here is that we don't want to
657 * block if we're going to be able to submit
658 * more requests without blocking.
659 *
660 * This code does two great things, it pokes into
661 * the elevator code from a filesystem _and_
662 * it makes assumptions about how batching works.
663 */
664 if (ioc && ioc->nr_batch_requests > 0 &&
665 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
666 (last_waited == 0 ||
667 ioc->last_waited == last_waited)) {
668 /*
669 * we want to go through our batch of
670 * requests and stop. So, we copy out
671 * the ioc->last_waited time and test
672 * against it before looping
673 */
674 last_waited = ioc->last_waited;
675 cond_resched();
676 continue;
677 }
678 spin_lock(&device->io_lock);
679 requeue_list(pending_bios, pending, tail);
680 device->running_pending = 1;
681
682 spin_unlock(&device->io_lock);
683 btrfs_queue_work(fs_info->submit_workers,
684 &device->work);
685 goto done;
686 }
687 }
688
689 cond_resched();
690 if (again)
691 goto loop;
692
693 spin_lock(&device->io_lock);
694 if (device->pending_bios.head || device->pending_sync_bios.head)
695 goto loop_lock;
696 spin_unlock(&device->io_lock);
697
698done:
699 blk_finish_plug(&plug);
700}
701
702static void pending_bios_fn(struct btrfs_work *work)
703{
704 struct btrfs_device *device;
705
706 device = container_of(work, struct btrfs_device, work);
707 run_scheduled_bios(device);
708}
709
710static bool device_path_matched(const char *path, struct btrfs_device *device)
711{
712 int found;
713
714 rcu_read_lock();
715 found = strcmp(rcu_str_deref(device->name), path);
716 rcu_read_unlock();
717
718 return found == 0;
719}
720
721/*
722 * Search and remove all stale (devices which are not mounted) devices.
723 * When both inputs are NULL, it will search and release all stale devices.
724 * path: Optional. When provided will it release all unmounted devices
725 * matching this path only.
726 * skip_dev: Optional. Will skip this device when searching for the stale
727 * devices.
728 * Return: 0 for success or if @path is NULL.
729 * -EBUSY if @path is a mounted device.
730 * -ENOENT if @path does not match any device in the list.
731 */
732static int btrfs_free_stale_devices(const char *path,
733 struct btrfs_device *skip_device)
734{
735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
736 struct btrfs_device *device, *tmp_device;
737 int ret = 0;
738
739 if (path)
740 ret = -ENOENT;
741
742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
743
744 mutex_lock(&fs_devices->device_list_mutex);
745 list_for_each_entry_safe(device, tmp_device,
746 &fs_devices->devices, dev_list) {
747 if (skip_device && skip_device == device)
748 continue;
749 if (path && !device->name)
750 continue;
751 if (path && !device_path_matched(path, device))
752 continue;
753 if (fs_devices->opened) {
754 /* for an already deleted device return 0 */
755 if (path && ret != 0)
756 ret = -EBUSY;
757 break;
758 }
759
760 /* delete the stale device */
761 fs_devices->num_devices--;
762 list_del(&device->dev_list);
763 btrfs_free_device(device);
764
765 ret = 0;
766 if (fs_devices->num_devices == 0)
767 break;
768 }
769 mutex_unlock(&fs_devices->device_list_mutex);
770
771 if (fs_devices->num_devices == 0) {
772 btrfs_sysfs_remove_fsid(fs_devices);
773 list_del(&fs_devices->fs_list);
774 free_fs_devices(fs_devices);
775 }
776 }
777
778 return ret;
779}
780
781static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
782 struct btrfs_device *device, fmode_t flags,
783 void *holder)
784{
785 struct request_queue *q;
786 struct block_device *bdev;
787 struct buffer_head *bh;
788 struct btrfs_super_block *disk_super;
789 u64 devid;
790 int ret;
791
792 if (device->bdev)
793 return -EINVAL;
794 if (!device->name)
795 return -EINVAL;
796
797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 &bdev, &bh);
799 if (ret)
800 return ret;
801
802 disk_super = (struct btrfs_super_block *)bh->b_data;
803 devid = btrfs_stack_device_id(&disk_super->dev_item);
804 if (devid != device->devid)
805 goto error_brelse;
806
807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
808 goto error_brelse;
809
810 device->generation = btrfs_super_generation(disk_super);
811
812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
813 if (btrfs_super_incompat_flags(disk_super) &
814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
815 pr_err(
816 "BTRFS: Invalid seeding and uuid-changed device detected\n");
817 goto error_brelse;
818 }
819
820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
821 fs_devices->seeding = 1;
822 } else {
823 if (bdev_read_only(bdev))
824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
825 else
826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
827 }
828
829 q = bdev_get_queue(bdev);
830 if (!blk_queue_nonrot(q))
831 fs_devices->rotating = 1;
832
833 device->bdev = bdev;
834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
835 device->mode = flags;
836
837 fs_devices->open_devices++;
838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
839 device->devid != BTRFS_DEV_REPLACE_DEVID) {
840 fs_devices->rw_devices++;
841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
842 }
843 brelse(bh);
844
845 return 0;
846
847error_brelse:
848 brelse(bh);
849 blkdev_put(bdev, flags);
850
851 return -EINVAL;
852}
853
854/*
855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
856 * being created with a disk that has already completed its fsid change.
857 */
858static struct btrfs_fs_devices *find_fsid_inprogress(
859 struct btrfs_super_block *disk_super)
860{
861 struct btrfs_fs_devices *fs_devices;
862
863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
865 BTRFS_FSID_SIZE) != 0 &&
866 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
868 return fs_devices;
869 }
870 }
871
872 return NULL;
873}
874
875
876static struct btrfs_fs_devices *find_fsid_changed(
877 struct btrfs_super_block *disk_super)
878{
879 struct btrfs_fs_devices *fs_devices;
880
881 /*
882 * Handles the case where scanned device is part of an fs that had
883 * multiple successful changes of FSID but curently device didn't
884 * observe it. Meaning our fsid will be different than theirs.
885 */
886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
888 BTRFS_FSID_SIZE) != 0 &&
889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
890 BTRFS_FSID_SIZE) == 0 &&
891 memcmp(fs_devices->fsid, disk_super->fsid,
892 BTRFS_FSID_SIZE) != 0) {
893 return fs_devices;
894 }
895 }
896
897 return NULL;
898}
899/*
900 * Add new device to list of registered devices
901 *
902 * Returns:
903 * device pointer which was just added or updated when successful
904 * error pointer when failed
905 */
906static noinline struct btrfs_device *device_list_add(const char *path,
907 struct btrfs_super_block *disk_super,
908 bool *new_device_added)
909{
910 struct btrfs_device *device;
911 struct btrfs_fs_devices *fs_devices = NULL;
912 struct rcu_string *name;
913 u64 found_transid = btrfs_super_generation(disk_super);
914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
919
920 if (fsid_change_in_progress) {
921 if (!has_metadata_uuid) {
922 /*
923 * When we have an image which has CHANGING_FSID_V2 set
924 * it might belong to either a filesystem which has
925 * disks with completed fsid change or it might belong
926 * to fs with no UUID changes in effect, handle both.
927 */
928 fs_devices = find_fsid_inprogress(disk_super);
929 if (!fs_devices)
930 fs_devices = find_fsid(disk_super->fsid, NULL);
931 } else {
932 fs_devices = find_fsid_changed(disk_super);
933 }
934 } else if (has_metadata_uuid) {
935 fs_devices = find_fsid(disk_super->fsid,
936 disk_super->metadata_uuid);
937 } else {
938 fs_devices = find_fsid(disk_super->fsid, NULL);
939 }
940
941
942 if (!fs_devices) {
943 if (has_metadata_uuid)
944 fs_devices = alloc_fs_devices(disk_super->fsid,
945 disk_super->metadata_uuid);
946 else
947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
948
949 if (IS_ERR(fs_devices))
950 return ERR_CAST(fs_devices);
951
952 fs_devices->fsid_change = fsid_change_in_progress;
953
954 mutex_lock(&fs_devices->device_list_mutex);
955 list_add(&fs_devices->fs_list, &fs_uuids);
956
957 device = NULL;
958 } else {
959 mutex_lock(&fs_devices->device_list_mutex);
960 device = btrfs_find_device(fs_devices, devid,
961 disk_super->dev_item.uuid, NULL, false);
962
963 /*
964 * If this disk has been pulled into an fs devices created by
965 * a device which had the CHANGING_FSID_V2 flag then replace the
966 * metadata_uuid/fsid values of the fs_devices.
967 */
968 if (has_metadata_uuid && fs_devices->fsid_change &&
969 found_transid > fs_devices->latest_generation) {
970 memcpy(fs_devices->fsid, disk_super->fsid,
971 BTRFS_FSID_SIZE);
972 memcpy(fs_devices->metadata_uuid,
973 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
974
975 fs_devices->fsid_change = false;
976 }
977 }
978
979 if (!device) {
980 if (fs_devices->opened) {
981 mutex_unlock(&fs_devices->device_list_mutex);
982 return ERR_PTR(-EBUSY);
983 }
984
985 device = btrfs_alloc_device(NULL, &devid,
986 disk_super->dev_item.uuid);
987 if (IS_ERR(device)) {
988 mutex_unlock(&fs_devices->device_list_mutex);
989 /* we can safely leave the fs_devices entry around */
990 return device;
991 }
992
993 name = rcu_string_strdup(path, GFP_NOFS);
994 if (!name) {
995 btrfs_free_device(device);
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return ERR_PTR(-ENOMEM);
998 }
999 rcu_assign_pointer(device->name, name);
1000
1001 list_add_rcu(&device->dev_list, &fs_devices->devices);
1002 fs_devices->num_devices++;
1003
1004 device->fs_devices = fs_devices;
1005 *new_device_added = true;
1006
1007 if (disk_super->label[0])
1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009 disk_super->label, devid, found_transid, path);
1010 else
1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012 disk_super->fsid, devid, found_transid, path);
1013
1014 } else if (!device->name || strcmp(device->name->str, path)) {
1015 /*
1016 * When FS is already mounted.
1017 * 1. If you are here and if the device->name is NULL that
1018 * means this device was missing at time of FS mount.
1019 * 2. If you are here and if the device->name is different
1020 * from 'path' that means either
1021 * a. The same device disappeared and reappeared with
1022 * different name. or
1023 * b. The missing-disk-which-was-replaced, has
1024 * reappeared now.
1025 *
1026 * We must allow 1 and 2a above. But 2b would be a spurious
1027 * and unintentional.
1028 *
1029 * Further in case of 1 and 2a above, the disk at 'path'
1030 * would have missed some transaction when it was away and
1031 * in case of 2a the stale bdev has to be updated as well.
1032 * 2b must not be allowed at all time.
1033 */
1034
1035 /*
1036 * For now, we do allow update to btrfs_fs_device through the
1037 * btrfs dev scan cli after FS has been mounted. We're still
1038 * tracking a problem where systems fail mount by subvolume id
1039 * when we reject replacement on a mounted FS.
1040 */
1041 if (!fs_devices->opened && found_transid < device->generation) {
1042 /*
1043 * That is if the FS is _not_ mounted and if you
1044 * are here, that means there is more than one
1045 * disk with same uuid and devid.We keep the one
1046 * with larger generation number or the last-in if
1047 * generation are equal.
1048 */
1049 mutex_unlock(&fs_devices->device_list_mutex);
1050 return ERR_PTR(-EEXIST);
1051 }
1052
1053 /*
1054 * We are going to replace the device path for a given devid,
1055 * make sure it's the same device if the device is mounted
1056 */
1057 if (device->bdev) {
1058 struct block_device *path_bdev;
1059
1060 path_bdev = lookup_bdev(path);
1061 if (IS_ERR(path_bdev)) {
1062 mutex_unlock(&fs_devices->device_list_mutex);
1063 return ERR_CAST(path_bdev);
1064 }
1065
1066 if (device->bdev != path_bdev) {
1067 bdput(path_bdev);
1068 mutex_unlock(&fs_devices->device_list_mutex);
1069 btrfs_warn_in_rcu(device->fs_info,
1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071 disk_super->fsid, devid,
1072 rcu_str_deref(device->name), path);
1073 return ERR_PTR(-EEXIST);
1074 }
1075 bdput(path_bdev);
1076 btrfs_info_in_rcu(device->fs_info,
1077 "device fsid %pU devid %llu moved old:%s new:%s",
1078 disk_super->fsid, devid,
1079 rcu_str_deref(device->name), path);
1080 }
1081
1082 name = rcu_string_strdup(path, GFP_NOFS);
1083 if (!name) {
1084 mutex_unlock(&fs_devices->device_list_mutex);
1085 return ERR_PTR(-ENOMEM);
1086 }
1087 rcu_string_free(device->name);
1088 rcu_assign_pointer(device->name, name);
1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1090 fs_devices->missing_devices--;
1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1092 }
1093 }
1094
1095 /*
1096 * Unmount does not free the btrfs_device struct but would zero
1097 * generation along with most of the other members. So just update
1098 * it back. We need it to pick the disk with largest generation
1099 * (as above).
1100 */
1101 if (!fs_devices->opened) {
1102 device->generation = found_transid;
1103 fs_devices->latest_generation = max_t(u64, found_transid,
1104 fs_devices->latest_generation);
1105 }
1106
1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
1109 mutex_unlock(&fs_devices->device_list_mutex);
1110 return device;
1111}
1112
1113static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114{
1115 struct btrfs_fs_devices *fs_devices;
1116 struct btrfs_device *device;
1117 struct btrfs_device *orig_dev;
1118 int ret = 0;
1119
1120 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1121 if (IS_ERR(fs_devices))
1122 return fs_devices;
1123
1124 mutex_lock(&orig->device_list_mutex);
1125 fs_devices->total_devices = orig->total_devices;
1126
1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1128 struct rcu_string *name;
1129
1130 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131 orig_dev->uuid);
1132 if (IS_ERR(device)) {
1133 ret = PTR_ERR(device);
1134 goto error;
1135 }
1136
1137 /*
1138 * This is ok to do without rcu read locked because we hold the
1139 * uuid mutex so nothing we touch in here is going to disappear.
1140 */
1141 if (orig_dev->name) {
1142 name = rcu_string_strdup(orig_dev->name->str,
1143 GFP_KERNEL);
1144 if (!name) {
1145 btrfs_free_device(device);
1146 ret = -ENOMEM;
1147 goto error;
1148 }
1149 rcu_assign_pointer(device->name, name);
1150 }
1151
1152 list_add(&device->dev_list, &fs_devices->devices);
1153 device->fs_devices = fs_devices;
1154 fs_devices->num_devices++;
1155 }
1156 mutex_unlock(&orig->device_list_mutex);
1157 return fs_devices;
1158error:
1159 mutex_unlock(&orig->device_list_mutex);
1160 free_fs_devices(fs_devices);
1161 return ERR_PTR(ret);
1162}
1163
1164/*
1165 * After we have read the system tree and know devids belonging to
1166 * this filesystem, remove the device which does not belong there.
1167 */
1168void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1169{
1170 struct btrfs_device *device, *next;
1171 struct btrfs_device *latest_dev = NULL;
1172
1173 mutex_lock(&uuid_mutex);
1174again:
1175 /* This is the initialized path, it is safe to release the devices. */
1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178 &device->dev_state)) {
1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180 &device->dev_state) &&
1181 (!latest_dev ||
1182 device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 }
1185 continue;
1186 }
1187
1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189 /*
1190 * In the first step, keep the device which has
1191 * the correct fsid and the devid that is used
1192 * for the dev_replace procedure.
1193 * In the second step, the dev_replace state is
1194 * read from the device tree and it is known
1195 * whether the procedure is really active or
1196 * not, which means whether this device is
1197 * used or whether it should be removed.
1198 */
1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200 &device->dev_state)) {
1201 continue;
1202 }
1203 }
1204 if (device->bdev) {
1205 blkdev_put(device->bdev, device->mode);
1206 device->bdev = NULL;
1207 fs_devices->open_devices--;
1208 }
1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1210 list_del_init(&device->dev_alloc_list);
1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213 &device->dev_state))
1214 fs_devices->rw_devices--;
1215 }
1216 list_del_init(&device->dev_list);
1217 fs_devices->num_devices--;
1218 btrfs_free_device(device);
1219 }
1220
1221 if (fs_devices->seed) {
1222 fs_devices = fs_devices->seed;
1223 goto again;
1224 }
1225
1226 fs_devices->latest_bdev = latest_dev->bdev;
1227
1228 mutex_unlock(&uuid_mutex);
1229}
1230
1231static void btrfs_close_bdev(struct btrfs_device *device)
1232{
1233 if (!device->bdev)
1234 return;
1235
1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1237 sync_blockdev(device->bdev);
1238 invalidate_bdev(device->bdev);
1239 }
1240
1241 blkdev_put(device->bdev, device->mode);
1242}
1243
1244static void btrfs_close_one_device(struct btrfs_device *device)
1245{
1246 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247 struct btrfs_device *new_device;
1248 struct rcu_string *name;
1249
1250 if (device->bdev)
1251 fs_devices->open_devices--;
1252
1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1254 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255 list_del_init(&device->dev_alloc_list);
1256 fs_devices->rw_devices--;
1257 }
1258
1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1260 fs_devices->missing_devices--;
1261
1262 btrfs_close_bdev(device);
1263
1264 new_device = btrfs_alloc_device(NULL, &device->devid,
1265 device->uuid);
1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268 /* Safe because we are under uuid_mutex */
1269 if (device->name) {
1270 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271 BUG_ON(!name); /* -ENOMEM */
1272 rcu_assign_pointer(new_device->name, name);
1273 }
1274
1275 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276 new_device->fs_devices = device->fs_devices;
1277
1278 synchronize_rcu();
1279 btrfs_free_device(device);
1280}
1281
1282static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1283{
1284 struct btrfs_device *device, *tmp;
1285
1286 if (--fs_devices->opened > 0)
1287 return 0;
1288
1289 mutex_lock(&fs_devices->device_list_mutex);
1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1291 btrfs_close_one_device(device);
1292 }
1293 mutex_unlock(&fs_devices->device_list_mutex);
1294
1295 WARN_ON(fs_devices->open_devices);
1296 WARN_ON(fs_devices->rw_devices);
1297 fs_devices->opened = 0;
1298 fs_devices->seeding = 0;
1299
1300 return 0;
1301}
1302
1303int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304{
1305 struct btrfs_fs_devices *seed_devices = NULL;
1306 int ret;
1307
1308 mutex_lock(&uuid_mutex);
1309 ret = close_fs_devices(fs_devices);
1310 if (!fs_devices->opened) {
1311 seed_devices = fs_devices->seed;
1312 fs_devices->seed = NULL;
1313 }
1314 mutex_unlock(&uuid_mutex);
1315
1316 while (seed_devices) {
1317 fs_devices = seed_devices;
1318 seed_devices = fs_devices->seed;
1319 close_fs_devices(fs_devices);
1320 free_fs_devices(fs_devices);
1321 }
1322 return ret;
1323}
1324
1325static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1326 fmode_t flags, void *holder)
1327{
1328 struct btrfs_device *device;
1329 struct btrfs_device *latest_dev = NULL;
1330 int ret = 0;
1331
1332 flags |= FMODE_EXCL;
1333
1334 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1335 /* Just open everything we can; ignore failures here */
1336 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1337 continue;
1338
1339 if (!latest_dev ||
1340 device->generation > latest_dev->generation)
1341 latest_dev = device;
1342 }
1343 if (fs_devices->open_devices == 0) {
1344 ret = -EINVAL;
1345 goto out;
1346 }
1347 fs_devices->opened = 1;
1348 fs_devices->latest_bdev = latest_dev->bdev;
1349 fs_devices->total_rw_bytes = 0;
1350out:
1351 return ret;
1352}
1353
1354static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1355{
1356 struct btrfs_device *dev1, *dev2;
1357
1358 dev1 = list_entry(a, struct btrfs_device, dev_list);
1359 dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361 if (dev1->devid < dev2->devid)
1362 return -1;
1363 else if (dev1->devid > dev2->devid)
1364 return 1;
1365 return 0;
1366}
1367
1368int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1369 fmode_t flags, void *holder)
1370{
1371 int ret;
1372
1373 lockdep_assert_held(&uuid_mutex);
1374
1375 mutex_lock(&fs_devices->device_list_mutex);
1376 if (fs_devices->opened) {
1377 fs_devices->opened++;
1378 ret = 0;
1379 } else {
1380 list_sort(NULL, &fs_devices->devices, devid_cmp);
1381 ret = open_fs_devices(fs_devices, flags, holder);
1382 }
1383 mutex_unlock(&fs_devices->device_list_mutex);
1384
1385 return ret;
1386}
1387
1388static void btrfs_release_disk_super(struct page *page)
1389{
1390 kunmap(page);
1391 put_page(page);
1392}
1393
1394static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395 struct page **page,
1396 struct btrfs_super_block **disk_super)
1397{
1398 void *p;
1399 pgoff_t index;
1400
1401 /* make sure our super fits in the device */
1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403 return 1;
1404
1405 /* make sure our super fits in the page */
1406 if (sizeof(**disk_super) > PAGE_SIZE)
1407 return 1;
1408
1409 /* make sure our super doesn't straddle pages on disk */
1410 index = bytenr >> PAGE_SHIFT;
1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412 return 1;
1413
1414 /* pull in the page with our super */
1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416 index, GFP_KERNEL);
1417
1418 if (IS_ERR_OR_NULL(*page))
1419 return 1;
1420
1421 p = kmap(*page);
1422
1423 /* align our pointer to the offset of the super block */
1424 *disk_super = p + offset_in_page(bytenr);
1425
1426 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428 btrfs_release_disk_super(*page);
1429 return 1;
1430 }
1431
1432 if ((*disk_super)->label[0] &&
1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436 return 0;
1437}
1438
1439int btrfs_forget_devices(const char *path)
1440{
1441 int ret;
1442
1443 mutex_lock(&uuid_mutex);
1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445 mutex_unlock(&uuid_mutex);
1446
1447 return ret;
1448}
1449
1450/*
1451 * Look for a btrfs signature on a device. This may be called out of the mount path
1452 * and we are not allowed to call set_blocksize during the scan. The superblock
1453 * is read via pagecache
1454 */
1455struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456 void *holder)
1457{
1458 struct btrfs_super_block *disk_super;
1459 bool new_device_added = false;
1460 struct btrfs_device *device = NULL;
1461 struct block_device *bdev;
1462 struct page *page;
1463 u64 bytenr;
1464
1465 lockdep_assert_held(&uuid_mutex);
1466
1467 /*
1468 * we would like to check all the supers, but that would make
1469 * a btrfs mount succeed after a mkfs from a different FS.
1470 * So, we need to add a special mount option to scan for
1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472 */
1473 bytenr = btrfs_sb_offset(0);
1474 flags |= FMODE_EXCL;
1475
1476 bdev = blkdev_get_by_path(path, flags, holder);
1477 if (IS_ERR(bdev))
1478 return ERR_CAST(bdev);
1479
1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1481 device = ERR_PTR(-EINVAL);
1482 goto error_bdev_put;
1483 }
1484
1485 device = device_list_add(path, disk_super, &new_device_added);
1486 if (!IS_ERR(device)) {
1487 if (new_device_added)
1488 btrfs_free_stale_devices(path, device);
1489 }
1490
1491 btrfs_release_disk_super(page);
1492
1493error_bdev_put:
1494 blkdev_put(bdev, flags);
1495
1496 return device;
1497}
1498
1499/*
1500 * Try to find a chunk that intersects [start, start + len] range and when one
1501 * such is found, record the end of it in *start
1502 */
1503static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504 u64 len)
1505{
1506 u64 physical_start, physical_end;
1507
1508 lockdep_assert_held(&device->fs_info->chunk_mutex);
1509
1510 if (!find_first_extent_bit(&device->alloc_state, *start,
1511 &physical_start, &physical_end,
1512 CHUNK_ALLOCATED, NULL)) {
1513
1514 if (in_range(physical_start, *start, len) ||
1515 in_range(*start, physical_start,
1516 physical_end - physical_start)) {
1517 *start = physical_end + 1;
1518 return true;
1519 }
1520 }
1521 return false;
1522}
1523
1524
1525/*
1526 * find_free_dev_extent_start - find free space in the specified device
1527 * @device: the device which we search the free space in
1528 * @num_bytes: the size of the free space that we need
1529 * @search_start: the position from which to begin the search
1530 * @start: store the start of the free space.
1531 * @len: the size of the free space. that we find, or the size
1532 * of the max free space if we don't find suitable free space
1533 *
1534 * this uses a pretty simple search, the expectation is that it is
1535 * called very infrequently and that a given device has a small number
1536 * of extents
1537 *
1538 * @start is used to store the start of the free space if we find. But if we
1539 * don't find suitable free space, it will be used to store the start position
1540 * of the max free space.
1541 *
1542 * @len is used to store the size of the free space that we find.
1543 * But if we don't find suitable free space, it is used to store the size of
1544 * the max free space.
1545 *
1546 * NOTE: This function will search *commit* root of device tree, and does extra
1547 * check to ensure dev extents are not double allocated.
1548 * This makes the function safe to allocate dev extents but may not report
1549 * correct usable device space, as device extent freed in current transaction
1550 * is not reported as avaiable.
1551 */
1552static int find_free_dev_extent_start(struct btrfs_device *device,
1553 u64 num_bytes, u64 search_start, u64 *start,
1554 u64 *len)
1555{
1556 struct btrfs_fs_info *fs_info = device->fs_info;
1557 struct btrfs_root *root = fs_info->dev_root;
1558 struct btrfs_key key;
1559 struct btrfs_dev_extent *dev_extent;
1560 struct btrfs_path *path;
1561 u64 hole_size;
1562 u64 max_hole_start;
1563 u64 max_hole_size;
1564 u64 extent_end;
1565 u64 search_end = device->total_bytes;
1566 int ret;
1567 int slot;
1568 struct extent_buffer *l;
1569
1570 /*
1571 * We don't want to overwrite the superblock on the drive nor any area
1572 * used by the boot loader (grub for example), so we make sure to start
1573 * at an offset of at least 1MB.
1574 */
1575 search_start = max_t(u64, search_start, SZ_1M);
1576
1577 path = btrfs_alloc_path();
1578 if (!path)
1579 return -ENOMEM;
1580
1581 max_hole_start = search_start;
1582 max_hole_size = 0;
1583
1584again:
1585 if (search_start >= search_end ||
1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1587 ret = -ENOSPC;
1588 goto out;
1589 }
1590
1591 path->reada = READA_FORWARD;
1592 path->search_commit_root = 1;
1593 path->skip_locking = 1;
1594
1595 key.objectid = device->devid;
1596 key.offset = search_start;
1597 key.type = BTRFS_DEV_EXTENT_KEY;
1598
1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600 if (ret < 0)
1601 goto out;
1602 if (ret > 0) {
1603 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604 if (ret < 0)
1605 goto out;
1606 }
1607
1608 while (1) {
1609 l = path->nodes[0];
1610 slot = path->slots[0];
1611 if (slot >= btrfs_header_nritems(l)) {
1612 ret = btrfs_next_leaf(root, path);
1613 if (ret == 0)
1614 continue;
1615 if (ret < 0)
1616 goto out;
1617
1618 break;
1619 }
1620 btrfs_item_key_to_cpu(l, &key, slot);
1621
1622 if (key.objectid < device->devid)
1623 goto next;
1624
1625 if (key.objectid > device->devid)
1626 break;
1627
1628 if (key.type != BTRFS_DEV_EXTENT_KEY)
1629 goto next;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633
1634 /*
1635 * Have to check before we set max_hole_start, otherwise
1636 * we could end up sending back this offset anyway.
1637 */
1638 if (contains_pending_extent(device, &search_start,
1639 hole_size)) {
1640 if (key.offset >= search_start)
1641 hole_size = key.offset - search_start;
1642 else
1643 hole_size = 0;
1644 }
1645
1646 if (hole_size > max_hole_size) {
1647 max_hole_start = search_start;
1648 max_hole_size = hole_size;
1649 }
1650
1651 /*
1652 * If this free space is greater than which we need,
1653 * it must be the max free space that we have found
1654 * until now, so max_hole_start must point to the start
1655 * of this free space and the length of this free space
1656 * is stored in max_hole_size. Thus, we return
1657 * max_hole_start and max_hole_size and go back to the
1658 * caller.
1659 */
1660 if (hole_size >= num_bytes) {
1661 ret = 0;
1662 goto out;
1663 }
1664 }
1665
1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1667 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 dev_extent);
1669 if (extent_end > search_start)
1670 search_start = extent_end;
1671next:
1672 path->slots[0]++;
1673 cond_resched();
1674 }
1675
1676 /*
1677 * At this point, search_start should be the end of
1678 * allocated dev extents, and when shrinking the device,
1679 * search_end may be smaller than search_start.
1680 */
1681 if (search_end > search_start) {
1682 hole_size = search_end - search_start;
1683
1684 if (contains_pending_extent(device, &search_start, hole_size)) {
1685 btrfs_release_path(path);
1686 goto again;
1687 }
1688
1689 if (hole_size > max_hole_size) {
1690 max_hole_start = search_start;
1691 max_hole_size = hole_size;
1692 }
1693 }
1694
1695 /* See above. */
1696 if (max_hole_size < num_bytes)
1697 ret = -ENOSPC;
1698 else
1699 ret = 0;
1700
1701out:
1702 btrfs_free_path(path);
1703 *start = max_hole_start;
1704 if (len)
1705 *len = max_hole_size;
1706 return ret;
1707}
1708
1709int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1710 u64 *start, u64 *len)
1711{
1712 /* FIXME use last free of some kind */
1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1714}
1715
1716static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1717 struct btrfs_device *device,
1718 u64 start, u64 *dev_extent_len)
1719{
1720 struct btrfs_fs_info *fs_info = device->fs_info;
1721 struct btrfs_root *root = fs_info->dev_root;
1722 int ret;
1723 struct btrfs_path *path;
1724 struct btrfs_key key;
1725 struct btrfs_key found_key;
1726 struct extent_buffer *leaf = NULL;
1727 struct btrfs_dev_extent *extent = NULL;
1728
1729 path = btrfs_alloc_path();
1730 if (!path)
1731 return -ENOMEM;
1732
1733 key.objectid = device->devid;
1734 key.offset = start;
1735 key.type = BTRFS_DEV_EXTENT_KEY;
1736again:
1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738 if (ret > 0) {
1739 ret = btrfs_previous_item(root, path, key.objectid,
1740 BTRFS_DEV_EXTENT_KEY);
1741 if (ret)
1742 goto out;
1743 leaf = path->nodes[0];
1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745 extent = btrfs_item_ptr(leaf, path->slots[0],
1746 struct btrfs_dev_extent);
1747 BUG_ON(found_key.offset > start || found_key.offset +
1748 btrfs_dev_extent_length(leaf, extent) < start);
1749 key = found_key;
1750 btrfs_release_path(path);
1751 goto again;
1752 } else if (ret == 0) {
1753 leaf = path->nodes[0];
1754 extent = btrfs_item_ptr(leaf, path->slots[0],
1755 struct btrfs_dev_extent);
1756 } else {
1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758 goto out;
1759 }
1760
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
1763 ret = btrfs_del_item(trans, root, path);
1764 if (ret) {
1765 btrfs_handle_fs_error(fs_info, ret,
1766 "Failed to remove dev extent item");
1767 } else {
1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1769 }
1770out:
1771 btrfs_free_path(path);
1772 return ret;
1773}
1774
1775static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776 struct btrfs_device *device,
1777 u64 chunk_offset, u64 start, u64 num_bytes)
1778{
1779 int ret;
1780 struct btrfs_path *path;
1781 struct btrfs_fs_info *fs_info = device->fs_info;
1782 struct btrfs_root *root = fs_info->dev_root;
1783 struct btrfs_dev_extent *extent;
1784 struct extent_buffer *leaf;
1785 struct btrfs_key key;
1786
1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 key.objectid = device->devid;
1794 key.offset = start;
1795 key.type = BTRFS_DEV_EXTENT_KEY;
1796 ret = btrfs_insert_empty_item(trans, root, path, &key,
1797 sizeof(*extent));
1798 if (ret)
1799 goto out;
1800
1801 leaf = path->nodes[0];
1802 extent = btrfs_item_ptr(leaf, path->slots[0],
1803 struct btrfs_dev_extent);
1804 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805 BTRFS_CHUNK_TREE_OBJECTID);
1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811 btrfs_mark_buffer_dirty(leaf);
1812out:
1813 btrfs_free_path(path);
1814 return ret;
1815}
1816
1817static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818{
1819 struct extent_map_tree *em_tree;
1820 struct extent_map *em;
1821 struct rb_node *n;
1822 u64 ret = 0;
1823
1824 em_tree = &fs_info->mapping_tree;
1825 read_lock(&em_tree->lock);
1826 n = rb_last(&em_tree->map.rb_root);
1827 if (n) {
1828 em = rb_entry(n, struct extent_map, rb_node);
1829 ret = em->start + em->len;
1830 }
1831 read_unlock(&em_tree->lock);
1832
1833 return ret;
1834}
1835
1836static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837 u64 *devid_ret)
1838{
1839 int ret;
1840 struct btrfs_key key;
1841 struct btrfs_key found_key;
1842 struct btrfs_path *path;
1843
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
1847
1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849 key.type = BTRFS_DEV_ITEM_KEY;
1850 key.offset = (u64)-1;
1851
1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853 if (ret < 0)
1854 goto error;
1855
1856 if (ret == 0) {
1857 /* Corruption */
1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859 ret = -EUCLEAN;
1860 goto error;
1861 }
1862
1863 ret = btrfs_previous_item(fs_info->chunk_root, path,
1864 BTRFS_DEV_ITEMS_OBJECTID,
1865 BTRFS_DEV_ITEM_KEY);
1866 if (ret) {
1867 *devid_ret = 1;
1868 } else {
1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870 path->slots[0]);
1871 *devid_ret = found_key.offset + 1;
1872 }
1873 ret = 0;
1874error:
1875 btrfs_free_path(path);
1876 return ret;
1877}
1878
1879/*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
1883static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1884 struct btrfs_device *device)
1885{
1886 int ret;
1887 struct btrfs_path *path;
1888 struct btrfs_dev_item *dev_item;
1889 struct extent_buffer *leaf;
1890 struct btrfs_key key;
1891 unsigned long ptr;
1892
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.type = BTRFS_DEV_ITEM_KEY;
1899 key.offset = device->devid;
1900
1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902 &key, sizeof(*dev_item));
1903 if (ret)
1904 goto out;
1905
1906 leaf = path->nodes[0];
1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909 btrfs_set_device_id(leaf, dev_item, device->devid);
1910 btrfs_set_device_generation(leaf, dev_item, 0);
1911 btrfs_set_device_type(leaf, dev_item, device->type);
1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1915 btrfs_set_device_total_bytes(leaf, dev_item,
1916 btrfs_device_get_disk_total_bytes(device));
1917 btrfs_set_device_bytes_used(leaf, dev_item,
1918 btrfs_device_get_bytes_used(device));
1919 btrfs_set_device_group(leaf, dev_item, 0);
1920 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1922 btrfs_set_device_start_offset(leaf, dev_item, 0);
1923
1924 ptr = btrfs_device_uuid(dev_item);
1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1926 ptr = btrfs_device_fsid(dev_item);
1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928 ptr, BTRFS_FSID_SIZE);
1929 btrfs_mark_buffer_dirty(leaf);
1930
1931 ret = 0;
1932out:
1933 btrfs_free_path(path);
1934 return ret;
1935}
1936
1937/*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
1940 */
1941static void update_dev_time(const char *path_name)
1942{
1943 struct file *filp;
1944
1945 filp = filp_open(path_name, O_RDWR, 0);
1946 if (IS_ERR(filp))
1947 return;
1948 file_update_time(filp);
1949 filp_close(filp, NULL);
1950}
1951
1952static int btrfs_rm_dev_item(struct btrfs_device *device)
1953{
1954 struct btrfs_root *root = device->fs_info->chunk_root;
1955 int ret;
1956 struct btrfs_path *path;
1957 struct btrfs_key key;
1958 struct btrfs_trans_handle *trans;
1959
1960 path = btrfs_alloc_path();
1961 if (!path)
1962 return -ENOMEM;
1963
1964 trans = btrfs_start_transaction(root, 0);
1965 if (IS_ERR(trans)) {
1966 btrfs_free_path(path);
1967 return PTR_ERR(trans);
1968 }
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = device->devid;
1972
1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1974 if (ret) {
1975 if (ret > 0)
1976 ret = -ENOENT;
1977 btrfs_abort_transaction(trans, ret);
1978 btrfs_end_transaction(trans);
1979 goto out;
1980 }
1981
1982 ret = btrfs_del_item(trans, root, path);
1983 if (ret) {
1984 btrfs_abort_transaction(trans, ret);
1985 btrfs_end_transaction(trans);
1986 }
1987
1988out:
1989 btrfs_free_path(path);
1990 if (!ret)
1991 ret = btrfs_commit_transaction(trans);
1992 return ret;
1993}
1994
1995/*
1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997 * filesystem. It's up to the caller to adjust that number regarding eg. device
1998 * replace.
1999 */
2000static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001 u64 num_devices)
2002{
2003 u64 all_avail;
2004 unsigned seq;
2005 int i;
2006
2007 do {
2008 seq = read_seqbegin(&fs_info->profiles_lock);
2009
2010 all_avail = fs_info->avail_data_alloc_bits |
2011 fs_info->avail_system_alloc_bits |
2012 fs_info->avail_metadata_alloc_bits;
2013 } while (read_seqretry(&fs_info->profiles_lock, seq));
2014
2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2016 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2017 continue;
2018
2019 if (num_devices < btrfs_raid_array[i].devs_min) {
2020 int ret = btrfs_raid_array[i].mindev_error;
2021
2022 if (ret)
2023 return ret;
2024 }
2025 }
2026
2027 return 0;
2028}
2029
2030static struct btrfs_device * btrfs_find_next_active_device(
2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2032{
2033 struct btrfs_device *next_device;
2034
2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036 if (next_device != device &&
2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038 && next_device->bdev)
2039 return next_device;
2040 }
2041
2042 return NULL;
2043}
2044
2045/*
2046 * Helper function to check if the given device is part of s_bdev / latest_bdev
2047 * and replace it with the provided or the next active device, in the context
2048 * where this function called, there should be always be another device (or
2049 * this_dev) which is active.
2050 */
2051void btrfs_assign_next_active_device(struct btrfs_device *device,
2052 struct btrfs_device *this_dev)
2053{
2054 struct btrfs_fs_info *fs_info = device->fs_info;
2055 struct btrfs_device *next_device;
2056
2057 if (this_dev)
2058 next_device = this_dev;
2059 else
2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061 device);
2062 ASSERT(next_device);
2063
2064 if (fs_info->sb->s_bdev &&
2065 (fs_info->sb->s_bdev == device->bdev))
2066 fs_info->sb->s_bdev = next_device->bdev;
2067
2068 if (fs_info->fs_devices->latest_bdev == device->bdev)
2069 fs_info->fs_devices->latest_bdev = next_device->bdev;
2070}
2071
2072/*
2073 * Return btrfs_fs_devices::num_devices excluding the device that's being
2074 * currently replaced.
2075 */
2076static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077{
2078 u64 num_devices = fs_info->fs_devices->num_devices;
2079
2080 down_read(&fs_info->dev_replace.rwsem);
2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082 ASSERT(num_devices > 1);
2083 num_devices--;
2084 }
2085 up_read(&fs_info->dev_replace.rwsem);
2086
2087 return num_devices;
2088}
2089
2090int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091 u64 devid)
2092{
2093 struct btrfs_device *device;
2094 struct btrfs_fs_devices *cur_devices;
2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2096 u64 num_devices;
2097 int ret = 0;
2098
2099 mutex_lock(&uuid_mutex);
2100
2101 num_devices = btrfs_num_devices(fs_info);
2102
2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2104 if (ret)
2105 goto out;
2106
2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109 if (IS_ERR(device)) {
2110 if (PTR_ERR(device) == -ENOENT &&
2111 strcmp(device_path, "missing") == 0)
2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113 else
2114 ret = PTR_ERR(device);
2115 goto out;
2116 }
2117
2118 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119 btrfs_warn_in_rcu(fs_info,
2120 "cannot remove device %s (devid %llu) due to active swapfile",
2121 rcu_str_deref(device->name), device->devid);
2122 ret = -ETXTBSY;
2123 goto out;
2124 }
2125
2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2128 goto out;
2129 }
2130
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132 fs_info->fs_devices->rw_devices == 1) {
2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2134 goto out;
2135 }
2136
2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2138 mutex_lock(&fs_info->chunk_mutex);
2139 list_del_init(&device->dev_alloc_list);
2140 device->fs_devices->rw_devices--;
2141 mutex_unlock(&fs_info->chunk_mutex);
2142 }
2143
2144 mutex_unlock(&uuid_mutex);
2145 ret = btrfs_shrink_device(device, 0);
2146 mutex_lock(&uuid_mutex);
2147 if (ret)
2148 goto error_undo;
2149
2150 /*
2151 * TODO: the superblock still includes this device in its num_devices
2152 * counter although write_all_supers() is not locked out. This
2153 * could give a filesystem state which requires a degraded mount.
2154 */
2155 ret = btrfs_rm_dev_item(device);
2156 if (ret)
2157 goto error_undo;
2158
2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2160 btrfs_scrub_cancel_dev(device);
2161
2162 /*
2163 * the device list mutex makes sure that we don't change
2164 * the device list while someone else is writing out all
2165 * the device supers. Whoever is writing all supers, should
2166 * lock the device list mutex before getting the number of
2167 * devices in the super block (super_copy). Conversely,
2168 * whoever updates the number of devices in the super block
2169 * (super_copy) should hold the device list mutex.
2170 */
2171
2172 /*
2173 * In normal cases the cur_devices == fs_devices. But in case
2174 * of deleting a seed device, the cur_devices should point to
2175 * its own fs_devices listed under the fs_devices->seed.
2176 */
2177 cur_devices = device->fs_devices;
2178 mutex_lock(&fs_devices->device_list_mutex);
2179 list_del_rcu(&device->dev_list);
2180
2181 cur_devices->num_devices--;
2182 cur_devices->total_devices--;
2183 /* Update total_devices of the parent fs_devices if it's seed */
2184 if (cur_devices != fs_devices)
2185 fs_devices->total_devices--;
2186
2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2188 cur_devices->missing_devices--;
2189
2190 btrfs_assign_next_active_device(device, NULL);
2191
2192 if (device->bdev) {
2193 cur_devices->open_devices--;
2194 /* remove sysfs entry */
2195 btrfs_sysfs_rm_device_link(fs_devices, device);
2196 }
2197
2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2200 mutex_unlock(&fs_devices->device_list_mutex);
2201
2202 /*
2203 * at this point, the device is zero sized and detached from
2204 * the devices list. All that's left is to zero out the old
2205 * supers and free the device.
2206 */
2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2208 btrfs_scratch_superblocks(device->bdev, device->name->str);
2209
2210 btrfs_close_bdev(device);
2211 synchronize_rcu();
2212 btrfs_free_device(device);
2213
2214 if (cur_devices->open_devices == 0) {
2215 while (fs_devices) {
2216 if (fs_devices->seed == cur_devices) {
2217 fs_devices->seed = cur_devices->seed;
2218 break;
2219 }
2220 fs_devices = fs_devices->seed;
2221 }
2222 cur_devices->seed = NULL;
2223 close_fs_devices(cur_devices);
2224 free_fs_devices(cur_devices);
2225 }
2226
2227out:
2228 mutex_unlock(&uuid_mutex);
2229 return ret;
2230
2231error_undo:
2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2233 mutex_lock(&fs_info->chunk_mutex);
2234 list_add(&device->dev_alloc_list,
2235 &fs_devices->alloc_list);
2236 device->fs_devices->rw_devices++;
2237 mutex_unlock(&fs_info->chunk_mutex);
2238 }
2239 goto out;
2240}
2241
2242void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2243{
2244 struct btrfs_fs_devices *fs_devices;
2245
2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2247
2248 /*
2249 * in case of fs with no seed, srcdev->fs_devices will point
2250 * to fs_devices of fs_info. However when the dev being replaced is
2251 * a seed dev it will point to the seed's local fs_devices. In short
2252 * srcdev will have its correct fs_devices in both the cases.
2253 */
2254 fs_devices = srcdev->fs_devices;
2255
2256 list_del_rcu(&srcdev->dev_list);
2257 list_del(&srcdev->dev_alloc_list);
2258 fs_devices->num_devices--;
2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2260 fs_devices->missing_devices--;
2261
2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2263 fs_devices->rw_devices--;
2264
2265 if (srcdev->bdev)
2266 fs_devices->open_devices--;
2267}
2268
2269void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2270{
2271 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2273
2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2275 /* zero out the old super if it is writable */
2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277 }
2278
2279 btrfs_close_bdev(srcdev);
2280 synchronize_rcu();
2281 btrfs_free_device(srcdev);
2282
2283 /* if this is no devs we rather delete the fs_devices */
2284 if (!fs_devices->num_devices) {
2285 struct btrfs_fs_devices *tmp_fs_devices;
2286
2287 /*
2288 * On a mounted FS, num_devices can't be zero unless it's a
2289 * seed. In case of a seed device being replaced, the replace
2290 * target added to the sprout FS, so there will be no more
2291 * device left under the seed FS.
2292 */
2293 ASSERT(fs_devices->seeding);
2294
2295 tmp_fs_devices = fs_info->fs_devices;
2296 while (tmp_fs_devices) {
2297 if (tmp_fs_devices->seed == fs_devices) {
2298 tmp_fs_devices->seed = fs_devices->seed;
2299 break;
2300 }
2301 tmp_fs_devices = tmp_fs_devices->seed;
2302 }
2303 fs_devices->seed = NULL;
2304 close_fs_devices(fs_devices);
2305 free_fs_devices(fs_devices);
2306 }
2307}
2308
2309void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2310{
2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2312
2313 WARN_ON(!tgtdev);
2314 mutex_lock(&fs_devices->device_list_mutex);
2315
2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2317
2318 if (tgtdev->bdev)
2319 fs_devices->open_devices--;
2320
2321 fs_devices->num_devices--;
2322
2323 btrfs_assign_next_active_device(tgtdev, NULL);
2324
2325 list_del_rcu(&tgtdev->dev_list);
2326
2327 mutex_unlock(&fs_devices->device_list_mutex);
2328
2329 /*
2330 * The update_dev_time() with in btrfs_scratch_superblocks()
2331 * may lead to a call to btrfs_show_devname() which will try
2332 * to hold device_list_mutex. And here this device
2333 * is already out of device list, so we don't have to hold
2334 * the device_list_mutex lock.
2335 */
2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2337
2338 btrfs_close_bdev(tgtdev);
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
2341}
2342
2343static struct btrfs_device *btrfs_find_device_by_path(
2344 struct btrfs_fs_info *fs_info, const char *device_path)
2345{
2346 int ret = 0;
2347 struct btrfs_super_block *disk_super;
2348 u64 devid;
2349 u8 *dev_uuid;
2350 struct block_device *bdev;
2351 struct buffer_head *bh;
2352 struct btrfs_device *device;
2353
2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2355 fs_info->bdev_holder, 0, &bdev, &bh);
2356 if (ret)
2357 return ERR_PTR(ret);
2358 disk_super = (struct btrfs_super_block *)bh->b_data;
2359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 dev_uuid = disk_super->dev_item.uuid;
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363 disk_super->metadata_uuid, true);
2364 else
2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2366 disk_super->fsid, true);
2367
2368 brelse(bh);
2369 if (!device)
2370 device = ERR_PTR(-ENOENT);
2371 blkdev_put(bdev, FMODE_READ);
2372 return device;
2373}
2374
2375/*
2376 * Lookup a device given by device id, or the path if the id is 0.
2377 */
2378struct btrfs_device *btrfs_find_device_by_devspec(
2379 struct btrfs_fs_info *fs_info, u64 devid,
2380 const char *device_path)
2381{
2382 struct btrfs_device *device;
2383
2384 if (devid) {
2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2386 NULL, true);
2387 if (!device)
2388 return ERR_PTR(-ENOENT);
2389 return device;
2390 }
2391
2392 if (!device_path || !device_path[0])
2393 return ERR_PTR(-EINVAL);
2394
2395 if (strcmp(device_path, "missing") == 0) {
2396 /* Find first missing device */
2397 list_for_each_entry(device, &fs_info->fs_devices->devices,
2398 dev_list) {
2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400 &device->dev_state) && !device->bdev)
2401 return device;
2402 }
2403 return ERR_PTR(-ENOENT);
2404 }
2405
2406 return btrfs_find_device_by_path(fs_info, device_path);
2407}
2408
2409/*
2410 * does all the dirty work required for changing file system's UUID.
2411 */
2412static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2413{
2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2415 struct btrfs_fs_devices *old_devices;
2416 struct btrfs_fs_devices *seed_devices;
2417 struct btrfs_super_block *disk_super = fs_info->super_copy;
2418 struct btrfs_device *device;
2419 u64 super_flags;
2420
2421 lockdep_assert_held(&uuid_mutex);
2422 if (!fs_devices->seeding)
2423 return -EINVAL;
2424
2425 seed_devices = alloc_fs_devices(NULL, NULL);
2426 if (IS_ERR(seed_devices))
2427 return PTR_ERR(seed_devices);
2428
2429 old_devices = clone_fs_devices(fs_devices);
2430 if (IS_ERR(old_devices)) {
2431 kfree(seed_devices);
2432 return PTR_ERR(old_devices);
2433 }
2434
2435 list_add(&old_devices->fs_list, &fs_uuids);
2436
2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438 seed_devices->opened = 1;
2439 INIT_LIST_HEAD(&seed_devices->devices);
2440 INIT_LIST_HEAD(&seed_devices->alloc_list);
2441 mutex_init(&seed_devices->device_list_mutex);
2442
2443 mutex_lock(&fs_devices->device_list_mutex);
2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445 synchronize_rcu);
2446 list_for_each_entry(device, &seed_devices->devices, dev_list)
2447 device->fs_devices = seed_devices;
2448
2449 mutex_lock(&fs_info->chunk_mutex);
2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2451 mutex_unlock(&fs_info->chunk_mutex);
2452
2453 fs_devices->seeding = 0;
2454 fs_devices->num_devices = 0;
2455 fs_devices->open_devices = 0;
2456 fs_devices->missing_devices = 0;
2457 fs_devices->rotating = 0;
2458 fs_devices->seed = seed_devices;
2459
2460 generate_random_uuid(fs_devices->fsid);
2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2463 mutex_unlock(&fs_devices->device_list_mutex);
2464
2465 super_flags = btrfs_super_flags(disk_super) &
2466 ~BTRFS_SUPER_FLAG_SEEDING;
2467 btrfs_set_super_flags(disk_super, super_flags);
2468
2469 return 0;
2470}
2471
2472/*
2473 * Store the expected generation for seed devices in device items.
2474 */
2475static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2476{
2477 struct btrfs_fs_info *fs_info = trans->fs_info;
2478 struct btrfs_root *root = fs_info->chunk_root;
2479 struct btrfs_path *path;
2480 struct extent_buffer *leaf;
2481 struct btrfs_dev_item *dev_item;
2482 struct btrfs_device *device;
2483 struct btrfs_key key;
2484 u8 fs_uuid[BTRFS_FSID_SIZE];
2485 u8 dev_uuid[BTRFS_UUID_SIZE];
2486 u64 devid;
2487 int ret;
2488
2489 path = btrfs_alloc_path();
2490 if (!path)
2491 return -ENOMEM;
2492
2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494 key.offset = 0;
2495 key.type = BTRFS_DEV_ITEM_KEY;
2496
2497 while (1) {
2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499 if (ret < 0)
2500 goto error;
2501
2502 leaf = path->nodes[0];
2503next_slot:
2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505 ret = btrfs_next_leaf(root, path);
2506 if (ret > 0)
2507 break;
2508 if (ret < 0)
2509 goto error;
2510 leaf = path->nodes[0];
2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2512 btrfs_release_path(path);
2513 continue;
2514 }
2515
2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518 key.type != BTRFS_DEV_ITEM_KEY)
2519 break;
2520
2521 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522 struct btrfs_dev_item);
2523 devid = btrfs_device_id(leaf, dev_item);
2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2525 BTRFS_UUID_SIZE);
2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2527 BTRFS_FSID_SIZE);
2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2529 fs_uuid, true);
2530 BUG_ON(!device); /* Logic error */
2531
2532 if (device->fs_devices->seeding) {
2533 btrfs_set_device_generation(leaf, dev_item,
2534 device->generation);
2535 btrfs_mark_buffer_dirty(leaf);
2536 }
2537
2538 path->slots[0]++;
2539 goto next_slot;
2540 }
2541 ret = 0;
2542error:
2543 btrfs_free_path(path);
2544 return ret;
2545}
2546
2547int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2548{
2549 struct btrfs_root *root = fs_info->dev_root;
2550 struct request_queue *q;
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_device *device;
2553 struct block_device *bdev;
2554 struct super_block *sb = fs_info->sb;
2555 struct rcu_string *name;
2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2557 u64 orig_super_total_bytes;
2558 u64 orig_super_num_devices;
2559 int seeding_dev = 0;
2560 int ret = 0;
2561 bool unlocked = false;
2562
2563 if (sb_rdonly(sb) && !fs_devices->seeding)
2564 return -EROFS;
2565
2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2567 fs_info->bdev_holder);
2568 if (IS_ERR(bdev))
2569 return PTR_ERR(bdev);
2570
2571 if (fs_devices->seeding) {
2572 seeding_dev = 1;
2573 down_write(&sb->s_umount);
2574 mutex_lock(&uuid_mutex);
2575 }
2576
2577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2578
2579 mutex_lock(&fs_devices->device_list_mutex);
2580 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2581 if (device->bdev == bdev) {
2582 ret = -EEXIST;
2583 mutex_unlock(
2584 &fs_devices->device_list_mutex);
2585 goto error;
2586 }
2587 }
2588 mutex_unlock(&fs_devices->device_list_mutex);
2589
2590 device = btrfs_alloc_device(fs_info, NULL, NULL);
2591 if (IS_ERR(device)) {
2592 /* we can safely leave the fs_devices entry around */
2593 ret = PTR_ERR(device);
2594 goto error;
2595 }
2596
2597 name = rcu_string_strdup(device_path, GFP_KERNEL);
2598 if (!name) {
2599 ret = -ENOMEM;
2600 goto error_free_device;
2601 }
2602 rcu_assign_pointer(device->name, name);
2603
2604 trans = btrfs_start_transaction(root, 0);
2605 if (IS_ERR(trans)) {
2606 ret = PTR_ERR(trans);
2607 goto error_free_device;
2608 }
2609
2610 q = bdev_get_queue(bdev);
2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2612 device->generation = trans->transid;
2613 device->io_width = fs_info->sectorsize;
2614 device->io_align = fs_info->sectorsize;
2615 device->sector_size = fs_info->sectorsize;
2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617 fs_info->sectorsize);
2618 device->disk_total_bytes = device->total_bytes;
2619 device->commit_total_bytes = device->total_bytes;
2620 device->fs_info = fs_info;
2621 device->bdev = bdev;
2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2624 device->mode = FMODE_EXCL;
2625 device->dev_stats_valid = 1;
2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2627
2628 if (seeding_dev) {
2629 sb->s_flags &= ~SB_RDONLY;
2630 ret = btrfs_prepare_sprout(fs_info);
2631 if (ret) {
2632 btrfs_abort_transaction(trans, ret);
2633 goto error_trans;
2634 }
2635 }
2636
2637 device->fs_devices = fs_devices;
2638
2639 mutex_lock(&fs_devices->device_list_mutex);
2640 mutex_lock(&fs_info->chunk_mutex);
2641 list_add_rcu(&device->dev_list, &fs_devices->devices);
2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643 fs_devices->num_devices++;
2644 fs_devices->open_devices++;
2645 fs_devices->rw_devices++;
2646 fs_devices->total_devices++;
2647 fs_devices->total_rw_bytes += device->total_bytes;
2648
2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2650
2651 if (!blk_queue_nonrot(q))
2652 fs_devices->rotating = 1;
2653
2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2655 btrfs_set_super_total_bytes(fs_info->super_copy,
2656 round_down(orig_super_total_bytes + device->total_bytes,
2657 fs_info->sectorsize));
2658
2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660 btrfs_set_super_num_devices(fs_info->super_copy,
2661 orig_super_num_devices + 1);
2662
2663 /* add sysfs device entry */
2664 btrfs_sysfs_add_device_link(fs_devices, device);
2665
2666 /*
2667 * we've got more storage, clear any full flags on the space
2668 * infos
2669 */
2670 btrfs_clear_space_info_full(fs_info);
2671
2672 mutex_unlock(&fs_info->chunk_mutex);
2673 mutex_unlock(&fs_devices->device_list_mutex);
2674
2675 if (seeding_dev) {
2676 mutex_lock(&fs_info->chunk_mutex);
2677 ret = init_first_rw_device(trans);
2678 mutex_unlock(&fs_info->chunk_mutex);
2679 if (ret) {
2680 btrfs_abort_transaction(trans, ret);
2681 goto error_sysfs;
2682 }
2683 }
2684
2685 ret = btrfs_add_dev_item(trans, device);
2686 if (ret) {
2687 btrfs_abort_transaction(trans, ret);
2688 goto error_sysfs;
2689 }
2690
2691 if (seeding_dev) {
2692 ret = btrfs_finish_sprout(trans);
2693 if (ret) {
2694 btrfs_abort_transaction(trans, ret);
2695 goto error_sysfs;
2696 }
2697
2698 btrfs_sysfs_update_sprout_fsid(fs_devices,
2699 fs_info->fs_devices->fsid);
2700 }
2701
2702 ret = btrfs_commit_transaction(trans);
2703
2704 if (seeding_dev) {
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
2707 unlocked = true;
2708
2709 if (ret) /* transaction commit */
2710 return ret;
2711
2712 ret = btrfs_relocate_sys_chunks(fs_info);
2713 if (ret < 0)
2714 btrfs_handle_fs_error(fs_info, ret,
2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2719 return 0;
2720 ret = PTR_ERR(trans);
2721 trans = NULL;
2722 goto error_sysfs;
2723 }
2724 ret = btrfs_commit_transaction(trans);
2725 }
2726
2727 /* Update ctime/mtime for libblkid */
2728 update_dev_time(device_path);
2729 return ret;
2730
2731error_sysfs:
2732 btrfs_sysfs_rm_device_link(fs_devices, device);
2733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 mutex_lock(&fs_info->chunk_mutex);
2735 list_del_rcu(&device->dev_list);
2736 list_del(&device->dev_alloc_list);
2737 fs_info->fs_devices->num_devices--;
2738 fs_info->fs_devices->open_devices--;
2739 fs_info->fs_devices->rw_devices--;
2740 fs_info->fs_devices->total_devices--;
2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 btrfs_set_super_total_bytes(fs_info->super_copy,
2744 orig_super_total_bytes);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices);
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749error_trans:
2750 if (seeding_dev)
2751 sb->s_flags |= SB_RDONLY;
2752 if (trans)
2753 btrfs_end_transaction(trans);
2754error_free_device:
2755 btrfs_free_device(device);
2756error:
2757 blkdev_put(bdev, FMODE_EXCL);
2758 if (seeding_dev && !unlocked) {
2759 mutex_unlock(&uuid_mutex);
2760 up_write(&sb->s_umount);
2761 }
2762 return ret;
2763}
2764
2765static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 struct btrfs_device *device)
2767{
2768 int ret;
2769 struct btrfs_path *path;
2770 struct btrfs_root *root = device->fs_info->chunk_root;
2771 struct btrfs_dev_item *dev_item;
2772 struct extent_buffer *leaf;
2773 struct btrfs_key key;
2774
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return -ENOMEM;
2778
2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 key.type = BTRFS_DEV_ITEM_KEY;
2781 key.offset = device->devid;
2782
2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784 if (ret < 0)
2785 goto out;
2786
2787 if (ret > 0) {
2788 ret = -ENOENT;
2789 goto out;
2790 }
2791
2792 leaf = path->nodes[0];
2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795 btrfs_set_device_id(leaf, dev_item, device->devid);
2796 btrfs_set_device_type(leaf, dev_item, device->type);
2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800 btrfs_set_device_total_bytes(leaf, dev_item,
2801 btrfs_device_get_disk_total_bytes(device));
2802 btrfs_set_device_bytes_used(leaf, dev_item,
2803 btrfs_device_get_bytes_used(device));
2804 btrfs_mark_buffer_dirty(leaf);
2805
2806out:
2807 btrfs_free_path(path);
2808 return ret;
2809}
2810
2811int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812 struct btrfs_device *device, u64 new_size)
2813{
2814 struct btrfs_fs_info *fs_info = device->fs_info;
2815 struct btrfs_super_block *super_copy = fs_info->super_copy;
2816 u64 old_total;
2817 u64 diff;
2818
2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820 return -EACCES;
2821
2822 new_size = round_down(new_size, fs_info->sectorsize);
2823
2824 mutex_lock(&fs_info->chunk_mutex);
2825 old_total = btrfs_super_total_bytes(super_copy);
2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827
2828 if (new_size <= device->total_bytes ||
2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830 mutex_unlock(&fs_info->chunk_mutex);
2831 return -EINVAL;
2832 }
2833
2834 btrfs_set_super_total_bytes(super_copy,
2835 round_down(old_total + diff, fs_info->sectorsize));
2836 device->fs_devices->total_rw_bytes += diff;
2837
2838 btrfs_device_set_total_bytes(device, new_size);
2839 btrfs_device_set_disk_total_bytes(device, new_size);
2840 btrfs_clear_space_info_full(device->fs_info);
2841 if (list_empty(&device->post_commit_list))
2842 list_add_tail(&device->post_commit_list,
2843 &trans->transaction->dev_update_list);
2844 mutex_unlock(&fs_info->chunk_mutex);
2845
2846 return btrfs_update_device(trans, device);
2847}
2848
2849static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850{
2851 struct btrfs_fs_info *fs_info = trans->fs_info;
2852 struct btrfs_root *root = fs_info->chunk_root;
2853 int ret;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2856
2857 path = btrfs_alloc_path();
2858 if (!path)
2859 return -ENOMEM;
2860
2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862 key.offset = chunk_offset;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866 if (ret < 0)
2867 goto out;
2868 else if (ret > 0) { /* Logic error or corruption */
2869 btrfs_handle_fs_error(fs_info, -ENOENT,
2870 "Failed lookup while freeing chunk.");
2871 ret = -ENOENT;
2872 goto out;
2873 }
2874
2875 ret = btrfs_del_item(trans, root, path);
2876 if (ret < 0)
2877 btrfs_handle_fs_error(fs_info, ret,
2878 "Failed to delete chunk item.");
2879out:
2880 btrfs_free_path(path);
2881 return ret;
2882}
2883
2884static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885{
2886 struct btrfs_super_block *super_copy = fs_info->super_copy;
2887 struct btrfs_disk_key *disk_key;
2888 struct btrfs_chunk *chunk;
2889 u8 *ptr;
2890 int ret = 0;
2891 u32 num_stripes;
2892 u32 array_size;
2893 u32 len = 0;
2894 u32 cur;
2895 struct btrfs_key key;
2896
2897 mutex_lock(&fs_info->chunk_mutex);
2898 array_size = btrfs_super_sys_array_size(super_copy);
2899
2900 ptr = super_copy->sys_chunk_array;
2901 cur = 0;
2902
2903 while (cur < array_size) {
2904 disk_key = (struct btrfs_disk_key *)ptr;
2905 btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907 len = sizeof(*disk_key);
2908
2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 chunk = (struct btrfs_chunk *)(ptr + len);
2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 len += btrfs_chunk_item_size(num_stripes);
2913 } else {
2914 ret = -EIO;
2915 break;
2916 }
2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918 key.offset == chunk_offset) {
2919 memmove(ptr, ptr + len, array_size - (cur + len));
2920 array_size -= len;
2921 btrfs_set_super_sys_array_size(super_copy, array_size);
2922 } else {
2923 ptr += len;
2924 cur += len;
2925 }
2926 }
2927 mutex_unlock(&fs_info->chunk_mutex);
2928 return ret;
2929}
2930
2931/*
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2935 *
2936 * Return: Chunk mapping or ERR_PTR.
2937 */
2938struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 u64 logical, u64 length)
2940{
2941 struct extent_map_tree *em_tree;
2942 struct extent_map *em;
2943
2944 em_tree = &fs_info->mapping_tree;
2945 read_lock(&em_tree->lock);
2946 em = lookup_extent_mapping(em_tree, logical, length);
2947 read_unlock(&em_tree->lock);
2948
2949 if (!em) {
2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951 logical, length);
2952 return ERR_PTR(-EINVAL);
2953 }
2954
2955 if (em->start > logical || em->start + em->len < logical) {
2956 btrfs_crit(fs_info,
2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 logical, length, em->start, em->start + em->len);
2959 free_extent_map(em);
2960 return ERR_PTR(-EINVAL);
2961 }
2962
2963 /* callers are responsible for dropping em's ref. */
2964 return em;
2965}
2966
2967int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968{
2969 struct btrfs_fs_info *fs_info = trans->fs_info;
2970 struct extent_map *em;
2971 struct map_lookup *map;
2972 u64 dev_extent_len = 0;
2973 int i, ret = 0;
2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975
2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977 if (IS_ERR(em)) {
2978 /*
2979 * This is a logic error, but we don't want to just rely on the
2980 * user having built with ASSERT enabled, so if ASSERT doesn't
2981 * do anything we still error out.
2982 */
2983 ASSERT(0);
2984 return PTR_ERR(em);
2985 }
2986 map = em->map_lookup;
2987 mutex_lock(&fs_info->chunk_mutex);
2988 check_system_chunk(trans, map->type);
2989 mutex_unlock(&fs_info->chunk_mutex);
2990
2991 /*
2992 * Take the device list mutex to prevent races with the final phase of
2993 * a device replace operation that replaces the device object associated
2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995 */
2996 mutex_lock(&fs_devices->device_list_mutex);
2997 for (i = 0; i < map->num_stripes; i++) {
2998 struct btrfs_device *device = map->stripes[i].dev;
2999 ret = btrfs_free_dev_extent(trans, device,
3000 map->stripes[i].physical,
3001 &dev_extent_len);
3002 if (ret) {
3003 mutex_unlock(&fs_devices->device_list_mutex);
3004 btrfs_abort_transaction(trans, ret);
3005 goto out;
3006 }
3007
3008 if (device->bytes_used > 0) {
3009 mutex_lock(&fs_info->chunk_mutex);
3010 btrfs_device_set_bytes_used(device,
3011 device->bytes_used - dev_extent_len);
3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013 btrfs_clear_space_info_full(fs_info);
3014 mutex_unlock(&fs_info->chunk_mutex);
3015 }
3016
3017 ret = btrfs_update_device(trans, device);
3018 if (ret) {
3019 mutex_unlock(&fs_devices->device_list_mutex);
3020 btrfs_abort_transaction(trans, ret);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_devices->device_list_mutex);
3025
3026 ret = btrfs_free_chunk(trans, chunk_offset);
3027 if (ret) {
3028 btrfs_abort_transaction(trans, ret);
3029 goto out;
3030 }
3031
3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033
3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036 if (ret) {
3037 btrfs_abort_transaction(trans, ret);
3038 goto out;
3039 }
3040 }
3041
3042 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043 if (ret) {
3044 btrfs_abort_transaction(trans, ret);
3045 goto out;
3046 }
3047
3048out:
3049 /* once for us */
3050 free_extent_map(em);
3051 return ret;
3052}
3053
3054static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055{
3056 struct btrfs_root *root = fs_info->chunk_root;
3057 struct btrfs_trans_handle *trans;
3058 int ret;
3059
3060 /*
3061 * Prevent races with automatic removal of unused block groups.
3062 * After we relocate and before we remove the chunk with offset
3063 * chunk_offset, automatic removal of the block group can kick in,
3064 * resulting in a failure when calling btrfs_remove_chunk() below.
3065 *
3066 * Make sure to acquire this mutex before doing a tree search (dev
3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 * we release the path used to search the chunk/dev tree and before
3070 * the current task acquires this mutex and calls us.
3071 */
3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073
3074 /* step one, relocate all the extents inside this chunk */
3075 btrfs_scrub_pause(fs_info);
3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3077 btrfs_scrub_continue(fs_info);
3078 if (ret)
3079 return ret;
3080
3081 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082 chunk_offset);
3083 if (IS_ERR(trans)) {
3084 ret = PTR_ERR(trans);
3085 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086 return ret;
3087 }
3088
3089 /*
3090 * step two, delete the device extents and the
3091 * chunk tree entries
3092 */
3093 ret = btrfs_remove_chunk(trans, chunk_offset);
3094 btrfs_end_transaction(trans);
3095 return ret;
3096}
3097
3098static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3099{
3100 struct btrfs_root *chunk_root = fs_info->chunk_root;
3101 struct btrfs_path *path;
3102 struct extent_buffer *leaf;
3103 struct btrfs_chunk *chunk;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
3106 u64 chunk_type;
3107 bool retried = false;
3108 int failed = 0;
3109 int ret;
3110
3111 path = btrfs_alloc_path();
3112 if (!path)
3113 return -ENOMEM;
3114
3115again:
3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117 key.offset = (u64)-1;
3118 key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120 while (1) {
3121 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3123 if (ret < 0) {
3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3125 goto error;
3126 }
3127 BUG_ON(ret == 0); /* Corruption */
3128
3129 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130 key.type);
3131 if (ret)
3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3133 if (ret < 0)
3134 goto error;
3135 if (ret > 0)
3136 break;
3137
3138 leaf = path->nodes[0];
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3140
3141 chunk = btrfs_item_ptr(leaf, path->slots[0],
3142 struct btrfs_chunk);
3143 chunk_type = btrfs_chunk_type(leaf, chunk);
3144 btrfs_release_path(path);
3145
3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3148 if (ret == -ENOSPC)
3149 failed++;
3150 else
3151 BUG_ON(ret);
3152 }
3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3154
3155 if (found_key.offset == 0)
3156 break;
3157 key.offset = found_key.offset - 1;
3158 }
3159 ret = 0;
3160 if (failed && !retried) {
3161 failed = 0;
3162 retried = true;
3163 goto again;
3164 } else if (WARN_ON(failed && retried)) {
3165 ret = -ENOSPC;
3166 }
3167error:
3168 btrfs_free_path(path);
3169 return ret;
3170}
3171
3172/*
3173 * return 1 : allocate a data chunk successfully,
3174 * return <0: errors during allocating a data chunk,
3175 * return 0 : no need to allocate a data chunk.
3176 */
3177static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178 u64 chunk_offset)
3179{
3180 struct btrfs_block_group_cache *cache;
3181 u64 bytes_used;
3182 u64 chunk_type;
3183
3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 ASSERT(cache);
3186 chunk_type = cache->flags;
3187 btrfs_put_block_group(cache);
3188
3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190 spin_lock(&fs_info->data_sinfo->lock);
3191 bytes_used = fs_info->data_sinfo->bytes_used;
3192 spin_unlock(&fs_info->data_sinfo->lock);
3193
3194 if (!bytes_used) {
3195 struct btrfs_trans_handle *trans;
3196 int ret;
3197
3198 trans = btrfs_join_transaction(fs_info->tree_root);
3199 if (IS_ERR(trans))
3200 return PTR_ERR(trans);
3201
3202 ret = btrfs_force_chunk_alloc(trans,
3203 BTRFS_BLOCK_GROUP_DATA);
3204 btrfs_end_transaction(trans);
3205 if (ret < 0)
3206 return ret;
3207 return 1;
3208 }
3209 }
3210 return 0;
3211}
3212
3213static int insert_balance_item(struct btrfs_fs_info *fs_info,
3214 struct btrfs_balance_control *bctl)
3215{
3216 struct btrfs_root *root = fs_info->tree_root;
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_balance_item *item;
3219 struct btrfs_disk_balance_args disk_bargs;
3220 struct btrfs_path *path;
3221 struct extent_buffer *leaf;
3222 struct btrfs_key key;
3223 int ret, err;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229 trans = btrfs_start_transaction(root, 0);
3230 if (IS_ERR(trans)) {
3231 btrfs_free_path(path);
3232 return PTR_ERR(trans);
3233 }
3234
3235 key.objectid = BTRFS_BALANCE_OBJECTID;
3236 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3237 key.offset = 0;
3238
3239 ret = btrfs_insert_empty_item(trans, root, path, &key,
3240 sizeof(*item));
3241 if (ret)
3242 goto out;
3243
3244 leaf = path->nodes[0];
3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3248
3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250 btrfs_set_balance_data(leaf, item, &disk_bargs);
3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256 btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258 btrfs_mark_buffer_dirty(leaf);
3259out:
3260 btrfs_free_path(path);
3261 err = btrfs_commit_transaction(trans);
3262 if (err && !ret)
3263 ret = err;
3264 return ret;
3265}
3266
3267static int del_balance_item(struct btrfs_fs_info *fs_info)
3268{
3269 struct btrfs_root *root = fs_info->tree_root;
3270 struct btrfs_trans_handle *trans;
3271 struct btrfs_path *path;
3272 struct btrfs_key key;
3273 int ret, err;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOMEM;
3278
3279 trans = btrfs_start_transaction(root, 0);
3280 if (IS_ERR(trans)) {
3281 btrfs_free_path(path);
3282 return PTR_ERR(trans);
3283 }
3284
3285 key.objectid = BTRFS_BALANCE_OBJECTID;
3286 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3287 key.offset = 0;
3288
3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290 if (ret < 0)
3291 goto out;
3292 if (ret > 0) {
3293 ret = -ENOENT;
3294 goto out;
3295 }
3296
3297 ret = btrfs_del_item(trans, root, path);
3298out:
3299 btrfs_free_path(path);
3300 err = btrfs_commit_transaction(trans);
3301 if (err && !ret)
3302 ret = err;
3303 return ret;
3304}
3305
3306/*
3307 * This is a heuristic used to reduce the number of chunks balanced on
3308 * resume after balance was interrupted.
3309 */
3310static void update_balance_args(struct btrfs_balance_control *bctl)
3311{
3312 /*
3313 * Turn on soft mode for chunk types that were being converted.
3314 */
3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322 /*
3323 * Turn on usage filter if is not already used. The idea is
3324 * that chunks that we have already balanced should be
3325 * reasonably full. Don't do it for chunks that are being
3326 * converted - that will keep us from relocating unconverted
3327 * (albeit full) chunks.
3328 */
3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333 bctl->data.usage = 90;
3334 }
3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339 bctl->sys.usage = 90;
3340 }
3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345 bctl->meta.usage = 90;
3346 }
3347}
3348
3349/*
3350 * Clear the balance status in fs_info and delete the balance item from disk.
3351 */
3352static void reset_balance_state(struct btrfs_fs_info *fs_info)
3353{
3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3355 int ret;
3356
3357 BUG_ON(!fs_info->balance_ctl);
3358
3359 spin_lock(&fs_info->balance_lock);
3360 fs_info->balance_ctl = NULL;
3361 spin_unlock(&fs_info->balance_lock);
3362
3363 kfree(bctl);
3364 ret = del_balance_item(fs_info);
3365 if (ret)
3366 btrfs_handle_fs_error(fs_info, ret, NULL);
3367}
3368
3369/*
3370 * Balance filters. Return 1 if chunk should be filtered out
3371 * (should not be balanced).
3372 */
3373static int chunk_profiles_filter(u64 chunk_type,
3374 struct btrfs_balance_args *bargs)
3375{
3376 chunk_type = chunk_to_extended(chunk_type) &
3377 BTRFS_EXTENDED_PROFILE_MASK;
3378
3379 if (bargs->profiles & chunk_type)
3380 return 0;
3381
3382 return 1;
3383}
3384
3385static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3386 struct btrfs_balance_args *bargs)
3387{
3388 struct btrfs_block_group_cache *cache;
3389 u64 chunk_used;
3390 u64 user_thresh_min;
3391 u64 user_thresh_max;
3392 int ret = 1;
3393
3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395 chunk_used = btrfs_block_group_used(&cache->item);
3396
3397 if (bargs->usage_min == 0)
3398 user_thresh_min = 0;
3399 else
3400 user_thresh_min = div_factor_fine(cache->key.offset,
3401 bargs->usage_min);
3402
3403 if (bargs->usage_max == 0)
3404 user_thresh_max = 1;
3405 else if (bargs->usage_max > 100)
3406 user_thresh_max = cache->key.offset;
3407 else
3408 user_thresh_max = div_factor_fine(cache->key.offset,
3409 bargs->usage_max);
3410
3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412 ret = 0;
3413
3414 btrfs_put_block_group(cache);
3415 return ret;
3416}
3417
3418static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3419 u64 chunk_offset, struct btrfs_balance_args *bargs)
3420{
3421 struct btrfs_block_group_cache *cache;
3422 u64 chunk_used, user_thresh;
3423 int ret = 1;
3424
3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426 chunk_used = btrfs_block_group_used(&cache->item);
3427
3428 if (bargs->usage_min == 0)
3429 user_thresh = 1;
3430 else if (bargs->usage > 100)
3431 user_thresh = cache->key.offset;
3432 else
3433 user_thresh = div_factor_fine(cache->key.offset,
3434 bargs->usage);
3435
3436 if (chunk_used < user_thresh)
3437 ret = 0;
3438
3439 btrfs_put_block_group(cache);
3440 return ret;
3441}
3442
3443static int chunk_devid_filter(struct extent_buffer *leaf,
3444 struct btrfs_chunk *chunk,
3445 struct btrfs_balance_args *bargs)
3446{
3447 struct btrfs_stripe *stripe;
3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449 int i;
3450
3451 for (i = 0; i < num_stripes; i++) {
3452 stripe = btrfs_stripe_nr(chunk, i);
3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454 return 0;
3455 }
3456
3457 return 1;
3458}
3459
3460static u64 calc_data_stripes(u64 type, int num_stripes)
3461{
3462 const int index = btrfs_bg_flags_to_raid_index(type);
3463 const int ncopies = btrfs_raid_array[index].ncopies;
3464 const int nparity = btrfs_raid_array[index].nparity;
3465
3466 if (nparity)
3467 return num_stripes - nparity;
3468 else
3469 return num_stripes / ncopies;
3470}
3471
3472/* [pstart, pend) */
3473static int chunk_drange_filter(struct extent_buffer *leaf,
3474 struct btrfs_chunk *chunk,
3475 struct btrfs_balance_args *bargs)
3476{
3477 struct btrfs_stripe *stripe;
3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479 u64 stripe_offset;
3480 u64 stripe_length;
3481 u64 type;
3482 int factor;
3483 int i;
3484
3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486 return 0;
3487
3488 type = btrfs_chunk_type(leaf, chunk);
3489 factor = calc_data_stripes(type, num_stripes);
3490
3491 for (i = 0; i < num_stripes; i++) {
3492 stripe = btrfs_stripe_nr(chunk, i);
3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494 continue;
3495
3496 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497 stripe_length = btrfs_chunk_length(leaf, chunk);
3498 stripe_length = div_u64(stripe_length, factor);
3499
3500 if (stripe_offset < bargs->pend &&
3501 stripe_offset + stripe_length > bargs->pstart)
3502 return 0;
3503 }
3504
3505 return 1;
3506}
3507
3508/* [vstart, vend) */
3509static int chunk_vrange_filter(struct extent_buffer *leaf,
3510 struct btrfs_chunk *chunk,
3511 u64 chunk_offset,
3512 struct btrfs_balance_args *bargs)
3513{
3514 if (chunk_offset < bargs->vend &&
3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516 /* at least part of the chunk is inside this vrange */
3517 return 0;
3518
3519 return 1;
3520}
3521
3522static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523 struct btrfs_chunk *chunk,
3524 struct btrfs_balance_args *bargs)
3525{
3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528 if (bargs->stripes_min <= num_stripes
3529 && num_stripes <= bargs->stripes_max)
3530 return 0;
3531
3532 return 1;
3533}
3534
3535static int chunk_soft_convert_filter(u64 chunk_type,
3536 struct btrfs_balance_args *bargs)
3537{
3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539 return 0;
3540
3541 chunk_type = chunk_to_extended(chunk_type) &
3542 BTRFS_EXTENDED_PROFILE_MASK;
3543
3544 if (bargs->target == chunk_type)
3545 return 1;
3546
3547 return 0;
3548}
3549
3550static int should_balance_chunk(struct extent_buffer *leaf,
3551 struct btrfs_chunk *chunk, u64 chunk_offset)
3552{
3553 struct btrfs_fs_info *fs_info = leaf->fs_info;
3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3555 struct btrfs_balance_args *bargs = NULL;
3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558 /* type filter */
3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561 return 0;
3562 }
3563
3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565 bargs = &bctl->data;
3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567 bargs = &bctl->sys;
3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569 bargs = &bctl->meta;
3570
3571 /* profiles filter */
3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573 chunk_profiles_filter(chunk_type, bargs)) {
3574 return 0;
3575 }
3576
3577 /* usage filter */
3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3580 return 0;
3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3583 return 0;
3584 }
3585
3586 /* devid filter */
3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588 chunk_devid_filter(leaf, chunk, bargs)) {
3589 return 0;
3590 }
3591
3592 /* drange filter, makes sense only with devid filter */
3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3594 chunk_drange_filter(leaf, chunk, bargs)) {
3595 return 0;
3596 }
3597
3598 /* vrange filter */
3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601 return 0;
3602 }
3603
3604 /* stripes filter */
3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607 return 0;
3608 }
3609
3610 /* soft profile changing mode */
3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612 chunk_soft_convert_filter(chunk_type, bargs)) {
3613 return 0;
3614 }
3615
3616 /*
3617 * limited by count, must be the last filter
3618 */
3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620 if (bargs->limit == 0)
3621 return 0;
3622 else
3623 bargs->limit--;
3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625 /*
3626 * Same logic as the 'limit' filter; the minimum cannot be
3627 * determined here because we do not have the global information
3628 * about the count of all chunks that satisfy the filters.
3629 */
3630 if (bargs->limit_max == 0)
3631 return 0;
3632 else
3633 bargs->limit_max--;
3634 }
3635
3636 return 1;
3637}
3638
3639static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3640{
3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3642 struct btrfs_root *chunk_root = fs_info->chunk_root;
3643 u64 chunk_type;
3644 struct btrfs_chunk *chunk;
3645 struct btrfs_path *path = NULL;
3646 struct btrfs_key key;
3647 struct btrfs_key found_key;
3648 struct extent_buffer *leaf;
3649 int slot;
3650 int ret;
3651 int enospc_errors = 0;
3652 bool counting = true;
3653 /* The single value limit and min/max limits use the same bytes in the */
3654 u64 limit_data = bctl->data.limit;
3655 u64 limit_meta = bctl->meta.limit;
3656 u64 limit_sys = bctl->sys.limit;
3657 u32 count_data = 0;
3658 u32 count_meta = 0;
3659 u32 count_sys = 0;
3660 int chunk_reserved = 0;
3661
3662 path = btrfs_alloc_path();
3663 if (!path) {
3664 ret = -ENOMEM;
3665 goto error;
3666 }
3667
3668 /* zero out stat counters */
3669 spin_lock(&fs_info->balance_lock);
3670 memset(&bctl->stat, 0, sizeof(bctl->stat));
3671 spin_unlock(&fs_info->balance_lock);
3672again:
3673 if (!counting) {
3674 /*
3675 * The single value limit and min/max limits use the same bytes
3676 * in the
3677 */
3678 bctl->data.limit = limit_data;
3679 bctl->meta.limit = limit_meta;
3680 bctl->sys.limit = limit_sys;
3681 }
3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683 key.offset = (u64)-1;
3684 key.type = BTRFS_CHUNK_ITEM_KEY;
3685
3686 while (1) {
3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3688 atomic_read(&fs_info->balance_cancel_req)) {
3689 ret = -ECANCELED;
3690 goto error;
3691 }
3692
3693 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3695 if (ret < 0) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3697 goto error;
3698 }
3699
3700 /*
3701 * this shouldn't happen, it means the last relocate
3702 * failed
3703 */
3704 if (ret == 0)
3705 BUG(); /* FIXME break ? */
3706
3707 ret = btrfs_previous_item(chunk_root, path, 0,
3708 BTRFS_CHUNK_ITEM_KEY);
3709 if (ret) {
3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3711 ret = 0;
3712 break;
3713 }
3714
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3718
3719 if (found_key.objectid != key.objectid) {
3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721 break;
3722 }
3723
3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3725 chunk_type = btrfs_chunk_type(leaf, chunk);
3726
3727 if (!counting) {
3728 spin_lock(&fs_info->balance_lock);
3729 bctl->stat.considered++;
3730 spin_unlock(&fs_info->balance_lock);
3731 }
3732
3733 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3734
3735 btrfs_release_path(path);
3736 if (!ret) {
3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738 goto loop;
3739 }
3740
3741 if (counting) {
3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743 spin_lock(&fs_info->balance_lock);
3744 bctl->stat.expected++;
3745 spin_unlock(&fs_info->balance_lock);
3746
3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 count_data++;
3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 count_sys++;
3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 count_meta++;
3753
3754 goto loop;
3755 }
3756
3757 /*
3758 * Apply limit_min filter, no need to check if the LIMITS
3759 * filter is used, limit_min is 0 by default
3760 */
3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762 count_data < bctl->data.limit_min)
3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764 count_meta < bctl->meta.limit_min)
3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766 count_sys < bctl->sys.limit_min)) {
3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768 goto loop;
3769 }
3770
3771 if (!chunk_reserved) {
3772 /*
3773 * We may be relocating the only data chunk we have,
3774 * which could potentially end up with losing data's
3775 * raid profile, so lets allocate an empty one in
3776 * advance.
3777 */
3778 ret = btrfs_may_alloc_data_chunk(fs_info,
3779 found_key.offset);
3780 if (ret < 0) {
3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782 goto error;
3783 } else if (ret == 1) {
3784 chunk_reserved = 1;
3785 }
3786 }
3787
3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790 if (ret == -ENOSPC) {
3791 enospc_errors++;
3792 } else if (ret == -ETXTBSY) {
3793 btrfs_info(fs_info,
3794 "skipping relocation of block group %llu due to active swapfile",
3795 found_key.offset);
3796 ret = 0;
3797 } else if (ret) {
3798 goto error;
3799 } else {
3800 spin_lock(&fs_info->balance_lock);
3801 bctl->stat.completed++;
3802 spin_unlock(&fs_info->balance_lock);
3803 }
3804loop:
3805 if (found_key.offset == 0)
3806 break;
3807 key.offset = found_key.offset - 1;
3808 }
3809
3810 if (counting) {
3811 btrfs_release_path(path);
3812 counting = false;
3813 goto again;
3814 }
3815error:
3816 btrfs_free_path(path);
3817 if (enospc_errors) {
3818 btrfs_info(fs_info, "%d enospc errors during balance",
3819 enospc_errors);
3820 if (!ret)
3821 ret = -ENOSPC;
3822 }
3823
3824 return ret;
3825}
3826
3827/**
3828 * alloc_profile_is_valid - see if a given profile is valid and reduced
3829 * @flags: profile to validate
3830 * @extended: if true @flags is treated as an extended profile
3831 */
3832static int alloc_profile_is_valid(u64 flags, int extended)
3833{
3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839 /* 1) check that all other bits are zeroed */
3840 if (flags & ~mask)
3841 return 0;
3842
3843 /* 2) see if profile is reduced */
3844 if (flags == 0)
3845 return !extended; /* "0" is valid for usual profiles */
3846
3847 /* true if exactly one bit set */
3848 /*
3849 * Don't use is_power_of_2(unsigned long) because it won't work
3850 * for the single profile (1ULL << 48) on 32-bit CPUs.
3851 */
3852 return flags != 0 && (flags & (flags - 1)) == 0;
3853}
3854
3855static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3856{
3857 /* cancel requested || normal exit path */
3858 return atomic_read(&fs_info->balance_cancel_req) ||
3859 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3860 atomic_read(&fs_info->balance_cancel_req) == 0);
3861}
3862
3863/* Non-zero return value signifies invalidity */
3864static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3865 u64 allowed)
3866{
3867 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3869 (bctl_arg->target & ~allowed)));
3870}
3871
3872/*
3873 * Fill @buf with textual description of balance filter flags @bargs, up to
3874 * @size_buf including the terminating null. The output may be trimmed if it
3875 * does not fit into the provided buffer.
3876 */
3877static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3878 u32 size_buf)
3879{
3880 int ret;
3881 u32 size_bp = size_buf;
3882 char *bp = buf;
3883 u64 flags = bargs->flags;
3884 char tmp_buf[128] = {'\0'};
3885
3886 if (!flags)
3887 return;
3888
3889#define CHECK_APPEND_NOARG(a) \
3890 do { \
3891 ret = snprintf(bp, size_bp, (a)); \
3892 if (ret < 0 || ret >= size_bp) \
3893 goto out_overflow; \
3894 size_bp -= ret; \
3895 bp += ret; \
3896 } while (0)
3897
3898#define CHECK_APPEND_1ARG(a, v1) \
3899 do { \
3900 ret = snprintf(bp, size_bp, (a), (v1)); \
3901 if (ret < 0 || ret >= size_bp) \
3902 goto out_overflow; \
3903 size_bp -= ret; \
3904 bp += ret; \
3905 } while (0)
3906
3907#define CHECK_APPEND_2ARG(a, v1, v2) \
3908 do { \
3909 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3910 if (ret < 0 || ret >= size_bp) \
3911 goto out_overflow; \
3912 size_bp -= ret; \
3913 bp += ret; \
3914 } while (0)
3915
3916 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3917 CHECK_APPEND_1ARG("convert=%s,",
3918 btrfs_bg_type_to_raid_name(bargs->target));
3919
3920 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3921 CHECK_APPEND_NOARG("soft,");
3922
3923 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3924 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3925 sizeof(tmp_buf));
3926 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3927 }
3928
3929 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3930 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3933 CHECK_APPEND_2ARG("usage=%u..%u,",
3934 bargs->usage_min, bargs->usage_max);
3935
3936 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3937 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3940 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3941 bargs->pstart, bargs->pend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3944 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3945 bargs->vstart, bargs->vend);
3946
3947 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3948 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3951 CHECK_APPEND_2ARG("limit=%u..%u,",
3952 bargs->limit_min, bargs->limit_max);
3953
3954 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3955 CHECK_APPEND_2ARG("stripes=%u..%u,",
3956 bargs->stripes_min, bargs->stripes_max);
3957
3958#undef CHECK_APPEND_2ARG
3959#undef CHECK_APPEND_1ARG
3960#undef CHECK_APPEND_NOARG
3961
3962out_overflow:
3963
3964 if (size_bp < size_buf)
3965 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3966 else
3967 buf[0] = '\0';
3968}
3969
3970static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3971{
3972 u32 size_buf = 1024;
3973 char tmp_buf[192] = {'\0'};
3974 char *buf;
3975 char *bp;
3976 u32 size_bp = size_buf;
3977 int ret;
3978 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979
3980 buf = kzalloc(size_buf, GFP_KERNEL);
3981 if (!buf)
3982 return;
3983
3984 bp = buf;
3985
3986#define CHECK_APPEND_1ARG(a, v1) \
3987 do { \
3988 ret = snprintf(bp, size_bp, (a), (v1)); \
3989 if (ret < 0 || ret >= size_bp) \
3990 goto out_overflow; \
3991 size_bp -= ret; \
3992 bp += ret; \
3993 } while (0)
3994
3995 if (bctl->flags & BTRFS_BALANCE_FORCE)
3996 CHECK_APPEND_1ARG("%s", "-f ");
3997
3998 if (bctl->flags & BTRFS_BALANCE_DATA) {
3999 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4000 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4001 }
4002
4003 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4004 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4005 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4006 }
4007
4008 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4009 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4010 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4011 }
4012
4013#undef CHECK_APPEND_1ARG
4014
4015out_overflow:
4016
4017 if (size_bp < size_buf)
4018 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4019 btrfs_info(fs_info, "balance: %s %s",
4020 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4021 "resume" : "start", buf);
4022
4023 kfree(buf);
4024}
4025
4026/*
4027 * Should be called with balance mutexe held
4028 */
4029int btrfs_balance(struct btrfs_fs_info *fs_info,
4030 struct btrfs_balance_control *bctl,
4031 struct btrfs_ioctl_balance_args *bargs)
4032{
4033 u64 meta_target, data_target;
4034 u64 allowed;
4035 int mixed = 0;
4036 int ret;
4037 u64 num_devices;
4038 unsigned seq;
4039 bool reducing_integrity;
4040 int i;
4041
4042 if (btrfs_fs_closing(fs_info) ||
4043 atomic_read(&fs_info->balance_pause_req) ||
4044 atomic_read(&fs_info->balance_cancel_req)) {
4045 ret = -EINVAL;
4046 goto out;
4047 }
4048
4049 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4050 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4051 mixed = 1;
4052
4053 /*
4054 * In case of mixed groups both data and meta should be picked,
4055 * and identical options should be given for both of them.
4056 */
4057 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4058 if (mixed && (bctl->flags & allowed)) {
4059 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4060 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4061 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4062 btrfs_err(fs_info,
4063 "balance: mixed groups data and metadata options must be the same");
4064 ret = -EINVAL;
4065 goto out;
4066 }
4067 }
4068
4069 num_devices = btrfs_num_devices(fs_info);
4070
4071 /*
4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 * special bit for it, to make it easier to distinguish. Thus we need
4074 * to set it manually, or balance would refuse the profile.
4075 */
4076 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4077 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078 if (num_devices >= btrfs_raid_array[i].devs_min)
4079 allowed |= btrfs_raid_array[i].bg_flag;
4080
4081 if (validate_convert_profile(&bctl->data, allowed)) {
4082 btrfs_err(fs_info,
4083 "balance: invalid convert data profile %s",
4084 btrfs_bg_type_to_raid_name(bctl->data.target));
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088 if (validate_convert_profile(&bctl->meta, allowed)) {
4089 btrfs_err(fs_info,
4090 "balance: invalid convert metadata profile %s",
4091 btrfs_bg_type_to_raid_name(bctl->meta.target));
4092 ret = -EINVAL;
4093 goto out;
4094 }
4095 if (validate_convert_profile(&bctl->sys, allowed)) {
4096 btrfs_err(fs_info,
4097 "balance: invalid convert system profile %s",
4098 btrfs_bg_type_to_raid_name(bctl->sys.target));
4099 ret = -EINVAL;
4100 goto out;
4101 }
4102
4103 /*
4104 * Allow to reduce metadata or system integrity only if force set for
4105 * profiles with redundancy (copies, parity)
4106 */
4107 allowed = 0;
4108 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4109 if (btrfs_raid_array[i].ncopies >= 2 ||
4110 btrfs_raid_array[i].tolerated_failures >= 1)
4111 allowed |= btrfs_raid_array[i].bg_flag;
4112 }
4113 do {
4114 seq = read_seqbegin(&fs_info->profiles_lock);
4115
4116 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4117 (fs_info->avail_system_alloc_bits & allowed) &&
4118 !(bctl->sys.target & allowed)) ||
4119 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4120 (fs_info->avail_metadata_alloc_bits & allowed) &&
4121 !(bctl->meta.target & allowed)))
4122 reducing_integrity = true;
4123 else
4124 reducing_integrity = false;
4125
4126 /* if we're not converting, the target field is uninitialized */
4127 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4128 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4129 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4130 bctl->data.target : fs_info->avail_data_alloc_bits;
4131 } while (read_seqretry(&fs_info->profiles_lock, seq));
4132
4133 if (reducing_integrity) {
4134 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4135 btrfs_info(fs_info,
4136 "balance: force reducing metadata integrity");
4137 } else {
4138 btrfs_err(fs_info,
4139 "balance: reduces metadata integrity, use --force if you want this");
4140 ret = -EINVAL;
4141 goto out;
4142 }
4143 }
4144
4145 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4146 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4147 btrfs_warn(fs_info,
4148 "balance: metadata profile %s has lower redundancy than data profile %s",
4149 btrfs_bg_type_to_raid_name(meta_target),
4150 btrfs_bg_type_to_raid_name(data_target));
4151 }
4152
4153 if (fs_info->send_in_progress) {
4154 btrfs_warn_rl(fs_info,
4155"cannot run balance while send operations are in progress (%d in progress)",
4156 fs_info->send_in_progress);
4157 ret = -EAGAIN;
4158 goto out;
4159 }
4160
4161 ret = insert_balance_item(fs_info, bctl);
4162 if (ret && ret != -EEXIST)
4163 goto out;
4164
4165 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4166 BUG_ON(ret == -EEXIST);
4167 BUG_ON(fs_info->balance_ctl);
4168 spin_lock(&fs_info->balance_lock);
4169 fs_info->balance_ctl = bctl;
4170 spin_unlock(&fs_info->balance_lock);
4171 } else {
4172 BUG_ON(ret != -EEXIST);
4173 spin_lock(&fs_info->balance_lock);
4174 update_balance_args(bctl);
4175 spin_unlock(&fs_info->balance_lock);
4176 }
4177
4178 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4179 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4180 describe_balance_start_or_resume(fs_info);
4181 mutex_unlock(&fs_info->balance_mutex);
4182
4183 ret = __btrfs_balance(fs_info);
4184
4185 mutex_lock(&fs_info->balance_mutex);
4186 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4187 btrfs_info(fs_info, "balance: paused");
4188 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4189 btrfs_info(fs_info, "balance: canceled");
4190 else
4191 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
4193 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4194
4195 if (bargs) {
4196 memset(bargs, 0, sizeof(*bargs));
4197 btrfs_update_ioctl_balance_args(fs_info, bargs);
4198 }
4199
4200 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201 balance_need_close(fs_info)) {
4202 reset_balance_state(fs_info);
4203 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4204 }
4205
4206 wake_up(&fs_info->balance_wait_q);
4207
4208 return ret;
4209out:
4210 if (bctl->flags & BTRFS_BALANCE_RESUME)
4211 reset_balance_state(fs_info);
4212 else
4213 kfree(bctl);
4214 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4215
4216 return ret;
4217}
4218
4219static int balance_kthread(void *data)
4220{
4221 struct btrfs_fs_info *fs_info = data;
4222 int ret = 0;
4223
4224 mutex_lock(&fs_info->balance_mutex);
4225 if (fs_info->balance_ctl)
4226 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4227 mutex_unlock(&fs_info->balance_mutex);
4228
4229 return ret;
4230}
4231
4232int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233{
4234 struct task_struct *tsk;
4235
4236 mutex_lock(&fs_info->balance_mutex);
4237 if (!fs_info->balance_ctl) {
4238 mutex_unlock(&fs_info->balance_mutex);
4239 return 0;
4240 }
4241 mutex_unlock(&fs_info->balance_mutex);
4242
4243 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4244 btrfs_info(fs_info, "balance: resume skipped");
4245 return 0;
4246 }
4247
4248 /*
4249 * A ro->rw remount sequence should continue with the paused balance
4250 * regardless of who pauses it, system or the user as of now, so set
4251 * the resume flag.
4252 */
4253 spin_lock(&fs_info->balance_lock);
4254 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255 spin_unlock(&fs_info->balance_lock);
4256
4257 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4258 return PTR_ERR_OR_ZERO(tsk);
4259}
4260
4261int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4262{
4263 struct btrfs_balance_control *bctl;
4264 struct btrfs_balance_item *item;
4265 struct btrfs_disk_balance_args disk_bargs;
4266 struct btrfs_path *path;
4267 struct extent_buffer *leaf;
4268 struct btrfs_key key;
4269 int ret;
4270
4271 path = btrfs_alloc_path();
4272 if (!path)
4273 return -ENOMEM;
4274
4275 key.objectid = BTRFS_BALANCE_OBJECTID;
4276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4277 key.offset = 0;
4278
4279 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4280 if (ret < 0)
4281 goto out;
4282 if (ret > 0) { /* ret = -ENOENT; */
4283 ret = 0;
4284 goto out;
4285 }
4286
4287 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288 if (!bctl) {
4289 ret = -ENOMEM;
4290 goto out;
4291 }
4292
4293 leaf = path->nodes[0];
4294 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
4296 bctl->flags = btrfs_balance_flags(leaf, item);
4297 bctl->flags |= BTRFS_BALANCE_RESUME;
4298
4299 btrfs_balance_data(leaf, item, &disk_bargs);
4300 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301 btrfs_balance_meta(leaf, item, &disk_bargs);
4302 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303 btrfs_balance_sys(leaf, item, &disk_bargs);
4304 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
4306 /*
4307 * This should never happen, as the paused balance state is recovered
4308 * during mount without any chance of other exclusive ops to collide.
4309 *
4310 * This gives the exclusive op status to balance and keeps in paused
4311 * state until user intervention (cancel or umount). If the ownership
4312 * cannot be assigned, show a message but do not fail. The balance
4313 * is in a paused state and must have fs_info::balance_ctl properly
4314 * set up.
4315 */
4316 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4317 btrfs_warn(fs_info,
4318 "balance: cannot set exclusive op status, resume manually");
4319
4320 mutex_lock(&fs_info->balance_mutex);
4321 BUG_ON(fs_info->balance_ctl);
4322 spin_lock(&fs_info->balance_lock);
4323 fs_info->balance_ctl = bctl;
4324 spin_unlock(&fs_info->balance_lock);
4325 mutex_unlock(&fs_info->balance_mutex);
4326out:
4327 btrfs_free_path(path);
4328 return ret;
4329}
4330
4331int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4332{
4333 int ret = 0;
4334
4335 mutex_lock(&fs_info->balance_mutex);
4336 if (!fs_info->balance_ctl) {
4337 mutex_unlock(&fs_info->balance_mutex);
4338 return -ENOTCONN;
4339 }
4340
4341 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4342 atomic_inc(&fs_info->balance_pause_req);
4343 mutex_unlock(&fs_info->balance_mutex);
4344
4345 wait_event(fs_info->balance_wait_q,
4346 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4347
4348 mutex_lock(&fs_info->balance_mutex);
4349 /* we are good with balance_ctl ripped off from under us */
4350 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351 atomic_dec(&fs_info->balance_pause_req);
4352 } else {
4353 ret = -ENOTCONN;
4354 }
4355
4356 mutex_unlock(&fs_info->balance_mutex);
4357 return ret;
4358}
4359
4360int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4361{
4362 mutex_lock(&fs_info->balance_mutex);
4363 if (!fs_info->balance_ctl) {
4364 mutex_unlock(&fs_info->balance_mutex);
4365 return -ENOTCONN;
4366 }
4367
4368 /*
4369 * A paused balance with the item stored on disk can be resumed at
4370 * mount time if the mount is read-write. Otherwise it's still paused
4371 * and we must not allow cancelling as it deletes the item.
4372 */
4373 if (sb_rdonly(fs_info->sb)) {
4374 mutex_unlock(&fs_info->balance_mutex);
4375 return -EROFS;
4376 }
4377
4378 atomic_inc(&fs_info->balance_cancel_req);
4379 /*
4380 * if we are running just wait and return, balance item is
4381 * deleted in btrfs_balance in this case
4382 */
4383 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4384 mutex_unlock(&fs_info->balance_mutex);
4385 wait_event(fs_info->balance_wait_q,
4386 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4387 mutex_lock(&fs_info->balance_mutex);
4388 } else {
4389 mutex_unlock(&fs_info->balance_mutex);
4390 /*
4391 * Lock released to allow other waiters to continue, we'll
4392 * reexamine the status again.
4393 */
4394 mutex_lock(&fs_info->balance_mutex);
4395
4396 if (fs_info->balance_ctl) {
4397 reset_balance_state(fs_info);
4398 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4399 btrfs_info(fs_info, "balance: canceled");
4400 }
4401 }
4402
4403 BUG_ON(fs_info->balance_ctl ||
4404 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4405 atomic_dec(&fs_info->balance_cancel_req);
4406 mutex_unlock(&fs_info->balance_mutex);
4407 return 0;
4408}
4409
4410static int btrfs_uuid_scan_kthread(void *data)
4411{
4412 struct btrfs_fs_info *fs_info = data;
4413 struct btrfs_root *root = fs_info->tree_root;
4414 struct btrfs_key key;
4415 struct btrfs_path *path = NULL;
4416 int ret = 0;
4417 struct extent_buffer *eb;
4418 int slot;
4419 struct btrfs_root_item root_item;
4420 u32 item_size;
4421 struct btrfs_trans_handle *trans = NULL;
4422
4423 path = btrfs_alloc_path();
4424 if (!path) {
4425 ret = -ENOMEM;
4426 goto out;
4427 }
4428
4429 key.objectid = 0;
4430 key.type = BTRFS_ROOT_ITEM_KEY;
4431 key.offset = 0;
4432
4433 while (1) {
4434 ret = btrfs_search_forward(root, &key, path,
4435 BTRFS_OLDEST_GENERATION);
4436 if (ret) {
4437 if (ret > 0)
4438 ret = 0;
4439 break;
4440 }
4441
4442 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4443 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4444 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4445 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4446 goto skip;
4447
4448 eb = path->nodes[0];
4449 slot = path->slots[0];
4450 item_size = btrfs_item_size_nr(eb, slot);
4451 if (item_size < sizeof(root_item))
4452 goto skip;
4453
4454 read_extent_buffer(eb, &root_item,
4455 btrfs_item_ptr_offset(eb, slot),
4456 (int)sizeof(root_item));
4457 if (btrfs_root_refs(&root_item) == 0)
4458 goto skip;
4459
4460 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4461 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4462 if (trans)
4463 goto update_tree;
4464
4465 btrfs_release_path(path);
4466 /*
4467 * 1 - subvol uuid item
4468 * 1 - received_subvol uuid item
4469 */
4470 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4471 if (IS_ERR(trans)) {
4472 ret = PTR_ERR(trans);
4473 break;
4474 }
4475 continue;
4476 } else {
4477 goto skip;
4478 }
4479update_tree:
4480 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4481 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4482 BTRFS_UUID_KEY_SUBVOL,
4483 key.objectid);
4484 if (ret < 0) {
4485 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4486 ret);
4487 break;
4488 }
4489 }
4490
4491 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4492 ret = btrfs_uuid_tree_add(trans,
4493 root_item.received_uuid,
4494 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4495 key.objectid);
4496 if (ret < 0) {
4497 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498 ret);
4499 break;
4500 }
4501 }
4502
4503skip:
4504 if (trans) {
4505 ret = btrfs_end_transaction(trans);
4506 trans = NULL;
4507 if (ret)
4508 break;
4509 }
4510
4511 btrfs_release_path(path);
4512 if (key.offset < (u64)-1) {
4513 key.offset++;
4514 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4515 key.offset = 0;
4516 key.type = BTRFS_ROOT_ITEM_KEY;
4517 } else if (key.objectid < (u64)-1) {
4518 key.offset = 0;
4519 key.type = BTRFS_ROOT_ITEM_KEY;
4520 key.objectid++;
4521 } else {
4522 break;
4523 }
4524 cond_resched();
4525 }
4526
4527out:
4528 btrfs_free_path(path);
4529 if (trans && !IS_ERR(trans))
4530 btrfs_end_transaction(trans);
4531 if (ret)
4532 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4533 else
4534 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4535 up(&fs_info->uuid_tree_rescan_sem);
4536 return 0;
4537}
4538
4539/*
4540 * Callback for btrfs_uuid_tree_iterate().
4541 * returns:
4542 * 0 check succeeded, the entry is not outdated.
4543 * < 0 if an error occurred.
4544 * > 0 if the check failed, which means the caller shall remove the entry.
4545 */
4546static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4547 u8 *uuid, u8 type, u64 subid)
4548{
4549 struct btrfs_key key;
4550 int ret = 0;
4551 struct btrfs_root *subvol_root;
4552
4553 if (type != BTRFS_UUID_KEY_SUBVOL &&
4554 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4555 goto out;
4556
4557 key.objectid = subid;
4558 key.type = BTRFS_ROOT_ITEM_KEY;
4559 key.offset = (u64)-1;
4560 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4561 if (IS_ERR(subvol_root)) {
4562 ret = PTR_ERR(subvol_root);
4563 if (ret == -ENOENT)
4564 ret = 1;
4565 goto out;
4566 }
4567
4568 switch (type) {
4569 case BTRFS_UUID_KEY_SUBVOL:
4570 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4571 ret = 1;
4572 break;
4573 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4574 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4575 BTRFS_UUID_SIZE))
4576 ret = 1;
4577 break;
4578 }
4579
4580out:
4581 return ret;
4582}
4583
4584static int btrfs_uuid_rescan_kthread(void *data)
4585{
4586 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4587 int ret;
4588
4589 /*
4590 * 1st step is to iterate through the existing UUID tree and
4591 * to delete all entries that contain outdated data.
4592 * 2nd step is to add all missing entries to the UUID tree.
4593 */
4594 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4595 if (ret < 0) {
4596 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4597 up(&fs_info->uuid_tree_rescan_sem);
4598 return ret;
4599 }
4600 return btrfs_uuid_scan_kthread(data);
4601}
4602
4603int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4604{
4605 struct btrfs_trans_handle *trans;
4606 struct btrfs_root *tree_root = fs_info->tree_root;
4607 struct btrfs_root *uuid_root;
4608 struct task_struct *task;
4609 int ret;
4610
4611 /*
4612 * 1 - root node
4613 * 1 - root item
4614 */
4615 trans = btrfs_start_transaction(tree_root, 2);
4616 if (IS_ERR(trans))
4617 return PTR_ERR(trans);
4618
4619 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4620 if (IS_ERR(uuid_root)) {
4621 ret = PTR_ERR(uuid_root);
4622 btrfs_abort_transaction(trans, ret);
4623 btrfs_end_transaction(trans);
4624 return ret;
4625 }
4626
4627 fs_info->uuid_root = uuid_root;
4628
4629 ret = btrfs_commit_transaction(trans);
4630 if (ret)
4631 return ret;
4632
4633 down(&fs_info->uuid_tree_rescan_sem);
4634 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4635 if (IS_ERR(task)) {
4636 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4637 btrfs_warn(fs_info, "failed to start uuid_scan task");
4638 up(&fs_info->uuid_tree_rescan_sem);
4639 return PTR_ERR(task);
4640 }
4641
4642 return 0;
4643}
4644
4645int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4646{
4647 struct task_struct *task;
4648
4649 down(&fs_info->uuid_tree_rescan_sem);
4650 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4651 if (IS_ERR(task)) {
4652 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4653 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4654 up(&fs_info->uuid_tree_rescan_sem);
4655 return PTR_ERR(task);
4656 }
4657
4658 return 0;
4659}
4660
4661/*
4662 * shrinking a device means finding all of the device extents past
4663 * the new size, and then following the back refs to the chunks.
4664 * The chunk relocation code actually frees the device extent
4665 */
4666int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4667{
4668 struct btrfs_fs_info *fs_info = device->fs_info;
4669 struct btrfs_root *root = fs_info->dev_root;
4670 struct btrfs_trans_handle *trans;
4671 struct btrfs_dev_extent *dev_extent = NULL;
4672 struct btrfs_path *path;
4673 u64 length;
4674 u64 chunk_offset;
4675 int ret;
4676 int slot;
4677 int failed = 0;
4678 bool retried = false;
4679 struct extent_buffer *l;
4680 struct btrfs_key key;
4681 struct btrfs_super_block *super_copy = fs_info->super_copy;
4682 u64 old_total = btrfs_super_total_bytes(super_copy);
4683 u64 old_size = btrfs_device_get_total_bytes(device);
4684 u64 diff;
4685 u64 start;
4686
4687 new_size = round_down(new_size, fs_info->sectorsize);
4688 start = new_size;
4689 diff = round_down(old_size - new_size, fs_info->sectorsize);
4690
4691 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4692 return -EINVAL;
4693
4694 path = btrfs_alloc_path();
4695 if (!path)
4696 return -ENOMEM;
4697
4698 path->reada = READA_BACK;
4699
4700 trans = btrfs_start_transaction(root, 0);
4701 if (IS_ERR(trans)) {
4702 btrfs_free_path(path);
4703 return PTR_ERR(trans);
4704 }
4705
4706 mutex_lock(&fs_info->chunk_mutex);
4707
4708 btrfs_device_set_total_bytes(device, new_size);
4709 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4710 device->fs_devices->total_rw_bytes -= diff;
4711 atomic64_sub(diff, &fs_info->free_chunk_space);
4712 }
4713
4714 /*
4715 * Once the device's size has been set to the new size, ensure all
4716 * in-memory chunks are synced to disk so that the loop below sees them
4717 * and relocates them accordingly.
4718 */
4719 if (contains_pending_extent(device, &start, diff)) {
4720 mutex_unlock(&fs_info->chunk_mutex);
4721 ret = btrfs_commit_transaction(trans);
4722 if (ret)
4723 goto done;
4724 } else {
4725 mutex_unlock(&fs_info->chunk_mutex);
4726 btrfs_end_transaction(trans);
4727 }
4728
4729again:
4730 key.objectid = device->devid;
4731 key.offset = (u64)-1;
4732 key.type = BTRFS_DEV_EXTENT_KEY;
4733
4734 do {
4735 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4737 if (ret < 0) {
4738 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4739 goto done;
4740 }
4741
4742 ret = btrfs_previous_item(root, path, 0, key.type);
4743 if (ret)
4744 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4745 if (ret < 0)
4746 goto done;
4747 if (ret) {
4748 ret = 0;
4749 btrfs_release_path(path);
4750 break;
4751 }
4752
4753 l = path->nodes[0];
4754 slot = path->slots[0];
4755 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4756
4757 if (key.objectid != device->devid) {
4758 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4759 btrfs_release_path(path);
4760 break;
4761 }
4762
4763 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4764 length = btrfs_dev_extent_length(l, dev_extent);
4765
4766 if (key.offset + length <= new_size) {
4767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4768 btrfs_release_path(path);
4769 break;
4770 }
4771
4772 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4773 btrfs_release_path(path);
4774
4775 /*
4776 * We may be relocating the only data chunk we have,
4777 * which could potentially end up with losing data's
4778 * raid profile, so lets allocate an empty one in
4779 * advance.
4780 */
4781 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4782 if (ret < 0) {
4783 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4784 goto done;
4785 }
4786
4787 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4788 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4789 if (ret == -ENOSPC) {
4790 failed++;
4791 } else if (ret) {
4792 if (ret == -ETXTBSY) {
4793 btrfs_warn(fs_info,
4794 "could not shrink block group %llu due to active swapfile",
4795 chunk_offset);
4796 }
4797 goto done;
4798 }
4799 } while (key.offset-- > 0);
4800
4801 if (failed && !retried) {
4802 failed = 0;
4803 retried = true;
4804 goto again;
4805 } else if (failed && retried) {
4806 ret = -ENOSPC;
4807 goto done;
4808 }
4809
4810 /* Shrinking succeeded, else we would be at "done". */
4811 trans = btrfs_start_transaction(root, 0);
4812 if (IS_ERR(trans)) {
4813 ret = PTR_ERR(trans);
4814 goto done;
4815 }
4816
4817 mutex_lock(&fs_info->chunk_mutex);
4818 btrfs_device_set_disk_total_bytes(device, new_size);
4819 if (list_empty(&device->post_commit_list))
4820 list_add_tail(&device->post_commit_list,
4821 &trans->transaction->dev_update_list);
4822
4823 WARN_ON(diff > old_total);
4824 btrfs_set_super_total_bytes(super_copy,
4825 round_down(old_total - diff, fs_info->sectorsize));
4826 mutex_unlock(&fs_info->chunk_mutex);
4827
4828 /* Now btrfs_update_device() will change the on-disk size. */
4829 ret = btrfs_update_device(trans, device);
4830 if (ret < 0) {
4831 btrfs_abort_transaction(trans, ret);
4832 btrfs_end_transaction(trans);
4833 } else {
4834 ret = btrfs_commit_transaction(trans);
4835 }
4836done:
4837 btrfs_free_path(path);
4838 if (ret) {
4839 mutex_lock(&fs_info->chunk_mutex);
4840 btrfs_device_set_total_bytes(device, old_size);
4841 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4842 device->fs_devices->total_rw_bytes += diff;
4843 atomic64_add(diff, &fs_info->free_chunk_space);
4844 mutex_unlock(&fs_info->chunk_mutex);
4845 }
4846 return ret;
4847}
4848
4849static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4850 struct btrfs_key *key,
4851 struct btrfs_chunk *chunk, int item_size)
4852{
4853 struct btrfs_super_block *super_copy = fs_info->super_copy;
4854 struct btrfs_disk_key disk_key;
4855 u32 array_size;
4856 u8 *ptr;
4857
4858 mutex_lock(&fs_info->chunk_mutex);
4859 array_size = btrfs_super_sys_array_size(super_copy);
4860 if (array_size + item_size + sizeof(disk_key)
4861 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4862 mutex_unlock(&fs_info->chunk_mutex);
4863 return -EFBIG;
4864 }
4865
4866 ptr = super_copy->sys_chunk_array + array_size;
4867 btrfs_cpu_key_to_disk(&disk_key, key);
4868 memcpy(ptr, &disk_key, sizeof(disk_key));
4869 ptr += sizeof(disk_key);
4870 memcpy(ptr, chunk, item_size);
4871 item_size += sizeof(disk_key);
4872 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4873 mutex_unlock(&fs_info->chunk_mutex);
4874
4875 return 0;
4876}
4877
4878/*
4879 * sort the devices in descending order by max_avail, total_avail
4880 */
4881static int btrfs_cmp_device_info(const void *a, const void *b)
4882{
4883 const struct btrfs_device_info *di_a = a;
4884 const struct btrfs_device_info *di_b = b;
4885
4886 if (di_a->max_avail > di_b->max_avail)
4887 return -1;
4888 if (di_a->max_avail < di_b->max_avail)
4889 return 1;
4890 if (di_a->total_avail > di_b->total_avail)
4891 return -1;
4892 if (di_a->total_avail < di_b->total_avail)
4893 return 1;
4894 return 0;
4895}
4896
4897static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4898{
4899 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4900 return;
4901
4902 btrfs_set_fs_incompat(info, RAID56);
4903}
4904
4905static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 u64 start, u64 type)
4907{
4908 struct btrfs_fs_info *info = trans->fs_info;
4909 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4910 struct btrfs_device *device;
4911 struct map_lookup *map = NULL;
4912 struct extent_map_tree *em_tree;
4913 struct extent_map *em;
4914 struct btrfs_device_info *devices_info = NULL;
4915 u64 total_avail;
4916 int num_stripes; /* total number of stripes to allocate */
4917 int data_stripes; /* number of stripes that count for
4918 block group size */
4919 int sub_stripes; /* sub_stripes info for map */
4920 int dev_stripes; /* stripes per dev */
4921 int devs_max; /* max devs to use */
4922 int devs_min; /* min devs needed */
4923 int devs_increment; /* ndevs has to be a multiple of this */
4924 int ncopies; /* how many copies to data has */
4925 int nparity; /* number of stripes worth of bytes to
4926 store parity information */
4927 int ret;
4928 u64 max_stripe_size;
4929 u64 max_chunk_size;
4930 u64 stripe_size;
4931 u64 chunk_size;
4932 int ndevs;
4933 int i;
4934 int j;
4935 int index;
4936
4937 BUG_ON(!alloc_profile_is_valid(type, 0));
4938
4939 if (list_empty(&fs_devices->alloc_list)) {
4940 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4941 btrfs_debug(info, "%s: no writable device", __func__);
4942 return -ENOSPC;
4943 }
4944
4945 index = btrfs_bg_flags_to_raid_index(type);
4946
4947 sub_stripes = btrfs_raid_array[index].sub_stripes;
4948 dev_stripes = btrfs_raid_array[index].dev_stripes;
4949 devs_max = btrfs_raid_array[index].devs_max;
4950 if (!devs_max)
4951 devs_max = BTRFS_MAX_DEVS(info);
4952 devs_min = btrfs_raid_array[index].devs_min;
4953 devs_increment = btrfs_raid_array[index].devs_increment;
4954 ncopies = btrfs_raid_array[index].ncopies;
4955 nparity = btrfs_raid_array[index].nparity;
4956
4957 if (type & BTRFS_BLOCK_GROUP_DATA) {
4958 max_stripe_size = SZ_1G;
4959 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4960 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4961 /* for larger filesystems, use larger metadata chunks */
4962 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4963 max_stripe_size = SZ_1G;
4964 else
4965 max_stripe_size = SZ_256M;
4966 max_chunk_size = max_stripe_size;
4967 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4968 max_stripe_size = SZ_32M;
4969 max_chunk_size = 2 * max_stripe_size;
4970 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4971 } else {
4972 btrfs_err(info, "invalid chunk type 0x%llx requested",
4973 type);
4974 BUG();
4975 }
4976
4977 /* We don't want a chunk larger than 10% of writable space */
4978 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4979 max_chunk_size);
4980
4981 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4982 GFP_NOFS);
4983 if (!devices_info)
4984 return -ENOMEM;
4985
4986 /*
4987 * in the first pass through the devices list, we gather information
4988 * about the available holes on each device.
4989 */
4990 ndevs = 0;
4991 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4992 u64 max_avail;
4993 u64 dev_offset;
4994
4995 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4996 WARN(1, KERN_ERR
4997 "BTRFS: read-only device in alloc_list\n");
4998 continue;
4999 }
5000
5001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5002 &device->dev_state) ||
5003 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5004 continue;
5005
5006 if (device->total_bytes > device->bytes_used)
5007 total_avail = device->total_bytes - device->bytes_used;
5008 else
5009 total_avail = 0;
5010
5011 /* If there is no space on this device, skip it. */
5012 if (total_avail == 0)
5013 continue;
5014
5015 ret = find_free_dev_extent(device,
5016 max_stripe_size * dev_stripes,
5017 &dev_offset, &max_avail);
5018 if (ret && ret != -ENOSPC)
5019 goto error;
5020
5021 if (ret == 0)
5022 max_avail = max_stripe_size * dev_stripes;
5023
5024 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5025 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5026 btrfs_debug(info,
5027 "%s: devid %llu has no free space, have=%llu want=%u",
5028 __func__, device->devid, max_avail,
5029 BTRFS_STRIPE_LEN * dev_stripes);
5030 continue;
5031 }
5032
5033 if (ndevs == fs_devices->rw_devices) {
5034 WARN(1, "%s: found more than %llu devices\n",
5035 __func__, fs_devices->rw_devices);
5036 break;
5037 }
5038 devices_info[ndevs].dev_offset = dev_offset;
5039 devices_info[ndevs].max_avail = max_avail;
5040 devices_info[ndevs].total_avail = total_avail;
5041 devices_info[ndevs].dev = device;
5042 ++ndevs;
5043 }
5044
5045 /*
5046 * now sort the devices by hole size / available space
5047 */
5048 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5049 btrfs_cmp_device_info, NULL);
5050
5051 /* round down to number of usable stripes */
5052 ndevs = round_down(ndevs, devs_increment);
5053
5054 if (ndevs < devs_min) {
5055 ret = -ENOSPC;
5056 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5057 btrfs_debug(info,
5058 "%s: not enough devices with free space: have=%d minimum required=%d",
5059 __func__, ndevs, devs_min);
5060 }
5061 goto error;
5062 }
5063
5064 ndevs = min(ndevs, devs_max);
5065
5066 /*
5067 * The primary goal is to maximize the number of stripes, so use as
5068 * many devices as possible, even if the stripes are not maximum sized.
5069 *
5070 * The DUP profile stores more than one stripe per device, the
5071 * max_avail is the total size so we have to adjust.
5072 */
5073 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5074 num_stripes = ndevs * dev_stripes;
5075
5076 /*
5077 * this will have to be fixed for RAID1 and RAID10 over
5078 * more drives
5079 */
5080 data_stripes = (num_stripes - nparity) / ncopies;
5081
5082 /*
5083 * Use the number of data stripes to figure out how big this chunk
5084 * is really going to be in terms of logical address space,
5085 * and compare that answer with the max chunk size. If it's higher,
5086 * we try to reduce stripe_size.
5087 */
5088 if (stripe_size * data_stripes > max_chunk_size) {
5089 /*
5090 * Reduce stripe_size, round it up to a 16MB boundary again and
5091 * then use it, unless it ends up being even bigger than the
5092 * previous value we had already.
5093 */
5094 stripe_size = min(round_up(div_u64(max_chunk_size,
5095 data_stripes), SZ_16M),
5096 stripe_size);
5097 }
5098
5099 /* align to BTRFS_STRIPE_LEN */
5100 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5101
5102 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5103 if (!map) {
5104 ret = -ENOMEM;
5105 goto error;
5106 }
5107 map->num_stripes = num_stripes;
5108
5109 for (i = 0; i < ndevs; ++i) {
5110 for (j = 0; j < dev_stripes; ++j) {
5111 int s = i * dev_stripes + j;
5112 map->stripes[s].dev = devices_info[i].dev;
5113 map->stripes[s].physical = devices_info[i].dev_offset +
5114 j * stripe_size;
5115 }
5116 }
5117 map->stripe_len = BTRFS_STRIPE_LEN;
5118 map->io_align = BTRFS_STRIPE_LEN;
5119 map->io_width = BTRFS_STRIPE_LEN;
5120 map->type = type;
5121 map->sub_stripes = sub_stripes;
5122
5123 chunk_size = stripe_size * data_stripes;
5124
5125 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5126
5127 em = alloc_extent_map();
5128 if (!em) {
5129 kfree(map);
5130 ret = -ENOMEM;
5131 goto error;
5132 }
5133 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5134 em->map_lookup = map;
5135 em->start = start;
5136 em->len = chunk_size;
5137 em->block_start = 0;
5138 em->block_len = em->len;
5139 em->orig_block_len = stripe_size;
5140
5141 em_tree = &info->mapping_tree;
5142 write_lock(&em_tree->lock);
5143 ret = add_extent_mapping(em_tree, em, 0);
5144 if (ret) {
5145 write_unlock(&em_tree->lock);
5146 free_extent_map(em);
5147 goto error;
5148 }
5149 write_unlock(&em_tree->lock);
5150
5151 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5152 if (ret)
5153 goto error_del_extent;
5154
5155 for (i = 0; i < map->num_stripes; i++) {
5156 struct btrfs_device *dev = map->stripes[i].dev;
5157
5158 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5159 if (list_empty(&dev->post_commit_list))
5160 list_add_tail(&dev->post_commit_list,
5161 &trans->transaction->dev_update_list);
5162 }
5163
5164 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5165
5166 free_extent_map(em);
5167 check_raid56_incompat_flag(info, type);
5168
5169 kfree(devices_info);
5170 return 0;
5171
5172error_del_extent:
5173 write_lock(&em_tree->lock);
5174 remove_extent_mapping(em_tree, em);
5175 write_unlock(&em_tree->lock);
5176
5177 /* One for our allocation */
5178 free_extent_map(em);
5179 /* One for the tree reference */
5180 free_extent_map(em);
5181error:
5182 kfree(devices_info);
5183 return ret;
5184}
5185
5186int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5187 u64 chunk_offset, u64 chunk_size)
5188{
5189 struct btrfs_fs_info *fs_info = trans->fs_info;
5190 struct btrfs_root *extent_root = fs_info->extent_root;
5191 struct btrfs_root *chunk_root = fs_info->chunk_root;
5192 struct btrfs_key key;
5193 struct btrfs_device *device;
5194 struct btrfs_chunk *chunk;
5195 struct btrfs_stripe *stripe;
5196 struct extent_map *em;
5197 struct map_lookup *map;
5198 size_t item_size;
5199 u64 dev_offset;
5200 u64 stripe_size;
5201 int i = 0;
5202 int ret = 0;
5203
5204 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5205 if (IS_ERR(em))
5206 return PTR_ERR(em);
5207
5208 map = em->map_lookup;
5209 item_size = btrfs_chunk_item_size(map->num_stripes);
5210 stripe_size = em->orig_block_len;
5211
5212 chunk = kzalloc(item_size, GFP_NOFS);
5213 if (!chunk) {
5214 ret = -ENOMEM;
5215 goto out;
5216 }
5217
5218 /*
5219 * Take the device list mutex to prevent races with the final phase of
5220 * a device replace operation that replaces the device object associated
5221 * with the map's stripes, because the device object's id can change
5222 * at any time during that final phase of the device replace operation
5223 * (dev-replace.c:btrfs_dev_replace_finishing()).
5224 */
5225 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5226 for (i = 0; i < map->num_stripes; i++) {
5227 device = map->stripes[i].dev;
5228 dev_offset = map->stripes[i].physical;
5229
5230 ret = btrfs_update_device(trans, device);
5231 if (ret)
5232 break;
5233 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5234 dev_offset, stripe_size);
5235 if (ret)
5236 break;
5237 }
5238 if (ret) {
5239 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5240 goto out;
5241 }
5242
5243 stripe = &chunk->stripe;
5244 for (i = 0; i < map->num_stripes; i++) {
5245 device = map->stripes[i].dev;
5246 dev_offset = map->stripes[i].physical;
5247
5248 btrfs_set_stack_stripe_devid(stripe, device->devid);
5249 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5250 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5251 stripe++;
5252 }
5253 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5254
5255 btrfs_set_stack_chunk_length(chunk, chunk_size);
5256 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5257 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5258 btrfs_set_stack_chunk_type(chunk, map->type);
5259 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5260 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5261 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5262 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5263 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5264
5265 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5266 key.type = BTRFS_CHUNK_ITEM_KEY;
5267 key.offset = chunk_offset;
5268
5269 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5270 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5271 /*
5272 * TODO: Cleanup of inserted chunk root in case of
5273 * failure.
5274 */
5275 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5276 }
5277
5278out:
5279 kfree(chunk);
5280 free_extent_map(em);
5281 return ret;
5282}
5283
5284/*
5285 * Chunk allocation falls into two parts. The first part does work
5286 * that makes the new allocated chunk usable, but does not do any operation
5287 * that modifies the chunk tree. The second part does the work that
5288 * requires modifying the chunk tree. This division is important for the
5289 * bootstrap process of adding storage to a seed btrfs.
5290 */
5291int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5292{
5293 u64 chunk_offset;
5294
5295 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5296 chunk_offset = find_next_chunk(trans->fs_info);
5297 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5298}
5299
5300static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5301{
5302 struct btrfs_fs_info *fs_info = trans->fs_info;
5303 u64 chunk_offset;
5304 u64 sys_chunk_offset;
5305 u64 alloc_profile;
5306 int ret;
5307
5308 chunk_offset = find_next_chunk(fs_info);
5309 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5310 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5311 if (ret)
5312 return ret;
5313
5314 sys_chunk_offset = find_next_chunk(fs_info);
5315 alloc_profile = btrfs_system_alloc_profile(fs_info);
5316 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5317 return ret;
5318}
5319
5320static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5321{
5322 const int index = btrfs_bg_flags_to_raid_index(map->type);
5323
5324 return btrfs_raid_array[index].tolerated_failures;
5325}
5326
5327int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5328{
5329 struct extent_map *em;
5330 struct map_lookup *map;
5331 int readonly = 0;
5332 int miss_ndevs = 0;
5333 int i;
5334
5335 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5336 if (IS_ERR(em))
5337 return 1;
5338
5339 map = em->map_lookup;
5340 for (i = 0; i < map->num_stripes; i++) {
5341 if (test_bit(BTRFS_DEV_STATE_MISSING,
5342 &map->stripes[i].dev->dev_state)) {
5343 miss_ndevs++;
5344 continue;
5345 }
5346 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5347 &map->stripes[i].dev->dev_state)) {
5348 readonly = 1;
5349 goto end;
5350 }
5351 }
5352
5353 /*
5354 * If the number of missing devices is larger than max errors,
5355 * we can not write the data into that chunk successfully, so
5356 * set it readonly.
5357 */
5358 if (miss_ndevs > btrfs_chunk_max_errors(map))
5359 readonly = 1;
5360end:
5361 free_extent_map(em);
5362 return readonly;
5363}
5364
5365void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5366{
5367 struct extent_map *em;
5368
5369 while (1) {
5370 write_lock(&tree->lock);
5371 em = lookup_extent_mapping(tree, 0, (u64)-1);
5372 if (em)
5373 remove_extent_mapping(tree, em);
5374 write_unlock(&tree->lock);
5375 if (!em)
5376 break;
5377 /* once for us */
5378 free_extent_map(em);
5379 /* once for the tree */
5380 free_extent_map(em);
5381 }
5382}
5383
5384int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5385{
5386 struct extent_map *em;
5387 struct map_lookup *map;
5388 int ret;
5389
5390 em = btrfs_get_chunk_map(fs_info, logical, len);
5391 if (IS_ERR(em))
5392 /*
5393 * We could return errors for these cases, but that could get
5394 * ugly and we'd probably do the same thing which is just not do
5395 * anything else and exit, so return 1 so the callers don't try
5396 * to use other copies.
5397 */
5398 return 1;
5399
5400 map = em->map_lookup;
5401 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5402 ret = map->num_stripes;
5403 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5404 ret = map->sub_stripes;
5405 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5406 ret = 2;
5407 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5408 /*
5409 * There could be two corrupted data stripes, we need
5410 * to loop retry in order to rebuild the correct data.
5411 *
5412 * Fail a stripe at a time on every retry except the
5413 * stripe under reconstruction.
5414 */
5415 ret = map->num_stripes;
5416 else
5417 ret = 1;
5418 free_extent_map(em);
5419
5420 down_read(&fs_info->dev_replace.rwsem);
5421 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5422 fs_info->dev_replace.tgtdev)
5423 ret++;
5424 up_read(&fs_info->dev_replace.rwsem);
5425
5426 return ret;
5427}
5428
5429unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5430 u64 logical)
5431{
5432 struct extent_map *em;
5433 struct map_lookup *map;
5434 unsigned long len = fs_info->sectorsize;
5435
5436 em = btrfs_get_chunk_map(fs_info, logical, len);
5437
5438 if (!WARN_ON(IS_ERR(em))) {
5439 map = em->map_lookup;
5440 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5441 len = map->stripe_len * nr_data_stripes(map);
5442 free_extent_map(em);
5443 }
5444 return len;
5445}
5446
5447int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5448{
5449 struct extent_map *em;
5450 struct map_lookup *map;
5451 int ret = 0;
5452
5453 em = btrfs_get_chunk_map(fs_info, logical, len);
5454
5455 if(!WARN_ON(IS_ERR(em))) {
5456 map = em->map_lookup;
5457 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5458 ret = 1;
5459 free_extent_map(em);
5460 }
5461 return ret;
5462}
5463
5464static int find_live_mirror(struct btrfs_fs_info *fs_info,
5465 struct map_lookup *map, int first,
5466 int dev_replace_is_ongoing)
5467{
5468 int i;
5469 int num_stripes;
5470 int preferred_mirror;
5471 int tolerance;
5472 struct btrfs_device *srcdev;
5473
5474 ASSERT((map->type &
5475 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5476
5477 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5478 num_stripes = map->sub_stripes;
5479 else
5480 num_stripes = map->num_stripes;
5481
5482 preferred_mirror = first + current->pid % num_stripes;
5483
5484 if (dev_replace_is_ongoing &&
5485 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5486 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5487 srcdev = fs_info->dev_replace.srcdev;
5488 else
5489 srcdev = NULL;
5490
5491 /*
5492 * try to avoid the drive that is the source drive for a
5493 * dev-replace procedure, only choose it if no other non-missing
5494 * mirror is available
5495 */
5496 for (tolerance = 0; tolerance < 2; tolerance++) {
5497 if (map->stripes[preferred_mirror].dev->bdev &&
5498 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5499 return preferred_mirror;
5500 for (i = first; i < first + num_stripes; i++) {
5501 if (map->stripes[i].dev->bdev &&
5502 (tolerance || map->stripes[i].dev != srcdev))
5503 return i;
5504 }
5505 }
5506
5507 /* we couldn't find one that doesn't fail. Just return something
5508 * and the io error handling code will clean up eventually
5509 */
5510 return preferred_mirror;
5511}
5512
5513static inline int parity_smaller(u64 a, u64 b)
5514{
5515 return a > b;
5516}
5517
5518/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5519static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5520{
5521 struct btrfs_bio_stripe s;
5522 int i;
5523 u64 l;
5524 int again = 1;
5525
5526 while (again) {
5527 again = 0;
5528 for (i = 0; i < num_stripes - 1; i++) {
5529 if (parity_smaller(bbio->raid_map[i],
5530 bbio->raid_map[i+1])) {
5531 s = bbio->stripes[i];
5532 l = bbio->raid_map[i];
5533 bbio->stripes[i] = bbio->stripes[i+1];
5534 bbio->raid_map[i] = bbio->raid_map[i+1];
5535 bbio->stripes[i+1] = s;
5536 bbio->raid_map[i+1] = l;
5537
5538 again = 1;
5539 }
5540 }
5541 }
5542}
5543
5544static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5545{
5546 struct btrfs_bio *bbio = kzalloc(
5547 /* the size of the btrfs_bio */
5548 sizeof(struct btrfs_bio) +
5549 /* plus the variable array for the stripes */
5550 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5551 /* plus the variable array for the tgt dev */
5552 sizeof(int) * (real_stripes) +
5553 /*
5554 * plus the raid_map, which includes both the tgt dev
5555 * and the stripes
5556 */
5557 sizeof(u64) * (total_stripes),
5558 GFP_NOFS|__GFP_NOFAIL);
5559
5560 atomic_set(&bbio->error, 0);
5561 refcount_set(&bbio->refs, 1);
5562
5563 return bbio;
5564}
5565
5566void btrfs_get_bbio(struct btrfs_bio *bbio)
5567{
5568 WARN_ON(!refcount_read(&bbio->refs));
5569 refcount_inc(&bbio->refs);
5570}
5571
5572void btrfs_put_bbio(struct btrfs_bio *bbio)
5573{
5574 if (!bbio)
5575 return;
5576 if (refcount_dec_and_test(&bbio->refs))
5577 kfree(bbio);
5578}
5579
5580/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5581/*
5582 * Please note that, discard won't be sent to target device of device
5583 * replace.
5584 */
5585static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5586 u64 logical, u64 length,
5587 struct btrfs_bio **bbio_ret)
5588{
5589 struct extent_map *em;
5590 struct map_lookup *map;
5591 struct btrfs_bio *bbio;
5592 u64 offset;
5593 u64 stripe_nr;
5594 u64 stripe_nr_end;
5595 u64 stripe_end_offset;
5596 u64 stripe_cnt;
5597 u64 stripe_len;
5598 u64 stripe_offset;
5599 u64 num_stripes;
5600 u32 stripe_index;
5601 u32 factor = 0;
5602 u32 sub_stripes = 0;
5603 u64 stripes_per_dev = 0;
5604 u32 remaining_stripes = 0;
5605 u32 last_stripe = 0;
5606 int ret = 0;
5607 int i;
5608
5609 /* discard always return a bbio */
5610 ASSERT(bbio_ret);
5611
5612 em = btrfs_get_chunk_map(fs_info, logical, length);
5613 if (IS_ERR(em))
5614 return PTR_ERR(em);
5615
5616 map = em->map_lookup;
5617 /* we don't discard raid56 yet */
5618 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5619 ret = -EOPNOTSUPP;
5620 goto out;
5621 }
5622
5623 offset = logical - em->start;
5624 length = min_t(u64, em->len - offset, length);
5625
5626 stripe_len = map->stripe_len;
5627 /*
5628 * stripe_nr counts the total number of stripes we have to stride
5629 * to get to this block
5630 */
5631 stripe_nr = div64_u64(offset, stripe_len);
5632
5633 /* stripe_offset is the offset of this block in its stripe */
5634 stripe_offset = offset - stripe_nr * stripe_len;
5635
5636 stripe_nr_end = round_up(offset + length, map->stripe_len);
5637 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5638 stripe_cnt = stripe_nr_end - stripe_nr;
5639 stripe_end_offset = stripe_nr_end * map->stripe_len -
5640 (offset + length);
5641 /*
5642 * after this, stripe_nr is the number of stripes on this
5643 * device we have to walk to find the data, and stripe_index is
5644 * the number of our device in the stripe array
5645 */
5646 num_stripes = 1;
5647 stripe_index = 0;
5648 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5649 BTRFS_BLOCK_GROUP_RAID10)) {
5650 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5651 sub_stripes = 1;
5652 else
5653 sub_stripes = map->sub_stripes;
5654
5655 factor = map->num_stripes / sub_stripes;
5656 num_stripes = min_t(u64, map->num_stripes,
5657 sub_stripes * stripe_cnt);
5658 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5659 stripe_index *= sub_stripes;
5660 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5661 &remaining_stripes);
5662 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5663 last_stripe *= sub_stripes;
5664 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5665 BTRFS_BLOCK_GROUP_DUP)) {
5666 num_stripes = map->num_stripes;
5667 } else {
5668 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5669 &stripe_index);
5670 }
5671
5672 bbio = alloc_btrfs_bio(num_stripes, 0);
5673 if (!bbio) {
5674 ret = -ENOMEM;
5675 goto out;
5676 }
5677
5678 for (i = 0; i < num_stripes; i++) {
5679 bbio->stripes[i].physical =
5680 map->stripes[stripe_index].physical +
5681 stripe_offset + stripe_nr * map->stripe_len;
5682 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5683
5684 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5685 BTRFS_BLOCK_GROUP_RAID10)) {
5686 bbio->stripes[i].length = stripes_per_dev *
5687 map->stripe_len;
5688
5689 if (i / sub_stripes < remaining_stripes)
5690 bbio->stripes[i].length +=
5691 map->stripe_len;
5692
5693 /*
5694 * Special for the first stripe and
5695 * the last stripe:
5696 *
5697 * |-------|...|-------|
5698 * |----------|
5699 * off end_off
5700 */
5701 if (i < sub_stripes)
5702 bbio->stripes[i].length -=
5703 stripe_offset;
5704
5705 if (stripe_index >= last_stripe &&
5706 stripe_index <= (last_stripe +
5707 sub_stripes - 1))
5708 bbio->stripes[i].length -=
5709 stripe_end_offset;
5710
5711 if (i == sub_stripes - 1)
5712 stripe_offset = 0;
5713 } else {
5714 bbio->stripes[i].length = length;
5715 }
5716
5717 stripe_index++;
5718 if (stripe_index == map->num_stripes) {
5719 stripe_index = 0;
5720 stripe_nr++;
5721 }
5722 }
5723
5724 *bbio_ret = bbio;
5725 bbio->map_type = map->type;
5726 bbio->num_stripes = num_stripes;
5727out:
5728 free_extent_map(em);
5729 return ret;
5730}
5731
5732/*
5733 * In dev-replace case, for repair case (that's the only case where the mirror
5734 * is selected explicitly when calling btrfs_map_block), blocks left of the
5735 * left cursor can also be read from the target drive.
5736 *
5737 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5738 * array of stripes.
5739 * For READ, it also needs to be supported using the same mirror number.
5740 *
5741 * If the requested block is not left of the left cursor, EIO is returned. This
5742 * can happen because btrfs_num_copies() returns one more in the dev-replace
5743 * case.
5744 */
5745static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5746 u64 logical, u64 length,
5747 u64 srcdev_devid, int *mirror_num,
5748 u64 *physical)
5749{
5750 struct btrfs_bio *bbio = NULL;
5751 int num_stripes;
5752 int index_srcdev = 0;
5753 int found = 0;
5754 u64 physical_of_found = 0;
5755 int i;
5756 int ret = 0;
5757
5758 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5759 logical, &length, &bbio, 0, 0);
5760 if (ret) {
5761 ASSERT(bbio == NULL);
5762 return ret;
5763 }
5764
5765 num_stripes = bbio->num_stripes;
5766 if (*mirror_num > num_stripes) {
5767 /*
5768 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5769 * that means that the requested area is not left of the left
5770 * cursor
5771 */
5772 btrfs_put_bbio(bbio);
5773 return -EIO;
5774 }
5775
5776 /*
5777 * process the rest of the function using the mirror_num of the source
5778 * drive. Therefore look it up first. At the end, patch the device
5779 * pointer to the one of the target drive.
5780 */
5781 for (i = 0; i < num_stripes; i++) {
5782 if (bbio->stripes[i].dev->devid != srcdev_devid)
5783 continue;
5784
5785 /*
5786 * In case of DUP, in order to keep it simple, only add the
5787 * mirror with the lowest physical address
5788 */
5789 if (found &&
5790 physical_of_found <= bbio->stripes[i].physical)
5791 continue;
5792
5793 index_srcdev = i;
5794 found = 1;
5795 physical_of_found = bbio->stripes[i].physical;
5796 }
5797
5798 btrfs_put_bbio(bbio);
5799
5800 ASSERT(found);
5801 if (!found)
5802 return -EIO;
5803
5804 *mirror_num = index_srcdev + 1;
5805 *physical = physical_of_found;
5806 return ret;
5807}
5808
5809static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5810 struct btrfs_bio **bbio_ret,
5811 struct btrfs_dev_replace *dev_replace,
5812 int *num_stripes_ret, int *max_errors_ret)
5813{
5814 struct btrfs_bio *bbio = *bbio_ret;
5815 u64 srcdev_devid = dev_replace->srcdev->devid;
5816 int tgtdev_indexes = 0;
5817 int num_stripes = *num_stripes_ret;
5818 int max_errors = *max_errors_ret;
5819 int i;
5820
5821 if (op == BTRFS_MAP_WRITE) {
5822 int index_where_to_add;
5823
5824 /*
5825 * duplicate the write operations while the dev replace
5826 * procedure is running. Since the copying of the old disk to
5827 * the new disk takes place at run time while the filesystem is
5828 * mounted writable, the regular write operations to the old
5829 * disk have to be duplicated to go to the new disk as well.
5830 *
5831 * Note that device->missing is handled by the caller, and that
5832 * the write to the old disk is already set up in the stripes
5833 * array.
5834 */
5835 index_where_to_add = num_stripes;
5836 for (i = 0; i < num_stripes; i++) {
5837 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5838 /* write to new disk, too */
5839 struct btrfs_bio_stripe *new =
5840 bbio->stripes + index_where_to_add;
5841 struct btrfs_bio_stripe *old =
5842 bbio->stripes + i;
5843
5844 new->physical = old->physical;
5845 new->length = old->length;
5846 new->dev = dev_replace->tgtdev;
5847 bbio->tgtdev_map[i] = index_where_to_add;
5848 index_where_to_add++;
5849 max_errors++;
5850 tgtdev_indexes++;
5851 }
5852 }
5853 num_stripes = index_where_to_add;
5854 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5855 int index_srcdev = 0;
5856 int found = 0;
5857 u64 physical_of_found = 0;
5858
5859 /*
5860 * During the dev-replace procedure, the target drive can also
5861 * be used to read data in case it is needed to repair a corrupt
5862 * block elsewhere. This is possible if the requested area is
5863 * left of the left cursor. In this area, the target drive is a
5864 * full copy of the source drive.
5865 */
5866 for (i = 0; i < num_stripes; i++) {
5867 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5868 /*
5869 * In case of DUP, in order to keep it simple,
5870 * only add the mirror with the lowest physical
5871 * address
5872 */
5873 if (found &&
5874 physical_of_found <=
5875 bbio->stripes[i].physical)
5876 continue;
5877 index_srcdev = i;
5878 found = 1;
5879 physical_of_found = bbio->stripes[i].physical;
5880 }
5881 }
5882 if (found) {
5883 struct btrfs_bio_stripe *tgtdev_stripe =
5884 bbio->stripes + num_stripes;
5885
5886 tgtdev_stripe->physical = physical_of_found;
5887 tgtdev_stripe->length =
5888 bbio->stripes[index_srcdev].length;
5889 tgtdev_stripe->dev = dev_replace->tgtdev;
5890 bbio->tgtdev_map[index_srcdev] = num_stripes;
5891
5892 tgtdev_indexes++;
5893 num_stripes++;
5894 }
5895 }
5896
5897 *num_stripes_ret = num_stripes;
5898 *max_errors_ret = max_errors;
5899 bbio->num_tgtdevs = tgtdev_indexes;
5900 *bbio_ret = bbio;
5901}
5902
5903static bool need_full_stripe(enum btrfs_map_op op)
5904{
5905 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5906}
5907
5908/*
5909 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5910 * tuple. This information is used to calculate how big a
5911 * particular bio can get before it straddles a stripe.
5912 *
5913 * @fs_info - the filesystem
5914 * @logical - address that we want to figure out the geometry of
5915 * @len - the length of IO we are going to perform, starting at @logical
5916 * @op - type of operation - write or read
5917 * @io_geom - pointer used to return values
5918 *
5919 * Returns < 0 in case a chunk for the given logical address cannot be found,
5920 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5921 */
5922int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5923 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5924{
5925 struct extent_map *em;
5926 struct map_lookup *map;
5927 u64 offset;
5928 u64 stripe_offset;
5929 u64 stripe_nr;
5930 u64 stripe_len;
5931 u64 raid56_full_stripe_start = (u64)-1;
5932 int data_stripes;
5933 int ret = 0;
5934
5935 ASSERT(op != BTRFS_MAP_DISCARD);
5936
5937 em = btrfs_get_chunk_map(fs_info, logical, len);
5938 if (IS_ERR(em))
5939 return PTR_ERR(em);
5940
5941 map = em->map_lookup;
5942 /* Offset of this logical address in the chunk */
5943 offset = logical - em->start;
5944 /* Len of a stripe in a chunk */
5945 stripe_len = map->stripe_len;
5946 /* Stripe wher this block falls in */
5947 stripe_nr = div64_u64(offset, stripe_len);
5948 /* Offset of stripe in the chunk */
5949 stripe_offset = stripe_nr * stripe_len;
5950 if (offset < stripe_offset) {
5951 btrfs_crit(fs_info,
5952"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5953 stripe_offset, offset, em->start, logical, stripe_len);
5954 ret = -EINVAL;
5955 goto out;
5956 }
5957
5958 /* stripe_offset is the offset of this block in its stripe */
5959 stripe_offset = offset - stripe_offset;
5960 data_stripes = nr_data_stripes(map);
5961
5962 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5963 u64 max_len = stripe_len - stripe_offset;
5964
5965 /*
5966 * In case of raid56, we need to know the stripe aligned start
5967 */
5968 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5969 unsigned long full_stripe_len = stripe_len * data_stripes;
5970 raid56_full_stripe_start = offset;
5971
5972 /*
5973 * Allow a write of a full stripe, but make sure we
5974 * don't allow straddling of stripes
5975 */
5976 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5977 full_stripe_len);
5978 raid56_full_stripe_start *= full_stripe_len;
5979
5980 /*
5981 * For writes to RAID[56], allow a full stripeset across
5982 * all disks. For other RAID types and for RAID[56]
5983 * reads, just allow a single stripe (on a single disk).
5984 */
5985 if (op == BTRFS_MAP_WRITE) {
5986 max_len = stripe_len * data_stripes -
5987 (offset - raid56_full_stripe_start);
5988 }
5989 }
5990 len = min_t(u64, em->len - offset, max_len);
5991 } else {
5992 len = em->len - offset;
5993 }
5994
5995 io_geom->len = len;
5996 io_geom->offset = offset;
5997 io_geom->stripe_len = stripe_len;
5998 io_geom->stripe_nr = stripe_nr;
5999 io_geom->stripe_offset = stripe_offset;
6000 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6001
6002out:
6003 /* once for us */
6004 free_extent_map(em);
6005 return ret;
6006}
6007
6008static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6009 enum btrfs_map_op op,
6010 u64 logical, u64 *length,
6011 struct btrfs_bio **bbio_ret,
6012 int mirror_num, int need_raid_map)
6013{
6014 struct extent_map *em;
6015 struct map_lookup *map;
6016 u64 stripe_offset;
6017 u64 stripe_nr;
6018 u64 stripe_len;
6019 u32 stripe_index;
6020 int data_stripes;
6021 int i;
6022 int ret = 0;
6023 int num_stripes;
6024 int max_errors = 0;
6025 int tgtdev_indexes = 0;
6026 struct btrfs_bio *bbio = NULL;
6027 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6028 int dev_replace_is_ongoing = 0;
6029 int num_alloc_stripes;
6030 int patch_the_first_stripe_for_dev_replace = 0;
6031 u64 physical_to_patch_in_first_stripe = 0;
6032 u64 raid56_full_stripe_start = (u64)-1;
6033 struct btrfs_io_geometry geom;
6034
6035 ASSERT(bbio_ret);
6036
6037 if (op == BTRFS_MAP_DISCARD)
6038 return __btrfs_map_block_for_discard(fs_info, logical,
6039 *length, bbio_ret);
6040
6041 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6042 if (ret < 0)
6043 return ret;
6044
6045 em = btrfs_get_chunk_map(fs_info, logical, *length);
6046 ASSERT(!IS_ERR(em));
6047 map = em->map_lookup;
6048
6049 *length = geom.len;
6050 stripe_len = geom.stripe_len;
6051 stripe_nr = geom.stripe_nr;
6052 stripe_offset = geom.stripe_offset;
6053 raid56_full_stripe_start = geom.raid56_stripe_offset;
6054 data_stripes = nr_data_stripes(map);
6055
6056 down_read(&dev_replace->rwsem);
6057 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058 /*
6059 * Hold the semaphore for read during the whole operation, write is
6060 * requested at commit time but must wait.
6061 */
6062 if (!dev_replace_is_ongoing)
6063 up_read(&dev_replace->rwsem);
6064
6065 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068 dev_replace->srcdev->devid,
6069 &mirror_num,
6070 &physical_to_patch_in_first_stripe);
6071 if (ret)
6072 goto out;
6073 else
6074 patch_the_first_stripe_for_dev_replace = 1;
6075 } else if (mirror_num > map->num_stripes) {
6076 mirror_num = 0;
6077 }
6078
6079 num_stripes = 1;
6080 stripe_index = 0;
6081 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083 &stripe_index);
6084 if (!need_full_stripe(op))
6085 mirror_num = 1;
6086 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087 if (need_full_stripe(op))
6088 num_stripes = map->num_stripes;
6089 else if (mirror_num)
6090 stripe_index = mirror_num - 1;
6091 else {
6092 stripe_index = find_live_mirror(fs_info, map, 0,
6093 dev_replace_is_ongoing);
6094 mirror_num = stripe_index + 1;
6095 }
6096
6097 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098 if (need_full_stripe(op)) {
6099 num_stripes = map->num_stripes;
6100 } else if (mirror_num) {
6101 stripe_index = mirror_num - 1;
6102 } else {
6103 mirror_num = 1;
6104 }
6105
6106 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107 u32 factor = map->num_stripes / map->sub_stripes;
6108
6109 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110 stripe_index *= map->sub_stripes;
6111
6112 if (need_full_stripe(op))
6113 num_stripes = map->sub_stripes;
6114 else if (mirror_num)
6115 stripe_index += mirror_num - 1;
6116 else {
6117 int old_stripe_index = stripe_index;
6118 stripe_index = find_live_mirror(fs_info, map,
6119 stripe_index,
6120 dev_replace_is_ongoing);
6121 mirror_num = stripe_index - old_stripe_index + 1;
6122 }
6123
6124 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126 /* push stripe_nr back to the start of the full stripe */
6127 stripe_nr = div64_u64(raid56_full_stripe_start,
6128 stripe_len * data_stripes);
6129
6130 /* RAID[56] write or recovery. Return all stripes */
6131 num_stripes = map->num_stripes;
6132 max_errors = nr_parity_stripes(map);
6133
6134 *length = map->stripe_len;
6135 stripe_index = 0;
6136 stripe_offset = 0;
6137 } else {
6138 /*
6139 * Mirror #0 or #1 means the original data block.
6140 * Mirror #2 is RAID5 parity block.
6141 * Mirror #3 is RAID6 Q block.
6142 */
6143 stripe_nr = div_u64_rem(stripe_nr,
6144 data_stripes, &stripe_index);
6145 if (mirror_num > 1)
6146 stripe_index = data_stripes + mirror_num - 2;
6147
6148 /* We distribute the parity blocks across stripes */
6149 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150 &stripe_index);
6151 if (!need_full_stripe(op) && mirror_num <= 1)
6152 mirror_num = 1;
6153 }
6154 } else {
6155 /*
6156 * after this, stripe_nr is the number of stripes on this
6157 * device we have to walk to find the data, and stripe_index is
6158 * the number of our device in the stripe array
6159 */
6160 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161 &stripe_index);
6162 mirror_num = stripe_index + 1;
6163 }
6164 if (stripe_index >= map->num_stripes) {
6165 btrfs_crit(fs_info,
6166 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167 stripe_index, map->num_stripes);
6168 ret = -EINVAL;
6169 goto out;
6170 }
6171
6172 num_alloc_stripes = num_stripes;
6173 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174 if (op == BTRFS_MAP_WRITE)
6175 num_alloc_stripes <<= 1;
6176 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177 num_alloc_stripes++;
6178 tgtdev_indexes = num_stripes;
6179 }
6180
6181 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182 if (!bbio) {
6183 ret = -ENOMEM;
6184 goto out;
6185 }
6186 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6187 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6188
6189 /* build raid_map */
6190 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6191 (need_full_stripe(op) || mirror_num > 1)) {
6192 u64 tmp;
6193 unsigned rot;
6194
6195 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6196 sizeof(struct btrfs_bio_stripe) *
6197 num_alloc_stripes +
6198 sizeof(int) * tgtdev_indexes);
6199
6200 /* Work out the disk rotation on this stripe-set */
6201 div_u64_rem(stripe_nr, num_stripes, &rot);
6202
6203 /* Fill in the logical address of each stripe */
6204 tmp = stripe_nr * data_stripes;
6205 for (i = 0; i < data_stripes; i++)
6206 bbio->raid_map[(i+rot) % num_stripes] =
6207 em->start + (tmp + i) * map->stripe_len;
6208
6209 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211 bbio->raid_map[(i+rot+1) % num_stripes] =
6212 RAID6_Q_STRIPE;
6213 }
6214
6215
6216 for (i = 0; i < num_stripes; i++) {
6217 bbio->stripes[i].physical =
6218 map->stripes[stripe_index].physical +
6219 stripe_offset +
6220 stripe_nr * map->stripe_len;
6221 bbio->stripes[i].dev =
6222 map->stripes[stripe_index].dev;
6223 stripe_index++;
6224 }
6225
6226 if (need_full_stripe(op))
6227 max_errors = btrfs_chunk_max_errors(map);
6228
6229 if (bbio->raid_map)
6230 sort_parity_stripes(bbio, num_stripes);
6231
6232 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6233 need_full_stripe(op)) {
6234 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6235 &max_errors);
6236 }
6237
6238 *bbio_ret = bbio;
6239 bbio->map_type = map->type;
6240 bbio->num_stripes = num_stripes;
6241 bbio->max_errors = max_errors;
6242 bbio->mirror_num = mirror_num;
6243
6244 /*
6245 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6246 * mirror_num == num_stripes + 1 && dev_replace target drive is
6247 * available as a mirror
6248 */
6249 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6250 WARN_ON(num_stripes > 1);
6251 bbio->stripes[0].dev = dev_replace->tgtdev;
6252 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6253 bbio->mirror_num = map->num_stripes + 1;
6254 }
6255out:
6256 if (dev_replace_is_ongoing) {
6257 lockdep_assert_held(&dev_replace->rwsem);
6258 /* Unlock and let waiting writers proceed */
6259 up_read(&dev_replace->rwsem);
6260 }
6261 free_extent_map(em);
6262 return ret;
6263}
6264
6265int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6266 u64 logical, u64 *length,
6267 struct btrfs_bio **bbio_ret, int mirror_num)
6268{
6269 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6270 mirror_num, 0);
6271}
6272
6273/* For Scrub/replace */
6274int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275 u64 logical, u64 *length,
6276 struct btrfs_bio **bbio_ret)
6277{
6278 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6279}
6280
6281int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6282 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6283{
6284 struct extent_map *em;
6285 struct map_lookup *map;
6286 u64 *buf;
6287 u64 bytenr;
6288 u64 length;
6289 u64 stripe_nr;
6290 u64 rmap_len;
6291 int i, j, nr = 0;
6292
6293 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6294 if (IS_ERR(em))
6295 return -EIO;
6296
6297 map = em->map_lookup;
6298 length = em->len;
6299 rmap_len = map->stripe_len;
6300
6301 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6302 length = div_u64(length, map->num_stripes / map->sub_stripes);
6303 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6304 length = div_u64(length, map->num_stripes);
6305 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6306 length = div_u64(length, nr_data_stripes(map));
6307 rmap_len = map->stripe_len * nr_data_stripes(map);
6308 }
6309
6310 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6311 BUG_ON(!buf); /* -ENOMEM */
6312
6313 for (i = 0; i < map->num_stripes; i++) {
6314 if (map->stripes[i].physical > physical ||
6315 map->stripes[i].physical + length <= physical)
6316 continue;
6317
6318 stripe_nr = physical - map->stripes[i].physical;
6319 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6320
6321 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6322 stripe_nr = stripe_nr * map->num_stripes + i;
6323 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6324 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6325 stripe_nr = stripe_nr * map->num_stripes + i;
6326 } /* else if RAID[56], multiply by nr_data_stripes().
6327 * Alternatively, just use rmap_len below instead of
6328 * map->stripe_len */
6329
6330 bytenr = chunk_start + stripe_nr * rmap_len;
6331 WARN_ON(nr >= map->num_stripes);
6332 for (j = 0; j < nr; j++) {
6333 if (buf[j] == bytenr)
6334 break;
6335 }
6336 if (j == nr) {
6337 WARN_ON(nr >= map->num_stripes);
6338 buf[nr++] = bytenr;
6339 }
6340 }
6341
6342 *logical = buf;
6343 *naddrs = nr;
6344 *stripe_len = rmap_len;
6345
6346 free_extent_map(em);
6347 return 0;
6348}
6349
6350static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6351{
6352 bio->bi_private = bbio->private;
6353 bio->bi_end_io = bbio->end_io;
6354 bio_endio(bio);
6355
6356 btrfs_put_bbio(bbio);
6357}
6358
6359static void btrfs_end_bio(struct bio *bio)
6360{
6361 struct btrfs_bio *bbio = bio->bi_private;
6362 int is_orig_bio = 0;
6363
6364 if (bio->bi_status) {
6365 atomic_inc(&bbio->error);
6366 if (bio->bi_status == BLK_STS_IOERR ||
6367 bio->bi_status == BLK_STS_TARGET) {
6368 unsigned int stripe_index =
6369 btrfs_io_bio(bio)->stripe_index;
6370 struct btrfs_device *dev;
6371
6372 BUG_ON(stripe_index >= bbio->num_stripes);
6373 dev = bbio->stripes[stripe_index].dev;
6374 if (dev->bdev) {
6375 if (bio_op(bio) == REQ_OP_WRITE)
6376 btrfs_dev_stat_inc_and_print(dev,
6377 BTRFS_DEV_STAT_WRITE_ERRS);
6378 else if (!(bio->bi_opf & REQ_RAHEAD))
6379 btrfs_dev_stat_inc_and_print(dev,
6380 BTRFS_DEV_STAT_READ_ERRS);
6381 if (bio->bi_opf & REQ_PREFLUSH)
6382 btrfs_dev_stat_inc_and_print(dev,
6383 BTRFS_DEV_STAT_FLUSH_ERRS);
6384 }
6385 }
6386 }
6387
6388 if (bio == bbio->orig_bio)
6389 is_orig_bio = 1;
6390
6391 btrfs_bio_counter_dec(bbio->fs_info);
6392
6393 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394 if (!is_orig_bio) {
6395 bio_put(bio);
6396 bio = bbio->orig_bio;
6397 }
6398
6399 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6400 /* only send an error to the higher layers if it is
6401 * beyond the tolerance of the btrfs bio
6402 */
6403 if (atomic_read(&bbio->error) > bbio->max_errors) {
6404 bio->bi_status = BLK_STS_IOERR;
6405 } else {
6406 /*
6407 * this bio is actually up to date, we didn't
6408 * go over the max number of errors
6409 */
6410 bio->bi_status = BLK_STS_OK;
6411 }
6412
6413 btrfs_end_bbio(bbio, bio);
6414 } else if (!is_orig_bio) {
6415 bio_put(bio);
6416 }
6417}
6418
6419/*
6420 * see run_scheduled_bios for a description of why bios are collected for
6421 * async submit.
6422 *
6423 * This will add one bio to the pending list for a device and make sure
6424 * the work struct is scheduled.
6425 */
6426static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6427 struct bio *bio)
6428{
6429 struct btrfs_fs_info *fs_info = device->fs_info;
6430 int should_queue = 1;
6431 struct btrfs_pending_bios *pending_bios;
6432
6433 /* don't bother with additional async steps for reads, right now */
6434 if (bio_op(bio) == REQ_OP_READ) {
6435 btrfsic_submit_bio(bio);
6436 return;
6437 }
6438
6439 WARN_ON(bio->bi_next);
6440 bio->bi_next = NULL;
6441
6442 spin_lock(&device->io_lock);
6443 if (op_is_sync(bio->bi_opf))
6444 pending_bios = &device->pending_sync_bios;
6445 else
6446 pending_bios = &device->pending_bios;
6447
6448 if (pending_bios->tail)
6449 pending_bios->tail->bi_next = bio;
6450
6451 pending_bios->tail = bio;
6452 if (!pending_bios->head)
6453 pending_bios->head = bio;
6454 if (device->running_pending)
6455 should_queue = 0;
6456
6457 spin_unlock(&device->io_lock);
6458
6459 if (should_queue)
6460 btrfs_queue_work(fs_info->submit_workers, &device->work);
6461}
6462
6463static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6464 u64 physical, int dev_nr, int async)
6465{
6466 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6467 struct btrfs_fs_info *fs_info = bbio->fs_info;
6468
6469 bio->bi_private = bbio;
6470 btrfs_io_bio(bio)->stripe_index = dev_nr;
6471 bio->bi_end_io = btrfs_end_bio;
6472 bio->bi_iter.bi_sector = physical >> 9;
6473 btrfs_debug_in_rcu(fs_info,
6474 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6475 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6476 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6477 bio->bi_iter.bi_size);
6478 bio_set_dev(bio, dev->bdev);
6479
6480 btrfs_bio_counter_inc_noblocked(fs_info);
6481
6482 if (async)
6483 btrfs_schedule_bio(dev, bio);
6484 else
6485 btrfsic_submit_bio(bio);
6486}
6487
6488static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6489{
6490 atomic_inc(&bbio->error);
6491 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6492 /* Should be the original bio. */
6493 WARN_ON(bio != bbio->orig_bio);
6494
6495 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6496 bio->bi_iter.bi_sector = logical >> 9;
6497 if (atomic_read(&bbio->error) > bbio->max_errors)
6498 bio->bi_status = BLK_STS_IOERR;
6499 else
6500 bio->bi_status = BLK_STS_OK;
6501 btrfs_end_bbio(bbio, bio);
6502 }
6503}
6504
6505blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6506 int mirror_num, int async_submit)
6507{
6508 struct btrfs_device *dev;
6509 struct bio *first_bio = bio;
6510 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6511 u64 length = 0;
6512 u64 map_length;
6513 int ret;
6514 int dev_nr;
6515 int total_devs;
6516 struct btrfs_bio *bbio = NULL;
6517
6518 length = bio->bi_iter.bi_size;
6519 map_length = length;
6520
6521 btrfs_bio_counter_inc_blocked(fs_info);
6522 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6523 &map_length, &bbio, mirror_num, 1);
6524 if (ret) {
6525 btrfs_bio_counter_dec(fs_info);
6526 return errno_to_blk_status(ret);
6527 }
6528
6529 total_devs = bbio->num_stripes;
6530 bbio->orig_bio = first_bio;
6531 bbio->private = first_bio->bi_private;
6532 bbio->end_io = first_bio->bi_end_io;
6533 bbio->fs_info = fs_info;
6534 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6535
6536 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6537 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6538 /* In this case, map_length has been set to the length of
6539 a single stripe; not the whole write */
6540 if (bio_op(bio) == REQ_OP_WRITE) {
6541 ret = raid56_parity_write(fs_info, bio, bbio,
6542 map_length);
6543 } else {
6544 ret = raid56_parity_recover(fs_info, bio, bbio,
6545 map_length, mirror_num, 1);
6546 }
6547
6548 btrfs_bio_counter_dec(fs_info);
6549 return errno_to_blk_status(ret);
6550 }
6551
6552 if (map_length < length) {
6553 btrfs_crit(fs_info,
6554 "mapping failed logical %llu bio len %llu len %llu",
6555 logical, length, map_length);
6556 BUG();
6557 }
6558
6559 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6560 dev = bbio->stripes[dev_nr].dev;
6561 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6562 &dev->dev_state) ||
6563 (bio_op(first_bio) == REQ_OP_WRITE &&
6564 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6565 bbio_error(bbio, first_bio, logical);
6566 continue;
6567 }
6568
6569 if (dev_nr < total_devs - 1)
6570 bio = btrfs_bio_clone(first_bio);
6571 else
6572 bio = first_bio;
6573
6574 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6575 dev_nr, async_submit);
6576 }
6577 btrfs_bio_counter_dec(fs_info);
6578 return BLK_STS_OK;
6579}
6580
6581/*
6582 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6583 * return NULL.
6584 *
6585 * If devid and uuid are both specified, the match must be exact, otherwise
6586 * only devid is used.
6587 *
6588 * If @seed is true, traverse through the seed devices.
6589 */
6590struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6591 u64 devid, u8 *uuid, u8 *fsid,
6592 bool seed)
6593{
6594 struct btrfs_device *device;
6595
6596 while (fs_devices) {
6597 if (!fsid ||
6598 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6599 list_for_each_entry(device, &fs_devices->devices,
6600 dev_list) {
6601 if (device->devid == devid &&
6602 (!uuid || memcmp(device->uuid, uuid,
6603 BTRFS_UUID_SIZE) == 0))
6604 return device;
6605 }
6606 }
6607 if (seed)
6608 fs_devices = fs_devices->seed;
6609 else
6610 return NULL;
6611 }
6612 return NULL;
6613}
6614
6615static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6616 u64 devid, u8 *dev_uuid)
6617{
6618 struct btrfs_device *device;
6619
6620 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6621 if (IS_ERR(device))
6622 return device;
6623
6624 list_add(&device->dev_list, &fs_devices->devices);
6625 device->fs_devices = fs_devices;
6626 fs_devices->num_devices++;
6627
6628 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6629 fs_devices->missing_devices++;
6630
6631 return device;
6632}
6633
6634/**
6635 * btrfs_alloc_device - allocate struct btrfs_device
6636 * @fs_info: used only for generating a new devid, can be NULL if
6637 * devid is provided (i.e. @devid != NULL).
6638 * @devid: a pointer to devid for this device. If NULL a new devid
6639 * is generated.
6640 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6641 * is generated.
6642 *
6643 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6644 * on error. Returned struct is not linked onto any lists and must be
6645 * destroyed with btrfs_free_device.
6646 */
6647struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6648 const u64 *devid,
6649 const u8 *uuid)
6650{
6651 struct btrfs_device *dev;
6652 u64 tmp;
6653
6654 if (WARN_ON(!devid && !fs_info))
6655 return ERR_PTR(-EINVAL);
6656
6657 dev = __alloc_device();
6658 if (IS_ERR(dev))
6659 return dev;
6660
6661 if (devid)
6662 tmp = *devid;
6663 else {
6664 int ret;
6665
6666 ret = find_next_devid(fs_info, &tmp);
6667 if (ret) {
6668 btrfs_free_device(dev);
6669 return ERR_PTR(ret);
6670 }
6671 }
6672 dev->devid = tmp;
6673
6674 if (uuid)
6675 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6676 else
6677 generate_random_uuid(dev->uuid);
6678
6679 btrfs_init_work(&dev->work, btrfs_submit_helper,
6680 pending_bios_fn, NULL, NULL);
6681
6682 return dev;
6683}
6684
6685static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6686 u64 devid, u8 *uuid, bool error)
6687{
6688 if (error)
6689 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6690 devid, uuid);
6691 else
6692 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6693 devid, uuid);
6694}
6695
6696static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6697{
6698 int index = btrfs_bg_flags_to_raid_index(type);
6699 int ncopies = btrfs_raid_array[index].ncopies;
6700 int data_stripes;
6701
6702 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6703 case BTRFS_BLOCK_GROUP_RAID5:
6704 data_stripes = num_stripes - 1;
6705 break;
6706 case BTRFS_BLOCK_GROUP_RAID6:
6707 data_stripes = num_stripes - 2;
6708 break;
6709 default:
6710 data_stripes = num_stripes / ncopies;
6711 break;
6712 }
6713 return div_u64(chunk_len, data_stripes);
6714}
6715
6716static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6717 struct btrfs_chunk *chunk)
6718{
6719 struct btrfs_fs_info *fs_info = leaf->fs_info;
6720 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6721 struct map_lookup *map;
6722 struct extent_map *em;
6723 u64 logical;
6724 u64 length;
6725 u64 devid;
6726 u8 uuid[BTRFS_UUID_SIZE];
6727 int num_stripes;
6728 int ret;
6729 int i;
6730
6731 logical = key->offset;
6732 length = btrfs_chunk_length(leaf, chunk);
6733 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6734
6735 /*
6736 * Only need to verify chunk item if we're reading from sys chunk array,
6737 * as chunk item in tree block is already verified by tree-checker.
6738 */
6739 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6740 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6741 if (ret)
6742 return ret;
6743 }
6744
6745 read_lock(&map_tree->lock);
6746 em = lookup_extent_mapping(map_tree, logical, 1);
6747 read_unlock(&map_tree->lock);
6748
6749 /* already mapped? */
6750 if (em && em->start <= logical && em->start + em->len > logical) {
6751 free_extent_map(em);
6752 return 0;
6753 } else if (em) {
6754 free_extent_map(em);
6755 }
6756
6757 em = alloc_extent_map();
6758 if (!em)
6759 return -ENOMEM;
6760 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6761 if (!map) {
6762 free_extent_map(em);
6763 return -ENOMEM;
6764 }
6765
6766 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6767 em->map_lookup = map;
6768 em->start = logical;
6769 em->len = length;
6770 em->orig_start = 0;
6771 em->block_start = 0;
6772 em->block_len = em->len;
6773
6774 map->num_stripes = num_stripes;
6775 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6776 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6777 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6778 map->type = btrfs_chunk_type(leaf, chunk);
6779 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6780 map->verified_stripes = 0;
6781 em->orig_block_len = calc_stripe_length(map->type, em->len,
6782 map->num_stripes);
6783 for (i = 0; i < num_stripes; i++) {
6784 map->stripes[i].physical =
6785 btrfs_stripe_offset_nr(leaf, chunk, i);
6786 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6787 read_extent_buffer(leaf, uuid, (unsigned long)
6788 btrfs_stripe_dev_uuid_nr(chunk, i),
6789 BTRFS_UUID_SIZE);
6790 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6791 devid, uuid, NULL, true);
6792 if (!map->stripes[i].dev &&
6793 !btrfs_test_opt(fs_info, DEGRADED)) {
6794 free_extent_map(em);
6795 btrfs_report_missing_device(fs_info, devid, uuid, true);
6796 return -ENOENT;
6797 }
6798 if (!map->stripes[i].dev) {
6799 map->stripes[i].dev =
6800 add_missing_dev(fs_info->fs_devices, devid,
6801 uuid);
6802 if (IS_ERR(map->stripes[i].dev)) {
6803 free_extent_map(em);
6804 btrfs_err(fs_info,
6805 "failed to init missing dev %llu: %ld",
6806 devid, PTR_ERR(map->stripes[i].dev));
6807 return PTR_ERR(map->stripes[i].dev);
6808 }
6809 btrfs_report_missing_device(fs_info, devid, uuid, false);
6810 }
6811 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6812 &(map->stripes[i].dev->dev_state));
6813
6814 }
6815
6816 write_lock(&map_tree->lock);
6817 ret = add_extent_mapping(map_tree, em, 0);
6818 write_unlock(&map_tree->lock);
6819 if (ret < 0) {
6820 btrfs_err(fs_info,
6821 "failed to add chunk map, start=%llu len=%llu: %d",
6822 em->start, em->len, ret);
6823 }
6824 free_extent_map(em);
6825
6826 return ret;
6827}
6828
6829static void fill_device_from_item(struct extent_buffer *leaf,
6830 struct btrfs_dev_item *dev_item,
6831 struct btrfs_device *device)
6832{
6833 unsigned long ptr;
6834
6835 device->devid = btrfs_device_id(leaf, dev_item);
6836 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6837 device->total_bytes = device->disk_total_bytes;
6838 device->commit_total_bytes = device->disk_total_bytes;
6839 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6840 device->commit_bytes_used = device->bytes_used;
6841 device->type = btrfs_device_type(leaf, dev_item);
6842 device->io_align = btrfs_device_io_align(leaf, dev_item);
6843 device->io_width = btrfs_device_io_width(leaf, dev_item);
6844 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6845 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6846 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6847
6848 ptr = btrfs_device_uuid(dev_item);
6849 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6850}
6851
6852static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6853 u8 *fsid)
6854{
6855 struct btrfs_fs_devices *fs_devices;
6856 int ret;
6857
6858 lockdep_assert_held(&uuid_mutex);
6859 ASSERT(fsid);
6860
6861 fs_devices = fs_info->fs_devices->seed;
6862 while (fs_devices) {
6863 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6864 return fs_devices;
6865
6866 fs_devices = fs_devices->seed;
6867 }
6868
6869 fs_devices = find_fsid(fsid, NULL);
6870 if (!fs_devices) {
6871 if (!btrfs_test_opt(fs_info, DEGRADED))
6872 return ERR_PTR(-ENOENT);
6873
6874 fs_devices = alloc_fs_devices(fsid, NULL);
6875 if (IS_ERR(fs_devices))
6876 return fs_devices;
6877
6878 fs_devices->seeding = 1;
6879 fs_devices->opened = 1;
6880 return fs_devices;
6881 }
6882
6883 fs_devices = clone_fs_devices(fs_devices);
6884 if (IS_ERR(fs_devices))
6885 return fs_devices;
6886
6887 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6888 if (ret) {
6889 free_fs_devices(fs_devices);
6890 fs_devices = ERR_PTR(ret);
6891 goto out;
6892 }
6893
6894 if (!fs_devices->seeding) {
6895 close_fs_devices(fs_devices);
6896 free_fs_devices(fs_devices);
6897 fs_devices = ERR_PTR(-EINVAL);
6898 goto out;
6899 }
6900
6901 fs_devices->seed = fs_info->fs_devices->seed;
6902 fs_info->fs_devices->seed = fs_devices;
6903out:
6904 return fs_devices;
6905}
6906
6907static int read_one_dev(struct extent_buffer *leaf,
6908 struct btrfs_dev_item *dev_item)
6909{
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6912 struct btrfs_device *device;
6913 u64 devid;
6914 int ret;
6915 u8 fs_uuid[BTRFS_FSID_SIZE];
6916 u8 dev_uuid[BTRFS_UUID_SIZE];
6917
6918 devid = btrfs_device_id(leaf, dev_item);
6919 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6920 BTRFS_UUID_SIZE);
6921 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6922 BTRFS_FSID_SIZE);
6923
6924 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6925 fs_devices = open_seed_devices(fs_info, fs_uuid);
6926 if (IS_ERR(fs_devices))
6927 return PTR_ERR(fs_devices);
6928 }
6929
6930 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6931 fs_uuid, true);
6932 if (!device) {
6933 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6934 btrfs_report_missing_device(fs_info, devid,
6935 dev_uuid, true);
6936 return -ENOENT;
6937 }
6938
6939 device = add_missing_dev(fs_devices, devid, dev_uuid);
6940 if (IS_ERR(device)) {
6941 btrfs_err(fs_info,
6942 "failed to add missing dev %llu: %ld",
6943 devid, PTR_ERR(device));
6944 return PTR_ERR(device);
6945 }
6946 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6947 } else {
6948 if (!device->bdev) {
6949 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6950 btrfs_report_missing_device(fs_info,
6951 devid, dev_uuid, true);
6952 return -ENOENT;
6953 }
6954 btrfs_report_missing_device(fs_info, devid,
6955 dev_uuid, false);
6956 }
6957
6958 if (!device->bdev &&
6959 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6960 /*
6961 * this happens when a device that was properly setup
6962 * in the device info lists suddenly goes bad.
6963 * device->bdev is NULL, and so we have to set
6964 * device->missing to one here
6965 */
6966 device->fs_devices->missing_devices++;
6967 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6968 }
6969
6970 /* Move the device to its own fs_devices */
6971 if (device->fs_devices != fs_devices) {
6972 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6973 &device->dev_state));
6974
6975 list_move(&device->dev_list, &fs_devices->devices);
6976 device->fs_devices->num_devices--;
6977 fs_devices->num_devices++;
6978
6979 device->fs_devices->missing_devices--;
6980 fs_devices->missing_devices++;
6981
6982 device->fs_devices = fs_devices;
6983 }
6984 }
6985
6986 if (device->fs_devices != fs_info->fs_devices) {
6987 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6988 if (device->generation !=
6989 btrfs_device_generation(leaf, dev_item))
6990 return -EINVAL;
6991 }
6992
6993 fill_device_from_item(leaf, dev_item, device);
6994 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6995 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6996 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6997 device->fs_devices->total_rw_bytes += device->total_bytes;
6998 atomic64_add(device->total_bytes - device->bytes_used,
6999 &fs_info->free_chunk_space);
7000 }
7001 ret = 0;
7002 return ret;
7003}
7004
7005int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7006{
7007 struct btrfs_root *root = fs_info->tree_root;
7008 struct btrfs_super_block *super_copy = fs_info->super_copy;
7009 struct extent_buffer *sb;
7010 struct btrfs_disk_key *disk_key;
7011 struct btrfs_chunk *chunk;
7012 u8 *array_ptr;
7013 unsigned long sb_array_offset;
7014 int ret = 0;
7015 u32 num_stripes;
7016 u32 array_size;
7017 u32 len = 0;
7018 u32 cur_offset;
7019 u64 type;
7020 struct btrfs_key key;
7021
7022 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7023 /*
7024 * This will create extent buffer of nodesize, superblock size is
7025 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7026 * overallocate but we can keep it as-is, only the first page is used.
7027 */
7028 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7029 if (IS_ERR(sb))
7030 return PTR_ERR(sb);
7031 set_extent_buffer_uptodate(sb);
7032 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7033 /*
7034 * The sb extent buffer is artificial and just used to read the system array.
7035 * set_extent_buffer_uptodate() call does not properly mark all it's
7036 * pages up-to-date when the page is larger: extent does not cover the
7037 * whole page and consequently check_page_uptodate does not find all
7038 * the page's extents up-to-date (the hole beyond sb),
7039 * write_extent_buffer then triggers a WARN_ON.
7040 *
7041 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7042 * but sb spans only this function. Add an explicit SetPageUptodate call
7043 * to silence the warning eg. on PowerPC 64.
7044 */
7045 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7046 SetPageUptodate(sb->pages[0]);
7047
7048 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7049 array_size = btrfs_super_sys_array_size(super_copy);
7050
7051 array_ptr = super_copy->sys_chunk_array;
7052 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7053 cur_offset = 0;
7054
7055 while (cur_offset < array_size) {
7056 disk_key = (struct btrfs_disk_key *)array_ptr;
7057 len = sizeof(*disk_key);
7058 if (cur_offset + len > array_size)
7059 goto out_short_read;
7060
7061 btrfs_disk_key_to_cpu(&key, disk_key);
7062
7063 array_ptr += len;
7064 sb_array_offset += len;
7065 cur_offset += len;
7066
7067 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7068 chunk = (struct btrfs_chunk *)sb_array_offset;
7069 /*
7070 * At least one btrfs_chunk with one stripe must be
7071 * present, exact stripe count check comes afterwards
7072 */
7073 len = btrfs_chunk_item_size(1);
7074 if (cur_offset + len > array_size)
7075 goto out_short_read;
7076
7077 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7078 if (!num_stripes) {
7079 btrfs_err(fs_info,
7080 "invalid number of stripes %u in sys_array at offset %u",
7081 num_stripes, cur_offset);
7082 ret = -EIO;
7083 break;
7084 }
7085
7086 type = btrfs_chunk_type(sb, chunk);
7087 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7088 btrfs_err(fs_info,
7089 "invalid chunk type %llu in sys_array at offset %u",
7090 type, cur_offset);
7091 ret = -EIO;
7092 break;
7093 }
7094
7095 len = btrfs_chunk_item_size(num_stripes);
7096 if (cur_offset + len > array_size)
7097 goto out_short_read;
7098
7099 ret = read_one_chunk(&key, sb, chunk);
7100 if (ret)
7101 break;
7102 } else {
7103 btrfs_err(fs_info,
7104 "unexpected item type %u in sys_array at offset %u",
7105 (u32)key.type, cur_offset);
7106 ret = -EIO;
7107 break;
7108 }
7109 array_ptr += len;
7110 sb_array_offset += len;
7111 cur_offset += len;
7112 }
7113 clear_extent_buffer_uptodate(sb);
7114 free_extent_buffer_stale(sb);
7115 return ret;
7116
7117out_short_read:
7118 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7119 len, cur_offset);
7120 clear_extent_buffer_uptodate(sb);
7121 free_extent_buffer_stale(sb);
7122 return -EIO;
7123}
7124
7125/*
7126 * Check if all chunks in the fs are OK for read-write degraded mount
7127 *
7128 * If the @failing_dev is specified, it's accounted as missing.
7129 *
7130 * Return true if all chunks meet the minimal RW mount requirements.
7131 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7132 */
7133bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7134 struct btrfs_device *failing_dev)
7135{
7136 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7137 struct extent_map *em;
7138 u64 next_start = 0;
7139 bool ret = true;
7140
7141 read_lock(&map_tree->lock);
7142 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7143 read_unlock(&map_tree->lock);
7144 /* No chunk at all? Return false anyway */
7145 if (!em) {
7146 ret = false;
7147 goto out;
7148 }
7149 while (em) {
7150 struct map_lookup *map;
7151 int missing = 0;
7152 int max_tolerated;
7153 int i;
7154
7155 map = em->map_lookup;
7156 max_tolerated =
7157 btrfs_get_num_tolerated_disk_barrier_failures(
7158 map->type);
7159 for (i = 0; i < map->num_stripes; i++) {
7160 struct btrfs_device *dev = map->stripes[i].dev;
7161
7162 if (!dev || !dev->bdev ||
7163 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7164 dev->last_flush_error)
7165 missing++;
7166 else if (failing_dev && failing_dev == dev)
7167 missing++;
7168 }
7169 if (missing > max_tolerated) {
7170 if (!failing_dev)
7171 btrfs_warn(fs_info,
7172 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7173 em->start, missing, max_tolerated);
7174 free_extent_map(em);
7175 ret = false;
7176 goto out;
7177 }
7178 next_start = extent_map_end(em);
7179 free_extent_map(em);
7180
7181 read_lock(&map_tree->lock);
7182 em = lookup_extent_mapping(map_tree, next_start,
7183 (u64)(-1) - next_start);
7184 read_unlock(&map_tree->lock);
7185 }
7186out:
7187 return ret;
7188}
7189
7190int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7191{
7192 struct btrfs_root *root = fs_info->chunk_root;
7193 struct btrfs_path *path;
7194 struct extent_buffer *leaf;
7195 struct btrfs_key key;
7196 struct btrfs_key found_key;
7197 int ret;
7198 int slot;
7199 u64 total_dev = 0;
7200
7201 path = btrfs_alloc_path();
7202 if (!path)
7203 return -ENOMEM;
7204
7205 /*
7206 * uuid_mutex is needed only if we are mounting a sprout FS
7207 * otherwise we don't need it.
7208 */
7209 mutex_lock(&uuid_mutex);
7210 mutex_lock(&fs_info->chunk_mutex);
7211
7212 /*
7213 * Read all device items, and then all the chunk items. All
7214 * device items are found before any chunk item (their object id
7215 * is smaller than the lowest possible object id for a chunk
7216 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7217 */
7218 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7219 key.offset = 0;
7220 key.type = 0;
7221 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7222 if (ret < 0)
7223 goto error;
7224 while (1) {
7225 leaf = path->nodes[0];
7226 slot = path->slots[0];
7227 if (slot >= btrfs_header_nritems(leaf)) {
7228 ret = btrfs_next_leaf(root, path);
7229 if (ret == 0)
7230 continue;
7231 if (ret < 0)
7232 goto error;
7233 break;
7234 }
7235 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7236 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7237 struct btrfs_dev_item *dev_item;
7238 dev_item = btrfs_item_ptr(leaf, slot,
7239 struct btrfs_dev_item);
7240 ret = read_one_dev(leaf, dev_item);
7241 if (ret)
7242 goto error;
7243 total_dev++;
7244 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7245 struct btrfs_chunk *chunk;
7246 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7247 ret = read_one_chunk(&found_key, leaf, chunk);
7248 if (ret)
7249 goto error;
7250 }
7251 path->slots[0]++;
7252 }
7253
7254 /*
7255 * After loading chunk tree, we've got all device information,
7256 * do another round of validation checks.
7257 */
7258 if (total_dev != fs_info->fs_devices->total_devices) {
7259 btrfs_err(fs_info,
7260 "super_num_devices %llu mismatch with num_devices %llu found here",
7261 btrfs_super_num_devices(fs_info->super_copy),
7262 total_dev);
7263 ret = -EINVAL;
7264 goto error;
7265 }
7266 if (btrfs_super_total_bytes(fs_info->super_copy) <
7267 fs_info->fs_devices->total_rw_bytes) {
7268 btrfs_err(fs_info,
7269 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7270 btrfs_super_total_bytes(fs_info->super_copy),
7271 fs_info->fs_devices->total_rw_bytes);
7272 ret = -EINVAL;
7273 goto error;
7274 }
7275 ret = 0;
7276error:
7277 mutex_unlock(&fs_info->chunk_mutex);
7278 mutex_unlock(&uuid_mutex);
7279
7280 btrfs_free_path(path);
7281 return ret;
7282}
7283
7284void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7285{
7286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287 struct btrfs_device *device;
7288
7289 while (fs_devices) {
7290 mutex_lock(&fs_devices->device_list_mutex);
7291 list_for_each_entry(device, &fs_devices->devices, dev_list)
7292 device->fs_info = fs_info;
7293 mutex_unlock(&fs_devices->device_list_mutex);
7294
7295 fs_devices = fs_devices->seed;
7296 }
7297}
7298
7299static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7300 const struct btrfs_dev_stats_item *ptr,
7301 int index)
7302{
7303 u64 val;
7304
7305 read_extent_buffer(eb, &val,
7306 offsetof(struct btrfs_dev_stats_item, values) +
7307 ((unsigned long)ptr) + (index * sizeof(u64)),
7308 sizeof(val));
7309 return val;
7310}
7311
7312static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7313 struct btrfs_dev_stats_item *ptr,
7314 int index, u64 val)
7315{
7316 write_extent_buffer(eb, &val,
7317 offsetof(struct btrfs_dev_stats_item, values) +
7318 ((unsigned long)ptr) + (index * sizeof(u64)),
7319 sizeof(val));
7320}
7321
7322int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7323{
7324 struct btrfs_key key;
7325 struct btrfs_root *dev_root = fs_info->dev_root;
7326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7327 struct extent_buffer *eb;
7328 int slot;
7329 int ret = 0;
7330 struct btrfs_device *device;
7331 struct btrfs_path *path = NULL;
7332 int i;
7333
7334 path = btrfs_alloc_path();
7335 if (!path)
7336 return -ENOMEM;
7337
7338 mutex_lock(&fs_devices->device_list_mutex);
7339 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7340 int item_size;
7341 struct btrfs_dev_stats_item *ptr;
7342
7343 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7344 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7345 key.offset = device->devid;
7346 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7347 if (ret) {
7348 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7349 btrfs_dev_stat_set(device, i, 0);
7350 device->dev_stats_valid = 1;
7351 btrfs_release_path(path);
7352 continue;
7353 }
7354 slot = path->slots[0];
7355 eb = path->nodes[0];
7356 item_size = btrfs_item_size_nr(eb, slot);
7357
7358 ptr = btrfs_item_ptr(eb, slot,
7359 struct btrfs_dev_stats_item);
7360
7361 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7362 if (item_size >= (1 + i) * sizeof(__le64))
7363 btrfs_dev_stat_set(device, i,
7364 btrfs_dev_stats_value(eb, ptr, i));
7365 else
7366 btrfs_dev_stat_set(device, i, 0);
7367 }
7368
7369 device->dev_stats_valid = 1;
7370 btrfs_dev_stat_print_on_load(device);
7371 btrfs_release_path(path);
7372 }
7373 mutex_unlock(&fs_devices->device_list_mutex);
7374
7375 btrfs_free_path(path);
7376 return ret < 0 ? ret : 0;
7377}
7378
7379static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7380 struct btrfs_device *device)
7381{
7382 struct btrfs_fs_info *fs_info = trans->fs_info;
7383 struct btrfs_root *dev_root = fs_info->dev_root;
7384 struct btrfs_path *path;
7385 struct btrfs_key key;
7386 struct extent_buffer *eb;
7387 struct btrfs_dev_stats_item *ptr;
7388 int ret;
7389 int i;
7390
7391 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7392 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7393 key.offset = device->devid;
7394
7395 path = btrfs_alloc_path();
7396 if (!path)
7397 return -ENOMEM;
7398 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7399 if (ret < 0) {
7400 btrfs_warn_in_rcu(fs_info,
7401 "error %d while searching for dev_stats item for device %s",
7402 ret, rcu_str_deref(device->name));
7403 goto out;
7404 }
7405
7406 if (ret == 0 &&
7407 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7408 /* need to delete old one and insert a new one */
7409 ret = btrfs_del_item(trans, dev_root, path);
7410 if (ret != 0) {
7411 btrfs_warn_in_rcu(fs_info,
7412 "delete too small dev_stats item for device %s failed %d",
7413 rcu_str_deref(device->name), ret);
7414 goto out;
7415 }
7416 ret = 1;
7417 }
7418
7419 if (ret == 1) {
7420 /* need to insert a new item */
7421 btrfs_release_path(path);
7422 ret = btrfs_insert_empty_item(trans, dev_root, path,
7423 &key, sizeof(*ptr));
7424 if (ret < 0) {
7425 btrfs_warn_in_rcu(fs_info,
7426 "insert dev_stats item for device %s failed %d",
7427 rcu_str_deref(device->name), ret);
7428 goto out;
7429 }
7430 }
7431
7432 eb = path->nodes[0];
7433 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7434 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7435 btrfs_set_dev_stats_value(eb, ptr, i,
7436 btrfs_dev_stat_read(device, i));
7437 btrfs_mark_buffer_dirty(eb);
7438
7439out:
7440 btrfs_free_path(path);
7441 return ret;
7442}
7443
7444/*
7445 * called from commit_transaction. Writes all changed device stats to disk.
7446 */
7447int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7448{
7449 struct btrfs_fs_info *fs_info = trans->fs_info;
7450 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7451 struct btrfs_device *device;
7452 int stats_cnt;
7453 int ret = 0;
7454
7455 mutex_lock(&fs_devices->device_list_mutex);
7456 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7457 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7458 if (!device->dev_stats_valid || stats_cnt == 0)
7459 continue;
7460
7461
7462 /*
7463 * There is a LOAD-LOAD control dependency between the value of
7464 * dev_stats_ccnt and updating the on-disk values which requires
7465 * reading the in-memory counters. Such control dependencies
7466 * require explicit read memory barriers.
7467 *
7468 * This memory barriers pairs with smp_mb__before_atomic in
7469 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7470 * barrier implied by atomic_xchg in
7471 * btrfs_dev_stats_read_and_reset
7472 */
7473 smp_rmb();
7474
7475 ret = update_dev_stat_item(trans, device);
7476 if (!ret)
7477 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7478 }
7479 mutex_unlock(&fs_devices->device_list_mutex);
7480
7481 return ret;
7482}
7483
7484void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7485{
7486 btrfs_dev_stat_inc(dev, index);
7487 btrfs_dev_stat_print_on_error(dev);
7488}
7489
7490static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7491{
7492 if (!dev->dev_stats_valid)
7493 return;
7494 btrfs_err_rl_in_rcu(dev->fs_info,
7495 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7496 rcu_str_deref(dev->name),
7497 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7498 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7499 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7500 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7501 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7502}
7503
7504static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7505{
7506 int i;
7507
7508 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7509 if (btrfs_dev_stat_read(dev, i) != 0)
7510 break;
7511 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7512 return; /* all values == 0, suppress message */
7513
7514 btrfs_info_in_rcu(dev->fs_info,
7515 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7516 rcu_str_deref(dev->name),
7517 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7518 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7519 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7520 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7521 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7522}
7523
7524int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7525 struct btrfs_ioctl_get_dev_stats *stats)
7526{
7527 struct btrfs_device *dev;
7528 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7529 int i;
7530
7531 mutex_lock(&fs_devices->device_list_mutex);
7532 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7533 true);
7534 mutex_unlock(&fs_devices->device_list_mutex);
7535
7536 if (!dev) {
7537 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7538 return -ENODEV;
7539 } else if (!dev->dev_stats_valid) {
7540 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7541 return -ENODEV;
7542 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7543 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7544 if (stats->nr_items > i)
7545 stats->values[i] =
7546 btrfs_dev_stat_read_and_reset(dev, i);
7547 else
7548 btrfs_dev_stat_set(dev, i, 0);
7549 }
7550 } else {
7551 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7552 if (stats->nr_items > i)
7553 stats->values[i] = btrfs_dev_stat_read(dev, i);
7554 }
7555 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7556 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7557 return 0;
7558}
7559
7560void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7561{
7562 struct buffer_head *bh;
7563 struct btrfs_super_block *disk_super;
7564 int copy_num;
7565
7566 if (!bdev)
7567 return;
7568
7569 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7570 copy_num++) {
7571
7572 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7573 continue;
7574
7575 disk_super = (struct btrfs_super_block *)bh->b_data;
7576
7577 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7578 set_buffer_dirty(bh);
7579 sync_dirty_buffer(bh);
7580 brelse(bh);
7581 }
7582
7583 /* Notify udev that device has changed */
7584 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7585
7586 /* Update ctime/mtime for device path for libblkid */
7587 update_dev_time(device_path);
7588}
7589
7590/*
7591 * Update the size and bytes used for each device where it changed. This is
7592 * delayed since we would otherwise get errors while writing out the
7593 * superblocks.
7594 *
7595 * Must be invoked during transaction commit.
7596 */
7597void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7598{
7599 struct btrfs_device *curr, *next;
7600
7601 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7602
7603 if (list_empty(&trans->dev_update_list))
7604 return;
7605
7606 /*
7607 * We don't need the device_list_mutex here. This list is owned by the
7608 * transaction and the transaction must complete before the device is
7609 * released.
7610 */
7611 mutex_lock(&trans->fs_info->chunk_mutex);
7612 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7613 post_commit_list) {
7614 list_del_init(&curr->post_commit_list);
7615 curr->commit_total_bytes = curr->disk_total_bytes;
7616 curr->commit_bytes_used = curr->bytes_used;
7617 }
7618 mutex_unlock(&trans->fs_info->chunk_mutex);
7619}
7620
7621void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7622{
7623 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7624 while (fs_devices) {
7625 fs_devices->fs_info = fs_info;
7626 fs_devices = fs_devices->seed;
7627 }
7628}
7629
7630void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7631{
7632 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7633 while (fs_devices) {
7634 fs_devices->fs_info = NULL;
7635 fs_devices = fs_devices->seed;
7636 }
7637}
7638
7639/*
7640 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7641 */
7642int btrfs_bg_type_to_factor(u64 flags)
7643{
7644 const int index = btrfs_bg_flags_to_raid_index(flags);
7645
7646 return btrfs_raid_array[index].ncopies;
7647}
7648
7649
7650
7651static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7652 u64 chunk_offset, u64 devid,
7653 u64 physical_offset, u64 physical_len)
7654{
7655 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7656 struct extent_map *em;
7657 struct map_lookup *map;
7658 struct btrfs_device *dev;
7659 u64 stripe_len;
7660 bool found = false;
7661 int ret = 0;
7662 int i;
7663
7664 read_lock(&em_tree->lock);
7665 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7666 read_unlock(&em_tree->lock);
7667
7668 if (!em) {
7669 btrfs_err(fs_info,
7670"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7671 physical_offset, devid);
7672 ret = -EUCLEAN;
7673 goto out;
7674 }
7675
7676 map = em->map_lookup;
7677 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7678 if (physical_len != stripe_len) {
7679 btrfs_err(fs_info,
7680"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7681 physical_offset, devid, em->start, physical_len,
7682 stripe_len);
7683 ret = -EUCLEAN;
7684 goto out;
7685 }
7686
7687 for (i = 0; i < map->num_stripes; i++) {
7688 if (map->stripes[i].dev->devid == devid &&
7689 map->stripes[i].physical == physical_offset) {
7690 found = true;
7691 if (map->verified_stripes >= map->num_stripes) {
7692 btrfs_err(fs_info,
7693 "too many dev extents for chunk %llu found",
7694 em->start);
7695 ret = -EUCLEAN;
7696 goto out;
7697 }
7698 map->verified_stripes++;
7699 break;
7700 }
7701 }
7702 if (!found) {
7703 btrfs_err(fs_info,
7704 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7705 physical_offset, devid);
7706 ret = -EUCLEAN;
7707 }
7708
7709 /* Make sure no dev extent is beyond device bondary */
7710 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7711 if (!dev) {
7712 btrfs_err(fs_info, "failed to find devid %llu", devid);
7713 ret = -EUCLEAN;
7714 goto out;
7715 }
7716
7717 /* It's possible this device is a dummy for seed device */
7718 if (dev->disk_total_bytes == 0) {
7719 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7720 NULL, false);
7721 if (!dev) {
7722 btrfs_err(fs_info, "failed to find seed devid %llu",
7723 devid);
7724 ret = -EUCLEAN;
7725 goto out;
7726 }
7727 }
7728
7729 if (physical_offset + physical_len > dev->disk_total_bytes) {
7730 btrfs_err(fs_info,
7731"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7732 devid, physical_offset, physical_len,
7733 dev->disk_total_bytes);
7734 ret = -EUCLEAN;
7735 goto out;
7736 }
7737out:
7738 free_extent_map(em);
7739 return ret;
7740}
7741
7742static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7743{
7744 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7745 struct extent_map *em;
7746 struct rb_node *node;
7747 int ret = 0;
7748
7749 read_lock(&em_tree->lock);
7750 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7751 em = rb_entry(node, struct extent_map, rb_node);
7752 if (em->map_lookup->num_stripes !=
7753 em->map_lookup->verified_stripes) {
7754 btrfs_err(fs_info,
7755 "chunk %llu has missing dev extent, have %d expect %d",
7756 em->start, em->map_lookup->verified_stripes,
7757 em->map_lookup->num_stripes);
7758 ret = -EUCLEAN;
7759 goto out;
7760 }
7761 }
7762out:
7763 read_unlock(&em_tree->lock);
7764 return ret;
7765}
7766
7767/*
7768 * Ensure that all dev extents are mapped to correct chunk, otherwise
7769 * later chunk allocation/free would cause unexpected behavior.
7770 *
7771 * NOTE: This will iterate through the whole device tree, which should be of
7772 * the same size level as the chunk tree. This slightly increases mount time.
7773 */
7774int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7775{
7776 struct btrfs_path *path;
7777 struct btrfs_root *root = fs_info->dev_root;
7778 struct btrfs_key key;
7779 u64 prev_devid = 0;
7780 u64 prev_dev_ext_end = 0;
7781 int ret = 0;
7782
7783 key.objectid = 1;
7784 key.type = BTRFS_DEV_EXTENT_KEY;
7785 key.offset = 0;
7786
7787 path = btrfs_alloc_path();
7788 if (!path)
7789 return -ENOMEM;
7790
7791 path->reada = READA_FORWARD;
7792 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7793 if (ret < 0)
7794 goto out;
7795
7796 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7797 ret = btrfs_next_item(root, path);
7798 if (ret < 0)
7799 goto out;
7800 /* No dev extents at all? Not good */
7801 if (ret > 0) {
7802 ret = -EUCLEAN;
7803 goto out;
7804 }
7805 }
7806 while (1) {
7807 struct extent_buffer *leaf = path->nodes[0];
7808 struct btrfs_dev_extent *dext;
7809 int slot = path->slots[0];
7810 u64 chunk_offset;
7811 u64 physical_offset;
7812 u64 physical_len;
7813 u64 devid;
7814
7815 btrfs_item_key_to_cpu(leaf, &key, slot);
7816 if (key.type != BTRFS_DEV_EXTENT_KEY)
7817 break;
7818 devid = key.objectid;
7819 physical_offset = key.offset;
7820
7821 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7822 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7823 physical_len = btrfs_dev_extent_length(leaf, dext);
7824
7825 /* Check if this dev extent overlaps with the previous one */
7826 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7827 btrfs_err(fs_info,
7828"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7829 devid, physical_offset, prev_dev_ext_end);
7830 ret = -EUCLEAN;
7831 goto out;
7832 }
7833
7834 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7835 physical_offset, physical_len);
7836 if (ret < 0)
7837 goto out;
7838 prev_devid = devid;
7839 prev_dev_ext_end = physical_offset + physical_len;
7840
7841 ret = btrfs_next_item(root, path);
7842 if (ret < 0)
7843 goto out;
7844 if (ret > 0) {
7845 ret = 0;
7846 break;
7847 }
7848 }
7849
7850 /* Ensure all chunks have corresponding dev extents */
7851 ret = verify_chunk_dev_extent_mapping(fs_info);
7852out:
7853 btrfs_free_path(path);
7854 return ret;
7855}
7856
7857/*
7858 * Check whether the given block group or device is pinned by any inode being
7859 * used as a swapfile.
7860 */
7861bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7862{
7863 struct btrfs_swapfile_pin *sp;
7864 struct rb_node *node;
7865
7866 spin_lock(&fs_info->swapfile_pins_lock);
7867 node = fs_info->swapfile_pins.rb_node;
7868 while (node) {
7869 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7870 if (ptr < sp->ptr)
7871 node = node->rb_left;
7872 else if (ptr > sp->ptr)
7873 node = node->rb_right;
7874 else
7875 break;
7876 }
7877 spin_unlock(&fs_info->swapfile_pins_lock);
7878 return node != NULL;
7879}